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Chapter 1: Linear Systems
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Usage Notes

Solving Systems of Linear Equations

A square system of linear equations has the form Ax = b, where A is a user-specified
n x n matrix, b is a given right-hand side n vector, and x is the solution n vector. Each entry of
A and b must be specified by the user. The entire vector x is returned as output.

When A is invertible, a unique solution to Ax = b exists. The most commonly used direct
method for solving Ax = b factors the matrix A into a product of triangular matrices and solves
the resulting triangular systems of linear equations. Functions that use direct methods for
solving systems of linear equations all compute the solution to Ax = b.

Matrix Factorizations

In some applications, it is desirable to just factor the n x n matrix A into a product of two
triangular matrices. This can be done by a constructor of a class for solving the system of
linear equations Ax = b. The constructor of class LU computes the LU factorization of A.

Besides the basic matrix factorizations, such as LU and LLT , additional matrix factorizations
also are provided. For a real matrix A, its QR factorization can be computed using the class QR.
The class for computing the singular value decomposition (SVD) of a matrix is discussed in a
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later section.

Matrix Inversions

The inverse of an n x n nonsingular matrix can be obtained by using the method Inverse in
the classes for solving systems of linear equations. The inverse of a matrix need not be
computed if the purpose is to solve one or more systems of linear equations. Even with multiple
right-hand sides, solving a system of linear equations by computing the inverse and performing
matrix multiplication is usually more expensive than the method discussed in the next section.

Multiple Right-Hand Sides

Consider the case where a system of linear equations has more than one right-hand side vector.
It is most economical to find the solution vectors by first factoring the coefficient matrix A into
products of triangular matrices. Then, the resulting triangular systems of linear equations are
solved for each right-hand side. When A is a real general matrix, access to the LU factorization
of A is computed by a constructor of LU. The solution xk for the k-th right-hand side vector, bk
is then found by two triangular solves, Lyk = bk and Uxk = yk. The method Solve in class LU
is used to solve each right-hand side. These arguments are found in other functions for solving
systems of linear equations.

Least-Squares Solutions and QR Factorizations

Least-squares solutions are usually computed for an over-determined system of linear equations
Am x nx = b, where m > n. A least-squares solution x minimizes the Euclidean length of the
residual vector r = Ax− b. The class QR computes a unique least-squares solution for x when
A has full column rank. If A is rank-deficient, then the base solution for some variables is
computed. These variables consist of the resulting columns after the interchanges. The QR
decomposition, with column interchanges or pivoting, is computed such that AP = QR. Here,
Q is orthogonal, R is upper-trapezoidal with its diagonal elements nonincreasing in magnitude,
and P is the permutation matrix determined by the pivoting. The base solution xB is obtained
by solving R(PT )x = QT b for the base variables. For details, see class QR. The QR factorization
of a matrix A such that AP = QR with P specified by the user can be computed using
keywords.

Singular Value Decompositions and Generalized Inverses

The SVD of an m x n matrix A is a matrix decomposition A = USV T . With q = min(m,n),
the factors Um x q and Vn x q are orthogonal matrices, and Sq x q is a nonnegative diagonal matrix
with nonincreasing diagonal terms. The class SVD computes the singular values of A by default.
Part or all of the U and V matrices, an estimate of the rank of A, and the generalized inverse of
A, also can be obtained.
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Ill-Conditioning and Singularity

An m x n matrix A, is mathematically singular if there is an x 6= 0 such that Ax = 0. In this
case, the system of linear equations Ax = b does not have a unique solution. On the other
hand, a matrix A is numerically singular if it is ”close” to a mathematically singular matrix.
Such problems are called ill-conditioned. If the numerical results with an ill-conditioned
problem are unacceptable, users can obtain an approximate solution to the system using the
SVD of A: If q = min(m,n) and

A =
∑

q
i=1si,iuiv

T
i

then the approximate solution is given by the following:

xk =
∑

k
i=1ti,i

(
bTui

)
vi

The scalars ti,i are defined below.

ti,i =
{
s−1

i,i if si,i ≥ tol > 0
0 otherwise

The user specifies the value of tol. This value determines how ”close” the given matrix is to a
singular matrix. Further restrictions may apply to the number of terms in the sum, k ≤ q. For
example, there may be a value of k ≤ q such that the scalars

∣∣bTui

∣∣ , i > k are smaller than the
average uncertainty in the right-hand side b. This means that these scalars can be replaced by
zero; and hence, b is replaced by a vector that is within the stated uncertainty of the problem.

Matrix Class

Summary

Matrix manipulation functions.

public class Imsl.Math.Matrix

Methods

Add
static public double[,] Add(double[,] a, double[,] b)

Description

Add two rectangular matrixs, a + b.
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Parameters

a – A double rectangular matrix.
b – A double rectangular matrix.

Returns

A double rectangular matrix representing the matrix sum of the two arguments.

System.ArgumentException id is thrown when the matricies are not the same size

CheckSquareMatrix
static public void CheckSquareMatrix(double[,] a)

Description

Check that the matrix is square.

Parameter

a – A double matrix.

System.ArgumentException id is thrown when the matrix is not square

FrobeniusNorm
static public double FrobeniusNorm(double[,] a)

Description

Return the frobenius norm of a matrix.

Parameter

a – A double rectangular matrix.

Returns

A double scalar value equal to the frobenius norm of the matrix.

InfinityNorm
static public double InfinityNorm(double[,] a)

Description

Return the infinity norm of a matrix.

Parameter

a – A double rectangular matrix.

Returns

A double scalar value equal to the maximum of the row sums of the absolute values of
the matrix elements.

Multiply
static public double[] Multiply(double[] x, double[,] a)
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Description

Return the product of the row matrix x and the rectangular matrix a.

Parameters

x – A double row matrix.
a – A double rectangular matrix.

Returns

A double vector representing the product of the arguments, x*a.

System.ArgumentException id is thrown when the number of elements in the input row
matrix is not equal to the number of rows of the matrix

Multiply
static public double[] Multiply(double[,] a, double[] x)

Description

Multiply the rectangular matrix a and the column matrix x.

Parameters

a – A double rectangular matrix.
x – A double column matrix.

Returns

A double vector representing the product of the arguments, a * x.

System.ArgumentException id is thrown when the number of columns in the input
matrix is not equal to the number of elements in the input column vector

Multiply
static public double[,] Multiply(double[,] a, double[,] b)

Description

Multiply two rectangular matricies, a * b.

Parameters

a – A double rectangular matrix.
b – A double rectangular matrix.

Returns

The double matrix product of a * b.

System.ArgumentException id is thrown when the number of columns in a is not equal
to the number of rows in b

OneNorm
static public double OneNorm(double[,] a)
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Description

Return the matrix one norm.

Parameter

a – A double rectangular matrix.

Returns

A double value equal to the maximum of the column sums of the absolute values of the
matrix elements.

Subtract
static public double[,] Subtract(double[,] a, double[,] b)

Description

Subtract two rectangular matrixs, a - b.

Parameters

a – A double rectangular matrix.

b – A double rectangular matrix.

Returns

A double rectangular matrix representing the matrix difference of the two arguments.

System.ArgumentException id is thrown when the matricies are not the same size

Transpose
static public double[,] Transpose(double[,] a)

Description

Return the transpose of an matrix.

Parameter

a – A double matrix.

Returns

A double matrix which is the transpose of the argument.

Example: Matrix and PrintMatrix

The 1 norm of a matrix is found using a method from the Matrix class. The matrix is printed
using the PrintMatrix class.
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using System;
using Imsl.Math;

public class MatrixEx1
{

public static void Main(String[] args)
{

double nrm1;
double[,] a = {

{0.0, 1.0, 2.0, 3.0},
{4.0, 5.0, 6.0, 7.0},
{8.0, 9.0, 8.0, 1.0},
{6.0, 3.0, 4.0, 3.0}

};

// Get the 1 norm of matrix a
nrm1 = Matrix.OneNorm(a);

// Construct a PrintMatrix object with a title
PrintMatrix p = new PrintMatrix("A Simple Matrix");

// Print the matrix and its 1 norm
p.Print(a);
Console.Out.WriteLine("The 1 norm of the matrix is " + nrm1);

}
}

Output

A Simple Matrix
0 1 2 3

0 0 1 2 3
1 4 5 6 7
2 8 9 8 1
3 6 3 4 3

The 1 norm of the matrix is 20

ComplexMatrix Class

Summary

Complex matrix manipulation functions.

public class Imsl.Math.ComplexMatrix
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Methods

Add
static public Imsl.Math.Complex[,] Add(Imsl.Math.Complex[,] a,
Imsl.Math.Complex[,] b)

Description

Add two rectangular Complex arrays, a + b.

Parameters

a – A Complex rectangular array.

b – A Complex rectangular array.

Returns

The Complex matrix sum of the two arguments

System.ArgumentException id is thrown when the matricies are not the same size

CheckSquareMatrix
static public void CheckSquareMatrix(Imsl.Math.Complex[,] a)

Description

Check that the Complex matrix is square.

Parameter

a – A Complex matrix.

System.ArgumentException id is thrown when the matrix is not square

FrobeniusNorm
static public double FrobeniusNorm(Imsl.Math.Complex[,] a)

Description

Return the frobenius norm of a Complex matrix.

Parameter

a – A Complex rectangular matrix.

Returns

A double value equal to the frobenius norm of the matrix.

InfinityNorm
static public double InfinityNorm(Imsl.Math.Complex[,] a)

Description

Return the infinity norm of a Complex matrix.
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Parameter

a – A Complex rectangular matrix.

Returns

A double value equal to the maximum of the row sums of the absolute values of the array
elements.

Multiply
static public Imsl.Math.Complex[] Multiply(Imsl.Math.Complex[] x,
Imsl.Math.Complex[,] a)

Description

Returns the product of the row vector x and the rectangular array a, both Complex.

Parameters

x – A Complex row vector.

a – A Complex rectangular matrix.

Returns

A Complex vector containing the product of the arguments, x * a.

System.ArgumentException id is thrown when the number of elements in the input
vector is not equal to the number of rows of the matrix

Multiply
static public Imsl.Math.Complex[] Multiply(Imsl.Math.Complex[,] a,
Imsl.Math.Complex[] x)

Description

Multiply the rectangular array a and the column vector x, both Complex.

Parameters

a – A Complex rectangular matrix.

x – A Complex vector.

Returns

A Complex vector containing the product of the arguments, a * x.

System.ArgumentException id is thrown when the number of columns in the input
matrix is not equal to the number of elements in the input vector

Multiply
static public Imsl.Math.Complex[,] Multiply(Imsl.Math.Complex[,] a,
Imsl.Math.Complex[,] b)
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Description

Multiply two Complex rectangular arrays, a * b.

Parameters

a – A Complex rectangular array.

b – A Complex rectangular array.

Returns

The Complex matrix product of a times b.

System.ArgumentException id is thrown when the number of columns in a is not equal
to the number of rows in b

OneNorm
static public double OneNorm(Imsl.Math.Complex[,] a)

Description

Return the Complex matrix one norm.

Parameter

a – A Complex rectangular array.

Returns

A double value equal to the maximum of the column sums of the absolute values of the
array elements.

Subtract
static public Imsl.Math.Complex[,] Subtract(Imsl.Math.Complex[,] a,
Imsl.Math.Complex[,] b)

Description

Subtract two Complex rectangular arrays, a - b.

Parameters

a – A Complex rectangular array.

b – A Complex rectangular array.

Returns

The Complex matrix difference of the two arguments.

System.ArgumentException id is thrown when the matricies are not the same size

Transpose
static public Imsl.Math.Complex[,] Transpose(Imsl.Math.Complex[,] a)
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Description

Return the transpose of a Complex matrix.

Parameter

a – A Complex matrix.

Returns

The Complex matrix transpose of the argument.

Example: Print a Complex Matrix

A Complex matrix and its transpose is printed.

using System;
using Imsl.Math;

public class ComplexMatrixEx1
{

public static void Main(String[] args)
{

Complex[,] a = {
{new Complex(1, 3), new Complex(3, 5), new Complex(7, 9)},
{new Complex(8, 7), new Complex(9, 5), new Complex(1, 9)},
{new Complex(2, 9), new Complex(6, 9), new Complex(7, 3)},
{new Complex(5, 4), new Complex(8, 4), new Complex(5, 9)}

};

// Print the matrix
new PrintMatrix("Matrix A").Print(a);

// Print the transpose of the matrix
new PrintMatrix("Transpose(A)").Print(ComplexMatrix.Transpose(a));

}
}

Output

Matrix A
0 1 2

0 1+3i 3+5i 7+9i
1 8+7i 9+5i 1+9i
2 2+9i 6+9i 7+3i
3 5+4i 8+4i 5+9i

Transpose(A)
0 1 2 3

0 1+3i 8+7i 2+9i 5+4i
1 3+5i 9+5i 6+9i 8+4i
2 7+9i 1+9i 7+3i 5+9i
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LU Class

Summary

LU factorization of a matrix of type double.

public class Imsl.Math.LU

Constructor

LU
public LU(double[,] a)

Description

Creates the LU factorization of a square matrix of type double.

Parameter

a – The double square matrix to be factored.

Imsl.Math.SingularMatrixException id is thrown when the input matrix is singular

Methods

Condition
public double Condition(double[,] a)

Description

Return an estimate of the reciprocal of the L1 condition number of a matrix.

Parameter

a – The double square matrix for which the reciprocal of the L1 condition number is
desired.

Returns

A double value representing an estimate of the reciprocal of the L1 condition number of
the matrix.

Determinant
public double Determinant()

Description

Return the determinant of the matrix used to construct this instance.
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Returns

A double scalar containing the determinant of the matrix used to construct this instance.

Inverse
public double[,] Inverse()

Description

Returns the inverse of the matrix used to construct this instance.

Returns

A double matrix representing the inverse of the matrix used to construct this instance.

Solve
public double[] Solve(double[] b)

Description

Solve ax=b for x using the LU factorization of a.

Parameter

b – A double array containing the right-hand side of the linear system.

Returns

A double array containing the solution to the linear system of equations.

Solve
static public double[] Solve(double[,] a, double[] b)

Description

Solve ax=b for x using the LU factorization of a.

Parameters

a – A double square matrix.

b – A double column vector.

Returns

A double column vector containing the solution to the linear system of equations.

System.ArgumentException id is thrown when the number of rows in the input matrix is
not equal to the number of elements in x

Imsl.Math.SingularMatrixException id is thrown when the matrix is singular

SolveTranspose
public double[] SolveTranspose(double[] b)
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Description

Return the solution x of the linear system transpose(A)x = b.

Parameter

b – A double array containing the right-hand side of the linear system.

Returns

A double array containing the solution to the linear system of equations.

Description

LU performs an LU factorization of a real general coefficient matrix. The Condition method
estimates the condition number of the matrix. The LU factorization is done using scaled partial
pivoting. Scaled partial pivoting differs from partial pivoting in that the pivoting strategy is the
same as if each row were scaled to have the same infinity norm.

The L1 condition number of the matrix A is defined to be κ(A) = ||A||1||A−1||1. Since it is
expensive to compute ||A−1||1, the condition number is only estimated. The estimation
algorithm is the same as used by LINPACK and is described in a paper by Cline et al. (1979).

An estimated condition number greater than 1/ε (where ε is machine precision) indicates that
very small changes in A can cause very large changes in the solution x. Iterative refinement can
sometimes find the solution to such a system.

LU fails if U, the upper triangular part of the factorization, has a zero diagonal element. This
can occur only if A either is singular or is very close to a singular matrix.

Use the Solve method to solve systems of equations. The Determinant method can be called
to compute the determinant of the coefficient matrix.

LU is based on the LINPACK routine SGECO; see Dongarra et al. (1979). SGECO uses unscaled
partial pivoting.

Example: LU Factorization of a Matrix

The LU Factorization of a Matrix is performed. A linear system is then solved using the
factorization. The inverse, determinant, and condition number of the input matrix are also
computed.

using System;
using Imsl.Math;

public class LUEx1
{

public static void Main(String[] args)
{

double[,] a = {
{1, 3, 3},
{1, 3, 4},
{1, 4, 3}
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};
double[] b = new double[]{12, 13, 14};

// Compute the LU factorization of A
LU lu = new LU(a);

// Solve Ax = b
double[] x = lu.Solve(b);
new PrintMatrix("x").Print(x);

// Find the inverse of A.
double[,] ainv = lu.Inverse();
new PrintMatrix("ainv").Print(ainv);

// Find the condition number of A.
double condition = lu.Condition(a);
Console.Out.WriteLine("condition number = " + condition);
Console.Out.WriteLine();

// Find the determinant of A.
double determinant = lu.Determinant();
Console.Out.WriteLine("determinant = " + determinant);

}
}

Output

x
0

0 3
1 2
2 1

ainv
0 1 2

0 7 -3 -3
1 -1 2.22044604925031E-16 1
2 -1 1 0

condition number = 0.0151202749140893

determinant = -1

ComplexLU Class

Summary

LU factorization of a matrix of type Complex.
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public class Imsl.Math.ComplexLU

Constructor

ComplexLU
public ComplexLU(Imsl.Math.Complex[,] a)

Description

Creates the LU factorization of a square matrix of type Complex.

Parameter

a – The Complex square matrix to be factored.

Imsl.Math.SingularMatrixException id is thrown when the input matrix is singular

Methods

Condition
public double Condition(Imsl.Math.Complex[,] a)

Description

Return an estimate of the reciprocal of the L1 condition number.

Parameter

a – A Complex matrix.

Returns

A double scalar value representing the estimate of the reciprocal of the L1 condition
number of the matrix a.

Determinant
public Imsl.Math.Complex Determinant()

Description

Return the determinant of the matrix used to construct this instance.

Returns

A Complex scalar containing the determinant of the matrix used to construct this
instance.

Inverse
public Imsl.Math.Complex[,] Inverse()
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Description

Compute the inverse of a matrix of type Complex.

Returns

A Complex matrix containing the inverse of the matrix used to construct this object.

Solve
public Imsl.Math.Complex[] Solve(Imsl.Math.Complex[] b)

Description

Return the solution x of the linear system ax = b using the LU factorization of a.

Parameter

b – A Complex array containing the right-hand side of the linear system.

Returns

A Complex array containing the solution to the linear system of equations.

Solve
static public Imsl.Math.Complex[] Solve(Imsl.Math.Complex[,] a,
Imsl.Math.Complex[] b)

Description

Return the solution x of the linear system ax = b using the LU factorization of a.

Parameters

a – A Complex square matrix.

b – A Complex column vector.

Returns

A Complex column vector containing the solution to the linear system of equations.

System.ArgumentException id is thrown when the number of rows in a is not equal to
the length of b

Imsl.Math.SingularMatrixException id is thrown when the matrix is singular

SolveTranspose
public Imsl.Math.Complex[] SolveTranspose(Imsl.Math.Complex[] b)

Description

Return the solution x of the linear system transpose(A)x = b.

Parameter

b – A Complex array containing the right-hand side of the linear system.
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Returns

A Complex array containing the solution to the linear system of equations.

Description

ComplexLU performs an LU factorization of a complex general coefficient matrix. ComplexLU’s
method Condition estimates the condition number of the matrix. The LU factorization is done
using scaled partial pivoting. Scaled partial pivoting differs from partial pivoting in that the
pivoting strategy is the same as if each row were scaled to have the same infinity norm.

The L1 condition number of the matrix A is defined to be κ (A) = ‖A‖1
∥∥A−1

∥∥
1
. Since it is

expensive to compute
∥∥A−1

∥∥
1
, the condition number is only estimated. The estimation

algorithm is the same as used by LINPACK and is described by Cline et al. (1979).

An estimated condition number greater than 1/ε (where ε is machine precision) indicates that
very small changes in A can cause very large changes in the solution x. Iterative refinement can
sometimes find the solution to such a system.

ComplexLU fails if U, the upper triangular part of the factorization, has a zero diagonal element.
This can occur only if A either is singular or is very close to a singular matrix.

The Solve method can be used to solve systems of equations. The method Determinant can be
called to compute the determinant of the coefficient matrix.

ComplexLU is based on the LINPACK routine CGECO; see Dongarra et al. (1979). CGECO uses
unscaled partial pivoting.

Example: LU Decomposition of a Complex Matrix

The Complex structure is used to convert a real matrix to a Complex matrix. An LU
decomposition of the matrix is performed and the determinant and condition number of the
matrix are obtained.

using System;
using Imsl.Math;

public class ComplexLUEx1
{

public static void Main(String[] args)
{

double[,] ar = {{1, 3, 3},
{1, 3, 4},
{1, 4, 3}};

double[] br = {12, 13, 14};

Complex[,] a = new Complex[3,3];
Complex[] b = new Complex[3];

for (int i = 0; i < 3; i++)
{

b[i] = new Complex(br[i]);
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for (int j = 0; j < 3; j++)
{

a[i,j] = new Complex(ar[i,j]);
}

}

// Compute the LU factorization of A
ComplexLU clu = new ComplexLU(a);

// Solve Ax = b
Complex[] x = clu.Solve(b);
Console.Out.WriteLine("The solution is:");
Console.Out.WriteLine(" ");
new PrintMatrix("x").Print(x);

// Find the condition number of A.
double condition = clu.Condition(a);
Console.Out.WriteLine("The condition number = " + condition);
Console.Out.WriteLine();

// Find the determinant of A.
Complex determinant = clu.Determinant();
Console.Out.WriteLine("The determinant = " + determinant);

}
}

Output

The solution is:

x
0

0 3
1 2
2 1

The condition number = 0.0148867313915858

The determinant = -0.99999999999999978

Cholesky Class

Summary

Cholesky factorization of a matrix of type double.

public class Imsl.Math.Cholesky

Linear Systems Cholesky Class • 19



Constructor

Cholesky
public Cholesky(double[,] a)

Description

Create the Cholesky factorization of a symmetric positive definite matrix of type double.

