
SOLVEHELPING CUSTOMERS COMPLEX PROBLEMSSOLVE

J W A V E 3 . 5

U s e r ’ s G u i d e

Visual Numerics, Inc.

Visual Numerics, Inc. Visual Numerics, Inc. (France) S.A.R.L. Visual Numerics International, Ltd.
2500 Wilcrest Drive Tour Europe Suite 1
Suite 200 33 place des Corolles Centennial Court
Houston, Texas 77042-2579 Cedex 07 East Hampstead Road
United States of America 92049 PARIS LA DEFENSE Bracknell, Berkshire
713-784-3131 FRANCE RG 12 1 YQ
800-222-4675 +33-1-46-93-94-20 UNITED KINGDOM
(FAX) 713-781-9260 (FAX) +33-1-46-93-94-39 +01-344-458-700
http://www.vni.com e-mail: info@vni-paris.fr (FAX) +01-344-458-748
e-mail: info@boulder.vni.com e-mail: info@vniuk.co.uk

Visual Numerics, Inc. Visual Numerics International GmbH Visual Numerics Japan, Inc.
7/F, #510, Sect. 5 Zettachring 10 Gobancho Hikari Building, 4th Floor
Chung Hsiao E. Rd. D-70567 Stuttgart 14 Gobancho
Taipei, Taiwan 110 ROC GERMANY Chiyoda-Ku, Tokyo, 102
+886-2-727-2255 +49-711-13287-0 JAPAN
(FAX) +886-2-727-6798 (FAX) +49-711-13287-99 +81-3-5211-7760
e-mail: info@vni.com.tw e-mail: info@visual-numerics.de (FAX) +81-3-5211-7769

e-mail: vda-sprt@vnij.co.jp
VIsual Numerics S.A. de C.V. Visual Numerics, Inc., Korea
Cerrada de Berna 3, Tercer Piso Rm. 801, Hanshin Bldg.
Col. Juarez 136-1, Mapo-dong, Mapo-gu
Mexico, D.F. C.P. 06600 Seoul 121-050
Mexico Korea

© 1990-2001 by Visual Numerics, Inc. An unpublished work. All rights reserved. Printed in the USA. 2001

Information contained in this documentation is subject to change without notice.

IMSL, PV- WAVE, Visual Numerics and PV-WAVE Advantage are either trademarks or registered trademark s of Visual Numerics, Inc.
in the United States and other countries.

The following are trademarks or registered trademarks of their respective owners: Microsoft, Windows, Windows 95, Windows NT, For-
tran PowerStation, Excel, Microsoft Access, FoxPro, Visual C, Visual C++ — Microsoft Corporation; Motif — The Open Systems Foun-
dation, Inc.; PostScript — Adobe Systems, Inc.; UNIX — X/Open Company, Limited; X Window System, X11 — Massachusetts
Institute of Technology; RISC System/6000 and IBM — International Business Machines Corporation; Java, Sun — Sun Microsystems,
Inc.; HPGL and PCL — Hewlett Packard Corporation; DEC, VAX, VMS, OpenVMS — Compaq Computer Corporation; Tektronix 4510
Rasterizer — Tektronix, Inc.; IRIX, TIFF — Silicon Graphics, Inc.; ORACLE — Oracle Corporation; SPARCstation — SPARC Interna-
tional, licensed exclusively to Sun Microsystems, Inc.; SYBASE — Sybase, Inc.; HyperHelp — Bristol Technology, Inc.; dBase — Bor-
land International, Inc.; MIFF — E.I. du Pont de Nemours and Company; JPEG — Independent JPEG Group; PNG — Aladdin
Enterprises; XWD — X Consortium. Other product names and companies mentioned herein may be the trademarks of their respective
owners.

IMPORTANT NOTICE: Use of this document is subject to the terms and conditions of a Visual Numerics Software License
Agreement, including, without limitation, the Limited Warranty and Limitation of Liability. If you do not accept the terms of the
license agreement, you may not use this documentation and should promptly return the product for a full refund. Do not make illegal
copies of this documentation. No part of this documentation may be stored in a retrieval system, reproduced or transmitted in any form
or by any means without the express written consent of Visual Numerics, unless expressly permitted by applicable law.

Table of Contents i

Table of Contents

Preface ix

How to Use This Manual ix

Server-Side Developers x
Client-Side Developers x
System Managers and Webmasters x

What’s in this Manual xi

Technical Support xii

FAX and E-mail Inquiries xiii
Electronic Services xiv

Chapter 1: JWAVE System Introduction 1
The Client Side 7

The Server Side 9

The JWAVE Manager 9
PV-WAVE Sessions 10
JWAVE Wrappers 11
PV-WAVE Applications 11

A Simple Example 12

The Client Java Application 12
The JWAVE Wrapper Function 14
Running the Application 16
Sample Output 16

Summary 16

Chapter 2: The Generic JWAVE Applet 17
Simple Applet Example 17

The HTML Code 18
The JWAVE Wrapper Function 20
Example Summary 20

Using JavaScript to Control the Applet 21

The HTML File with JavaScript 21

ii JWAVE User’s Guide

The JWAVE Wrapper 24
Running the Applet Demonstrations 26

Summary 28

Chapter 3: JWAVE Client Development 29
JWAVE Client Overview 29

The JWaveExecute Class 30

Passing Parameters from the Client 31

Getting Data Back from the Server 33

Casting Returned Data 33

The Exception Classes 36

Managing the Server Connection 36

Compressing Data 36
Ending a JWAVE Session 37
Using Multiple Clients 37
Using Ping Methods 37

Example: Passing an Array 38

A Note About Data Proxies 40

Using the JWAVE Javadoc Reference 40

Summary 40

Chapter 4: JWAVE Graphics 41
Returning Graphics to the Client 41

The JWaveCanvas and JWavePanel Class 41
Viewable Object 42
The JWaveView Class 42
Sample Code 43
Example: Displaying a Simple 2D Plot 44

Resizing Graphics 48

Coordinate System Transformations 49

Demonstration Programs 49

Summary 50

Table of Contents iii

Chapter 5: JWAVE Server Development 51
JWAVE Server Overview 51

Writing JWAVE Wrapper Functions 52

Example: Simple JWAVE Wrapper 52
Wrapper Functions Must Be Compiled 54

Using GETPARAM to Unpack Parameters 54

What Do You Want To Unpack? 54
Unpacking Values 55
Unpacking Command Strings 57
Building a PV-WAVE EXECUTE Command 59

Unpacking Color Data 60

Returning Multiple Results to the Client 60

Returning Graphical Data to the Client 61

Example: A Typical JWAVE Wrapper 62

Unpacking the Parameters 64
Unpacking Color Information with GET_NAMED_COLOR 67
The RETURN Statement 67

You Can Only Retrieve Parameters Once 68

Error Handling 68

Using the MESSAGE Procedure 68
Trapping Errors 68
Using the Expect Keywords 69

Testing Wrapper Functions 70

Testing a Numerical Program 70
Testing a Graphics Program 71

Summary 72

Chapter 6: Managing Data 73
What is a JWAVE Data Proxy 74

Instantiating a JWaveDataProxy Object 75
Other Ways to Instantiate a JWaveDataProxy Object 75

The Efficiency of Using Data Proxies 77

Inefficient System: The Data Makes Two Round Trips 77
Efficient System: No Round Trips 78

iv JWAVE User’s Guide

Setting the Return Parameter Mode 78
Example: Using Data Proxies 79
Data Proxies Are Controlled by the Client 82
How Long is Proxy Data Stored on the Server 82

Summary 82

Chapter 7: Using JWAVE Beans 83
Using JWAVE Beans with the BeanBox 83

Building a JWAVE Bean 88

Deciding What the Bean Will Do 88
Adding Properties to the Bean 88
Handling Data 90
Telling a Bean Environment How to Use Your Bean 95
Building a Customizer for the Bean 104
Adding Serializability to the Bean 106

Chapter 8: JWAVE Server Configuration 107
Installation Overview 107

Client-Side after JWAVE Installation 108
Server-Side after JWAVE Installation 108
Additional Software Requirements 109

Running and Testing the JWAVE Server 109

Setting Up the JWAVE Server 112

Using the JWAVE Manager 112
JWAVE Server Options 114
Configuring the JWAVE Manager 116
Using the JWAVE Configuration Tool 118
Installing the JWAVE Manager as a Service on Windows NT 128

Testing the JWAVE Server Installation 131

Scalar Data Test 132
Array Data Test 132
Return Mode Test 132
View Test 132

Running JWAVE Demonstrations 133

Setting Up for JWAVE Client Development 133

Table of Contents v

Chapter 9: Advanced Graphics Features 135
Advanced Features 135

JWaveCanvas2D and JWavePanel2D 135

Pick Point 136
Zoom 137
Profile 138

JWaveCanvas3D and JWavePanel3D 140

Rotate 140

Getting Started 141

Client-Side Development 141
Server-Side Development 142
Example Applets 142

Running the Demonstration Applets 143

Running the Demo Applets 143
PV-WAVE Wrappers Used by the Demos 144

Chapter 10: JSPs, Servlets, and JWAVE 145
Benefits of this Architecture 145

What is the JWaveJSPServlet? 146

Location of the JWaveJSPServlet 146
Purpose of the JWaveJSPServlet 147
Overview of the JWaveJSPServlet 147
The JWaveImageManager 147

Setting Up the JWaveJSPServlet 148

System Requirements 148
Setting Up the JWAVE Server 149

Running the JWaveJSPServlet 150

Understanding the JWaveJSPServlet 150

The JSP Files 151
JWAVE Wrappers 151
Inside the JWaveJSPServlet: GET Requests, POST Requests, and the

JWaveImageManager 151

Writing Your Own JWaveJSPServlet 153

How Image Maps are Handled 153

vi JWAVE User’s Guide

Writing the JWAVE Wrappers 154

PACKIMAGE Function 154
PACKTABLE Function 155
SETIMAGESIZE Procedure 155
Example 155

Appendix A: JWAVE Wrapper API A-1
DMCopyData Procedure A-1

DMDataExists Function A-2

DMEnumerateData Function A-3

DMGetData Function A-4

DMInit Procedure A-5

DMRemoveData Procedure A-5

DMRenameData Procedure A-6

DMRestore Procedure A-7

DMSave Procedure A-8

DMStoreData Procedure A-9

GETPARAM Function A-11

GET_NAMED_COLOR Function A-17

PACKIMAGE Procedure A-22

Usage A-22
Discussion A-22

PACKTABLE Procedure A-22

Usage A-22
Input Parameters A-22
Keywords A-23
Discussion A-23

SETIMAGESIZE Procedure A-24

Usage A-24
Input Parameters A-24

UPDATE_LOG Procedure A-25

WRAPPER_TEST_EXECUTE Procedure A-26

WRAPPER_TEST_GETRETURN Function A-27

Table of Contents vii

WRAPPER_TEST_INIT Procedure A-28

WRAPPER_TEST_RETURN_INFO Procedure A-30

WRAPPER_TEST_SETCOLOR Procedure A-31

WRAPPER_TEST_SETPARAM Procedure A-32

Appendix B: JWAVE Convenience Wrappers B-1
JWAVE_BAR3D Function B-2

JWAVE_CONTOUR Function B-4

JWAVE_HISTOGRAM Function B-6

JWAVE_LOADCT Procedure B-8

JWAVE_PIE Function B-11

JWAVE_PLOT Function B-13

JWAVE_SURFACE Function B-16

Appendix C: Keyword and Named Color Parameters C-1
Using These Parameters C-1

Keyword Parameters C-2

Named Color Parameters C-19

Named ColorSet Parameters C-20

Appendix D: HTTP Configuration File D-1
General Parameters D-2

Directory Mapping D-2

Mime Types Mapping D-3

Appendix E: JWAVE Bean Tools Reference E-1
JWAVE Bar3d Tool E-2

JWAVE Contour Tool E-3

JWAVE Generic Tool E-6

JWAVE Histogram Tool E-7

JWAVE Pie Tool E-8

viii JWAVE User’s Guide

JWAVE Plot Tool E-10

JWAVE Surface Tool E-13

Appendix F: Glossary F-1

JWAVE Index 1

ix

CHAPTER

Preface
This manual is the user’s guide for JWAVETM. It gives an overview of the JWAVE
system, explains how to create client-side (JavaTM) applications and server-side
(PV-WAVETM) wrapper functions, and includes advanced topics and JWAVE ref-
erence information.

How to Use This Manual
JWAVE, as a system, can be divided into server-side and client-side components.
To develop the server-side components (called JWAVE wrapper functions), you
must be familiar with the PV-WAVE programming language. Client-side JWAVE
components, on the other hand, are written in Java and require Java programming
expertise. This manual addresses both server-side and client-side JWAVE develop-
ers. A third audience, system administrators and Webmasters, is addressed in a
chapter on configuring the JWAVE system.

TIP Because the server and client-side components of a JWAVE system are closely
related, developers must coordinate their efforts. We recommend that all JWAVE
developers (client and server developers) read the introductory chapters, Chapter
1, JWAVE System Introduction and Chapter 2, The Generic JWAVE Applet, to get
an overview of JWAVE. Also, you can refer to Appendix F, Glossary for general
information about JWAVE.

x Preface JWAVE User’s Guide

Server-Side Developers

If you are writing server-side components (JWAVE wrapper functions), then you
can focus on Chapter 5, JWAVE Server Development. This chapter explains the
mechanisms by which JWAVE wrapper functions retrieve and unpack parameters
from a Java client application.

If you want to take advantage of JSPs and servlets to create applications that do not
require client-side Java, see Chapter 10, JSPs, Servlets, and JWAVE.

TIP It is helpful for server-side developers to understand how parameters and data
are set in client applications before being sent to the server. In particular, be famil-
iar with the Java methods that are used to set parameters in client applications. You
can find information on these methods in Chapter 3, JWAVE Client Development.

Client-Side Developers

If you are writing client-side applications, you must be a Java programmer. Focus
on Chapter 3, JWAVE Client Development and Chapter 4, JWAVE Graphics. These
chapters describe the basic ingredients of JWAVE client applications. For a discus-
sion of more advanced topics, see Chapter 6, Managing Data and Chapter 7, Using
JWAVE Beans.

Again, client-side developers must coordinate their efforts with developers of
server-side JWAVE programs. The client-side JWAVE application is, in effect, an
interface to a PV-WAVE application on the server. The PV-WAVE programmer
who develops the server-side JWAVE wrappers must know what kinds of plots the
client intends to produce, the types of parameters that will be passed, and the types
of data to expect.

Some convenience classes are provided with JWAVE that let you easily add func-
tionality such as zooming and profile plots to applets. For information on these
classes, see Chapter 9, Advanced Graphics Features.

System Managers and Webmasters

Chapter 8, JWAVE Server Configuration explains how to set up and configure the
JWAVE server software.

Detailed information on installing JWAVE is in the CD booklet. Additional infor-
mation on installing, configuring, and using JWAVE can be found in the files
Release_Notes.html and Tips in:

(UNIX) VNI_DIR/jwave-3_5

(Windows) VNI_DIR\jwave-3_5

where VNI_DIR is the main Visual Numerics installation directory.

What’s in this Manual xi

What’s in this Manual
This manual explains how to use JWAVE. With JWAVE, you can create visual and
numerical analysis applications written entirely in Java, where the Java client appli-
cation communicates directly with PV-WAVE running on a server.

Chapter 1, JWAVE System Introduction — Describes the client/server architec-
ture of a JWAVE system and gives an example JWAVE application and wrapper.

Chapter 2, The Generic JWAVE Applet — Uses a simple example to demonstrate
how to use JWAVE for publishing PV-WAVE graphics on a Web page.

Chapter 3, JWAVE Client Development — Explains how parameters and data are
passed from the client and retrieved from the server.

Chapter 4, JWAVE Graphics — Describes the JWaveView class for returning
graphics to the client.

Chapter 5, JWAVE Server Development — Describes development of JWAVE
wrapper functions.

Chapter 6, Managing Data — Describes the use of JWAVE data proxies.

Chapter 7, Using JWAVE Beans — Explains how to use and develop JWAVE
Beans.

Chapter 8, JWAVE Server Configuration — Explains the installation directory
structures for the client and the server, how to start and stop the JWAVE Manager,
and how to configure and test the server.

Chapter 9, Advanced Graphics Features — Discusses convenience classes that
let you easily add functionality to JWAVE applets.

Chapter 10, JSPs, Servlets, and JWAVE — Explains how to use JSPs and servlets
with JWAVE to create dynamically generated Web content.

Chapter A, JWAVE Wrapper API — Describes the JWAVE component functions
that are used in JWAVE wrappers.

Chapter B, JWAVE Convenience Wrappers — Describes the JWAVE conve-
nience wrapper functions.

Chapter C, Keyword and Named Color Parameters — Describes the keywords
and parameters that can be used with JWAVE convenience wrappers.

Chapter D, HTTP Configuration File — Describes a configuration file used to
configure the JWAVE HTTP Web server.

Chapter E, JWAVE Bean Tools Reference — Describes the input parameters and
customizer features for JWAVE Beans Tools.

Chapter F, Glossary — Defines JWAVE terms and concepts.

JWAVE Index

xii Preface JWAVE User’s Guide

Technical Support
If you have problems installing, unlocking, or running your software, contact
Visual Numerics Technical Support by calling:

Users outside the U.S., France, Germany, Japan, Korea, Mexico, Taiwan, and the
U.K. can contact their local agents.

Please be prepared to provide the following information when you call for consul-
tation during Visual Numerics business hours:

• Your license number, a six-digit number that can be found on the packing slip
accompanying this order. (If you are evaluating the software, just mention that
you are from an evaluation site.)

• The name and version number of the product. For example, PV-WAVE 7.0.

• The type of system on which the software is being run. For example, SPARC-
station, IBM RS/6000, HP 9000 Series 700.

• The operating system and version number. For example, HP-UX 10.2 or IRIX
6.5.

• A detailed description of the problem.

Office Location Phone Number

Corporate Headquarters
Houston, Texas 713-784-3131

Boulder, Colorado 303-939-8920

France +33-1-46-93-94-20

Germany +49-711-13287-0

Japan +81-3-5211-7760

Korea +82-2-3273-2633

Mexico +52-5-514-9730

Taiwan +886-2-727-2255

United Kingdom +44-1-344-458-700

Technical Support xiii

FAX and E-mail Inquiries

Contact Visual Numerics Technical Support staff by sending a FAX to:

or by sending E-mail to:

Office Location FAX Number

Corporate Headquarters 713-781-9260

Boulder, Colorado 303-245-5301

France +33-1-46-93-94-39

Germany +49-711-13287-99

Japan +81-3-5211-7769

Korea +82-2-3273-2634

Mexico +52-5-514-4873

Taiwan +886-2-727-6798

United Kingdom +44-1-344-458-748

Office Location E-mail Address

Boulder, Colorado support@boulder.vni.com

France support@vni-paris.fr

Germany support@visual-numerics.de

Japan vda-sprt@vnij.co.jp

Korea support@vni.co.kr

Taiwan support@vni.com.tw

United Kingdom support@vniuk.co.uk

xiv Preface JWAVE User’s Guide

Electronic Services

Service Address

General e-mail info@boulder.vni.com

Support e-mail support@boulder.vni.com

World Wide Web http://www.vni.com

Anonymous FTP ftp.boulder.vni.com

FTP Using URL ftp://ftp.boulder.vni.com/VNI/

PV-WAVE
Mailing List: Majordomo@boulder.vni.com

To subscribe
 include:

subscribe pv-wave YourEmailAddress

To post messages pv-wave@boulder.vni.com

1

CHAPTER

1

JWAVE System Introduction
This chapter gives a quick overview of the basic client and server components of
JWAVE.

JWAVE lets you create Java client applications that communicate directly with
PV-WAVE running on a remote server. On the server side, PV-WAVE code is used
to analyze data and generate graphics. On the client side, a Java applet (or applica-
tion) lets users interact with the PV-WAVE session and display the graphics
returned from PV-WAVE.

JWAVE offers four separate client/server connection models:

Figure 1-1 shows a typical JWAVE system, consisting of client Java applications
that communicate with a PV-WAVE server via an HTTP connection (a Web server
connection). In this model, you can use any Web server that you wish.

Figure 1-2 shows a JWAVE client that is connected to the server via a direct socket
connection.

Figure 1-3 shows a JWAVE client that is connected to the JWAVE Web server via
an HTTP connection. The JWAVE Web is bundled with JWAVE. It handles client
connections and manages JWAVE sessions on the server.

Figure 1-4 shows a JWAVE client that is connected to the server via the JWAVE
Servlet. The JWAVE Servlet plugs into any Web server that accepts servlets.

All of these connection methods achieve the same result: parameters and data can
be passed between the client applet/application and PV-WAVE running on the
server.

2 Chapter 1: JWAVE System Introduction JWAVE User’s Guide

NOTE HTTP and socket connection methods can be used simultaneously by mul-
tiple JWAVE client applications; the JWAVE server can respond to several client
applications at the same time.

Briefly, a client-side Java application with JWAVE components connects to a
JWAVE server, usually across the Internet or an intranet. On the server, a process
called the JWAVE Manager “listens” for client connections. When a connection is
made, the JWAVE Manager starts a PV-WAVE session and executes a “wrapper
function.” This wrapper function is a PV-WAVE function that contains JWAVE-
specific calls for passing parameters and data back and forth to the Java client. For
instance, PV-WAVE may receive a 2D array of image data from the client, process
the data, and send a plot back to the client where it is displayed.

TIP In general, you must be a Java developer to develop client-side JWAVE appli-
cations or applets. If your Java experience is limited, you can still create useful
JWAVE applications using the generic JWAVE applet described in Chapter 2, The
Generic JWAVE Applet.

 3

Figure 1-1 JWAVE client-server configuration. Java applets (or applications) communicate
with a JWAVE server through HTTP connections. In this model, the client contacts a CGI
program running on a Web server. The CGI then starts the JWAVE Manager. You can use
this type of connection simultaneously with a direct socket connection, shown in Figure 1-2.

4 Chapter 1: JWAVE System Introduction JWAVE User’s Guide

Figure 1-2 JWAVE client-server configuration. Java applets (or applications) communicate
with a JWAVE server via direct socket connections. You can use this type of connection
simultaneously with an HTTP connection, shown in Figure 1-1.

 5

Figure 1-3 Java applets (or applications) communicate directly with the JWAVE Web server.
The JWAVE Web Server includes the JWAVE Manager, therefore, the client can connect to
the JWAVE Manager directly with a URL address.

6 Chapter 1: JWAVE System Introduction JWAVE User’s Guide

Figure 1-4 Java applets (or applications) communicate with a Web server using the JWAVE
Servlet. The JWAVE Servlet plugs into any Web server that accepts servlets. Once the
JWAVE Servlet is configured properly, clients can connect to the JWAVE Manager directly
with a URL address.

The Client Side 7

The Client Side
The client side of a JWAVE system consists of a Java application or applet.

NOTE A Java applet is run within another application, usually a Web browser. A
Java application runs on its own, without the need for another controlling program.
The distinction is usually irrelevant for JWAVE (with the exception of applet secu-
rity restrictions), as the applet/application decision depends on how the users
access the program, rather than on what the program does.

The client application developer provides a user interface for interacting with the
JWAVE server. For example, the client application might provide interactive but-
tons, text fields, and menus that allow the user to choose the type of plot to create,
specify the plot characteristics, import data, filter data, and so on.

JWAVE allows client applications to remain thin, because all of the data analysis
can be done on the server. Typical client applications allow users to run remote
PV-WAVE applications on the server and then retrieve only the desired results
(such as plots and/or analysis results).

Figure 1-5 shows a basic client configuration, where the client happens to be an
applet running in a browser.

Figure 1-5 JWAVE client applet. A JWAVE applet requires JWAVE Java classes (in the JAR
file) and configuration information. The browser uses an HTML page to load the applet.

8 Chapter 1: JWAVE System Introduction JWAVE User’s Guide

As Figure 1-5 shows, the JWAVE applet (or application), written in Java, requires
JWAVE class packages, which are bundled in a Java Archive (JAR) file. This JAR
file is located in:

(UNIX) VNI_DIR/classes/JWave.jar

(Windows) VNI_DIR\classes\JWave.jar

where VNI_DIR is the main Visual Numerics installation directory.

These classes provide the means for Java applications to:

• connect to a JWAVE server

• execute PV-WAVE functions

• pass parameters and data to the server

• retrieve parameters and data from the server

The JWaveConnectInfo.jar file is located in the same directory as the
JWave.jar file. This file provides information necessary (for example, a server
socket ID) for the applet to contact the remote JWAVE server.

TIP If you want to use an IDE for JavaBeans application development, see Chapter
7, Using JWAVE Beans.

The Server Side 9

The Server Side
On the server side, the JWAVE Manager listens for client connections and manages
individual PV-WAVE sessions.

Figure 1-6 shows the basic configuration of the JWAVE server components.

Figure 1-6 The server side of a JWAVE system. The JWAVE Manager application listens
for client connections and takes appropriate actions, such as starting a PV-WAVE session.

The JWAVE Manager

The JWAVE Manager is a program that runs on the server and listens for client con-
nections. When a connection is made, the JWAVE Manager examines the request
from the client and processes it appropriately. If the client request is for an initial
contact to a PV-WAVE session, then one is started. If the client request is for a ses-
sion that is already running, then that session is contacted. The JWAVE Manager
sends all parameters and data from the client to the PV-WAVE session. When the
request is completed, the reply (such as data or a plot) from PV-WAVE is returned

10 Chapter 1: JWAVE System Introduction JWAVE User’s Guide

by the Manager to the client. If the client contacts the server with HTTP, then the
connection request is routed through a CGI (Common Gateway Interface) pro-
gram, which then contacts the JWAVE Manager.

The JWAVE Manager can manage multiple PV-WAVE sessions, or a client appli-
cation can make several sequential requests using the same PV-WAVE session.
This allows faster updates (as new sessions are not started for each request). This
also allows data to remain with the session (in memory) for use by subsequent
requests (rather than making round trips back to the client).

The JWAVE Manager also handles administrative functions, such as starting, shut-
ting down, and configuring the JWAVE server. A script called manager
(manager.bat on Windows) is used to control and configure the JWAVE Man-
ager. This script is described in detail in Chapter 8, JWAVE Server Configuration.

As shown in Figure 1-7, the JWAVE Manager uses configuration information from
the file jwave.cfg. (By default, output is sent to the terminal.) For information on
using the manager command and changing server configuration, see Setting Up
the JWAVE Server on page 112.

Figure 1-7 JWAVE Manager handles activity on the JWAVE server

PV-WAVE Sessions

PV-WAVE sessions are started by the JWAVE Manager, as described previously in
this section. PV-WAVE performs the actual data analysis and generates graphics.

The individual PV-WAVE sessions log their output, by default, to the terminal. You
can change this default (send information to a log file) using the Configuration
Tool. For more information, see Setting Up the JWAVE Server on page 112.

The Server Side 11

JWAVE Wrappers

A JWAVE wrapper is a PV-WAVE function that includes JWAVE-specific library
function calls. These functions enable PV-WAVE to communicate with a remote
Java client. For example, the PV-WAVE function GETPARAM retrieves and
“unpacks” parameters and data sent from the client. Once unpacked, the parame-
ters and data can be used within the wrapper function or passed to other PV-WAVE
routines. Then, when a JWAVE wrapper function returns, the JWAVE Manager
automatically sends the parameters, data, and any graphics that were produced by
the JWAVE wrapper function back to the client.

TIP These functions are called “wrappers” because they “wrap” a PV-WAVE
application with JWAVE-specific routines (such as GETPARAM).

For detailed information on writing JWAVE wrapper functions, see Chapter 5,
JWAVE Server Development.

PV-WAVE Applications

In most cases, the JWAVE wrapper function is used as a bridge to run a PV-WAVE
application. This application can perform most of the functions of PV-WAVE, such
as:

• accepting data and parameters from the wrapper

• reading data from files, databases, and so on

• using the extensive mathematics, statistics, and analysis capability of
PV-WAVE

• producing plots, images, and other graphical representations of data

• saving files

• returning data

NOTE The regular PV-WAVE functions that JWAVE wrappers cannot use mainly
include the user interface features, such as WAVE Widgets and VDA Tools.

Next, we will look at a simple JWAVE example where a client application sends
data to the server, the server (PV-WAVE) processes the data, and a result is
returned to the client.

12 Chapter 1: JWAVE System Introduction JWAVE User’s Guide

A Simple Example
This example shows a simple JWAVE application that processes a transaction
between client and server. The Java client sends a number to PV-WAVE, and
PV-WAVE returns the square root of that number back to the client.

We’ve kept this example simple to demonstrate the fundamental building blocks of
a JWAVE application: creating a connection, passing parameters and data to from
the client to the server, and retrieving results from the server. Later, we will discuss
more complex, and practical, scenarios.

This example includes:
• Java client application code
• JWAVE wrapper code
• Sample output

The Client Java Application

A Java application (or applet) resides on the client side of a JWAVE system. Typi-
cally, the Java client provides an interface to a PV-WAVE application running on
a remote server. The Java client can send information, including data, to the server
for processing. How the processed data is handled is up to the JWAVE programmer.
Typically, the client displays graphically the data returned from the server.

Example 1-1 shows the Java client application. This client simply sends a number
to the JWAVE server, and then prints out a result that is returned from the server.
In this case, PV-WAVE executes a function that returns the square root of the num-
ber sent from the client.

TIP You can find the code for this function in:

(UNIX) VNI_DIR/classes/jwave_demos/doc_examples/
Simple.java

(Windows) VNI_DIR\classes\jwave_demos\doc_examples\
Simple.java

where VNI_DIR is the main Visual Numerics installation directory.

Example 1-1 Client-side Java code, simple.java

// (1) Import JWAVE classes

import com.visualnumerics.jwave.JWaveExecute;

public class Simple {

A Simple Example 13

 public static void main(String[] args) {

 JWaveExecute command = null;

 try {

 // (2) Auto-connect to a new PV-WAVE Session

// Set a command object to use the Wrapper function named ”SIMPLE”

 command = new JWaveExecute(”SIMPLE”);

// (3) Set a parameter named ”NUMBER” to the value 2

// (NUMBER is expected by the SIMPLE wrapper function)

 command.setParam(”NUMBER”, 2);

 // Execute the command:

// Pass parameters, Run the Wrapper, get returned parameters

 command.execute();

// (4) Get the returned data, named ”DATA”

Double answer = (Double) command.getReturnData(”DATA”);

// (5) Print the result

System.out.println(”The answer is: ” + answer);

 } catch (Exception e) {

// Report any problems

System.out.println(e.toString());

 } finally {

// Shut down the PV-WAVE session (it would eventually

 // time out and shut itself down if we did not do this)

try {

 if (command != null) command.getConnection().shutdown();

 } catch (Exception ignore) { }

 }

 }

}

Here is a breakdown of the main parts of this program.

1. Any required Java and JWAVE class packages must be imported into the Java
application. The JWAVE classes reside in:

(UNIX) VNI_DIR/classes/JWave.jar

(Windows) VNI_DIR\classes\JWave.jar

where VNI_DIR is the main Visual Numerics installation directory.

14 Chapter 1: JWAVE System Introduction JWAVE User’s Guide

2. A connection must be established between the Java client and the JWAVE
server. This is accomplished by instantiating the JWaveExecute object.

3. The name of the JWAVE wrapper function is specified in the JWaveExecute
constructor. The JWaveExecute object contains the methods needed to “pack” the
parameters and data to be sent to the server. In this case, a parameter named NUM-
BER with a value of 2 is set. The execute method sends the parameter and data to
the server and “executes” the JWAVE wrapper function (called SIMPLE)

4. The getReturnData method is used to retrieve the result from the JWAVE
server. The result, in this case, is named DATA.

5. The result received from the server is printed on the client.

The JWAVE Wrapper Function

A JWAVE wrapper function is a PV-WAVE routine that contains JWAVE-specific
function calls. These JWAVE calls typically include the function GETPARAM,
which retrieves parameter information and data directly from a Java client applica-
tion. The following function, SIMPLE, demonstrates the basic form of the JWAVE
wrapper.

Example 1-2 can be found in:

(UNIX) VNI_DIR/jwave-3_5/lib/user/simple.pro

(Windows) VNI_DIR\jwave-3_5\lib\user\simple.pro

where VNI_DIR is the main Visual Numerics installation directory.

As shown in Example 1-2, JWAVE wrapper functions take a single input parame-
ter, usually called client_data. This parameter is automatically passed to the
JWAVE wrapper from the Java application (when the execute method is called).
The JWAVE wrapper receives parameter names and data through this parameter.
The function GETPARAM, which is a JWAVE-specific PV-WAVE function,
unpacks the parameters and data so that the wrapper can use them.

Example 1-2 JWAVE wrapper function, simple.pro

FUNCTION SIMPLE, client_data

; Retrieve the parameter and data from the Java client.

value = GETPARAM(client_data, ’NUMBER’, /Value, Default=1)
; Process the data.

mydata = SQRT(value)

; Return the result to the client (the default parameter

; name is DATA)

A Simple Example 15

RETURN, mydata

END

The SIMPLE function receives a parameter called NUMBER from the Java client. The
Value keyword specifies that the actual value of the parameter be returned to the
JWAVE wrapper.

The types of Java variables (and their corresponding PV-WAVE types) that can be
passed between the client and server are listed in the following table.

You can also pass arrays of these basic data types of up to eight dimensions. Note
that the Java Short maps to PV-WAVE Integer, and that Java Integer maps to
PV-WAVE Long. This is because of differences in the internal data representations
of these integers.

NOTE You can use either numeric objects or primitives (for example,
java.lang.Short or short).

The PV-WAVE RETURN statement sends the results back to the Java client. “get”
methods in the Java client are then used to extract the returned parameters and data.

Figure 1-8 further illustrates the flow of parameters and data between the JWAVE
client and server.

Figure 1-8 Parameters and data are passed between the Java client and the JWAVE
wrapper. Java methods and special PV-WAVE functions are used to package and extract the
data and parameters.

JAVA Data Types Corresponding PV-WAVE Data Types

Byte BYTE
Short INTEGER
Integer LONG
Float FLOAT
Double DOUBLE
String STRING

setParam

GETPARAM

Java Client

RETURN, datagetReturnData

JWAVE Wrapper

parameters and data
data stream contains

execute

16 Chapter 1: JWAVE System Introduction JWAVE User’s Guide

Running the Application

To run the simple application:

Step 1 Start the JWAVE Manager. For instructions, see Starting the JWAVE
Manager on page 109.

Step 2 Move to the following directory:

(UNIX) VNI_DIR/classes/jwave_demos/doc_examples

(Windows) VNI_DIR\classes\jwave_demos/doc_examples

Step 3 Run the program by typing the following command:

java Simple

NOTE To run this application, the following items must be included in your
CLASSPATH:

• VNI_DIR/classes/JWaveConnectInfo.jar

• VNI_DIR/classes/JWave.jar

• . (the current directory)

where VNI_DIR is the main Visual Numerics installation directory.

Sample Output

Here is the output from this simple JWAVE application:

The answer is: 1.4142135623730951

Summary
The basic parts of a JWAVE system are the client-side Java application/applet and
server-side JWAVE wrapper. The JWAVE Manager runs on the server, listens for
client connections, and handles communication between the client and a
PV-WAVE session.

If you do not want to write original Java programs, you can create useful JWAVE
applications using the generic JWAVE applet. This applet, discussed in the next
chapter, allows you to run PV-WAVE applications on the server and display results
in a Web browser with little or no client-side programming. If you wish, you can
use JavaScript and HTML forms to create a user interface for your applet.

17

CHAPTER

2

The Generic JWAVE Applet
This chapter explains how you can get started almost immediately using JWAVE
to publish PV-WAVE graphics on a Web page. With the generic JWAVE applet
provided by Visual Numerics, you can execute a JWAVE wrapper function on the
server and display output from the server in a Web browser.

The generic JWAVE applet lets you do this with very little programming. All you
need to write is the JWAVE wrapper function (in PV-WAVE) and some simple
HTML code. The generic applet takes care of the rest of the work, such as contact-
ing the server, opening a connection to the server, and retrieving data and graphics
from the server.

Later, you will see how you can use HTML forms and JavaScript to create a user
interface for the generic applet. This interface can be used to modify the appear-
ance of graphics returned from the server, to generate different types of plots, to
send client data to the server, and many other possible functions.

Simple Applet Example
Let’s look now at a very simple implementation of the generic applet. This applet
asks PV-WAVE to generate and return a 2D plot, which the applet displays. The
resulting plot is shown in Figure 2-1.

This section discusses the HTML code used to display the applet and the JWAVE
wrapper function that is executed by PV-WAVE on the server.

18 Chapter 2: The Generic JWAVE Applet JWAVE User’s Guide

Figure 2-1 2D plot displayed using the generic JWAVE applet

The HTML Code

Example 2-1 shows the simple HTML file in which this sample JWAVE applet is
embedded.

TIP You can find examples similar to this one in the directory:

(UNIX) VNI_DIR/classes/jwave_demos/JWaveApplet

(Windows) VNI_DIR\classes\jwave_demos\JWaveApplet

where VNI_DIR is your main Visual Numerics installation directory.

Simple Applet Example 19

Example 2-1 Simple HTML code for calling the generic JWAVE applet.

<HTML>

<HEAD>

<TITLE>JWaveApplet Example 1</TITLE>

</HEAD>

<BODY>

<APPLET CODE=”com.visualnumerics.jwave.JWaveApplet”

 CODEBASE=”../../classes”

 ARCHIVE=”JWave.jar, JWaveConnectInfo.jar”

 WIDTH=450

 HEIGHT=500>

 <PARAM NAME=”FUNCTION” VALUE=”TESTPLOT”>

 <PARAM NAME=”TRANSIENT_SESSIONS” VALUE=”YES”>

</APPLET>

</BODY>

</HTML>

The CODE, CODEBASE, ARCHIVE, WIDTH, and HEIGHT parameters are standard
applet parameters used to call any applet. The CODE parameter gives the class name
of the applet. This class was installed on the server when you installed JWAVE. The
CODEBASE parameter tells the applet where to find the root of the Java class tree.
The ARCHIVE parameter specifies Java Archive (JAR) files that contain the JWAVE
Java class files that are required by the applet. The JAR file called JWave.jar is
shipped with JWAVE and contains all of the class files you need to develop JWAVE
client applications, including the JWaveApplet class file. The JAR file JWaveCon-
nectInfo.jar describes how to connect to the server. The WIDTH and HEIGHT
parameters simply specify the size of the applet display area.

TIP The generic JWAVE applet accepts a number of PARAM tags, many more than
are used in this example. Refer to the Javadoc reference on the JWaveApplet class
for detailed information on all of the generic applet’s PARAM tags. For informa-
tion on Javadoc, see Using the JWAVE Javadoc Reference on page 40.

The FUNCTION parameter takes one argument, TESTPLOT, which is the name of
the JWAVE wrapper function on the server. This is the PV-WAVE function that is
executed on the server. This function will be described later. It creates a plot and
sends it back to the client.

20 Chapter 2: The Generic JWAVE Applet JWAVE User’s Guide

By setting the TRANSIENT_SESSIONS parameter to YES, we are asking the
JWAVE Manager on the server to shut down the PV-WAVE session as soon as the
client-server transaction is completed. This request makes sense because all we
want is to get back a single picture from PV-WAVE. No further processing is
required. Therefore, it is best to shut down the PV-WAVE session. If
TRANSIENT_SESSIONSwere set to NO (the default), the PV-WAVE session would
remain active on the server until explicitly terminated (when the applet is unloaded,
which occurs when you move to a new HTML page in your browser).

The JWAVE Wrapper Function

A JWAVE wrapper function is a PV-WAVE function that can communicate with a
JWAVE client. This particular wrapper function doesn’t do much. It simply creates
a plot and returns it to the client. In this case, no parameters were passed from the
client to the server.

Example 2-2 A minimal JWAVE wrapper function

FUNCTION TESTPLOT, client_data

PLOT, FINDGEN(10), Linestyle=0, PSym=6

RETURN, 0

END

When RETURN is called, the wrapper automatically returns the plot to the client
applet, where it is displayed.

In the next example, we’ll add some JavaScriptTM functions to the client HTML
file. These functions will enable the client to control the appearance of the graphic
generated by PV-WAVE on the server.

Example Summary

In this example, we described a very simple scenario where a client applet executes
a function on the JWAVE server, and the server sends a picture back to the client.
In that case, no parameters or data were passed from the client to the server. The
server simply generated some data, created a plot, and sent it back to the client.

The next section discusses how to pass parameters and data from client to server
using JavaScript.

Using JavaScript to Control the Applet 21

Using JavaScript to Control the Applet
If you do not wish to program Java applications, you can use JavaScriptTM to pro-
vide a wide range of client-side control for the generic JWAVE applet. JavaScript
is a scripting language that allows you to create a user interface for HTML pages.

TIP There are many manuals available on JavaScript in bookstores. For online
information about JavaScript, refer to the JavaScript Guide on the Netscape Web
site at:

http://developer.netscape.com/docs/manuals

Example 2-3 demonstrates how you can add JavaScript controls to an HTML page
for passing parameters and data between the generic applet and the server.

For instance, JavaScript can be used to create client-side Web pages with a graph-
ical user interface. The GUI can be used with the generic JWAVE applet, for
example, to change plot characteristics such as line color, axis range, plot symbols,
and so on. When used with the generic JWAVE applet, JavaScript can be used to
create complex client-side applications rapidly and efficiently.

TIP Visual Numerics has provided several applet demonstrations, including the
one used in this example, with your JWAVE installation. For information on run-
ning the demonstration applets, see Running the Applet Demonstrations on page
26.

In this section, we discuss:

• The HTML file with JavaScript

• The JWAVE wrapper function

• Demonstration applets

The HTML File with JavaScript

There are a few differences between this example HTML file and the one shown in
Example 2-1. The biggest difference is that this HTML file contains JavaScript
commands. JavaScript is an object-based scripting language that can be embedded
into HTML files.

In this example, we use JavaScript to call methods that are defined in the JWAVE
generic applet.

22 Chapter 2: The Generic JWAVE Applet JWAVE User’s Guide

TIP For detailed information on the generic applet methods that can be used with
JavaScript, refer to the Javadoc page on JWaveApplet (in the jwave package). For
information on Javadoc, see Using the JWAVE Javadoc Reference on page 40.

Example 2-3 HTML file with JavaScript calls

<HTML>

<HEAD>

<TITLE>JWaveApplet Example 2</TITLE>

</HEAD>

<SCRIPT LANGUAGE=JavaScript>

// Update the plot

 function updatePlot() {

if (! document.JWavePlot.isStarted()) {

 // Wait for applet to start before trying to updatePlot

 setTimeout(”updatePlot()”, 250);

 return;

 }

// Must get a session before we can set anything

 document.JWavePlot.openSession();

 // Set background and data line colors

 document.JWavePlot.setNamedColor(’BACKGROUND’, ’LightGray’);

 document.JWavePlot.setNamedColor(’LINE’, ’Blue’);

 // Set line style (dashed)

 document.JWavePlot.setParam(’LINESTYLE’, 2);

 // Turn off plot symbols

 document.JWavePlot.setParam(’SYMBOL’, 0);

 // Update the plot (and close the transient session)

 document.JWavePlot.execute();

 }

<BODY onLoad=”updatePlot()”>

<H1>JWaveApplet Example 2</H1>

Using JavaScript to Control the Applet 23

<APPLET NAME=”JWavePlot”

CODE=”com.visualnumerics.jwave.JWaveApplet”

CODEBASE=”../../”

ARCHIVE=”JWave.jar, JWaveConnectInfo.jar”

WIDTH=450

 HEIGHT=500>

 <PARAM NAME=”FUNCTION” VALUE=”TESTPLOT”>

 <PARAM NAME=”EXECUTE_ON_START” VALUE=”NO”>

 <PARAM NAME=”TRANSIENT_SESSIONS” VALUE=”YES”>

</APPLET>

</BODY>

</HTML>

Let’s look at the JavaScript function, updatePlot, that is embedded in the HTML
file.

First, the “if” clause with the setTimout function ensures that the plot does not
update until the applet is ready.

The next call in this function is:

document.JWavePlot.openSession();

This call follows the JavaScript object convention, where document is the object
name referring to the browser window itself. JWavePlot is the name by which
JavaScript recognizes the applet (specified with the applet’s NAME tag), and
openSession is a method defined in the generic JWAVE applet, JWaveApplet
(specified with the CODE tag).

We need to call openSession to open a connection with the JWAVE Manager on
the server. Normally, the applet connects and executes immediately upon startup.
But we want to delay the execution until the parameters are set. That is, we want to
open a session, set the parameters, and then execute the JWAVE wrapper.

The next few JavaScript calls set color values and parameters to be sent to the
JWAVE wrapper function on the server.

document.JWavePlot.setNamedColor(’BACKGROUND’, ’LightGray’);

document.JWavePlot.setNamedColor(’LINE’, ’Blue’);

document.JWavePlot.setParam(’LINESTYLE’, 2);

document.JWavePlot.setParam(’SYMBOL’, 0);

24 Chapter 2: The Generic JWAVE Applet JWAVE User’s Guide

The function setNamedColor sets a parameter name and a color value. In the
JWAVE wrapper function on the server, these parameters are interpreted by corre-
sponding GETPARAM functions, and their values are retrieved. Once retrieved,
those parameter values can be plugged directly into PV-WAVE functions. In this
case, TESTPLOT is going to plug the parameters set in the HTML file into the
PV-WAVE PLOT command.

The final call in our JavaScript function is:

document.JWavePlot.execute();

The execute method sends parameters to the server and executes the JWAVE
wrapper function. This in turn generates a plot, which is sent back to the client and
displayed.

Finally, we use a couple of PARAM tags to prevent the applet from executing the
JWAVE wrapper immediately when the applet starts. First, we need to set the
EXECUTE_ON_START parameter to NO. This parameter prevents the JWaveApplet
from executing when the applet starts. Then, having told the applet what not to do,
we need to tell the applet what to do when it is loaded. This is the purpose of the
onLoad parameter that is set in the applet’s BODY tag. The onLoad parameter tells
the applet to execute the JavaScript function updatePlot when the HTML page
loads. And, to reiterate, this JavaScript function does the following:

• Opens a connection to the JWAVE server.

• Sets four different parameters that are used to send values to PV-WAVE.

• Executes the JWAVE wrapper on the server.

TIP Because JavaScript supports form objects, you can use JavaScript to create
interactive GUIs for your client applets without any Java programming. For infor-
mation about more complex JavaScript demonstrations created by Visual
Numerics, see Running the Applet Demonstrations on page 26.

The JWAVE Wrapper

To take the actions requested by the client, the JWAVE wrapper must retrieve and
“unpack” the parameters and data sent from the client.