Parameter

a – A double square matrix to be factored.

Imsl.Math.SingularMatrixException id is thrown when the input matrix a is singular
Imsl.Math.NotSPDException id is thrown when the input matrix is not symmetric,

positive definite.

Methods

Downdate
public void Downdate(double[] x)

Description

Downdates the factorization by subtracting a rank-1 matrix.

The object will contain the Cholesky factorization of a - x * transpose(x), where a is the
previously factor matrix.

Parameter

x – A double array which specifies the rank-1 matrix. x is not modified by this
function.

Imsl.Math.NotSPDException id is thrown if a - x * transpose(x) is not symmetric
positive-definite.

GetR
public double[,] GetR()

Description

The R matrix that results from the Cholesky factorization.

R is a lower triangular matrix and A = RRT .

Returns

A double matrix which contains the R matrix that results from the Cholesky
factorization.

Inverse
public double[,] Inverse()
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Description

Returns the inverse of this matrix.

Returns

A double matrix containing the inverse.

Solve
public double[] Solve(double[] b)

Description

Solve Ax = b where A is a positive definite matrix with elements of type double.

Parameter

b – A double array containing the right-hand side of the linear system.

Returns

A double array containing the solution to the system of linear equations.

Update
public void Update(double[] x)

Description

Updates the factorization by adding a rank-1 matrix.

The object will contain the Cholesky factorization of a + x * transpose(x), where a is the
previously factored matrix.

Parameter

x – A double array which specifies the rank-1 matrix. x is not modified by this
function.

Description

Class Cholesky is based on the LINPACK routine SCHDC; see Dongarra et al. (1979).

Before the decomposition is computed, initial elements are moved to the leading part of A and
final elements to the trailing part of A. During the decomposition only rows and columns
corresponding to the free elements are moved. The result of the decomposition is an upper
triangular matrix R and a permutation matrix P that satisfy PTAP = RTR, where P is
represented by ipvt.

The method Update is based on the LINPACK routine SCHUD; see Dongarra et al. (1979).

The Cholesky factorization of a matrix is A = RTR, where R is an upper triangular matrix.
Given this factorization, Downdate computes the factorization

A− xxT = R̃T R̃
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Downdate determines an orthogonal matrix U as the product GN . . . G1of Givens rotations,
such that

U

[
R
0

]
=
[
R̃
xT

]

By multiplying this equation by its transpose and noting that UTU = I, the desired result

RTR− xxT = R̃T R̃

is obtained.

Let a be the solution of the linear system RTa = x and let

α =
√

1− ‖a‖22

The Givens rotations, Gi, are chosen such that

G1 · · ·GN

[
a
α

]
=
[

0
1

]

The Gi, are (N + 1) * (N + 1) matrices of the form

Gi =


Ii−1 0 0 0
0 ci 0 −si

0 0 IN−i 0
0 si 0 ci


where Ik is the identity matrix of order k; and ci = cos θi, si = sin θi for some θi.

The Givens rotations are then used to form

R̃, G1 · · · GN

[
R
0

]
=
[
R̃
x̃T

]

The matrix
R̃

is upper triangular and
x̃ = x

because

x =
(
RT 0

) [ a
α

]
=
(
RT 0

)
UTU

[
a
α

]
=
(
R̃T x̃

)[ 0
1

]
= x̃

.
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Example: Cholesky Factorization

The Cholesky Factorization of a matrix is performed as well as its inverse.

using System;
using Imsl.Math;

public class CholeskyEx1
{

public static void Main(String[] args)
{

double[,] a = {
{1, - 3, 2},
{- 3, 10, - 5},
{2, - 5, 6}

};
double[] b = new double[]{27, - 78, 64};

// Compute the Cholesky factorization of A
Cholesky cholesky = new Cholesky(a);

// Solve Ax = b
double[] x = cholesky.Solve(b);
new PrintMatrix("x").Print(x);

// Find the inverse of A.
double[,] ainv = cholesky.Inverse();
new PrintMatrix("ainv").Print(ainv);

}
}

Output

x
0

0 1
1 -4
2 7

ainv
0 1 2

0 35 8 -5
1 8 2 -1
2 -5 -1 1
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QR Class

Summary

QR Decomposition of a matrix.

public class Imsl.Math.QR

Constructor

QR
public QR(double[,] a)

Description

Constructs the QR decomposition of a matrix with elements of type double.

Parameter

a – A double matrix to be factored.

Methods

GetPermute
public int[] GetPermute()

Description

Returns an int array containing information about the permutation of the elements of
the matrix during pivoting.

Returns

The k-th element contains the index of the column of the matrix that has been
interchanged into the k-th column.

GetQ
public double[,] GetQ()

Description

The orthogonal or unitary matrix Q.

Returns

A double matrix containing the accumulated orthogonal matrix Q from the QR
decomposition.
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GetR
public double[,] GetR()

Description

The upper trapezoidal matrix R.
Returns

The upper trapezoidal double matrix R of the QR decomposition.

GetRank
public int GetRank()

Description

Returns the rank of the matrix used to construct this instance.
Returns

An int specifying the rank of the matrix used to construct this instance.

GetRank
public int GetRank(double tolerance)

Description

Returns the rank of the matrix given an input tolerance.
Parameter

tolerance – A double scalar value used in determining the rank of the matrix.

Returns

An int specifying the rank of the matrix.

Solve
public double[] Solve(double[] b)

Description

Returns the solution to the least-squares problem Ax = b.
Parameter

b – A double array to be manipulated.

Returns

A double array containing the solution vector to Ax = b with components corresponding
to the unused columns set to zero.

Imsl.Math.SingularMatrixException id is thrown when the upper triangular matrix R
resulting from the QR factorization is singular

Solve
public double[] Solve(double[] b, double tol)
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Description

Returns the solution to the least-squares problem Ax = b using an input tolerance.

Parameters

b – A double array to be manipulated.

tol – A double scalar value used in determining the rank of A.

Returns

A double array containing the solution vector to Ax = b with components corresponding
to the unused columns set to zero.

Imsl.Math.SingularMatrixException id is thrown when the upper triangular matrix R
resulting from the QR factorization is singular

Description

Class QR computes the QR decomposition of a matrix using Householder transformations. It is
based on the LINPACK routine SQRDC; see Dongarra et al. (1979).

QR determines an orthogonal matrix Q, a permutation matrix P, and an upper trapezoidal
matrix R with diagonal elements of nonincreasing magnitude, such that AP = QR. The
Householder transformation for column k is of the form

I − uku
T
k

Pk

for k = 1, 2, . . ., min(number of rows of A, number of columns of A), where u has zeros in the
first k - 1 positions. The matrix Q is not produced directly by QR. Instead the information
needed to reconstruct the Householder transformations is saved. If the matrix Q is needed
explicitly, use the Q property. This method accumulates Q from its factored form.

Before the decomposition is computed, initial columns are moved to the beginning of the array
A and the final columns to the end. Both initial and final columns are frozen in place during
the computation. Only free columns are pivoted. Pivoting is done on the free columns of
largest reduced norm.

Example: QR Factorization of a Matrix

The QR Factorization of a Matrix is performed. A linear system is then solved using the
factorization. The rank of the input matrix is also computed.

using System;
using Imsl.Math;

public class QREx1
{

public static void Main(String[] args)
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{
double[,] a = {

{1, 2, 4},
{1, 4, 16},
{1, 6, 36},
{1, 8, 64}

};
double[] b = new double[]{16.99, 57.01, 120.99, 209.01};

// Compute the QR factorization of A
QR qr = new QR(a);

// Solve Ax = b
double[] x = qr.Solve(b);
new PrintMatrix("x").Print(x);

// Print Q and R.
new PrintMatrix("Q").Print(qr.GetQ());
new PrintMatrix("R").Print(qr.GetR());

// Find the rank of A.
int rank = qr.GetRank();
Console.Out.WriteLine("rank = " + rank);

}
}

Output

x
0

0 0.990000000000019
1 2.00199999999999
2 3

Q
0 1 2 3

0 -0.0531494003452735 -0.54217094609664 0.808223859120487 -0.22360679774998
1 -0.212597601381094 -0.657435635424271 -0.269407953040162 0.670820393249937
2 -0.478344603107461 -0.345794067982896 -0.449013255066938 -0.670820393249936
3 -0.850390405524374 0.392753756227487 0.269407953040163 0.223606797749979

R
0 1 2

0 -75.2595508889071 -10.6298800690547 -1.5944820103582
1 0 -2.64681879196785 -1.15264689327632
2 0 0 0.359210604053549
3 0 0 0

rank = 3
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SVD Class

Summary

Singular Value Decomposition (SVD) of a rectangular matrix of type double.

public class Imsl.Math.SVD

Properties

Info
public int Info {get; }
Description

Returns the index of the first singular value for which the algorithm converged.

Rank
public int Rank {get; }
Description

Returns the rank of the matrix used to construct this instance.

Constructors

SVD
public SVD(double[,] a, double tol)

Description

Construct the singular value decomposition of a rectangular matrix with a given tolerance.

If tol is positive, then a singular value is considered negligible if the singular value is less
than or equal to tol. If tol is negative, then a singular value is considered negligible if
the singular value is less than or equal to the absolute value of the product of tol and the
infinity norm of the input matrix. In the latter case, the absolute value of tol generally
contains an estimate of the level of the relative error in the data.

Parameters

a – A double matrix for which the singular value decomposition is to be computed.

tol – A double scalar containing the tolerance used to determine when a singular
value is negligible.

Imsl.Math.DidNotConvergeException id is thrown when the rank cannot be
determined because convergence was not obtained for all singular values
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SVD
public SVD(double[,] a)

Description

Construct the singular value decomposition of a rectangular matrix with default tolerance.

The tolerance used is 2.2204460492503e-14. This tolerance is used to determine rank. A
singular value is considered negligible if the singular value is less than or equal to this
tolerance.

Parameter

a – A double matrix for which the singular value decomposition is to be computed.

Methods

GetS
public double[] GetS()

Description

Returns the singular values.

Returns

A double array containing the singular values of the matrix.

GetU
public double[,] GetU()

Description

Returns the left singular vectors.

Returns

A double matrix containing the left singular vectors.

GetV
public double[,] GetV()

Description

Returns the right singular vectors.

Returns

A double matrix containing the right singular vectors

Inverse
public double[,] Inverse()
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Description

Compute the Moore-Penrose generalized inverse of a real matrix.

Returns

A double matrix containing the generalized inverse of the matrix used to construct this
instance.

Description

SVD is based on the LINPACK routine SSVDC; see Dongarra et al. (1979).

Let n be the number of rows in A and let p be the number of columns in A. For any

n x p matrix A, there exists an n x n orthogonal matrix U and a p x p orthogonal matrix V
such that

UTAV =


[

Σ
0

]
if n ≥ p

[Σ 0] if n ≤ p

where Σ = diag(σ1, . . . , σm), and m = min(n, p). The scalars σ1 ≥ σ2 ≥ . . . ≥ σm ≥ 0 are called
the singular values of A. The columns of U are called the left singular vectors of A. The
columns of V are called the right singular vectors of A.

The estimated rank of A is the number of σk that is larger than a tolerance η. If τ is the
parameter tol in the program, then

η =
{
τ if τ > 0
|τ | ‖A‖∞ if τ < 0

The Moore-Penrose generalized inverse of the matrix is computed by partitioning the matrices
U, V and Σ as U = (U1, U2), V = (V1, V2) and Σ1 = diag(σ1, . . . , σk) where the ”1” matrices are
k by k. The Moore-Penrose generalized inverse is V1Σ−1

1 UT
1 .

Example: Singular Value Decomposition of a Matrix

The singular value decomposition of a matrix is performed. The rank of the matrix is also
computed.

using System;
using Imsl.Math;

public class SVDEx1
{

public static void Main(String[] args)
{

double[,] a = {
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{1, 2, 1, 4},
{3, 2, 1, 3},
{4, 3, 1, 4},
{2, 1, 3, 1},
{1, 5, 2, 2},
{1, 2, 2, 3}

};

// Compute the SVD factorization of A
SVD svd = new SVD(a);

// Print U, S and V.
new PrintMatrix("U").SetPageWidth(80).Print(svd.GetU());
new PrintMatrix("S").SetPageWidth(80).Print(svd.GetS());
new PrintMatrix("V").SetPageWidth(80).Print(svd.GetV());

// Find the rank of A.
int rank = svd.Rank;
Console.Out.WriteLine("rank = " + rank);

}
}

Output

U
0 1 2

0 -0.380475586320569 0.119670992640587 0.439082824383239
1 -0.403753713172442 0.345110837105607 -0.0565761852901658
2 -0.545120486248343 0.429264893493195 0.0513926928086694
3 -0.264784294004146 -0.0683195253271513 -0.883860867430429
4 -0.446310112301556 -0.816827623278282 0.141899675060401
5 -0.354628656614145 -0.102147399162125 -0.00431844397986985

3 4 5
0 -0.565399585908374 0.0243115161463761 -0.57258686109915
1 0.214775576522681 0.80890058872827 0.11929741721493
2 0.432144162809737 -0.572327648171096 0.0403309248707933
3 -0.215253698182974 -0.0625209225900579 -0.30621669907105
4 0.321269584269887 0.0621337820958098 -0.0799352679998222
5 -0.545800221853259 -0.0987946265624981 0.745739576113111

S
0

0 11.4850179115597
1 3.2697512144125
2 2.65335616200783
3 2.08872967244092

V
0 1 2

0 -0.444294128842354 0.555531257799947 -0.435378966673942
1 -0.558067238190387 -0.654298740112323 0.277456900458814
2 -0.32438610320628 -0.351360645592513 -0.732099533429598
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3 -0.621238553843379 0.37393031038343 0.444401954223745

3
0 0.55175438744187
1 0.428336065179864
2 -0.485128463324533
3 -0.526066236587424

rank = 4
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Chapter 2: Eigensystem Analysis

Types

class Eigen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
class SymEigen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Usage Notes

An ordinary linear eigensystem problem is represented by the equation Ax = λx where A
denotes an n x n matrix. The value λ is an eigenvalue and x 6= 0 is the corresponding
eigenvector. The eigenvector is determined up to a scalar factor. In all functions, we have
chosen this factor so that x has Euclidean length one, and the component of x of largest
magnitude is positive. If x is a complex vector, this component of largest magnitude is scaled to
be real and positive. The entry where this component occurs can be arbitrary for eigenvectors
having nonunique maximum magnitude values.

Error Analysis and Accuracy

Except in special cases, functions will not return the exact eigenvalue-eigenvector pair for the
ordinary eigenvalue problem Ax = λx. Typically, the computed pair

x̃, λ̃

is an exact eigenvector-eigenvalue pair for a ”nearby” matrix A + E. Information about E is
known only in terms of bounds of the form ‖E‖2 ≤ f (n) ‖A‖2 ε. The value of f(n) depends on
the algorithm, but is typically a small fractional power of n. The parameter ε is the machine
precision. By a theorem due to Bauer and Fike (see Golub and Van Loan 1989, p. 342),

min
∣∣∣λ̃− λ∣∣∣ ≤ κ (X) ‖E‖2 for allλ inσ (A)

where σ(A) is the set of all eigenvalues of A (called the spectrum of A), X is the matrix of
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eigenvectors, ‖·‖2 is Euclidean length, and κ(X) is the condition number of X defined as
κ (X) = ‖X‖2

∥∥X−1
∥∥

2
. If A is a real symmetric or complex Hermitian matrix, then its

eigenvector matrix X is respectively orthogonal or unitary. For these matrices, κ(X) = 1.

The accuracy of the computed eigenvalues

λ̃j

and eigenvectors

x̃j

can be checked by computing their performance index τ . The performance index is defined to be

τ = max
1≤j≤n

∥∥∥Ax̃j − λ̃j x̃j

∥∥∥
2

nε ‖A‖2 ‖x̃j‖2

where ε is again the machine precision.

The performance index τ is related to the error analysis because

‖Ex̃j‖2 =
∥∥∥Ax̃j − λ̃j x̃j

∥∥∥
2

where E is the ”nearby” matrix discussed above.

While the exact value of τ is precision and data dependent, the performance of an eigensystem
analysis function is defined as excellent if τ < 1, good if 1 ≤ τ ≤ 100, and poor if τ > 100. This
is an arbitrary definition, but large values of τ can serve as a warning that there is a significant
error in the calculation.

If the condition number κ(X) of the eigenvector matrix X is large, there can be large errors in
the eigenvalues even if τ is small. In particular, it is often difficult to recognize near multiple
eigenvalues or unstable mathematical problems from numerical results. This facet of the
eigenvalue problem is often difficult for users to understand. Suppose the accuracy of an
individual eigenvalue is desired. This can be answered approximately by computing the
condition number of an individual eigenvalue(see Golub and Van Loan 1989, pp. 344-345). For
matrices A, such that the computed array of normalized eigenvectors X is invertible, the
condition number of λi is

κj =
∥∥eT

j X
−1
∥∥ ,

the Euclidean length of the j-th row of X−1. Users can choose to compute this matrix using the
class LU in ”Linear Systems.” An approximate bound for the accuracy of a computed
eigenvalue is then given by κjε ‖A‖. To compute an approximate bound for the relative
accuracy of an eigenvalue, divide this bound by |λj |.
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Eigen Class

Summary

Collection of Eigen System functions.

public class Imsl.Math.Eigen

Constructors

Eigen
public Eigen(double[,] a)

Description

Constructs the eigenvalues and the eigenvectors of a real square matrix.

Parameter

a – A double square matrix whose eigensystem is to be constructed.

Imsl.Math.DidNotConvergeException id is thrown when the algorithm fails to converge
on the eigenvalues of the matrix

Eigen
public Eigen(double[,] a, bool computeVectors)

Description

Constructs the eigenvalues and (optionally) the eigenvectors of a real square matrix.

Parameters

a – A double square matrix whose eigensystem is to be constructed.

computeVectors – A bool value of true if the eigenvectors are to be computed.

Imsl.Math.DidNotConvergeException id is thrown when the algorithm fails to converge
on the eigenvalues of the matrix

Methods

GetValues
public Imsl.Math.Complex[] GetValues()

Description

Returns the eigenvalues of a matrix of type double.
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Returns

A Complex array containing the eigenvalues of this matrix in descending order.

GetVectors
public Imsl.Math.Complex[,] GetVectors()

Description

Returns the eigenvectors.

Returns

A Complex matrix containing the eigenvectors. The eigenvector corresponding to the j-th
eigenvalue is stored in the j-th column. Each vector is normalized to have Euclidean
length one.

PerformanceIndex
public double PerformanceIndex(double[,] a)

Description

Returns the performance index of a real eigensystem.

A performance index less than 1 is considered excellent, 1 to 100 is good, while greater
than 100 is considered poor.

Parameter

a – A double matrix.

Returns

A double scalar value indicating how well the algorithms which have computed the
eigenvalue and eigenvector pairs have performed.

Description

Eigen computes the eigenvalues and eigenvectors of a real matrix. The matrix is first balanced.
Orthogonal similarity transformations are used to reduce the balanced matrix to a real upper
Hessenberg matrix. The implicit double-shifted QR algorithm is used to compute the
eigenvalues and eigenvectors of this Hessenberg matrix. The eigenvectors are normalized such
that each has Euclidean length of value one. The largest component is real and positive.

The balancing routine is based on the EISPACK routine BALANC. The reduction routine is
based on the EISPACK routines ORTHES and ORTRAN. The QR algorithm routine is based on the
EISPACK routine HQR2. See Smith et al. (1976) for the EISPACK routines. Further details,
some timing data, and credits are given in Hanson et al. (1990).

While the exact value of the performance index, τ , is highly machine dependent, the
performance of Eigen is considered excellent if τ < 1, good if 1 ≤ τ ≤ 100, and poor if τ > 100.

The performance index was first developed by the EISPACK project at Argonne National
Laboratory; see Smith et al. (1976, pages 124-125).
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Example: Eigensystem Analysis

The eigenvalues and eigenvectors of a matrix are computed.

using System;
using Imsl.Math;

public class EigenEx1
{

public static void Main(String[] args)
{

double[,] a = {
{8, - 1, - 5},
{- 4, 4, - 2},
{18, - 5, - 7}

};
Eigen eigen = new Eigen(a);
new PrintMatrix("Eigenvalues").SetPageWidth(80).Print(eigen.GetValues());
new PrintMatrix("Eigenvectors").SetPageWidth(80).Print(eigen.GetVectors());

}
}

Output

Eigenvalues
0

0 2+4i
1 2-4i
2 0.999999999999997

Eigenvectors
0

0 0.316227766016838-0.316227766016838i
1 0.632455532033676
2 1.66533453693773E-16-0.632455532033676i

1
0 0.316227766016838+0.316227766016838i
1 0.632455532033676
2 1.66533453693773E-16+0.632455532033676i

2
0 0.408248290463863
1 0.816496580927725
2 0.408248290463864
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SymEigen Class

Summary

Computes the eigenvalues and eigenvectors of a real symmetric matrix.

public class Imsl.Math.SymEigen

Constructors

SymEigen
public SymEigen(double[,] a)

Description

Constructs the eigenvalues and the eigenvectors for a real symmetric matrix.
Parameter

a – The symmetric matrix whose eigensystem is to be constructed.

SymEigen
public SymEigen(double[,] a, bool computeVectors)

Description

Constructs the eigenvalues and (optionally) the eigenvectors for a real symmetric matrix.
Parameters

a – A double symmetric matrix whose eigensystem is to be constructed.
computeVectors – A boolean, true if the eigenvectors are to be computed.

Methods

GetValues
public double[] GetValues()

Description

Returns the eigenvalues.
If the algorithm fails to converge on an eigenvalue, that eigenvalue is set to NaN.
Returns

A double array containing the eigenvalues in descending order.

GetVectors
public double[,] GetVectors()
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Description

Return the eigenvectors of a symmetric matrix of type double.

The j-th column of the eigenvector matrix corresponds to the j-th eigenvalue. The
eigenvectors are normalized to have Euclidean length one. If the eigenvectors were not
computed by the constructor, then null is returned.

Returns

A double array containing the eigenvectors.

PerformanceIndex
public double PerformanceIndex(double[,] a)

Description

Returns the performance index of a real symmetric eigensystem.

A performance index less than 1 is considered excellent, 1 to 100 is good, while greater
than 100 is considered poor.

Parameter

a – A double symmetric matrix.

Returns

A double scalar value indicating how well the algorithms which have computed the
eigenvalue and eigenvector pairs have performed.

Description

Orthogonal similarity transformations are used to reduce the matrix to an equivalent symmetric
tridiagonal matrix. These transformations are accumulated. An implicit rational QR algorithm
is used to compute the eigenvalues of this tridiagonal matrix. The eigenvectors are computed
using the eigenvalues as perfect shifts, Parlett (1980, pages 169, 172). The reduction routine is
based on the EISPACK routine TRED2. See Smith et al. (1976) for the EISPACK routines.
Further details, some timing data, and credits are given in Hanson et al. (1990).

Let M = the number of eigenvalues, λ = the array of eigenvalues, and xj is the associated
eigenvector with jth eigenvalue.

Also, let ε be the machine precision. The performance index, τ , is defined to be

τ = max
1≤j≤M

‖Axj − λjxj‖1
10Nε ‖A‖1 ‖xj‖1

While the exact value of τ is highly machine dependent, the performance of SymEigen is
considered excellent if τ < 1, good if 1 ≤ 100, and poor if τ > 100. The performance index was
first developed by the EISPACK project at Argonne National Laboratory; see Smith et al.
(1976, pages 124-125).
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Example: Eigenvalues and Eigenvectors of a Symmetric Matrix

The eigenvalues and eigenvectors of a symmetric matrix are computed.

using System;
using Imsl.Math;

public class SymEigenEx1
{

public static void Main(String[] args)
{

double[,] a = {
{1, 1, 1},
{1, 1, 1},
{1, 1, 1}

};

SymEigen eigen = new SymEigen(a);
new PrintMatrix("Eigenvalues").Print(eigen.GetValues());
new PrintMatrix("Eigenvectors").Print(eigen.GetVectors());

}
}

Output

Eigenvalues
0

0 3
1 -3.62597321469472E-16
2 -2.22044604925031E-16

Eigenvectors
0 1 2

0 0.577350269189626 0.816496580927726 0
1 0.577350269189626 -0.408248290463863 -0.707106781186547
2 0.577350269189626 -0.408248290463863 0.707106781186548
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Chapter 3: Interpolation and
Approximation

Types

class Spline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
class CsAkima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
class CsInterpolate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
enumeration CsInterpolate.Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
class CsPeriodic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
class CsShape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
class CsSmooth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
class CsSmoothC2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
class BSpline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
class BsInterpolate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
class BsLeastSquares. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
class RadialBasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
interface RadialBasis.IFunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
class RadialBasis.Gaussian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
class RadialBasis.HardyMultiquadric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Usage Notes

This chapter contains classes to interpolate and approximate data with cubic splines.
Interpolation means that the fitted curve passes through all of the specified data points. An
approximation spline does not have to pass through any of the data points. An appoximating
curve can therefore be smoother than an interpolating curve.

Cubic splines are smooth C1 or C2 fourth-order piecewise-polynomial (pp) functions. For
historical and other reasons, cubic splines are the most heavily used pp functions.

This chapter contains four cubic spline interpolation classes and two approximation classes.
These classes are dervived from the base class Spline, which provides basic services, such as

41



spline evaluation and integration.

The chart shows how the six cubic splines in this chapter fit a single data set.

Class CsInterpolate allows the user to specify various endpoint conditions (such as the value
of the first and second derviatives at the right and left endpoints).

Class CsPeriodic is used to fit periodic (repeating) data. The sample data set used is not
periodic and so the curve does not pass through the final data point.

Class CsAkima keeps the shape of the data while minimizing oscillations.

Class CsShape keeps the shape of the data by preserving its convexity.

Class CsSmooth constructs a smooth spline from noisy data.

Class CsSmoothC2 constructs a smooth spline from noisy data using cross-validation and a
user-supplied smoothing parameter.
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Spline Class

Summary

Spline represents and evaluates univariate piecewise polynomial splines.

public class Imsl.Math.Spline

Constructor

Spline
Spline()

Description

Initializes a new instance of the Imsl.Math.Spline (p. 43) class.

Methods

Derivative
virtual public double[] Derivative(double[] x, int ideriv)

Description

Returns the value of the derivative of the spline at each point of an array.

Parameters

x – A double array of points at which the derivative is to be evaluated.
ideriv – An int specifying the derivative to be computed. If zero, the function
value is returned. If one, the first derivative is returned, etc.

Returns

A double array containing the value of the derivative the spline at each point of the array
x.

Derivative
virtual public double Derivative(double x, int ideriv)

Description

Returns the value of the derivative of the spline at a point.

Parameters

x – A double, the point at which the derivative is to be evaluated.
ideriv – An int specifying the derivative to be computed. If zero, the function
value is returned. If one, the first derivative is returned, etc.
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Returns

A double containing the value of the derivative of the spline at the point x.

Derivative
virtual public double Derivative(double x)

Description

Returns the value of the first derivative of the spline at a point.

Parameter

x – A double, the point at which the derivative is to be evaluated.

Returns

A double containing the value of the first derivative of the spline at the point x.

Eval
virtual public double[] Eval(double[] x)

Description

Returns the value of the spline at each point of an array.

Parameter

x – A double array of points at which the spline is to be evaluated.

Returns

A double array containing the value of the spline at each point of the array x.

Eval
virtual public double Eval(double x)

Description

Returns the value of the spline at a point.

Parameter

x – A double, the point at which the spline is to be evaluated.

Returns

A double giving the value of the spline at the point x.

GetBreakpoints
public double[] GetBreakpoints()

Description

Returns a copy of the breakpoints.
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Returns

A double array containing a copy of the breakpoints.

Integral
virtual public double Integral(double a, double b)

Description

Returns the value of an integral of the spline.

Parameters

a – A double specifying the lower limit of integration.

b – A double specifying the upper limit of integration.

Returns

A double, the integral of the spline from a to b.

Description

A univariate piecewise polynomial (function) p(x) is specified by giving its breakpoint sequence
breakPoint[]= ξ ∈ Rn, the order k (degree k-1) of its polynomial pieces,and the k × (n− 1)
matrix coef=c of its local polynomial coefficients. In terms of this information, the piecewise
polynomial (ppoly) function is given by

p(x) =
k∑

j=1

cji
(x− ξi)j−1

(j − 1)!
for ξi ≤ x ≤ ξi+1

The breakpoint sequence ξ is assumed to be strictly increasing, and we extend the ppoly
function to the entire real axis by extrapolation from the first and last intervals.

CsAkima Class

Summary

Extension of the Spline class to handle the Akima cubic spline.

public class Imsl.Math.CsAkima : Spline

Constructor

CsAkima
public CsAkima(double[] xData, double[] yData)
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Description

Constructs the Akima cubic spline interpolant to the given data points.

Parameters

xData – A double array containing the x-coordinates of the data. Values must be
distinct.

yData – A double array containing the y-coordinates of the data.

System.ArgumentException id is thrown if the arrays xData and yData do not have the
same length

Description

Class CsAkima computes a C1 cubic spline interpolant to a set of data points (xi, fi) for
i = 0, . . . , n− 1. The breakpoints of the spline are the abscissas. Endpoint conditions are
automatically determined by the program; see Akima (1970) or de Boor (1978).

If the data points arise from the values of a smooth, say C4, function f, i.e. fi = f(xi), then the
error will behave in a predictable fashion. Let ξ be the breakpoint vector for the above spline
interpolant. Then, the maximum absolute error satisfies

‖f − s‖[ξ0,ξn−1]
≤ C

∥∥∥f (2)
∥∥∥

[ξ0,ξn−1

|ξ|2

where

|ξ| := max
i=1,...,n−1

|ξi − ξi−1|

CsAkima is based on a method by Akima (1970) to combat wiggles in the interpolant. The
method is nonlinear; and although the interpolant is a piecewise cubic, cubic polynomials are
not reproduced. (However, linear polynomials are reproduced.)

Example: The Akima cubic spline interpolant

A cubic spline interpolant to a function is computed. The value of the spline at point 0.25 is
printed.

using System;
using Imsl.Math;

public class CsAkimaEx1
{

public static void Main(String[] args)
{

int n = 11;
double[] x = new double[n];
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double[] y = new double[n];

for (int k = 0; k < n; k++)
{

x[k] = (double) k / (double) (n - 1);
y[k] = Math.Sin(15.0 * x[k]);

}

CsAkima cs = new CsAkima(x, y);
double csv = cs.Eval(0.25);
Console.Out.WriteLine("The computed cubic spline value at " +

"point .25 is " + csv);
}

}

Output

The computed cubic spline value at point .25 is -0.478185519991867

CsInterpolate Class

Summary

Extension of the Spline class to interpolate data points.

public class Imsl.Math.CsInterpolate : Spline

Constructors

CsInterpolate
public CsInterpolate(double[] xData, double[] yData)

Description

Constructs a cubic spline that interpolates the given data points.

Parameters

xData – A double array containing the x-coordinates of the data. Values must be
distinct.

yData – A double array containing the y-coordinates of the data. The arrays xData
and yData must have the same length.

CsInterpolate
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public CsInterpolate(double[] xData, double[] yData,
Imsl.Math.CsInterpolate.Condition typeLeft, double valueLeft,
Imsl.Math.CsInterpolate.Condition typeRight, double valueRight)

Description

Constructs a cubic spline that interpolates the given data points with specified derivative
endpoint conditions.

Parameters

xData – A double array containing the x-coordinates of the data. Values must be
distinct.

yData – A double array containing the y-coordinates of the data. The arrays xData
and yData must have the same length.

typeLeft – A CsInterpolate.Condition denoting the type of condition at the left
endpoint. This can be NotAKnot, FirstDerivative or SecondDerivative.

valueLeft – A double value at the left endpoint. If typeLeft is NotAKnot this is
ignored, Otherwise, it is the value of the specified derivative.

typeRight – A CsInterpolate.Condition denoting the type of condition at the
right endpoint. This can be NotAKnot, FirstDerivative or SecondDerivative.

valueRight – A double value at the right endpoint.

Description

CsInterpolate computes a C2 cubic spline interpolant to a set of data points (xi, fi) for
i = 0, . . . , n− 1. The breakpoints of the spline are the abscissas. Endpoint conditions are
automatically determined by the program. These conditions correspond to the ”not-a-knot”
condition (see de Boor 1978), which requires that the third derivative of the spline be
continuous at the second and next-to-last breakpoint. If n is 2 or 3, then the linear or quadratic
interpolating polynomial is computed, respectively.

If the data points arise from the values of a smooth, say, C4 function f, i.e. fi = f(xi), then the
error will behave in a predictable fashion. Let ξ be the breakpoint vector for the above spline
interpolant. Then, the maximum absolute error satisfies

|f − s|[ξ0,ξn] ≤ C
∥∥∥f (4)

∥∥∥
[ξ0,ξn]

|ξ|4

where

|ξ| := max
i=0,...,n−1

|ξi+1 − ξi|

For more details, see de Boor (1978, pages 55-56).
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Example: The cubic spline interpolant

A cubic spline interpolant to a function is computed. The value of the spline at point 0.25 is
printed.

using System;
using Imsl.Math;

public class CsInterpolateEx1
{

public static void Main(String[] args)
{

int n = 11;
double[] x = new double[n];
double[] y = new double[n];

for (int k = 0; k < n; k++)
{

x[k] = (double) k / (double) (n - 1);
y[k] = System.Math.Sin(15.0 * x[k]);

}

CsInterpolate cs = new CsInterpolate(x, y);
double csv = cs.Eval(0.25);
Console.Out.WriteLine("The computed cubic spline value at " +

"point .25 is " + csv);
}

}

Output

The computed cubic spline value at point .25 is -0.548772503812158

CsInterpolate.Condition Enumeration

Summary

Denotes the type of condition at an endpoint.

public enumeration Imsl.Math.CsInterpolate.Condition

Fields

FirstDerivative
public Imsl.Math.CsInterpolate.Condition FirstDerivative
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Description

Satisfies the endpoint condition of the first derivative at the right and left points.

NotAKnot
public Imsl.Math.CsInterpolate.Condition NotAKnot

Description

Satisfies the ”not-a-knot” condition.

SecondDerivative
public Imsl.Math.CsInterpolate.Condition SecondDerivative

Description

Satisfies the endpoint condition of the second derivative at the right and left points.

CsPeriodic Class

Summary

Extension of the Spline class to interpolate data points with periodic boundary conditions.

public class Imsl.Math.CsPeriodic : Spline

Constructor

CsPeriodic
public CsPeriodic(double[] xData, double[] yData)

Description

Constructs a cubic spline that interpolates the given data points with periodic boundary
conditions.

Parameters

xData – A double array containing the x-coordinates of the data. There must be at
least 4 data points and values must be distinct.

yData – A double array containing the y-coordinates of the data. The arrays xData
and yData must have the same length.

Description

Class CsPeriodic computes a C2 cubic spline interpolant to a set of data points (xi, fi) for
i = 0, . . . n− 1. The breakpoints of the spline are the abscissas. The program enforces periodic
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endpoint conditions. This means that the spline s satisfies s(a) = s(b), s ′ (a) = s ′ (b), and
s′′ (a) = s′′ (b), where a is the leftmost abscissa and b is the rightmost abscissa. If the ordinate
values corresponding to a and b are not equal, then a warning message is issued. The ordinate
value at b is set equal to the ordinate value at a and the interpolant is computed.

If the data points arise from the values of a smooth (say C4) periodic function f, i.e. fi = f(xi),
then the error will behave in a predictable fashion. Let ξ be the breakpoint vector for the above
spline interpolant. Then, the maximum absolute error satisfies

|f − s|[ξ0,ξn−1] ≤ C|f
(4)|[ξ0,ξn−1]|ξ|

4

where

|ξ| := max
i=1,...,n−1

|ξi − ξi−1|

For more details, see de Boor (1978, pages 320-322).

Example: The cubic spline interpolant with periodic boundary conditions

A cubic spline interpolant to a function is computed. The value of the spline at point 0.23 is
printed.

using System;
using Imsl.Math;

public class CsPeriodicEx1
{

public static void Main(String[] args)
{

int n = 11;
double[] x = new double[n];
double[] y = new double[n];

double h = 2.0 * System.Math.PI / 15.0 / 10.0;
for (int k = 0; k < n; k++)
{

x[k] = h * (double) (k);
y[k] = System.Math.Sin(15.0 * x[k]);

}

CsPeriodic cs = new CsPeriodic(x, y);
double csv = cs.Eval(0.23);
Console.Out.WriteLine("The computed cubic spline value at " +

"point .23 is " + csv);
}

}
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Output

The computed cubic spline value at point .23 is -0.303401472606451

CsShape Class

Summary

Extension of the Spline class to interpolate data points consistent with the concavity of the
data.

public class Imsl.Math.CsShape : Spline

Constructor

CsShape
public CsShape(double[] xData, double[] yData)

Description

Construct a cubic spline interpolant which is consistent with the concavity of the data.

Parameters

xData – A double array containing the x-coordinates of the data. Values must be
distinct.

yData – A double array containing the y-coordinates of the data. The arrays xData
and yData must have the same length.

Imsl.Math.TooManyIterationsException id is thrown if the iteration did not converge.

Imsl.Math.SingularMatrixException id is thrown if matrix is singular.

Description

Class CsShape computes a cubic spline interpolant to n data points xi, fi for i = 0, . . . , n− 1.
For ease of explanation, we will assume that xi < xi+1, although it is not necessary for the user
to sort these data values. If the data are strictly convex, then the computed spline is convex,
C2, and minimizes the expression

∫ xn

x1

(g′′)2

over all convex C1 functions that interpolate the data. In the general case when the data have
both convex and concave regions, the convexity of the spline is consistent with the data and the
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above integral is minimized under the appropriate constraints. For more information on this
interpolation scheme, we refer the reader to Micchelli et al. (1985) and Irvine et al. (1986).

One important feature of the splines produced by this class is that it is not possible, a priori, to
predict the number of breakpoints of the resulting interpolant. In most cases, there will be
breakpoints at places other than data locations. The method is nonlinear; and although the
interpolant is a piecewise cubic, cubic polynomials are not reproduced. However, linear
polynomials are reproduced.) This routine should be used when it is important to preserve the
convex and concave regions implied by the data.

Example: The shape preserving cubic spline interpolant

A cubic spline interpolant to a function is computed consistent with the concavity of the data.
The spline value at 0.05 is printed.

using System;
using Imsl.Math;

public class CsShapeEx1
{

public static void Main(String[] args)
{

double[] x = new double[]{0.00, 0.10, 0.20, 0.30, 0.40,
0.50, 0.60, 0.80, 1.00};

double[] y = new double[]{0.00, 0.90, 0.95, 0.90, 0.10,
0.05, 0.05, 0.20, 1.00};

CsShape cs = new CsShape(x, y);
double csv = cs.Eval(0.05);
Console.Out.WriteLine("The computed cubic spline value at " +

"point .05 is " + csv);
}

}

Output

The computed cubic spline value at point .05 is 0.55823122286482

CsSmooth Class

Summary

Extension of the Spline class to construct a smooth cubic spline from noisy data points.

public class Imsl.Math.CsSmooth : Spline
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Constructors

CsSmooth
public CsSmooth(double[] xData, double[] yData)

Description

Constructs a smooth cubic spline from noisy data using cross-validation to estimate the
smoothing parameter. All of the points have equal weights.

Parameters

xData – A double array containing the x-coordinates of the data. Values must be
distinct.
yData – A double array containing the y-coordinates of the data. The arrays xData
and yData must have the same length.

CsSmooth
public CsSmooth(double[] xData, double[] yData, double[] weight)

Description

Constructs a smooth cubic spline from noisy data using cross-validation to estimate the
smoothing parameter. Weights are supplied by the user.

Parameters

xData – A double array containing the x-coordinates of the data. Values must be
distinct.
yData – A double array containing the y-coordinates of the data. The arrays xData
and yData must have the same length.
weight – A double array containing the relative weights. This array must havethe
same length as xData.

Description

Class CsSmooth is designed to produce a C2 cubic spline approximation to a data set in which
the function values are noisy. This spline is called a smoothing spline. It is a natural cubic
spline with knots at all the data abscissas x = xData, but it does not interpolate the data
(xi, fi). The smoothing spline S is the unique C2 function that minimizes

b∫
a

S′′ (x)2 dx

subject to the constraint

n−1∑
i=0

|(S (xi)− fi)wi|2 ≤ σ

54 • CsSmooth Class IMSL C# Numerical Library



where σ is the smoothing parameter. The reader should consult Reinsch (1967) for more
information concerning smoothing splines. CsSmooth solves the above problem when the user
provides the smoothing parameter σ. CsSmoothC2 attempts to find the ”optimal” smoothing
parameter using the statistical technique known as cross-validation. This means that (in a very
rough sense) one chooses the value of σ so that the smoothing spline (Sσ) best approximates
the value of the data at xI , if it is computed using all the data except the i-th; this is true for
all i = 0, . . . , n− 1. For more information on this topic, we refer the reader to Craven and
Wahba (1979).

Example: The cubic spline interpolant to noisy data

A cubic spline interpolant to noisy data is computed using cross-validation to estimate the
smoothing parameter. The value of the spline at point 0.3010 is printed.

using System;
using Imsl.Math;
using Imsl.Stat;

public class CsSmoothEx1
{

public static void Main(String[] args)
{

int n = 300;
double[] x = new double[n];
double[] y = new double[n];
for (int k = 0; k < n; k++)
{

x[k] = (3.0 * k) / (n - 1);
y[k] = 1.0 / (0.1 + System.Math.Pow(3.0 * (x[k] - 1.0), 4));

}

// Seed the random number generator
Imsl.Stat.Random rn = new Imsl.Stat.Random(1234579);
rn.Multiplier = 16807;

// Contaminate the data
for (int i = 0; i < n; i++)
{

y[i] += 2.0 * (float) rn.NextDouble() - 1.0;
}

// Smooth the data
CsSmooth cs = new CsSmooth(x, y);
double csv = cs.Eval(0.3010);
Console.Out.WriteLine("The computed cubic spline value at " +

"point .3010 is " + csv);
}

}
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Output

The computed cubic spline value at point .3010 is 0.0101201298963992

CsSmoothC2 Class

Summary

Extension of the Spline class used to construct a spline for noisy data points using an alternate
method.

public class Imsl.Math.CsSmoothC2 : Spline

Constructors

CsSmoothC2
public CsSmoothC2(double[] xData, double[] yData, double sigma)

Description

Constructs a smooth cubic spline from noisy data using an algorithm based on Reinsch
(1967). All of the points have equal weights.