The functions used to unpack data sent from the client are:
GET_NAMED_COLOR and GETPARAM. PLOT commands are then con-
structed using the unpacked values.

Using JavaScript to Control the Applet 25

You can find the following JWAVE wrapper in:

(UNIX) VNI_DIR/jwave-3_5/lib/user/testplot.pro

(Windows) VNI_DIR\jwave-3_5\lib\user\testplot.pro

where VNI_DIR is the main Visual Numerics installation directory.

Example 2-4 JWAVE wrapper function, TESTPLOT

FUNCTION TESTPLOT, client_data

 ; get colors

 black = ’000000’xL

 white = ’FFFFFF’xL

 back_color = GET_NAMED_COLOR(”BACKGROUND”, Default = black)

 axis_color = GET_NAMED_COLOR(”AXES”, Default = white)

 line_color = GET_NAMED_COLOR(”LINE”, Default = white)

 psym_colors = GET_NAMED_COLOR(”SYMBOLS”, Default = [white],
/Color_Set)

 ; get data

 data = GETPARAM(client_data, ’DATA’, /Value, Default =
FINDGEN(10))

 ; get plot attributes

linestyle = GETPARAM(client_data, ’LINESTYLE’, /Value, Default =
1)

 psym = GETPARAM(client_data, ’SYMBOL’, /Value, Default = 6)

 ; Plot axes

PLOT, data, /NoData, Background = back_color, Color = axis_color

 ; plot lines

 IF linestyle GE 0 THEN $

 OPLOT, data, Linestyle = linestyle, Color = line_color

 ; plot symbols

 IF psym NE 0 THEN $

 OPLOT, data, PSym = ABS(psym), Color = psym_colors

RETURN, 0

END

26 Chapter 2: The Generic JWAVE Applet JWAVE User’s Guide

The GETPARAM Function

GETPARAM (a JWAVE-specific PV-WAVE function) is designed to retrieve non-
color related parameters and values. In Example 2-4, the first GETPARAM call
retrieves data values to plot. The next two GETPARAM calls are used to set the
linestyle and symbol style for the plot.

The Value keyword is used to specify that an actual value be returned by GET-
PARAM, and the Default keyword specifies a default value to use in case no value
is received from the client. Therefore, the GETPARAM call:

data = GETPARAM(client_data, ’DATA’, /Value, Default = FINDGEN(10))

returns the actual data values to be plotted, which can be used in a PLOT command,
such as:

PLOT, data, ...

NOTE Detailed information on the parameters and keywords of the GETPARAM
and GET_NAMED_COLOR functions are available in the PV-WAVE online help
system and in Appendix A, JWAVE Wrapper API.

The GET_NAMED_COLOR Function

If a color is specified by the client with the generic applet’s setNamedColor
method, that color can be retrieved by PV-WAVE with the
GET_NAMED_COLOR function.

The GET_NAMED_COLOR function converts a named color specified on the cli-
ent into a color index that PV-WAVE can understand. For instance, the returned
value from GET_NAMED_COLOR can be used with the PLOT command’s Back-
ground keyword.

For example, GET_NAMED_COLOR might return a color index for the back-
ground color of a 2D plot.

back_color = GET_NAMED_COLOR(”BACKGROUND”, Default = black)

data = GETPARAM(client_data, ’DATA’, /Value, Default = FINDGEN(10))

PLOT, data, Background = back_color

Running the Applet Demonstrations

Visual Numerics has provided a set of demonstration HTML files that use
JavaScript controls.

Using JavaScript to Control the Applet 27

NOTE To run these applets, you must have a working installation of JWAVE and
the JWAVE Manager must be running on the server. To run these demonstrations,
you must also have a browser that supports JDK 1.1.

You can find these demonstration files in:

(UNIX) $VNI_DIR/classes/jwave_demos/JWaveApplet

(Windows) VNI_DIR\classes\jwave_demos/JWaveApplet

You are free to copy any of the form and JavaScript functions in these demonstra-
tion applets for your own use. The examples include:

• applet_demo1.html — This HTML page contains a single JWaveApplet
that calls JWAVE to make a plot. All plot parameters (and data) are set/gener-
ated by the JWAVE wrapper function. This applet is similar to Example 2-1.

• applet_demo2.html — This HTML page contains a single JWaveApplet
that calls JWAVE to make a plot. There is some simple JavaScript in this page
that initializes some parameters (colors and linestyle) used by the JWAVE
wrapper function. The wrapper function generates its own data. This applet is
identical to Example 2-3.

• applet_demo3.html — This HTML page contains a single JWaveApplet
that calls JWAVE to make a plot. There is some JavaScript in this page that sets
parameters used by the JWAVE wrapper function. The parameters set by
JavaScript are controlled by HTML FORM tags. There are some JavaScript
helper functions provided in this page to help the FORM tags interact with
JWAVE. The wrapper function still generates its own data.

• applet_demo4.html — There are two JWAVE applets running in this
HTML page. They share a connection to a single PV-WAVE session, and thus
can share data on the server side. One applet is invisible, and uses the JWave-
Execute class to create some data on the server. The resulting data stays on the
server. It is stored by the Data Manager. The second applet uses the JWaveView
class to make a plot of the data created by the first applet.

• applet_demo5.html — There are two JWAVE applets running in this
HTML page. They share a connection to a single PV-WAVE session, and thus
can share data on the server side. One applet is invisible, and uses the JWave-
Execute class to create some data. The resulting data stays on the server (stored
by the Data Manager). The second applet uses the JWaveView class to make a
plot of the data created by the first applet, using one of two wrapper functions
that each create a particular type of plot.

28 Chapter 2: The Generic JWAVE Applet JWAVE User’s Guide

Summary
In this chapter we explained how the generic JWAVE applet, JWaveApplet, can be
used to create client applications that use PV-WAVE as a numerics and graphics
server. The generic applet allows you to use JavaScript functions to control the
applet and pass data and parameters between the client and server. Visual Numerics
has provided several sample applets that you can run and examine on your own.
Feel free to reuse these applets and their helper functions for your own
applications.

29

CHAPTER

3

JWAVE Client Development
This chapter discusses the following topics:

• The JWaveExecute class

• Passing parameters from the client to the server

• Getting data back from the server

• Casting returned data

• The exception classes

• Managing the server connection

• Data proxies

• Using the JWAVE Javadoc reference

JWAVE Client Overview
Parameters are used to pass information and data back and forth between client and
server.

On the client side, you set parameters to be sent to the server using the
JWaveExecute.setParammethod. These parameters are not actually sent to the
server until the execute method is called. After an execute, the client may
retrieve parameters returned by the wrapper function using
JWaveExecute.ReturnData (to get one parameter at a time) or
getReturnParams (to get all the parameters at once).

30 Chapter 3: JWAVE Client Development JWAVE User’s Guide

On the server side, parameters passed from the client can be retrieved in a JWAVE
wrapper with the GETPARAM function (a JWAVE-specific PV-WAVE function).
When a wrapper function returns, its return values are automatically sent to the
client.

Figure 3-1 shows the most basic parameter passing scenario.

Figure 3-1 Parameters and data are passed between the Java client and the JWAVE wrap-
per. Java methods and special PV-WAVE functions are used to package and extract the data
and parameters.

This chapter discusses the basic methods for passing parameters between JWAVE
client and server applications.

NOTE This chapter does not cover the topic of data proxies, which allow data
stored on the server to be referenced by the client. Proxies permit the efficient man-
agement of data and of client resources. For detailed information on proxies, see
Chapter 6, Managing Data.

The JWaveExecute Class
The JWaveExecute class provides client access to a JWAVE wrapper function on
the server. JWaveExecute methods are used to set the name of the JWAVE wrapper,
to set the parameters sent to that wrapper, to set the return parameter mode, and to
retrieve data returned from the JWAVE wrapper. The execute method sends the
parameters that were set (with setParam methods) to the wrapper, causes the
wrapper to execute, and retrieves any returned data.

You can construct a JWaveExecute object simply by giving the JWAVE wrapper
name:

JWaveExecute(String wrappername)

setParam

GETPARAM

Java Client

RETURN, datagetReturnData

JWAVE Wrapper

parameters and data.
Data stream contains

execute

Passing Parameters from the Client 31

This command automatically connects the JWaveExecute object to a new
PV-WAVE session. That is, a new JWaveConnection object is created
automatically.

TIP After construction, you can call a different JWAVE wrapper function, if
desired, using the method setFunction.

If you already have a JWaveConnection object that refers to an existing
PV-WAVE session, then you can construct a JWaveExecute object to use that
same connection. For example:

JWaveExecute(JWaveConnection connection, String name)

Usually, you use this constructor when there are several JWaveExecute objects
that need to use the same PV-WAVE session (in other words, they need to share
data), or if you want to set particular attributes of the connection (such as data com-
pression or a session pinger).

The following method creates a JWaveConnection object:

static JWaveConnection.getConnection()

or

JWaveExecute.getConnection()

For detailed information on JWaveExecute and JWaveConnection classes, refer to
the online Javadoc reference. For information on using Javadoc, see Using the
JWAVE Javadoc Reference on page 40. See also Managing the Server Connection
on page 36 for information on the JWaveConnection class.

Passing Parameters from the Client
The JWaveExecute.setParam method is used to pack parameters and data on
the client to be sent to the server. The basic information that is packed by
setParam includes a parameter name and some kind of reference to data.

Overloaded versions of setParam are provided for your convenience in specifying
this parameter information.

For example, some of the setParam configurations are:

setParam(String name, double value)

Associates a parameter name with a scalar numeric primitive value. This
method accepts any primitive numeric scalar value.

32 Chapter 3: JWAVE Client Development JWAVE User’s Guide

NOTE Parameter names are not case sensitive; they must begin with a letter, and
can contain only letters, digits, and underscores.

setParam(String name, Object value)

Associates a parameter name with a scalar or array. The valid data types
you can use with this setParam method include:

Scalar Values:

• numeric Objects (standard subclasses of Number, such as
Integer), except Long

• String

Arrays of up to eight dimensions of:

• numeric Objects (such as Integer)

• numeric primitives (such as int), except long

• String

A Proxy object referring to one of the above types. (See Chapter 6,
Managing Data for more information on proxies.)

setParam(Parameter param)

Sets a previously defined Parameter object (which encapsulates the
parameter name and associated data).

There are several other methods for setParam. Some of these are discussed in
Chapter 6, Managing Data. Others are not commonly used, and are not discussed
in this manual. Refer to the Javadoc reference on the JWaveExecute class for
detailed information on all of the setParammethods. For information on Javadoc,
see Using the JWAVE Javadoc Reference on page 40.

As you can see, the different permutations of setParam allow you to specify pre-
cisely how you want parameters to be sent to the client. No matter how this
parameter information is specified, setParam “packs” the parameter information
in a uniform manner so that the server can retrieve and unpack the parameters.

On the server side, the function GETPARAM is used to unpack the parameters so
that they can be used by PV-WAVE.

Getting Data Back from the Server 33

Getting Data Back from the Server
The most common way to get data back from the JWAVE wrapper is using
JWaveExecute.getReturnData method. This method accepts one parameter:
the name of the returned data. This data name is specified by the JWAVE wrapper,
but if a name is not explicitly specified, the default name DATA is used. Of course,
a JWAVE wrapper can return many data objects at once. You have to know the
names of those objects (given in the JWAVE wrapper) to unpack them.

The method getReturnProxy is similar to getReturnData, except that it
returns a Proxy object that refers to the data. This is useful when the data is stored
on the server. For more information on using proxies, see Chapter 6, Managing
Data.

Another method, getReturnParams, returns all of the returned data, packaged in
an array of Parameter objects.

TIP For debugging purposes, the following command can be useful:

Parameter.printInfo(myJWaveExecute.getReturnParams());

This command prints (to System.out) the names and data types of all parameters
returned by the JWAVE wrapper.

See Chapter 4, JWAVE Graphics for information on handling graphics returned
from the server.

Casting Returned Data
Any data returned by getReturnData is of type Object. This object may be a sca-
lar or a multi-dimensional array, depending on what was returned by the JWAVE
wrapper.

Numerical scalars are returned as one of the java.lang.Number subclasses
(java.lang.Integer, java.lang.Float, and so on.). Numerical arrays are
returned as an array of one of the primitive numeric types (such as int[] or
float[][]). Strings are returned as java.lang.String,
java.lang.String[], and so on.

In order to make the data returned by getReturnData useful, you need to cast it
to something. For example, if you are sure of the data type and array dimensions
returned by the wrapper, you can write a statement such as:

34 Chapter 3: JWAVE Client Development JWAVE User’s Guide

 int[][] result = (int[][])
myJWaveExecute.getReturnData(”DATA_NAME”);

This is the easiest technique, and thus it is valuable to make sure that the data types
returned by the wrapper are explicitly specified.

If you are unsure of the data type (PV-WAVE is a loosely-typed language), then
you must test the returned Object for its type. Usually, you will know something
about the data, such as its number of array dimensions, whether it is a string or a
number, and so on. So usually you will only need to test for (or assume) things like
array size and then just cast or assign the result to whatever variable you will use
in the Java program.

Of course, you can use the instanceof operator to test for particular types.

The classes java.lang.Class, java.lang.reflect.Array, and
com.visualnumerics.util.ArrayUtils are other useful tools for dealing
with the object returned by getReturnData. Some examples of using these
classes are shown in the following example:

Example 3-1 Array handling

Object result = myJWaveExecute.getReturnData(”DATA_NAME”);

// Test if the returned object is an array

if (result.getClass().isArray()) {

 System.out.println(”Is Array”);

 // Get the size of the array (i.e. [3][4][5])

 int[] dims = ArrayUtils.getArrayDimensions(result);

 System.out.println(”Num Dims = ”+ dims.length);

 System.out.print(”Dims = ”);

 for (int i=0; i<dims.length; ++i)

 System.out.println(”[” + dims[i] + ”]”);

 System.out.println();

 // Get data type of array’s contents

// Note that result.getClass() just tells you that it is an array

 // And Class.getComponentType() is only useful for 1D arrays

 // This gives you the Class of the contents of the array,

Casting Returned Data 35

 // no matter the dimensional size of the array

 Class c = ArrayUtils.getBaseComponentType(result);

 System.out.println(”Type = ” + c.getName());

 // store into double[]

 // Ensure 1D numeric array

 if (dims.length == 1 && !String.class.isAssignableFrom(c)) {

 double[] dblResult = new double[dims[0]];

 // Store into double array

 for (int i=0; i<dblResult.length; ++i)

 dblResult[i] = Array.getDouble(result, i);

 System.out.println(”Stored into double[].”);

 } else {

 // Do different things for multi-dim arrays, strings...

 // See ArrayUtils.getAsOneDimArray(), for example

 }

} else { // not array

 System.out.println(”Is Scalar”);

 System.out.println(”Type = ” + result.getClass().getName());

 // Store into int scalar

 if (result instanceof Number) {

 double dblResult = ((Number)result).doubleValue();

 System.out.println(”Stored into double = ”+ dblResult);

 } else {

 // Do different things for strings...

 }

}

36 Chapter 3: JWAVE Client Development JWAVE User’s Guide

The Exception Classes
If there is a problem with JWAVE, a JWaveException class error is thrown. The
most commonly encountered subclasses of JWaveException are:

JWaveConnectionException— Indicates a problem with the connection to the
JWAVE server. The server may be down or unreachable. There may be a problem
with the description of the connection method (in the JWaveConnectInfo.jar
file).

JWaveServerException — Indicates a problem with the JWAVE server. You
were able to connect to the server, but it produced an error. It may not have been
able to start PV-WAVE. You may have run out of JWAVE licences. The server may
not have been able to find or run your intended wrapper function.

JWaveWrapperException — The JWAVE wrapper function was executed, but
exited with an error. The exception text comes from the PV-WAVE MESSAGE
procedure (or !Err_String system variable).

Managing the Server Connection
There are several useful methods in the JWaveConnection class. You can get a con-
nection object explicitly using the JWaveConnection.getConnection
method, or implicitly by constructing a JWaveExecute object (without using a
JWaveConnection object in the constructor), and using that JWaveExe-
cute.getConnecton method.

Compressing Data

Once you have a connection, you can control some of the aspects of that connec-
tion. First, if you wish to use compression in your communications with the
JWAVE server, use the setCompression method. Compression can be turned on
and off, allowing you to make some execute calls on a compressed connection
and others without compression.

Generally, compression is beneficial for transferring large data sets (especially
graphics, which are usually very compressible) over relatively slow networks. If
you have a fast network connection to the server, you may not want to use compres-
sion—even for large data sets—because the CPU time of encoding and decoding
the data could be inefficient. But if your network connection is slow, you may want
to experiment with compression to see if it helps your performance.

Managing the Server Connection 37

Ending a JWAVE Session

When you are done with a PV-WAVE session, you should call the shutdown
method of JWaveConnection. This closes the PV-WAVE session, releasing any
resources (memory, JWAVE licenses, and so on) that it was using on the server.

For example:

myJWaveExecute.getConnection().shutdown();

Using Multiple Clients

If you wish to have several client applications use the same PV-WAVE session (for
instance, to share data), then you need to assign that PV-WAVE session a Session
ID number (a positive integer). JWaveConnection normally acquires a unique Ses-
sion ID from the server; however, if you want to use a particular PV-WAVE
session, then call setSessionID before you contact the server (using methods
such as pingSession and execute). If that PV-WAVE session is running, then
you will be connected with it. If it is not running, then it will be started.

Using Ping Methods

Another set of useful methods of JWaveConnection are pingManager and
pingSession. The pingManager method allows you to make sure that the
JWAVE Manager is alive, and pingSession ensures that your PV-WAVE session
has not timed out.

The pingSessionmethod can also be used to start a PV-WAVE session. This can
help performance; for example, you may call pingSession at the beginning of
your application so that the PV-WAVE session will be activated by the time the
user presses the Plot button of your GUI.

In order to keep the PV-WAVE session alive (prevent the JWAVE Manager from
killing the session if it is idle too long), use the startSessionPinger method.
This method starts a thread that will call pingSession every minute (by default)
until you call stopSessionPinger or shutdown. This keeps your PV-WAVE
session from becoming idle.

TIP If you use startSessionPinger in all of your JWAVE applications, then
your JWAVE Server administrator can reduce the SESSION_IDLE_TIMEOUT set-
ting, so that idle processes can be cleaned up more often.

38 Chapter 3: JWAVE Client Development JWAVE User’s Guide

Example: Passing an Array
In this example, the client creates an array of values and passes the array to the
server. The server processes the array and sends back an object representing an
array to the client where it is printed. The returned object must be explicitly cast to
the desired data type (in this example, the object is cast to a floating-point array).

Figure 3-2 Data is passed from client to server, and the server returns a data object, which
is then printed by the client.

Example 3-2 Client application passes an array to the server, retrieves a result, and prints it

import com.visualnumerics.jwave.JWaveExecute;

import com.visualnumerics.jwave.JWaveConnection;

public class PassArray {

 public static void main(String[] args) {

JWaveExecute command = null;

// Create a simple array of data values.

float arr[] = new float[10];

for (int k=0; k<arr.length; k++) {

arr[k]=k;

}

try {

// Pass the array parameter to the server to use with

// the PASSARR JWAVE wrapper function.

command = new JWaveExecute(”PASSARR”);

command.setParam(”ARRAY”, arr);

command.execute();

Java Client JWAVE Wrapper

setParam
execute

Printed Output

GETPARAM

RETURNgetReturnData

Example: Passing an Array 39

// Get the data Object returned from the server and cast

// to float array.

float d[]= (float[]) command.getReturnData(”DATA”);

//Print the returned array.

for (int j=0; j<d.length; j++) {

System.out.println(d[j]);

}

} catch (Exception e) {

System.out.println(e.toString());

} finally {

if (command != null) {

JWaveConnection c = command.getConnection();

if (c != null) c.shutdown();

 }

 }

}

Example 3-3 JWAVE wrapper function receives the array, changes it, and returns it to the
client

FUNCTION PASSARR, client_data

; Unpack parameters and data

 arr = GETPARAM(client_data, ’ARRAY’, /Value,
Default=[1.,2.,3.])

; change the array

 mydata = arr * 1.5

; return the changed array and ensure FLOAT data type

 RETURN, FLOAT(mydata)

END

When the Java program in Example 3-2 is executed, the following output is printed
on the client:

% java PassArray

0.0

1.5

3.0

4.5

6.0

7.5

9.0

40 Chapter 3: JWAVE Client Development JWAVE User’s Guide

10.5

12.0

13.5

%

A Note About Data Proxies
The data in the previous example makes a complete round trip from the client to
the server, and back to the client. For very large datasets, this round trip can be
expensive, both in bandwidth and client memory resources. Sometimes, this round
trip is unnecessary, because the data is not used by the client; it is just sent back to
the server for further processing. Fortunately, JWAVE allows you to leave all of
your data on the server and reference it on the client using a data proxy. For infor-
mation on managing data efficiently with data proxies, see Chapter 6, Managing
Data.

Using the JWAVE Javadoc Reference
Reference information on the Java class files used for JWAVE client development
is available online in Javadoc format. To view the Javadoc reference for JWAVE,
start a Web browser and open the following file:

(UNIX) VNI_DIR/classes/docs/api/packages.html

(Windows) VNI_DIR\classes\docs\api\packages.html

where VNI_DIR is the main Visual Numerics installation directory.

Summary
The JWaveExecute class provides client access to a JWAVE wrapper function on
the server. Parameters and data that are set with JWaveExecute methods are sent to
a JWAVE wrapper function when the execute method is called. The methods
getReturnedData, getReturnParams, and getReturnProxy are all used to
retrieve data returned from the server. Sometimes it is necessary to cast the returned
data to the desired data type. The JWaveConnection class allows you to create and
manipulate the JWAVE client-server connection. Client-server connection and
JWAVE wrapper errors are handled by a set of JWaveException subclasses.

41

CHAPTER

4

JWAVE Graphics
This chapter explains how client applications can display graphics returned from
PV-WAVE. The following JWAVE classes are used in graphical client
applications:

• JWaveCanvas and JWavePanel

• Viewable

• JWaveView

These classes are described in this chapter and in the Javadoc reference for JWAVE.
For information on Javadoc, see Using the JWAVE Javadoc Reference on page 40.

Returning Graphics to the Client
In Example 1-1 on page 12 we demonstrated a simple JWAVE application that
returned a numerical result to the client. To accomplish this, we used a JWaveExe-
cute object. The JWaveExecute class provides methods for setting and getting
parameters (and data), and executing JWAVE wrapper functions on the server;
however, a JWaveExecute object can only retrieve numerical and string data
returned from the client. If you want your client to retrieve graphical information
from the server, then you must use a JWaveView object and a JWaveCanvas or a
JWavePanel.

The JWaveCanvas and JWavePanel Class

The JWaveCanvas is a subclass of java.awt.canvas component class. JWavePanel
is the swing version of JWaveCanvas, it is a subclass of javax.swing.JPanel. Both

42 Chapter 4: JWAVE Graphics JWAVE User’s Guide

classes provide a canvas for displaying a viewable object. When a plot is returned
from the wrapper function, the JWaveCanvas or JWavePanel class paints the chart
to the screen.

Since these classes are designed to display graphics or a JWAVE Viewable object,
it is required to inform the canvas class of the graphic. This is done using the set-
Viewable method. The setViewable method is used to display the Viewable object
retrieved from the JwaveView instance and updates the canvas with the new graph-
ics. There are subclasses of the JWaveCanvas and JWavePanel class that can be
used to interact with the graphics. These classes are described in Chapter 9,
Advanced Graphics Features.

Viewable Object

The Viewable object contains any graphics, such as plots and images, that are
returned from PV-WAVE. This object knows how to paint itself onto a component.
This object also retains information about fundamental graphics characteristics,
such as size, coordinates, and resizing. Use the setPreferredResizeMode to
indicate whether or not the graphics are to be resized by the draw method. Several
methods exist for transforming to and from PV-WAVE data coordinates and 2D
pixel coordinates. A getDataBounds method is useful for retrieving the region
depicting the data drawn by the wrapper function. These methods are described in
the section Resizing Graphics on page 48 and the section Coordinate System
Transformations on page 49 of this chapter.

The JWaveView Class

The JWaveView class is a subclass of the JWaveExecute class. Unlike JWaveExe-
cute, JWaveView gets a Viewable object from the server. The Viewable object is
returned by the JWAVE wrapper function.

Figure 4-1 shows a typical JWAVE scenario where graphical data is created on the
server and returned to the client.

TIP In this example, data is physically returned from the server to the client. A
more efficient method of handling the data is with a data proxy object. For more
information on data proxies, see Chapter 6, Managing Data.

Returning Graphics to the Client 43

Figure 4-1 A JWaveView object is used to obtain viewable image data from the PV-WAVE
server

Sample Code

To display a JWAVE chart, create a class that extends JWaveCanvas. This class cre-
ates a Viewable object returned from a JWAVE wrapper function that generates
graphics (for example, if the wrapper calls the PLOT procedure). The setViewable
method is used to register the Viewable object with the parent JWaveCanvas class.
The JWaveCanvas class actually paints the chart to the screen.

Example 4-1 JWaveCanvas used to display a chart

class MyChart extends JWaveCanvas {
 MyChart() throws JWaveException {
 JWaveView view = new JWaveView("myWrapper");
 // Set the size of the Viewable object.
 view.setViewSize(getSize());
 // Execute the JWAVE wrapper function.
 view.execute();

setViewable(view.getViewable());
 }
}

44 Chapter 4: JWAVE Graphics JWAVE User’s Guide

Example: Displaying a Simple 2D Plot

Example 4-2 lists a Java client program that displays a 2D plot generated by
PV-WAVE. Example 4-3 lists the JWAVE wrapper that creates the 2D plot.

TIP Example 4-2 (the client Java program) is similar to (but a simplified version
of) the demonstration program ViewTest.java, which you can find in:

(UNIX) VNI_DIR/classes/jwave_demos/tests

(Windows) VNI_DIR\classes\jwave_demos\tests

The actual code for Example 4-2, SimpleView.java, can be found in:

(UNIX) VNI_DIR/classes/jwave_demos/doc_examples

(Windows) VNI_DIR\classes\jwave_demos\doc_examples

Example 4-3, SIMPLE_VIEW (the JWAVE wrapper), can be found in:

(UNIX) VNI_DIR/jwave-3_5/lib/user/simple_view.pro

(Windows) VNI_DIR\jwave-3_5\lib\user\simple_view.pro

where VNI_DIR is the main Visual Numerics installation directory.

The first component class is MainFrame. It is a frame that holds the chart. It regis-
ters a WindowListener on itself so that it can cause the application to exit when the
user selects the exit icon on the frame.

The other component class is Chart. It is a JWaveCanvas that communicates with
the Jwave server to run the JWAVE wrapper SIMPLE_VIEW. The class Chart sends
the parameters BACKGROUND, COLOR, GRIDSTYLE, TICKLEN, and Y to the
server. In response, the viewable is updated and the chart is drawn by the parent
class JWaveCanvas.

Figure 4-2 on page 4-47 shows the plot that is displayed on the Client.

Returning Graphics to the Client 45

Example 4-2 SimpleView.java displays a 2D plot generated by PV-WAVE

import com.visualnumerics.jwave.*;
import java.awt.*;
import java.awt.event.*;

public class SimpleView extends Frame {

 /** Construct the frame that holds a chart */
 public SimpleView() throws JWaveException {
 MainFrame mainFrame = new MainFrame();

 // Add a chart to the frame
 final Chart chart = new Chart();
 mainFrame.add(chart);

 // Make the frame visible and draw the chart
 mainFrame.setVisible(true);
 chart.update();
 }

public static void main(String[] arg) throws JWaveException {
 SimpleView me = new SimpleView();
 }
}

class MainFrame extends Frame {
 MainFrame() {
 setTitle("Simple JWaveView Example");
 setSize(300,300);

 // so Exit button (window menu) will work
 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent event) {
 System.exit(0);
 }
 });
 }
}

class Chart extends JWaveCanvas {
 public void update() throws JWaveException {
 // Use SIMPLE_VIEW wrapper function
 JWaveView command = new JWaveView("SIMPLE_VIEW");

 // Set view size same as canvas

46 Chapter 4: JWAVE Graphics JWAVE User’s Guide

 command.setViewSize(getSize());

 // Set some colors and parameters
 command.setNamedColor("BACKGROUND", Color.white);
 command.setNamedColor("COLOR", Color.black);

command.setParam("GRIDSTYLE", 1); // dotted lines for grid
 command.setParam("TICKLEN", 0.5); // full grid
 command.setParam("Y", 500); // Number of data points
 // Execute the command
 command.execute();

 // Retrieve the Viewable and give it to the JWaveCanvas
 // JWaveCanvas repaints when it gets a new Viewable
 setViewable(command.getViewable());

 // Close connection, as we are done with the session
 command.getConnection().shutdown();
 }
}

Example 4-3 JWAVE wrapper simple_view.pro

FUNCTION SIMPLE_VIEW, client_data
 ; Retrieve parameter data
 n = GETPARAM(client_data, ‘Y’, /Value, Default = 100)

grid = GETPARAM(client_data, ‘GRIDSTYLE’, /Value, Default = 0)
tick = GETPARAM(client_data, ‘TICKLEN’, /Value, Default = 0.2)

 back = GET_NAMED_COLOR(‘BACKGROUND’, Default = ‘000000’xL)
 fore = GET_NAMED_COLOR(‘COLOR’, Default = ‘ffffff’xL)
 ; Generate some “data” - n points
 vals = RANDOMN(seed, n)
 ; Make the plot
 PLOT, vals, Ticklen = tick, GridStyle = grid, Background =
back, Color = fore

; Return the data (default data name DATA).
; Note that this data is returned in addition to the Viewable

object.
 RETURN, vals
END

Returning Graphics to the Client 47

Figure 4-2 The SimpleView plot is displayed on the client.

48 Chapter 4: JWAVE Graphics JWAVE User’s Guide

Resizing Graphics
The Viewable class supports resizing of the Viewable object in the client without
a roundtrip to the server. The default resize behavior is NOT_RESIZEABLE. This
means that the Viewable object will always be drawn at its ‘natural’ size (as gen-
erated by PV-WAVE), regardless of the size of the Component it is drawn into.

You may want to use Viewable.setPreferredResizeMode with either
RESIZEABLE or PRESERVE_ASPECT if your Component is resizable. These
modes allow the Viewable object to draw a scaled version of the plot into any size
Component. The PRESERVE_ASPECT will resize the Viewable object, but only as
much as is possible while maintaining the original (as generated by PV-WAVE)
aspect ratio of the Viewable object.

Resizable is a client-side resizing of a bitmap. It is also possible to resize by making
a new request to the server. In Example 4-2 on page 45, the SimpleView constructor
can be modified to listen for resize events generated by the frame and request a new
chart at the new size.

Following is the modified constructor. Note that this relies on the fact that
Chart.update() resets the view size to the current size of the canvas.

public SimpleView() throws JWaveException {
 MainFrame mainFrame = new MainFrame();

 // Add a chart to the frame
 final Chart chart = new Chart();
 mainFrame.add(chart);

 // Make the frame visible and draw the chart
 mainFrame.setVisible(true);

 mainFrame.addComponentListener(new ComponentAdapter() {
 public void componentResized(ComponentEvent event) {
 try {
 chart.update();
 } catch (JWaveException e) {
 System.out.println(e);
 }
 }
 });
 chart.update();
}

Coordinate System Transformations 49

Coordinate System Transformations
The Viewable class also supports coordinate system transforms. PV-WAVE auto-
matically communicates the data coordinates and 3D transform used to generate
the plot, and a Viewable object can use these to do coordinate transforms.

The two methods transformToPoint and transformToData can be used to
transform between the plot’s data coordinates and a java.awt.Point object.

For example, to print the data coordinates where a user clicks on the plot, you might
do the following:

double[] d = myViewable.transformToData(theClickPoint);

System.out.println("Click at ("+ d[0] +", "+ d[1] +")");

You can determine the boundary of the data area (usually, this boundary is the
plot’s axes) using the getDataBounds method. For example, to determine if a
Point object is inside the plot bounds:

 if (myViewable.getDataBounds().contains(myPoint)) { ... }

Note that (due to lossy conversion) the transformToData method is only useful
for plots with 2D data coordinates (that is, X vs. Y plots). To test for this condition,
use the has2DCoordinates method.

TIP For an example of using the coordinate transforms of the Viewable class, see
ViewTest.java which you can find in:

(UNIX) VNI_DIR/classes/jwave_demos/tests

(Windows) VNI_DIR\classes\jwave_demos\tests

Demonstration Programs
You can find other demonstration JWAVE graphics applications in:

(UNIX) VNI_DIR/classes/jwave_demos

(Windows) VNI_DIR\classes\jwave_demos

50 Chapter 4: JWAVE Graphics JWAVE User’s Guide

Summary
This chapter introduced the primary graphics classes for JWAVE. You can read
more about these classes and their methods in the JWAVE Javadoc reference. For
information on Javadoc, see Using the JWAVE Javadoc Reference on page 40.

51

CHAPTER

5

JWAVE Server Development
This chapter discusses the following topics:

• How to write JWAVE wrappers

• Retrieving parameters from the server

• Using GETPARAM to unpack value, positional, and keyword parameters

• Returning parameters to the client

• Returning multiple results

• Handling errors

• Testing wrapper functions

JWAVE Server Overview
Client JWAVE Java programs communicate with PV-WAVE through a PV-WAVE
function called a JWAVE wrapper. A JWAVE wrapper function is a PV-WAVE
function that contains some specific JWAVE API calls. These JWAVE-specific
functions are included in the dynamically loaded JWAVE library; therefore, to the
JWAVE developer, these functions can be used just like any PV-WAVE function.

TIP The JWAVE wrapper API functions are described in Appendix A, JWAVE
Wrapper API.

Typically, a JWAVE wrapper function is used as an interface between the JWAVE
client and one or more PV-WAVE applications. The JWAVE wrapper receives

52 Chapter 5: JWAVE Server Development JWAVE User’s Guide

parameters from the client, processes those parameters in some manner, and
returns information back to the client. The returned information can be numeric or
string values (except complex numbers), including scalars and arrays. The server
can also return graphics to the client if PV-WAVE graphics commands were used
in the JWAVE wrapper.

Writing JWAVE Wrapper Functions
This section explains how to write JWAVE wrapper functions. JWAVE wrapper
functions are PV-WAVE functions that contain JWAVE wrapper API calls, such as
GETPARAM and GET_NAMED_COLOR. The wrapper API functions are
described in Appendix A, JWAVE Wrapper API.

Example: Simple JWAVE Wrapper

The following JWAVE wrapper:

• retrieves a single parameter from the client,

• “unpacks” the parameter

• processes the parameter

• returns a result

Example 5-1 Simple JWAVE wrapper function

FUNCTION PASSARR, client_data

 ; Unpack parameters received from the client.

 arr = GETPARAM(client_data, ’ARRAY’, /Value)

 ; Change the array.

 mydata = arr * 1.5

 ; Return the changed array.

 RETURN, mydata

END

Writing JWAVE Wrapper Functions 53

The Input Parameter: client_data

All JWAVE wrappers have a consistent interface. They all are functions that accept
one parameter called, by convention, client_data.

The client_data parameter passes parameter name(s) and data that were “pack-
aged” by the client Java program. (JWAVE client developers use the setParam
method of the JWaveExecute class to “package” the parameters.) When the Java
client calls the JWaveExecute.execute method, the packaged parameters are
automatically sent in an array to the appropriate JWAVE wrapper function. (The
Java client application also specifies the name of the wrapper function it intends to
execute.)

The GETPARAM Function

The GETPARAM function unpacks the information sent in the client_data
parameter. In Example 5-1, GETPARAM happens to retrieve an array. The GET-
PARAM arguments include:

client_data — The parameter information that was passed to the wrapper function
from the client.

’ARRAY’ — The name of the parameter to unpack. This name was assigned in the
client Java program at the time the parameter was “packaged” (with the setParam
method).

/Value — The Value keyword tells GETPARAM to retrieve just the value of the
parameter that was sent. (See the following note.)

NOTE In other situations, it is necessary for GETPARAM to return more than the
value. For instance, in many cases, the JWAVE wrapper function will be used to
execute one or more PV-WAVE functions. Typically, this is accomplished with the
PV-WAVE EXECUTE command, and parameters from the client that were
unpacked by GETPARAM are used to “build” a string containing the command for
EXECUTE. To facilitate these cases, GETPARAM can return a string that is for-
matted appropriately. For example, if the Positional keyword were used instead of
Value, GETPARAM would return a string of the form: ”, param_reference”
(where param_reference is a symbolic reference to a value). The result could then
be used directly in an EXECUTE statement. For example:

x1=GETPARAM(client_data, ’ARRAY’, /Positional)

status=EXECUTE(”PLOT”+ x1)

We will discuss the use of the Positional and Value keywords later in this chapter.

54 Chapter 5: JWAVE Server Development JWAVE User’s Guide

The RETURN Statement

When RETURN is called in a JWAVE wrapper, the return parameters/data are
automatically packaged and sent back to the client Java application. The client can
access this data using the default return parameter name DATA. See Returning Mul-
tiple Results to the Client on page 60 for information on sending multiple results
back to the client.

Wrapper Functions Must Be Compiled

The JWAVE server operates in PV-WAVE runtime mode. Therefore, all functions
and procedures (including wrapper functions) that run on the JWAVE server must
be compiled into .cpr files using the PV-WAVE COMPILE procedure.

For example, a typical series of commands that you can use to compile a single
PV-WAVE routine is:

WAVE> DELPROC, /All

WAVE> DELFUNC, /All

WAVE> .RUN mywrapper.pro

WAVE> COMPILE, /All, File=’mywrapper.cpr’

TIP We have provided a set of routines that you can use to test your JWAVE wrap-
per functions before compiling them and publishing them on your Web server. See
Testing Wrapper Functions on page 70 for more information.

Using GETPARAM to Unpack Parameters
As explained in the previous section, parameters sent from the client are received
as input by the JWAVE wrapper function on the server. The GETPARAM function
(a PV-WAVE function) is used to retrieve and unpack these parameters. The
GETPARAM function provides keywords that let you control how parameters are
unpacked. This section discusses GETPARAM and how its keywords are used to
unpack parameters.

What Do You Want To Unpack?

When you write a JWAVE wrapper function, typically your goal is to retrieve
parameters from the client and then execute some PV-WAVE functions that use
those parameters.

Using GETPARAM to Unpack Parameters 55

For instance, if your JWAVE client application displays a 2D plot, you might send
the following parameter information to the server:

• X — An array of floating point values to plot.

• TITLE — A title for the plot.

• LINESTYLE — Type of line to plot.

The setParam methods used on the client to set these parameters might look like
this:

setParam(”X”, anarray)

setParam(”TITLE”, ”Peak Concentrations”)

setParam(”LINESTYLE”, 1)

When the client calls its execute method, the JWAVE wrapper on the server
receives this information through its input argument, usually called
client_data. You must decide how to unpack this data.

In this case, the goal is to execute a PV-WAVE PLOT command with the parame-
ters that were received from the client. For example, you might want to run a
PV-WAVE PLOT command with these parameters and keywords:

PLOT, X, Title=thetitle, Linestyle=thestyle

Generally, you can unpack values or command strings. These topics are discussed
in following sections.

Unpacking Values

You can use GETPARAM to unpack data in two ways: as values or as command
strings. To unpack values, you specify the Value keyword with GETPARAM. For
example:

x_val = GETPARAM(client_data, ’X’, /Value)

NOTE client_data is the single parameter passed to a JWAVE wrapper func-
tion, as in: FUNCTION MY_WRAPPER, client_data

In this instance, a reference to the value of the X parameter (set by a client’s
setParam call) is assigned to the PV-WAVE variable x_val. Then, x_val can be
used in any valid context. For example:

PLOT, SQRT(x_val)

56 Chapter 5: JWAVE Server Development JWAVE User’s Guide

Using the Default Keyword

When you use the Value keyword, you may also use the Default keyword to specify
a default value to be assigned if the client did not pass that parameter.

For example, if the client sets parameters as follows:

setParam(”X”, anarray)

setParam(”TITLE”, ”Peak Concentrations”)

setParam(”LINESTYLE”, 1)

The body of a JWAVE wrapper function that retrieves those parameters might look
like this:

x_val = GETPARAM(client_data, ’X’, /Value, Default=FINDGEN(10))

the_title = GETPARAM(client_data, ’TITLE’, /Value, Default=’’)

lstyle = GETPARAM(client_data, ’LINESTYLE’, /Value, Default=0)

PLOT, x_val, Title=the_title, Linestyle=lstyle

This makes a plot with the specified data, a title, and a linestyle. If the client did not
specify the data X, then the default dataset FINDGEN(10) is used. The default plot
title is an empty string, and the default linestyle is 0 (solid).

The Expect* Keywords

When using the Value keyword, you can use a set of Expect* keywords to help you
ensure that the data the client has passed is what you expect. These keywords cause
GETPARAM to test the data to ensure that it meets your expectations, and an error
is generated if the data is invalid. (If an error occurs, the client’s execute method
throws an exception.)

The Expect* keyword options are:

• /ExpectScalar

• /ExpectArray or ExpectArray = array_of_dimensions

• ExpectType = wave_type_code

• /ExpectNumeric

• /ExpectString

These keywords help you to ensure that the client does not “break” the wrapper by
passing unexpected or invalid data.

For examples that use the Expect* keywords, see Using the Expect Keywords on
page 69.

Using GETPARAM to Unpack Parameters 57

Unpacking Command Strings

The other method for unpacking data allows you to build a command string for use
with the PV-WAVE EXECUTE function. In this mode, GETPARAM returns
strings that can be concatenated together to form a coherent command string.

There are two distinct kinds of parameters in PV-WAVE: positional and keyword.
Thus there are two methods used to get these strings from GETPARAM. Positional
and keyword parameters will be discussed in more detail in the next section, but as
an example, the JWAVE wrapper code we saw in the previous section might be re-
written as follows:

cmd = ’PLOT’

cmd = cmd + GETPARAM(client_data, ’X’, /Positional)

cmd = cmd + GETPARAM(client_data, [’TITLE’, ’LINESTYLE’])

status = EXECUTE(cmd)

A string representation of X is used as a positional parameter, and LINESTYLE and
TITLE are used as keywords. The resulting string cmd might look something like
this:

”PLOT, x_reference, TITLE=title_reference, LINESTYLE=linestyle_reference”

NOTE GETPARAM does not extract actual data from client_data; rather, it
extracts a symbolic reference to data. The data that is referenced might have been
sent by the client or retrieved from memory on the server. Therefore, the command:

x = GETPARAM(client_data, ’X’, /Positional)

returns a string in the form “ , param_reference”, where param_reference is a ref-
erence to data that was either sent from the client or retrieved from the Data
Manager. This concept is discussed further in the next few sections.

When you use GETPARAM without the Value keyword, you do not have the option
of using the Default or Expect* keywords. The returned string for a missing param-
eter (a parameter not passed by the client) is an empty string (that is, the keyword
parameter is left off of the command if it was not supplied by the client.) You can
easily check to ensure required parameters are received, as shown in Example 5-5
on page 62.

Positional vs. Keyword Parameters

Note that the PLOT command that you need to build (for use in the EXECUTE
function) consists of a positional parameter, X, and two keyword parameters,
Title and Linestyle. In PV-WAVE, positional parameters are of the form:

58 Chapter 5: JWAVE Server Development JWAVE User’s Guide

”, param”

while keyword parameters are of the form:

”, KeywordName=Value”

The following figure shows the PV-WAVE PLOT command with one positional
parameter and one keyword:

The way in which you unpack parameters in the JWAVE wrapper depends on
whether you are unpacking a positional or a keyword parameter.

Unpacking Positional Parameters

Continuing the PLOT example used previously, the JWAVE wrapper function must
use the GETPARAM function to unpack the parameters.

The first parameter to unpack is the data parameter X. Note that X is a positional
parameter in the PV-WAVE PLOT command.

To unpack a positional parameter, use the GETPARAM function with the Posi-
tional keyword, as follows:

param1=GETPARAM(client_data, ’X’, /Positional)

If the value assigned to X is an array, this function might return the following string
in the param1 variable.

” , array_reference ”

where array_reference is a symbolic reference to the data. (The actual data could
have been sent from the client or retrieved from the Data Manager.)

As noted before, this returned string is in the expected form of a positional param-
eter in a PV-WAVE function:

” , param”

The returned string can now be used to “build” a PLOT command using the
EXECUTE function. For example:

ret=EXECUTE(’PLOT’ + param1)

PLOT, X, Title = ”My Plot”

positional
parameter

keyword
parameter

Using GETPARAM to Unpack Parameters 59

Unpacking Keyword Parameters

If the Positional keyword is not used, then GETPARAM assumes the parameter is
a keyword parameter and returns a string in the form:

”, KeywordName=keyword_reference”

where keyword_reference is a reference to the value of the keyword. (This value
could have been sent from the client or retrieved from the server.)

For example, to unpack the Title keyword, use the following GETPARAM call:

title=GETPARAM(client_data, ’TITLE’)

Here, the function returns the following string in the title variable:

” , TITLE=title_reference ”

where title_reference is a symbolic reference to the title data.

NOTE Again, remember that GETPARAM does not extract and return an actual
value from client_data. Rather, the function builds a symbolic reference to a
value into the string.

Building a PV-WAVE EXECUTE Command

The GETPARAM function returns strings that are formatted appropriately to be
used in a PV-WAVE EXECUTE command. EXECUTE compiles and executes one
or more PV-WAVE statements contained in a string at runtime.

For example:

The client application (written in Java) packs the data:
command= new JWaveView(connection, ”JWAVE_PLOT”)

int[] data = {1,2,3,4,5};

command.setParam(”X”, data);

command.setParam(”TITLE”, ”CO2 Data”);

command.setParam(”LINESTYLE”, 1);

On the server, JWAVE wrapper commands unpack the parameters and build an
EXECUTE command:
result=GETPARAM(client_data, ’X’, /Positional)

keywords=GETPARAM(client_data, [’TITLE’, ’LINESTYLE’])

status=EXECUTE(”PLOT” +result + keywords)

60 Chapter 5: JWAVE Server Development JWAVE User’s Guide

Unpacking Color Data
Another JWAVE wrapper function, GET_NAMED_COLOR, is used to retrieve
colors that were specified by the client application. See Unpacking Color Informa-
tion with GET_NAMED_COLOR on page 67 for detailed information on this
function.

Returning Multiple Results to the Client
You can easily package multiple results (arrays and scalars) and return them to the
client where they can be unpacked and used.

To package multiple results on the server, create and return an associative array of
data name/value pairs. For example:

Example 5-2 JWAVE wrapper function that returns multiple results to the client

FUNCTION PASSFFT, client_data

 ; Get the data from the client.

 arr = GETPARAM(client_data, ’ARRAY’, /Value)

;Process the data, creating two separate variable results

 freq = FLOAT(ABS(FFT(arr, -1)))

 distrib = HISTOGRAM(freq)

;Create an associative array to send results back to the client.

RETURN, ASARR(’FDATA’, freq, ’HIST’, distrib)

END

The resulting arrays, freq and distrib are packaged and returned to the client in
the associative array. The associative array keys become the names of the returned
data referenced by the client with the getReturnData method. The names of the
data returned by this example are FDATA and HIST.

The following example shows a Java code fragment used to retrieve the parameters
sent from the server and to properly cast the values.

Example 5-3 Client calls to unpack the associative array sent from the server.

//Get the FFT data

float[] d = (float[]) command.getReturnData(”FDATA”);

//Get the histogram data

int[] h = (int[]) command.getReturnData(”HIST”);

Returning Graphical Data to the Client 61

Returning Graphical Data to the Client
Example 5-4 shows a simple JWAVE wrapper that calls the PV-WAVE PLOT
command to generate a 2D plot of the array received from the client. Graphics are
automatically created on the server and sent back to the client for display.

NOTE The client developer uses the JWaveView class to request that the server
return graphical data in addition to numerical data. Whenever JWaveView is used
to execute a client request to the server, the server automatically creates a
Viewable object. This object is then packaged and streamed back to the client
where it can be displayed. If the client calls the wrapper with the JWaveExecute
class, the graphics are discarded, and only the data are returned. For more informa-
tion on JWaveView and graphics, see Chapter 4, JWAVE Graphics.

Example 5-4 Simple JWAVE wrapper that returns a 2D plot

FUNCTION APLOT, client_data

; Unpack the parameters and data from the client.

 arr = GETPARAM(client_data, ’ARRAY’, /Value)

PLOT, arr

RETURN, 0

END

NOTE You must make sure that all coordinate system information is correct
before you return a plot to the client. Also, note that the SURFACE and AXIS pro-
cedures create a temporary axis transformation that is not automatically saved by
the PV-WAVE session. To ensure that the correct transformation and coordinate
system information is sent back to the client, use the Save keyword with these pro-
cedures. This causes the correct transformation information to be sent
automatically to the client. For more information on coordinate transformations,
see Coordinate System Transformations on page 49.

62 Chapter 5: JWAVE Server Development JWAVE User’s Guide

Example: A Typical JWAVE Wrapper
This example demonstrates and reinforces concepts that were discussed previously
in this chapter.

This JWAVE wrapper function retrieves positional and keyword parameters from
the client, unpacks the parameters, and builds a command string for use in a
PV-WAVE EXECUTE function. This example also demonstrates the
GET_NAMED_COLOR function, which allows colors to be passed by name from
the client to the JWAVE wrapper.

TIP Refer to the PV-WAVE Reference for information on the EXECUTE, PLOT,
and OPLOT commands. These PV-WAVE commands are used in the following
example.

The code for Example 5-5 is a simplified version of jwave_plot.pro, which can
be found in:

(UNIX) jwave-3_5/lib

(Windows) jwave-3_5\lib

Example 5-5 JWAVE wrapper that unpacks positional and keyword parameters and builds
a command string

FUNCTION JWAVE_PLOT_SIMPLE, client_data

 ; Determine plot type (Can also be done with [XY]Type)

 CASE GETPARAM(client_data, ’SCALING’, /Value, Default=0) OF

 1: cmd = ’PLOT_OI’

 2: cmd = ’PLOT_IO’

 3: cmd = ’PLOT_OO’

 ELSE: cmd = ’PLOT’

 ENDCASE

 ; Get colors -- default is black lines on white background

 back = GET_NAMED_COLOR(’BACKGROUND’, Default=’000000’xL)

 fore = GET_NAMED_COLOR(’COLOR’, Default = ’ffffff’xL)

 acol = GET_NAMED_COLOR(’AXIS’, Default = fore)

Example: A Typical JWAVE Wrapper 63

 color_kwds = ’, Background=back, Color=fore’

 ; Get allowed keywords for the PLOT command

plot_kwds = GETPARAM(client_data, $

[’Box’, ’Charsize’, ’Charthick’, ’Clip’, ’Gridstyle’, $

’Linestyle’, ’Noclip’, ’Nsum’, ’Polar’, ’Position’, ’Psym’,
$

’Solid_Psym’, ’Subtitle’, ’Symsize’, ’Thick’, ’Tickformat’,
$

’Ticklen’, ’Title’, ’XCharsize’, ’XGridstyle’, ’XMargin’, $

’XMinor’, ’XRange’, ’XStyle’, ’XTickformat’, ’XTicklen’, $

’XTickname’, ’XTicks’, ’XTickv’, ’XTitle’, ’XType’, $

’YCharsize’, ’YGridstyle’, ’YMargin’, ’YMinor’, $

’YNozero’, ’YRange’, ’YStyle’, ’YTickformat’, $

’YTicklen’, ’YTickname’, ’YTicks’, ’YTickv’, $

’YTitle’, ’YType’])

 ; Get positional data

 y = GETPARAM(client_data, ’Y’, /Positional) ; REQUIRED

 IF y EQ ’’ THEN $

 MESSAGE, ’Parameter Y is required.’

 x = GETPARAM(client_data, ’X’, /Positional) ; Optional

 ; Execute the plotting function to draw the axes

 status = EXECUTE(cmd + x + y + color_kwds + plot_kwds)

 RETURN, 0

END

64 Chapter 5: JWAVE Server Development JWAVE User’s Guide

Unpacking the Parameters

First, positional and keyword parameters sent from the client must be unpacked
with GETPARAM.

NOTE Parameter names are not case sensitive. They must begin with a letter, and
can contain only alphanumeric characters and the underscore character (_).

NOTE A client application that provides controls for generating and modifying
the appearance of plots or other kinds of graphics probably needs to communicate
positional and keyword parameter information to the server. The client user might
use option menus to change the colors used in a plot, text fields to add plot titles,
push buttons to add axes, and so on. The client developer must retrieve the param-
eter names and values from the user interface, package those parameters (with
setParam and
setNamedColor method calls), and send them to the server. As shown here, the
JWAVE wrapper function then unpacks the parameters, generates the plot, and
sends back a graphic for display on the client.

Unpacking Values

The first use of GETPARAM in Example 5-5 is basically the same as we’ve seen
in previous examples (such as Example 5-1). Here, GETPARAM is used in a
CASE statement to retrieve the appropriate PLOT command (PLOT, PLOT_IO,
PLOT_OO, or PLOT_OI). The correct command is saved based on the value of the
SCALING parameter that was passed from the client. As in previous examples, the
Value keyword specifies that a simple value be returned. Also, the Default keyword
is used to return a value, 0, if no SCALING parameter was sent from the client. In
this case, no scaling causes the CASE statement to save the regular PLOT
command.

CASE GETPARAM(client_data, ’SCALING’, /Value, Default=0) OF

 1: cmd = ’PLOT_OI’

 2: cmd = ’PLOT_IO’

 3: cmd = ’PLOT_OO’

 ELSE: cmd = ’PLOT’

 ENDCASE

Example: A Typical JWAVE Wrapper 65

Unpacking Keywords

The next GETPARAM call retrieves any of the supported plot keywords that may
have been sent from the client. In this case, we include all of the keywords associ-
ated with the PV-WAVE PLOT command. Positional parameters that are
specifically related to the x and y data will be retrieved in a separate GETPARAM
statement.

plot_kwds = GETPARAM(client_data, $

[’Box’, ’Charsize’, ’Charthick’, ’Clip’, ’Gridstyle’, $

’Linestyle’, ’Noclip’, ’Nsum’, ’Polar’, ’Position’, ’Psym’, $

’Solid_Psym’, ’Subtitle’, ’Symsize’, ’Thick’, ’Tickformat’, $

’Ticklen’, ’Title’, ’XCharsize’, ’XGridstyle’, ’XMargin’, $

’XMinor’, ’XRange’, ’XStyle’, ’XTickformat’, ’XTicklen’, $

’XTickname’, ’XTicks’, ’XTickv’, ’XTitle’, ’XType’, $

’YCharsize’, ’YGridstyle’, ’YMargin’, ’YMinor’, $

’YNozero’, ’YRange’, ’YStyle’, ’YTickformat’, $

’YTicklen’, ’YTickname’, ’YTicks’, ’YTickv’, $

’YTitle’, ’YType’])

This statement extracts from client_data any keywords that were specified in
the string array and their associated values. With this usage, the GETPARAM func-
tion returns a string array in the following form:

”, keyname_1=value_reference, keyname_2=value_reference, ... ”

where value_reference is a symbolic reference to a value that was either sent by the
client or retrieved from the Data Manager.

For example, the client sends keyword/value pairs that the PLOT command
expects, and GETPARAM unpacks them into a string array, containing keyword
names and references to keyword values.

” , Title=title_ref, Ticklen=tick_ref, Charsize=charsize_ref ”

As noted previously, this “string array” can be used as part of a command in an
EXECUTE call to produce a plot.

NOTE The list of keywords given in this GETPARAM function example repre-
sents all of the keywords that can be extracted. Any keywords in the list that are not
sent by the client are simply ignored by GETPARAM. If no keywords are sent, this
GETPARAM function would return a null (empty) string.

66 Chapter 5: JWAVE Server Development JWAVE User’s Guide

TIP We recommend that you use a string array (as was done in this example) to
specify which keywords you wish to retrieve with GETPARAM. By specifying a
string of names in GETPARAM, rather than using the /All keyword, you prevent
your program from failing if the client sends unexpected information.

Unpacking Positional Parameters

The final two GETPARAM calls use the Positional keyword to retrieve positional
parameters.

y = GETPARAM(client_data, ’Y’, /Positional) ; REQUIRED

 IF y EQ ’’ THEN $

 MESSAGE, ’Parameter Y is required.’

 x = GETPARAM(client_data, ’X’, /Positional)

The difference between keyword and positional parameters is their form. Key-
words are of the form Keyname=value. For example, XTitle=”Units Sold”.
Positional parameters, on the other hand, of the form: paramname. For example,
the PLOT command takes a required positional parameter (Y), an optional posi-
tional parameter (X), and numerous optional keywords. For example:

PLOT, y, Title=”CO2 Content”, Charsize=3

where y is a required positional parameter, and the other parameters are keywords.

When the Positional keyword is specified, GETPARAM returns the specified
parameter in a string in the format: ”, param_reference ”, where
param_reference is a symbolic reference to the data. The leading comma is needed
because when this string is used in an EXECUTE command, it is concatenated with
other strings to “build” a command.

If the required y parameter is not supplied by the client, this error is “trapped”
(because GETPARAM returns an empty string) and the MESSAGE procedure is
called. The effect of the MESSAGE procedure is discussed in Error Handling on
page 68.

Example: A Typical JWAVE Wrapper 67

Unpacking Color Information with GET_NAMED_COLOR

The GET_NAMED_COLOR function retrieves a color index from a color name
set by the client. The client specifies a color name and a Java Color object. This
object is sent to the JWAVE wrapper and GET_NAMED_COLOR translates that
color object into a color that can be used by PV-WAVE.

In this example, GET_NAMED_COLOR retrieves three colors that were specified
by the client: BACKGROUND. COLOR, and AXIS.

TIP For more information on JWAVE graphics and color parameters, see Chapter
4, JWAVE Graphics. See also Managing the Color Table on page A-18.

Example 5-6 JWAVE wrapper calls retrieve colors sent from the client.

back = GET_NAMED_COLOR(’BACKGROUND’, Default=’000000’xL)

fore = GET_NAMED_COLOR(’COLOR’, Default = ’ffffff’xL)

axis = GET_NAMED_COLOR(’AXIS’, Default = fore)

TIP The following lines show the corresponding calls that were made in the Java
client program to set the colors retrieved in Example 5-6:

myJWaveView.setNamedColor(”BACKGROUND”, java.awt.Color.lightGray)

myJWaveView.setNamedColor(”COLOR”, java.awt.Color.red)

myJWaveView.setNamedColor(”AXIS”, java.awt.Color.black)

These calls set colors to be sent to the server. The calls associate a color name (e.g.,
BACKGROUND) with a Java color object (e.g., Color.lightGray). These colors
are packaged with the rest of the parameters and sent to the client.

The RETURN Statement

The RETURN statement in a JWAVE wrapper can always be used to return data to
the client. In this example, the primary function of the wrapper is to return a
graphic—this particular wrapper does not generate any data that needs to be
returned to the client. Thus, the RETURN statement simply returns 0. There is no
reason, however, why this RETURN statement could not be used to return some
other data.

68 Chapter 5: JWAVE Server Development JWAVE User’s Guide

You Can Only Retrieve Parameters Once
GETPARAM can only retrieve a parameter (positional, keyword, or value) once.

For example, the following GETPARAM calls retrieve parameters from the client:

foo = GETPARAM(client_data, ’foo’)

bar = GETPARAM(client_data, /All)

However, after the foo parameter is retrieved, it cannot be retrieved again in the
subsequent call with the /All keyword. Therefore, in this case, the bar command
string will not contain the foo parameter.

TIP You can use the Ignore_Used keyword with GETPARAM to request that all
requested parameters will be returned whether they have been used or not.

Error Handling
This section discusses some error handling techniques and tips for use in JWAVE
wrapper functions.

Using the MESSAGE Procedure

Use the PV-WAVE MESSAGE procedure to generate error messages from JWAVE
wrapper functions. The error text that MESSAGE produces is automatically sent to
the client as a Java Exception (specifically, a JWaveWrapperException object).
The MESSAGE procedure also causes the wrapper function to stop processing (by
default).

For detailed information on MESSAGE, refer to the PV-WAVE Reference.

Trapping Errors

If you use PV-WAVE error handling routines (such as ON_ERROR_GOTO or
ON_ERROR) to trap and handle errors in a JWAVE wrapper function, be sure to
set !Error=0 immediately after the error trap to ensure that the error is not reported
back to the client.

ON_ERROR and ON_ERROR_GOTO are described in the PV-WAVE Reference.

Error Handling 69

Using the Expect Keywords
GETPARAM takes a set of optional keywords that can be used for trapping input
errors. These keywords are only used in conjunction with the Value keyword. (This
is because they are used to test values that are passed from the client.)
These keywords all begin with the word Expect. They are:
• ExpectType = type_code
• /ExpectNumeric
• /ExpectString
• ExpectArray = [dim1, dim2, ...] or /ExpectArray
• /ExpectScalar

The first three keywords (ExpectType, ExpectNumeric, and ExpectString) produce
an error if the returned parameter does not match the expected data type. The valid
data type codes that you can use with JWAVE are listed in the following table.

The keyword ExpectArray produces an error if the input parameter is not an array
of the specified dimensions. For more information on the Expect* keywords, see
GETPARAM Function on page 11.

The keyword ExpectScalar produces an error if the input parameter is not a scalar
or a 1-element array. If the parameter is a 1-element array, then the function returns
that element as a scalar.

As the following lines show, you can use reasonable combinations of the Expect*
keywords in a single GETPARAM function.
; y must be a numerical array

y = GETPARAM(client_data, ’Y’, /Value, /ExpectArray, /ExpectNumeric
)

; xcnt and ycnt must be numerical scalars

xcnt = GETPARAM(client_data, ’XCENTER’, /Value, Default = 0.5, $

/ExpectScalar, /ExpectNumeric)

ycnt = GETPARAM(client_data, ’YCENTER’, /Value, Default = 0.5, $

/ExpectScalar, /ExpectNumeric)

; title must be a scalar string.

title = GETPARAM(client_data, ’TITLE’, /Value, Default = ’The
Title’, $

/ExpectScalar, /ExpectString)

Type Code Data Type

1 Byte
2 Integer
3 Longword integer
4 Floating point
5 Double precision floating
7 String

70 Chapter 5: JWAVE Server Development JWAVE User’s Guide

Testing Wrapper Functions
This section explains how to test JWAVE wrapper functions without writing client
Java programs. The WRAPPER_TEST_* procedures are PV-WAVE procedures
that you can use to imitate the behavior of the Java client application, such as set-
ting parameters, setting colors, and setting and executing the JWAVE wrapper.

Testing a Numerical Program
For example, let’s look at how you can test the JWAVE wrapper simple.pro that
we discussed in Chapter 1, JWAVE System Introduction. This wrapper accepts a
number and returns the square root of the number to the Java client. To test this
wrapper without writing the Java client application yet, you can run the following
test procedures in PV-WAVE (assuming that the directory that contains
simple.pro is in the !Path system variable of PV-WAVE):
WAVE> WRAPPER_TEST_INIT, ’SIMPLE’

WAVE> WRAPPER_TEST_SETPARAM, ’NUMBER’, 2

WAVE> WRAPPER_TEST_EXECUTE

WAVE> WRAPPER_TEST_RETURN_INFO

DATA FLOAT = 1.41421

WAVE>

Here we set the wrapper, set a parameter, executed the wrapper, and printed the
return data.

The procedures used to test this wrapper correspond to the Java methods used to
set parameters, and so on, in the client application. The following table shows the
correspondence between these PV-WAVE test routines and the Java methods they
imitate:

Test Procedure JWAVE Java Method

WRAPPER_TEST_INIT JWaveExecute.setFunction and
JWaveView.setSize (optional)

WRAPPER_TEST_SETCOLOR JWaveView.setNamedColor

WRAPPER_TEST_SETPARAM JWaveExecute.setParam

WRAPPER_TEST_EXECUTE JWaveExecute.execute

WRAPPER_TEST_GETRETURN JWaveExecute.getReturnData

WRAPPER_TEST_RETURN_INFO Parameter.printInfo

Testing Wrapper Functions 71

Testing a Graphics Program

You can also use the WRAPPER_TEST_* routines to test wrapper functions that
generate graphics. To do this, specify the window size to WRAPPER_TEST_INIT,
as shown in one of the examples below. If the wrapper returns a graphic, then the
test procedure WRAPPER_TEST_EXECUTE displays the graphic in a PV-WAVE
window.

Here is an example that tests the wrapper jwave_plot.pro. You can find this
wrapper function in:

(UNIX) VNI_DIR/jwave-3_5/lib

(Windows) VNI_DIR\jwave-3_5\lib

where VNI_DIR is the main Visual Numerics installation directory.

WAVE> WRAPPER_TEST_INIT, ’JWAVE_PLOT’, 300, 300

WAVE> WRAPPER_TEST_SETCOLOR, ’BACKGROUND’, ’000000’xL ; black

WAVE> WRAPPER_TEST_SETCOLOR, ’LINE’, ’ff0000’xL ; blue

WAVE> WRAPPER_TEST_SETPARAM, ’Y’, HANNING(20,20)

WAVE> WRAPPER_TEST_SETPARAM, ’PSYM’, 1

WAVE> WRAPPER_TEST_EXECUTE

Here, note that the WRAPPER_TEST_SETCOLOR procedure is used to set line
and background colors. When WRAPPER_TEST_EXECUTE is run, the plot is
displayed in a PV-WAVE graphics window.

For detailed information on each of the WRAPPER_TEST_* routines, see
Appendix A, JWAVE Wrapper API.

72 Chapter 5: JWAVE Server Development JWAVE User’s Guide

Summary
This chapter explained how to develop and test JWAVE wrapper functions. A
JWAVE wrapper function is a PV-WAVE function that communicates, through the
JWAVE Manager, with a JWAVE client (Java) application. JWAVE wrappers use
functions for “unpacking” parameters sent from the client. The RETURN state-
ment in a JWAVE wrapper automatically packs and returns parameters and data to
the Java client.

You can use standard PV-WAVE error trapping routines to trap errors in a JWAVE
wrapper function. If you trap and handle errors within the wrapper function, be sure
to reset the !Error system variable to 0 after the error is trapped to prevent an error
message from being returned to the client.

Remember that JWAVE wrapper functions, and any PV-WAVE functions that run
on the JWAVE server, must be compiled with the PV-WAVE COMPILE command.

73

CHAPTER

6

Managing Data
If you are working with large datasets, you probably want to keep them on the
server. Typically, the server has the memory and storage resources that large
datasets require. On the other hand, client machines typically have limited memory
and storage capacity. Furthermore, the transfer of large datasets between the client
and server (for example, across the Internet) can consume network resources.

JWAVE addresses this problem with data proxies. A proxy is an object-oriented
design term that refers to a surrogate or placeholder that controls access to another
object. A data proxy, then, is a surrogate object that refers to data.

If the data is, for instance, a large multidimensional array stored in a PV-WAVE
session, the client can use a proxy object to refer to that data. Using a proxy object,
the client can request operations to be performed on the data, such as:

• running an analysis or filtering program on the data

• copying the data

• destroying the data

• renaming the data

• retrieving the data (returning it to the client)

All of these operations are controlled from the client while the data physically
resides on the server, which greatly reduces the burden on client and network
resources. Unless data is explicitly retrieved, it never has to be downloaded to the
client.

74 Chapter 6: Managing Data JWAVE User’s Guide

What is a JWAVE Data Proxy
A Proxy class is an interface that describes a data proxy. The subclass of the Proxy
class used by JWAVE clients to refer to data that is stored on the server is
JWaveDataProxy.

Usually, a JWAVE wrapper function processes data in some way and stores the
results. The JWAVE client may wish to use another JWAVE wrapper to perform
further analysis on the stored results. To do this, the client needs to be able to ref-
erence the data stored on the server. The most efficient way to do this is to ask the
server to return a data proxy, which the client can then use in the setParam
method of subsequent function calls from the first wrapper.

Figure 6-1 A Proxy object refers to data stored in a PV-WAVE session. The proxy knows
where to find the server (JWaveConnection), the name of the data domain name for the data
(ServerDataID).

While the end result of this processing might be some kind of plot or image that is
sent back to the client, the important point to remember is that the actual data never
has to leave the server.

How the data arrives on the server in the first place is up to the JWAVE application
developer. The data could have originated on the client and been uploaded to the
server. Or, the data could have been loaded on the server from a file or database, or
calculated by a JWAVE wrapper function.

The data referred to by a JWaveDataProxy object persists on the server until it is
explicitly deleted or the PV-WAVE session is shut down.

Proxy Object PV-WAVE Session

Client Server
(PV-WAVE)

Connection

Data Name

DomainName
Data

What is a JWAVE Data Proxy 75

Instantiating a JWaveDataProxy Object

A JWaveDataProxy object is instantiated with:

• a valid connection to the server (a JWaveConnection object)

• a name by which to identify the data on the server, and

• a domain name (used to group datasets)

For instance, one way to construct a JWaveDataProxy object is:

new JWaveDataProxy(myconnection, ’MYDATA’, ’MYDOMAIN’)

where myconnection is the previously instantiated JWaveConnection object
(tells the proxy how to find the server), MYDATA is the name of the data stored on
the server, and MYDOMAIN is the domain.

When you construct a JWaveDataProxy object in this way, you are only provid-
ing the name of the data. This JWaveDataProxy object refers to a place to store
data, but there is no guarantee that there is actually data there. If you do not know
that there is already data on the server, you can use the Proxy.store method to
send data to the PV-WAVE session.

Other Ways to Instantiate a JWaveDataProxy Object

There are two other ways to create a JWaveDataProxy object, and they both are
used in conjunction with a JWaveExecute object.

The first way is to supply a ServerDataID object (which encapsulates the name
and domain of a JWaveDataProxy object) when you use the setParam method.

setParam(String name, Object value, ServerDataID dataName)

This associates values with the parameter name, as usual, but additionally the
server stores the data as named by the ServerDataID object when it is sent with
the next execute call.

This technique is useful when you have some data on the client, and you want to
use that same dataset with several JWAVE wrapper functions. So you use the above
setParam method to save the data on the first call, and then you use the following
setParam on subsequent calls to associate a named parameter with that stored
data:

setParam(String name, ServerDataID dataName)

This technique stores data on the server, even though you are not manipulating
JWaveDataProxy objects directly. If you need direct access to the data (like to
delete it when you are done) you can use the same ServerDataID object that
identifies the data name in a constructor to a new JWaveDataProxy object.

76 Chapter 6: Managing Data JWAVE User’s Guide

Another way to create a data proxy is when data is returned by a JWAVE wrapper
function. Normally, the JWAVE wrapper returns values back to the client, but you
can change this. Before you call the execute method, you can use the
setReturnParamMode method to change how returned data will be handled.

There are a couple of overloaded methods for setReturnParamMode, but the pri-
mary one is:

 setReturnParamMode(String name, boolean returnVals, ServerDataID
dataName)

If you use this method, and specify a ServerDataID object for the data name,
then that parameter will be stored on the server when the JWAVE wrapper function
returns. You can also use the boolean flag with one of the values
JWaveExecute.RETURN_NO_VALUES or JWaveExecute.RETURN_VALUES. If
you set this flag to RETURN_NO_VALUES, then no values are returned, but a
JWaveDataProxy object to the stored data is returned.

This technique is useful for “chaining” the output of one JWAVE wrapper to the
input of another, as you will see in a later example.

There are other ways to use setReturnParamMode object. If you set the flag to
RETURN_VALUES and you set a ServerDataID object, then the data is stored and
also returned to the client. You can even discard data that you do not want by setting
RETURN_NO_VALUES without a ServerDataID object.

TIP For detailed information on all of the constructors, variables, and methods of
the JWaveDataProxy class, refer to the Javadoc reference. For information on Jav-
adoc, see Using the JWAVE Javadoc Reference on page 40.

The Efficiency of Using Data Proxies 77

The Efficiency of Using Data Proxies
This section illustrates the efficiency of using data proxies in JWAVE applications.

Inefficient System: The Data Makes Two Round Trips
In one typical JWAVE scenario, the client asks the server (a JWAVE wrapper func-
tion) to load or generate some data and then asks another JWAVE wrapper to
process the data and return a Viewable object back to the client.

Figure 6-2 illustrates an inefficient version of this scenario, where data makes two
complete round trips between the client and the server. This scenario can be sum-
marized as follows:
• A JWaveExecute object executes a JWAVE wrapper function called

DATAGEN on the PV-WAVE server.
• The generated data is then returned by the JWAVE wrapper to the client.
• The client passes the data to another JWaveExecute object, which sends it

back to the server as input to another JWAVE wrapper called FILTER. (The
data has made one round trip.)

• The filtered data is returned by the JWAVE wrapper to the client.
• The client passes the data to a JWaveView object, which sends it back to the

server as input to another PV-WAVE routine called GRAPHICS. (The data has
now made two round trips.)

• Finally, a plot is passed back to the client and displayed.

Figure 6-2 Inefficient use of JWAVE, as data is physically passed between server and client

78 Chapter 6: Managing Data JWAVE User’s Guide

Efficient System: No Round Trips

Figure 6-3 depicts the same type of processing as the previous figure; however, this
time the client uses data proxies to refer to the data on the server. The actual dataset
is never physically returned to the client. Only after processing is completed is an
image object returned to the client and displayed.

In this case, note that the object returned to the client each time is a data proxy,
rather than actual data. The client uses the proxy object in subsequent
JWaveExecute methods (where, in the previous (inefficient) model, the actual
data was passed).

Figure 6-3 Efficient use of JWAVE, as data is not physically passed between server and
client

Setting the Return Parameter Mode
By default, a JWAVE wrapper function returns physical data to the client. The cli-
ent has to specify that it wants the JWAVE wrapper to return a proxy object. To do
this, the client uses the JWaveExecute.setReturnParamMode method.

In the next section, we present an example illustrating the use of data proxies.

The Efficiency of Using Data Proxies 79

Example: Using Data Proxies

As previously noted, sending large datasets back and forth between client and
server can be expensive in terms of network and client resources. In many cases, it
is often more efficient to leave data on the server for at least part of the processing
cycle.

This example discusses a JWAVE application that:
• creates an array of data on the client
• sends the data to the server where it is “processed” by a JWAVE wrapper

function
• tells the server to return a proxy object rather than the actual data
• requests the server to execute a different JWAVE wrapper function to process

the data further
• returns the actual processed data to the client and prints it

Figure 6-4 illustrates the flow of this JWAVE application.

Figure 6-4 JWAVE scenario using data proxies

NOTE This client application calls two different JWAVE wrapper functions on the
server. From the first wrapper, the client asks for a proxy to be returned. From the
second wrapper, the client asks for the actual data values, which it then prints.

80 Chapter 6: Managing Data JWAVE User’s Guide

The Java Client Program

Example 6-1 proxyarry.java: Sends data to the server; retrieves a data proxy; uses the
proxy in a subsequent JWaveExecute object

import com.visualnumerics.jwave.*;

public class ProxyArray {

 public static void main(String[] args) {

 try {

 // Create a simple array as data

 float[] arr = new float[10];

 for (int i=0; i<arr.length; ++i)

 arr[i] = i;

 // Connect to JWave server

 JWaveExecute command = new JWaveExecute(”PROX1”);

 // Set the data as ARRAY1 parameter

 command.setParam(”ARRAY1”, arr);

// Ask that the result data (named DATA) be stored on the server,

 // and only return a Proxy

 ServerDataID saveData = new ServerDataID(”SAVE_NAME”);

command.setReturnParamMode(”DATA”, JWaveExecute.RETURN_NO_VALUES,

 saveData);

 // Execute PROX1

 command.execute();

 // Switch to new wrapper function

 command.setFunction(”PROX2”);

 // Clear previous parameters and return modes

 command.clearParams();

 command.clearReturnParamModes();

 // Set input to PROX2 to use data stored by PROX1

// Could also use getReturnProxy(”DATA”) here rather than saveData

 command.setParam(”ARRAY2”, saveData);

 // Execute PROX2 and get result

 command.execute();

The Efficiency of Using Data Proxies 81

 float[] answer = (float[]) command.getReturnData(”DATA”);

 // Print result

 for (int i=0; i<answer.length; ++i)

 System.out.println(answer[i]);

 } catch (Exception e) {

 // Report problems

 System.out.println(e.toString());

 }
 }
}

The First JWAVE Wrapper

Example 6-2 prox1.pro: Receives an array from the client and multiplies the elements by
1.5. The client asks the server to return a data proxy rather than the actual data.

FUNCTION PROX1, client_data

 ; Unpack data and parameters sent from the client.

 arr = GETPARAM(client_data, ’ARRAY1’, /Value, Default=11)

 ; Change the array.

 mydata = arr * 1.5

 ; Return the changed array.

 RETURN, mydata

END

The Second JWAVE Wrapper

Example 6-3 prox2.pro: The client asks this server program to process the array it stored
previously. The client refers to the data on the server with a proxy. Finally, the client asks the
server to send back the actual data so that it can be printed. (This wrapper multiplies the
previously stored array by 100.5.)

FUNCTION PROX2, client_data

 ; Unpack data and parameters sent from the client.

 arr = GETPARAM(client_data, ’ARRAY2’, /Value, Default=11)

 ; Change the array.

 mydata = arr * 100.5

 ; Return the changed array.

 RETURN, mydata

END

82 Chapter 6: Managing Data JWAVE User’s Guide

Java Client Output

When the Java program in Example 6-1 is executed, the following output is printed
on the client. (The numbers result from multiplying the first array by 1.5 and mul-
tiplying the resulting array by 100.5.)
% java proxyarr

0.0

150.75

301.5

452.25

603.0

753.75

904.5

1055.25

1206.0

1356.75

Data Proxies Are Controlled by the Client

Note that in this example there is no special code in the JWAVE wrapper functions
to enable the storing of data as proxies. The use of proxy data is totally under client
control, and you do not need to do anything special in the wrapper functions to con-
trol this. This client-side control of proxies allows you to build JWAVE wrappers
as modules, without planning all of the possible uses for them. As you build the
client Java application, these JWAVE wrapper modules can then be “hooked
together” in the best possible ways.

How Long is Proxy Data Stored on the Server

Data that is referred to by a proxy object persists for the duration of the PV-WAVE
session in which it is stored. When the session ends, the data is lost.

TIP You can use the Data Manager routines DMSave and DMRestore to store data
between sessions. These JWAVE wrapper procedures are described in Appendix A,
JWAVE Wrapper API.

Summary
A proxy is an object that represents data stored on the server (in PV-WAVE). Use
data proxies to make JWAVE applications more efficient. By using proxies to refer
to server data, you can reduce the burden on client and network resources.

83

CHAPTER

7

Using JWAVE Beans
JWAVE Beans are JavaBeansTM that provide a set of graphical views for displaying
data. As JavaBeans, JWAVE Beans are portable and platform independent. You can
often use JWAVE Beans in visual application builder tools.

Visual Numerics has provided a set of JWAVE Beans that correspond to the main
graphical views of PV-WAVE. The JWAVE Beans shipped with JWAVE are:

• JWAVE Bar3d Tool — a Bean for displaying bar charts

• JWAVE Contour Tool — a Bean for displaying contour images

• JWAVE Generic Tool — a Bean for displaying the results of your own
PV-WAVE function and procedure files

• JWAVE Histogram Tool — a Bean for displaying histograms

• JWAVE Pie Tool — a Bean for displaying pie charts

• JWAVE Plot Tool — a Bean for displaying plot images

• JWAVE Surface Tool — a Bean for displaying surface plot images

Using JWAVE Beans with the BeanBox
This section is a step-by-step exercise that explains how to use JWAVE Beans with
JavaBeans Development Kit from Sun Microsystems, Inc. (You must use BDK ver-
sion 1.0 July 98, or a later version). The latest version of the BDK can be
downloaded from the JavaSoft web site:

http://java.sun.com/beans/index.html

84 Chapter 7: Using JWAVE Beans JWAVE User’s Guide

This exercise uses one invisible Bean, JWAVE Bean tester (which generates some
data), and two visible Beans, JWAVE Surface Tool and OrangeButton, to produce a
surface plot.

Step 1: Modify Your CLASSPATH

You must add the following files to your CLASSPATH variable:

(UNIX) VNI_DIR/classes/JWaveConnectInfo.jar

(UNIX) VNI_DIR/classes/JWave.jar

(UNIX) SWINGDIR/swing.jar

(Windows) VNI_DIR\classes\JWaveConnectInfo.jar

(Windows) VNI_DIR\classes\JWave.jar

(Windows) SWINGDIR\swing.jar

where VNI_DIR is the main Visual Numerics Installation directory, and SWINGDIR
is the directory where Swing version 1.1 or later is installed (see the Glossary).

Step 2: Copy JWaveBeans.jar

Copy the file:

(UNIX) VNI_DIR/classes/JWaveBeans.jar

(Windows) VNI_DIR\classes\JWaveBeans.jar

where VNI_DIR is the main Visual Numerics installation directory.

to

(UNIX) BDKDIR/jars

(Windows) BDKDIR\jars

where BDKDIR is the directory in which the BeanBox is installed.

When the BeanBox starts, this JAR file is automatically opened and inspected.

Optional: Modify the Startup Script

Normally, the following script is used to start the BeanBox:

(UNIX) BDKDIR/beanbox/run.sh

(Windows) BDKDIR\beanbox\run.bat

where BDKDIR is the directory where the BeanBox is installed.

Using JWAVE Beans with the BeanBox 85

TIP You can make the CLASSPATH modifications described in Step 1 directly in
this script, so that CLASSPATH includes $CLASSPATH (UNIX) or %classpath%
(Windows).

Step 3: Start the BeanBox

Before you start the BeanBox, make sure the JWAVE Manager is running and prop-
erly configured (see Testing to See If the JWAVE Manager is Running on page 110).

NOTE You must CD to the BDKDIR/beanbox directory to run run.sh or
run.bat. where BDKDIR is the directory in which the BeanBox is installed.

To start the BeanBox, from the BDKDIR type:

(UNIX) run.sh

(Windows) run.bat

When you run the BeanBox, the graphical JWAVE Beans and the “invisible”
JWAVE Bean tester Bean are listed in the ToolBox along with other Beans that came
with the BDK or that you added (Figure 7-1).

Step 4: Try Out the JWAVE Bean Tester and Surface Tool

NOTE Remember, the JWAVE Manager must be running to use JWAVE Beans.

Step 1 From the ToolBox, select JWAVE Bean tester, then click in an open area
of the BeanBox window to place it as an object in the BeanBox.

Step 2 Select a button (such as OrangeButton) from the ToolBox and place it
near the bottom of the BeanBox window.

Step 3 Select the button object in the BeanBox, and then select
Edit=>Events=>button push=>actionPerformed.

Step 4 Click over the JWAVE Bean tester object in the BeanBox. This links the
button object to the JWAVE Bean tester object.

Step 5 In the EventTargetDialog dialog box, select the start2d target method
(this method will form the connection between the JWAVE Bean tester
and the push button), then click OK. Now, every time you click the button,
the tester Bean will generate new 2D data.

86 Chapter 7: Using JWAVE Beans JWAVE User’s Guide

Figure 7-1 JWAVE Beans listed in the BeanBox ToolBox

Step 6 In the ToolBox, select JWAVE Surface Tool and place it above the button
object in the BeanBox.

Step 7 Resize the Surface Tool Bean until it is big enough to hold a surface plot.

Step 8 Select the JWAVE Bean tester object in the BeanBox, then from the Edit
menu, select Events=>propertyChange=>propertyChange.

Step 9 Click over the Surface Tool in the BeanBox. This links the Bean tester
to the Surface Tool.

Step 10 In the EventTargetDialog dialog box, select the propertyChange target
method as the event, then click OK.

Step 11 Click the button object in the BeanBox.

The Bean tester generates 2D data and sends that data to the Surface Tool. Next, the
Surface Tool instructs JWAVE to generate a plot. Then the surface plot displays in
the BeanBox (see Figure 7-2).

Using JWAVE Beans with the BeanBox 87

Step 4: Customize the Surface Bean

Each visible JWAVE Bean has a Customizer interface for changing the values of
parameters that affect the appearance of the plot.

TIP The customizable parameters for JWAVE Beans are described in Appendix E,
JWAVE Bean Tools Reference.

Step 1 Select the surface object in the BeanBox, then from the Edit menu, select
Events=>Customize... The Customizer window for the JWAVE Surface
Tool Bean appears.

Step 2 Change the settings for some of the surface plot’s parameters, then click
Done.

Step 3 Click the button in the BeanBox. The surface plot is re-generated and
then displayed with the new parameter values applied.

Figure 7-2 The surface plot displayed by the JWAVE Surface Tool. The JWAVE Surface Tool
has been customized to add a skirt and change the default colors.

JWAVE Surface Tool

JWAVE Bean tester

Button

88 Chapter 7: Using JWAVE Beans JWAVE User’s Guide

Building a JWAVE Bean
This section describes how to construct a JavaBean and use it with the JWAVE
Beans. Throughout this description, the source for the JWAVE Bean tester Bean
(used in the previous section) is used in the discussion of the Bean development
techniques. You can find this source code in:

(UNIX) VNI_DIR/classes/com/visualnumerics/jwave/beans/
JWaveBeanTest.java

(Windows) VNI_DIR\classes\com\visualnumerics\jwave\beans\
JWaveBeanTest.java

where VNI_DIR is the main Visual Numerics installation directory.

NOTE The intended audience for this section is Java developers and those familiar
with object-oriented programming. This section is by no means a comprehensive
source for constructing a Bean. There are many books and Web sites on the subject
that take a much more thorough look at the capabilities of JavaBeans.

Deciding What the Bean Will Do

Before a JavaBean can be developed, you must decide what the Bean needs to do.
JavaBeans are just objects. It is a good idea to create an overall design document
of your project to determine which specific objects are needed and exactly what
each object will do.

Once the Bean’s requirements are defined, it should be fairly obvious what the
Bean should look like. Most Beans are visible components (buttons, fields, or can-
vases–the JWAVE Beans Tools are canvases). However, it is not required that
Beans have any visible attributes at all. The JWAVE Bean tester is one of these
“invisible” Beans that has no GUI elements at all. It is just a class that has input and
output, and that generates data and events.

If your Bean does need to have visible components, just code them as you would
any other class. Beans are required to have a no argument constructor, but you
may use this constructor like any other, building the elements your class needs in it.

Adding Properties to the Bean

Properties are named attributes that define the state of an object. JavaBeans are not
required to have any properties, but since they define the state of the Bean, they

Building a JWAVE Bean 89

most likely will. A property can be something as simple as the string appearing on
a button, to more complex things such as a multi-dimensional dataset.

In terms of Beans, properties are exposed to visual programming tools and are usu-
ally editable through some sort of property editing interface (see Telling a Bean
Environment How to Use Your Bean on page 95, and Building a Customizer for the
Bean on page 104).

The naming convention followed by Beans developers for naming methods that
access Bean properties is:

public void setPropertyName(PropertyType value);

public PropertyType getPropertyName();

As shown in Example 7-1, the set method writes the data to the Bean, while the
get method reads the data from the Bean. By having both methods, the property
is defined as read/write enabled. By omitting one of the methods, the property
becomes either read-only or write-only.

In the case of the JWAVE Bean tester Bean, the only properties included are the data
objects that contain canned datasets.

Example 7-1 A get/set pair, taken from JWAVE Bean tester

DoubleTable dataTable_;

/**

* Set the dataTable Proxy

* @see JWaveBeanTest#getDataTable

* @param Proxy The dataTable Proxy this bean will use

*/

public void setDataTable(Proxy p)

{

 proxy_=p;

 Object pObject=proxy_.retrieve();

 try

 {

 dataTable_=(DoubleTable)pObject;

 }

 catch(ClassCastException e)

 {

90 Chapter 7: Using JWAVE Beans JWAVE User’s Guide

 System.out.println(”Data was not a DoubleTable”);

 System.out.println(e);

 }

}

/**

* Get the dataTable Proxy

* @see JWaveBeanTest#setDataTable

* @return Proxy The dataTable Proxy

*/

public Proxy getDataTable()

{

 if(dataTable_!=null)

 {

 Proxy p=new
com.visualnumerics.data.LocalProxyImpl(dataTable_);

 return(p);

 }

 else

 return(null);

}

TIP Properties do not have to be data members of the class. There can be get/set
methods that calculate values or return hardcoded constants.

Handling Data

Using the Proxy Class to Exchange Data

All of the JWAVE Beans take and send data as com.visualnumer-
ics.data.Proxy objects. The Proxy class is an interface that contains a
reference to a data object. The intent of the Proxy class is to allow data to be passed
that is not necessarily inside your virtual machine (such as a CORBA object).

The class com.visualnumerics.jwave.JWaveDataProxy implements the
Proxy class, making it valid to pass to the Beans. The JWaveDataProxy class is a
client side proxy for data that is resident on the JWAVE server.

Building a JWAVE Bean 91

When data is to be sent to a JWAVE Bean (either through an event or a bound prop-
erty), it must be a Proxy object.

The three methods shown in Example 7-2 are the input (set2D_Data) and output
(get2D_Data and start2d) for a two-dimensional array of data (data2d_). The
use of these methods is discussed further in a later section (page 103), but for now,
notice how the data either comes in or goes out of the methods as a Proxy object.
The class com.visualnumerics.data.LocalProxyImpl is an implementa-
tion of Proxy for data that is already resident inside your virtual machine.

Example 7-2 Data being sent as a Proxy object in JWAVE Bean tester

double[][] data2d_;

/**

* Set the 2D data Proxy

* @see JWaveBeanTest#get2D_Data

* @param Proxy The 2D data Proxy this bean will use

*/

public void set2D_Data(Proxy p)

{

 proxy_=p;

 Object pObject=proxy_.retrieve();

 try

 {

 data2d_=(double[][])pObject;

Proxy p=new com.visualnumerics.data.LocalProxyImpl(data2d_);

 changes_.firePropertyChange(”data_2d_change”,null,p);

 }

 catch(ClassCastException e)

 {

 System.out.println(”Data was not a 2D double”);

 System.out.println(e);

 }

}

92 Chapter 7: Using JWAVE Beans JWAVE User’s Guide

/**

* Get the 2D data Proxy

* @see JWaveBeanTest#set2D_Data

* @return Proxy The 2D data Proxy

*/

public Proxy get2D_Data()

{

 if(data2d_!=null)

 {

Proxy p=new com.visualnumerics.data.LocalProxyImpl(data2d_);

 return(p);

 }

 else

 return(null);

}

/**

* Fire an event that the 2D data has changed

*/

public void start2d()

{

 Proxy p=new com.visualnumerics.data.LocalProxyImpl(data2d_);

 changes_.firePropertyChange(”data_2d_change”,null,p);

}

Using Events to Exchange Data

All JavaBeans essentially communicate with events. When a Bean has something
happen to it (the user pressed a button, new data arrived, a condition was met, and
so on), the Bean may want to communicate this event to other Beans. The commu-
nication can be in the form of actions, mouse clicks, data, or any other event that
Java is capable of producing. Any class that is registered as a listener can receive
this event and handle it in its own way.

In the case of the JWAVE Beans, one way of passing data between them is via a
PropertyChangeEvent. This class is part of the java.beans package and is a
standard way for Beans to communicate.

Building a JWAVE Bean 93

Most Beans implement java.beans.PropertyChangeListener and are
therefore capable of receiving and handling PropertyChangeEvents.

All JWAVE Beans contain an instance of java.beans.
PropertyChangeSupport. This class maintains a list of classes that have regis-
tered as listeners and allows events to be sent to those listeners.

Example 7-3 Instances of PropertyChangeEvents from JWAVE Bean tester

PropertyChangeSupport changes_=new PropertyChangeSupport(this);

/**

* Adds a property change listener

* @param PropertyChangeListener listener

*/

public synchronized void addPropertyChangeListener(PropertyChangeListener l)

{

 changes_.addPropertyChangeListener(l);

}

/**

* Removes a property change listener

* @param PropertyChangeListener listener

*/

public synchronized void removePropertyChangeListener(PropertyChangeListener
l)

{

 changes_.removePropertyChangeListener(l);

}

/**

* Fire an event that the 2D data has changed

*/

public void start2d()

{

 Proxy p=new com.visualnumerics.data.LocalProxyImpl(data2d_);

 changes_.firePropertyChange(”data_2d_change”,null,p);

}

94 Chapter 7: Using JWAVE Beans JWAVE User’s Guide

The PropertyChangeSupport class changes_ maintains a list of classes that wish
to listen to this Bean’s events. Any class that calls
addPropertyChangeListener will be added to that list. Similarly, any class
that calls removePropertyChangeListener will be removed from the list.

When the start2d method is called, any class that has registered as a listener will
receive the data found in the data2d_ array (as a Proxy object of course).

The firePropertyChange method of the PropertyChangeSupport object
takes as arguments the name of the property that has changed, the old value of that
property, and the new value of the property. These are the exact fields of the
java.beans.PropertyChangeEvent class that PropertyChangeListen-
ers expect to see.

In a Bean development environment (such as the BeanBox), when the start2d
method is invoked (by a button click, for instance), any Bean connected to the
JWAVE Bean tester propertyChange event will receive the data2d_ proxy.