Parameters

xData – A double array containing the x-coordinates of the data. Values must be
distinct.

yData – A double array containing the y-coordinates of the data. The arrays xData
and yData must have the same length.

sigma – A double value specifying the smoothing parameter. sigma must not be
negative.

CsSmoothC2
public CsSmoothC2(double[] xData, double[] yData, double[] weight, double
sigma)

Description

Constructs a smooth cubic spline from noisy data using an algorithm based on Reinsch
(1967) with weights supplied by the user.

Parameters

xData – A double array containing the x-coordinates of the data. Values must be
distinct.
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yData – A double array containing the y-coordinates of the data. The arrays xData
and yData must have the same length.

weight – A double array containing the weights. The arrays xData and weight
must have the same length.

sigma – A double value specifying the smoothing parameter. sigma must not be
negative.

Description

Class CsSmoothC2 is designed to produce a C2 cubic spline approximation to a data set in
which the function values are noisy. This spline is called a smoothing spline. It is a natural
cubic spline with knots at all the data abscissas x, but it does not interpolate the data (xi, fi).
The smoothing spline Sσ is the unique C2 function that minimizes

b∫
a

s′′σ (x)2 dx

subject to the constraint

n−1∑
i=0

|sσ (xi)− fi|2 ≤ σ

.

Recommended values for σ depend on the weights, w. If an estimate for the standard deviation
of the error in the y-values is availiable, then wi should be set to this value and the smoothing
parameter should be choosen in the confidence interval corresponding to the left side of the
above inequality. That is,

n−
√

2n ≤ σ ≤ n+
√

2n

CsSmoothC2 is based on an algorithm of Reinsch (1967). This algorithm is also discussed in de
Boor (1978, pages 235-243).

Example: The cubic spline interpolant to noisy data with supplied weights

A cubic spline interpolant to noisy data is computed using supplied weights and smoothing
parameter. The value of the spline at point 0.3010 is printed.

using System;
using Imsl.Math;
using Imsl.Stat;

public class CsSmoothC2Ex1
{

public static void Main(String[] args)
{
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// Set up a grid
int n = 300;
double[] x = new double[n];
double[] y = new double[n];
for (int k = 0; k < n; k++)
{

x[k] = 3.0 * ((double) (k) / (double) (n - 1));
y[k] = 1.0 / (.1 + System.Math.Pow(3.0 * (x[k] - 1.0), 4));

}

// Seed the random number generator
Imsl.Stat.Random rn = new Imsl.Stat.Random(1234579);
rn.Multiplier = 16807;

// Contaminate the data
for (int i = 0; i < n; i++)
{

y[i] = y[i] + 2.0 * (float) rn.NextDouble() - 1.0;
}

// Set the weights
double sdev = 1.0 / System.Math.Sqrt(3.0);
double[] weights = new double[n];
for (int i = 0; i < n; i++)
{

weights[i] = sdev;
}

// Set the smoothing parameter
double smpar = (double) n;

// Smooth the data
CsSmoothC2 cs = new CsSmoothC2(x, y, weights, smpar);
double csv = cs.Eval(0.3010);
Console.Out.WriteLine("The computed cubic spline value at " +

"point .3010 is " + csv);
}

}

Output

The computed cubic spline value at point .3010 is 0.0335028881575695

BSpline Class

Summary

Spline represents and evaluates univariate B-splines.
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public class Imsl.Math.BSpline

Constructor

BSpline
BSpline()

Description

Initializes a new instance of the Imsl.Math.BSpline (p. 58) class.

Methods

Derivative
public double Derivative(double x)

Description

Returns the value of the first derivative of the B-spline at a point.

Parameter

x – A double which specifies the point at which the derivative is to be evaluated.

Returns

A double containing the value of the first derivative of the B-spline at the point x.

Derivative
public double Derivative(double x, int ideriv)

Description

Returns the value of the derivative of the B-spline at a point.

If ideriv is zero, the function value is returned. If one, the first derivative is returned,
etc.

Parameters

x – A double which specifies the point at which the derivative is to be evaluated.

ideriv – A int specifying the derivative to be computed.

Returns

A double containing the value of the derivative of the B-spline at the point x.

Derivative
public double[] Derivative(double[] x, int ideriv)
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Description

Returns the value of the derivative of the B-spline at each point of an array.

If ideriv is zero, the function value is returned. If one, the first derivative is returned,
etc.

Parameters

x – A double array of points at which the derivative is to be evaluated.

ideriv – A int specifying the derivative to be computed.

Returns

A double array containing the value of the derivative the B-spline at each point of the
array x.

Eval
public double Eval(double x)

Description

Returns the value of the B-spline at a point.

Parameter

x – A double which specifies the point at which the B-spline is to be evaluated.

Returns

A double giving the value of the B-spline at the point x.

Eval
public double[] Eval(double[] x)

Description

Returns the value of the B-spline at each point of an array.

Parameter

x – A double array of points at which the B-spline is to be evaluated.

Returns

A double array containing the value of the B-spline at each point of the array x.

GetKnots
public double[] GetKnots()

Description

Returns a copy of the knot sequence.
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Returns

A double array containing a copy of the knot sequence.

GetSpline
public Imsl.Math.Spline GetSpline()

Description

Returns a Spline representation of the B-spline.

Returns

A Spline representation of the B-spline.

Integral
public double Integral(double a, double b)

Description

Returns the value of an integral of the B-spline.

Parameters

a – A double specifying the lower limit of integration.

b – A double specifying the upper limit of integration.

Returns

A double which specifies the integral of the B-spline from a to b.

Description

B-splines provide a particularly convenient and suitable basis for a given class of smooth ppoly
functions. Such a class is specified by giving its breakpoint sequence, its order k, and the
required smoothness across each of the interior breakpoints. The corresponding B-spline basis
is specified by giving its knot sequence t ∈ RM . The specification rule is as follows: If the class
is to have all derivatives up to and including the j-th derivative continuous across the interior
breakpoint ξi, then the number ξi should occur k - j - 1 times in the knot sequence. Assuming
that ξ1 and ξn are the endpoints of the interval of interest, choose the first k knots equal to ξ1
and the last k knots equal to ξn. This can be done because the B-splines are defined to be right
continuous near ξ1 and left continuous near ξn.

When the above construction is completed, a knot sequence t of length M is generated, and
there are m: = M-k B-splines of order k, for example B0, ..., Bm−1, spanning the ppoly
functions on the interval with the indicated smoothness. That is, each ppoly function in this
class has a unique representation p = a0B0 + a1B1 + ...+ am−1Bm−1 as a linear combination of
B-splines. A B-spline is a particularly compact ppoly function. Bi is a nonnegative function
that is nonzero only on the interval [ti, ti+k]. More precisely, the support of the i-th B-spline is
[ti, ti+k]. No ppoly function in the same class (other than the zero function) has smaller
support (i.e., vanishes on more intervals) than a B-spline. This makes B-splines particularly
attractive basis functions since the influence of any particular B-spline coefficient extends only
over a few intervals.
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Example: The B-spline interpolant

A B-Spline interpolant to data is computed. The value of the spline at point .23 is printed.

using System;
using Imsl.Math;

public class BsInterpolateEx1
{

public static void Main(String[] args)
{

int n = 11;
double[] x = new double[n];
double[] y = new double[n];

double h = 2.0 * System.Math.PI / 15.0 / 10.0;
for (int k = 0; k < n; k++)
{

x[k] = h * (double) (k);
y[k] = System.Math.Sin(15.0 * x[k]);

}

BsInterpolate bs = new BsInterpolate(x, y);
double bsv = bs.Eval(0.23);
Console.Out.WriteLine("The computed B-spline value at point "

+ ".23 is " + bsv);
}

}

Output

The computed B-spline value at point .23 is -0.303418399276769

Example: The B-spline least squares fit

A B-Spline least squares fit to data is computed. The value of the spline at point 4.5 is printed.

using System;
using Imsl.Math;

public class BsLeastSquaresEx1
{

public static void Main(String[] args)
{

double[] x = new double[]{0, 1, 2, 3, 4, 5, 8, 9, 10};
double[] y = new double[]{1.0, 0.8, 2.4, 3.1, 4.5,

5.8, 6.2, 4.9, 3.7};

BsLeastSquares bs = new BsLeastSquares(x, y, 5);
double bsv = bs.Eval(4.5);
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Console.Out.WriteLine("The computed B-spline value at point " +
"4.5 is " + bsv);

}
}

Output

The computed B-spline value at point 4.5 is 5.22855432359694

BsInterpolate Class

Summary

Extension of the BSpline class to interpolate data points.

public class Imsl.Math.BsInterpolate : BSpline

Constructors

BsInterpolate
public BsInterpolate(double[] xData, double[] yData)

Description

Constructs a B-spline that interpolates the given data points. The computed B-spline will
be order 4 (cubic) and have a default ”not-a-knot” spline knot sequence.

Parameters

xData – A double array containing the x-coordinates of the data. Values must be
distinct.

yData – A double array containing the y-coordinates of the data. The arrays xData
and yData must have the same length.

BsInterpolate
public BsInterpolate(double[] xData, double[] yData, int order)

Description

Constructs a B-spline that interpolates the given data points and order, using a default
”not-a-knot” spline knot sequence.
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Parameters

xData – A double array containing the x-coordinates of the data. Values must be
distinct.

yData – A double array containing the y-coordinates of the data. The arrays xData
and yData must have the same length.

order – An int denoting the order of the B-spline.

BsInterpolate
public BsInterpolate(double[] xData, double[] yData, int order, double[]
knot)

Description

Constructs a B-spline that interpolates the given data points, using the specified order
and knots.

Parameters

xData – A double array containing the x-coordinates of the data. Values must be
distinct.

yData – A double array containing the y-coordinates of the data. The arrays xData
and yData must have the same length.

order – A int denoting the order of the spline.

knot – A double array containing the knot sequence for the B-spline.

Description

Given the data points x = xData, f = yData, and n the number of elements in xData and
yData, the default action of BsInterpolate computes a cubic (order = 4) spline interpolant s
to the data using a default ”not-a-knot” knot sequence. Constructors are also provided that
allow the order and knot sequence to be specified. This algorithm is based on the routine
SPLINT by de Boor (1978, p. 204).

First, the xData vector is sorted and the result is stored in x. The elements of yData are
permuted appropriately and stored in f, yielding the equivalent data (xi, fi) for i = 0 to n-1.
The following preliminary checks are performed on the data, with k = order. We verify that

xi < xi+1 for i = 0, . . . , n− 2

ti < ti+k for i = 0, . . . , n− 1

ti < ti+1 for i = 0, . . . , n+ k − 2

The first test checks to see that the abscissas are distinct. The second and third inequalities
verify that a valid knot sequence has been specified.

In order for the interpolation matrix to be nonsingular, we also check tk−1 ≤ xi ≤ tn for i = 0
to n-1. This first inequality in the last check is necessary since the method used to generate the
entries of the interpolation matrix requires that the k possibly nonzero B-splines at xi,
Bj−k+1, ..., Bj where j satisfies tj ≤ xi < tj+1 be well-defined (that is, j − k + 1 ≥ 0).
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Example: The B-spline interpolant

A B-Spline interpolant to data is computed. The value of the spline at point .23 is printed.

using System;
using Imsl.Math;

public class BsInterpolateEx1
{

public static void Main(String[] args)
{

int n = 11;
double[] x = new double[n];
double[] y = new double[n];

double h = 2.0 * System.Math.PI / 15.0 / 10.0;
for (int k = 0; k < n; k++)
{

x[k] = h * (double) (k);
y[k] = System.Math.Sin(15.0 * x[k]);

}

BsInterpolate bs = new BsInterpolate(x, y);
double bsv = bs.Eval(0.23);
Console.Out.WriteLine("The computed B-spline value at point "

+ ".23 is " + bsv);
}

}

Output

The computed B-spline value at point .23 is -0.303418399276769

BsLeastSquares Class

Summary

Extension of the BSpline class to compute a least squares spline approximation to data points.

public class Imsl.Math.BsLeastSquares : BSpline

Constructors

BsLeastSquares
public BsLeastSquares(double[] xData, double[] yData, int nCoef)
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Description

Constructs a least squares B-spline approximation to the given data points.

Parameters

xData – A double array containing the x-coordinates of the data.
yData – A double array containing the y-coordinates of the data. The arrays xData
and yData must have the same length.
nCoef – A int denoting the linear dimension of the spline subspace. It should be
smaller than the number of data points and greater than or equal to the order of the
spline (whose default value is 4).

BsLeastSquares
public BsLeastSquares(double[] xData, double[] yData, int nCoef, int order)

Description

Constructs a least squares B-spline approximation to the given data points.

Parameters

xData – A double array containing the x-coordinates of the data.
yData – A double array containing the y-coordinates of the data. The arrays xData
and yData must have the same length.
nCoef – A int denoting the linear dimension of the spline subspace. It should be
smaller than the number of data points and greater than or equal to the order of the
spline.
order – A int denoting the order of the spline.

BsLeastSquares
public BsLeastSquares(double[] xData, double[] yData, int nCoef, int order,
double[] weight, double[] knot)

Description

Constructs a least squares B-spline approximation to the given data points.

Parameters

xData – A double array containing the x-coordinates of the data.
yData – A double array containing the y-coordinates of the data. The arrays xData
and yData must have the same length.
nCoef – A int denoting the linear dimension of the spline subspace. It should be
smaller than the number of data points and greater than or equal to the order of the
spline.
order – A int denoting the order of the spline.
weight – A double array containing the weights for the data. The arrays xData,
yDataa and weight must have the same length.
knot – A double array containing the knot sequence for the spline.
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Description

Let’s make the identifications

n = xData.length

x = xData

f = yData

m = nCoef

k = order

For convenience, we assume that the sequence x is increasing, although the class does not
require this.

By default, k = 4, and the knot sequence we select equally distributes the knots through the
distinct xi

′s. In particular, the m + k knots will be generated in [x1, xn] with k knots stacked
at each of the extreme values. The interior knots will be equally spaced in the interval.

Once knots t and weights w are determined, then the spline least-squares fit to the data is
computed by minimizing over the linear coefficients aj

n−1∑
i=0

wi

[
fi −

m∑
j=1

ajBj(xi)
]2

where the Bj , j = 1, ...,m are a (B-spline) basis for the spline subspace.

This algorithm is based on the routine L2APPR by deBoor (1978, p. 255).

Example: The B-spline least squares fit

A B-Spline least squares fit to data is computed. The value of the spline at point 4.5 is printed.

using System;
using Imsl.Math;

public class BsLeastSquaresEx1
{

public static void Main(String[] args)
{

double[] x = new double[]{0, 1, 2, 3, 4, 5, 8, 9, 10};
double[] y = new double[]{1.0, 0.8, 2.4, 3.1, 4.5,

5.8, 6.2, 4.9, 3.7};

BsLeastSquares bs = new BsLeastSquares(x, y, 5);
double bsv = bs.Eval(4.5);
Console.Out.WriteLine("The computed B-spline value at point " +

"4.5 is " + bsv);
}

}
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Output

The computed B-spline value at point 4.5 is 5.22855432359694

RadialBasis Class

Summary

Computes a least-squares fit to scattered data.

public class Imsl.Math.RadialBasis

Properties

ANOVA
public Imsl.Stat.ANOVA ANOVA {get; }
Description

Returns the ANOVA statistics from the linear regression.

See Also: Imsl.Stat.LinearRegression (p. 326), Imsl.Stat.ANOVA (p. 383)

RadialFunction
public Imsl.Math.RadialBasis.IFunction RadialFunction {get; set; }
Description

The radial function.

Constructor

RadialBasis
public RadialBasis(int nDim, int nCenters)

Description

Creates a new instance of RadialBasis.

Parameters

nDim – An int specifying the number of dimensions.

nCenters – An int specifying the number of centers.
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Methods

Eval
public double Eval(double[] x)

Description

Returns the value of the radial basis approximation at a point.

Parameter

x – A double array containing the location of the data point at which the
approximation is to be computed.

Returns

The value of the radial basis approximation at x.

Eval
public double[] Eval(double[,] x)

Description

Returns the value of the radial basis approximation at a point.

Parameter

x – A double[,], the point at which the radial basis is to be evaluated.

Returns

A double[] giving the value of the radial basis at the point x.

Gradient
public double[] Gradient(double[] x)

Description

Returns the gradient of the radial basis approximation at a point.

Parameter

x – A double array containing the location of the data point at which the
approximation’s gradient is to be computed.

Returns

A double array, of length nDim containing the value of the gradient of the radial basis
approximation at x.

Update
public void Update(double[] x, double f)

Description

Adds a data point with weight = 1.
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Parameters

x – A double array containing the location of the data point.

f – A double containing the function value at the data point.

Update
public void Update(double[] x, double f, double w)

Description

Adds a data point with a sepecified weight.

Parameters

x – A double array containing the location of the data point.

f – A double containing the function value at the data point.

w – A double containing the weight of this data point.

Update
public void Update(double[,] x, double[] f)

Description

Adds a set of data points, all with weight = 1.

Parameters

x – A double matrix of size nPoints by nDim containing the location of the data
points.

f – A double array containing the function values at the data points.

Update
public void Update(double[,] x, double[] f, double[] w)

Description

Adds a set of data points with user-specified weights.

Parameters

x – A double matrix of size nPoints by nDim containing the location of the data
points.

f – A double array containing the function values at the data points.

w – A double array containing the weights associated with the data points.
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Description

RadialBasis computes a least-squares fit to scattered data in Rd, where d is the dimension.
More precisely, we are given data points

x0, . . . , xn−1 ∈ Rd

and function values
f0, . . . , fn−1 ∈ R1

The radial basis fit to the data is a function F which approximates the above data in the sense
that it minimizes the sum-of-squares error

n−1∑
i=0

wi (F (xi)− fi)
2

where w are the weights. Of course, we must restrict the functional form of F. Here we assume
it is a linear combination of radial functions:

F (x) ≡
m−1∑
j=0

αjφ(‖x− cj‖)

The cj are the centers .

A radial function, φ(r), maps [0,∞) into R1. The default radial function is the Hardy
multiquadric,

φ(r) ≡
√
r2 + δ2

with δ = 1. An alternate radial function is the Gaussian, e−ax2
.

By default, the centers are points in a Faure sequence, scaled to cover the box containing the
data.

Example: Radial Basis Function Approximation

The function
e−‖~x‖

2/d

where d is the dimension, is evaluated at a set of randomly choosen points. Random noise is
added to the values and a radial basis approximated to the noisy data is computed. The radial
basis fit is then compared to the original function at another set of randomly choosen points.
Both the average error and the maximum error are computed and printed.

In this example, the dimension d=10. The function is sampled at 200 random points, in the
[−1, 1]d cube, to which what noise in the range [-0.2,0.2] is added. The error is computed at
1000 random points, also from the [−1, 1]d cube. The compute errors are less than the added
noise.
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using System;
using Imsl.Math;

public class RadialBasisEx1
{

public static void Main(String[] args)
{

int nDim = 10;

// Sample, with noise, the function at 100 randomly choosen points
int nData = 200;
double[,] xData = new double[nData,nDim];
double[] fData = new double[nData];
Imsl.Stat.Random rand = new Imsl.Stat.Random(234567);
double[] tmp = new double[nDim];
for (int k = 0; k < nData; k++)
{

for (int i = 0; i < nDim; i++)
{

tmp[i] = xData[k,i] = 2.0 * rand.NextDouble() - 1.0;
}
// noisy sample
fData[k] =

fcn(tmp) + 0.20 * (2.0 * rand.NextDouble() - 1.0);
}

// Compute the radial basis approximation using 25 centers
int nCenters = 25;
RadialBasis rb = new RadialBasis(nDim, nCenters);
rb.Update(xData, fData);

// Compute the error at a randomly selected set of points
int nTest = 1000;
double maxError = 0.0;
double aveError = 0.0;
double[] x = new double[nDim];
for (int k = 0; k < nTest; k++)
{

for (int i = 0; i < nDim; i++)
{

x[i] = 2.0 * rand.NextDouble() - 1.0;
}
double error = System.Math.Abs(fcn(x) - rb.Eval(x));
aveError += error;
maxError = System.Math.Max(error, maxError);
double f = fcn(x);

}
aveError /= nTest;

Console.Out.WriteLine("average error is " + aveError);
Console.Out.WriteLine("maximum error is " + maxError);

}

// The function to approximate
internal static double fcn(double[] x)
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{
double sum = 0.0;
for (int k = 0; k < x.Length; k++)
{

sum += x[k] * x[k];
}
sum /= x.Length;
return System.Math.Exp(-sum);

}
}

Output

average error is 0.041978979550254
maximum error is 0.171666811944546

RadialBasis.IFunction Interface

Summary

Public interface for the user supplied function to the RadialBasis object.

public interface Imsl.Math.RadialBasis.IFunction

Methods

F
abstract public double F(double x)

Description

A radial basis function.

Parameter

x – A double, the point at which the function is to be evaluated.

Returns

A double, the value of the function at x.

G
abstract public double G(double x)

Description

The derivative of the radial basis function.
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Parameter

x – A double, the point at which the function is to be evaluated.

Returns

A double, the value of the function at x.

RadialBasis.Gaussian Class

Summary

The Gaussian basis function, e−ax2
.

public class Imsl.Math.RadialBasis.Gaussian : Imsl.Math.RadialBasis.IFunction

Constructor

Gaussian
public Gaussian(double a)

Description

The Gaussian basis function, e−ax2
.

Parameter

a – A double, the value of the function at x

Methods

F
Final public double F(double x)

Description

A radial basis function.

Parameter

x – A double, the point at which the function is to be evaluated.

Returns

A double, the value of the function at x.

G
Final public double G(double x)
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Description

The derivative of the radial basis function.

Parameter

x – A double, the point at which the function is to be evaluated.

Returns

A double, the value of the function at x.

RadialBasis.HardyMultiquadric Class

Summary

The Hardy multiquadric basis function,
√
r2 + δ2.

public class Imsl.Math.RadialBasis.HardyMultiquadric :
Imsl.Math.RadialBasis.IFunction

Constructor

HardyMultiquadric
public HardyMultiquadric(double delta)

Description

Creates a Hardy multiquadric basis function.

Parameter

delta – The parameter in the function definition.

Methods

F
Final public double F(double x)

Description

A radial basis function.

Parameter

x – A double, the point at which the function is to be evaluated.
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Returns

A double, the value of the function at x.

G
Final public double G(double x)

Description

The derivative of the radial basis function.

Parameter

x – A double, the point at which the function is to be evaluated.

Returns

A double, the value of the function at x.
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Usage Notes

Univariate Quadrature

Class Quadrature computes approximations to integrals of the form

∫ b

c

f (x)dx

Quadrature computes an estimated answer R. An optional value ErrorEstimate = E estimates
the error. These numbers are related as follows:

∣∣∣∣∣∣
b∫

a

f(x) dx−R

∣∣∣∣∣∣ ≤ E ≤ max

ε, ρ
∣∣∣∣∣∣

b∫
a

f(x) dx

∣∣∣∣∣∣


One situation that occasionally arises in univariate quadrature concerns the approximation of
integrals when only tabular data are given. The functions described above do not directly
address this question. However, the standard method for handling this problem is first to
interpolate the data, and then to integrate the interpolant. This can be accomplished by using
a IMSL C# Library spline interpolation class derived from Imsl.Math.Spline and the method
Imsl.Math.Spline.Integral (a,b)
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Multivariate Quadrature

The class HypercubeQuadrature computes an approximation to the integral of a function of n
variables over a hyper-rectangle.

∫ b1

a1

...

∫ bn

an

f (x1, ... , xn)dxn... dx1

Quadrature Class

Summary

Quadrature is a general-purpose integrator that uses a globally adaptive scheme in order to
reduce the absolute error.

public class Imsl.Math.Quadrature

Properties

AbsoluteError
public double AbsoluteError {get; set; }
Description

The absolute error tolerance.

ErrorEstimate
public double ErrorEstimate {get; }
Description

Returns an estimate of the relative error in the computed result.

ErrorStatus
public int ErrorStatus {get; }
Description

Returns the non-fatal error status.

Extrapolation
public bool Extrapolation {get; set; }
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Description

If true, the epsilon-algorithm for extrapolation is enabled.

The default is false (extrapolation is not used).

MaxSubintervals
public int MaxSubintervals {get; set; }
Description

The maximum number of subintervals allowed.

The default value is 500.

RelativeError
public double RelativeError {get; set; }
Description

The relative error tolerance.

Rule
public int Rule {get; set; }
Description

The Gauss-Kronrod rule.

The default is 3.

Rule Data points used
1 7 - 15
2 10 - 21
3 15 - 31
4 20 - 41
5 25 - 51
6 30 - 61

Constructor

Quadrature
public Quadrature()

Description

Constructs a Quadrature object.
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Method

Eval
public double Eval(Imsl.Math.Quadrature.IFunction f, double a, double b)

Description

Returns the value of the integral from a to b.

Parameters

f – The function to be integrated.

a – A double specifying the lower limit of integration.

b – A double specifying the upper limit of integration, either or both of a and b can
be Double.POSITIVE INFINITY or Double.NEGATIVE INFINITY.

Returns

A double specifying the integral value from a to b.

Description

Quadrature subdivides the interval [A, B] and uses a (2k + 1)-point Gauss-Kronrod rule to
estimate the integral over each subinterval. The error for each subinterval is estimated by
comparison with the k-point Gauss quadrature rule. The subinterval with the largest estimated
error is then bisected and the same procedure is applied to both halves. The bisection process
is continued until either the error criterion is satisfied, roundoff error is detected, the
subintervals become too small, or the maximum number of subintervals allowed is reached.
This class is based on the subroutine QAG by Piessens et al. (1983).

Example 1: Integral
∫ 3

1 e2x dx

The integral
∫ 3

1
e2x dx is computed and compared to its expected value.

using System;
using Imsl.Math;

public class QuadratureEx1 : Quadrature.IFunction
{

public double F(double x)
{

return Math.Exp(2.0 * x);
}

public static void Main(String[] args)
{

Quadrature q = new Quadrature();
Quadrature.IFunction fcn = new QuadratureEx1();
double result = q.Eval(fcn, 1.0, 3.0);
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double expect =
(System.Math.Exp(6) - System.Math.Exp(2)) / 2.0;

Console.Out.WriteLine("result = " + result);
Console.Out.WriteLine("expect = " + expect);

}
}

Output

result = 198.019868696902
expect = 198.019868696902

Example 2: Integral
∫∞

0 e−x dx

The integral
∫∞
0
e−x dx is computed and compared to its expected value.

using System;
using Imsl.Math;

public class QuadratureEx2 : Quadrature.IFunction
{

public double F(double x)
{

return Math.Exp(- x);
}

public static void Main(String[] args)
{

Quadrature q = new Quadrature();
Quadrature.IFunction fcn = new QuadratureEx2();
double result = q.Eval(fcn, 0.0, Double.PositiveInfinity);

double expect = 1.0;
Console.Out.WriteLine("result = " + result);
Console.Out.WriteLine("expect = " + expect);

}
}

Output

result = 0.999999999999999
expect = 1
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Example 3: Integral of the entire real line

The integral
∫∞
−∞

x
4ex+9e−x dx is computed and compared to its expected value. This integral is

evaluated in Gradshteyn and Ryzhik (equation 3.417.1).

using System;
using Imsl.Math;

public class QuadratureEx3 : Quadrature.IFunction
{

public double F(double x)
{

return x / (4.0 * Math.Exp(x) + 9.0 * Math.Exp(-x));
}

public static void Main(String[] args)
{

Quadrature q = new Quadrature();
Quadrature.IFunction fcn = new QuadratureEx3();
double result = q.Eval(fcn, Double.NegativeInfinity,

Double.PositiveInfinity);

double expect = System.Math.PI * System.Math.Log(1.5) / 12.0;
Console.Out.WriteLine("result = " + result);
Console.Out.WriteLine("expect = " + expect);

}
}

Output

result = 0.106150517076628
expect = 0.106150517076633

Reference

Gradshteyn, I. S. and I. M. Ryzhik (1965), Table of Integrals, Series, and Products, Academic
Press, New York.

Example 4: Integral of an oscillatory function

The integral of cos(ax) for a = 104 is computed and compared to its expected value. Because
the function is highly oscillatory, the quadrature rule is set to 6. The relative error tolerance is
also set.

using System;
using Imsl.Math;
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public class QuadratureEx4 : Quadrature.IFunction
{

private double a;

public QuadratureEx4(double a)
{

this.a = a;
}

public double F(double x)
{

return Math.Cos(a * x);
}

public static void Main(String[] args)
{

double a = 1.0e4;
Quadrature.IFunction fcn = new QuadratureEx4(a);

Quadrature q = new Quadrature();
q.Rule = 6;
q.RelativeError = 1e-10;
double result = q.Eval(fcn, 0.0, 1.0);

double expect = Math.Sin(a) / a;
Console.Out.WriteLine("result = " + result);
Console.Out.WriteLine("expect = " + expect);
Console.Out.WriteLine

("relative error = " + (expect - result) / expect);
Console.Out.WriteLine

("relative error estimate = " + q.ErrorEstimate);
}

}

Output

result = -3.05614388902526E-05
expect = -3.05614388888252E-05
relative error = -4.67047941622356E-11
relative error estimate = 1.04883755414239E-08

Quadrature.IFunction Interface

Summary

Interface defining function for the Quadrature class.

public interface Imsl.Math.Quadrature.IFunction
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Method

F
abstract public double F(double x)

Description

Function to be integrated.

Parameter

x – A double specifying the point at which the function is to be evaluated.

Returns

A double specifying the value of the function at x.

HyperRectangleQuadrature Class

Summary

HyperRectangleQuadrature integrates a function over a hypercube.

public class Imsl.Math.HyperRectangleQuadrature

Properties

AbsoluteError
public double AbsoluteError {get; set; }
Description

Sets the absolute error tolerance.

ErrorEstimate
public double ErrorEstimate {get; }
Description

Returns an estimate of the relative error in the computed result.

RelativeError
public double RelativeError {get; set; }
Description

Sets the relative error tolerance.
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Constructors

HyperRectangleQuadrature
public HyperRectangleQuadrature(int dimension)

Description

Constructs a HyperRectangleQuadrature object.

Parameter

dimension – A int which specifies the dimension of the Faure sequence.

HyperRectangleQuadrature
public HyperRectangleQuadrature(Imsl.Stat.IRandomSequence sequence)

Description

Constructs a HyperRectangleQuadrature object.

Parameter

sequence – A IRandomSequence object containing the random number sequence.

Methods

Eval
public double Eval(Imsl.Math.HyperRectangleQuadrature.IFunction f)

Description

Returns the value of the integral over the unit cube.

Parameter

f – A IFunction containing the function to be integrated.

Returns

A double containing the value of the integral over the unit cube.

Eval
public double Eval(Imsl.Math.HyperRectangleQuadrature.IFunction f, double[]
a, double[] b)

Description

Returns the value of the integral over a cube.
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Parameters

f – A IFunction containing the function to be integrated.

a – A double specifying the lower limit of integration. If null all of the lower limits
default to 0.

b – A double specifying the upper limit of integration. If null all of the upper limits
default to 1.

Returns

A double containing the value of the integral over the unit cube.

Description

This class is used to evaluate integrals of the form:∫ bn−1

an−1

· · ·
∫ b0

a0

f(x0, . . . , xn−1) dx0 . . . dxn−1

Integration of functions over hypercubes by Monte Carlo, in which the integral is evaluated as
the value of the function averaged over a sequence of randomly chosen points. Under mild
assumptions on the function, this method will converge like 1/

√
n, where n is the number of

points at which the function is evaluated.

It is possible to improve on the performance of Monte Carlo by carefully choosing the points at
which the function is to be evaluated. Randomly distributed points tend to be non-uniformly
distributed. The alternative to a sequence of random points is a low-discrepancy sequence. A
low-discrepancy sequence is one that is highly uniform.

This function is based on the low-discrepancy Faure sequence as computed by
Imsl.Stat.FaureSequence (p. 688).

Example: HyperRectangle Quadrature

This example evaluates the following multidimensional integral, with n=10.

∫ bn−1

an−1

· · ·
∫ b0

a0

 n∑
i=0

(−1)i
i∏

j=0

xj

 dx0 . . . dxn−1 =
1
3

[
1−

(
−1

2

)n]

using System;
using Imsl.Math;

public class HyperRectangleQuadratureEx1 :
HyperRectangleQuadrature.IFunction

{
public double F(double[] x)
{

int sign = 1;
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double sum = 0.0;
for (int i = 0; i < x.Length; i++)
{

double prod = 1.0;
for (int j = 0; j <= i; j++)
{

prod *= x[j];
}
sum += sign * prod;
sign = - sign;

}
return sum;

}

public static void Main(String[] args)
{

HyperRectangleQuadrature q = new HyperRectangleQuadrature(10);
double result = q.Eval(new HyperRectangleQuadratureEx1());
Console.Out.WriteLine("result = " + result);

}
}

Output

result = 0.333125383208954

HyperRectangleQuadrature.IFunction Interface

Summary

Interface for the HyperRectangleQuadrature function.

public interface Imsl.Math.HyperRectangleQuadrature.IFunction

Method

F
abstract public double F(double[] x)

Description

Returns the value of the function at the given point.

Parameter

x – A double array specifying the point at which the function is to be evaluated.
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Returns

A double specifying the value of the function at x.
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Chapter 5: Differential Equations

Types
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Usage Notes

Ordinary Differential Equations

An ordinary differential equation is an equation involving one or more dependent variables
called yi, one independent variable, t, and derivatives of the yi with respect to t.

In the initial-value problem (IVP), the initial or starting values of the dependent variables yi at
a known value t = t0 are given. Values of yi(t) for t > 0 or t < t0 are required.

The OdeRungeKutta class solves the IVP for ODEs of the form

dyi

dt
= y′i = fi (t, y1, ... , yN ) i = 1, ... , N

with yi = (t = t0) specified. Here, fi is a user-supplied function that must be evaluated at any
set of values (t, y1, . . . , yN ), i = 1, . . . , N .

This problem statement is abbreviated by writing it as a system of first-order ODEs,

y (t) [y1 (t) , . . . , yN (t)]T , [f1 (t, y) , . . . , fN (t, y)]T

so that the problem becomes y′ = f (t, y) with initial values y(t0).

The system

dy

dt
= y′ = f (t, y)
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is said to be stiff if some of the eigenvalues of the Jacobian matrix

{∂y′i/∂yj}

are large and negative. This is frequently the case for differential equations modeling the
behavior of physical systems, such as chemical reactions proceeding to equilibrium where
subspecies effectively complete their reactions in different epochs. An alternate model concerns
discharging capacitors such that different parts of the system have widely varying decay rates
(or time constants).

Users typically identify stiff systems by the fact that numerical differential equation solvers
such as OdeRungeKutta are inefficient, or else completely fail. Special methods are often
required. The most common inefficiency is that a large number of evaluations of f(t, y) (and
hence an excessive amount of computer time) are required to satisfy the accuracy and stability
requirements of the software.

OdeRungeKutta Class

Summary

Solves an initial-value problem for ordinary differential equations using the Runge-Kutta-Verner
fifth-order and sixth-order method.

public class Imsl.Math.OdeRungeKutta

Properties

InitialStepsize
public double InitialStepsize {get; set; }
Description

The initial internal step size.

MaximumStepsize
public double MaximumStepsize {get; set; }
Description

The maximum internal step size.

MaxSteps
public int MaxSteps {get; set; }
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Description

The maximum number of internal steps allowed.

MinimumStepsize
public double MinimumStepsize {get; set; }
Description

The minimum internal step size.

Scale
public double Scale {get; set; }
Description

The scaling factor.

Tolerance
public double Tolerance {get; set; }
Description

The error tolerance.

Constructor

OdeRungeKutta
public OdeRungeKutta(Imsl.Math.OdeRungeKutta.IFunction f)

Description

Constructs an ODE solver to solve the initial value problem dy/dx = f(x,y).

Parameter

f – Implementation of interface IFunction that defines the right-hand side function
f(x,y).

Methods

Solve
public void Solve(double x, double xEnd, double[] y)

Description

Integrates the ODE system from x to xEnd.

On all but the first call to solve, the value of x must equal the value of xEnd for the
previous call.
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Parameters

x – A double specifying the independent variable.

xEnd – A double specifying the value of x at which the solution is desired.

y –
On input, double array containing the initial values.
On output, double array containing the approximate solution.

Imsl.Math.MaxNumberStepsAllowedException id is thrown if the number of internal
steps exceeds maxSteps (default 500)
This can be an indication that the ODE system is stiff. This exception can also be
thrown if the error tolerance condition could not be met.

Imsl.Math.ToleranceTooSmallException id is thrown if the computation does not
converge on some step

VNorm
virtual double VNorm(double[] v, double[] y, double[] ymax)

Description

Returns the norm of a vector.

Parameters

v – A double array containing the vector whose norm is to be computed.

y – A double array containing the values of the dependent variable.

ymax – A double array containing the maximum y values computed thus far.

Returns

A double scalar value representing the norm of the vector v.

Description

Class OdeRungeKutta finds an approximation to the solution of a system of first-order
differential equations of the form y0 = f(t, y) with given initial data. The routine attempts to
keep the global error proportional to a user-specified tolerance. This routine is efficient for
nonstiff systems where the derivative evaluations are not expensive.

OdeRungeKutta is based on a code designed by Hull, Enright and Jackson (1976, 1977). It uses
Runge-Kutta formulas of order five and six developed by J. H. Verner.

Example: Runge-Kutta-Verner ordinary differential equation solver

An ordinary differential equation problem is solved using a solver which implements the
Runge-Kutta-Verner method. The solution at time t=10 is printed.
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using System;
using Imsl.Math;

public class OdeRungeKuttaEx1 : OdeRungeKutta.IFunction
{

public void F(double t, double[] y, double[] yprime)
{

yprime[0] = 2.0 * y[0] * (1 - y[1]);
yprime[1] = - y[1] * (1 - y[0]);

}

public static void Main(String[] args)
{

double[] y = new double[]{1, 3};
OdeRungeKutta q = new OdeRungeKutta(new OdeRungeKuttaEx1());
int nsteps = 10;
for (int k = 0; k < nsteps; k++)
{

q.Solve(k, k + 1, y);
}
Console.Out.WriteLine("Result = {" + y[0] + "," + y[1] + "}");

}
}

Output

Result = {3.14434167651608,0.348826598519701}

OdeRungeKutta.IFunction Interface

Summary

Interface for user supplied function to OdeRungeKutta object.

public interface Imsl.Math.OdeRungeKutta.IFunction

Method

F
abstract public void F(double x, double[] y, double[] yprime)

Description

User supplied function to OdeRungeKutta object. On return, yprime contains the
function value at the given point.
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Parameters

x – A double, the point at which the function is to be evaluated.

y – A double array which contains the dependent variable values.

yprime – A double array which, on return, contains the value of the function at
(x,y).
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Chapter 6: Transforms
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Usage Notes

Fast Fourier Transforms

A fast Fourier transform (FFT) is simply a discrete Fourier transform that is computed
efficiently. Basically, the straightforward method for computing the Fourier transform takes
approximately n2 operations where n is the number of points in the transform, while the FFT
(which computes the same values) takes approximately
n log n operations. The algorithms in this chapter are modeled on the Cooley-Tukey (1965)
algorithm. Hence, these functions are most efficient for integers that are highly composite; that
is, integers that are a product of small primes.

For the two classes, FFT and ComplexFFT, a single instance can be used to transform multiple
sequences of the same length. In this situation, the constructor computes the initial setup once.
This may result in substantial computational savings. For more information on the use of these
classes consult the documentation under the appropriate class name.

Continuous Versus Discrete Fourier Transform

There is, of course, a close connection between the discrete Fourier transform and the
continuous Fourier transform. Recall that the continuous Fourier transform is defined (Brigham
1974) as

f̂ (ω) = (=f) (ω) =
∫ ∞

−∞
f (t)e−2πiωtdt

95



We begin by making the following approximation:

f̂ (ω) ≈
∫ T/2

−T/2

f (t)e−2πiωtdt

=
∫ T

0

f (t− T/2)e−2πiω(t−T/2)dt

= eπiωT

∫ T

0

f (t− T/2)e−2πiωtdt

If we approximate the last integral using the rectangle rule with spacing h = T/n , we have

f̂ (ω) ≈ eπiωTh
n−1∑
k=0

e−2πiωkhf (kh− T/2)

Finally, setting ω = j/T for j = 0, . . . , n− 1 yields

f̂ (j/T ) ≈ eπijh

n−1∑
k=0

e−2πijk/nf (kh− T/2) = (−1)j
n−1∑
k=0

e−2πijk/nfh
k

where the vector fh = (f(−T/2), . . . , f((n− 1)h− T/2)) . Thus, after scaling the components
by (−1)h , the discrete Fourier transform, as computed in ComplexFFT (with input fh ) is
related to an approximation of the continuous Fourier transform by the above formula.

FFT Class

Summary

FFT functions.

public class Imsl.Math.FFT

Constructor

FFT
public FFT(int n)

Description

Constructs an FFT object.
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Parameter

n – A int which specifies the array size that this object can handle.

Methods

Backward
public double[] Backward(double[] coef)

Description

Compute the real periodic sequence from its Fourier coefficients.

Parameter

coef – A double array containing the Fourier coefficients.

Returns

A double array containing the periodic sequence.

Forward
public double[] Forward(double[] seq)

Description

Compute the Fourier coefficients of a real periodic sequence.

Parameter

seq – A double array containing the sequence to be transformed.

Returns

A double array containing the transformed sequence.

Description

Class FFT computes the discrete Fourier transform of a real vector of size n. The method used
is a variant of the Cooley-Tukey algorithm, which is most efficient when n is a product of small
prime factors. If n satisfies this condition, then the computational effort is proportional to n log
n.