Including Bound Properties to Exchange New Data

Bound properties are properties that support change events. When a Bean’s prop-
erty changes (new data, user change, and so on), other Beans may want to know
about it. When a bound property changes, an event is fired to all listeners.

All of the data properties in the JWAVE Beans are bound properties. When the data
in a Bean changes, it will fire an event to all registered listeners. This event will
contain the new data.

In Example 7-4, notice how, when the Bean has received new 2D data, it fires a
PropertyChangeEvent. All Beans listening will receive a Proxy with the new
data array inside.

Example 7-4 An input method to the JWAVE Bean tester Bean

/**

* Set the 2D data Proxy

* @see JWaveBeanTest#get2D_Data

* @param Proxy The 2D data Proxy this bean will use

*/

Building a JWAVE Bean 95

public void set2D_Data(Proxy p)

{

 proxy_=p;

 Object pObject=proxy_.retrieve();

 try

 {

 data2d_=(double[][])pObject;

Proxy p=new com.visualnumerics.data.LocalProxyImpl(data2d_);

 changes_.firePropertyChange(”data_2d_change”,null,p);

 }

 catch(ClassCastException e)

 {

 System.out.println(”Data was not a 2D double”);

 System.out.println(e);

 }

}

Bound properties have another advantage. In the BeanBox, if you select a Bean that
has bound properties, a Bind Property … choice is available under the Edit menu for
displaying a list of the Bean’s bound properties. Selecting one of those bound prop-
erties allows you to connect it to another Bean’s bound property. The source bean
will have its get method called and the destination Bean will have its set method
called with the data retrieved from the get call. In this way, two Beans can share
property values without any events.

Telling a Bean Environment How to Use Your Bean

When your Bean is placed in a Bean environment (such as the BeanBox), the first
thing the environment does is called reflection. Essentially, the environment is
using naming conventions to figure out what your Bean is capable of doing. How-
ever, there are times when there is more you want known about a Bean than can be
supplied through naming conventions. There are also times when conventions fall
by the wayside. When this happens, it is time to use a BeanInfo class to provide
explicit information about your Bean.

96 Chapter 7: Using JWAVE Beans JWAVE User’s Guide

Using a BeanInfo Class

A BeanInfo class must implement the java.beans.BeanInfo interface. How-
ever, since implementing this class requires implementations for each method in
the BeanInfo interface, Java has provided a java.beans.SimpleBeanInfo
class. Subclassing or extending the java.beans.SimpleBeanInfo class allows
you to use only the methods you need for your Bean (the remainder have dummy
implementations already defined). These methods allow you to tell the Bean envi-
ronment what your Bean can do.

BeanInfo class names follow this convention:

BeanNameBeanInfo.java

When the Bean environment looks for a BeanInfo about your Bean, it searches only
for the above naming convention. If the BeanInfo class is not in the same package
as your Bean, your CLASSPATH is searched. The down side of all of this is that the
Bean and the BeanInfo are tightly coupled and it’s up to the developer to keep this
relationship. The developer must be careful to not allow one class to evolve without
the other.

Let’s take a look at for the BeanInfo for the JWAVE Bean tester Bean. The Java
code, purpose, and details of these methods are presented on the following pages:

• BeanDescriptors — Example 7-5 on page 96

• Bean Events — Example 7-6 on page 97

• Bean Methods — Example 7-7 on page 98

• Bean Properties — Example 7-8 on page 101

Example 7-5 BeanDescriptors

private BeanDescriptor beanDescriptor_;

private final static Class beanClass_ =
com.visualnumerics.jwave.beans.JWaveBeanTest.class;

/**

* Default Constructor. This just sets-up the BeanDescriptor

*/

public JWaveBeanTestBeanInfo()

{

 beanDescriptor_ = new BeanDescriptor(beanClass_);

Building a JWAVE Bean 97

 beanDescriptor_.setDisplayName(”JWAVE Bean tester”);

 beanDescriptor_.setShortDescription(”A test bean for use with
JWAVE Tools”);

}

/**

* This method returns the BeanDescriptor.

* @return BeanDescriptor

*/

public BeanDescriptor getBeanDescriptor()

{

 return beanDescriptor_;

}

The Constructor and the getBeanDescriptor methods both deal with the
java.beans.BeanDescriptor class. This class is needed by the Bean environ-
ments to describe features of the Bean. The only fields in this class are the Bean’s
Customizer (see Building a Customizer for the Bean on page 104) and the Bean
itself.

JWAVE Bean tester’s BeanDescriptor only defines:

• the Bean itself

• the display name to use when showing the Bean

• a short description of the Bean’s purpose.

Example 7-6 Bean Events

/**

* This method describes which events of the Bean will be exposed.

* The only event exposed is propertyChange.

* @return EventSetDescriptor[] an array of EventSetDescriptors

* detailing which events of this bean are exposed.

*/

public EventSetDescriptor[] getEventSetDescriptors()

{

 try

 {

 EventSetDescriptor changed = new EventSetDescriptor

(beanClass, ”propertyChange”,

98 Chapter 7: Using JWAVE Beans JWAVE User’s Guide

java.beans.PropertyChangeListener.class,

”propertyChange”);

 changed.setDisplayName(”bound property change”);

 EventSetDescriptor[] rv = {changed};

 return rv;

 }

 catch (IntrospectionException e)

 {

 throw new Error(e.toString());

 }

}

The getEventSetDescriptors method returns an array of
java.beans.EventSetDescriptor objects. Each object in the array describes
an event supported by the Bean. The getEventSetDescriptors method there-
fore allows you to limit which events your Bean can fire. This is especially useful
when your Bean is a Java component. Most components have many events they can
deal with (actions, mouse events, window events, and so on) and you may not want
your Bean to have to deal with all of them. The getEventSetDescriptors
method allows you to set which events your Bean can handle.

In the source code in Example 7-6:

• only one event, propertyChange, will be seen by the Bean environments

• an EventSetDescriptor class is instantiated

• a display name to be used when showing events is set

• an array of just the one EventSetDescriptor is passed back to the caller

Example 7-7 Bean Methods

/**

* This method describes which methods of the Bean will be exposed.

* @return MethodDescriptor[] an array of MethodDescriptors

* detailing which methods of this bean are exposed.

*/

public MethodDescriptor[] getMethodDescriptors()

{

 // First find the ”method” objects.

 Method proxy2d,proxy2dRand,proxy1dRand;

 Method proxySin,proxyCos;

Building a JWAVE Bean 99

 Method proxyDataTable,proxyPieTable;

 Method start2d,startSin,startCos,startDataTable,startPieTable;

 Method start2dRand,start1dRand;

Class proxyEventArgs[] = {com.visualnumerics.data.Proxy.class};

 try

 {

 proxy2d = beanClass_.getMethod(”set2D_Data”,

 proxyEventArgs);

 proxy2dRand = beanClass_.getMethod(”set2D_RandomData”,

 proxyEventArgs);

 proxy1dRand = beanClass_.getMethod(”set1D_RandomData”,

 proxyEventArgs);

 proxySin = beanClass_.getMethod(”setSineData”,

 proxyEventArgs);

 proxyCos = beanClass_.getMethod(”setCosineData”,

 proxyEventArgs);

 proxyDataTable = beanClass_.getMethod(”setDataTable”,

 proxyEventArgs);

 proxyPieTable = beanClass_.getMethod(”setPieTable”,

 proxyEventArgs);

 startPieTable= beanClass_.getMethod(”startPieTable”,

 null);

 startDataTable= beanClass_.getMethod(”startDataTable”,

 null);

 startSin = beanClass_.getMethod(”startSine”,

 null);

 startCos = beanClass_.getMethod(”startCosine”,

 null);

 start2d = beanClass_.getMethod(”start2d”,

 null);

 start2dRand = beanClass_.getMethod(”start2dRandom”,

 null);

 start1dRand = beanClass_.getMethod(”start1dRandom”,

 null);

 }

 catch (Exception ex)

 {

100 Chapter 7: Using JWAVE Beans JWAVE User’s Guide

 throw new Error(”Missing method: ” + ex);

 }

 // Now create the MethodDescriptor array

 // with visible event response methods:

 MethodDescriptor result[] = {new MethodDescriptor(proxy2d),

new MethodDescriptor(proxy2dRand),

new MethodDescriptor(proxy1dRand),

 new MethodDescriptor(proxySin),

 new MethodDescriptor(proxyCos),

new MethodDescriptor(proxyDataTable),

new MethodDescriptor(startDataTable),

new MethodDescriptor(proxyPieTable),

new MethodDescriptor(startPieTable),

 new MethodDescriptor(startSin),

 new MethodDescriptor(startCos),

 new MethodDescriptor(start2d),

new MethodDescriptor(start2dRand),

new MethodDescriptor(start1dRand)};

 return result;

}

The getMethodDescriptors method returns an array of java.beans.
MethodDescriptor objects. This object describes a method supported by a
Bean. This array of descriptors details all of the methods your Bean will have
exposed to the Bean environment. The use of the getMethodDescriptorsmeth-
ods allows you to limit which methods can be exposed.

In the source code in Example 7-7, 14 methods are returned to the caller:

• First, a java.lang.reflect.Method class is created for each method to be
exposed. The Method class is created by supplying the name and the argu-
ments of the Bean’s method. When a method has no arguments, a null is
supplied to the Method constructor.

• Second, a MethodDescriptor class is created using each of the Method
classes created earlier. These MethodDescriptor classes are returned to the
caller.

Building a JWAVE Bean 101

Example 7-8 Bean properties

/**

* This method details which bean properties are exposed and how

* they are to be edited.

* @return PropertyDescriptor[]

*/

public PropertyDescriptor[] getPropertyDescriptors()

{

 try

 {

PropertyDescriptor data2PD = new PropertyDescriptor(”data2d”,

beanClass_,

”get2D_Data”,

”set2D_Data”);

 data2PD.setDisplayName(”2D Data”);

 data2PD.setBound(true);

PropertyDescriptor sinPD = new PropertyDescriptor(”sine wave”,

beanClass_,

”getSineData”,

”setSineData”);

 sinPD.setDisplayName(”Sine Data”);

 sinPD.setBound(true);

 PropertyDescriptor cosPD = new PropertyDescriptor(”cosine
wave”,

beanClass_,

”getCosineData”,

”setCosineData”);

 cosPD.setDisplayName(”Cosine Data”);

 cosPD.setBound(true);

 PropertyDescriptor tablePD = new
PropertyDescriptor(”dataTable”,

beanClass_,

102 Chapter 7: Using JWAVE Beans JWAVE User’s Guide

”getDataTable”,

”setDataTable”);

 tablePD.setDisplayName(”2D Table Data”);

 tablePD.setBound(true);

PropertyDescriptor piePD = new PropertyDescriptor(”pieTable”,

beanClass_,

”getPieTable”,

”setPieTable”);

 piePD.setDisplayName(”Pie Data”);

 piePD.setBound(true);

 PropertyDescriptor data2RPD=new
PropertyDescriptor(”randData2d”,

beanClass_,

”get2D_RandomData”,

”set2D_RandomData”);

 data2RPD.setDisplayName(”2D Random Data”);

 data2RPD.setBound(true);

 PropertyDescriptor data1RPD=new
PropertyDescriptor(”randData1d”,

beanClass_,

”get1D_RandomData”,

”set1D_RandomData”);

 data1RPD.setDisplayName(”1D Random Data”);

 data1RPD.setBound(true);

PropertyDescriptor rv[] = {data2PD,sinPD,tablePD,piePD,cosPD,

 data2RPD,data1RPD};

 return rv;

 }

 catch (IntrospectionException e)

 {

 throw new Error(e.toString());

 }

}

Building a JWAVE Bean 103

The getPropertyDescriptors method returns an array of
java.beans.PropertyDescriptor objects. These objects describe properties
the Bean will expose. The use of getPropertyDescriptors not only allows
you to limit which properties are available to the Bean environment, but specific
property attributes (such as names, which methods get/set this property, bound
status, and so on) and specific property editor classes can also be set.

Using Property Editor Classes

Property editors are classes that a Bean environment uses to allow the property to
be changed. The BeanBox arranges these property editors on its Property Sheet
window. For every property listed, the BeanBox attempts to assign an editor class.
For instance, if the property is a Color object, the BeanBox assigns a class that
allows the user to edit colors. If the property is a String, the BeanBox assigns a
TextField so the user can change the string.

There are two instances when this automatic assignment of editors fails:

• The first case is when the property accepts the assignment of only specific val-
ues (such as a list of linestyles). The developer can write a specific class that
only allows the user to select one of the specific values applicable to the prop-
erty. This class can then be assigned to the PropertyDescriptor object
using the setPropertyEditorClass method.

• The second case where automatic editor assignment fails is when the property
is of a type for which a known editor does not exist. This case occurs in the
source code in Example 7-8. Because the properties are arrays or specific
classes, the BeanBox reports that it cannot find a property editor for these prop-
erties. This condition is only a problem if you want those properties to be
editable. If you do, then you must write a class to edit the properties and assign
it using the setPropertyEditorClass method. If the property does not
need and editor (such as is the case in this source), then simply don’t assign
one.

When using the property editors on the Property Sheet window, you are limited in
the presentation of the editors. You cannot arrange them or use complex GUI com-
ponents. A better alternative is to use a Customizer class (see Building a
Customizer for the Bean on page 104).

The source code shown in Example 7-8 creates a PropertyDescriptor object
for each property to be exposed. This object is created by supplying:

• the property name

• the Bean

104 Chapter 7: Using JWAVE Beans JWAVE User’s Guide

• the method name to ‘get’ this property

• the method name to ‘set’ this property

You can see this is a way to get around the get/set convention; you may supply
any method name you wish. Each property is supplied with a display name. This is
the name that appears on the Property Sheet. Finally, each property is set as a bound
property. The default for this value is false, so this method call is not needed if the
property is not to be bound. All of these PropertyDescriptor objects are then
returned to the caller.

Building a Customizer for the Bean

Customizers are classes that edit Bean properties. There is one Customizer class
per Bean; however, a Bean is not required to have a Customizer. Although there are
no naming conventions for Customizer classes, they must implement the
java.bean.Customizer class and they must be a subclass of java.awt.Com-
ponent. Customizers are most often GUI interfaces that allow the user to change
Bean properties. It is a way for a developer to design a professional looking editor
class for the Bean.

Methods

The java.beans.Customizer interface has just three methods:

• addPropertyChangeListener

• removePropertyChangeListener

• setObject(Object bean)

The add/removePropertyChangeListener methods are described in Using
Events to Exchange Data on page 92. The Customizer should fire a
PropertyChangeEvent when it changes a property of the Bean.

The setObject(Object bean) method of java.beans.Customizer is auto-
matically called by the Bean environment when a Customizer is started. This
method should query the bean object for its current status and use that information
to fill in the GUI Customizer components. The method of querying the Bean is the
set/get methods which are used in almost all Bean transactions.

Finally, a Customizer must have a no argument constructor. As with all other
Bean classes, there is no method instantiating the Customizer so there are no avail-
able arguments to pass.

Building a JWAVE Bean 105

Since there is no naming convention for Customizers, the Bean environment has no
way of telling which class is the Customizer unless it is told. This is accomplished
in the BeanInfo class.

The BeanDescriptor class has another constructor that will take the Customizer
class in addition to the Bean class.

Example 7-9 Example from a BeanInfo class

/**

* java.lang.Class object. This is just the name of the bean

* this BeanInfo is representing.

*/

private final static Class beanClass =
com.visualnumerics.jwave.beans.JWaveBar3dTool.class;

/**

* java.lang.Class object. This is just the name of the Customizer
class

* this bean uses.

*/

private final static Class beanCustomizerClass =
com.visualnumerics.jwave.beans.JWaveBar3dToolCustomizer.class;

public JWaveBar3dToolBeanInfo()

{

 beanDescriptor_ = new
BeanDescriptor(beanClass,beanCustomizerClass);

 String displayName = resources.getString(”display_name”);

 beanDescriptor_.setDisplayName(displayName);

 String descName = resources.getString(”short_description”);

 beanDescriptor_.setShortDescription(descName);

}

The JWAVE Bean tester Bean has no Customizer. This is because it has no proper-
ties that are editable by the user. However, all of the remaining JWAVE Beans do
have Customizers. These Customizers are based on the Java Foundation Classes
(JFC) graphical components and allow the user to edit every property of the Bean
except for the data.

106 Chapter 7: Using JWAVE Beans JWAVE User’s Guide

TIP To open a Customizer in the BeanBox, select a Bean and choose Edit=>Cus-
tomize. If the Bean does not have a Customizer, then this option is not available.

Adding Serializability to the Bean

One of the advantages to using JavaBeans is the ability to generate applications
from the Beans you put together. When File=>MakeApplet is chosen on the Bean-
Box, the BeanBox attempts to serialize the Beans and make them into an applet.
Serialization is the process of making the state of each Bean persistent. When you
make an applet, the BeanBox captures the properties and hookups of each Bean and
uses them in the resulting applet. The values found in the Beans are written to a
java.io.FileOutputStream object to end-up in the applet code.

Unfortunately, serializing is not something that happens automatically. Each Bean
must implement the java.io.Serializable interface. In most cases, this
makes the Bean serializable. There are, of course, cases when this is not enough.

When serialization takes place, Java does not deal with transient variables of your
Beans. They’re transient; they are not part of the state of your Bean. However, any
data member that is part of your class will be serialized. In general, most standard
Java API classes are serializable and won’t pose any problem. There are a few how-
ever, that are not (such as java.awt.Image). For these classes, or those not part
of the Java API, you need to implement two methods to do the serialization. These
methods are the writeObject and readObject methods of the Serializable
class. The implementation of the methods is beyond the scope of this document,
but it entails the breaking down of classes that aren’t serializable into their serial-
izable parts. For instance, java.awt.Image is not serializable. To serialize
java.awt.Image you must get the data values out of the class and write those
values to the stream. For a more thorough discussion on serializing, consult a book
or Web site on JavaBeans development.

TIP If you generate an applet from your JWAVE Beans, you must modify the
HTML file generated by the BDK. The ARCHIVE tag in the HTML file must
include JWave.jar, JWaveBeans.jar, JWaveConnectInfo.jar, and
swing.jar.

NOTE If you want to run your generated applet with appletviewer, you must
put the JAR files listed in the previous Tip in your CLASSPATH. This is because
appletviewer does not pick up the settings of the ARCHIVE.

107

CHAPTER

8

JWAVE Server Configuration
This chapter explains how to set up and configure the main portions of your
JWAVE system. This chapter discusses:

• Setting up the JWAVE server

• Testing the JWAVE server installation

• Setting up for JWAVE client development

Installation Overview
To install JWAVE, follow the instructions in the CD-ROM booklet. Additional
information on the software installation is in the README file on the installation
CD. When you install JWAVE from the CD, you are presented with the following
three installation options:

• PV-WAVE — Installs PV-WAVE, which includes JWAVE components used
for server-side development of JWAVE wrappers.

• JWAVE Client Development Kit — Installs components used for client Java
application development (JWAVE class library, reference documents, and
JWAVE Beans). See Figure 8-1.

• JWAVE Server — Installs JWAVE server-side components required for
deployment of JWAVE applications (JWAVE Manager, JWAVE Web Server,
JWAVE Servlet, communication with JWAVE clients, and PV-WAVE). See
Figure 8-2.

108 Chapter 8: JWAVE Server Configuration JWAVE User’s Guide

Client-Side after JWAVE Installation

The JWAVE Client Development installation produces the following directory
structure:

Figure 8-1 JWAVE client directory structure

Server-Side after JWAVE Installation

The JWAVE Server installation produces the following directory structure:

Figure 8-2 JWAVE server directory structure, where VNI_DIR is the main Visual Numerics
installation directory. Other directories may exist, depending on installation options.

User-Specified JWAVE Client Development Area (VNI_DIR)

docs com jwave_demos JWave.jar

classes

JWaveBeans.jar
JWaveDemos.jar

packages.html

api usersguide

contents.html

VNI_DIR

jwave-3_5 classes wave license

com jwave_demos JWave.jar
JWaveConnectInfo.jar
JWaveServer.jar

READMEbin lib
Release_Notes.html

jwave.cfg
make_config
manager

Running and Testing the JWAVE Server 109

Additional Software Requirements

The following software must also be installed before you can use JWAVE:

JWAVE Client Development — A Java Development Kit (JDKTM) (Version 1.2 or
later).

JWAVE Client Side (optional for using Beans) — Beans Development Kit (BDK)
(Version 1.0 July 98 or later), Swing (Version 1.1 or later).

JWAVE Server — A Java Runtime Environment (JRE) (Version 1.2 or later).

Running and Testing the JWAVE Server
The JWAVE server includes the JWAVE Manager software, JWAVE class files, and
PV-WAVE. This section describes:

• Starting the JWAVE Manager

• Testing to see if the JWAVE Manager is Running

• Configuring the JWAVE Manager for HTTP Connections

The third section, Configuring the JWAVE Manager for HTTP Connections, is a
short, step-by-step procedure that explains how to start the JWAVE Manager as a
Web server and contact the server from a client Web browser.

For more detailed information on the JWAVE Manager, see Setting Up the JWAVE
Server on page 112.

Starting the JWAVE Manager

To start the JWAVE Manager on the JWAVE server:

Windows USERS If the JWAVE Service has been installed and configured (see
Installing the JWAVE Service on page 128), open the Services window from the
Control Panel, select JWAVE Service, then click Start to start the JWAVE Service).

(UNIX) cd VNI_DIR/jwave-3_5/bin
manager start

(Windows) cd VNI_DIR\jwave-3_5\bin
manager start

where VNI_DIR is the main Visual Numerics installation directory.

110 Chapter 8: JWAVE Server Configuration JWAVE User’s Guide

When it starts up, the JWAVE Manager writes information to the location currently
defined for the MANAGER_LOG parameter in the JWAVE Configuration Tool
(see page 123). The information in the log will vary depending on how the server
is configured. Generally, the messages report all of the PV-WAVE sessions that are
started and other status information.

Parsing persistent sessions:

Session Pool is starting new session (1/1)....

[Information on individual PV-WAVE sessions started on the
server appears here...]

Waiting for connection...

For information on stopping the JWAVE Manager, see Shutting Down the JWAVE
Manager on page 113.

Testing to See If the JWAVE Manager is Running

A simple “ping” test verifies that the JWAVE Manager is running and communicat-
ing on the server. Simply enter the following command on the same machine as the
JWAVE Manager is running:

(UNIX) cd VNI_DIR/jwave-3_5/bin
manager ping

(Windows) cd VNI_DIR\jwave-3_5\bin
manager ping

where VNI_DIR is the main Visual Numerics installation directory.

If the test succeeds, the JWAVE Manager returns the following message:

PING was successful with SocketConnection(localhost:6500)

If the test fails (other message), start the JWAVE Manager as described in Starting
the JWAVE Manager above.

Configuring the JWAVE Manager for HTTP Connections

This section explains how to set up and test the JWAVE Manager running as a Web
Server. This test allows you to ensure that JWAVE is installed properly, and pro-
vides a quick introduction to the JWAVE Manager configuration tool.

Step 1 Start and “ping” the JWAVE Manager, as explained in the previous two
sections.

Step 2 On the same host, but in a separate shell or command window, enter the
following command to start the JWAVE Manager configuration tool.

manager config

Running and Testing the JWAVE Server 111

NOTE When the configuration tool starts, a dialog appears that informs you that
you cannot save server connection parameters when the JWAVE Manager is run-
ning. Dismiss this dialog box. For this exercise, you will only change client
connection parameters.

The first panel you see is the Manager Properties panel. For now, you can leave
the manager properties settings as they are. The test we are going to run requires a
change to the Client Connection Info panel.

Step 3 Click the Client Connection Info button to view the Client Connection
Info panel.

Step 4 In the JWave HTTP URL text field, enter the correct URL to the JWAVE
server. By default, this URL is:

http://myhost:6580/JWave

where myhost is the name of the host where the JWAVE Manager is
running.

Step 5 Deselect the Use Socket Connection checkbox. We are going to connect
to the JWAVE Web server through an HTTP connection.

Step 6 Select the Use HTTP Connection checkbox.

Step 7 Click the Save Configuration button, and then select File=>Exit to exit the
dialog box.

Step 8 Start a Web browser.

Step 9 Point the browser to the following URL:

http://myhost:6580/JWave

The browser displays a test page that says: “The JWAVE HTTP Server is ready to
accept JWAVE connections”. This page indicates that you have successfully started
the JWAVE Manager as a Web server, and that you were able to reach the Web
server from a client using a URL address.

Step 10 Try pointing your browser to the JWAVE demonstration area and running
some of the demonstration JWAVE applets. The URL for the demonstra-
tion area is:

http://myhost:6580/jwave_demos

Click on any of the example JWAVE applets to run them.

112 Chapter 8: JWAVE Server Configuration JWAVE User’s Guide

Setting Up the JWAVE Server
The JWAVE server includes the JWAVE Manager software, JWAVE class files, and
PV-WAVE. This section describes:

• Using the JWAVE Manager — Includes startup command options and stop-
ping the JWAVE Manager.

• Configuring the JWAVE Manager — Describes how to remake configura-
tion files in which the JWAVE Manager and connection information for clients
and servers is stored.

• Using the JWAVE Configuration Tool — Explains the features of the
JWAVE Manager Configuration Tool, which allows you to configure server
and client connection parameters.

• JWAVE Server Options — Describes the methods by which the JWAVE
Server can communicate with clients. These methods include direct sockets,
CGI, Web server, and servlet connections.

• Installing and configuring JWAVE as a Service on a Windows NTTM server

Using the JWAVE Manager

The JWAVE Manager controls communication between JWAVE clients and the
JWAVE server. JWAVE Manager is a process that runs on the server and listens for
client connections. When a connection is made, the JWAVE Manager takes an
appropriate action, such as starting a PV-WAVE session.

There are several methods by which client applications can communicate with the
JWAVE Manager. These methods are described in JWAVE Server Options on page
114.

This section explains how to:

• Use the manager command.

• Shut down the JWAVE Manager

• Test the default server configuration

NOTE Client applications cannot contact the JWAVE server unless the JWAVE
Manager is running.

Setting Up the JWAVE Server 113

JWAVE Manager Startup Command Options

To display the options available for the JWAVE Manager startup command:

(UNIX) cd VNI_DIR/jwave-3_5/bin
manager

(Windows) cd VNI_DIR\jwave-3_5\bin
manager

where VNI_DIR is the main Visual Numerics installation directory.

The manager command takes one argument and, in most cases, an optional param-
eter. Here is the list of arguments and parameters used with the manager
command.

Usage
manager argument [parameter]

Arguments and Optional Parameters

manager start [path_to_jwave.cfg] — Starts the JWAVE Manager dae-
mon. Enter the path to the jwave.cfg file if it is not located in the same
directory as the manager command.

manager ping — Tests to see if the JWAVE Manager is running.

manager config [path_to_jwave.cfg] — Opens the JWAVE Manager Con-
figuration tool. Enter the path to the jwave.cfg file if it is not located in
the same directory as the manager command.

manager session_info — Reports session information (number of active
sessions, unused pool sessions, and persistent sessions).

manager shutdown [password] — Shuts down the JWAVE Manager.

Shutting Down the JWAVE Manager

Windows USERS If you started a JWAVE Service through the Service’s dialog
box, use the Service’s dialog box to shut it down instead of using the manager
shutdown command.

To shut down the JWAVE Manager, enter the following command:

(UNIX) cd VNI_DIR/jwave-3_5/bin
manager shutdown [password]

(Windows) cd VNI_DIR\jwave-3_5\bin
manager shutdown [password]

where VNI_DIR is the main Visual Numerics installation directory and a password
is required if a password was defined during server configuration (see page 123).

114 Chapter 8: JWAVE Server Configuration JWAVE User’s Guide

The window in which you typed the shutdown command displays the following
message:

SHUTDOWN was successful.

The window in which the JWAVE Manager was started displays messages as well.
These messages may vary depending on how the JWAVE Manager is configured.
Here is a sample of such messages:

JWaveTcpipServer shutting down
JWaveHttpServer shutting down
JWaveManager shutting down
Shutting down all WaveSessions
[additional information on PV-WAVE sessions...]
Wave closed, releasing other resources...

TIP Since manager shutdown can be executed from any machine that has client
access (even across the Web), it is recommended that a password be set for the
JWAVE server. Assignment of a password for shutdown will prevent accidental
shutdown of the JWAVE Manager by unauthorized users. (The instructions for
assigning a password for shutdown are given in Using the JWAVE Configuration
Tool on page 118).

JWAVE Server Options

The JWAVE Manager can be contacted directly through either sockets or HTTP.

With socket connections, the client connects to the JWAVE Manager either: a)
through a direct socket connection, or b) through a CGI program that then hands a
socket connection to the server.

With HTTP connections, the client connects to the JWAVE Manager either: a)
through the JWAVE Server, or b:) through the JWAVE Servlet.

The Direct Socket Connection Option

To configure the JWAVE Manager to communicate with clients through direct
sockets, do the following:

• In the Client Connection Info dialog box, select the Use Socket Connection
option. Also, in this dialog box, set the Port and Host Name fields.

• In the JWAVE Manager Configuration Properties dialog box, set the variable
MANAGER_START_TCPIP to TRUE.

NOTE To configure the JWAVE Manager to accept both socket/CGI and HTTP
connections, set both MANAGER_START_TCPIP and MANAGER_START_HTTP to
TRUE.

Setting Up the JWAVE Server 115

The CGI Connection Method

To configure the JWAVE Manager to communicate with clients through a CGI pro-
gram, do the following:

• In the Client Connection Info dialog box, select the Use CGI Connection option.
Also, in this dialog box, set the JWaveCGI URL field.

• In the JWAVE Manager Configuration Properties dialog box, set the variable
MANAGER_START_TCPIP to TRUE.

• Install VNI_DIR/jwave-3_5/bin/bin.<arch>/JWaveCGI[.exe] in
your Web server’s CGI area, where <arch> is the architecture of your system
(such as solaris or i386nt), and [.exe] is a filename extension found on
Windows systems only.

Using the JWAVE Web Server

To configure the JWAVE Manager to run as a Web Server, do the following:

• In the Client Connection Info dialog box, select the Use HTTP Connection
option.

• In the JWAVE Manager Configuration Properties dialog box, set the variable
MANAGER_START_HTTP to TRUE.

• Edit the Web Server configuration file, which contains general settings, direc-
tory mappings, and MIME type mappings that you may wish to change. The
configuration file is located in:

VNI_DIR/jwave-3_5/bin/jwave_http.cfg

This file is described in Appendix D, HTTP Configuration File.

Using the JWAVE Servlet

The JWAVE Servlet can be used to replace the JWaveManager program. To config-
ure the JWAVE Manager to run through the JWAVE Servlet, do the following:

• Install com.visualnumerics.jserver.JWaveServlet onto your Web
server (such as JavaWeb Server).

• Set the VNI_DIR parameter for the servlet to point to the Visual Numerics
installation directory (VNI_DIR).

• In the Client Connection Info dialog box, select Use HTTP Connection.

TIP Once you have installed the JWAVE Servlet, you can test the URL by pointing
your Web browser there. For example, type

http://myserver/servlet/JWave

116 Chapter 8: JWAVE Server Configuration JWAVE User’s Guide

in the browser’s URL field. The browser will display a message from the servlet
saying “JWAVE Servlet is ready”. Use this same URL in the client configuration
HTTP connection field.

NOTE Do not use the manager shutdown command with the JWAVE Servlet.
Instead, use the Web server’s servlet administration tools to shut down the server.

Configuring the JWAVE Manager

This section explains how to configure the JWAVE Manager. Although the default
configuration is usually adequate, you can modify the defaults if necessary.

Configuration Files

When you installed the JWAVE server, the following three files were created auto-
matically. The first file, manager, is the JWAVE Manager startup script, which is
discussed in the previous section. The other files are configuration files that contain
information required for JWAVE to run properly.

• VNI_DIR/jwave-3_5/bin/manager[.bat]

A script (batch file) that controls the JWAVE Manager.

• VNI_DIR/jwave-3_5/bin/jwave.cfg

A file that contains configuration information for the JWAVE server.

• VNI_DIR/classes/JwaveConnectInfo.jar

A file that describes to the JWAVE clients how to connect to the JWAVE
server.

• VNI_DIR/jwave-3_5/bin/jwave_http.cfg

JWAVE Web server configuration. Lets you specify URL-to-directory
maps, MIME types, and so on.

Setting Up the JWAVE Server 117

Remaking the Configuration Files

If you change the location of either the runtime PV-WAVE installation (VNI_DIR)
or the Java Runtime Environment (JRE) (JAVA_BIN_DIR), you must do the
following:

Step 1 Shut down JWAVE Manager.

Step 2 Run the make_config script, as follows:

(UNIX) cd VNI_DIR/jwave-3_5/bin
manager shutdown
make_config <VNI_DIR> <JAVA_BIN_DIR>

(Windows) cd VNI_DIR\jwave-3_5\bin
manager shutdown
make_config <VNI_DIR> <JAVA_BIN_DIR>

where VNI_DIR is the main Visual Numerics installation directory and
JAVA_BIN_DIR is the JRE directory.

The make_config script:

• makes backup copies of the manager[.bat] and jwave.cfg files

• creates a new manager[.bat] script that contains only the VNI_DIR and
JAVA_BIN_DIR property definitions

• resets all other JWAVE configuration properties in the jwave.cfg to their
built-in default values

If you had customized the properties in the old jwave.cfg file, you may copy
those definitions from the jwave_cfg.bak file into the new jwave.cfg file, or
use the JWAVE Configuration Tool to modify the new jwave.cfg file (described
in Using the JWAVE Configuration Tool on page 118).

Step 3 Restart the JWAVE manager:

(UNIX) cd VNI_DIR/jwave-3_5/bin
manager start

(Windows) cd VNI_DIR\jwave-3_5\bin
manager start

where VNI_DIR is the main Visual Numerics installation directory.

Windows USERS We recommend that you start and stop the JWAVE Manager
using the JWAVE Service (page 109).

118 Chapter 8: JWAVE Server Configuration JWAVE User’s Guide

Using the JWAVE Configuration Tool

The JWAVE Configuration Tool has two windows:

• Manager Properties (described on page 118)

• Client Connection Info (described on page 125)

General help for the JWAVE Configuration Tool is available from the Help menu.

Starting the JWAVE Configuration Tool

To open the JWAVE Configuration Tool on the JWAVE server, shut down the
JWAVE Manager as explained in Shutting Down the JWAVE Manager on page 113,
then start the tool:

(UNIX) cd VNI_DIR/jwave-3_5/bin
manager shutdown
manager config

(Windows) cd VNI_DIR\jwave-3_5\bin
manager shutdown
manager config

where VNI_DIR is the main Visual Numerics installation directory.

Manager Properties

Your JWAVE server’s current configuration is displayed in the Manager Properties
list.

Use the Manager Properties window in the JWAVE Configuration Tool (Figure 8-
3) to:

• change the defaults of JWAVE server configuration properties

• set up definitions for the log file for JWAVE Manager and PV-WAVE sessions

• define custom properties for setting environment variables on the JWAVE
server

Setting Up the JWAVE Server 119

Figure 8-3 Manager Properties in the JWAVE Configuration Tool

TIP To get help for a specific parameter, select the parameter, then click Parameter
Help. You can also refer to JWAVE Manager Configuration Properties on page 122
for an description of each property.

Type Column — This column may contain any of the following codes that
describe the parameter’s type:

• R — Read Only. Parameters with this type are displayed for information pur-
poses only and their values cannot be changed in the JWAVE Configuration
Tool.

120 Chapter 8: JWAVE Server Configuration JWAVE User’s Guide

• D — Indicates that the parameter’s current value is the default value.

• U — Indicates a parameter defined by a user for passing environment variables
to PV-WAVE sessions. This type of parameter is not used by JWAVE Manager.

• $ — Indicates that the parameter can be referenced by name in other parame-
ters. More information on this type of parameter is available in Parameter
Help...

Parameter Column — This column lists the names of the parameters currently
defined.

= Value Column — This column lists the values of the parameters currently
defined. These parameters are described in JWAVE Manager Configuration
Properties on page 122.

Value Field — This field allows you to enter a value for any parameter that does
not have the R type in the Type column.

New Parameter... — Displays the Define New Parameter dialog box for adding
a new parameter (see Adding Properties on page 122).

Delete — Removes the selected user-defined parameter from the list of
parameters.

Set to Default — Sets the value of the selected parameter to its default value.

Set — Sets the value of the selected parameter to the value entered in the Value
field. (Pressing the Enter key in the Value field is equivalent to clicking Set.)

Parameter Help... — Displays the Help on Parameters dialog, which contains
information about the selected parameter.

Save Configuration — Saves the configuration to the jwave.cfg file (path
shown to the left of the button).

If the JWAVE Manager is running when you try to save the configuration by
clicking Save Configuration, a message displays reminding you to shut down
JWAVE Manager. Shut down the Manager and then click Save Configuration again.
(See Shutting Down the JWAVE Manager on page 113.)

Setting Up the JWAVE Server 121

Modifying a Property

To change a configuration property:

Step 1 Shut down the JWAVE Manager.

Step 2 Start the JWAVE Configuration Tool (described on page 118).

Step 3 If necessary, click Manager Properties to display the list of configuration
parameters.

Step 4 Click the parameter you wish to change.

Step 5 Type the new value for the property in the Value field.

Step 6 Click Set or press Enter. The new value for the parameter appears in the
= Value list.

Step 7 Choose Save Configuration to save your changes. The changes are saved
in the jwave.cfg file.

Resetting a Single Property to Its Default

To reset the default value of a previously modified property:

Step 1 Shut down the JWAVE Manager.

Step 2 Start the JWAVE Configuration Tool (described on page 118).

Step 3 If necessary, click Manager Properties to display the list of configuration
parameters.

Step 4 Click the parameter you wish to set to its default value.

Step 5 Click Set to Default. A letter D appears next to the parameter in the Type
list. The default value for the parameter appears in the = Value list

Step 6 Choose Save Configuration to save your changes. The changes are saved
in the jwave.cfg file.

122 Chapter 8: JWAVE Server Configuration JWAVE User’s Guide

Adding Properties

To add a new property, such as an environment variable, to the jwave.cfg file:

Step 1 Shut down the JWAVE Manager.

Step 2 Start the JWAVE Configuration Tool (described on page 118).

Step 3 If necessary, click Manager Properties to display the list of configuration
parameters.

Step 4 Click New Parameter. The Define New Parameter dialog box appears.

Step 5 Type the name for the new parameter in the Name field. For example:
mydata

Step 6 Type the new parameter’s definition in the Value field. For example:
/user/data/mydata

Step 7 Click Set. The new parameter appears in the Parameter list of the Man-
ager Properties window. U appears next to the parameter in the Type list.

Step 8 Click Save Configuration to save your changes. The changes are saved in
the jwave.cfg file.

JWAVE Manager Configuration Properties

The predefined JWAVE Manager properties that you can set or modify in the
JWAVE Configuration Tool are described in this section.

NOTE Some properties (usually directories) can be referenced by name in other
properties. For example, the default for the property WRAPPER_PATH
is $JWAVE_DIR/lib/user and the property JWAVE_DIR is an “expandable”
property. Such properties are marked with a $ in the descriptions that follow.

ALLOWED_WRAPPERS — For security, you can specify a list of regular expressions
to limit the wrapper functions that the PV-WAVE session will execute. Leave this
field blank (empty string) to allow any valid JWAVE function. Separate multiple
expressions with a comma (,). (Default: [null])

HTTP_CONFIG — Specifies the HTTP configuration file. (Default:
VNI_DIR/jwave/bin/jwave_http.cfg)

HTTP_PORT $ — Specifies the port number used by the JWAVE Web server.
(Default: 6580).

Setting Up the JWAVE Server 123

NOTE The normal default for Web servers is port 80; however, you must be an
administrator or super user to start a server on port numbers less than 1024.

JWAVE_DIR $ — Read-only. Specifies the directory where JWAVE is installed.
(Default: VNI_DIR/jwave-3_5)

JWAVE_SHUTDOWN — Specifies the shutdown procedure for the PV-WAVE ses-
sion. You can use this procedure to do site-specific shutdown after every
PV-WAVE session. (Default: JWAVE_SHUTDOWN)

JWAVE_STARTUP — Specifies the startup procedure for the PV-WAVE session.
You can use this procedure to do site-specific initialization for every PV-WAVE
session. (Default: JWAVE_START)

MANAGER_LOG $— Specifies the JWAVE Manager log file location, filename, and
file continuation instructions. Leave this field blank (empty string) to discard log-
ging. Use TERMINAL to have the logs go to the JWAVE Manager's terminal
(stdout). Prefix the file with a “+” to append to the log when the manager is
restarted (otherwise a new file will be created). (Default: TERMINAL)

MANAGER_START_HTTP — If set to TRUE, the command:

manager start

configures the JWAVE Manager to run the JWAVE Web Server. Clients can connect
to the server using an HTTP connection.

MANAGER_START_TCPIP — If set to TRUE, the command:

manager start

configures the JWAVE Manager to accept direct socket connections.

MAX_SESSIONS — Specifies the maximum number of simultaneous PV-WAVE
sessions the JWAVE Manager will allow. Note that the session limit is also con-
trolled by licensing, but this parameter may be useful for server performance
tuning. (Default: 100)

PASSWORD — Specifies the server password for remote access to configuration
information and JWAVE Manager shutdown. (Default: [null])

PERSISTENT_SESSION_IDS— Specifies a list of PV-WAVE session ID numbers
(positive numbers). The specified sessions do not time out as do regular sessions.

PING_ATTEMPTS — After a PV-WAVE session is started, the JWAVE Manager
attempts to contact (ping) it. This property specifies the number of ping attempts

124 Chapter 8: JWAVE Server Configuration JWAVE User’s Guide

that will be made before the session is considered dead (and an error exception is
returned to the client). (Default: 5)

PING_INTERVAL — Specifies the delay (in milliseconds) between
PING_ATTEMPTS. (Default: 500)

PORT $— Specifies the socket port number where the JWAVE Manager listens for
client connections. Usually just a number, but may also be specified as host-
name:port_number if you have multiple network addresses and want the JWAVE
Manager to listen on only one. (Default: 6500)

NOTE The port number must be ≥ 1024 for JWAVE Manager to be contacted via
CGI (the Web).

SESSION_ERR_LOG — Specifies the log file location, filename, and file continua-
tion instructions for ERROR output from individual PV-WAVE sessions. A “#”
character in the parameter will be replaced by a session ID number. If there is no
“#”, all sessions log to the same file. Leave this field blank (empty string) to discard
logging. Use TERMINAL to have the logs go to the JWAVE Manager's terminal
(stdout). (Default: $MANAGER_LOG)

SESSION_IDLE_CHECK_INTERVAL — Specifies how often (in minutes) to check
for idle (unused) PV-WAVE sessions. (Default: 1)

SESSION_IDLE_TIMEOUT — Specifies how long (in minutes) idle (unused)
PV-WAVE sessions will remain alive. After this time, idle sessions are closed. If a
session is timed out, it is no longer available to its client. (Default: 5)

SESSION_OUT_LOG — Specifies the log file location, filename, and file continua-
tion instructions for output from individual PV-WAVE sessions. A “#” character in
the parameter will be replaced by a session ID number. If there is no “#”, all ses-
sions log to the same file. Leave this field blank (empty string) to discard logging.
Use TERMINAL to have the logs go to the JWAVE Manager's terminal (stdout).
(Default: $MANAGER_LOG)

SESSION_POOL_SIZE — Sets the number of PV-WAVE sessions to pre-start. If
there is a PV-WAVE session in the pool, a client’s first contact becomes faster
because it will not have to wait for the PV-WAVE process to start up. These are
only used for auto-assigned sessions.

SESSION_START_TIMEOUT — Specifies the maximum time (in seconds) to wait
for a PV-WAVE session to start. Sessions that take longer will be killed and an
error exception will be returned to the client. You may wish to increase this value
on slow or heavily loaded servers. (Default: 15)

Setting Up the JWAVE Server 125

SOCKET_BACKLOG— Specifies the maximum queue length (number of concurrent
connections) for incoming connection requests (used by the ServerSocket class). If
a connection request arrives when the queue is full, the connection is refused.
(Default: 50)

SYSTEMROOT $ — Windows NT only. Required for servers running on Windows
NT. Set this property to your Windows NT directory. (Default: C:\Windows or the
value of SYSTEMROOT at install time)

VERBOSE — Specifies logging level. Valid values are 0 (silent) to 3 (verbose).
(Default: 2)

VNI_DIR $ — Read-only. Required. The value is set by the manager[.bat]
script.

WAVE_DIR $ — Read-only. Specifies the directory where PV-WAVE is installed.
(Default: $VNI_DIR/wave)

WRAPPER_PATH— Specifies directories that contain your custom JWAVE wrapper
functions (.cpr files). You can separate multiple directories on Windows NT with
a ; (semi-colon) character, on UNIX with a : (colon) character. The standard
PV-WAVE and JWAVE lib directories are automatically included. (Default:
$JWAVE_DIR/lib/user)

Client Connection Info

You can use the Client Connection Info window in the JWAVE Configuration Tool
(Figure 8-4) to:

• define the port number where the JWAVE Manager is running

• define the host name of the machine where JWAVE Manager is running

• define the URL (as seen through your Web server) of the JWaveCGI executable

• define a URL to the JWAVE Servlet or the JWAVE Web Server

• select the means by which clients contact JWAVE Manager (direct Socket,
JWaveCGI URL, or HTTP connection URL)

126 Chapter 8: JWAVE Server Configuration JWAVE User’s Guide

Figure 8-4 Client Connection Info in the JWAVE Configuration Tool

The following rules apply to the fields in the Client Connection Info window of the
JWAVE Configuration Tool:

✔ You must fill in either Port or Host Name (it is preferred that both fields be filled
in).

✔ You must select Use Socket Connection, Use HTTP Connection, Use CGI Con-
nection (or any combination of the three).

✔ If Use CGI Connection is selected, JWaveCGI URL must be filled in.

✔ If Use HTTP Connection is selected, Jwave HTTP URL must be filled in.

Setting Up the JWAVE Server 127

Port — Specifies the port number where the JWAVE Manager is running. (See also
the PORT parameter in the Manager Properties list of the JWAVE Configuration
Tool and its description in JWAVE Manager Configuration Properties on page
122).

Host Name — Specifies the name of the machine where the JWAVE Manager is
running. If this field is blank or set to localhost, clients will only be able to con-
nect (via sockets) when running on the same machine where the JWAVE Manager
is running.

JWave HTTP URL — Specifies the URL to the Web server or JWAVE Servlet
that is associated with the JWAVE Manager. It can be an http or https protocol
URL.

JWaveCGI URL — Specifies the URL to the CGI program that is associated with
the JWAVE Manager. It can be an http or https protocol URL. If you want cli-
ents using CGI to contact a different JWAVE Manager than the one defined in the
Port and Host Name fields, append a question mark and that information to the end
of the URL. For example:

http://webhost/cgi-bin/JWaveCGI?manager_host:6501

(Default: http://<SERVER-NAME>/cgi-bin/JWaveCGI[.exe])

NOTE The https protocol uses the Secure Socket Layer (SSL) to connect to the
server. If you specify https, both the client and server must support https. Most
browsers and Web servers do support https; however, the Java Development Kit
(JDK) does not. Therefore, if you save the client configuration with an https pro-
tocol, you will always receive a message that says “unable to test https”.

Use Socket Connection — When checked, specifies that clients will be able to
contact the JWAVE Manager using direct Socket connections.

Use HTTP Connection — When checked, specifies that clients will be able to
contact the JWAVE Manager as a Web server or servlet.

Use CGI Connection — When checked, specifies that clients will be able to
contact the JWAVE Manager using the JWaveCGI URL.

Use Compression — When checked, specifies that the data stream be com-
pressed. Use compression if you intend to send very large datasets. Compression
saves network time in transmission of the data, but costs some CPU time for com-
pression and decompression on the client and server.

Save Configuration — Clicking this button saves the configuration to the
JWaveConnectInfo.jar file (path shown to the left of the button).

128 Chapter 8: JWAVE Server Configuration JWAVE User’s Guide

TIP The client checks the selections Use Socket Connection, Use HTTP Connec-
tion, and Use CGI Connection in the order they are listed: 1) Socket, 2) HTTP, 3)
CGI. Normally, we recommend that you only choose one method. The client-side
getConnection method is optimized to be faster for the initial connection if only
one method is checked.

If you wish to establish a secondary or “fallback” connection, check more than one
connection type. For example, if you want clients to normally connect through
HTTP protocol, but you want to use CGI if the HTTP connection is inoperative,
then check both the HTTP and CGI connection methods.

If you wish to establish a connection order other than the one that is available in the
dialog box (Socket, HTTP, CGI), then you need to edit the file:

VNI_DIR/classes/JWaveConnectInfo.jar

For information on editing this file, refer to the following file:

VNI_DIR/classes/JWaveConnectInfo.txt

Installing the JWAVE Manager as a Service on Windows NT

The JWAVE Manager can be installed and run as a Service on a Windows NT
server. Installing JWAVE Manager as a Windows NT Service allows you to:

• run the JWAVE Manager as a background process

• keep the JWAVE Manager running when there are no interactively logged-in
users

• shut down the JWAVE Manager by stopping the JWAVE Service

Installing the JWAVE Service

The JWAVE Service executable is installed with the JWAVE Server installation. To
install the JWAVE Service on a Windows NT server:

Step 1 Log in with Administrator or Domain Administrator privilege levels.

Step 2 Type:

VNI_DIR\jwave-3_5\bin\bin.i386nt\jwaveservice -install

where VNI_DIR is the main Visual Numerics installation directory.

Setting Up the JWAVE Server 129

Configuring the JWAVE Service

To configure the JWAVE Service:

Step 1 In the Control Panel, double-click the Services icon. The Services win-
dow appears (see Figure 8-5).

Figure 8-5 Windows NT Services window listing the JWAVE Service

Step 2 Select JWAVE Service.

Step 3 Click Startup... The Service window appears (see Figure 8-6).

Figure 8-6 Windows NT Service window for configuring the JWAVE Service

130 Chapter 8: JWAVE Server Configuration JWAVE User’s Guide

Step 4 In the Service window, set the Startup Type to Automatic. This causes the
JWAVE Manager to run as a background process and keep running even
when there are no interactively logged-in users.

Step 5 By default, the JWAVE Service runs under the Local System account
which has no access to network resources. If you need the account that
runs the JWAVE Service to have access to network resources (for exam-
ple, if your JDK is installed on a network drive), change the default user
to a user with more privileges.

Step 6 Click OK in the Service window to close it and accept your changes.

Step 7 Click Start in the Services window to start up the JWAVE Manager in the
background.

Stopping the JWAVE Service

If you started JWAVE Manager as a Service, it is recommended you use the Ser-
vices window to stop the JWAVE Service. When the JWAVE Service is stopped, it
will issue a shutdown command using the password from the jwave.cfg file, if a
password has been defined.

To shut down JWAVE Manager running as a Service:

Step 1 In the Control Panel, double-click the Services icon. The Services win-
dow appears (see Figure 8-5).

Step 2 Select JWAVE Service.

Step 3 Click Stop.

Step 4 Click Close.

Monitoring the JWAVE Service

The JWAVE Service can be monitored remotely using the Server Manager
(SrvMgr.exe) supplied with both the Windows NT Server and the Windows NT
Workstation Resource Kit.

Starting and Stopping the JWAVE Service from the Command Line

The JWAVE Service can be started and stopped from the command line using the
net command after installing and configuring the Service as described above.

Testing the JWAVE Server Installation 131

To start the JWAVE Service from the command line:

net start jwaveservice

To stop the JWAVE Service from the command line:

net stop jwaveservice

Removing the JWAVE Service

The JWAVE Service can be removed from a Windows NT server when you need to
install a JWAVE upgrade or move the Service to another server.

To remove the JWAVE Service from your Windows NT server:

Step 1 Log in with the same privileges used to install the Service on the JWAVE
server, as explained in Installing the JWAVE Service on page 128.

Step 2 Stop the Service.

Step 3 Type:

VNI_DIR\jwave-3_5\bin\bin.i386nt\jwaveservice -remove

where VNI_DIR is the main Visual Numerics installation directory.

Testing the JWAVE Server Installation
The following directory contains Java programs you can run to test the JWAVE
server installation:

(UNIX) VNI_DIR/classes/jwave_demos/tests

(Windows) VNI_DIR\classes\jwave_demos\tests

where VNI_DIR is the main Visual Numerics installation directory.

To run the following tests:

• the JWAVE Manager must be running (see page 109)

• the following must be in the CLASSPATH:

(UNIX) VNI_DIR/classes/JWaveConnectInfo.jar
VNI_DIR/JWave.jar
VNI_DIR/classes/jwave_demos/tests

(Windows) VNI_DIR\classes\JWaveConnectInfo.jar
VNI_DIR\JWave.jar
VNI_DIR\classes\jwave_demos\tests

where VNI_DIR is the main Visual Numerics installation directory.

132 Chapter 8: JWAVE Server Configuration JWAVE User’s Guide

Scalar Data Test

ScalarDataTest sends scalar data to PV-WAVE and back.

Array Data Test

ScalarArrayTest sends array data to PV-WAVE and back.

Return Mode Test

ReturnModeTest sends scalar data to PV-WAVE and asks that some of it be
stored in the Data Manager, then calls PV-WAVE again to use the stored data.

View Test

ViewTest tests the JWaveView class. JWaveView displays a window with a view
area and Plot, Surface, and Close Session buttons.

Figure 8-7 The View Test window showing the 2D plot.

Running JWAVE Demonstrations 133

Try the following in the View Test window (Figure 8-7):

✔ Click Plot — a PV-WAVE session starts and a 2D plot displays.

✔ Click Surface — The same PV-WAVE session makes a surface and displays it.

✔ Click Plot again — The 2D plot displays again.

✔ Click on the plot to see data coordinates printed on the plot.

✔ Experiment with the Resize modes.

✔ Click Close Session — This should close the PV-WAVE session on the JWAVE
server.

Running JWAVE Demonstrations
If you want to run the JWAVE demonstrations, refer to the README files in the sub-
directories of:

(UNIX) VNI_DIR/classes/jwave_demos

(Windows) VNI_DIR\classes\jwave_demos

where VNI_DIR is the main Visual Numerics installation directory.

Setting Up for JWAVE Client Development
The only thing you need to set for JWAVE client development is the CLASSPATH
environment variable. Set the CLASSPATH on a JWAVE client to include (at least):

(UNIX) VNI_DIR/classes/JWave.jar

(Windows) VNI_DIR\classes\JWave.jar

where VNI_DIR is the main Visual Numerics installation directory.

The JWAVE Client documentation is referenced with:

(UNIX) VNI_DIR/classes/docs/api/packages.html

(Windows) VNI_DIR\classes\docs\api\packages.html

Example client side development code is located in subdirectories of:

(UNIX) VNI_DIR/classes/jwave_demos

(Windows) VNI_DIR\classes\jwave_demos

If you want to use JWAVE Beans, you need to:

134 Chapter 8: JWAVE Server Configuration JWAVE User’s Guide

• Add Swing 1.1 or later to the CLASSPATH (swing.jar or swingall.jar).

• Import the JWaveBeans.jar into BDK 1.0_mar98 or an IDE like JavaStudio.

• To run client applets, you need a browser or appletviewer with access to the
JWAVE Manager (usually through a Web server). Make sure that the
CLASSPATH does not include any JWAVE JAR files or classes. (JWAVE
applets can only communicate with the JWAVE Manager if the applets are
served by that server—having these classes in CLASSPATH causes a security
error.)

NOTE You must have access to the JWAVE server for JWAVE client applications
to work properly.

• To run client applications (in other words, applications outside of a browser),
you also must have JWaveConnectInfo.jar in your CLASSPATH.

• See notes in the README file in the subdirectories of VNI_DIR/classes/
jwave_demos for other hints on setting up your environment.

135

CHAPTER

9

Advanced Graphics Features
JWavePanel2D, JWavePanel3D, JWaveCanvas2D, and JWaveCanvas3D extend
JWavePanel’s and JWaveCanvas’ capability of providing a canvas to display graph-
ics so that you can interact with the graphics on the canvas. Here are the
interactions allowed:
• Zoom in or zoom out of a chart

• Row or column profiling across an image

• Select a point on a chart

• Interactively rotate a 3D chart

This chapter explains how to use each of the features and how to run example pro-
grams that demonstrate the features.

Advanced Features
JWaveCanvas2D and JWaveCanvas3D, derived from JWaveCanvas, provide addi-
tional functionality. Additionally, there are also the classes JWavePanel2D and
JWavePanel3D, derived from JWavePanel, which provide equivalent functionality.

JWaveCanvas2D and JWavePanel2D
The classes JWaveCanvas2D and JWavePanel2D provide the ability to interact
with a two-dimensional chart in several ways:
• Pressing and dragging the mouse to zoom in on a chart.

• Selecting a point on a chart.

• Selecting a profile of an image.

136 Chapter 9: Advanced Graphics Features JWAVE User’s Guide

Pick Point

The pick feature allows an object to be notified when the user selects a point on a
chart with a mouse click. The JWaveCanvas2D and JWavePanel2D parent
classes send a notification event to all registered listeners that a PickPointEvent
has occurred. When the listener receives the notification event, the data coordinates
of the selected point may be retrieved from the getSelectedX and getSelect-
edY methods. The returned values may be displayed or used as indexes to the data
arrays to select actual values.

To use this feature with a chart object, pick point must first be enabled. This can be
done either by calling the object’s

setPickPointEnabled(true)

method or by sending the object an action with the command string “pick-
enabled”. Listeners can be added to the object by calling the object’s

addPickPointListener(PickPointListener listener)

method. The listener must implement the nested interface JWaveCanvas2D.
PickPointListener or JWavePanel2D.PickPointListener. The interface
requires the implementation of the method

public void pointPicked(PickPointEvent event)

Example

Assume that we have a chart object that extends JWaveCanvas2D and we want to
update a label object with the user-selected coordinates. This could be imple-
mented by adding the following code fragment to the class that sets up the GUI.

final Label label = new Label();

chart.setPickPointEnabled(true);

chart.addPickPointListener(new
JWaveCanvas2D.PickPointListener() {

public void pointPicked(JWaveCanvas2D.PickPointEvent event) {

int x = event.getSelectedX();

int y = event.getSelectedY();

label.setText("("+x+","+y"+)");

}

}

}

JWaveCanvas2D and JWavePanel2D 137

Zoom

The zoom feature allows the user to zoom into a section of a chart. The
JWaveCanvas2D and JWavePanel2D parent classes draw a box indicating the
area where the user has pressed and dragged the left mouse button across the chart.
When the left mouse has been released all registered listeners will be notified that
a zoomEvent has occurred. When the listener receives the notification event, the
new X and Y ranges may be retrieved from the getXrange and getYrange meth-
ods. The returned values may be used as XRANGE and YRANGE settings for PV-
WAVE commands such as PLOT, AXIS, CONTOUR, and SURFACE. For a list of
additional PV-WAVE commands, see PV-WAVE Reference Guide, Chapter 3,
Graphics and Plotting Keywords.

To use this feature with a chart object, zoom must first be enabled. This can be done
either by calling the object’s

setZoomEnabled(true)

method or by sending the object an action with the command string “zoom-
enabled”. Listeners can be added to the object by calling the object’s

addZoomListener(ZoomListener listener)

method. The listener must implement the nested interface
JWaveCanvas2D.ZoomListener or JWavePanel2D.ZoomListener. The
interface requires the implementation of the method

public void zoomUpdate(ZoomEvent event)

Example

Assume that we want to add the zoom feature to a chart. This chart is generated by
the JWAVE wrapper WImage. The WImage wrapper looks for parameters xrange
and yrange, each of which is an array containing two doubles. These parameters
specify the area in which the data is to be charted.

The following class fragment shows the implementation of the zoom feature. The
code to initially get the data and generate the chart is omitted for simplicity.

public class ZoomChart extends JWavePanel2D implements
JWavePanel2D.ZoomListener {

 private JWaveConnection connection;
 private JWaveView imageView;
 private Viewable imageViewable;
 private double xrange[];
 private double yrange[];

 public ZoomChart(JWaveConnection connection) {
 this.connection = connection;

138 Chapter 9: Advanced Graphics Features JWAVE User’s Guide

 imageView = new JWaveView(connection, "WImage");
 setPreferredSize(new Dimension(500,350));
 addZoomListener(this);
 }

 public void zoomUpdate(JWavePanel2D.ZoomEvent event) {
 xrange = event.getXrange();
 yrange = event.getYrange();
 imageView.setParam("xrange", xrange);
 imageView.setParam("yrange", yrange);

// Set the size of the plot to be produced to match our
Panel
 imageView.setViewSize(new Dimension(500,350));
 try {

imageView.execute();
imageViewable = imageView.getViewable();
imageViewable.setPreferredResizeMode

(Viewable.NOT_RESIZEABLE);
 setViewable(imageViewable);
 } catch (JWaveException e) {
 System.out.println("Problem getting new

Viewable: " + e);
 }
 }
}

Profile

The profile feature allows the user to select a vertical or horizontal profile of an
image by selecting a point on the chart. The JWaveCanvas2D and JWavePanel2D
parent classes draw a line representing the row or column of the image selected.
The JWaveCanvas2D and JWavePanel2D parent classes will send a notification
event to all registered listeners that a ProfileEvent has occurred. When the lis-
tener receives the notification event, the data coordinates of the selected point may
be retrieved from the getSelectedX and getSelectedY methods. The returned
values may be used to extract the values of the image along the line selected. For
an example, see ProfileChart.java provided in the jwave_demos/
canvas2d directory.

To use this feature with a chart object that displays the image, profile must first be
enabled. This can be done either by calling the object’s

setProfileEnabled(true)

method or by sending the object an action with the command string “profile-
enabled”. Listeners can be added to the object by calling the object’s

addProfileListener(ProfileListener listener)

JWaveCanvas2D and JWavePanel2D 139

method. The listener must implement the nested interface JWaveCanvas2D.Pro-
filetListener or JWavePanel2D.ProfileListener. The interface requires
the implementation of the method

public void profilePicked(ProfileEvent event)

Example

Assume that we have a chart object that extends JWaveCanvas2D and we want to
plot in a separate chart object the profile of an image and allow the user to select
the profile to be displayed. This could be implemented by adding the following
code fragment to the class which sets up the GUI for the chart object that displays
the image:

chart.setProfileEnabled(true);

chart.setProfileType(chart.COLUMN);

The setProfileType can be used to draw the vertical line representing the column or
the horizontal line representing the row.

Next add the ProfileListener to the chart object that will display the line plot or pro-
file plot:

chart.addProfileListener(new JWaveCanvas2D.ProfileListener() {
public void profilePicked(JWaveCanvas2D.ProfileEvent event) {
int x = event.getSelectedX();
int y = event.getSelectedY();
Graphics pg = this.getGraphics();
drawProfile(pg);

}

}

The drawProfile code has been left out for simplicity. The ProfileChart class pro-
vided in the jwave_demos/canvas2d directory can easily be used as it is or
modified to better meet your needs.

140 Chapter 9: Advanced Graphics Features JWAVE User’s Guide

JWaveCanvas3D and JWavePanel3D
The classes JWaveCanvas3D and JWavePanel3D provide the ability to interac-
tively rotate a 3D chart. Pressing and dragging the mouse pointer changes the view
of the chart.

Rotate

The rotation feature allows an object to be notified when the user has pressed and
dragged the mouse on a chart. A wire frame object is drawn in place of the image
while the user drags the mouse. When the mouse is released a notification event is
sent to the listener, the listener can retrieve the new x and z degrees of rotation from
the getDegX and getDegZ methods. The returned values can be used as AX and
AZ keywords settings for PV-WAVE commands such as SURFACE,
SHADE_SURFACE, BAR3D or SHOW3.

To use this feature with a chart object, it must first be enabled. This can be done
either by calling the object’s

setRotateEnabled(true)

method or by sending the object an action with the command string “rotate-on”.
Listeners can be added to the object by calling the object’s

addRotateListener(RotateListener listener)

method. The listener must implement the nested interface
JWaveCanvas3D.RotateListener or JWavePanel3D.RotateListener.
The interface requires the implementation of the method

public void rotateUpdate(RotateEvent event)

Example

Assume that we have a chart object that extends JWaveCanvas3D and we want to
allow users to change the view of the 3D chart. This could be implemented by add-
ing the following code fragment to the class that sets up the GUI:

ShadeSurfChart chart = new ShadeSurfChart();
chart.setRotateEnabled(true);

The class ShadeSurfChart extends JWaveCanvas3D and can implement rotation by
adding the following code fragment to ShadeSurfChart.

public class ShadeSurfChart extends JWaveCanvas3D
implements JWaveCanvas3D.RotateListener {

Getting Started 141

public void rotateUpdate(JWaveCanvas3D.RotateEvent event) {

int ax = event.getDegX();

int az = event.getDegZ();

jwaveWrapper.setParam(“ax”,ax);

jwaveWrapper.setParam(“az”,az)’

try {

jwaveWrapper.execute();

viewable = jwaveWrapper.getViewable();

setViewable(viewable);

} catch (JWaveException e) {

System.out.println(e);

}

}

}

The remaining ShadeSurfChart code has been left out for simplicity. For more
details, see the ShadeSurfChart class in jwave_demos/canvas3d.

Getting Started
As with all JWAVE applets, you need to create a client-side component (the applet)
and a server-side component (the JWAVE wrapper), as explained in Chapter 4,
JWAVE Graphics and Chapter 5, JWAVE Server Development. To use the advanced
features effectively, your JWAVE applet must register as a listener for the desired
feature. A basic understanding of the Java 1.1 event model will be useful in imple-
menting the advanced features.

Client-Side Development

To interact with a JWAVE Viewable object you must first plan and create a JWAVE
applet that does the following:

• Extend one of the 2D or 3D JWaveCanvases or JWavePanels.

• Register as a listener for the desired user interaction feature.

• Create a connection to the server.

• Execute a PV-WAVE wrapper function.

• Display graphical results, such as an image or surface.

142 Chapter 9: Advanced Graphics Features JWAVE User’s Guide

Server-Side Development

As with all JWAVE applets, you also need to write a JWAVE wrapper function, or
set of functions, to generate the graphical output that is displayed in the client
applet.

In some cases, the wrapper function may need to return data if the applet is to exe-
cute some of the features on the client side. For example, with the PickPoint
feature, JWavePanel2D will return the x and y location where the point was
selected on the Panel. If the applet is to display the value of the data where the
mouse click occurred, then x and y can be used as indices into the 2D array of data
to obtain the data value and display the data in the graphical user interface. For an
example see VNI_DIR/classes/jwave_demos/canvas2d/demo.java.

Example Applets

To get a feel for how these advanced features work, you can run a set of example
applets.

Each example demonstrates one or more of the advanced features and contains
comments that explain how they are added.

For more information on using these example applets, see the next section,
Running the Demonstration Applets on page 143.

Running the Demonstration Applets 143

Running the Demonstration Applets
Several applets that demonstrate the use of the advanced graphics features are
located in:

(UNIX) VNI_DIR/classes/jwave_demos/canvas2d

(UNIX) VNI_DIR/classes/jwave_demos/canvas3d

(UNIX) VNI_DIR/classes/jwave_demos/panel2d

(UNIX) VNI_DIR/classes/jwave_demos/panel3d

(Windows) VNI_DIR\classes\jwave_demos\canvas2d

(Windows) VNI_DIR\classes\jwave_demos\canvas3d

(Windows) VNI_DIR\classes\jwave_demos\panel2d

(Windows) VNI_DIR\classes\jwave_demos\panel3d

where VNI_DIR is the main Visual Numerics installation directory.

These demonstrations include:

• ShadeSurfDemo, an applet that demonstrates the use of Rotation features.

• Demo, an applet that integrates PickPoint, Zoom, Profile features.

Running the Demo Applets

To run these applets, you need to have a properly installed version of JWAVE —
3.5 or higher.

Using appletviewer

If you are using appletviewer, do the following:

Step 1 Start the JWAVE manager.

Step 2 Change to the directory:

(UNIX) VNI_DIR/classes/jwave_demos/canvas2d

(Windows) VNI_DIR\classes\jwave_demos\canvas2d

where VNI_DIR is the main Visual Numerics installation directory.

Step 3 Enter:

appletviewer appletname.html

where appletname is the name of the applet you wish to run. For example:

$ appletviewer demo.html

144 Chapter 9: Advanced Graphics Features JWAVE User’s Guide

Using a Browser

If you are using a browser to connect to JWAVE, do the following:

Step 1 Start the JWAVE Manager.

Step 2 Point the browser to the applet you wish to run, for example:

http://opus:6580/jwave_demos/canvas2d/demo.html

where machine is the name of the machine where the JWaveManager is running;
port is the port number where the JWaveManager is configured to listen for HTTP
connections (by default, 6580); and appletname is the name of the demonstration
applet you wish to run. For example:

http://opus:6580/jwave_demos/canvas2d/demo.html

PV-WAVE Wrappers Used by the Demos

The wrappers used by the example applets are located in:

(UNIX) VNI_DIR/jwave-3_5/lib/user

(Windows) VNI_DIR\jwave-3_5\lib\user

where VNI_DIR is the main Visual Numerics installation directory.

The wrappers handle reading a data file, storing data in the Data Manager, and cre-
ating plots using the data and parameters retrieved from the applet.

The following PV-WAVE wrappers are used by the demonstration plugin applets.

Demo wimage.pro
wprofile.pro
wreaddata.pro

ShadeSurfDemo wsurface.pro
wreaddata.pro

145

CHAPTER

10

JSPs, Servlets, and JWAVE
JavaServer Pages (JSP) technology provides a way to create web pages that display
dynamically-generated content. This technology allows you to create Web-based
applications that do not require a Java VM to be running on the client. JSPs and
servlets, running in a Web server, perform all of the application processing and
deliver results in HTML format back to the client.

This chapter explains how you can take advantage of JSPs and servlets to create a
server-side JWAVE application. The basic architecture of such a system is illus-
trated in Figure 10-1. In this figure, the JWaveJSPServlet is a servlet that manages
JWAVE connections and parameter passing to and from PV-WAVE. This servlet is
described in detail later in this chapter.

Benefits of this Architecture
Using a server-based JWAVE architecture has the following benefits:

• Little or no Java development is required by the developer.

• The client does not require a Java VM. Only HTML is delivered to the client.

• Multiple plots can be generated and displayed in a single Web page through
one call to PV-WAVE.

• Because all JWAVE connections are handled on the server, it is possible to cre-
ate connections to multiple JWAVE Managers running on multiple servers.

146 Chapter 10: JSPs, Servlets, and JWAVE JWAVE User’s Guide

Figure 10-1 A server-side JWAVE architecture using JSPs and servlets.

What is the JWaveJSPServlet?
The JWaveJSPServlet provides a mechanism for creating a JWAVE solution where
all processing occurs on the server. In this architecture, the client only displays
HTML. Applets, on the other hand, are Java programs that require a Java VM run-
ning on the client. Java Server Pages (JSP) have become a standard technology for
displaying content that is dynamically generated in this way.

Location of the JWaveJSPServlet

The source code for the JWaveJSPServlet is located in:

(UNIX) VNI_DIR/classes/com/visualnumerics/servlet

(Windows) VNI_DIR\classes\com\visualnumerics\servlet

where VNI_DIR is the main Visual Numerics installation directory.

Web Server/Application Server

JSP Engine

JWaveJSPServlet

JWAVE Manager

JSP Files

JSP Files

Client Browser

(displays HTML
only, no Java VM)

JWaveJSPServlet

What is the JWaveJSPServlet? 147

Purpose of the JWaveJSPServlet

The JWaveJSPServlet serves two primary purposes:

• a functional program that you can use “as is” to create JSP/JWAVE
interactions.

• an example that demonstrates how you can create a custom servlet that lets
JWAVE work with JSP pages (dynamically generated content). The JWave-
JSPServlet demonstrates how a set of JWAVE utility classes are used to
manage images.

Overview of the JWaveJSPServlet

The JWaveJSPServlet accepts requests from a JSP page. Typically, the JSP page is
used to display an HTML form interface through which a user can specify the
parameters for a task, such as creating a plot or processing an image. The JSP page
calls on a servlet to process these requests. The servlet is responsible for calling
PV-WAVE, which generates results and returns them to the client.

The output generated by PV-WAVE is either graphical or numerical. When the
results are returned to the servlet, the servlet responds by displaying a new JSP
page that contains the results of the analysis. Numerical results can be forwarded
directly back to the client as tags in the JSP Response object. Graphical results can
either be streamed directly back to the client, or can be stored on the server for later
retrieval. (A class called the JWaveImageManager, described in the next section,
manages the storage and retrieval of images.) For numerical results, the JSP page
simply retrieves variables from the Response object and displays them. For graph-
ical results, the JSP page obtains a URL that allows the client to retrieve a graphic
that was stored on the server by the JWaveImageManager.

The JWaveImageManager

The JWaveImageManager is a convenience class that manages images on the
server. Because images can take time to generate, users might normally experience
a delay between the time when they submit a request from their browser and the
time the image is received. If many users happen to be contacting the JWAVE
server simultaneously, the delay could be substantial. By storing images on the
server and returning a URL to the client, the user will not experience any apprecia-
ble delay in the server’s response. Numerical results are displayed almost
immediately, while the images appear as soon as they are available. For security,
each image stored by the JWaveImageManager is given a unique ID, which is
returned to the client in the URL.

For more information, see Understanding the JWaveJSPServlet on page 150.

148 Chapter 10: JSPs, Servlets, and JWAVE JWAVE User’s Guide

Setting Up the JWaveJSPServlet
A good way to get started using JWAVE with JSPs and servlets is to set up and run
a demonstration using the JWaveJSPServlet.

This section, along with the detailed installation instructions included with the
JWAVE 3.5 distribution, explains how to set up the JWaveJSPServlet and JSP files
on a Web server, and how to run a demonstration.

The JWaveJSPServlet, or any servlet that you write that uses the JWAVE JSP
classes, must be installed in a Web server that contains a Java Servlet engine. Such
servers are common.

System Requirements
• JWAVE 3.5 and PV-WAVE 7.01 or later must be installed and properly

configured on the JWAVE server.
• Netscape 4.76, or Internet Explorer 5.0 or later.
• A Web server that contains a Java Servlet engine.
• Java Advanced Imaging.
• Java 2 Runtime Environment 1.2.

NOTE Each Web server’s configuration is somewhat different; therefore, you need
to rely on your Web server’s documentation for explicit instructions.

One method of deploying JSPs and Servlets on a Web server is to create a Web
Application, or webapp. The webapp is a standard configuration that specifies
where servlets and JSPs are located in the Web server. Figure 10-2 shows a sample
webapp directory structure, where the JWAVE webapp is called jwavejsp.

Setting Up the JWaveJSPServlet 149

Figure 10-2 A sample webapp directory structure.

• The /jsp directory contains JSP files.

• The /classes directory contains the required Java classes;
the JWaveJSPServlet class path directory structure and its related classes are
copied to this directory.

NOTE The server must be configured to recognize a webapp. Typically, the Web
server has a configuration file that is used to specify the names of webapps. The
documentation for your Web server will include instructions on configuring a
webapp.

TIP Refer to the file VNI_DIR/jwave-3_5/jspservletUtils/
README_install.html, which contains detailed instructions for installing the
JWaveJSPServlet on three common Web servers.

Setting Up the JWAVE Server

To use the JWaveJSPServlet, the JWAVE Manager must be running on the server.
Typically, the JWAVE Manager runs on the same machine as the Web server.

/webapps

/jwavejsp

/WEB-INF

/classes web.xml

/jsp

/ServerRoot

150 Chapter 10: JSPs, Servlets, and JWAVE JWAVE User’s Guide

Running the JWaveJSPServlet
To run the JWaveJSPServlet demonstrations, do the following:

Step 1 Start the Web server.

Step 2 Start the JWAVE Manager.

Step 3 From any machine that has access to the server, point a Web browser to
the file: index.jsp. For example:

http://machine:port/jwavejsp/jsp/index.jsp

where machine is the hostname of the server machine, and port is the number of
the port that the Web server is configured to listen on. For example, assuming that
a Web server named “opus” is configured to recognize a webapp called
jwavejsp, and the /jsp directory of the webapp contains a JSP page called
loan.jsp:

http://opus:7001/jwavejsp/jsp/loan.jsp

If everything is configured properly, you will see a JSP page with form inputs.
When you submit a form, the JSP page is dynamically updated with graphics and
text.

Understanding the JWaveJSPServlet
The JWaveJSPServlet receives requests from JSP pages and passes them on to
PV-WAVE through standard JWAVE methods. Results from PV-WAVE are passed
back through the servlet to a reply JSP page, which displays the results in HTML
format on the client.

This section discusses the JWaveJSPServlet and its related pieces: JSP pages and
JWAVE wrappers.

TIP The source code for the JWaveJSPServlet is provided with your JWAVE
installation in: VNI_DIR/classes/com/visualnumerics/servlet.

Understanding the JWaveJSPServlet 151

The JSP Files

JSP files are basically HTML documents with special tags that invoke the JWave-
JSPServlet in response to submitting a form or clicking on a plot. Result JSP files
include tags that are filled in by the JWaveJSPServlet with content from the server-
side PV-WAVE process.

JWAVE Wrappers

JWAVE wrappers are passed the following kinds of data from the client through the
JSP engine:

• Fields from HTML forms (including hidden fields used to specify the JWAVE
wrapper, a PV-WAVE session ID, and others).

• Data coordinates of where a user clicked in an image map.

The JWAVE wrapper code contains all of the application logic. Data is accessed,
manipulated, and numerical and graphical results are produced.

The wrappers use utility routines to help package and return graphics and tables.
These utilities are discussed in Writing the JWAVE Wrappers on page 154.

Inside the JWaveJSPServlet: GET Requests, POST
Requests, and the JWaveImageManager

The JWaveJSPServlet handles GET and POST requests. Typically, a GET request
is used to retrieve an image that has been stored by the JWaveImageManager, or to
return it directly to the client. For example, an IMG SRC command in HTML
makes a GET request to get an image. A POST request is made when the client
needs to send parameters and data to the server for processing. For example, a
POST request is typically made when the user fills in a form and clicks the
SUBMIT button.

The POST Request

When the JWaveJSPServlet receives a POST request, the doPost method is called.
This method retrieves the posted parameters from the request object and calls the
callWave method. The callWave method handles most of the JWAVE work, includ-
ing making a connection to PV-WAVE, passing the parameters to PV-WAVE,
executing the JWAVE wrapper, retrieving the results from PV-WAVE, and dis-
patching the results back to the client (by forwarding the response to another JSP
page).

152 Chapter 10: JSPs, Servlets, and JWAVE JWAVE User’s Guide

Graphical results are identified in the doPost method and registered (stored) in the
JWaveImageManager. The JWaveImageManager contains a small number of pub-
lic methods. The methods that are used in the doPost method are:

public String registerImages(JWaveExecute jexecute, String imageName)

public void setFormat(String encodeformat)

public void setTimeout(int seconds)

public String getUname()

The registerImages method is used to store a named image in the
JWaveImageManager. As explained previously, a URL that points to the stored
image is forwarded from the servlet to a JSP page that the client displays. The URL
is embedded in an IMG SRC command in the HTML page that is sent to the client,
enabling the client to retrieve and display the stored image.

Use the setFormat method to set the image format. For example, PNG is a com-
monly used format for delivering images over the Internet.

The setTimeout method allows you to configure how much time a graphic can be
stored on the server before it is deleted and becomes a candidate for garbage
collection.

The GET Request

The JWaveJSPServlet also has a doGet method. This method is called whenever an
image is requested by the client. Typically, the client requests an image when it dis-
plays an HTML page containing an IMG SRC command.

The doGet method calls the JWaveImageManager method processRequest:

public boolean processRequest(HttpServletRequest req,
HttpServletResponse res, String uname)

This method retrieves the image that is specified in the Request object (a URL plus
a unique filename) and streams it back to the client.

Writing Your Own JWaveJSPServlet 153

Writing Your Own JWaveJSPServlet
The JWaveJSPServlet provided with JWAVE may not be suitable in every situation.
You might want to write your own servlet that manages JWAVE operations. If you
write your own servlet, you can use the JWaveJSPServlet as a template. The
JWaveJSPServlet relies on several convenience classes that primarily help manage
images. These classes include:

• ConnectionContainer.class

• JWaveImageControlThread.class

• JWaveImageContainer.class

• JWaveImageManager.class

• connectionControlThread.class

The public interfaces for these classes are documented in the JWAVE Javadoc.
JWAVE Javadocs are discussed in Using the JWAVE Javadoc Reference on page
40.

How Image Maps are Handled
An image map is a graphic that is displayed in an HTML page that allows limited
user interaction. When you click in an imagemap, the x/y coordinates of the click
are appended to a GET request that is sent to the server. The server can then use the
coordinates to perform some additional processing, such as zooming in on a region
surrounding the selected point.

When an HTML browser downloads an image with ISMAP appended to its URL,
that image is interpreted to be an image map. When a user clicks in an image map,
the resulting GET request contains the x/y coordinates of the click in its URL. On
the server, the servlet that handles the GET request must include code that handles
the image map coordinates. In the JWaveJSPServlet, for example, the doGet
method tests for the presence of appended x/y coordinates, strips off the x and y val-
ues, and stores them along with other parameters and passes them to a JWAVE
wrapper function that is executed by PV-WAVE. It is up to the developer to deter-
mine what the wrapper function actually does with the image map coordinates that
are passed to it.

If you want an image that is returned from PV-WAVE to the JWaveJSPServlet (or
a custom servlet that you write) to be an image map, set the Ismap keyword in the
PACKIMAGE wrapper function. The PACKIMAGE function is described in the
next section.

154 Chapter 10: JSPs, Servlets, and JWAVE JWAVE User’s Guide

Writing the JWAVE Wrappers
As with any JWAVE application, a JWaveJSPServlet application relies on
JWAVE wrapper functions to perform the data and graphical analysis functions.
This section describes a typical wrapper for a JWaveJSP application and discusses
three related wrapper utilities.

NOTE For an introduction to JWAVE wrappers, see Chapter 5, Writing JWAVE
Wrapper Functions.

With JWaveJSPServlet applications, there are three PV-WAVE functions that you
will use in your wrappers. If you examine the loan.pro wrapper, you will see
these three routines in use:

• PACKIMAGE

• PACKTABLE

• SETIMAGESIZE

These routines are located in:

(UNIX) VNI_DIR/jwave-3_5/lib

(Windows) VNI_DIR\jwave-3_5\lib

where VNI_DIR is the main Visual Numerics installation directory.

PACKIMAGE Function

This function takes as its parameters the name of an associative array and the name
of an image or plot. This routine simply packages the 2D byte array representing
the image or plot and three 1D byte arrays representing the RGB color values for
the graphic. These variables are stored in an associative array which is returned to
the calling procedure. The calling procedure then returns these items to the servlet.

This function has one keyword, Ismap, that lets you specify if the returned image
is an image map.

For more information, see PACKIMAGE Procedure on page 22.

Writing the JWAVE Wrappers 155

PACKTABLE Function

This function takes string data and converts it into an HTML table format. The
HTML table data is converted to a 1D byte array. The array is then stored in an
associative array which is returned to the calling procedure. The calling procedure
then returns this data to the servlet.

The HTML table data is converted to byte because of a limitation in the size of
strings that JWAVE can handle. In the servlet, this byte array is converted back into
a string, and it is then forwarded to a JSP page for the client to display.

For more information, see PACKTABLE Procedure on page 22.

SETIMAGESIZE Procedure

This procedure sets the size of the image appropriately for the current PV-WAVE
device driver.

For more information, see SETIMAGESIZE Procedure on page 24.

Example

This example JWaveJSPServlet demonstration uses the JSP
VNI_DIR/classes/jwave_demos/loan.jsp and the wrapper VNI_DIR/
jwave-3_5/lib/user/loan.pro.

More JSP demonstration files are located in:

(UNIX) VNI_DIR/jwave_demos/jsp

(Windows) VNI_DIR\jwave_demos\jsp

where VNI_DIR is the main Visual Numerics installation directory.

Wrappers for this and other JWaveJSPServlet demonstrations are located in:

(UNIX) VNI_DIR/jwave-3_5/lib/user

(Windows) VNI_DIR\jwave-3_5\lib\user

where VNI_DIR is the main Visual Numerics installation directory.

Parameters are sent by loan.jsp to the wrapper loan.pro using standard HTML
inputs and calls to request.getParameter and request.getAttribute, enclosed in
scriptlet tags ("<%" and "%>"). The first time loan.jsp is invoked, each call to
request.getParameter wrapper is null; this causes default values to be generated for
each input field, but the wrapper loan.pro is not yet called. Then, when the Cal-
culate button is pressed, the parameters entered for Loan Amount $,

156 Chapter 10: JSPs, Servlets, and JWAVE JWAVE User’s Guide

Interest Rate %, and Number of Years are passed to the wrapper, which is
defined to be loan.pro in the SUBMIT parameter list.

<BODY BGCOLOR="white">

<H2><CENTER>Loan Analysis using Java Server Pages and JWave</CEN-
TER></H2>

<FORM METHOD=POST ACTION=/jwavejsp/jspdemos>

 <TABLE>

 <TR><TH>

 <TABLE>

 <TR ALIGN=RIGHT><TH>Loan Amount $</TH>

 <TH><INPUT NAME=amount TYPE=TEXT VALUE=

 <% if (request.getParameter("wrapper") != null) { %>

 <%= request.getAttribute("AMOUNT") %>

 <% } else { %>

 100000

 <% } %>

 SIZE=8></TH></TR>

 <TR ALIGN=RIGHT><TH>Interest rate %</TH>

 <TH><INPUT NAME=interest TYPE=TEXT VALUE=

 <% if (request.getParameter("wrapper") != null) { %>

 <%= request.getAttribute("INTEREST") %>

 <% } else { %>

 8.0

 <% } %>

 SIZE=8></TH></TR>

 <TR ALIGN=RIGHT><TH>Number of Years</TH>

 <TH><INPUT NAME=years TYPE=TEXT VALUE=

 <% if (request.getParameter("wrapper") != null) { %>

 <%= request.getAttribute("YEARS") %>

 <% } else { %>

 10

 <% } %>

Writing the JWAVE Wrappers 157

 SIZE=8></TH></TR>

 <INPUT NAME="jsp" TYPE=HIDDEN VALUE="/jsp/loan.jsp">

 <INPUT NAME="wrapper" TYPE=HIDDEN VALUE=loan>

 <TR ALIGN=RIGHT><TH></TH>

 <TH><INPUT TYPE=SUBMIT VALUE="Calculate"></TH></TR>

 </TABLE>

 </TH><TH>

 <% if (request.getParameter("wrapper") != null) { %>

 <%= request.getAttribute("PRINCPLOT") %>

 <%= request.getAttribute("INTPLOT") %>

 <% } %>

 </TH></TR>

 </TABLE>

</FORM>

<% if (request.getParameter("wrapper") != null) { %>

 <TABLE>

 <TR ALIGN=RIGHT><TH>Monthly Payment $</TH>

 <TH><%= request.getAttribute("PAYMENT") %></TH></TR>

 <TR ALIGN=RIGHT><TH>Interest Cost $</TH>

 <TH><%= request.getAttribute("COST") %></TH></TR>

 </TABLE>

 <%= request.getAttribute("SCHEDULE") %>

<% } %>

</BODY>

</HTML>

This wrapper uses the getParam function to retrieve input that was sent from the
servlet. The parameters are then processed and several results are generated,
including a table and two plots. The PackImage and PackTable routines are used to
store graphical and tabular results in an associative array, which is then passed back
to the servlet when the function returns.

FUNCTION Loan, client_data

; Get params from HTML FORM

 amount = GetParam(client_data, ‘AMOUNT’, /Value)

158 Chapter 10: JSPs, Servlets, and JWAVE JWAVE User’s Guide

 interest = GetParam(client_data, ‘INTEREST’, /Value)

 years = GetParam(client_data, ‘YEARS’, /Value)

 ; Calculate results

 result = CalcLoan(amount, interest, years)

 ; Convert 2D float array to an HTML table

 schedule = result(‘schedule’)

 collab = [‘Month’,’Principal Due’,’Principal’,’Interest’, $

 ‘Interest Cost’,’Total Payments’,’Monthly Payment’]

PackTable, TRANSPOSE(schedule), ‘SCHEDULE’, ret, $

 /Right, ColLabels=collab, $

 Border=1, Caption=’Loan Schedule’

 TEK_COLOR

 ; Create principal paid plot

SetImageSize, 200, 200

 PlotLoan, ‘principal’

 PackImage, ret, ‘princplot’

 ; Create interest cost plot

SetImageSize, 200, 200

 PlotLoan, ‘interest’

 PackImage, ret, ‘intplot’

 ; Return original values to be used to fill in form

 ret(‘AMOUNT’) = amount

 ret(‘INTEREST’) = interest

 ret(‘YEARS’) = years

 ; Return calculated values and loan schedule table

 ret(‘PAYMENT’) = result(‘payment’)

 ret(‘COST’) = result(‘interest_cost’)

 RETURN, ret

END

Writing the JWAVE Wrappers 159

Figure 10-3 Loan Analysis using Java Server Pages and JWAVE.

160 Chapter 10: JSPs, Servlets, and JWAVE JWAVE User’s Guide

A-1

APPENDIX

A

JWAVE Wrapper API

DMCopyData Procedure
Copies a named dataset in the current PV-WAVE session.

Usage

DMCopyData, data_name, new_var_name

Input Parameters

data_name — A scalar string containing a data name (in the default domain,
$GLOBAL) or a 2-element string array containing a domain name and data name of
the data you wish to copy.

new_var_name — A string containing a new variable name.

Discussion

This function cannot be used to copy data to another domain. Both datasets (the
original and new ones) will exist after this function is called.

Storage for the domain and data are automatically created if they do not already
exist. If data with the new_var_name already exists, it is overwritten. The data

A-2 Appendix A: JWAVE Wrapper API JWAVE User’s Guide

name and domain name are used to uniquely identify a dataset stored on the
JWAVE server. Normally, these names are set in the JWAVE client application.

To be valid, the domain name and data name must begin with a letter. The name is
not case-sensitive, and may contain letters, underscores, and numbers.

Examples

This command makes a copy of data named STUFF from the default domain
($GLOBAL) and stores it in data named STUFF_COPY (in the same domain).

DMCopyData, [’$GLOBAL’, ’STUFF’], ’STUFF_COPY’

See Also

DMDataExists, DMEnumerateData, DMGetData, DMInit, DMRemoveData,
DMRenameData, DMStoreData

DMDataExists Function
Determines if the named data exists in the current PV-WAVE session.

Usage

result = DMDataExists(data_name)

Input Parameters

data_name — A scalar string containing a data name (in the default domain,
$GLOBAL) or a 2-element string array containing a domain name and data name.

Returned Value

result — Returns true if the named data exists; returns false otherwise. Also
returns false if the data_name is invalid.

Discussion

To be valid, the data_name input parameter name must begin with a letter. The
name is not case-sensitive, and may contain letters, underscores, and numbers.

DMEnumerateData Function A-3

Examples

See the example for DMRestore.

See Also

DMCopyData, DMEnumerateData, DMGetData, DMInit, DMRemoveData,
DMRenameData, DMRestore, DMStoreData

DMEnumerateData Function
Returns the data names stored in the specified domain in the current PV-WAVE
session.

Usage

data_names = DMEnumerateData(domain_name)

Input Parameters

domain_name — A string containing the name of the domain that you wish to enu-
merate. If not specified (i.e., DMEnumerateData()), then the default domain
($GLOBAL) is enumerated.

Returned Value

data_names — A string array containing the data names for the data stored in the
specified domain.

Discussion

This function returns an empty string if there are no variables in the specified
domain or if the specified domain does not exist.

To be valid, the data_name input parameter name must begin with a letter. The
name is not case-sensitive, and may contain letters, underscores, and numbers.

Examples

See the example for DMSave.

A-4 Appendix A: JWAVE Wrapper API JWAVE User’s Guide

See Also

DMCopyData, DMDataExists, DMGetData, DMInit, DMRenameData,
DMRemoveData, DMSave, DMStoreData,

DMGetData Function
Returns a stored dataset in the current PV-WAVE session.

Usage

values = DMGetData(data_name)

Input Parameters

data_name — A scalar string containing a data name (in the default domain,
$GLOBAL) or a 2-element string array containing a domain name and data name.

Returned Value

values — The data values stored under the specified data_name.

Discussion

This function produces an error if there is no data stored in the specified location.
Use DMDataExists to test for this condition.

To be valid, the data_name input parameter name must begin with a letter. The
name is not case-sensitive, and may contain letters, underscores, and numbers.

Examples

The following command gets data named STUFF from the default domain
($GLOBAL) and stores it in a variable named my_data.

my_data = DMGetData([’$GLOBAL’, ’STUFF’])

See Also

DMCopyData, DMDataExists, DMEnumerateData, DMInit,
DMRenameData, DMRemoveData, DMStoreData,

DMInit Procedure A-5

DMInit Procedure
Initializes the JWAVE Data Manager.

Usage

DMInit

Input Parameters

None.

Discussion

This procedure must be run before any DM routines can be used.

NOTE Normally, you do not need to run this procedure, because it is run automat-
ically by the PV-WAVE server and by the WRAPPER_TEST_INIT routine.