The Forward method computes the forward transform. If n is even, then the forward transform
is

q2m−1 =
n−1∑
k=0

pk cos
2πkm
n

m = 1, . . . , n/2

q2m−2 = −
n−1∑
k=0

pk sin
2πkm
n

m = 1, . . . , n/2− 1
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q0 =
n−1∑
k=0

pk

If n is odd, qm is defined as above for m from 1 to (n - 1)/2.

Let f be a real valued function of time. Suppose we sample f at n equally spaced time intervals
of length δ seconds starting at time t0. That is, we have

pi := f (t0 + i∆) i = 0, 1, . . . , n− 1

We will assume that n is odd for the remainder of this discussion. The class FFT treats this
sequence as if it were periodic of period n. In particular, it assumes that f (t0) = f (t0 + n∆).
Hence, the period of the function is assumed to be T = n∆. We can invert the above transform
for p as follows:

pm =
1
n

q0 + 2
(n−3)/2∑

k=0

q2k+1 cos
2π(k + 1)m

n
− 2

(n−3)/2∑
k=0

q2k+2 sin
2π(k + 1)m

n


This formula is very revealing. It can be interpreted in the following manner. The coefficients q
produced by FFT determine an interpolating trigonometric polynomial to the data. That is, if
we define

g (t) =
1
n

q0 + 2
(n−3)/2∑

k=0

q2k+1 cos
2π(k + 1) (t− t0)

n∆
− 2

(n−3)/2∑
k=0

q2k+2 sin
2π(k + 1) (t− t0)

n∆



=
1
n

q0 + 2
(n−3)/2∑

k=0

q2k+1 cos
2π(k + 1) (t− t0)

T
− 2

(n−3)/2∑
k=0

q2k+2 sin
2π(k + 1) (t− t0)

T


then we have

f (t0 + (i− 1) ∆) = g (t0 + (i− 1))∆

Now suppose we want to discover the dominant frequencies, forming the vector P of length (n
+ 1)/2 as follows:
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P0 := |q0|

Pk :=
√
q22k−2 + q22k−1 k = 1, 2, . . . , (n− 1) /2

These numbers correspond to the energy in the spectrum of the signal. In particular, Pk

corresponds to the energy level at frequency

k

T
=

k

n∆
k = 0, 1, . . . ,

n− 1
2

Furthermore, note that there are only (n+ 1)/2 ≈ T/(2∆) resolvable frequencies when n
observations are taken. This is related to the Nyquist phenomenon, which is induced by
discrete sampling of a continuous signal. Similar relations hold for the case when n is even.

If the Backward method is used, then the backward transform is computed. If n is even, then
the backward transform is

qm = p0 + (−1)m
pn−1 + 2

n/2−1∑
k=0

p2k+1 cos
2π(k + 1)m

n
− 2

n/2−2∑
k=0

p2k+2 sin
2π(k + 1)m

n

If n is odd,

qm = p0 + 2
(n−3)/2∑

k=0

p2k+1 cos
2π(k + 1)m

n
− 2

(n−3)/2∑
k=0

p2k+2 sin
2π(k + 1)m

n

The backward Fourier transform is the unnormalized inverse of the forward Fourier transform.

FFT is based on the real FFT in FFTPACK, which was developed by Paul Swarztrauber at the
National Center for Atmospheric Research.

Example: Fast Fourier Transform

The Fourier coefficients of a periodic sequence are computed. The coefficients are then used to
reproduce the periodic sequence.

using System;
using Imsl.Math;

public class FFTEx1
{
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public static void Main(String[] args)
{

double[] x = new double[]{1, 2, 3, 4, 5, 6, 7, 8};
FFT fft = new FFT(x.Length);

double[] y = fft.Forward(x);
double[] z = fft.Backward(y);
for (int i = 0; i < x.Length; i++)
{

z[i] = z[i] / x.Length;
}

new PrintMatrix("x").Print(x);
new PrintMatrix("y").Print(y);
new PrintMatrix("z").Print(z);

}
}

Output

x
0

0 1
1 2
2 3
3 4
4 5
5 6
6 7
7 8

y
0

0 36
1 -4
2 9.65685424949238
3 -4
4 4
5 -4
6 1.65685424949238
7 -4

z
0

0 1
1 2
2 3
3 4
4 5
5 6
6 7
7 8
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ComplexFFT Class

Summary

Complex FFT.

public class Imsl.Math.ComplexFFT

Constructor

ComplexFFT
public ComplexFFT(int n)

Description

Constructs a complex FFT object.

Parameter

n – A int which specifies the array size that this object can handle.

Methods

Backward
public Imsl.Math.Complex[] Backward(Imsl.Math.Complex[] coef)

Description

Compute the complex periodic sequence from its Fourier coefficients.

Parameter

coef – A Complex array of Fourier coefficients.

Returns

A Complex array containing the periodic sequence.

Forward
public Imsl.Math.Complex[] Forward(Imsl.Math.Complex[] seq)

Description

Compute the Fourier coefficients of a complex periodic sequence.

Parameter

seq – A Complex array containing the sequence to be transformed.
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Returns

A Complex array containing the transformed sequence.

Description

Class ComplexFFT computes the discrete complex Fourier transform of a complex vector of size
N. The method used is a variant of the Cooley-Tukey algorithm, which is most efficient when N
is a product of small prime factors. If N satisfies this condition, then the computational effort is
proportional to N log N. This considerable savings has historically led people to refer to this
algorithm as the ”fast Fourier transform” or FFT.

Specifically, given an N-vector x, method Forward returns

cm =
N−1∑
n=0

xne
−2πinm/N

Furthermore, a vector of Euclidean norm S is mapped into a vector of norm

√
NS

Finally, note that we can invert the Fourier transform as follows:

xn =
1
N

N−1∑
j=0

cme
2πinj/N

This formula reveals the fact that, after properly normalizing the Fourier coefficients, one has
the coefficients for a trigonometric interpolating polynomial to the data. An unnormalized
inverse is implemented in Backward. ComplexFFT is based on the complex FFT in FFTPACK.
The package, FFTPACK was developed by Paul Swarztrauber at the National Center for
Atmospheric Research.

Specifically, given an N-vector c, Backward returns

sm =
N∑

n=0

cne
2πinm/N

Furthermore, a vector of Euclidean norm S is mapped into a vector of norm

√
NS

Finally, note that we can invert the inverse Fourier transform as follows:
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cn =
1
N

N−1∑
m=0

sme
−2πinm/N

This formula reveals the fact that, after properly normalizing the Fourier coefficients, one has
the coefficients for a trigonometric interpolating polynomial to the data. Backward is based on
the complex inverse FFT in FFTPACK. The package, FFTPACK was developed by Paul
Swarztrauber at the National Center for Atmospheric Research.

Example: Complex FFT

The Fourier coefficients of a complex periodic sequence are computed. Then the coefficients are
used to try to reproduce the periodic sequence.

using System;
using Imsl.Math;

public class ComplexFFTEx1
{

public static void Main(String[] args)
{

Complex[] x = new Complex[]{
new Complex(1, 8), new Complex(2, 7), new Complex(3, 6),
new Complex(4, 5), new Complex(5, 4), new Complex(6, 3),
new Complex(7, 2), new Complex(8, 1)

};
ComplexFFT fft = new ComplexFFT(x.Length);

Complex[] y = fft.Forward(x);
Complex[] z = fft.Backward(y);
for (int i = 0; i < x.Length; i++)
{

z[i] /= x.Length;
}

new PrintMatrix("x").Print(x);
new PrintMatrix("y").Print(y);
new PrintMatrix("z").Print(z);

}
}

Output

x
0

0 1+8i
1 2+7i
2 3+6i
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3 4+5i
4 5+4i
5 6+3i
6 7+2i
7 8+1i

y
0

0 36+36i
1 5.65685424949238+13.6568542494924i
2 +8i
3 -2.34314575050762+5.65685424949238i
4 -4+4i
5 -5.65685424949238+2.34314575050762i
6 -8
7 -13.6568542494924-5.65685424949238i

z
0

0 1+8i
1 2+7i
2 3+6i
3 4+5i
4 5+4i
5 6+3i
6 7+2i
7 8+1i

104 • ComplexFFT Class IMSL C# Numerical Library



Chapter 7: Nonlinear Equations

Types
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Usage Notes

Zeros of a Polynomial

A polynomial function of degree n can be expressed as follows:

p(z) = anz
nn+ an−1z

n−1 + · · ·+ a1z + a0

where an 6= 0. The ZeroPolynomial class finds zeros of a polynomial with real or complex
coefficients using Aberth’s method.

Zeros of a Function

The ZeroFunction class uses Muller’s method to find the real zeros of a real-valued function.

Root of System of Equations

A system of equations can be stated as follows:

fi(x) = 0, for i = 1, 2, . . . , n
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where x ∈ Rn, and fi : Rn → R. The ZeroSystem class uses a modified hybrid method due to
M.J.D. Powell to find the zero of a system of nonlinear equations.

ZeroPolynomial Class

Summary

The ZeroPolynomial class computes the zeros of a polynomial with complex coefficients,
Aberth’s method.

public class Imsl.Math.ZeroPolynomial

Property

MaximumIterations
public int MaximumIterations {get; set; }
Description

The maximum number of iterations allowed.

Constructor

ZeroPolynomial
public ZeroPolynomial()

Description

Creates an instance of the solver.

Methods

ComputeRoots
public Imsl.Math.Complex[] ComputeRoots(double[] coef)

Description

Computes the roots of the polynomial with real coefficients.

p(x) = coef[n]× xn + coef[n− 1]× xn−1 + . . .+ coef[0]
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Parameter

coef – A double array containing the polynomial coefficients.

Returns

A Complex array containing the roots of the polynomial.

Imsl.Math.DidNotConvergeException id is thrown if the iteration did not converge.

ComputeRoots
public Imsl.Math.Complex[] ComputeRoots(Imsl.Math.Complex[] coef)

Description

Computes the roots of the polynomial with Complex coefficients.

p(x) = coef[n]× xn + coef[n− 1]× xn−1 + . . .+ coef[0]

Parameter

coef – A Complex array containing the polynomial coefficients.

Returns

A Complex array containing the roots of the polynomial.

Imsl.Math.DidNotConvergeException id is thrown if if the iteration for the zeros did
not converge.

GetRadius
public double GetRadius(int index)

Description

Returns an a-posteriori absolute error bound on the root.

NaN is returned if the corresponding root cannot be represented as floating point due to
overflow or underflow or if the roots have not yet been computed.

Parameter

index – An int specifying the (0-based) index of the root whose error bound is to
be returned.

Returns

A double representing the error bound on the index-th root.

GetRoot
public Imsl.Math.Complex GetRoot(int index)
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Description

Returns a zero of the polynomial.

Parameter

index – An int which specifies the (0-based) index of the root to be returned.

Returns

A Complex which represents the index-th root of the polynomial.

GetRoots
public Imsl.Math.Complex[] GetRoots()

Description

Returns the zeros of the polynomial.

Returns

A Complex array containing the roots of the polynomial.

GetStatus
public bool GetStatus(int index)

Description

Returns the error status of a root.

It is false if the approximation of the index-th root has been carried out successfully, for
example, the computed approximation can be viewed as the exact root of a slightly
perturbed polynomial. It is true if more iterations are needed for the index-th root.

Parameter

index – An int representing the (0-based) index of the root whose error status is to
be returned.

Returns

A boolean representing the error status on the index-th root.

Description

This class is a translation of a Fortran code written by Dario Andrea Bini, University of Pisa,
Italy (bini@dm.unipi.it). Numerical computation of polynomial zeros by means of Aberth’s
method, Numerical Algorithms, 13 (1996), pp. 179-200.

The original Fortran code includes the following notice.

All the software contained in this library is protected by copyright Permission to use, copy,
modify, and distribute this software for any purpose without fee is hereby granted, provided
that this entire notice is included in all copies of any software which is or includes a copy or
modification of this software and in all copies of the supporting documentation for such
software.
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THIS SOFTWARE IS BEING PROVIDED ”AS IS”, WITHOUT ANY EXPRESS OR
IMPLIED WARRANTY. IN NO EVENT, NEITHER THE AUTHORS, NOR THE
PUBLISHER, NOR ANY MEMBER OF THE EDITORIAL BOARD OF THE JOURNAL
”NUMERICAL ALGORITHMS”, NOR ITS EDITOR-IN-CHIEF, BE LIABLE FOR ANY
ERROR IN THE SOFTWARE, ANY MISUSE OF IT OR ANY DAMAGE ARISING OUT
OF ITS USE. THE ENTIRE RISK OF USING THE SOFTWARE LIES WITH THE PARTY
DOING SO. ANY USE OF THE SOFTWARE CONSTITUTES ACCEPTANCE OF THE
TERMS OF THE ABOVE STATEMENT.

Example 1: Zeros of a Polynomial

The zeros of a polynomial with real coefficients are computed.

using System;
using Imsl.Math;

public class ZeroPolynomialEx1
{

public static void Main(String[] args)
{

double[] coef = new double[]{- 2, 4, - 3, 1};

ZeroPolynomial zp = new ZeroPolynomial();
Complex[] root = zp.ComputeRoots(coef);

for (int k = 0; k < root.Length; k++)
{

Console.Out.WriteLine("root = " + root[k]);
Console.Out.WriteLine(" radius = " + zp.GetRadius(k));
Console.Out.WriteLine(" status = " + zp.GetStatus(k));

}
}

}

Output

root = 0.99999999999999978-0.99999999999999978i
radius = 1.99006775678924E-14
status = False

root = 1.0000000000000004+1.0000000000000002i
radius = 1.96185227616234E-14
status = False

root = 0.99999999999999989-1.6543612251060553E-24i
radius = 2.04503081135961E-14
status = False
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Example 2: Zeros of a Polynomial with Complex Coefficients

The zeros of a polynomial with Complex coefficients are computed.

using System;
using Imsl.Math;

public class ZeroPolynomialEx2
{

public static void Main(String[] args)
{

// Find zeros of z^3-(3+6i)*z^2+(-8+12i)*z+10
Complex[] coef = new Complex[]{

new Complex(10),
new Complex(-8, 12),
new Complex(- 3, - 6),
new Complex(1)};

ZeroPolynomial zp = new ZeroPolynomial();
Complex[] root = zp.ComputeRoots(coef);

for (int k = 0; k < root.Length; k++)
{

Console.Out.WriteLine("root = " + root[k]);
Console.Out.WriteLine(" radius = " + zp.GetRadius(k).ToString("0.00e+0"));
Console.Out.WriteLine(" status = " + zp.GetStatus(k));

}
}

}

Output

root = 1+1i
radius = 6.11e-14
status = False

root = 0.99999999999999856+2i
radius = 1.95e-13
status = False

root = 1.0000000000000013+3.0000000000000013i
radius = 1.50e-13
status = False

ZeroFunction Class

Summary

The ZeroFunction class uses Muller’s method to find the zeros of a univariate function, f(x).
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public class Imsl.Math.ZeroFunction

Properties

AbsoluteError
public double AbsoluteError {get; set; }
Description

The first stopping criterion.

A zero x[i] is accepted if |f(x[i])| is less than this tolerance. Its default value is about
1.0e-8.

MaximumIterations
public int MaximumIterations {get; set; }
Description

The maximum number of iterations allowed per root.

The default value is 100.

RelativeError
public double RelativeError {get; set; }
Description

The second stopping criterion is the relative error.

A zero x[i] is accepted if the relative change of two successive approximations to x[i] is
less than this tolerance. Its default value is about 1.0e-8.

Spread
public double Spread {get; set; }
Description

The spread.

The default value is 1.0.

See Also: Imsl.Math.ZeroFunction.SpreadTolerance (p. 111)

SpreadTolerance
public double SpreadTolerance {get; set; }
Description

The spread criteria for multiple zeros.

If the zero x[i] has been computed and |x[i]− x[j]| < SpreadTolerance, where x[j] is a
previously computed zero, then the computation is restarted with a guess equal to x[i]+
Spread. The default value for SpreadTolerance is 1.0e-5.
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Constructor

ZeroFunction
public ZeroFunction()

Description

Creates an instance of the solver.

Methods

AllConverged
public bool AllConverged()

Description

Returns true if the iterations for all of the roots have converged.

Returns

A boolean value specifying whether the roots have converged.

ComputeZeros
public double[] ComputeZeros(Imsl.Math.ZeroFunction.IFunction f, double[]
guess)

Description

Returns the zeros of a univariate function.

Parameters

f – The ZeroFunction.IFunction to be integrated.

guess – A double array containing an initial guess of the zeros. A zero will be found
for each point in guess.

Returns

A double array containing the zero of the univariate function.

GetIterations
public int GetIterations(int nRoot)

Description

Returns the number of iterations used to compute a root.

Parameter

nRoot – An int specifying the index of the root.

Returns

An int specifying the number of iterations necessary to compute a root.
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Description

ZeroFunction computes n real zeros of a real function f. Given a user-supplied function f(x)
and an n-vector of initial guesses x1, x2, . . . , xn, the routine uses Muller’s method to locate n
real zeros of f, that is, n real values of x for which f(x) = 0. The routine has two convergence
criteria. The first requires the absolute value of the function be less than the AbsoluteError.
The second requires that the relative change of any two successive approximations to an xi be
less than RelativeError. Here, xm

i is the m-th approximation to xi. Let AbsoluteError be
ε1, and RelativeError be ε2. The criteria may be stated mathematically as follows:

Criterion 1:

|f (xm
i )| < ε1

Criterion 2:

∣∣∣∣xm+1
i − xm

i

xm
i

∣∣∣∣ < ε2

”Convergence” is the satisfaction of either criterion.

Example: Zeros of a Univariate Function

In this example 3 zeros of the sin function are found.

using System;
using Imsl.Math;

public class ZeroFunctionEx1 : ZeroFunction.IFunction
{

public double F(double x)
{

return Math.Sin(x);
}

public static void Main(String[] args)
{

ZeroFunction.IFunction fcn = new ZeroFunctionEx1();

ZeroFunction zf = new ZeroFunction();
double[] guess = new double[]{5, 18, - 6};
double[] zeros = zf.ComputeZeros(fcn, guess);
for (int k = 0; k < zeros.Length; k++)
{

Console.Out.WriteLine
(zeros[k] + " = " + (zeros[k] / Math.PI) + " pi");

}

Nonlinear Equations ZeroFunction Class • 113



}
}

Output

6.28318530717956 = 1.99999999999999 pi
18.8495559215629 = 6.0000000000077 pi
-6.28318530717964 = -2.00000000000002 pi

ZeroFunction.IFunction Interface

Summary

Interface for the user supplied function to ZeroFunction.

public interface Imsl.Math.ZeroFunction.IFunction

Method

F
abstract public double F(double x)

Description

The user supplied function to ZeroFunction.

Returns the value of the function at the given point.

Parameter

x – A double specifying the point at which the function is to be evaluated.

Returns

A double specifying the value of the function at x.

ZeroSystem Class

Summary

Solves a system of n nonlinear equations f(x) = 0 using a modified Powell hybrid algorithm.

public class Imsl.Math.ZeroSystem
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Properties

MaximumIterations
public int MaximumIterations {get; set; }
Description

The maximum number of iterations allowed.

The default value is 200.

RelativeError
public double RelativeError {get; set; }
Description

The relative error tolerance.

The root is accepted if the relative error between two successive approximations to this
root is within errorRelative. The default is the square root of the precision, about 1.0e-08.

Constructor

ZeroSystem
public ZeroSystem(int n)

Description

Creates an object to find the zeros of a system of n equations.

Parameter

n – The number of equations that the solver handles.

Methods

SetGuess
public void SetGuess(double[] guess)

Description

Sets initial guess for the the solution.

Parameter

guess – A double array containing the initial guess.

Solve
public double[] Solve(Imsl.Math.ZeroSystem.IFunction f)
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Description

Solve a system of nonlinear equations using the Levenberg-Marquardt algorithm.

See Also: Imsl.Math.ZeroSystem.IJacobian (p. 117)

Parameter

f – Defines a ZeroSystem.IFunction whose zero is to be found. If f implements a
ZeroSystem.IJacobian then its Jacobian is used. Otherwise finite difference is used.

Returns

A double array containing the solution.

Imsl.Math.TooManyIterationsException id is thrown if the maximum number of
iterations is exceeded

Imsl.Math.ToleranceTooSmallException id is thrown if the error tolerance is too small

Imsl.Math.DidNotConvergeException id is thrown if the algorithm does not converge

Description

ZeroSystem is based on the MINPACK subroutine HYBRD1, which uses a modification of M.J.D.
Powell’s hybrid algorithm. This algorithm is a variation of Newton’s method, which uses a
finite-difference approximation to the Jacobian and takes precautions to avoid large step sizes
or increasing residuals. For further description, see More et al. (1980).

A finite-difference method is used to estimate the Jacobian. Whenever the exact Jacobian can
be easily provided, f should implement ZeroSystem.IJacobian.