See Also

DMCopyData, DMDataExists, DMEnumerateData, DMGetData,
DMRenameData, DMRemoveData, DMStoreData, WRAPPER_TEST_INIT

DMRemoveData Procedure
Deletes a dataset from the current PV-WAVE session.

Usage

DMRemoveData, data_name

Input Parameters

data_name — A scalar string containing a data name (in the default domain,
$GLOBAL) or a 2-element string array containing a domain name and data name of
the data you wish to remove.

A-6 Appendix A: JWAVE Wrapper API JWAVE User’s Guide

Discussion

No error is produced if you attempt to delete data that does not exist; however, an
error is produced if you specify an incorrectly formed data_name.

To be valid, the data_name input parameter name must begin with a letter. The
name is not case-sensitive, and may contain letters, underscores, and numbers.

Examples

See the example for DMSave.

See Also

DMCopyData, DMDataExists, DMEnumerateData, DMGetData, DMInit,
DMRenameData, DMSave, DMStoreData

DMRenameData Procedure
Renames a dataset stored in the current PV-WAVE session.

Usage

DMRenameData, data_name, new_var_name

Input Parameters

data_name — A scalar string containing a data name (in the default domain,
$GLOBAL) or a 2-element string array containing a domain name and data name of
the data you wish to rename.

new_var_name — A string containing a new variable name.

Discussion

This function cannot be used to move data to a new domain. Only the name of the
data can be changed.

The original data_name data no longer exists after this function is called.

Storage for the domain and data are automatically created if they do not already
exist. If data with the new_var_name already exists, it is overwritten. The data

DMRestore Procedure A-7

name and domain name are used to uniquely identify a dataset stored on the
JWAVE server. Normally, these names are set in the JWAVE client application.

To be valid, the data_name input parameter name must begin with a letter. The
name is not case-sensitive, and may contain letters, underscores, and numbers.

Examples

This command renames (moves) the data named STUFF from the default domain
($GLOBAL) and gives it a new name of NEW_STUFF (in the same domain).

DMRenameData, [’$GLOBAL’, ’STUFF’], ’NEW_STUFF’

See Also

DMCopyData, DMDataExists, DMEnumerateData, DMGetData, DMInit,
DMRemoveData, DMStoreData,

DMRestore Procedure
Restores the Data Manager from a file.

Usage

DMRestore, filename

Input Parameters

filename — A string containing the name of the data file to restore. This file must
have been created with DMSave.

Keywords

Overwrite — Erases everything in the Data Manager before restoring the contents
of the file. By default, data from the file is added to the current Data Manager.

Verbose — Prints information to the screen about the data that is being restored.

Examples

This example can be used in an initialization routine—a JWAVE wrapper called
initially by the client, or by the procedure indicated with the JWAVE_STARTUP con-

A-8 Appendix A: JWAVE Wrapper API JWAVE User’s Guide

figuration parameter. This configuration parameter is specified with the
Configuration Tool, described in Setting Up the JWAVE Server on page 112. (By
default, the initialization routine is called JWAVE_START.)

This example restores DM data from a file (saved previously by DMSave) and adds
data named STUFF to the default domain ($GLOBAL). This data is then available for
use by other wrapper functions (using DM routines), or the data can be accessed
by the JWAVE client (using a JWaveDataProxy or ServerDataID object).

; Restore data from previous session

 DMRestore, my_dm_data_file

 ; Add new ’STUFF’ data if it does not already exist

 IF (NOT DMDataExists([’$GLOBAL’, ’STUFF’]) THEN BEGIN

 status = DC_READ_FREE(my_ascii_data, stuff)

 DMStoreData, [’$GLOBAL’, ’STUFF’], stuff

 ENDIF

See Also

DMCopyData, DMRemoveData, DMSave, DMStoreData

DMSave Procedure
Saves all data that is managed by the JWAVE Data Manager to a file.

Usage

DMSave, filename

Input Parameters

filename — A string containing the name of the file in which to save the data.

Keywords

Verbose — Prints information to the screen about the data that is being saved.

DMStoreData Procedure A-9

Examples

This example code can be used in a shutdown routine (a JWAVE wrapper called
initially by the client, or by JWAVE_SHUTDOWN). This example first removes
(deletes) any data that has been stored in a domain named TEMP. Then, everything
else is saved to a DM data file. That file may be restored (with DMRestore) for later
use by another session.

 ; Enumerate all data stored in the TEMP domain

 temp_data = DMEnumerateData(’TEMP’)

 IF temp_data(0) NE ’’ THEN BEGIN

 ; Remove all data from TEMP domain

 FOR i = 0, N_ELEMENTS(temp_data)-1 DO BEGIN

 DMRemoveData, [’TEMP’, temp_data(i)]

 ENDFOR

 ENDIF

 ; Save everything else

 DMSave, my_dm_data_file

See Also

DMCopyData, DMRemoveData, DMRestore, DMStoreData

DMStoreData Procedure
Stores a dataset in the current PV-WAVE session.

Usage

DMStoreData, data_name, value

Input Parameters

data_name — A scalar string containing a data name (in the default domain,
$GLOBAL) or a 2-element string array containing a domain name and data name.

value — The data that you wish to store.

A-10 Appendix A: JWAVE Wrapper API JWAVE User’s Guide

Discussion

Storage for the domain and data are automatically created if they do not already
exist. If data_name already exists, it is overwritten. The data_name is used to
uniquely identify a dataset stored on the JWAVE server. Normally, the data_name
is set in the JWAVE client application.

To be valid, the data_name input parameter name must begin with a letter. The
name is not case-sensitive, and may contain letters, underscores, and numbers.

The data specified with value can be of any PV-WAVE data type. Note that client
applications can only store on the server scalars and arrays (up to eight dimensions)
of the following data types:

Examples

See the example for DMRestore.

See Also

DMCopyData, DMDataExists, DMEnumerateData, DMGetData, DMInit,
DMRenameData, DMRemoveData, DMRestore

JAVA Data Types Corresponding PV-WAVE Data Types

Byte BYTE

Short INTEGER

Integer LONG

Float FLOAT

Double DOUBLE

String STRING

GETPARAM Function A-11

GETPARAM Function
Retrieves parameters and data sent from a JWAVE client application.

Usage

result = GETPARAM(client_data, param_name)

result = GETPARAM(client_data, param_name, /Value)

result = GETPARAM(client_data, param_name, /Positional)

Input Parameters

client_data — A variable containing parameters and data that were passed to the
JWAVE wrapper function from a JWAVE client application. (This parameter
receives the information that was set with calls to the setParam method on the
client.)

param_name — A string or string array specifying the name(s) of the parameter(s)
to extract from the client_data variable.

NOTE The param_name parameter cannot be an array when either the Value or
Positional keyword is specified.

Keywords

All — If nonzero, returns all of the keywords in the client_data variable. You do
not need to specify the param_name parameter if you use the All keyword. Any
keywords that were previously retrieved are ignored. Note that All retrieves param-
eters as keywords only. It does not retrieve positional parameters or values. The All
keyword cannot be used when either the Value or Positional keyword is specified.

ClientID — If nonzero, returns a unique number identifying the client making this
request. You can use this keyword without specifying a param_name parameter.

Default — Specifies a default value to be used if the given param_name was not
provided by the client. This keyword can only be used when the Value keyword is
specified. The default value can be any valid PV-WAVE data type.

ExpectType — Provides type checking of returned values. This keyword is only
allowed when the /Value keyword is specified. For example:

A-12 Appendix A: JWAVE Wrapper API JWAVE User’s Guide

ExpectType = type_number

where type_number is the PV-WAVE data type number (for instance, the number
returned from the PV-WAVE function: SIZE(val, /Type).

This test fails if the returned parameter does not match the expected type. On fail-
ure, the MESSAGE procedure is called.

ExpectNumeric,
ExpectString — If nonzero, provides type checking of returned values.

These tests fail if the returned parameter does not match the expected type. On fail-
ure, the MESSAGE procedure is called.

ExpectArray — Ensures that the function returns an array of the specified dimen-
sions. If the param_name represents a scalar, a one-element array is returned. For
example:

ExpectArray = [400, 600]

tests for a 400-by-600 element array. If any dimension is a zero (0), that dimension
is taken as a wildcard (that dimension may be of any size).

This test fails if the returned parameter is not of the specified dimensions. On fail-
ure, the MESSAGE procedure is called.

ExpectScalar — Ensures that the function returns a scalar. If the parameter is a
one-element array, it is converted to a scalar, and a scalar is returned. This test fails
if the returned parameter is an array of more than one element. On failure, the
MESSAGE procedure is called.

Keyword_Names — A string or string array of keyword names. Keywords are
returned in the form:

” , param_name=param_ref ”

where param_name is the keyword name and param_ref is a symbolic reference to
the value associated with the keyword. For example:

result = GETPARAM(client_data, 'PARAM_NAME', $

Keyword_Name = 'PARAM_KEY')

produces a string of the form:

" ,PARAM_KEY=param_name_ref "

By default, the parameter name and keyword name are the same. If
Keyword_Names is an array, it must be the same number of elements as
param_name.

GETPARAM Function A-13

NOTE The Keyword_Names keyword cannot be used when either the Value or
Positional keyword is specified.

See the Discussion section for more information on Keyword_Names.

IgnoreUsed — If nonzero, the parameters you request are returned regardless of if
they have been previously retrieved. In addition, the parameters that you request
are not added to the list of “used” parameters.

Positional — If nonzero, indicates that the requested parameter is a positional
parameter. The returned string is of the form:

” , param_ref ”

where param_ref is a symbolic reference to data. See the Discussion section for
more information on this keyword.

SessionID — If nonzero, returns a unique number identifying this PV-WAVE ses-
sion. This keyword is useful if you need to build a unique temporary filename. You
can use this keyword without specifying a param_name parameter.

Value — If nonzero, indicates that the actual data be returned rather than a string.
See the Discussion section for more information on this keyword.

WrapperName — If nonzero, returns a string naming the JWAVE wrapper function
called by the client. You can use this keyword without specifying a param_name
parameter.

Discussion

You can use GETPARAM to return:

• single values

• positional parameters

• keyword parameters

See Chapter 3, JWAVE Client Development for additional information on using
GETPARAM. The rest of this section describes these types of results briefly.

Returning Single Values

To return a single value with GETPARAM, use the Value keyword. For example:

result = GETPARAM(client_data, 'X', /Value, Default=FINDGEN(100))

A-14 Appendix A: JWAVE Wrapper API JWAVE User’s Guide

In this case, the actual value associated with the parameter X (which was passed to
the JWAVE wrapper from the client application) is stored in result. The value
can then be used in any PV-WAVE routine within the JWAVE wrapper. For
example:

PLOT, result

NOTE If the param_name parameter is not set by the client, then GETPARAM
returns either zero (0) or the value specified with the Default keyword.

Returning Positional Parameters

To return a positional parameter string, use the Positional keyword. For example:

p1 = GETPARAM(client_data, ’X’, /Positional)

returns a string of the form:

" , param_ref "

where param_ref is a symbolic reference to the value of the parameter X. Usually
this value is a data reference or function call.

The comma (,) is included in the string so you can concatenate strings of this form
together to build a command. Such a command string, then, can be used as input to
an EXECUTE function. For example:

status = EXECUTE(’PLOT’ + p1)

NOTE If the param_name parameter to GETPARAM was not set by the client,
GETPARAM returns an empty string.

For more information on positional parameters, see Unpacking Command Strings
on page 57.

Returning Keyword Parameters

To return a string of keyword parameters, call GETPARAM without either the
Value or Positional keywords. For example:

title = GETPARAM(client_data, ’TITLE’)

returns a string of the form:

" , param_name=param_ref "

where param_name is the name of the parameter (for example, TITLE) and
param_ref is a symbolic reference to the value of the parameter.

GETPARAM Function A-15

The comma (,) is included in the string so you can concatenate strings of this form
together to build a command. Such command strings, then, can be used as input to
an EXECUTE function. For example:

status = EXECUTE(’PLOT’ + p1 + title)

If the second parameter to GETPARAM is an array, the function returns a string in
the following form:

" , param_name_1=param_ref_1, param_name_2=param_ref_2, ... "

NOTE If the param_name parameter to GETPARAM was not set by the client,
GETPARAM returns an empty string.

For more information on positional parameters, see Unpacking Command Strings
on page 57.

Returning All Keyword Parameters

Use the All keyword to return all of the keyword parameters that were sent by the
client in one string array. For example, the command:

result = GETPARAM(client_data, /All)

returns a string of the form:

", param_name_1=param_ref1, param_name_2=param_ref2, ... "

where param_name_* are all parameters sent by the client, and param_ref* are
symbolic references to the values of those parameters.

NOTE Call GETPARAM with the All keyword after you have retrieved all of the
positional and value parameters to ensure that you retrieve only the remaining
keywords.

TIP We suggest that you use a param_name array rather than All so that the client
cannot accidently send invalid parameters to the JWAVE wrapper function.

Parameters Are Retrieved Once

In all the cases above, you can only retrieve a parameter once. After you have
retrieved a parameter, it is marked as used, and further calls to GETPARAM will
not retrieve it again. This feature allows you to call GETPARAM for some param-
eters, and then call GETPARAM with /All to obtain a string containing all the rest

A-16 Appendix A: JWAVE Wrapper API JWAVE User’s Guide

of the keyword parameters. You can use the IgnoreUsed keyword to circumvent
this restriction.

Notes and Restrictions

• The keywords All, Positional, and Value are mutually exclusive, that is you can
only use one of them for each call to GETPARAM.

• All and Positional are exclusive because the returned order of the parameters is
not known.

• Similarly, if you specify either Positional or Value, then param_names cannot
be an array.

• If you specify Positional, Value, or All, then you may not use Keyword_Names.

• Keyword_Names must be a string (array) with the same number of elements as
param_names.

• ExpectNumeric, ExpectString, and ExpectType are mutually exclusive.

• ExpectArray and ExpectScalar are mutually exclusive.

• The Expect* tests do not check your Default value, but only values supplied by
the client.

• The client_data parameter must be a plain variable reference, and not a sub-
scripted array or expression.

• ClientID, SessionID, and WrapperName are mutually exclusive. These key-
words also cause all other keywords to be ignored.

Examples

Here is an example showing how the SessionID keyword can be used to build a
unique, temporary filename:

temp_file = STRTRIM(getParam(client_data), /SessionID), 2)

temp_file = FILEPATH(temp_file, /Tmp)

See the previous Discussion section for other examples. See also Chapter 5, JWAVE
Server Development for additional information and examples.

See Also

GET_NAMED_COLOR

In the PV-WAVE Reference: EXECUTE

GET_NAMED_COLOR Function A-17

GET_NAMED_COLOR Function
Gets a color from a color name supplied by a JWAVE client application.

Usage

color = GET_NAMED_COLOR(color_name)

Input Parameters

colorName — A string containing the name of the color you wish to retrieve from
the client. (This name must have been supplied in the client Java application using
the JWaveView.setNamedColor—or setNamedColorSet—method.)

Input Keywords

Color_Set — If set, GET_NAMED_COLOR returns an array of colors corre-
sponding to a named color set. (In other words, use this keyword to retrieve colors
that were packed by the client with the JWaveView.setNamedColorSet
method.) You may have a color and a color set with the same name.

DefaultRGB — Specifies a long integer (RGB value) representing the default color
if the named color does not exist. (Default: '000000'xL (black))

Output Keywords

Range_Of_Colors — Retrieves the a two-element array containing the range of
colors that are available for use by images. The first element represents the first
color in the range, and the second element represents the last color. This range is
equivalent to the number of colors in the color table minus the number of named
colors that have been retrieved. See the Discussion for information on how this key-
word is used.

Returned Value

Color — A color value that can be used by PV-WAVE.

Discussion

GET_COLOR_NAME unpacks a color object sent from a Java client and returns
a corresponding PV-WAVE color index (or, if you are using a 24-bit device, a 24-

A-18 Appendix A: JWAVE Wrapper API JWAVE User’s Guide

bit color is returned). The returned color can be used in any PV-WAVE context that
uses color, such as the Color keyword associated with many of the graphics
routines.

For example, the following calls might appear in a Java client application. They
associate names with color objects. These name/color object pairs are sent to the
JWAVE wrapper function when the execute method is called in the Java
application.

myJWaveView.setNamedColor(”BACKGROUND”, java.awt.Color.lightGray)

myJWaveView.setNamedColor(”COLOR”, java.awt.Color.red)

The following GET_NAMED_COLOR calls retrieve these name/color pairs in the
JWAVE wrapper function.

back = GET_NAMED_COLOR(”BACKGROUND”, Default=’000000’xL)

fore = GET_NAMED_COLOR(”COLOR”, Default = ’ffffff’xL)

Now, back and fore can be used in any PV-WAVE expression that takes a color
value. For example:

PLOT, x, Color=fore, Background=back

Managing the Color Table

To load a color table in a JWAVE wrapper, you must call the JWAVE_LOADCT
procedure. The resulting color table is subsetted into two parts that include (a) the
named colors returned by GET_NAMED_COLOR and (b) the rest of the colors in
the specified color table.

Figure A-1 illustrates how a color table is created in a JWAVE wrapper. When
LOAD_JWAVECT is called, a color table is created with the named colors loaded
into a subset of the color table.

• First, a named color is passed to the wrapper and retrieved with
GET_NAMED_COLOR.

• Next, the retrieved color is given a reserved spot in the color table.

• Finally, the color table specified by LOAD_JWAVECT (the image colors) is
loaded into the remainder of the color table.

GET_NAMED_COLOR Function A-19

Figure A-1 A color is retrieved by GET_NAMED_COLOR in the JWAVE wrapper. When
LOAD_JWAVECT is called, the named color is loaded into a subset of the specified color
table. All remaining colors in the color table are available for use by images.

Use the Range_Of_Colors keyword to obtain the range of colors that are allocated
for images in the color table (that is, all of the colors except the named colors
retrieved by GET_NAMED_COLOR). For instance, in Figure A-2, the first five
colors are allocated to the named colors. The remaining colors fall in the range
{5..255}. These are the colors that are available for use by images, and {5..255} is
the range that is returned by the Range_Of_Colors keyword. This range is
expressed as a two-element array, such as: range=[5, 255].

setColor(‘AXIS’, Color.red)

axis=GET_NAMED_COLOR(‘AXIS’)

JWAVE Client

LOAD_JWAVECT

execute()

myWrapper, client_data

JWAVE Wrapper

The named color
is inserted into
the color table

Color Table

A-20 Appendix A: JWAVE Wrapper API JWAVE User’s Guide

Figure A-2 Named colors occupy a subset of the color table.

Example 1-1 demonstrates how the Range_Of_Colors keyword is used to identify
the image portion of the color table, and then this range is used to “smooth” this
portion of the color table using the BYTSCL function.

Example 1-1

; Get colors

JWAVE_LOADCT, 1

 back = get_Named_Color(”BACKGROUND”, Default = ’000000’xL)

 fore = get_Named_Color(”COLOR”, Default = ’ffffff’xL)

bot = get_Named_Color(”BOTTOM”, Default = fore, $
Range_Of_Colors=crange)

; Re-map image values into the range of image colors.

s = BYTSCL(s, Top = crange(1)-crange(0)) + crange(0)

Notes and Restrictions

• Only 256 colors are available for use in JWAVE wrapper functions.

• You may use the output of a previous call to GET_NAMED_COLOR as a
default color.

• Valid color names must start with a letter and contain only letters (A-Z), digits
(0-9), and underscores (_). They are not case sensitive.

Five colors allocated by
GET_NAMED_COLOR

Remaining colors
available for use
by images.

COLOR TABLE

0

(255)

GET_NAMED_COLOR Function A-21

• If you request a color set (set by the client with the method
setNamedColorSet), then GET_NAMED_COLOR returns an array of color
indices. This is useful for things such as the CONTOUR procedure’s C_Color
keyword.

• To ensure that the value of Range_Of_Colors keyword is valid, use the value
of Range_Of_Colors from the last call to either GET_NAMED_COLOR or
JWAVE_LOADCT.

TIP To create a default color, supply a long integer containing red, green, and blue
components of the desired color. For example, the color chartreuse is represented
by red=127, green=255, and blue=0 (in hex, 7F, FF, and 00). To create this color,
use '00ff7f'xL as a constant. In an equation, you can form this constant using
PV-WAVE expressions such as:

red + 256L*(green + 256L*blue)

or

LONG(red) OR ISHFT(LONG(green), 8) OR ISHFT(LONG(blue), 16)

Examples

See the previous Discussion section for examples. See also Chapter 5, JWAVE
Server Development for additional information and examples.

See Also

GETPARAM

For more information on color tables and using color in PV-WAVE, refer to the
PV-WAVE User’s Guide.

A-22 Appendix A: JWAVE Wrapper API JWAVE User’s Guide

PACKIMAGE Procedure
Packs a 2D byte array (image) and three 1D byte arrays (RGB values) into an asso-
ciative array.

Usage

PACKIMAGE, assarr, name

Discussion

This function takes as parameters the name of an associative array and the name of
an image or plot. This routine simply packages the 2D byte array representing the
image or plot and three 1D byte arrays representing the RGB color values for the
graphic. These variables are stored in an associative array which is returned to the
calling procedure. The calling procedure then returns these items to the servlet.

Example
PackImage, ret, ’princplot’

See Also

PACKTABLE, SETIMAGESIZE

PACKTABLE Procedure
Converts string data to an HTML table.

Usage

PACKTABLE, table_text

Input Parameters

table_text — An (m, n) string array of text to put in a table with m columns and n
rows. A 1D array builds an m-column, 1-row table.

PACKTABLE Procedure A-23

Keywords

NOTE Whenever a specified attribute is not supported by a particular browser, the
attribute is simply ignored by that browser.

Border — The size of the border around cells in the table.

Bottom — Places the cell content at the bottom of each cell.

Caption — The table caption.

CBottom — Table caption displayed beneath the table.

CellPadding — Specifies the space between the borders and the content of the cell.

CellSpacing — Specifies the space between each individual cell.

Center — Centers the cell content.

ColLabels — The column labels.

EqualWidth — Defines all cells as having the same width as the largest one used.

Left — Left-justifies the cell contents in the cell.

Middle — Places the content in the middle of each cell.

NoWrap — When set, the cell contents don’t wrap onto multiple lines within the
cell.

Right — Right-justifies the cell contents in the cell.

RowLabels — The row labels.

Safe — Handles HTML special characters (see HTML_SAFE).

TCenter — Centers the table on the page (left-right centering).

TLeft — Left-justifies the table on the page. (Default: set)

Top — Places the cell content at the top of each cell.

TRight — Right-justifies the table on the page.

Discussion

This function takes string data and converts it into an HTML table format. The
HTML table data is converted to a 1D byte array. The array is then stored in an
associative array which is returned to the calling procedure. The calling procedure
then returns this data to the servlet.

A-24 Appendix A: JWAVE Wrapper API JWAVE User’s Guide

The HTML table data is converted to byte because of a limitation in the size of
strings that JWAVE can handle. In the servlet, this byte array is converted back into
a string, and it is then forwarded to a JSP page for the client to display.

Example
PackTable, TRANSPOSE(schedule), ’SCHEDULE’, ret, $

 /Right, ColLabels=collab, $

 Border=1, Caption=’Loan Schedule’

See Also

PACKIMAGE, SETIMAGESIZE

SETIMAGESIZE Procedure
Sets the size of the image appropriately for the current PV-WAVE device driver.

Usage

SETIMAGESIZE, xsize, ysize

Input Parameters

xsize — The x-dimension size of the image, in pixels.

ysize — The y-dimension size of the image, in pixels.

Example
SetImageSize, 200, 200

See Also

PACKIMAGE, PACKTABLE

UPDATE_LOG Procedure A-25

UPDATE_LOG Procedure
Writes logging and debugging information to JWAVE log file(s).

Usage

UpdateLog [, text]

Input Parameters

text — (optional) The text to output to the log. By default, the name of the calling
procedure and a time stamp are output if no text is supplied.

Keywords

NoManagerLog — If nonzero, the log text is output to only the session log, and
not the manager log.

TimeStamp — If nonzero, a time stamp is prefixed to the text. The default is no
time stamp if you supply text. The format of a timestamped log is:

mm/dd/yyyy hh:mm:ss.sss : text

Discussion

This procedure can output to two different log files: the Session log and the Man-
ager log.

• The Session log is a separate log file created for each PV-WAVE session
(process).

• The Manager log is used by the JWAVE Manager for all PV-WAVE sessions.

UPDATE_LOG always writes to the Session log. By default, it also logs to the
Manager log, but you can turn this off with the NoManagerLog keyword.

The JWAVE Manager controls whether or not any logging occurs. If you not
receiving a log file, you must configure the JWAVE Manager to produce a log file.
See Using the JWAVE Configuration Tool on page 118 for information on changing
the log output.

The JWAVE server automatically executes the command:

UPDATE_LOG, /TimeStamp

every time a JWAVE wrapper function is called.

A-26 Appendix A: JWAVE Wrapper API JWAVE User’s Guide

WRAPPER_TEST_EXECUTE Procedure
Executes the JWAVE wrapper function named in WRAPPER_TEST_INIT.

Usage

WRAPPER_TEST_EXECUTE

Parameters

None.

Discussion

The wrapper function is run with the parameters and colors that were set with
WRAPPER_TEST_SETPARAM and WRAPPER_TEST_SETCOLOR.

WRAPPER_TEST_RETURN_INFO and WRAPPER_TEST_GETRETURN can
be used to retrieve the results returned from the JWAVE wrapper.

If the JWAVE wrapper produces a plot, that plot is displayed in a PV-WAVE
window.

Example

See WRAPPER_TEST_INIT.

See Also

WRAPPER_TEST_GETRETURN, WRAPPER_TEST_INIT,
WRAPPER_TEST_RETURN_INFO, WRAPPER_TEST_SETCOLOR,
WRAPPER_TEST_SETPARAM

WRAPPER_TEST_GETRETURN Function A-27

WRAPPER_TEST_GETRETURN Function
Retrieves a value returned from a JWAVE wrapper function.

Usage

value = WRAPPER_TEST_GETRETURN(param_name)

Input Parameters

param_name — A string containing the name of the return parameter that you
wish to retrieve.

Returned Value

value — The value of the parameter.

Discussion

You can retrieve the returned value from the JWAVE wrapper only after
GET_TEST_EXECUTE has been run.

WRAPPER_TEST_GETRETURN issues a warning message and returns 0 if the
requested parameter does not exist.

This function imitates the behavior of the JWaveExecute.getReturnData
method in the Java client application.

Example

See WRAPPER_TEST_INIT.

See Also

WRAPPER_TEST_EXECUTE, WRAPPER_TEST_INIT,
WRAPPER_TEST_RETURN_INFO

A-28 Appendix A: JWAVE Wrapper API JWAVE User’s Guide

WRAPPER_TEST_INIT Procedure
Initializes a JWAVE wrapper function test.

Usage

WRAPPER_TEST_INIT, wrapper_name [, width, height]

Input Parameters

wrapper_name — A string containing the name of the wrapper function that you
wish to test.

width, height — (optional) Specifies the width and height of the graphics window,
in pixels.

Discussion

Before using the other WRAPPER_TEST_* routines, you must execute
WRAPPER_TEST_INIT.

If width and height are not set, then WRAPPER_TEST_EXECUTE does not dis-
play a plot, even if the JWAVE wrapper returns a graphic. If width and height are
set, a PV-WAVE window appears even if the JWAVE wrapper does not return any
graphics.

Examples

The following lines demonstrate the use of the WRAPPER_TEST_* commands to
test a JWAVE wrapper called testplot.pro. You can find this wrapper in:

(UNIX) VNI_DIR/jwave-3_5/lib/user

(Windows) VNI_DIR\jwave-3_5\lib\user

where VNI_DIR is the main Visual Numerics installation directory.

WAVE> WRAPPER_TEST_INIT, ’TESTPLOT’, 400, 300

WAVE> WRAPPER_TEST_SETCOLOR, ’BACKGROUND’, ’919191’xL

WAVE> WRAPPER_TEST_SETCOLOR, ’LINE’, ’ff0000’xL

WAVE> WRAPPER_TEST_SETCOLOR, ’SYMBOLS’, $

[’ff00ff’xL, ’00ffff’xL, ’ffff00’xL], /Color_Set

WAVE> WRAPPER_TEST_SETPARAM, ’DATA’, HANNING(20)

WRAPPER_TEST_INIT Procedure A-29

WAVE> WRAPPER_TEST_SETPARAM, ’SYMBOL’, 1

WAVE> WRAPPER_TEST_EXECUTE

(At this point, the returned graphic appears in a PV-WAVE graphics window.)

WAVE> WRAPPER_TEST_RETURN_INFO

DATA INT = 0

The following lines demonstrate, additionally, the use of the function
WRAPPER_TEST_GETRETURN. Here, the simple.pro wrapper is used. This
wrapper returns the square root of the input parameter. You can find this procedure
in the same directory as testplot.pro, described previously. This wrapper only
returns a numerical result and not graphics.

WAVE> WRAPPER_TEST_INIT, ’SIMPLE’

WAVE> WRAPPER_TEST_SETPARAM, ’NUMBER’, 2

WAVE> WRAPPER_TEST_EXECUTE

WAVE> PRINT, WRAPPER_TEST_GETRETURN(’DATA’)

1.41421

WAVE> WRAPPER_TEST_RETURN_INFO

DATA FLOAT = 1.41421

See Also

WRAPPER_TEST_EXECUTE, WRAPPER_TEST_RETURN_INFO,
WRAPPER_TEST_SETCOLOR, WRAPPER_TEST_SETPARAM

A-30 Appendix A: JWAVE Wrapper API JWAVE User’s Guide

WRAPPER_TEST_RETURN_INFO Procedure
Prints information on all returned values after WRAPPER_TEST_EXECUTE is
called.

Usage

WRAPPER_TEST_RETURN_INFO

Parameters

None.

Discussion

This procedure prints the same information as the PV-WAVE INFO command.

This function imitates the behavior of the Parameter.printInfo method in a
Java client application.

Example

See WRAPPER_TEST_INIT.

See Also

WRAPPER_TEST_EXECUTE, WRAPPER_TEST_GETRETURN,
WRAPPER_TEST_INIT

WRAPPER_TEST_SETCOLOR Procedure A-31

WRAPPER_TEST_SETCOLOR Procedure
Sets a named color to be used by a JWAVE wrapper function.

Usage

WRAPPER_TEST_SETCOLOR, color_name, rgb

Input Parameters

color_name — A string specifying the name of the color to set.

rgb — A long integer (RGB value) specifying the color value to set. For example,
black is represented by the long value: '000000'xL.

Keywords

Color_Set — If set, the procedure sets a named array of RGB values. In this case,
the rgb parameter must specify an array of long integers.

Discussion

The JWAVE wrapper receives this parameter with the GET_NAMED_COLOR
function. Run this procedure before running WRAPPER_TEST_EXECUTE.

This function imitates the behavior of the JWaveView.setNamedColor method
in a Java client application.

The Color_Set keyword allows this procedure to imitate the behavior of the
JWaveView.setNamedColor method in a Java client application.

Example

See WRAPPER_TEST_INIT.

See Also

GET_NAMED_COLOR, WRAPPER_TEST_EXECUTE,
WRAPPER_TEST_INIT

A-32 Appendix A: JWAVE Wrapper API JWAVE User’s Guide

WRAPPER_TEST_SETPARAM Procedure
Sets a parameter to be used as input to a JWAVE wrapper function.

Usage

WRAPPER_TEST_SETPARAM, param_name, val

Input Parameters

param_name — A string containing the name of the parameter to set.

val — The value to be associated with the parameter.

Discussion

The JWAVE wrapper receives this parameter with the GETPARAM function. Run
this procedure before running WRAPPER_TEST_EXECUTE.

This function imitates the behavior of the JWaveExecute.setParam method in
a Java client application.

Example

See WRAPPER_TEST_INIT.

See Also

GETPARAM, WRAPPER_TEST_EXECUTE, WRAPPER_TEST_INIT

B-1

APPENDIX

B

JWAVE Convenience Wrappers
This appendix describes a set of JWAVE wrappers that are provided by Visual
Numerics. These wrappers are provided primarily to give JWAVE client developers
a way to access the basic PV-WAVE graphics routines without having to write their
own JWAVE wrappers.

The JWAVE wrappers described in this appendix include:
• JWAVE_BAR3D Function — Produces a 3D bar chart.
• JWAVE_CONTOUR Function — Produces a contour plot.
• JWAVE_HISTOGRAM Function — Produces a histogram plot.
• JWAVE_LOADCT Procedure — Loads a specified color table.
• JWAVE_PIE Function — Produces a pie chart.
• JWAVE_PLOT Function — Produces 2D plots.
• JWAVE_SURFACE Function — Produces surface plots.

You can use these wrappers just like any JWAVE wrappers. This appendix tells you
specifically which parameters the wrappers can accept.

For example, to use the JWAVE_PLOT wrapper, set the JWAVE wrapper function
to JWAVE_PLOT in the client application:

JWaveConnection(”JWAVE_PLOT”)

Then, use the setParam method to set the parameters you wish to pass to the
wrapper. For example:

setParam(”X”, an_array);

setParam(”TITLE”, ”The Plot Title”);

B-2 Appendix B: JWAVE Convenience Wrappers JWAVE User’s Guide

JWAVE_BAR3D Function
This JWAVE wrapper function provides a convenient interface to the PV-WAVE
BAR3D procedure. This function always returns a Viewable object (a 3D bar
chart) to the JWAVE client. Its parameters let you control many aspects of a plot’s
appearance.

Parameters

This section lists the parameters that the JWAVE_BAR3D wrapper can retrieve,
unpack, and use to produce a 3D bar chart. These parameters correspond to the
parameters and keywords of the PV-WAVE BAR3D procedure. You must set these
parameters in the client application with the JWaveView.setParam method.

Z — (required) A 2D numeric array containing elevation values.

Keyword Parameters

This section lists the keyword parameters that can be retrieved and unpacked in this
wrapper function. For detailed information on these keywords, refer to Appendix
C, Keyword and Named Color Parameters.

Ax Ticklen [XYZ]Style

Az Title [XYZ]Ticklen

Charsize [XYZ]Charsize [XYZ]Tickname

Charthick [XYZ]Gridstyle [XYZ]Ticks

Gridstyle [XYZ]Margin [XYZ]Title

Position [XYZ]Minor ZAxis

Subtitle [XYZ]Range

JWAVE_BAR3D Function B-3

Named Color Parameters

These parameters must be set by the JWAVE client Java application with the
JWaveView.setNamedColor method.

Named ColorSet Parameters

These parameters must be set by the JWAVE client Java application with the
JWaveView.setNamedColorSet method.

Returns

This wrapper returns a Viewable object (a 3D bar chart) to the JWAVE Java client
application.

Example

In the client Java application, the setParam method is used to set the parameters
to be passed to this JWAVE wrapper on the server. JWAVE_BAR3D unpacks the
parameters and builds a PV-WAVE BAR3D command to produce a 3D bar chart.

These lines of Java code establish a connection to the server with the JWAVE wrap-
per JWAVE_BAR3D. Then, a data parameter and two configuration parameters are
set.

JWaveView myJWaveView = new JWaveView(connection, ”JWAVE_BAR3D”)

myJWaveView.JWaveView.setParam(”Z”, threed);

myJWaveView.JWaveView.setParam(”CHARSIZE”, 2);

myJWaveView.JWaveView.setParam(”TITLE”, ”Snow Depth”);

myJWaveView.setNamedColor(”BACKGROUND”, java.awt.Color.blue);

See Also

For more information on using JWAVE wrapper functions, see Chapter 5, JWAVE
Server Development.

Background Color

ColumnColors RowColors

B-4 Appendix B: JWAVE Convenience Wrappers JWAVE User’s Guide

JWAVE_CONTOUR Function
This JWAVE wrapper function provides a convenient interface to the PV-WAVE
CONTOUR procedure. This function always returns a Viewable object (a contour
plot) to the JWAVE client.

Parameters

This section lists the parameters that the JWAVE_CONTOUR wrapper can
retrieve, unpack, and use to produce a contour plot. These parameters correspond
to the parameters and keywords of the PV-WAVE CONTOUR procedure. You
must set these parameters in the client application with the JWaveView.set-
Param method.

Z — (required) A 2D array containing the values that make up the contour surface.

X — A 1D or 2D array specifying the x-coordinates for the contour surface.

Y — A 1D or 2D array specifying the y-coordinates for the contour surface.

Keyword Parameters

This section lists the keyword parameters that can be retrieved and unpacked in this
wrapper function.

Nx, Ny — If set to 1, Z (and X and Y) are interpolated from their given size into
these dimensions. If set to 0 (the default), the data is not interpolated.

Filled — If set to 1, the space between contours is filled with color. If set to 0 (the
default), contours are not filled.

For detailed information on the keywords listed in the following table, refer to
Appendix C, Keyword and Named Color Parameters.

Charsize Max_Value [XY]Margin

Charthick NLevels [XY]Minor

Clip Noclip [XY]Range

C_Annotation Position [XY]Style

C_Charsize Spline [XY]Tickformat

C_Labels Subtitle [XY]Ticklen

C_Linestyle Thick [XY]Tickname

C_Thick Tickformat [XY]Ticks

JWAVE_CONTOUR Function B-5

Named Color Parameters

These parameters must be set by the JWAVE client Java application with the
JWaveView.setNamedColor method.

Named ColorSet Parameters

These parameters must be set by the JWAVE client Java application with the
JWaveView.setNamedColorSet method.

Returns

This wrapper returns a Viewable object (of a contour plot) to the JWAVE Java cli-
ent application.

Example

In the client Java application, the setParam method is used to set the parameters
to be passed to this JWAVE wrapper on the server. JWAVE_CONTOUR unpacks
the parameters and builds a PV-WAVE CONTOUR command to produce a contour
plot.

These lines of Java code set the name of the wrapper function and some parameters.
These lines of code would appear in the JWAVE client application.

JWaveView myJWaveView = new JWaveView(connection, ”JWAVE_CONTOUR”)

myJWaveView.JWaveView.setParam(”X”, elev_data);

myJWaveView.JWaveView.setParam(”CHARSIZE”, 2);

myJWaveView.JWaveView.setParam(”TITLE”, ”Boulder”);

myJWaveView.setNamedColor(”BACKGROUND”, java.awt.Color.blue);

Follow Ticklen [XY]Tickv

Font Title [XY]Title

Gridstyle [XY]Charsize [XY]Type

Levels [XY]Gridstyle

Background Color

C_Colors Fill_Colors

B-6 Appendix B: JWAVE Convenience Wrappers JWAVE User’s Guide

See Also

For more information on using JWAVE wrapper functions, see Chapter 5, JWAVE
Server Development.

For more information on the PV-WAVE CONTOUR procedure, see the PV-WAVE
Reference.

JWAVE_HISTOGRAM Function
This JWAVE wrapper function provides a convenient interface to the PV-WAVE
HISTOGRAM procedure. This function always returns a Viewable object (a his-
togram plot) to the JWAVE Java client.

Parameters

This section lists the parameters that the JWAVE_HISTOGRAM wrapper can
retrieve, unpack, and use to produce a histogram plot. These parameters correspond
to the parameters and keywords of the PV-WAVE HISTOGRAM procedure. You
must set these parameters in the client application with the JWaveView.set-
Param method.

Y — (required) The array for which the density function will be computed. The size
of each dimension of Y may be any integer value.

Keyword Parameters

This section lists the keyword parameters that can be retrieved and unpacked in this
wrapper function.

Axiscolor — (integer) Specifies the index of the axis color.

Binsize — Specifies the width of the bins displayed in the histogram. (Default: 1)

Fillcolor — (integer) Specifies the index of the color used to fill the histogram.
(Default: Color)

Filled — If present and nonzero, the histogram is filled with color. (Default: 0)

Stepped — If present and nonzero, the histogram is plotted as “steps” rather than
as “bars”. (Default: 0)

Xmax — The maximum value for which histogram data is plotted. Any data that
falls above this value will be clipped.

JWAVE_HISTOGRAM Function B-7

Xmin — The minimum value for which histogram data is plotted. This corresponds
to the leftmost point on the x-axis where the plot begins. By default, this minimum
is set to zero. If there are negative values in your histogram data, you may need to
adjust this value to shift the data to the left. Otherwise, the plot starts at the origin.

For detailed information on the keywords listed in the following table, refer to
Appendix C, Keyword and Named Color Parameters.

Named Color Parameters

These parameters must be set by the JWAVE client Java application with the
JWaveView.setNamedColor method.

Returns

This wrapper returns a Viewable object (of a histogram plot) to the JWAVE Java
client application.

Example

In the client Java application, the setParam method is used to set the parameters
to be passed to this JWAVE wrapper on the server. JWAVE_HISTOGRAM
unpacks the parameters and builds a PV-WAVE HISTOGRAM command to pro-
duce a histogram plot.

These lines of Java code set the name of the wrapper function and some parameters.
These lines of code would appear in the JWAVE client application.

JWaveView myJWaveView = new JWaveView(connection,
”JWAVE_HISTOGRAM”)

myJWaveView.JWaveView.setParam(”X”, histdata);

myJWaveView.JWaveView.setParam(”CHARSIZE”, 2);

myJWaveView.JWaveView.setParam(”TITLE”, ”CO2 Content”);

myJWaveView.setNamedColor(”BACKGROUND”, java.awt.Color.blue);

Clip Thick [XY]Ticklen

Nodata Title [XY]Title

Noerase [XY]Range [XY]Type

Position [XY]Style

Background Color

B-8 Appendix B: JWAVE Convenience Wrappers JWAVE User’s Guide

See Also

For more information on using JWAVE wrapper functions, see Chapter 5, JWAVE
Server Development.

For more information on the PV-WAVE HISTOGRAM procedure, see the
PV-WAVE Reference.

JWAVE_LOADCT Procedure
Loads a predefined color table.

Usage

JWAVE_LOADCT, table_num

Input Parameters

table_number — A number between 0 and 16; each number is associated with a
predefined color table. You must set this parameter in the client application with
the JWaveView.setParam method.

Input Keywords

Silent — If nonzero, suppresses the message indicating that the color table is being
loaded.

Output Keywords

Range_Of_Colors — Retrieves the a 2-element array containing the range of col-
ors that are available for use by images. The first element represents the first color
in the range, and the second element represents the last color. This range is equiv-
alent to the number of colors in the color table minus the number of named colors
that have been retrieved with GET_NAMED_COLORS. See the Discussion for
information on how this keyword is used.

Discussion

The color tables associated with JWAVE wrappers are subsetted into two parts.
First, all of the colors retrieved by GET_NAMED_COLORS are stored in the color

JWAVE_LOADCT Procedure B-9

table. Then, when JWAVE_LOADCT is called, the remaining color table positions
are filled with colors from the specified color table.

TIP Call GET_NAMED_COLOR before calling JWAVE_LOADCT. This ensures
that the colors retrieved by GET_NAMED_COLOR will be stored in the color
table. The JWAVE_LOADCT procedure stores colors in the remaining color table
positions.

Predefined color tables are stored in the file colors.tbl. There are 17 predefined
color tables, with indices ranging from 0 to 16, as shown in the following table.

NOTE Values returned by the Range_Of_Colors keyword in previous calls to
GET_NAMED_COLOR may no longer be valid. Use the value of the
Range_Of_Colors keyword from the last call to either GET_NAMED_COLOR or
JWAVE_LOADCT.

Number Name

0 Black and White Linear

1 Blue/White

2 Green/Red/Blue/White

3 Red Temperature

4 Blue/Green/Red/Yellow

5 Standard Gamma-II

6 Prism

7 Red/Purple

8 Green/White Linear

9 Green/White Exponential

10 Green/Pink

11 Blue/Red

12 16 Level

13 16 Level II

14 Steps

15 PV-WAVE Special

16 Black and White Reversed

B-10 Appendix B: JWAVE Convenience Wrappers JWAVE User’s Guide

Examples

This example demonstrates the use of the Range_Of_Colors keyword. The color
table range returned by Range_Of_Colors is used in a BYTSCL call to “smooth”
the image portion of the color table.

; Retrieve a color. This color is stored in the color table.

lc = GET_NAMED_COLOR('LINE', DefaultRGB='FFFFFF'xL)

; Load a color table. These colors are loaded into the remaining

; positions of the color table.

JWAVE_LOADCT, 15, Range_Of_Colors=range

; Byte scale the range of colors that were stored in the ”image”
portion

; of the color table.

TV, BYTSCL(my_image, Top=range(1)-range(0)) + range(0)

; Make a plot using the color retrieved by GET_NAMED_COLOR.

PLOTS, overlay_data, Color=lc

See Also

GET_NAMED_COLOR

In the PV-WAVE Reference:

LOADCT

JWAVE_PIE Function B-11

JWAVE_PIE Function
This JWAVE wrapper function provides a convenient interface to the PV-WAVE
PIE_CHART procedure.This function always returns a Viewable object (a pie
chart) to the JWAVE Java client.

Parameters

This section lists the parameters that the JWAVE_PIE wrapper can retrieve,
unpack, and use to produce a pie chart. These parameters correspond to the param-
eters and keywords of the PV-WAVE PIE_CHART2 procedure. You must set these
parameters in the client application with the JWaveView.setParam method.

Y — (required) A 1D array of values to plot (30 maximum).

Keyword Parameters

This section lists the keyword parameters that can be retrieved and unpacked in this
wrapper function.

Charsize — Relative character size. (Default: 1.0)

Explode — Explode (move out from center). Normalized displacement of each
slice from the center (between 0 and 1). Must be an array with the same length as
X, if supplied. (Default: 0 for all slices)

Label — Text labels for each slice. If specified, must be an array of strings the same
length as X.

Radius — Normalized radius of the pie chart. Between 0 and 0.5. (Default: 0.3)

Tborder — Draw borders around the labels. A boolean 0 or 1. (Default: 0)

Tperct — Add notation of percentage of each slice to the label. A boolean 0 or 1.
(Default: 0)

Tvalue — Add notation of value of each slice to the label. A boolean 0 or 1.
(Default: 0)

Tposition — Label positions: 0 = Internal to the slice, 1 = External, 2 = External
Aligned.

Xcenter, Ycenter — Normalized position of the center of the chart. Between 0
AND 1. (Default: 0.5, 0.5)

Shade — Draw a shadow under the chart. Normalized displacement of the shadow
from the center of the chart (between 0 and 1). (Default: no shadow)

B-12 Appendix B: JWAVE Convenience Wrappers JWAVE User’s Guide

Named Color Parameters

These parameters must be set by the JWAVE client Java application with the
JWaveView.setNamedColor method.

Background — The background color. (Default: black)

Color — Color for lines (pie outline) and title text. (Default: white)

Tbord_Color — Color for the label border (if Tborder is set). (Default: the value
of the Color keyword)

Named ColorSet Parameters

These parameters must be set by the JWAVE client Java application with the
JWaveView.setNamedColorSet method.

Slices — Color for each slice. If specified, must have the same number of colors as
there are data points in X. (Default: shades of gray)

Tcolor — Color for the label of each slice. If specified, must have the same number
of colors as there are data points in X. (Default: slices)

Returns

This wrapper returns a Viewable object (of a pie chart) to the JWAVE Java client
application.

Example

In the client Java application, the setParam method is used to set the parameters
to be passed to this JWAVE wrapper on the server. JWAVE_PIE unpacks the
parameters and builds a PV-WAVE PIE_CHART command to produce a pie chart.

These lines of Java code set the name of the wrapper function and some parameters.
These lines of code would appear in the JWAVE client application.

JWaveView myJWaveView = new JWaveView(connection, ”JWAVE_PIE”)

myJWaveView.JWaveView.setParam(”Y”, piedata);

myJWaveView.JWaveView.setParam(”CHARSIZE”, 2);

myJWaveView.JWaveView.setParam(”TITLE”, ”Relative Weights”);

myJWaveView.setNamedColor(”BACKGROUND”, java.awt.Color.blue);

JWAVE_PLOT Function B-13

See Also

For more information on using JWAVE wrapper functions, see Chapter 5, JWAVE
Server Development.

For more information on the PV-WAVE PIE_CHART procedure, see the
PV-WAVE Reference.

JWAVE_PLOT Function
This JWAVE wrapper function provides a convenient interface to the PV-WAVE
PLOT procedure. This function always returns a Viewable object (a 2D plot) to
the JWAVE Java client.

Parameters

This section lists the parameters that the JWAVE_PLOT wrapper can retrieve,
unpack, and use to produce a 2D plot. These parameters correspond to the param-
eters and keywords of the PV-WAVE PLOT procedure. You must set these
parameters in the client application with the JWaveView.setParam method.

Y — (required) A 1D array. If only this parameter is supplied, Y is plotted on the
vertical axis as a function of the number of points. In other words, unit spacing is
assumed along the horizontal axis.

X — A 1D array. If both positional parameters are supplied, the first variable is the
independent variable, and it is plotted along the horizontal axis. The second vari-
able is the dependent variable, and it is plotted along the vertical axis (as a function
of the independent variable).

Yn — You can produce overlays of up to nine additional plot lines by specifying
parameters [, Y1, Y2, ... Y9].

Xn — You can produce overlays of additional plot lines by specifying parameters
[, X1, X2, ... X9] for the dependent variables. These are only used if their corre-
sponding Yn value is set. If a Yn is set and an Xn is not set, then the value for X is
used (or unit spacing if X is not set).

B-14 Appendix B: JWAVE Convenience Wrappers JWAVE User’s Guide

Scaling — Specifies the type of axis scaling for the plot.

Keyword Parameters

This section lists the keyword parameters that can be retrieved and unpacked in this
wrapper function. For detailed information on these keywords, refer to Appendix
C, Keyword and Named Color Parameters.

* These parameters can be used to specify the properties of specific overlay plot
lines. For example, if the overlay parameter Y1 is specified, then Psym1 sets the
plot symbols for that particular data. In other words, by appending a number {1..9}
after these particular keywords, you associate the keyword with data having the
same suffix. Note that if Y1 is specified, but Psym1 is not specified, then Y1 is plot-
ted using the value of Psym (no suffix) or its default.

0 Produces a simple XY plot with linear axes. Corresponds to the PLOT
procedure. (Default)

1 Produces an XY plot with logarithmic scaling on the y-axis and linear
scaling on the x-axis. Corresponds to the PLOT_IO procedure.

2 Produces an XY plot with linear scaling on the y-axis and logarithmic
scaling on the x-axis. Corresponds to the PLOT_OI procedure.

3 Produces an XY plot with logarithmic scaling on both the x-axis and the y-
axis. Corresponds to the PLOT_OO procedure.

Box * Solid_Psym [XY]Range

Charsize Subtitle [XY]Style

Charthick * Symsize [XY]Tickformat

* Clip * Thick [XY]Ticklen

Gridstyle Tickformat [XY]Tickname

* Linestyle Ticklen [XY]Ticks

 * Noclip Title [XY]Tickv

* Nsum [XY]Charsize [XY]Title

* Polar [XY]Gridstyle [XY]Type

Position [XY]Margin YNozero

* Psym [XY]Minor

JWAVE_PLOT Function B-15

Named Color Parameters

These parameters must be set by the JWAVE client Java application with the
JWaveView.setNamedColor method.

Returns

This wrapper returns a Viewable object (of a 2D plot) to the JWAVE Java client
application.

Example

In the client Java application, the setParam method is used to set the parameters
to be passed to this JWAVE wrapper on the server. JWAVE_PLOT unpacks the
parameters and builds a PV-WAVE PLOT command to produce a 2D plot.

These lines of Java code set the name of the wrapper function and some parameters.
These lines of code would appear in the JWAVE client application.

JWaveView myJWaveView = new JWaveView(connection, ”JWAVE_PLOT”)

myJWaveView.setParam(”Y”, myArray);

myJWaveView.setParam(”CHARSIZE”, 2);

myJWaveView.setParam(”TITLE”, ”CO2 Content”);

myJWaveView.setNamedColor(”BACKGROUND”, java.awt.Color.blue);

Y is a positional parameter; CHARSIZE and TITLE are keyword parameters. The
JWAVE_PLOT wrapper function knows how to retrieve these parameters, con-
struct a 2D plot, and return a Viewable object to the client.

See Also

For more information on using JWAVE wrapper functions, see Chapter 5, JWAVE
Server Development.

For more information on the PV-WAVE PLOT procedure, see the PV-WAVE
Reference.

Axis Background Color

B-16 Appendix B: JWAVE Convenience Wrappers JWAVE User’s Guide

JWAVE_SURFACE Function
This JWAVE wrapper function provides a convenient interface to the PV-WAVE
SURFACE procedure. This function always returns a Viewable object (a surface
plot) to the JWAVE Java client.

Parameters

This section lists the parameters that the JWAVE_SURFACE wrapper can retrieve,
unpack, and use to produce a surface plot. These parameters correspond to the
parameters and keywords of the PV-WAVE SURFACE procedure. You must set
these parameters in the client application with the JWaveView.setParam
method.

Z — (required) A 2D array containing the values that make up the surface. If X and
Y are supplied, the surface is plotted as a function of the X,Y locations specified by
their contents. Otherwise, the surface is generated as a function of the array index
of each element of Z.

X — A 1D or 2D array specifying the x-coordinates for the surface.

• If X is a 1D array, each element of X specifies the x-coordinate for a column of
Z. For example, x(0) specifies the x-coordinate for z(0, *).

• If X is a 2D array, each element of X specifies the x-coordinate of the corre-
sponding point in z (xij specifies the x-coordinate for zij).

Y — A 1D or 2D array specifying the y-coordinates for the surface.

• If Y is a 1D array, each element of y specifies the y-coordinate for a row of Z.
For example, y(0) specifies the y-coordinate for z (*, 0).

• If Y is a 2D array, each element of Y specifies the y-coordinate of the corre-
sponding point in z (yij specifies the y-coordinate for zij).

Keyword Parameters

This section lists the keyword parameters that can be retrieved and unpacked in this
wrapper function.

Ctable — A PV-WAVE color table to use for shading, an integer between 0 and 16.
See the LOAD_JWAVECT command. (Default: 0 — gray-scale)

Mesh — Boolean, indicating whether to draw a mesh surface (will overlay mesh
on shading, if shaded). (Default: 1)

JWAVE_SURFACE Function B-17

Nx, Ny — If set, Z (and X, Y, and Shades) are interpolated from their given size into
these dimensions.

Shaded — Boolean, indicating whether to shade the surface with light source. See
also Ctable and Shaded. (Default: 0)

Shades — An array expression, of the same dimensions as z, containing the color
index at each point. The shading of each pixel is interpolated from the surrounding
Shades values. For most displays, this parameter should be scaled into the range of
bytes. If this keyword is omitted, light source shading is used. Will be scaled to fit
in the range of colors used by Ctable. (Default: no shading)

For detailed information on the keywords listed in the following table, refer to
Appendix C, Keyword and Named Color Parameters.

Named Color Parameters

These parameters must be set by the JWAVE client Java application with the
JWaveView.setNamedColor method.

Returns

This wrapper returns a Viewable object (of a surface plot) to the JWAVE Java cli-
ent application.

Ax Subtitle [XYZ]Range

Az Thick [XYZ]Style

Charsize Tickformat [XYZ]Tickformat

Charthick Ticklen [XYZ]Ticklen

Clip Title [XYZ]Tickname

Gridstyle [XYZ]Charsize [XYZ]Ticks

Noclip [XYZ]Gridstyle [XYZ]Tickv

Position [XYZ]Margin [XYZ]Title

Skirt [XYZ]Minor ZAxis

Background Bottom Color

B-18 Appendix B: JWAVE Convenience Wrappers JWAVE User’s Guide

Example

In the client Java application, the setParam method is used to set the parameters
to be passed to this JWAVE wrapper on the server. JWAVE_SURFACE unpacks the
parameters and builds a PV-WAVE SURFACE command to produce a surface plot.

These lines of Java code set the name of the wrapper function and some parameters.
These lines of code would appear in the JWAVE client application.

JWaveView myJWaveView = new JWaveView(connection, ”JWAVE_SURFACE”)

myJWaveView.JWaveView.setParam(”X”, elev_data);

myJWaveView.JWaveView.setParam(”CHARSIZE”, 2);

myJWaveView.JWaveView.setParam(”TITLE”, ”Snow Depth”);

myJWaveView.setNamedColor(”BACKGROUND”, java.awt.Color.blue);

See Also

For more information on using JWAVE wrapper functions, see Chapter 5, JWAVE
Server Development.

For more information on the PV-WAVE SURFACE procedure, see the PV-WAVE
Reference.

C-1

APPENDIX

C

Keyword and Named Color
Parameters

Three categories of parameters described in this appendix:

• Keyword Parameters on page C-2

• Named Color Parameters on page C-19

• Named ColorSet Parameters on page C-20

Using These Parameters
Visual Numerics has provided, for your convenience, a set of JWAVE wrapper
functions for use in graphics applications. These wrapper functions can be called
from a JWAVE Java client application to generate most of the types of plots that are
available in PV-WAVE. These JWAVE wrappers include:

• JWAVE_BAR3D Function — Produces a 3D bar chart.

• JWAVE_CONTOUR Function — Produces a contour plot.

• JWAVE_HISTOGRAM Function — Produces a histogram plot.

• JWAVE_PIE Function — Produces a pie chart.

• JWAVE_PLOT Function — Produces 2D plots.

• JWAVE_SURFACE Function — Produces surface plots.

They are described in Appendix B, JWAVE Convenience Wrappers.

C-2 Appendix C: Keyword and Named Color Parameters JWAVE User’s Guide

This appendix describes the parameters that you can set in the Java client applica-
tion for use by these JWAVE wrapper functions. In the Java client application, you
set these parameters using methods such as:

JWaveExecute.setParam

JWaveView.setNamedColor

JwaveView.setNamedColorSet

For example, the following method sets a color parameter called Background in the
Java client application:

myJWaveView.setNamedColor(”BACKGROUND”, Java.awt.Color.yellow)

Then, in the JWAVE wrapper function, this color is retrieved with:

back = GET_NAMED_COLOR(”BACKGROUND”, Default=’000000’xL)

The Background parameter is commonly used to set the background color for plots.
It is described on page C-19.

Keyword Parameters

NOTE Named Color Parameters are listed on page C-19. Named ColorSet
Parameters are listed on page C-20.

Ax

Used With: JWAVE_BAR3D, JWAVE_SURFACE

Specifies the angle of rotation about the x-axis, in degrees, towards the viewer. The
default is +30 degrees.

The surface represented by the 2D array is first rotated, Az (see the Az keyword)
degrees about the z-axis, then by Ax degrees about the x-axis, tilting the surface
towards the viewer (Ax > 0), or away from the viewer.

NOTE This keyword is effective only if the PV-WAVE !P.T3d system variable is
not set. If !P.T3d is set, the 3D to 2D transformation used by is contained in the 4-
by-4 array !P.T. Refer to the PV-WAVE Reference for information on system
variables.

Keyword Parameters C-3

Az

Used With: JWAVE_BAR3D, JWAVE_SURFACE

Specifies the counterclockwise angle in degrees of rotation about the z-axis (when
looking down the z-axis toward the origin). The order of rotation is Az first, then Ax.

NOTE This keyword is effective only if the PV-WAVE system variable !P.T3d is
not set. Refer to the PV-WAVE Reference for information on system variables.

Box

Used With: JWAVE_PLOT

Places a box around the labels in a Date/Time axis. If you set the keyword to a value
of 1, boxes are drawn around all the labels of the Date/Time axis.

By default, no boxes are drawn. For information on Date/Time axes, refer to the
PV-WAVE User’s Guide.

C_Annotation

Used With: JWAVE_CONTOUR

Sets the label that will be drawn on each contour.

Usually, contours are labeled with their value. This parameter, an array of strings,
allows any text to be specified. The first label is used for the first contour drawn,
and so forth. If Levels is specified, the elements of C_Annotation correspond
directly to the levels specified, otherwise, they correspond to the default levels cho-
sen by the PV-WAVE CONTOUR procedure. If there are more contour levels than
elements in C_Annotation, the remaining levels are labeled with their values.

Use of C_Annotation implies use of the Follow keyword.

C_Charsize

Used With: JWAVE_CONTOUR

Sets the size of the characters used to annotate contour labels.

Normally, contour labels are drawn at three-fourths the size used for the axis labels
(specified by the Charsize keyword or the !P.Charsize system variable in
PV-WAVE). This keyword allows the contour label size to be specified indepen-
dently. Use of this keyword implies use of the Follow keyword.

C-4 Appendix C: Keyword and Named Color Parameters JWAVE User’s Guide

Charsize

Used With: JWAVE_BAR3D, JWAVE_CONTOUR, JWAVE_PIE,
JWAVE_PLOT, JWAVE_SURFACE

Sets the overall character size for the annotation. A Charsize of 1.0 is normal. The
size of the annotation on the axes may be set, relative to Charsize, with XCharsize,
YCharsize, and ZCharsize. The main title is written with a character size of 1.25
times this parameter.

Charthick

Used With: JWAVE_BAR3D, JWAVE_CONTOUR, JWAVE_PLOT,
JWAVE_SURFACE

Sets the thickness of characters drawn with the software fonts. Normal thickness is
1.0, double thickness is 2.0, and so on. (If this keyword is omitted, the value of the
PV-WAVE system variable !P.Charthick is used.)

C_Labels

Used With: JWAVE_CONTOUR

Specifies which contour levels should be labeled. By default, every other contour
level is labeled.

C_Labels allows you to override this default and explicitly specify the levels to
label. This parameter is an array, converted to integer type if necessary. If the Levels
keyword is specified, the elements of C_Labels correspond directly to the levels
specified, otherwise, they correspond to the default levels chosen by the PV-WAVE
CONTOUR procedure. Setting an element of the array to zero causes that contour
level to not be labeled. A nonzero value forces labeling.

Use of this keyword implies use of the Follow keyword.

C_Linestyle

Used With: JWAVE_CONTOUR

Specifies the linestyle used to draw each contour.

As with C_Colors, C_Linestyle is an array of linestyle indices. If there are more
contour levels than linestyles, the linestyles are cyclically repeated. The following
table lists the available linestyles and their keyword indices:

Keyword Parameters C-5

NOTE The current contouring algorithm draws all the contours in each cell, rather
than following contours. Hence, some of the more complicated linestyles will not
be suitable for some applications.

Clip

Used With: JWAVE_CONTOUR, JWAVE_HISTOGRAM, JWAVE_PLOT,
JWAVE_SURFACE

Specifies the coordinates of a rectangle used to clip the graphics output. Graphics
that fall inside the rectangle are displayed; graphics that fall outside the clipping
rectangle are not displayed.

The rectangle is specified as an array of the form [X0, Y0, X1, Y1], giving data
coordinates of the lower-left and upper-right corners, respectively.

C_Thick

Used With: JWAVE_CONTOUR

Specifies the line thickness of lines used to draw each contour level. As with
C_Colors, C_Thick is an array of line thickness values, although the values are
floating-point. If there are more contours than thickness elements, elements are
repeated. If omitted, the overall line thickness specified by the Thick keyword
parameter or the PV-WAVE system variable !P.Thick is used for all contours.

Index X Windows Style Windows Style

0 Solid Solid

1 Dotted Short dashes

2 Dashed Long dashes

3 Dash dot Long-short dashes

4 Dash-dot-dot-dot Long-short-short dashes

5 Long dashes Long dashes

C-6 Appendix C: Keyword and Named Color Parameters JWAVE User’s Guide

Follow

Used With: JWAVE_CONTOUR

If set to a nonzero value, forces the PV-WAVE CONTOUR procedure to use the
line-following method instead of the cell-drawing method.

CONTOUR can draw contours using one of two different methods:

• The cell-drawing method, used by default, examines each array cell and draws
all contours emanating from that cell before proceeding to the next cell. This
method is efficient in terms of computer resources but does not allow contour
labeling.

• The line-following method searches for each contour line and then follows the
line until it reaches a boundary or closes. This method gives better looking
results with dashed linestyles, and allows contour labeling, but requires more
computer time. It is used if any of the following keywords is specified:
C_Annotation, C_Charsize, C_Labels, Follow, or Path_Filename.

Although these two methods both draw correct contour maps, differences in their
algorithms can cause small differences in the resulting plot.

Font

Used With: JWAVE_CONTOUR

An integer that specifies the graphics text font index.

• Font index –1 selects the software fonts, which are drawn using vectors.

• Font number 0 selects the hardware font of the output device.

NOTE Hardware font drivers that support 3D transformations include X Win-
dows, WIN32 (on Windows NT platforms only), PostScript, and WMF (on
Windows NT platforms only).

Gridstyle

Used With: JWAVE_BAR3D, JWAVE_CONTOUR, JWAVE_PLOT,
JWAVE_SURFACE

Lets you change the linestyle of tick intervals.

The default is a solid line. Other linestyle choices and their index values are listed
in the following table:

Keyword Parameters C-7

One possible use for this keyword is to create an evenly spaced grid consisting of
dashed lines across your plot region. To do this, first set the Ticklen keyword to 0.5.
This ensures that the dashed tick style will appear correctly on your plot. Then set
the Gridstyle keyword to the style you want to use.

Levels

Used With: JWAVE_CONTOUR

Specifies an array containing the contour levels (maximum of 150) drawn by the
PV-WAVE CONTOUR procedure.

A contour is drawn for each level specified in Levels. If Levels is omitted, the data
range is divided into approximately six equally-spaced levels.

Linestyle

Used With: JWAVE_PLOT

Specifies the linestyle used to draw the lines or connect data points.

UNIX USERS The line join style is “miter,” that is, the outer edges of two lines
extend to meet at an angle.

Windows USERS The line join style is “round.”

The linestyle index is an integer, as shown in the following table:

Index X Windows Style Windows Style

0 Solid (default) Solid (default)

1 Dotted Short dashes

2 Dashed Long dashes

3 Dash dot Long-short dashes

4 Dash-dot-dot-dot Long-short-short dashes

5 Long dashes Long dashes

C-8 Appendix C: Keyword and Named Color Parameters JWAVE User’s Guide

Sets the maximum number of levels on a Date/Time axis. For example, assume that
the Date/Time data contains years, months, days, hours, minutes, and seconds. If
this keyword is set to three, then the Date/Time axis will show three levels: sec-
onds, minutes, and hours.

Max_Value

Used With: JWAVE_CONTOUR

Data points with values equal to or above this value are ignored when contouring.
Cells containing one or more corners with values above Max_Value will have no
contours drawn through them.

NLevels

Used With: JWAVE_CONTOUR

The number of equally-spaced contour levels that are produced by CONTOUR.
The maximum is 150. (Default: 6)

If the Levels parameter, which explicitly specifies the value of the contour levels,
is present this keyword has no effect. If neither parameter is present approximately
six levels are drawn.

If the minimum and maximum Z values are Zmin and Zmax, then the value of the ith
level is:

Zmin + (i + 1)(Zmax – Zmin)/(NLevels + 1)

where i ranges from 0 to NLevels – 1.

Index X Windows Style Windows Style

0 Solid Solid

1 Dotted Short dashes

2 Dashed Long dashes

3 Dash dot Long-short dashes

4 Dash-dot-dot-dot Long-short-short dashes

5 Long dashes Long dashes

Keyword Parameters C-9

Noclip

Used With: JWAVE_CONTOUR, JWAVE_PLOT, JWAVE_SURFACE

Enforces the default clipping behavior, which is to clip graphics at the boundary of
the Plot Data Region (area bounded by the coordinate axes).

Nodata

Used With: JWAVE_HISTOGRAM

If this keyword is set to a nonzero value, only the axes, titles, and annotation are
drawn. No data points are plotted.

Noerase

Used With: JWAVE_HISTOGRAM

If set to a nonzero value, specifies that the screen or page is not to be erased. By
default the screen is erased, or a new page is begun, before a plot is produced.

Nsum

Used With: JWAVE_PLOT

Indicates the number of data points to average when plotting.

If Nsum is larger than 1, every group of Nsum points is averaged to produce one
plotted point. If there are m data points, then m / Nsum points are displayed. On log-
arithmic axes a geometric average is performed.

It is convenient to use Nsum when there is an extremely large number of data points
to plot because it plots fewer points, the graph is less cluttered, and it is quicker.

Polar

Used With: JWAVE_PLOT

Polar plots are produced when this keyword is set to a nonzero value.

The X and Y parameters, both of which must be present, are first converted from
polar to cartesian coordinates. The first parameter is the radius, and the second is
θ, expressed in radians.

C-10 Appendix C: Keyword and Named Color Parameters JWAVE User’s Guide

Position

Used With: JWAVE_BAR3D, JWAVE_CONTOUR, JWAVE_HISTOGRAM,
JWAVE_PLOT, JWAVE_SURFACE

Allows direct specification of the plot window.

Position is a four-element array giving, in order, the coordinates
[(x0, y0), (x1, y1)] of the lower-left and upper-right corners of the data window.
Coordinates are expressed in normalized units ranging from 0.0 to 1.0.

When setting the position of the window, be sure to allow space for the annotation,
which resides outside the window. PV-WAVE outputs the message

%, Warning: Plot truncated.

if the plot region is larger than the screen or page size. The plot region is the rect-
angle enclosing the plot window and the annotation.

When plotting in three dimensions, the Position keyword is a six-element array
with the first four elements describing, as above, the XY position, and with the last
two elements giving the minimum and maximum z-coordinates. The Z specifica-
tion is always in normalized coordinate units.

Psym

Used With: JWAVE_PLOT

Specifies the symbol used to mark each data point.

!P.Psym Value Symbol Drawn

0 No symbol, connect points with solid lines

1 Plus sign

2 Asterisk

3 Period

4 Diamond

5 Triangle

6 Square

7 X

8 User-defined, see the USERSYM procedure

9 Undefined

Keyword Parameters C-11

Normally, Psym is 0, data points are connected by lines, and no symbols are drawn
to mark the points. Specify this keyword to mark data points with symbols. The
keyword Symsize is used to set the size of the symbols.

Negative values of Psym cause the symbol designated by |Psym| to be plotted at
each point with solid lines connecting the symbols. For example, a Psym value of
–5 plots triangles at each data point and connects the points with lines.

The Psym keyword can specify an array of plot symbols. If an array is used, each
plot symbol value in the array is applied, in order, to create the plot symbols that
make up the graph. The symbols are repeated, as needed, to complete the entire
graph of the data set.

NOTE Forty-one new graphic symbols have been added for PV-WAVE plot rou-
tines. These new symbols include:

Psym=9

Psym=11...Psym=41

(Psym=10 is reserved)

See also Solid_Psym.

Skirt

Used With: JWAVE_SURFACE

A skirt around the array at a given z value is drawn if this keyword parameter is
nonzero. The z value is expressed in data units.

If the skirt is drawn, each point on the four edges of the surface is connected to a
point on the skirt which has the given z value, and the same x and y values as the
edge point. In addition, each point on the skirt is connected to its neighbor.

10 Data points are plotted in the histogram mode.
Horizontal and vertical lines connect the plotted
points, as opposed to the normal method of con-
necting points with straight lines.

–value Negative values connect symbols with solid lines

!P.Psym Value Symbol Drawn

C-12 Appendix C: Keyword and Named Color Parameters JWAVE User’s Guide

Solid_Psym

Used With: JWAVE_PLOT

If this parameter is set to a nonzero value, symbols are drawn with solid lines no
matter which linestyle is used to connect the symbols. By default, symbols are
drawn with the currently specified linestyle.

Spline

Used With: JWAVE_CONTOUR

If this parameter is set to a nonzero value, specifies that contour paths are to be
interpolated using cubic splines.

Use of this keyword implies the use of the Follow keyword. The appearance of con-
tour plots of arrays with low resolution may be improved by using spline
interpolation. In rare cases, contour lines that are close together may cross because
of interpolation.

Splines are especially useful with small data sets (less than 15 array dimensions).
With larger data sets the smoothing is not as noticeable and the expense of splines
increases rapidly with the number of data points.

You may specify the length of each interpolated line segment in normalized coor-
dinates by including a value with this keyword. The default value is 0.005 which is
obtained when the parameter Spline is present. Smaller values for this parameter
yield smoother lines, up to the resolution of the output device, at the expense of
more computations.

Subtitle

Used With: JWAVE_BAR3D, JWAVE_CONTOUR, JWAVE_PLOT,
JWAVE_SURFACE

Produces a subtitle underneath the x-axis containing the text in this string
parameter.

Symsize

Used With: JWAVE_PLOT

Specifies the size of the symbols drawn when Psym is set. The default size of 1.0
produces symbols approximately the same size as a character.

Keyword Parameters C-13

The Symsize keyword can specify an array of symbol sizes. If an array is used, each
plot symbol size in the array is applied, in order, to size the plot symbols that make
up the graph. The symbol sizes are repeated, as needed, to complete the entire
graph of the data set.

Thick

Used With: JWAVE_CONTOUR, JWAVE_HISTOGRAM, JWAVE_PLOT,
JWAVE_SURFACE

Controls the thickness of the lines connecting points. A thickness of 1.0 is normal,
2.0 is double-wide, etc.

Tickformat

Used With: JWAVE_CONTOUR, JWAVE_PLOT, JWAVE_SURFACE

Lets you use FORTRAN-style format specifiers to change the format of tick labels
on the x-, y-, and z-axes.

The resulting plot’s tick labels are formatted with a total width of five characters
carried to two decimal places. As expected, the width field expands automatically
to accommodate larger values.

Note that only the I (integer), F (floating-point), and E (scientific notation) format
specifiers can be used with Tickformat. Also, you cannot place a quoted string
inside a tick format. For example, ("<", F5.2, ">") is an invalid Tickformat
specification.

See also [XYZ]Tickformat.

Ticklen

Used With: JWAVE_BAR3D, JWAVE_CONTOUR, JWAVE_PLOT,
JWAVE_SURFACE

Controls the length of the axis tick marks, expressed as a fraction of the window
size. The default value is 0.02. Ticklen of 0.5 produces a grid, while a negative
Ticklen makes tick marks that extend outside the plot region, rather than inwards.

C-14 Appendix C: Keyword and Named Color Parameters JWAVE User’s Guide

Title

Used With: JWAVE_BAR3D, JWAVE_CONTOUR, JWAVE_HISTOGRAM,
JWAVE_PLOT, JWAVE_SURFACE

Sets a string used for the main title centered above the plot window.

The text size of this main title is larger than the other text by a factor of 1.25.

XCharsize, YCharsize, ZCharsize

Used With: JWAVE_BAR3D, JWAVE_CONTOUR, JWAVE_PLOT,
JWAVE_SURFACE

The size of the characters used to annotate the x-, y-, and z-axes and their titles.

This field is a scale factor applied to the global scale factor set by the PV-WAVE
system variable !P.Charsize or the keyword Charsize.

See also Charsize.

XGridstyle, YGridstyle, ZGridstyle

Used With: JWAVE_BAR3D, JWAVE_CONTOUR, JWAVE_PLOT,
JWAVE_SURFACE

Lets you change the linestyle of tick intervals on the x-, y-, and z-axes.

The default is a solid line.

See also Gridstyle.

Index X Windows Style Windows Style

0 Solid (default) Solid (default)

1 Dotted Short dashes

2 Dashed Long dashes

3 Dash dot Long-short dashes

4 Dash-dot-dot-dot Long-short-short dashes

5 Long dashes Long dashes

Keyword Parameters C-15

XMargin, YMargin, ZMargin

Used With: JWAVE_BAR3D, JWAVE_CONTOUR, JWAVE_PLOT,
JWAVE_SURFACE

A two-element array specifying the margin around the sides of the plot window, in
units of character size. Default margins are 10 (left margin) and 3 (right margin)
for the x-axis, 4 (bottom margin) and 2 (top margin) for the y-axis. For the z-axis
the default margins are both 0.

XMinor, YMinor, ZMinor

Used With: JWAVE_BAR3D, JWAVE_CONTOUR, JWAVE_PLOT,
JWAVE_SURFACE

The number of minor tick intervals on the x-, y-, and z-axes. If set to 0, the default,
PV-WAVE automatically determines the number of minor ticks in each major tick
mark interval. Setting this parameter to –1 suppresses the minor ticks, and setting
it to a positive, nonzero number n produces n minor tick intervals, and n – 1 minor
tick marks.

XRange, YRange, ZRange

Used With: JWAVE_BAR3D, JWAVE_CONTOUR, JWAVE_HISTOGRAM,
JWAVE_PLOT, JWAVE_SURFACE

The desired data range of the x-, y-, and z-axes, a two-element array. The first ele-
ment is the axis minimum, and the second is the maximum. PV-WAVE will
frequently round this range.

XStyle, YStyle, ZStyle

Used With: JWAVE_BAR3D, JWAVE_CONTOUR, JWAVE_HISTOGRAM,
JWAVE_PLOT, JWAVE_SURFACE

Allows specification of axis options such as rounding of tick values and selection
of a box axis. Each option is encoded in a bit. See the following table for details:

C-16 Appendix C: Keyword and Named Color Parameters JWAVE User’s Guide

NOTE The ZStyle keyword has no effect in Date/Time plots.

XTickformat, YTickformat, ZTickformat

Used With: JWAVE_CONTOUR, JWAVE_PLOT, JWAVE_SURFACE

Lets you use FORTRAN-style format specifiers to change the format of tick labels
for the x-, y-, and z-axes.

This keyword works basically the same way as the Tickformat keyword.

See also Tickformat.

XTicklen, YTicklen, ZTicklen

Used With: JWAVE_BAR3D, JWAVE_CONTOUR, JWAVE_HISTOGRAM,
JWAVE_PLOT, JWAVE_SURFACE

Functions the same as the keyword Ticklen. [XYZ]Ticklen, however, can be applied
to the x-, y-, and z-axes. [XYZ]Ticklen supersedes the value of the Ticklen setting.

Bit Value Function

0 1 Exact. By default the end points of the axis are rounded in
order to obtain even tick increments. Setting this bit inhibits
rounding, making the axis fit the data range exactly.

1 2 Extend. If this bit is set, the axes are extended by 5% in each
direction, leaving a border around the data.

2 4 None. If this bit is set, the axis and its text is not drawn.

3 8 No box. Normally, JWAVE_PLOT and
JWAVE_CONTOUR draw a box style axis with the data
window surrounded by axes. Setting this bit inhibits draw-
ing the top or right axis.

4 16 Inhibits setting the y-axis minimum value to zero, when the
data are all positive and nonzero. The keyword YNozero sets
this bit temporarily.

Keyword Parameters C-17

XTickname, YTickname, ZTickname

Used With: JWAVE_BAR3D, JWAVE_CONTOUR, JWAVE_PLOT,
JWAVE_SURFACE

A string array, of up to 30 elements, containing the annotation of each major tick
mark.

If omitted, or if a given string element that contains the null string, PV-WAVE
labels the tick mark with its value. To suppress the tick label, supply a string array
of one-character-long blank strings. You can do this with the command:

REPLICATE(’ ’, N)

(Null strings cause PV-WAVE to number the tick mark with its value.) Note that if
there are n tick mark intervals, there are n + 1 tick marks and labels.

XTicks, YTicks, ZTicks

Used With: JWAVE_BAR3D, JWAVE_CONTOUR, JWAVE_PLOT,
JWAVE_SURFACE

The number of major tick intervals to draw for the x-, y-, and z-axes. If omitted
PV-WAVE will select from three to six tick intervals. Setting this field to n, where
n > 0, produces exactly n tick intervals, and n + 1 tick marks.

XTickv, YTickv, ZTickv

Used With: JWAVE_CONTOUR, JWAVE_PLOT, JWAVE_SURFACE

The data values for each tick mark, an array of up to 30 elements.

This keyword allows you to directly specify tick data values, producing graphs
with non-linear tick marks. PV-WAVE scales the axis from the first tick value to
the last, unless you directly specify a range. If you specify n tick intervals, you must
specify n + 1 tick values.

XTitle, YTitle, ZTitle

Used With: JWAVE_BAR3D, JWAVE_CONTOUR, JWAVE_HISTOGRAM,
JWAVE_PLOT, JWAVE_SURFACE

Specifies a string to be used as a title below the x-, y-, and z-axes.

See also Title

C-18 Appendix C: Keyword and Named Color Parameters JWAVE User’s Guide

XType, YType, ZType

Used With: JWAVE_CONTOUR, JWAVE_HISTOGRAM, JWAVE_PLOT

Specifies a linear axis if zero; specifies a logarithmic axis if one; and if set to 2,
enables compressed Julian numbers to be used directly with the graphics
procedures.

NOTE YType has no effect in Date/Time plots.

YNozero

Used With: JWAVE_PLOT

Inhibits setting the minimum y-axis value to zero when the y data are all positive
and nonzero, and no explicit minimum y value is specified (using Yrange).

By default, the y-axis spans the range of 0 to the maximum value of y, in the case
of positive y data.

ZAxis

Used With: JWAVE_BAR3D , JWAVE_SURFACE

Specifies the placement of the z-axis.

By default, the z-axis is drawn at the upper-left corner of the axis box. To suppress
the z-axis, use ZAxis = -1 in the call. The position of the z-axis is determined
from ZAxis as follows:

1 = lower-right, 2 = lower-left, 3 = upper-left, and 4 = upper-right.

Named Color Parameters C-19

Named Color Parameters

NOTE Keyword Parameters are listed on page C-2. Named ColorSet Parameters
are listed on page C-20.

Axis

Used With: JWAVE_PLOT

Specifies an AWT color object used to draw the axis. (Default: Color.white)

Background

Used With: JWAVE_BAR3D, JWAVE_CONTOUR, JWAVE_HISTOGRAM,
JWAVE_PIE, JWAVE_PLOT, JWAVE_SURFACE

Specifies an AWT color object to which the screen is set when the ERASE proce-
dure is called. (Default: Color.black)

NOTE Not all devices support erasing the background to a color index.

Bottom

Used With: JWAVE_SURFACE

Specifies an AWT color object used to draw the lower part of the surface. If not
specified, the bottom is drawn with the same color as the top (the top is specified
with the Color keyword).

NOTE If the x-axis rotation is between 90 and 270 degrees, the top of the surface
will be colored with the color specified by the Bottom keyword.

Color

Used With: JWAVE_BAR3D, JWAVE_CONTOUR, JWAVE_HISTOGRAM,
JWAVE_PIE, JWAVE_PLOT, JWAVE_SURFACE

Specifies an AWT color object to set the color of text, lines, solid polygon fill, data,
axes, and annotation. (Default: Color.white)

C-20 Appendix C: Keyword and Named Color Parameters JWAVE User’s Guide

Named ColorSet Parameters

NOTE Keyword Parameters are listed on page C-2. Named Color Parameters are
listed on page C-19.

C_Colors

Used With: JWAVE_CONTOUR

An array of AWT color objects used to set the color used to draw each contour.

If there are more contour levels than elements in C_Colors, the elements of the
color array are cyclically repeated.

ColumnColors

Used With: JWAVE_BAR3D

An array of AWT color objects specifying the color for each column of bars. Must
have the same number of colors as the second dimension of Z. Only one of Row-
Colors or ColumnColors may be used.

Fill_Colors

Used With: JWAVE_CONTOUR

Color_Index — If present, specifies an array of AWT Color objects to be used in
the contour plot. Element i of this array contains the color of contour level number
i – 1. Element 0 contains the background color. There must be one more color than
there are number of contour levels. This keyword is only valid of the Filled key-
word is set.

RowColors

Used With: JWAVE_BAR3D

An array of AWT color objects specifying the color for each row of bars. Must have
the same number of colors as the first dimension of Z. Only one of RowColors or
ColumnColors may be used.

D-1

APPENDIX

D

HTTP Configuration File
This appendix describes options that you can set in a file used to configure the
JWAVE HTTP Web server. The HTTP Web server is active if the property
MANAGER_START_HTTP is set to TRUE in the JWAVE Configuration Tool, as
described in Using the JWAVE Configuration Tool on page 118.

By default, the location of this configuration file is:

VNI_DIR/jwave-3_5/bin/jwave_http.cfg

where VNI_DIR is the main Visual Numerics installation directory.

To change the default location of the jwave_http.cfg file, edit the property
HTTP_CONFIG in the JWAVE Configuration Tool.

NOTE On Windows platforms, you must use two back slashes (\\) as a directory
separator, rather than the normal single back slash (\). For example:

C:\\Program Files\\MyDocs

You must stop and restart the JWAVE Manager to make any changes you make to
this file take effect. For example:

manager shutdown

manager start

Or, if you are using the JWAVE Windows NT Service:

net stop jwaveservice

net start jwaveservice

D-2 Appendix D: HTTP Configuration File JWAVE User’s Guide

General Parameters
homeDir — The default directory to serve for the URL of “/”.

Default: VNI_DIR/classes

Example: homeDir = c:\\program files\\myWebHome

indexFile — The default file to serve for a URL that maps to a directory.

Default: index.html

Example: indexFile = index.html

JWaveURL — The URL that serves a JWAVE connection. Set the HTTP connec-
tion method to use this URL (for example: http://myhost:8080/JWave).
Should start with a slash (/).

Default: /JWave

Example: JWaveURL = /JWave

MimeDefault — The default mime type to use for unknown file types.

Default: application/octet-stream

Example: MimeDefault = application/octet-stream

Directory Mapping
To map a URL to a directory (so that when you point your browser to a URL, the
server knows the directory in which to find files).

Syntax:

dir.<url> = <full-path-to-directory>

Replace <url> with the top-level URL you wish to map (no slashes are allowed)

Replace <full-path-to-directory> with the full path to the directory that
should map to that URL

For example, if you want the URL http://myhost/someplace/file.html to
map to the server’s file C:\Program Files\MyDocs\file.html, then use:

dir.someplace = C:\\Program Files\\MyDocs

Default:

dir.classes = VNI_DIR/classes

where VNI_DIR is the JWAVE installation directory.

Mime Types Mapping D-3

Mime Types Mapping
To map a file extension (file.ext) to a Mime type.

Syntax:

mime.<ext> = <mime-type>

• Replace <ext> with the file extension (whatever follows the last period in the
file).

• Replace <mime-type> with the Mime type to use when serving files with the
given extension.

For example, to serve a file foo.html as Mime type text/html, use:

mime.html = text/html

The defaults are:

mime.html = text/html

mime.htm = text/html

mime.jpeg = image/jpeg

mime.jpg = image/jpeg

mime.gif = image/gif

mime.png = image/png

mime.txt = text/plain

mime.class = application/octet-stream

mime.jar = application/octet-stream

mime.properties = text/plain

D-4 Appendix D: HTTP Configuration File JWAVE User’s Guide

E-1

APPENDIX

E

JWAVE Bean Tools Reference
This appendix describes a set of JWAVE Beans that are provided by Visual Numer-
ics. The data input and customizable parameters for each tool are described.

See Using JWAVE Beans with the BeanBox on page 83 for more information on
using these Bean Tools.

List of JWAVE Bean Tools
• JWAVE Bar3d Tool on page E-2

• JWAVE Contour Tool on page E-3

• JWAVE Generic Tool on page E-6

• JWAVE Histogram Tool on page E-7

• JWAVE Pie Tool on page E-8

• JWAVE Plot Tool on page E-10

• JWAVE Surface Tool on page E-13

E-2 Appendix E: JWAVE Bean Tools Reference JWAVE User’s Guide

JWAVE Bar3d Tool
The JWAVE Bar3D Tool is a Bean that displays a 3D bar plot.

See Chapter 7, Using JWAVE Beans for information on using this Bean in the
BeanBox.

Input

The JWAVE Bar3d Tool uses a DoubleTable object as data input to the
PV-WAVE BAR3D procedure. (Default: 30 columns of data)

Customizer Reference

The JWAVE Bean Tools provided by Visual Numerics each have a Customizer for
modifying the appearance of the plot produced by the Bean. This section describes
the features of the Bar3D Tool Customizer.

Titles Tab

Title — Defines the text for the main title that appears centered above the plot. The
text size of this main title is larger than the other text by a factor of 1.25.

Sub Title — Defines the text for the subtitle that appears underneath the x-axis.

X Axis Title — Defines the text for the title that appears below the x-axis.

Y Axis Title — Defines the text for the title that appears below the y-axis.

Z Axis Title — Defines the text for the title that appears below the z-axis.

Character Size — Sets the overall character size for the annotation. A value of 1.0
is normal. The main title is written with a character size of 1.25 times this
parameter.

Rotations Tab

X Rotation — Specifies the clockwise rotation about the x-axis. (Default: 30˚)

Z Rotation — Specifies the clockwise rotation about the z-axis. (Default: 30˚)

Colors Tab

Background Color — Brings up a color tool for selecting the background color of
the plot.

JWAVE Contour Tool E-3

Foreground Color — Brings up a color tool for selecting the foreground color of
the plot.

Columns Tab

Column Names — Sets the column you want to work with while selecting the Col-
umn Color parameter.

Column Color — Brings up a color tool for selecting the color of the selected
column.

JWAVE Contour Tool
The JWAVE Contour Tool is a Bean that displays a contour plot.

See Chapter 7, Using JWAVE Beans for information on using this Bean in the
BeanBox.

Input

This Tool uses up to three data arrays (z, x, and y) as input to the PV-WAVE CON-
TOUR procedure.

z — A 2D array containing the values that make up the contour surface.

x — (optional) A 1D or 2D array specifying the x-coordinates for the contour
surface.

y— (optional) A 1D or 2D array specifying the y-coordinates for the contour
surface.

Customizer Reference

The JWAVE Beans provided by Visual Numerics each have a Customizer for mod-
ifying the appearance of the plot produced by the Bean. This section describes the
features of the Contour Tool Customizer.

Contour Parameters Tab

Grid On — When selected, a grid is displayed behind the contour.

Fill Contours — When selected, a color other than the background color is used
to fill the areas between contour lines. When Fill Contours is selected, the intervals
between the contour lines are filled with the contour line colors.

E-4 Appendix E: JWAVE Bean Tools Reference JWAVE User’s Guide

Number of Levels — Sets the number of equally-spaced contour levels that are
produced. The maximum is 150. (Default: 6)

X Range — Sets the data range of the x-axis, a two-element vector. The first ele-
ment is the axis minimum and the second is the maximum.

Y Range — Sets the data range of the y-axis, a two-element vector. The first ele-
ment is the axis minimum and the second is the maximum.

Cell — The cell-drawing method, the default, examines each array cell and draws
all contours emanating from that cell before proceeding to the next cell. This
method is efficient in terms of computer resources but does not allow contour
labeling.

Follow Method — The line-following method searches for each contour line and
then follows the line until it reaches a boundary or closes. This method gives better
looking results with dashed line styles and allows contour labeling, but requires
more computer time.

Spline — Allows you to spline the contour lines. This function can be used when
either the Follow method of contour drawing or Fill Contours is selected.

Splines are especially useful with small data sets (less than 15 array dimensions).
With larger data sets the smoothing is not as noticeable and the expense of splines
increases rapidly with the number of data points.

Spline Size — Specifies the length of each interpolated line segment in normalized
coordinates. Smaller values for this parameter yield smoother lines, up to the reso-
lution of the output device, at the expense of more computations. (Default: 0.005)

Interpolation (CONGRID) — When selected, applies interpolation, which
shrinks or expands the number of elements in the contour by interpolating values
at intervals where there might not have been values before.

Number of X Points — Sets the number of columns desired in the output image.

Number of Y Points — Sets the number of rows desired in the output image.

Plot Basics Tab

Title — Defines the text for the main title that appears centered above the plot. The
text size of this main title is larger than the other text by a factor of 1.25.

Sub Title — Defines the text for the subtitle that appears underneath the x-axis.

X Axis Title — Defines the text for the title that appears below the x-axis.

Y Axis Title — Defines the text for the title that appears below the y-axis.

JWAVE Contour Tool E-5

Character Size — Sets the overall character size for the annotation. A value of 1.0
is normal. The main title is written with a character size of 1.25 times this
parameter.

Background Color — Brings up a color tool for selecting the background color of
the plot.

Foreground Color — Brings up a color tool for selecting the foreground color of
the plot.

Levels Tab

Default Annotation — Labels the selected contour level with its elevation.

No Annotation — Turns off annotation of the selected contour level.

Special Annotation — Applies the specified annotation for the selected contour
level. When the Special Annotation button is selected, you can enter annotation text
in the text field located below the button.

Line Color — Brings up a color tool for selecting the line color for the selected
level.

Fill Color — Brings up a color tool for selecting the fill color for the selected level.

Line Thickness — Sets the value for the thickness of the lines in the selected level.
A value of 1.0 is normal thickness, 2.0 is double-wide, and so on.

Line Style — Sets the line style of the lines in the selected level. Choices are: Solid,
Dotted, Dashed, Dash dot, Dash-dot-dot-dot, and Long dashes.

E-6 Appendix E: JWAVE Bean Tools Reference JWAVE User’s Guide

JWAVE Generic Tool
The JWAVE Generic Tool is a Bean that contains a property that determines which
PV-WAVE procedure to invoke to generate and display a plot. This Bean can take
up to ten data Proxy’s (all 2D arrays) as input to the PV-WAVE procedure.

See Chapter 7, Using JWAVE Beans for information on using this Bean in the
BeanBox.

Customizer Reference

The JWAVE Beans provided by Visual Numerics each have a Customizer for mod-
ifying the appearance of the plot produced by the Bean. This section describes the
features of the Generic Tool Customizer.