Example: Solve a System of Nonlinear Equations

A system of nonlinear equations is solved.

using System;
using Imsl.Math;

public class ZeroSystemEx1 : ZeroSystem.IFunction
{

public void F(double[] x, double[] f)
{

f[0] = x[0] + System.Math.Exp(x[0] - 1.0) + (x[1] + x[2]) *
(x[1] + x[2]) - 27.0;

f[1] = System.Math.Exp(x[1] - 2.0) / x[0] + x[2] * x[2] - 10.0;
f[2] = x[2] + System.Math.Sin(x[1] - 2.0) + x[1] * x[1] - 7.0;

}

public static void Main(String[] args)
{

ZeroSystem zf = new ZeroSystem(3);
zf.SetGuess(new double[]{4, 4, 4});
new PrintMatrix("zeros").Print(zf.Solve(new ZeroSystemEx1()));
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}
}

Output

zeros
0

0 0.99999999995498
1 2.00000000000656
2 2.99999999999468

ZeroSystem.IFunction Interface

Summary

Public interface for user supplied function to ZeroSystem object.

public interface Imsl.Math.ZeroSystem.IFunction

Method

F
abstract public void F(double[] x, double[] fvalue)

Description

On return, fvalue contains the function value at the given point.

Parameters

x – A double array which contains the point at which the function is to be
evaluated. The contents of this array must not be altered by this function.

fvalue – A double array which, on return, contains the value of the function at x.

ZeroSystem.IJacobian Interface

Summary

Public interface for user supplied function to ZeroSystem object.
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public interface Imsl.Math.ZeroSystem.IJacobian :
Imsl.Math.ZeroSystem.IFunction

Method

Jacobian
abstract public void Jacobian(double[] x, double[,] jac)

Description

On return, jac contains the value of the Jacobian at the given point.

Parameters

x – A double array which contains the point at which the Jacobian is to be
evaluated. The contents of this array must not be altered by this function.

jac – A double matrix which, on return, contains the value of the Jacobian at x.
The value of jac[i,j] is the derivative of f[i] with respect to x[j].
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Usage Notes

Unconstrained Minimization

The unconstrained minimization problem can be stated as follows:
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min
x ∈ Rn

f (x)

where f : Rn → R is continuous and has derivatives of all orders required by the algorithms.
The functions for unconstrained minimization are grouped into three categories: univariate
functions, multivariate functions, and nonlinear least-squares functions.

For the univariate functions, it is assumed that the function is unimodal within the specified
interval. For discussion on unimodality, see Brent (1973).

The class MinUnconMultiVar finds the minimum of a multivariate function using a
quasi-Newton method. The default is to use a finite-difference approximation of the gradient of
f(x). Here, the gradient is defined to be the vector

∇f (x) =
[
∂f (x)
∂x1

,
∂f (x)
∂x2

, ... ,
∂f (x)
∂xn

]
However, when the exact gradient can be easily provided, the gradient should be provided by
implementing the interface MinUnconMultiVar.Gradient.

The nonlinear least-squares function uses a modified Levenberg-Marquardt algorithm. The
most common application of the function is the nonlinear data-fitting problem where the user is
trying to fit the data with a nonlinear model.

These functions are designed to find only a local minimum point. However, a function may have
many local minima. Try different initial points and intervals to obtain a better local solution.

Linearly Constrained Minimization

The linearly constrained minimization problem can be stated as follows:

min
x ∈ Rn

f (x)

subject to A1x = b1

where f : Rn → R, A1 is a coefficient matrix, and b1 is a vector. If f(x) is linear, then the
problem is a linear programming problem. If f(x) is quadratic, the problem is a quadratic
programming problem.

The class DenseLP can be used to solve small- to medium-sized linear programming problems.
No sparsity is assumed since the coefficients are stored in full matrix form.

The class QuadraticProgramming is designed to solve convex quadratic programming problems
using a dual quadratic programming algorithm. If the given Hessian is not positive definite,
then QuadraticProgramming modifies it to be positive definite. In this case, output should be
interpreted with care because the problem has been changed slightly. Here, the Hessian of f(x)
is defined to be the n x n matrix

120 • IMSL C# Numerical Library



∇2f (x) =
[

∂2

∂xi∂xj
f (x)

]

Nonlinearly Constrained Minimization

The nonlinearly constrained minimization problem can be stated as follows:

min
x ∈ Rn

f (x)

subject to gi (x) = 0 for i = 1, 2, . . . , m1

gi (x) ≥ 0 for i = m1 + 1, . . . , m

where f : Rn → R and gi : Rn → R, for i = 1, 2, . . . ,m.

The class MinConNLP uses a sequential equality constrained quadratic programming algorithm
to solve this problem. A more complete discussion of this algorithm can be found in the
documentation.

MinUncon Class

Summary

Finds the minimum point for a smooth univariate function using function and optionally first
derivative evaluations.

public class Imsl.Math.MinUncon

Properties

Accuracy
public double Accuracy {get; set; }
Description

The required absolute accuracy in the final value returned by the ComputeMin method.

By default, the required accuracy is set to 1.0e-8.

Bound
public double Bound {get; set; }
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Description

The amount by which X may be changed from its initial value, Guess.

By default, Bound is set to 100.

DerivTolerance
public double DerivTolerance {get; set; }
Description

The derivative tolerance used by member method ComputeMin to decide if the current
point is a local minimum.

This is the second stopping criterion. x is returned as a solution when G(x) is less than or
equal to DerivTolerance. DerivTolerance should be nonnegative, otherwise zero will be
used. By default, DerivTolerance is set to 1.0e-8.

Guess
public double Guess {get; set; }
Description

The initial guess of the minimum point of the input function.

By default, an initial guess of 0.0 is used.

Step
public double Step {get; set; }
Description

The stepsize to use when changing x.

By default, Step is set to 0.1.

Constructor

MinUncon
public MinUncon()

Description

Unconstrained minimum constructor for a smooth function of a single variable of type
double.

Method

ComputeMin
public double ComputeMin(Imsl.Math.MinUncon.IFunction f)
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Description

Return the minimum of a smooth function of a single variable of type double using
function values only or using function values and derivatives.

Parameter

f – The MinUncon.IFunction whose minimum is to be found. An attempt to find
the minimum is made using function values only.

Returns

A double scalar value containing the minimum of the input function.

Description

MinUncon uses two separate algorithms to compute the minimum depending on what the user
supplies as the function f.

If f defines the function whose minimum is to be found MinUncon uses a safeguarded quadratic
interpolation method to find a minimum point of a univariate function. Both the code and the
underlying algorithm are based on the routine ZXLSF written by M.J.D. Powell at the
University of Cambridge.

MinUncon finds the least value of a univariate function, f, where f is a MinUncon.IFunction.
Optional data include an initial estimate of the solution, and a positive number specified by the
Bound property. Let x0 = Guess where Guess is specified by the Guess property and
b = Bound, then x is restricted to the interval [x0 − b, x0 + b]. Usually, the algorithm begins the
search by moving from x0 to x = x0 + s, where s = Step. Step is set by the Step property. If
Step is not called then Step is set to 0.1. Step may be positive or negative. The first two
function evaluations indicate the direction to the minimum point, and the search strides out
along this direction until a bracket on a minimum point is found or until x reaches one of the
bounds x0 ± b. During this stage, the step length increases by a factor of between two and nine
per function evaluation; the factor depends on the position of the minimum point that is
predicted by quadratic interpolation of the three most recent function values.

When an interval containing a solution has been found, we will have three points, x1, x2, and
x3, with x1 < x2 < x3 and f(x2) ≤ f(x1) and f(x2) ≤ f(x3). There are three main ingredients
in the technique for choosing the new x from these three points. They are (i) the estimate of
the minimum point that is given by quadratic interpolation of the three function values, (ii) a
tolerance parameter ε, that depends on the closeness of f to a quadratic, and (iii) whether x2 is
near the center of the range between x1 and x3 or is relatively close to an end of this range. In
outline, the new value of x is as near as possible to the predicted minimum point, subject to
being at least ε from x2, and subject to being in the longer interval between x1 and x2 or x2

and x3 when x2 is particularly close to x1 or x3. There is some elaboration, however, when the
distance between these points is close to the required accuracy; when the distance is close to
the machine precision; or when ε is relatively large.

The algorithm is intended to provide fast convergence when f has a positive and continuous
second derivative at the minimum and to avoid gross inefficiencies in pathological cases, such as

f (x) = x+ 1.001 |x|
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The algorithm can make ε large automatically in the pathological cases. In this case, it is usual
for a new value of x to be at the midpoint of the longer interval that is adjacent to the least
calculated function value. The midpoint strategy is used frequently when changes to f are
dominated by computer rounding errors, which will almost certainly happen if the user requests
an accuracy that is less than the square root of the machine precision. In such cases, the
routine claims to have achieved the required accuracy if it knows that there is a local minimum
point within distance δ of x, where δ = xacc, specified by the Accuracy property even though
the rounding errors in f may cause the existence of other local minimum points nearby. This
difficulty is inevitable in minimization routines that use only function values, so high precision
arithmetic is recommended.

If f is a MinUncon.IDerivative then MinUncon uses a descent method with either the secant
method or cubic interpolation to find a minimum point of a univariate function. It starts with
an initial guess and two endpoints. If any of the three points is a local minimum point and has
least function value, the routine terminates with a solution. Otherwise, the point with least
function value will be used as the starting point.

From the starting point, say xc, the function value fc = f(xc), the derivative value gc = g(xc),
and a new point xn defined by xn = xc − gc are computed. The function fn = f(xn), and the
derivative gn = g(xn) are then evaluated. If either fn ≥ fc or gn has the opposite sign of gc,
then there exists a minimum point between xc and xn; and an initial interval is obtained.
Otherwise, since xc is kept as the point that has lowest function value, an interchange between
xn and xc is performed. The secant method is then used to get a new point

xs = xc − gc(
gn − gc

xn − xc
)

Let xn ← xs and repeat this process until an interval containing a minimum is found or one of
the convergence criteria is satisfied. The convergence criteria are as follows:

Criterion 1:

|xc − xn| ≤ εc

Criterion 2:

|gc| ≤ εg

where εc = max {1.0, |xc|} ε, ε is a relative error tolerance and εc is a gradient tolerance.

When convergence is not achieved, a cubic interpolation is performed to obtain a new point.
The function and derivative are then evaluated at that point; and accordingly, a smaller
interval that contains a minimum point is chosen. A safeguarded method is used to ensure that
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the interval reduces by at least a fraction of the previous interval. Another cubic interpolation
is then performed, and this procedure is repeated until one of the stopping criteria is met.

Example 1: Minimum of a smooth function

The minimum of ex − 5x is found using function evaluations only.

using System;
using Imsl.Math;

public class MinUnconEx1 : MinUncon.IFunction
{

public double F(double x)
{

return Math.Exp(x) - 5.0 * x;
}

public static void Main(String[] args)
{

MinUncon zf = new MinUncon();
zf.Guess = 0.0;
zf.Accuracy = 0.001;
MinUncon.IFunction fcn = new MinUnconEx1();
Console.Out.WriteLine("Minimum is " + zf.ComputeMin(fcn));

}
}

Output

Minimum is 1.60941759992003

Example 2: Minimum of a smooth function

The minimum of ex − 5x is found using function evaluations and first derivative evaluations.

using System;
using Imsl.Math;

public class MinUnconEx2 : MinUncon.IDerivative
{

public double F(double x)
{

return Math.Exp(x) - 5.0 * x;
}

public double Derivative(double x)
{

return Math.Exp(x) - 5.0;
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}

public static void Main(String[] args)
{

MinUncon zf = new MinUncon();
zf.Guess = 0.0;
zf.Accuracy = .001;
double x = zf.ComputeMin(new MinUnconEx2());
Console.Out.WriteLine("x = " + x);

}
}

Output

x = 1.61001131622703

MinUncon.IFunction Interface

Summary

Interface for the user supplied function for the smooth function of a single variable to be
minimized.

public interface Imsl.Math.MinUncon.IFunction

Method

F
abstract public double F(double x)

Description

Smooth function of a single variable to be minimized.

Parameter

x – A double, the point at which the function is to be evaluated.

Returns

A double, the value of the function at x.
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MinUncon.IDerivative Interface

Summary

Interface for the smooth function of a single variable to be minimized and its derivative.

public interface Imsl.Math.MinUncon.IDerivative : Imsl.Math.MinUncon.IFunction

Method

Derivative
abstract public double Derivative(double x)

Description

Derivative of the smooth function of a single variable to be minimized.

Parameter

x – A double, the point at which the derivative of the function is to be evaluated.

Returns

A double, the value of the derivative of the function at x.

MinUnconMultiVar Class

Summary

Minimizes a multivariate function using a quasi-Newton method.

public class Imsl.Math.MinUnconMultiVar

Properties

Digits
public double Digits {get; set; }
Description

The number of good digits in the function.

By default, Digits is set to 15.75.
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ErrorStatus
public int ErrorStatus {get; }
Description

The non-fatal error status.

FalseConvergenceTolerance
public double FalseConvergenceTolerance {get; set; }
Description

The false convergence tolerance.

By default, 2.22044604925031308e-14 is used as the false convergence tolerance.

Fscale
public double Fscale {get; set; }
Description

The function scaling value for scaling the gradient.

By default, the value of this scalar is set to 1.0.

GradientTolerance
public double GradientTolerance {get; set; }
Description

The gradient tolerance used to compute the gradient.

By default, the cube root of machine precision squared is used to compute the gradient.

Ihess
public int Ihess {get; set; }
Description

The Hessian initialization parameter.

By default, Ihess is set to 0.0 and the Hessian is initialized to the identity matrix. If this
member function is called and Ihess is set to anything other than 0.0, the Hessian is
initialized to the diagonal matrix containing

max(abs(f(xguess)),fscale)*xscale*xscale

where xguess is the initial guess of the computed solution and xscale is the scaling vector
for the variables.

Iterations
public int Iterations {get; }
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Description

The number of iterations used to compute a minimum.

MaximumStepsize
public double MaximumStepsize {get; set; }
Description

The maximum allowable stepsize to use.

By default, maximum stepsize is set to a value based on a scaled Guess.

MaxIterations
public int MaxIterations {get; set; }
Description

The maximum number of iterations allowed.

By default, the maximum number of iterations is set to 100.

RelativeTolerance
public double RelativeTolerance {get; set; }
Description

The relative function tolerance.

By default, 3.66685e-11 is used as the relative function tolerance.

StepTolerance
public double StepTolerance {get; set; }
Description

The scaled step tolerance to use when changing x.

The i-th component of the scaled step between two points x and y is computed as

abs(x(i)-y(i))/max(abs(x(i)),1/xscale(i))

where xscale is the scaling vector for the variables.

By default, the scaled step tolerance is set to 3.66685e-11.

Constructor

MinUnconMultiVar
public MinUnconMultiVar(int n)

Description

Unconstrained minimum constructor for a function of n variables of type double.
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Parameter

n – An int scalar value which defines the number of variables of the function whose
minimum is to be found.

Methods

ComputeMin
public double[] ComputeMin(Imsl.Math.MinUnconMultiVar.IFunction f)

Description

Return the minimum point of a function of n variables of type double using a
finite-difference gradient or using a user-supplied gradient.

f can be used to supply a gradient of the function. If f implements IGradient then the
user-supplied gradient is used. Otherwise, an attempt to find the minimum is made using
a finite-difference gradient.

Parameter

f – The MinUnconMultiVar.IFunction whose minimum is to be found.

Returns

A double array containing the point at which the minimum of the input function occurs.

Imsl.Math.FalseConvergenceException id is thrown if the iterates appear to be
converging to a noncritical point

Imsl.Math.MaxIterationsException id is thrown if the maximum number of iterations
is exceeded

Imsl.Math.UnboundedBelowException id is thrown if five consecutive steps of the
maximum allowable stepsize have been taken, either the function is unbounded
below, or has a finite asymptote in some direction or the maximum allowable step
size is too small

SetGuess
public void SetGuess(double[] guess)

Description

Sets the initial guess of the minimum point of the input function.

By default, the elements of this array are set to 0.0.

Parameter

guess – A double array specifying the initial guess of the minimum point of the
input function.

SetXscale
public void SetXscale(double[] xscale)
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Description

Sets the diagonal scaling matrix for the variables.

By default, the elements of this array are set to 1.0.

Parameter

xscale – A double array specifying the diagonal scaling matrix for the variables.

System.ArgumentException id is thrown if any of the elements of Xscale is less than or
equal to or equal to 0

Description

Class MinUnconMultivar uses a quasi-Newton method to find the minimum of a function f(x)
of n variables. The problem is stated as follows:

min
x ∈ Rn

f (x)

Given a starting point xc, the search direction is computed according to the formula

d = −B−1gc

where B is a positive definite approximation of the Hessian, and gc is the gradient evaluated at
xc. A line search is then used to find a new point

xn = xc + λd, λ > 0

such that

f (xn) ≤ f (xc) + αgT d, α ∈ (0, 0.5)

Finally, the optimality condition ||g(x)|| ≤ ε where ε is a gradient tolerance.

When optimality is not achieved, B is updated according to the BFGS formula

B ← B − BssTB

sTBs
+
yyT

yT s

where s = xn − xc and y = gn − gc. Another search direction is then computed to begin the
next iteration. For more details, see Dennis and Schnabel (1983, Appendix A).
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In this implementation, the first stopping criterion for MinUnconMultivar occurs when the
norm of the gradient is less than the given gradient tolerance property, GradientTolerance.
The second stopping criterion for MinUnconMultivar occurs when the scaled distance between
the last two steps is less than the step tolerance property, StepTolerance.

Since by default, a finite-difference method is used to estimate the gradient. An inaccurate
estimate of the gradient may cause the algorithm to terminate at a noncritical point. Supply
the gradient for a more accurate gradient evaluation (MinConMultiVar.IGradient).

Example 1: Minimum of a multivariate function

The minimum of 100(x2 − x2
1)

2 + (1− x1)2 is found using function evaluations only.

using System;
using Imsl.Math;

public class MinUnconMultiVarEx1 : MinUnconMultiVar.IFunction
{

public double F(double[] x)
{

return 100.0 * ((x[1] - x[0] * x[0]) * (x[1] - x[0] * x[0])) +
(1.0 - x[0]) * (1.0 - x[0]);

}

public static void Main(String[] args)
{

MinUnconMultiVar solver = new MinUnconMultiVar(2);
solver.SetGuess(new double[]{- 1.2, 1.0});
double[] x = solver.ComputeMin(new MinUnconMultiVarEx1());
Console.Out.WriteLine

("Minimum point is (" + x[0] + ", " + x[1] + ")");
}

}

Output

Minimum point is (0.99999996726513, 0.99999993304521)

Example 2: Minimum of a multivariate function

The minimum of 100(x2 − x2
1)

2 + (1− x1)2 is found using function evaluations and a user
supplied gradient.

using System;
using Imsl.Math;
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public class MinUnconMultiVarEx2 : MinUnconMultiVar.IGradient
{

public double F(double[] x)
{

return 100.0 * ((x[1] - x[0] * x[0]) * (x[1] - x[0] * x[0])) +
(1.0 - x[0]) * (1.0 - x[0]);

}

public void Gradient(double[] x, double[] gp)
{

gp[0] = - 400.0 * (x[1] - x[0] * x[0]) * x[0] - 2.0 *
(1.0 - x[0]);

gp[1] = 200.0 * (x[1] - x[0] * x[0]);
}

public static void Main(String[] args)
{

MinUnconMultiVar solver = new MinUnconMultiVar(2);
solver.SetGuess(new double[]{- 1.2, 1.0});

double[] x = solver.ComputeMin(new MinUnconMultiVarEx2());
Console.Out.WriteLine

("Minimum point is (" + x[0] + ", " + x[1] + ")");
}

}

Output

Minimum point is (0.999999966882301, 0.999999932254245)

MinUnconMultiVar.IFunction Interface

Summary

Interface for the user supplied multivariate function to be minimized.

public interface Imsl.Math.MinUnconMultiVar.IFunction

Method

F
abstract public double F(double[] x)
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Description

Multivariate function to be minimized.

Parameter

x – A double array, the point at which the function is to be evaluated.

Returns

A double, the value of the function at x.

MinUnconMultiVar.IGradient Interface

Summary

Interface for the user supplied multivariate function to be minimized and its gradient.

public interface Imsl.Math.MinUnconMultiVar.IGradient :
Imsl.Math.MinUnconMultiVar.IFunction

Method

Gradient
abstract public void Gradient(double[] x, double[] gvalue)

Description

On return, gvalue contains the value of the gradient, of the function, at x.

Parameters

x – A double array, the point at which the gradient of the function is to be
evaluated.

gvalue – A double array which, on return, contains the value of the gradient, of the
function, at x.

NonlinLeastSquares Class

Summary

Solves a nonlinear least squares problem using a modified Levenberg-Marquardt algorithm.

public class Imsl.Math.NonlinLeastSquares
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Properties

AbsoluteTolerance
public double AbsoluteTolerance {get; set; }
Description

The absolute function tolerance.

By default, 1.0e-32 is used as the absolute function tolerance.

Digits
virtual public int Digits {get; set; }

Description

The number of good digits in the function.

By default, the number of good digits is set to 7.

ErrorStatus
public int ErrorStatus {get; }
Description

Get information about the performance of NonlinLeastSquares.

Value Meaning
0 All convergence tests were met.
1 Scaled step tolerance was satisfied. The current point may be

an approximate local solution, or the algorithm is making very
slow progress and is not near a solution, or StepTolerance is
too big.

2 Scaled actual and predicted reductions in the function are less
than or equal to the relative function convergence tolerance
RelativeTolerance.

3 Iterates appear to be converging to a noncritical point. Incor-
rect gradient information, a discontinuous function, or stop-
ping tolerances being too tight may be the cause.