Plot Properties Tab

Plot Type —Specifies the name of a JWAVE procedure file stored in:

(UNIX) VNI_DIR/jwave-3_5/lib

(Windows) VNI_DIR\jwave-3_5\lib

where VNI_DIR is the main Visual Numerics installation directory.

Title — Defines the text for the main title that appears centered above the plot.

Colors Tab

Background Color — Brings up a color tool for selecting the background color of
the plot.

Foreground Color — Brings up a color tool for selecting the foreground color of
the plot.

JWAVE Histogram Tool E-7

JWAVE Histogram Tool
The JWAVE Histogram Tool is a Bean that displays a histogram plot.

Input

This Tool uses a 1D array containing histogram data as input to the PV-WAVE
HISTOGRAM procedure.

See Chapter 7, Using JWAVE Beans for information on using this Bean in the
BeanBox.

Customizer Reference

The JWAVE Beans provided by Visual Numerics each have a Customizer for mod-
ifying the appearance of the plot produced by the Bean. This section describes the
features of the Histogram Tool Customizer.

Titles Tab

Title — Defines the text for the main title that appears centered above the plot.

X Axis Title — Defines the text for the title that appears below the x-axis.

Y Axis Title — Defines the text for the title that appears below the y-axis.

Histogram Properties Tab

Bin Size — The range of values to consider as having a single value. If no value is
specified, the Bin Size range defaults to a value of 1.

Stepped — When selected, the histogram is displayed without the vertical lines
between the bars, which produces a histogram plot that resembles ascending and
descending stair steps.

Colors Tab

Background Color — Brings up a color tool for selecting the background color of
the histogram plot.

Foreground Color — Brings up a color tool for selecting the foreground color of
the histogram plot.

Fill Histogram — When selected, the color set with the Fill Color parameter is used
to fill the bins of the histogram.

E-8 Appendix E: JWAVE Bean Tools Reference JWAVE User’s Guide

Fill Color — Brings up a color tool used to select a color for filling the bins in the
histogram.

Axis Tab

Axis Color — Brings up a color tool for selecting a color for the axes.

X Max — Defines the maximum for the data range of the x-axis.

X Min — Defines the minimum for the data range of the x-axis

JWAVE Pie Tool
The JWAVE Pie Tool is a Bean that displays a pie chart.

Input

This Tool uses a DoubleTable object as input to the PV-WAVE PIE_CHART
procedure.

See Chapter 7, Using JWAVE Beans for information on using this Bean in the
BeanBox.

Customizer Reference

The JWAVE Beans provided by Visual Numerics each have a Customizer for mod-
ifying the appearance of the plot produced by the Bean. This section describes the
features of the Pie Tool Customizer.

Labels Tab

Title — Defines the text for the main title that appears centered above the pie chart.

Show Slice Percentages — When selected, each slice is labeled with the percent-
age it represents out of the total pie.

Show Slice Values — When selected, each slice is labeled with the value it
represents.

Show Label Border — When selected, a filled rectangle displays behind each
label.

Slice Label Position — Defines the position of slice labels.

Internal — Places the label in the slice.

JWAVE Pie Tool E-9

External — Places the label outside the slice.

External Aligned — Places the label outside the slice and lined-up on each side
of the pie.

Dimensions Tab

X Center — The x-axis coordinate for the center of the pie.

Y Center — The y-axis coordinate for the center of the pie.

Shade Displacement — Specifies the percentage of displacement for the center of
the drop shadow displayed behind the pie chart. The direction of the displacement
is 315˚.

Colors Tab

Background Color — Brings up a color tool for selecting the background color of
the pie chart.

Foreground Color — Brings up a color tool for selecting the foreground color of
the pie chart.

Label Border Color — If Show Label Border (in the Labels tab) is selected, brings
up a color tool for selecting the color of the filled rectangle that displays behind
each label.

Slices Tab

Slices — Sets the slice you want to work with while using the parameters in the
Slices tab.

Slice Color — Brings up a color tool for selecting the color for the selected slice.

Slice Label Color — Brings up a color tool for selecting the color of the text in the
label for the selected slice.

Percent Explode for Slice — Defines the percentage to explode the selected slice
from the center of the pie.

E-10 Appendix E: JWAVE Bean Tools Reference JWAVE User’s Guide

JWAVE Plot Tool
The JWAVE Plot Tool is a Bean that displays an XY (2D) graph.

See Chapter 7, Using JWAVE Beans for information on using this Bean in the
BeanBox.

Input

This Tool uses one or two data arrays (X and Y) as input to the PV-WAVE PLOT
procedure.

Customizer Reference

The JWAVE Beans provided by Visual Numerics each have a Customizer for mod-
ifying the appearance of the plot produced by the Bean. This section describes the
features of the Plot Tool Customizer.

Titles Tab

Title — Defines the text for the main title that appears centered above the plot. The
text size of this main title is larger than the other text by a factor of 1.25.

Sub Title — Defines the text for the subtitle that appears underneath the x-axis.

X Axis Title — Defines the text for the title that appears below the x-axis.

Y Axis Title — Defines the text for the title that appears below the y-axis.

Character Size — Sets the overall character size for the annotation. A value of 1.0
is normal. The main title is written with a character size of 1.25 times this
parameter.

Colors Tab

Background Color — Brings up a color tool for selecting the background color of
the plot.

Axis Color — Brings up a color tool for selecting the axis color of the plot.

Y Data Color — Brings up a color tool for selecting the color of the y data.

X Data Color — Brings up a color tool for selecting the color of the x data.

JWAVE Plot Tool E-11

Plot Tab

Grid On — When selected, a grid is displayed behind the plot.

Polar Plot — When selected, a polar plot is produced.

Axis Scaling — Sets the type of scaling to be used for the X and Y axes.

Linear – Linear — Produces a plot with linear scaling on both axes.

Log – Linear — Produces a plot with logarithmic scaling on the x-axis and
linear scaling on the y-axis.

Linear – Log — Produces a plot with linear scaling on the x-axis and
logarithmic scaling on the y-axis.

Log – Log — Produces a plot with logarithmic scaling on both axes.

X Range — Defines the data range of the x-axis, a two-element vector. The first
element is the axis minimum and the second is the maximum.

Y Range — Defines the data range of the y-axis, a 2-element vector. The first ele-
ment is the axis minimum and the second is the maximum.

Data Tab

Plot X vs. Y — If one data array is present, graphs the array vs. the index. If two
data arrays are present, graphs one array vs. the other.

Plot X and Y data arrays — Only available if two data arrays are present. Graphs
both arrays vs. the index.

Y Data

Line Style — Sets the line style of the y data line. Choices are: Solid, Dotted,
Dashed, Dash dot, Dash-dot-dot-dot, and Long dashes.

Line Thickness — Sets the value for the thickness of the y data line. A value of 1.0
is normal thickness, 2.0 is double-wide, and so on.

Symbol — Sets the type of symbol to used to plot each y data point.

None — Specifies that no symbols display at each y data point. The None
setting results in a line drawn between data points.

Plus Sign — Specifies a + at each y data point.

Asterisk — Specifies an * at each y data point.

Period — Specifies a . at each y data point.

E-12 Appendix E: JWAVE Bean Tools Reference JWAVE User’s Guide

Diamond — Specifies a diamond shape at each y data point.

Triangle — Specifies a triangle shape at each y data point.

Square — Specifies a square shape at each y data point.

X — Specifies an X at each y data point.

Symbol Size — Sets the value for the size of y data plot symbols. A value of 1.0 is
normal size, 2.0 is double-size, and so on.

Connect Symbols with Lines — When selected, symbols are connected with
lines. This parameter can be used when the value of Symbol is other than None.

X Data

Line Style — Sets the line style of the x data line. Choices are: Solid, Dotted,
Dashed, Dash dot, Dash-dot-dot-dot, and Long dashes.

Line Thickness — Sets the value for the thickness of the x data line. A value of 1.0
is normal thickness, 2.0 is double-wide, and so on.

Symbol — Sets the type of symbol to used to plot each x data point.

None — Specifies that no symbols display at each x data point. The None
setting results in a line drawn between data points.

Plus Sign — Specifies a + at each x data point.

Asterisk — Specifies an * at each x data point.

Period — Specifies a . at each x data point.

Diamond — Specifies a diamond shape at each x data point.

Triangle — Specifies a triangle shape at each x data point.

Square — Specifies a square shape at each x data point.

X — Specifies an X at each x data point.

Symbol Size — Sets the value for the size of x data plot symbols. A value of 1.0 is
normal size, 2.0 is double-size, and so on.

Connect Symbols with Lines —When selected, symbols are connected with lines.
This parameter can be used when the value of Symbol is other than None.

JWAVE Surface Tool E-13

JWAVE Surface Tool
The JWAVE Surface Tool is a Bean that displays the surface of a 2D array. The sur-
face can be displayed with hidden lines removed or shaded. This Tool uses the
PV-WAVE SURFACE procedure to render the plot.

See Chapter 7, Using JWAVE Beans for information on using this Bean in the
BeanBox.

Input

This Tool takes up to four data arrays (z, x, y, and shade values).

z — A 2D array containing the values that make up the surface. If x and y are sup-
plied, the surface is plotted as a function of the X,Y locations specified by their
contents. Otherwise, the surface is generated as a function of the array index of
each element of z.

x — (optional) A 1D or 2D array specifying the x-coordinates for the surface.

• If x is a 1D array, each element of x specifies the x-coordinate for a column of
z. For example, x(0) specifies the x-coordinate for z(0, *).

• If x is a 2D array, each element of x specifies the x-coordinate of the corre-
sponding point in z.

y — (optional) A 1D or 2D array specifying the y-coordinates for the surface.

• If y is a 1D array, each element of y specifies the y-coordinate for a row of z.
For example, y(0) specifies the y-coordinate for z(*, 0).

• If y is a 2D array, each element of y specifies the y-coordinate of the corre-
sponding point in z.

Customizer Reference

The JWAVE Beans provided by Visual Numerics each have a Customizer for mod-
ifying the appearance of the plot produced by the Bean. This section describes the
features of the Surface Tool Customizer.

Titles Tab

Title — Defines the text for the main title that appears centered above the plot. The
text size of this main title is larger than the other text by a factor of 1.25.

Sub Title — Defines the text for the subtitle that appears underneath the x-axis.

E-14 Appendix E: JWAVE Bean Tools Reference JWAVE User’s Guide

X Title — Defines the text for the title that appears below the x-axis.

Y Title — Defines the text for the title that appears below the y-axis.

Z Title — Defines the text for the title that appears below the z-axis.

Character Size — Sets the overall character size for the annotation. A value of 1.0
is normal. The main title is written with a character size of 1.25 times this
parameter.

Colors Tab

Background Color — Brings up a color tool for selecting the background color of
the plot.

Foreground Color — Brings up a color tool for selecting the foreground color of
the plot.

Bottom Color — Brings up a color tool for selecting the color of the bottom of the
plot.

Color Table — Sets the color table used for the plot.

Plot Tab

Grid — When selected, a grid is displayed behind the plot.

Shade — When selected, the plot will be shaded.

Overplot with Surface — When selected, plot lines appear on top of the surface
if Shade is also selected.

Z Axis Location — Sets the position of the z-axis origin to lower-right, lower-left,
upper-right, or upper-left.

Z Rotation — Specifies the rotation about the z-axis. (Default: 30˚)

X Rotation — Specifies the rotation about the x-axis. (Default: 30˚)

Skirt — When selected, a skirt is added to the surface. A skirt helps establish a
frame of reference between the surface and the x-, y-, and z-axes. Skirt can be used
when Shade is not set.

Skirt Value — Defines the value along the z-axis at which the bottom of the skirt
begins. (Default = minimum z value for the variable)

X Range — Sets the data range of the x-axis, a two-element vector. The first ele-
ment is the axis minimum and the second is the maximum.

JWAVE Surface Tool E-15

Y Range — Sets the data range of the y-axis, a two-element vector. The first ele-
ment is the axis minimum and the second is the maximum.

Z Range — Sets the data range of the z-axis, a two-element vector. The first ele-
ment is the axis minimum and the second is the maximum.

Data Tab

Interpolation — When selected, applies interpolation, which shrinks or expands
the number of elements in the surface plot by interpolating values at intervals
where there might not have been values before.

Number of X Points — Sets the number of columns desired in the output image.

Number of Y Points — Sets the number of rows desired in the output image.

E-16 Appendix E: JWAVE Bean Tools Reference JWAVE User’s Guide

F-1

APPENDIX

F

Glossary
API

An acronym for Application Programming Interface. The JWAVE wrapper API is
a set of PV-WAVE functions used specifically for creating JWAVE applications.

applet (Java)

A Java application that runs inside a Web browser or an application such as an
applet viewer. Unlike an application, an applet has no main method and must be
referenced in an HTML.

application (Java)

A command-line executable written in Java. Unlike an applet, a Java application
does not have to run inside a Web browser or applet viewer, and an application has
a main method.

BDK

The JavaBeansTM Development Kit from Sun Microsystems, Inc.

BeanBox

A tool for testing the functionality of a JavaBean. Available in the Beans
Development Kit (BDK version 1.0 March 98, or later) from Sun Microsystems.

F-2 Appendix F: Glossary JWAVE User’s Guide

Beans

See JavaBeans.

CGI

An acronym Common Gateway Interface. Used to run programs through a Web
server.

class

Basic unit of compilation and execution in Java. All Java programs are classes.

client (JWAVE)

In a JWAVE system, a local processor connected to the JWAVE server. The JWAVE
client is used to develop Java applications that communicate directly with
PV-WAVE running on the JWAVE server. JWAVE classes and JAR files, a Java
compiler, and (optional) a BDK reside on the JWAVE Development client.

configuration tool

A graphical user interface used to configure the JWAVE server.

customizer

A graphical user interface used to configure a JWAVE Beans Tool.

Data Manager

JWAVE server software that keeps track of data in a PV-WAVE session. Although
usually accessed indirectly by client applications using data proxies, JWAVE
wrapper developers can use Data Manager (DM) functions directly in JWAVE
wrappers to store and access data.

domain

A named dataspace in which JWAVE client applications can store data on the
server.

event

Something important that happens at a specific point in time during runtime of a
Java application (such as a mouse click, a condition being met, or new data
arriving).

 F-3

HTML

An acronym for HyperText Markup Language. HTML is the source text for most
Web pages.

JAR files

A Java Archive file used for packaging related class files, serialized JavaBeans, and
other resources.

Java

An object-oriented programming language developed by Sun Microsystems. Java
programs are architecture neutral, which means that they can run on any machine
that implements the Java Virtual Machine. The JWAVE client is certified as 100%
Pure JavaTM.

JavaBeans

JavaBeans allow you to write self-contained, reusable software units that can be
visually assembled in a visual application builder tool.

The component architecture for Java. components in graphical user environments.
JavaBeans are a core capability of the JDK 1.1 from Sun Microsystems.

Javadoc

A tool used to produce reference documentation for Java class files. To use JWAVE
“Javadoc”, open the following file in a Web browser:

(UNIX) VNI_DIR/classes/docs/api/packages.html

(Windows) VNI_DIR\classes\docs\api\packages.html

where VNI_DIR is the main Visual Numerics installation directory.

JavaScript

An object-based scripting language for embedding programming scripts in HTML
files. JavaScript can be used with the generic JWAVE applet to create a graphical
user interface for a Web page.

JDK

An acronym for Java Development Kit. This is the core software development
package for Java from Sun Microsystems.

F-4 Appendix F: Glossary JWAVE User’s Guide

JWAVE

JWAVE is a visualization and computational environment that allows you to
quickly and easily develop cross-platform applications to analyze and visually
interpret data. JWAVE is a 100% Pure Java client that lets you deliver applications
and solutions across the Internet or your intranet.

JWAVE Beans

JavaBeans that are written specifically to use JWAVE components. Visual
Numerics provides a set of JWAVE Beans for JWAVE client developers. Note that
JWAVE Beans are supported with BDK version 1.0 (March 98), or a later version.

JWAVE Manager

A process on the JWAVE server that “listens” for client connections. When a
connection is made, the JWAVE Manager starts a PV-WAVE session and
executes a “JWAVE wrapper function.”

JWAVE wrapper

A PV-WAVE function that contains JWAVE-specific functions for passing
parameters between JWAVE client and server applications.

keyword

An optional PV-WAVE function or procedure parameter that is of the form:
keyword=value. For instance, the PV-WAVE PLOT command has numerous
keywords, such as Title, Color, and XRange.

log

Information that is output from a JWAVE program. You can configure the JWAVE
Manager to output log information to the terminal or to a file.

Manager

See JWAVE Manager and Data Manager.

method

The term used for a procedure or function that is part of a class in an object-oriented
programming language, such as Java.

 F-5

pack

Parameters and data must be “packed” before being sent between JWAVE client
and server programs. Packing simply refers to the formatting of data in a consistent
manner so that it can be interpreted (or “unpacked”) correctly after being received.

persistence (of data)

This term simply refers to the time during which data is available to a PV-WAVE
session. In general, data stored in the JWAVE Data Manager is persistent as long
as the PV-WAVE session is active. When the session is closed, the data (which was
in memory) is lost, unless it was explicitly saved.

ping

A ping refers to a program that determines whether or not a specified process is
running. The JWAVE Manager has several ping options that let you test if the
JWAVE Manager is running.

proxy

Generally speaking, a proxy is an object-oriented programming term that refers to
an object that represents or refers to another object, such as data. In JWAVE,
proxies are used by client applications to refer to data that is stored on the server.

PV-WAVE

PV-WAVE, from Visual Numerics, Inc., provides the fundamental components for
developing visual data analysis applications. These components include a highly
developed, array oriented 4GL language as well as robust graphical and numerics
routines. PV-WAVE is the graphical and numerical “engine” for JWAVE.

PV-WAVE application

A program written in the PV-WAVE language and using PV-WAVE graphics and
numerical routines. JWAVE allows client applications, written in Java, to
communicate with PV-WAVE applications running on a server machine.

PV-WAVE session

A single PV-WAVE process running on a server. JWAVE client applications can
contact a single PV-WAVE session multiple times, or multiple PV-WAVE sessions
at once. Any data that is stored by the JWAVE Data Manager is persistent for the
life of the PV-WAVE session with which it is associated.

F-6 Appendix F: Glossary JWAVE User’s Guide

serialize

When “serializable” JavaBeans are linked together to form an application in an
visual development environment such as the BeanBox, that application can be
saved as a stand-alone Java application.

server (JWAVE)

In a JWAVE system, the remote processor where PV-WAVE, the JWAVE Manager,
the configuration files, and class files, JWAVE wrappers, and the JRE (Java
Runtime Environment) reside.

Service, Windows NT

The JWAVE Manager can be installed and run as a Service on a Windows NT
server. Installing JWAVE Manager as a Windows NT Service allows you to:

• run the JWAVE Manager as a background process

• keep the JWAVE Manager running when there are no interactively logged-in
users

• shut down the JWAVE Manager by stopping the JWAVE Service

socket

A specific port, identifiable by a number, for connecting clients and servers on a
network. JWAVE can be configured to accept client communications through a
socket. See also Web server.

Swing components

The Swing component set is a graphical user interface (GUI) toolkit used for
creating menus, text fields, dialog boxes, and so on. Swing consists of 100% Java
components, and are completely platform independent. You can download the
Swing component toolkit from the Sun Microsystems Web site.

unpack

Parameters and data that are sent between client applications and JWAVE wrappers
are sent in as a stream of data objects that must be interpreted, or “unpacked” after
they are received.

 F-7

Web server

Software that listens for and handles requests transmitted from client programs
across the Internet or an intranet. JWAVE can be configured to accept client
communications through a Web server. See also socket.

wrapper

See JWAVE wrapper.

F-8 Appendix F: Glossary JWAVE User’s Guide

Index - A 1

JWAVE Index

A
advanced graphics, interactive 135
applet examples 143
applets/applications

data proxies 77
demo HTML files 27
demonstration HTML files 27
embedded in HTML 18, 21
example 12
generic 17
generic applet 17
generic example 17
HTML example 18
JavaScript 21
JavaScript example 22
on JWAVE client 7, 12
on JWAVE clients 17, 21
running 16

arrays, passing 15
ArrayUtils class 34

B
BDKDIR variable 84
BDK, required version 109
Bean class 105
BeanBox

customizer 87
exercise 83
modifying startup script 84
starting 85
starting from a script 85
using a JWAVE Bean 85
using the JWAVE Surface Tool 87

BeanDescriptor class 105
BeanInfo class

example 105
using 96

bound properties 94

C
casting returned data 33
CGI connection 127
CGI program, URL to 127
CGI (Common Gateway Interface) 10
classes

Bean 105
BeanDescriptor 105
BeanInfo 96, 105
Customizer 105
customizers, definition of 104
Exception 36
JWaveCanvas 41
JWaveCanvas2D 135
JWaveCanvas3D 140
JWaveConnection class 36
JWaveDataProxy 74
JWavePanel 41
JWavePanel2D 135
JWavePanel3D 140
JWaveView 42, 132
Method 100
MethodDescriptor 100
property editor 103
PropertyChangeSupport 94
Proxy 90
Serializable 106
SimpleBeanInfo 96
Viewable 49

CLASSPATH variable
client 134
in BeanBox startup script 85
modifying for using JavaBeans 84
server 131

client
applet execution 17
CLASSPATH variable 134
data flow 15

2 Index - D JWAVE User’s Guide

development 29
directories 108
example program 80
installation overview JWAVE 107, 145
Java application (applet) 12
JavaScript 21
output 82
overview 7
parameter flow 15
setup for development 133

color
available for wrappers A-20
color table in a JWAVE wrapper A-18
handling in wrappers C-1
PV-WAVE parameters C-1
retrieving 60

COMPILE procedure 54
compressing data 36, 127
configuring

Beans 87, E-1
files for 116
HTTP D-1
JWAVE Manager 116, 116–125
JWAVE server 107, 118, 145
saving the configuration 120

connection to server
automatic 31
exception 36
existing 31
HTTP 3
managing 36
servlet connection 6
socket 4
URL address 5

coordinate transforms 49
Customizer classes

definition of 104
using in BeanBox 87

D
data

analysis by PV-WAVE 10
casting returned 33
compressing 36
flow between client and server 15, 29
graphical 42
handing in JavaBean 90
managing 73

persistence of 82
proxies 73
proxy lifespan 82
return 67
returned, casting 33
using with multiple wrappers 75

Data Manager
data retrieved from 57
definition of F-2
in applet demo 27
return mode test 132
wrapper routines 82, A-1–A-10

data types, allowed 15
demonstration programs

applet 27
JWAVE graphics 49
running 133
2D plot 44

directories
BDKDIR variable 84
client-side 108
server-side 108

DMCopyData function A-1
DMDataExists function A-2
DMEnumerateData function A-3
DMGetData function A-4
DMInit procedure A-5
DMRestore procedure 82, A-7
DMSave procedure 82, A-8
DMStoreData procedure A-9

E
error handling 68

Exception classes 36
trapping errors 68

examples
applets 143
BeanInfo class 105
data proxies 79
generic applet 17
Java client program 80
JavaBean descriptors 96
JavaBean events 93, 97
JavaBean get/set method 89
JavaBean methods 98
JavaBean properties 101
JavaScript 22
JWAVE client application (applet) 12

Index - G 3

JWAVE wrapper 14, 20, 25, 52, 81
JWaveCanvas 43
passing an array 38
proxies 79
proxy in JWave Bean Tester 91
returning graphical data 61
returning multiple results 60
SimpleView 45
Viewable object 43
2D plot 44, 45

Exception classes 36
EXECUTE function 59, 62

G
GET requests 151, 152
GETPARAM Function 54–59
GETPARAM function 26, 53, A-11
GET_NAMED_COLOR function 26, 60, 62,

67, A-17
graphics

color in wrappers C-1
displaying 41
displaying in BeanBox 87
displaying 2D plot 17
example plot 61
interacting with the mouse 135
interactive 135
JWAVE classes for 41
JWAVE demos 49
JWaveView object 41
publishing on Web page 17
resizing 48

H
host name, specifying 127
HTML 145
HTML (HyperText Markup Language)

example 18, 22
JavaScript 21

HTTP
configuration file D-1
connection to server 3, 127

I
images

image management 147
image map 153

image, profile 138

installation overview 107, 145
interaction 135

J
JAR files

JWaveBeans.jar 84
location of Jwave.jar 8, 131

Java
allowed datatypes 15
client applications 7
required JDK version 109
see also, applets/applications 1
test programs 131

Java Advanced Imaging 148
Java Server Pages 145
JavaBeans 89

adding serializability 106
BeanInfo class 96
bound properties 94
building a JWAVE Bean 88–106
CLASSPATH variable 84
customizer classes 104
descriptors 96
events 92, 97
get/set method example 89
handling data 90
JWAVE Bean Tools E-1–E-15
JWaveBeans.jar 84
methods 98
no argument constructor 88
parameters for JWAVE Tools E-1
properties 88, 101
property editor classes 103
using JWAVE Beans 83–87
using JWAVE Surface Tool Bean in the

BeanBox 85
Javadoc reference 40
JavaScript, using 21–24
JDK, required version 109
JRE, required version 109
JSP 145, 151
JWAVE

client side 7
configuration files 117
demonstration programs 133
directories 108
Javadoc documentation 40
overview 1

4 Index - L JWAVE User’s Guide

required class packages 8, 13
server side 9
software requirements 109
system diagram 3, 4

JWAVE Beans
Bar3d Tool E-2
Bean Tester 85, 88–103
Contour Tool E-3
Generic Tool E-6
Histogram Tool E-7
Pie Tool E-8
Plot Tool E-10
Surface Tool E-13
Surface Tool, using in BeanBox 87

JWAVE Configuration Tool 118–125
JWAVE JSP 148
JWAVE Manager

configuring 116, 116–125
installing as a Windows NT Service 128–

131
overview 9
running as a Windows NT Service 128–

131
shutting down 113
starting 109
startup options 113
testing 110
using 112

JWAVE wrappers
allowed 122
and PV-WAVE applications 11
API functions A-1, B-1
application logic 151
client data 75
color parameters C-1
compiling 54
data proxies 74
example 14, 20, 25, 43, 52
function parameters C-2
functions A-1, B-1
keyword parameters C-2
testing 70
writing 52–60, 154
2D plot 44

JWaveApplet class 22
JWaveBeans.jar 84
JWaveCanvas class 41
JWaveCanvas class 43
JWaveCanvas2D class 135

JWaveCanvas3D class 140
JWaveConnectInfo.jar 19, 108
JWaveConnectInfo.properties

location 8
JWaveConnection class 36, 75
JWaveConnectionException class 36
JWaveDataProxy class

in Beans 90
instantiating 75

JWaveExecute class 30–31
JWaveImageManager 145, 147, 151
JWaveJSPServlet 145, 146
JWavePanel class 41
JWavePanel2D class 135
JWavePanel3D class 140
JWaveServerException 36
JWaveView class

displays a Viewable object 61
introduction to 41
testing the 132

JWaveView class 42
JWaveWrapperException class 36
jwave.cfg 10, 116, 120
JWave.jar 8, 13, 19, 108
JWAVE_BAR3D function B-2
JWAVE_CONTOUR function B-4
JWAVE_DIR 123
JWAVE_HISTOGRAM function B-6
JWAVE_LOADCT procedure B-8
JWAVE_PIE function B-11
JWAVE_PLOT function B-13
JWAVE_SHUTDOWN 123
JWAVE_START 123
JWAVE_STARTUP 123
JWAVE_SURFACE function B-16

L
LocalProxyImpl class 91
log files

errors from PV-WAVE 124
from PV-WAVE session 124
JWAVE 10
JWAVE Manager 123
PV-WAVE 10
setting up 118

M
make_config 117

Index - N 5

manager command options 113
MANAGER_LOG 123
MAX_SESSIONS 123
Method class 100
MethodDescriptor class 100
mouse

dragging 140
interacting with 135
rotate 140

N
no argument constructor 88

P
PACKIMAGE function 154
PACKIMAGE procedure A-22
packing parameters 31
PACKTABLE function 155
PACKTABLE procedure A-22
parameters

flow between client and server 15
naming conventions 64
passing between client and server 30
retrieving once 68

PASSWORD 123
Pick Point 136
ping

number of attempts 123
setting interval 124
test 113
using 37

point, with mouse click 136
PORT 124
port number, specifying 127
POST requests 151
profile, selecting 138
properties

editor classes 103
JWAVE server 122
of JavaBeans 88
PropertyChangeEvent class 94
PropertyChangeSupport class 93, 94
PropertyDescriptor class 103

proxies
client controlled 82
data lifespan 82
efficiency in JWAVE applications 77
example 79

for referring to data 73
JWAVE Beans 90
JWaveDataProxy 74
Proxy class 94
to manage data 73–82

PV-WAVE
allowed datatypes 15
applications and JWAVE wrappers 11
color parameters C-1
data analysis 10
installation overview 107, 145
keyword C-2
log files 10
multiple client access to single session 37
parameters for JWAVE C-2
passing arrays 15
started by JWAVE manager 9, 10
wrapper for JWAVE 20

R
reflection 95
removePropertyChangeListener 94, 104
resizing graphics 48
return parameter mode

no values 76
return values 76
test 132

RETURN statement 54, 67
rotate 140
running

BeanBox 85
BeanBox from a script 84
demonstration applets 27
Java applications 16
JWAVE applications 16
JWAVE Configuration Tool 118
JWAVE Manager 109

S
ScalarArrayTest program 132
ScarDataTest program 132
select

SeePick Point
Serializable class 106
Serializable interface 106
serialization of JavaBeans 106
server

See also HTTP, servlet, Web server 107

6 Index - T JWAVE User’s Guide

CLASSPATH variable 131
configuration files 117
configuration properties 122
configuring 107, 118–125
data flow 15
development 51
directories, list of 108
installation overview 107, 145
overview 9
parameter flow 15
responding to applet 17
setting up 109, 112
testing installation 131

ServerDataID class 75
servlet

connection 115
JWAVE 1
JWAVE, illustrated 6
URL to 127

servlets 145
session pool size 124
SESSION_ERR_LOG 124
SESSION_IDLE_CHECK_INTERVAL 124
SESSION_IDLE_TIMEOUT 124
SESSION_OUT_LOG 124
SESSION_START_TIMEOUT 124
set method 89
SETIMAGESIZE procedure 155, A-24
setting parameters

on client 29
setParam method 31–32

shutdown command 37
shutting down, JWAVE Manager 113
socket connection 4, 127
SOCKET_BACKLOG 125
software requirements 109
Swing

components 84
required version 109

system requirements 148
SYSTEMROOT 125

T
technical support xii
testing

graphics 132
JWAVE Manager 110
JWAVE wrappers 70

ScalarArrayTest program 132
ScalarDataTest program 132
server installation 131

3D plot
rotating 140

2D plot
demo 44
example 44
interacting 135, 137, 138
with generic applet 17

U
unpacking parameters 54
UPDATE_LOG procedure A-25

V
VERBOSE 125
Viewable class 49
Viewable object 42
ViewTest program 132
VNI_DIR variable 125

W
WAVE_DIR variable 125
Web page

publishing graphics 17
using JavaScript 21

Web server
configuring JWAVE as 115
JWAVE 1
URL to 127

wrappers. See JWAVE wrappers
WRAPPER_PATH configuration 125
WRAPPER_TEST_EXECUTE procedure A-26
WRAPPER_TEST_GETRETURN function A-

27
WRAPPER_TEST_INIT procedure A-28
WRAPPER_TEST_RETURN_INFO procedure

A-30
WRAPPER_TEST_SETCOLOR procedure A-

31
WRAPPER_TEST_SETPARAM procedure A-

32

Z
zoom 137

	JWAVE 3.5 User's Guide
	Table of Contents
	Preface
	How to Use This Manual
	Server-Side Developers
	Client-Side Developers
	System Managers and Webmasters

	What’s in this Manual
	Technical Support
	FAX and E-mail Inquiries
	Electronic Services

	Ch. 1 - JWAVE System Introduction
	The Client Side
	The Server Side
	The JWAVE Manager
	PV-WAVE Sessions
	JWAVE Wrappers
	PV-WAVE Applications

	A Simple Example
	The Client Java Application

	Example 1-1 Client-side Java code, simple.java
	The JWAVE Wrapper Function

	Example 1-2 JWAVE wrapper function, simple.pro
	Running the Application
	Sample Output

	Summary

	Ch. 2 - The Generic JWAVE Applet
	Simple Applet Example
	The HTML Code

	Example 2-1 Simple HTML code for calling the generic JWAVE applet.
	The JWAVE Wrapper Function

	Example 2-2 A minimal JWAVE wrapper function
	Example Summary

	Using JavaScript to Control the Applet
	The HTML File with JavaScript

	Example 2-3 HTML file with JavaScript calls
	The JWAVE Wrapper

	Example 2-4 JWAVE wrapper function, TESTPLOT
	The GETPARAM Function
	The GET_NAMED_COLOR Function
	Running the Applet Demonstrations

	Summary

	Ch. 3 - JWAVE Client Development
	JWAVE Client Overview
	The JWaveExecute Class
	Passing Parameters from the Client
	Getting Data Back from the Server
	Casting Returned Data
	Example 3-1 Array handling
	The Exception Classes
	Managing the Server Connection
	Compressing Data
	Ending a JWAVE Session
	Using Multiple Clients
	Using Ping Methods

	Example: Passing an Array
	Example 3-2 Client application passes an array to the server, retrieves a result, and prints it
	Example 3-3 JWAVE wrapper function receives the array, changes it, and returns it to the client
	A Note About Data Proxies
	Using the JWAVE Javadoc Reference
	Summary

	Ch. 4 - JWAVE Graphics
	Returning Graphics to the Client
	The JWaveCanvas and JWavePanel Class
	Viewable Object
	The JWaveView Class
	Sample Code

	Example 4-1 JWaveCanvas used to display a chart
	Example: Displaying a Simple 2D Plot

	Example 4-2 SimpleView.java displays a 2D plot generated by PV-WAVE
	Example 4-3 JWAVE wrapper simple_view.pro
	Resizing Graphics
	Coordinate System Transformations
	Demonstration Programs
	Summary

	Ch. 5 - JWAVE Server Development
	JWAVE Server Overview
	Writing JWAVE Wrapper Functions
	Example: Simple JWAVE Wrapper

	Example 5-1 Simple JWAVE wrapper function
	The Input Parameter: client_data
	The GETPARAM Function
	The RETURN Statement
	Wrapper Functions Must Be Compiled

	Using GETPARAM to Unpack Parameters
	What Do You Want To Unpack?
	Unpacking Values
	Using the Default Keyword
	The Expect* Keywords

	Unpacking Command Strings
	Positional vs. Keyword Parameters
	Unpacking Positional Parameters
	Unpacking Keyword Parameters

	Building a PV-WAVE EXECUTE Command

	Unpacking Color Data
	Returning Multiple Results to the Client
	Example 5-2 JWAVE wrapper function that returns multiple results to the client
	Example 5-3 Client calls to unpack the associative array sent from the server.
	Returning Graphical Data to the Client
	Example 5-4 Simple JWAVE wrapper that returns a 2D plot
	Example: A Typical JWAVE Wrapper
	Example 5-5 JWAVE wrapper that unpacks positional and keyword parameters and builds a command string
	Unpacking the Parameters
	Unpacking Values
	Unpacking Keywords
	Unpacking Positional Parameters

	Unpacking Color Information with GET_NAMED_COLOR

	Example 5-6 JWAVE wrapper calls retrieve colors sent from the client.
	The RETURN Statement

	You Can Only Retrieve Parameters Once
	Error Handling
	Using the MESSAGE Procedure
	Trapping Errors
	Using the Expect Keywords

	Testing Wrapper Functions
	Testing a Numerical Program
	Testing a Graphics Program

	Summary

	Ch. 6 - Managing Data
	What is a JWAVE Data Proxy
	Instantiating a JWaveDataProxy Object
	Other Ways to Instantiate a JWaveDataProxy Object

	The Efficiency of Using Data Proxies
	Inefficient System: The Data Makes Two Round Trips
	Efficient System: No Round Trips
	Setting the Return Parameter Mode
	Example: Using Data Proxies
	The Java Client Program

	Example 6-1 proxyarry.java: Sends data to the server; retrieves a data proxy; uses the proxy in a...
	The First JWAVE Wrapper

	Example 6-2 prox1.pro: Receives an array from the client and multiplies the elements by 1.5. The ...
	The Second JWAVE Wrapper

	Example 6-3 prox2.pro: The client asks this server program to process the array it stored previou...
	Java Client Output
	Data Proxies Are Controlled by the Client
	How Long is Proxy Data Stored on the Server

	Summary

	Ch. 7 - Using JWAVE Beans
	Using JWAVE Beans with the BeanBox
	Step 1: Modify Your CLASSPATH
	Step 2: Copy JWaveBeans.jar
	Optional: Modify the Startup Script
	Step 3: Start the BeanBox
	Step 4: Try Out the JWAVE Bean Tester and Surface Tool
	Step 4: Customize the Surface Bean

	Building a JWAVE Bean
	Deciding What the Bean Will Do
	Adding Properties to the Bean

	Example 7-1 A get/set pair, taken from JWAVE Bean tester
	Handling Data
	Using the Proxy Class to Exchange Data

	Example 7-2 Data being sent as a Proxy object in JWAVE Bean tester
	Using Events to Exchange Data

	Example 7-3 Instances of PropertyChangeEvents from JWAVE Bean tester
	Including Bound Properties to Exchange New Data

	Example 7-4 An input method to the JWAVE Bean tester Bean
	Telling a Bean Environment How to Use Your Bean
	Using a BeanInfo Class

	Example 7-5 BeanDescriptors
	Example 7-6 Bean Events
	Example 7-7 Bean Methods
	Example 7-8 Bean properties
	Using Property Editor Classes
	Building a Customizer for the Bean
	Methods

	Example 7-9 Example from a BeanInfo class
	Adding Serializability to the Bean

	Ch. 8 - JWAVE Server Configuration
	Installation Overview
	Client-Side after JWAVE Installation
	Server-Side after JWAVE Installation
	Additional Software Requirements

	Running and Testing the JWAVE Server
	Starting the JWAVE Manager
	Testing to See If the JWAVE Manager is Running
	Configuring the JWAVE Manager for HTTP Connections

	Setting Up the JWAVE Server
	Using the JWAVE Manager
	JWAVE Manager Startup Command Options
	Shutting Down the JWAVE Manager

	JWAVE Server Options
	The Direct Socket Connection Option
	The CGI Connection Method
	Using the JWAVE Web Server
	Using the JWAVE Servlet

	Configuring the JWAVE Manager
	Configuration Files
	Remaking the Configuration Files

	Using the JWAVE Configuration Tool
	Starting the JWAVE Configuration Tool
	Manager Properties
	Modifying a Property
	Resetting a Single Property to Its Default
	Adding Properties
	JWAVE Manager Configuration Properties
	Client Connection Info

	Installing the JWAVE Manager as a Service on Windows NT
	Installing the JWAVE Service
	Configuring the JWAVE Service
	Stopping the JWAVE Service
	Monitoring the JWAVE Service
	Starting and Stopping the JWAVE Service from the Command Line
	Removing the JWAVE Service

	Testing the JWAVE Server Installation
	Scalar Data Test
	Array Data Test
	Return Mode Test
	View Test

	Running JWAVE Demonstrations
	Setting Up for JWAVE Client Development

	Ch. 9 - Advanced Graphics Features
	Advanced Features
	JWaveCanvas2D and JWavePanel2D
	Pick Point
	Example

	Zoom
	Example

	Profile
	Example

	JWaveCanvas3D and JWavePanel3D
	Rotate
	Example

	Getting Started
	Client-Side Development
	Server-Side Development
	Example Applets

	Running the Demonstration Applets
	Running the Demo Applets
	Using appletviewer
	Using a Browser

	�PV�WAVE Wrappers Used by the Demos

	Ch. 10 - JSPs, Servlets, and JWAVE
	Benefits of this Architecture
	What is the JWaveJSPServlet?
	Location of the JWaveJSPServlet
	Purpose of the JWaveJSPServlet
	Overview of the JWaveJSPServlet
	The JWaveImageManager

	Setting Up the JWaveJSPServlet
	System Requirements
	Setting Up the JWAVE Server

	Running the JWaveJSPServlet
	Understanding the JWaveJSPServlet
	The JSP Files
	JWAVE Wrappers
	Inside the JWaveJSPServlet: GET Requests, POST Requests, and the JWaveImageManager
	The POST Request
	The GET Request

	Writing Your Own JWaveJSPServlet
	How Image Maps are Handled
	Writing the JWAVE Wrappers
	PACKIMAGE Function
	PACKTABLE Function
	SETIMAGESIZE Procedure
	Example

	Appdx A - JWAVE Wrapper API
	Usage
	Input Parameters
	Discussion
	Examples
	See Also
	Usage
	Input Parameters
	Returned Value
	Discussion
	Examples
	See Also
	Usage
	Input Parameters
	Returned Value
	Discussion
	Examples
	See Also
	Usage
	Input Parameters
	Returned Value
	Discussion
	Examples
	See Also
	Usage
	Input Parameters
	Discussion
	See Also
	Usage
	Input Parameters
	Discussion
	Examples
	See Also
	Usage
	Input Parameters
	Discussion
	Examples
	See Also
	Usage
	Input Parameters
	Keywords
	Examples
	See Also
	Usage
	Input Parameters
	Keywords
	Examples
	See Also
	Usage
	Input Parameters
	Discussion
	Examples
	See Also
	Usage
	Input Parameters
	Keywords
	Discussion
	Returning Single Values
	Returning Positional Parameters
	Returning Keyword Parameters
	Returning All Keyword Parameters
	Parameters Are Retrieved Once
	Notes and Restrictions

	Examples
	See Also
	Usage
	Input Parameters
	Input Keywords
	Output Keywords
	Returned Value
	Discussion
	Managing the Color Table

	Example 1-1
	Notes and Restrictions
	Examples
	See Also
	Usage
	Discussion
	Example
	See Also
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also
	Usage
	Input Parameters
	Example
	See Also
	Usage
	Input Parameters
	Keywords
	Discussion
	Usage
	Parameters
	Discussion
	Example
	See Also
	Usage
	Input Parameters
	Returned Value
	Discussion
	Example
	See Also
	Usage
	Input Parameters
	Discussion
	Examples
	See Also
	Usage
	Parameters
	Discussion
	Example
	See Also
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also
	Usage
	Input Parameters
	Discussion
	Example
	See Also

	Appdx B - JWAVE Convenience Wrappers
	JWAVE_BAR3D Function ��
	Parameters
	Keyword Parameters

	Named Color Parameters
	Named ColorSet Parameters
	Returns
	Example
	See Also

	JWAVE_CONTOUR Function��
	Parameters
	Keyword Parameters

	Named Color Parameters
	Named ColorSet Parameters
	Returns
	Example
	See Also

	JWAVE_HISTOGRAM Function ��
	Parameters
	Keyword Parameters

	Named Color Parameters
	Returns
	Example
	See Also

	JWAVE_LOADCT Procedure ��
	Usage
	Input Parameters
	Input Keywords
	Output Keywords
	Discussion
	Examples
	See Also

	JWAVE_PIE Function ��
	Parameters
	Keyword Parameters

	Named Color Parameters
	Named ColorSet Parameters
	Returns
	Example
	See Also

	JWAVE_PLOT Function ��
	Parameters
	Keyword Parameters

	Named Color Parameters
	Returns
	Example
	See Also

	JWAVE_SURFACE Function ��
	Parameters
	Keyword Parameters

	Named Color Parameters
	Returns
	Example
	See Also

	Appdx C - Keyword and Named Color Parameters
	Using These Parameters
	Keyword Parameters
	Ax
	Az
	Box
	C_Annotation
	C_Charsize
	Charsize
	Charthick
	C_Labels
	C_Linestyle
	Clip
	C_Thick
	Follow
	Font
	Gridstyle
	Levels
	Linestyle
	Max_Value
	NLevels
	Noclip
	Nodata
	Noerase
	Nsum
	Polar
	Position
	Psym
	Skirt
	Solid_Psym
	Spline
	Subtitle
	Symsize
	Thick
	Tickformat
	Ticklen
	Title
	XCharsize, YCharsize, ZCharsize
	XGridstyle, YGridstyle, ZGridstyle
	XMargin, YMargin, ZMargin
	XMinor, YMinor, ZMinor
	XRange, YRange, ZRange
	XStyle, YStyle, ZStyle
	XTickformat, YTickformat, ZTickformat
	XTicklen, YTicklen, ZTicklen
	XTickname, YTickname, ZTickname
	XTicks, YTicks, ZTicks
	XTickv, YTickv, ZTickv
	XTitle, YTitle, ZTitle
	XType, YType, ZType
	YNozero
	ZAxis

	Named Color Parameters
	Axis
	Background
	Bottom
	Color

	Named ColorSet Parameters
	C_Colors
	ColumnColors
	Fill_Colors
	RowColors

	Appdx D - HTTP Configuration File
	General Parameters
	Directory Mapping
	Mime Types Mapping

	Appdx E - JWAVE Bean Tools Reference
	List of JWAVE Bean Tools
	JWAVE Bar3d Tool
	Input
	Customizer Reference
	Titles Tab
	Rotations Tab
	Colors Tab
	Columns Tab

	JWAVE Contour Tool
	Input
	Customizer Reference
	Contour Parameters Tab
	Plot Basics Tab
	Levels Tab

	JWAVE Generic Tool
	Customizer Reference
	Plot Properties Tab
	Colors Tab

	JWAVE Histogram Tool
	Input
	Customizer Reference
	Titles Tab
	Histogram Properties Tab
	Colors Tab
	Axis Tab

	JWAVE Pie Tool
	Input
	Customizer Reference
	Labels Tab
	Dimensions Tab
	Colors Tab
	Slices Tab

	JWAVE Plot Tool
	Input
	Customizer Reference
	Titles Tab
	Colors Tab
	Plot Tab
	Data Tab
	Y Data
	X Data

	JWAVE Surface Tool
	Input
	Customizer Reference
	Titles Tab
	Colors Tab
	Plot Tab
	Data Tab

	Appdx F - Glossary
	API
	applet (Java)
	application (Java)
	BDK
	BeanBox
	Beans
	CGI
	class
	client (JWAVE)
	configuration tool
	customizer
	Data Manager
	domain
	event
	HTML
	JAR files
	Java
	JavaBeans
	Javadoc
	JavaScript
	JDK
	JWAVE
	JWAVE Beans
	JWAVE Manager
	JWAVE wrapper
	keyword
	log
	Manager
	method
	pack
	persistence (of data)
	ping
	proxy
	PV-WAVE
	PV-WAVE application
	PV-WAVE session
	serialize
	server (JWAVE)
	Service, Windows NT
	socket
	Swing components
	unpack
	Web server
	wrapper

	JWAVE Index