4 Five consecutive steps with the maximum stepsize have been
taken. Either the function is unbounded below, or has a finite
asymptote in some direction, or the maximum stepsize is too
small.

See Also: Imsl.Math.NonlinLeastSquares.RelativeTolerance (p. 136),
Imsl.Math.NonlinLeastSquares.StepTolerance (p. 136)

FalseConvergenceTolerance
public double FalseConvergenceTolerance {get; set; }
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Description

The false convergence tolerance.

By default, 100.0e-16 is used as the false convergence tolerance.

GradientTolerance
public double GradientTolerance {get; set; }
Description

The gradient tolerance used to compute the gradient.

By default, the cube root of machine precision squared is used to compute the gradient.

InitialTrustRegion
public double InitialTrustRegion {get; set; }
Description

The initial trust region radius.

By default, InitialTrustRegion is set based on the initial scaled Cauchy step.

MaximumIterations
public int MaximumIterations {get; set; }
Description

The maximum number of iterations allowed.

By default, the maximum number of iterations is set to 100.

MaximumStepsize
public double MaximumStepsize {get; set; }
Description

The maximum allowable stepsize to use.

By default, the maximum stepsize is set to a default value based on a scaled Guess.

RelativeTolerance
public double RelativeTolerance {get; set; }
Description

The relative function tolerance.

By default, 1.0e-20 is used as the relative function tolerance.

StepTolerance
public double StepTolerance {get; set; }
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Description

The step tolerance used to step between two points.

By default, the cube root of machine precision is used as the step tolerance.

Constructor

NonlinLeastSquares
public NonlinLeastSquares(int m, int n)

Description

Creates an object to solve a nonlinear least squares problem.

Parameters

m – The number of functions

n – The number of variables. n must be less than or equal to m.

Methods

SetFscale
public void SetFscale(double[] fscale)

Description

Sets the diagonal scaling matrix for the functions.

By default, the identity is used.

Parameter

fscale – A double array specifying the diagonal scaling matrix for the functions.

System.ArgumentException id is thrown if any of the elements of fscale is less than or
equal to 0

SetGuess
public void SetGuess(double[] guess)

Description

Sets the initial guess of the minimum point of the input function.

By default, an initial guess of 0.0 is used.
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Parameter

guess – A double array specifying the initial guess of the minimum point of the
input function.

SetXscale
public void SetXscale(double[] xscale)

Description

Set the diagonal scaling matrix for the variables.

By default, the identity is used.

Parameter

xscale – A double array specifying the diagonal scaling matrix for the variables.

System.ArgumentException id is thrown if any of the elements of xscale is less than or
equal to 0

Solve
public double[] Solve(Imsl.Math.NonlinLeastSquares.IFunction f)

Description

Solve a nonlinear least-squares problem using a modified Levenberg-Marquardt algorithm
and a Jacobian.

Parameter

f – User supplied NonlinLeastSquares.IFunction that defines the least-squares
problem. If f implements IJacobian then its Jacobian is used. Otherwise, a finite
difference Jacobian is used.

Returns

A double array of length n containing the approximate solution.

Imsl.Math.TooManyIterationsException id is thrown if the number of iterations
exceeds MaximumIterations, MaximumIterations is set to 100 by default

Description

NonlinLeastSquares is based on the MINPACK routine LMDIF by More et al. (1980). It uses a
modified Levenberg-Marquardt method to solve nonlinear least squares problems. The problem
is stated as follows:

min
x∈Rn

1
2
F (x)T

F (x) =
1
2

m∑
i=1

fi (x)2
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where m ≥ n, F : Rn → Rm, and fi(x) is the i-th component function of F(x). From a current
point, the algorithm uses the trust region approach:

min
xn∈Rn

‖F (xc) + J (xc) (xn − xc)‖2

subject to

‖xn − xc‖2 ≤ δc

to get a new point xn, which is computed as

xn = xc −
(
J (xc)

T
J (xc) + µcI

)−1

J (xc)
T
F (xc)

where µc = 0 if δc ≥
∥∥∥∥(J (xc)

T
J (xc)

)−1

J (xc)
T
F (xc)

∥∥∥∥
2

and µc > 0 otherwise. F (xc) and

J(xc) are the function values and the Jacobian evaluated at the current point xc. This
procedure is repeated until the stopping criteria are satisfied. For more details, see Levenberg
(1944), Marquardt (1963), or Dennis and Schnabel (1983, Chapter 10).

A finite-difference method is used to estimate the Jacobian when the user supplied function, f,
defines the least-squares problem. Whenever the exact Jacobian can be easily provided, f
should implement NonlinLeastSquares.Jacobian.

Example 1: Nonlinear least-squares problem

A nonlinear least-squares problem is solved using a finite-difference Jacobian.

using System;
using Imsl.Math;

public class NonlinLeastSquaresEx1 : NonlinLeastSquares.IFunction
{

public void F(double[] x, double[] f)
{

f[0] = 10.0 * (x[1] - x[0] * x[0]);
f[1] = 1.0 - x[0];

}

public static void Main(String[] args)
{

int m = 2;
int n = 2;
double[] x = new double[m];
NonlinLeastSquares zs = new NonlinLeastSquares(m, n);
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zs.SetGuess(new double[]{- 1.2, 1.0});
zs.SetXscale(new double[]{1.0, 1.0});
zs.SetFscale(new double[]{1.0, 1.0});
x = zs.Solve(new NonlinLeastSquaresEx1());

for (int k = 0; k < n; k++)
{

Console.Out.WriteLine("x[" + k + "] = " + x[k]);
}

}
}

Output

x[0] = 1
x[1] = 1

Example 2: Nonlinear least-squares problem

A nonlinear least-squares problem is solved using a user-supplied Jacobian.

using System;
using Imsl.Math;

public class NonlinLeastSquaresEx2 : NonlinLeastSquares.IJacobian
{

public void F(double[] x, double[] f)
{

f[0] = 10.0 * (x[1] - x[0] * x[0]);
f[1] = 1.0 - x[0];

}

public void Jacobian(double[] x, double[,] fjac)
{

fjac[0,0] = - 20.0 * x[0];
fjac[1,0] = 10.0;
fjac[0,1] = - 1.0;
fjac[1,1] = 0.0;

}

public static void Main(String[] args)
{

int m = 2;
int n = 2;
double[] x = new double[n];
NonlinLeastSquares zs = new NonlinLeastSquares(m, n);
zs.SetGuess(new double[]{- 1.2, 1.0});
zs.SetXscale(new double[]{1.0, 1.0});
zs.SetFscale(new double[]{1.0, 1.0});
x = zs.Solve(new NonlinLeastSquaresEx2());
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for (int k = 0; k < n; k++)
{

Console.Out.WriteLine("x[" + k + "] = " + x[k]);
}

}
}

Output

x[0] = 1
x[1] = 1

NonlinLeastSquares.IFunction Interface

Summary

Interface for the user supplied nonlinear least-squares function.

public interface Imsl.Math.NonlinLeastSquares.IFunction

Method

F
abstract public void F(double[] x, double[] fvalue)

Description

User supplied nonlinear least-squares function.

Parameters

x – A double array containing the point at which the function is to be evaluated.
The contents of this array must not be altered by this function.

fvalue – A double array which, on return, contains the function value at x.

NonlinLeastSquares.IJacobian Interface

Summary

Interface for the user supplied nonlinear least squares function and its Jacobian.
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public interface Imsl.Math.NonlinLeastSquares.IJacobian :
Imsl.Math.NonlinLeastSquares.IFunction

Method

Jacobian
abstract public void Jacobian(double[] x, double[,] jvalue)

Description

Jacobian of the user supplied nonlinear least squares function.

Parameters

x – A double array containing the point at which the Jacobian of the function is to
be evaluated.
jvalue – A double matrix which, on return, contains the value of the Jacobian, of
the function, at x.

DenseLP Class

Summary

Solves a linear programming problem using an active set strategy.

public class Imsl.Math.DenseLP : ICloneable

Properties

IterationCount
public int IterationCount {get; }
Description

Returns the number of iterations used.

ObjectiveValue
public double ObjectiveValue {get; }
Description

Returns the optimal value of the objective function.

RefinementType
public int RefinementType {get; set; }
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Description

The type of refinement used, if any.

The possible settings are:

Value Action
0 No refinement. Always compute dual. Default.
1 Iterative refinement.
2 Use extended refinement. Iterate until no more progress.

If refinement is used, the coefficient matrices and other data are saved at the beginning of
the computation. When finished this data together with the solution obtained is checked
for consistency. If the discrepancy is too large, the solution process is restarted using the
problem data just after processing the equalities, but with the final x values and final
active set.

Constructors

DenseLP
public DenseLP(Imsl.Math.MPSReader mps)

Description

Constructor using an MPSReader object.

Parameter

mps – A MPSReader specifying the Linear Programming problem.

System.ArgumentException id is thrown if the problem dimensions are not consistent.

DenseLP
public DenseLP(double[,] a, double[] b, double[] c)

Description

Constructor variables of type double.

Parameters

a – A double matrix with coefficients of the constraints

b – A double array containing the right-hand side of the constraints.

c – A double array containing the coefficients of the objective function.

System.ArgumentException id is thrown if the dimensions of a, b.length, and
c.length are not consistent
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Methods

Clone
Final public Object Clone()

Description

Creates and returns a copy of this object.

Returns

A copy of this object.

GetDualSolution
public double[] GetDualSolution()

Description

Returns the dual solution.

Returns

A double array containing the dual solution of the linear programming problem.

GetSolution
public double[] GetSolution()

Description

Returns the solution x of the linear programming problem.

Returns

A double array containing the solution x of the linear programming problem.

SetConstraintType
public void SetConstraintType(int[] constraintType)

Description

Sets the types of general constraints in the matrix a.

Let ri = ai1x1 + · · ·+ ainxn

constraintType Constraint
0 ri = bi

1 ri ≤ bui

2 ri ≥ bi

3 bi ≤ ri ≤ bui

4 Ignore this constraint
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Parameter

constraintType – A int array containing the types of general constraints.

SetLowerBound
public void SetLowerBound(double[] lowerBound)

Description

Sets the lower bound, xl on the variables.

If there is no lower bound on a variable, then 10e30 should be set as the lower bound.
Default = 0.

Parameter

lowerBound – A double array containing the lower bounds on the variables.

SetUpperBound
public void SetUpperBound(double[] upperBound)

Description

Sets the upper bound, xu on the variables.

If there is no upper bound on a variable, then -10e30 should be set as the upper bound.
By default there is no upper bound on a variable.

Parameter

upperBound – A double array containing the upper bound on the variables.

SetUpperLimit
public void SetUpperLimit(double[] upperLimit)

Description

Sets the upper limit of the constraints.

Parameter

upperLimit – A double array containing the upper limit, bu, of the constraints that
have both the lower and the upper bounds.

Solve
public void Solve()
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Description

Solves the problem using an active set strategy.

Solve must be invoked prior to any of the ”get” methods.

Imsl.Math.BoundsInconsistentException id is thrown if the bounds are inconsistent

Imsl.Math.NoAcceptablePivotException id is thrown if an acceptable pivot could not
be found.

Imsl.Math.ProblemUnboundedException id is thrown if there is no finite solution to the
problem

Description

Class DenseLP uses an active set strategy to solve linear programming problems, i.e., problems
of the form

min
x ∈ Rn

cTx

subject to

bl ≤ Ax ≤ bu

xl ≤ x ≤ xu

where c is the objective coefficient vector, A is the coefficient matrix, and the vectors bl, bu, xl,
and xu are the lower and upper bounds on the constraints and the variables, respectively.

Refer to the following paper for further information: Krogh, Fred, T. (2005), An Algorithm for
Linear Programming, http://mathalacarte.com/fkrogh/pub/lp.pdf , Tujunga, CA.

Example 1: Dense Linear Programming

The linear programming problem in the standard form

min f(x) = −x1 − 3x2

subject to:

x1 + x2 + x3 = 1.5
x1 + x2 − x4 = 0.5
x1 + x5 = 1.0
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x2 + x6 = 1.0
xi ≥ 0, for i = 1, . . . , 6

is solved.

using System;
using Imsl.Math;

public class DenseLPEx1
{

public static void Main(String[] args)
{

double[,] a = {{1.0, 1.0, 1.0, 0.0, 0.0, 0.0},
{1.0, 1.0, 0.0, - 1.0, 0.0, 0.0},
{1.0, 0.0, 0.0, 0.0, 1.0, 0.0},
{0.0, 1.0, 0.0, 0.0, 0.0, 1.0}};

double[] b = new double[]{1.5, 0.5, 1.0, 1.0};
double[] c = new double[]{- 1.0, - 3.0, 0.0, 0.0, 0.0, 0.0};

DenseLP zf = new DenseLP(a, b, c);

zf.Solve();
new PrintMatrix("Solution").Print(zf.GetSolution());

}
}

Output

Solution
0

0 0.5
1 1
2 0
3 1
4 0.5
5 0

Example 2: Dense Linear Programming

The linear programming problem

min f(x) = −x1 − 3x2

subject to:

0.5 ≤ x1 + x2 ≤ 1.5
0 ≤ x1 ≤ 1.0
0 ≤ x2 ≤ 1.0
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using System;
using Imsl.Math;

public class LinearProgrammingEx2
{

public static void Main(String[] args)
{

int[] constraintType = new int[]{3};
double[] upperBound = new double[]{1.0, 1.0};
double[,] a = {{1.0, 1.0}};
double[] b = new double[]{0.5};
double[] upperLimit = new double[]{1.5};
double[] c = new double[]{- 1.0, - 3.0};

LinearProgramming zf = new LinearProgramming(a, b, c);

zf.SetUpperLimit(upperLimit);
zf.SetConstraintType(constraintType);
zf.SetUpperBound(upperBound);
zf.Solve();
new PrintMatrix("Solution").Print(zf.GetSolution());
new PrintMatrix("Dual Solution").Print(zf.GetDualSolution());
Console.Out.WriteLine("Optimal Value = " + zf.ObjectiveValue);

}
}

Output

Solution
0

0 0.5
1 1

Dual Solution
0

0 -1

Optimal Value = -3.5

MPSReader Class

Summary

Reads a linear programming problem from an MPS file.

public class Imsl.Math.MPSReader
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Fields

BINARY VARIABLE
public int BINARY VARIABLE

Description

Variable must be either 0 or 1.

CONTINUOUS VARIABLE
public int CONTINUOUS VARIABLE

Description

Variable is a real number.

INTEGER VARIABLE
public int INTEGER VARIABLE

Description

Variable must be an integer.

Properties

Name
virtual public string Name {get; }

Description

Returns the name of the MPS problem.

This is the value of the NAME field.

NameBounds
virtual public string NameBounds {get; set; }

Description

The name of the BOUNDS set.

An MPS file can contain multiple sets of BOUNDS, but only one is retained by this
reader. If not set, then the first set in the file is used.

NameObjective
virtual public string NameObjective {get; set; }
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Description

The name of the free row containing the objective.

An MPS file can contain free rows, but only one is retained by this reader as the
objective. If not set, then the first free row in the file is used as the objective.

NameRanges
virtual public string NameRanges {get; set; }

Description

The name of the RANGES set.

An MPS file can contain multiple sets of RANGES, but only one is retained by this
reader. If not set, then the first setin the file is used.

NameRHS
virtual public string NameRHS {get; set; }

Description

The name of the RHS set used.

An MPS file can contain multiple sets of RHS values, but only one is retained by this
reader. If not set, then the first set in the file is used.

NumberOfBinaryConstraints
virtual public int NumberOfBinaryConstraints {get; }

Description

The number of binary constraints.

An binary constraint is the requirement that a variable be either 0 or 1. Binary
constraints are also integer contraints.

NumberOfColumns
virtual public int NumberOfColumns {get; }

Description

The number of columns in the constraint matrix.

NumberOfIntegerConstraints
virtual public int NumberOfIntegerConstraints {get; }

Description

The number of integer constraints.

An integer constraint is the requirement that a variable be an integer.

NumberOfNonZeros
virtual public int NumberOfNonZeros {get; }
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Description

The number of nonzeros in the constraint matrix.

NumberOfRows
virtual public int NumberOfRows {get; }

Description

The number of rows in the constraint matrix.

Objective
virtual public Imsl.Math.MPSReader.Row Objective {get; }

Description

The objective as a Row.

ObjectiveCoefficients
virtual public double[] ObjectiveCoefficients {get; }

Description

The coefficents of the objective row.

Constructor

MPSReader
public MPSReader()

Description

Initializes a new instance of the Imsl.Math.MPSReader (p. 148) class.

Methods

GetLowerBound
virtual public double GetLowerBound(int iVariable)

Description

Returns the lower bound for a variable.

Parameter

iVariable – An int specifying the number of the variable.
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Returns

A double containing the lower bound for a variable.

GetLowerRange
virtual public double GetLowerRange(int iRow)

Description

Returns the lower range value for a constraint equation.

Parameter

iRow – An int specifying the row number of the equation.

Returns

A double containing the lower range value for a constraint equation.

GetNameColumn
virtual public string GetNameColumn(int iColumn)

Description

Returns the name of a constraint column. Constraint column names are also variable
names.

Parameter

iColumn – An int specifying the column for which a name is to be returned.

Returns

A String containing the name of a constraint column.

GetNameRow
virtual public string GetNameRow(int iRow)

Description

Returns the name of a constraint row.

Parameter

iRow – An int specifying the row for which a name is to be returned.

Returns

A String containing the name of a constraint row.

GetRow
virtual public Imsl.Math.MPSReader.Row GetRow(int iRow)

Description

Returns a row of the constraint matrix or a free row.
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Parameter

iRow – An int specifying the number of the row that is to be returned.

Returns

A Row associated with the indicated row number, iRow.

GetRowCoefficients
virtual public double[] GetRowCoefficients(int iRow)

Description

Returns the coefficients of a row.

Parameter

iRow – An int specifying the number of the row that is to be returned.

Returns

A double[] containing the coefficients associated with the indicated row number, iRow.

GetTypeVariable
virtual public int GetTypeVariable(int iVariable)

Description

Returns the type of a variable. The variable types are CONTINUOUS VARIABLE,
BINARY VARIABLE or INTEGER VARIABLE.

Parameter

iVariable – An int specifying the number of the variable.

Returns

An int containing the variable type.

GetUpperBound
virtual public double GetUpperBound(int iVariable)

Description

Returns the upper bound for a variable.

Parameter

iVariable – An int specifying the number of the variable.

Returns

A double containing the upper bound for a variable.

GetUpperRange
virtual public double GetUpperRange(int iRow)
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Description

Returns the upper range value for a constraint equation.

Parameter

iRow – An int specifying the row number of the equation.

Returns

A double containing the row number of the equation.

ProcessCommand
virtual protected internal string ProcessCommand(string command, string
line)

Description

Process a section of the MPS file.

Parameters

command – A String specifying the data file section to be processed.

line – A String specifying the next line to be processed.

Returns

A String containing the next line to be processed. This line was read, but was not part
of the section being processed.

Read
virtual public void Read(System.IO.StreamReader reader)

Description

Reads and parses the MPS file.

Parameter

reader – The StreamReader that has been associated with the data file.

Description

An MPS file defines a linear or quadratic programming problem. Linear programming problems
read using this class are assumed to be of the form:

min
x ∈ Rn

cTx

subject to

bl ≤ Ax ≤ bu
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xl ≤ x ≤ xu

where c is the objective coefficient vector, A is the coefficient matrix, and the vectors bl, bu, xl,
and xu are the lower and upper bounds on the constraints and the variables, respectively.

The following table helps map this notation into use of MPSReader.

C Objective
A Constraint matrix
bl Lower Range
bu Upper Range
xl Lower Bound
xu Upper Bound

If the MPS file specifies an equality constraint or bound, the corresponding lower and upper
values will be exactly equal.

The problem formulation assumes that the constraints and bounds are two-sided. If a
particular constraint or bound has no lower limit, then the corresponding entry in the structure
is set to negative machine infinity. If the upper limit is missing, then the corresponding entry in
the structure is set to positive machine infinity.

MPS File Format

There is some variability in the MPS format. This section describes the MPS format accepted
by this reader.

An MPS file consists of a number of sections. Each section begins with a name in column 1.
With the exception of the NAME section, the rest of this line is ignored. Lines with a ’*’ or ’$’
in column 1 are considered comment lines and are ignored.

The body of each section consists of lines divided into fields, as follows:

Field Number Columns Content
1 2-3 Indicator
2 5-12 Name
3 15-22 Name
4 25-36 Value
5 40-47 Name
6 50-61 Value

The format limits MPS names to 8 characters and values to 12 characters. The names in fields
2, 3 and 5 are case sensitive. Leading and trailing blanks are ignored, but internal spaces are
significant.

The sections in an MPS file are as follows:

NAME
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ROWS

COLUMNS

RHS

RANGES (optional)

BOUNDS (optional)

QUADRATIC (optional)

ENDATA

Sections must occur in the above order.

MPS keywords, section names and indicator values, are case insensitive. Row, column and set
names are case sensitive.

NAME Section

The NAME section contains the single line. A problem name can occur anywhere on the line
after NAME and before columns 62. The problem name is truncated to 8 characters.

ROWS Section

The ROWS section defines the name and type for each row. Field 1 contains the row type and
field 2 contains the row name. Row type values are not case sensitive. Row names are case
sensitive. The following row types are allowed:

Row
Type

Meaning

E Equality constraint
L Less than or equal constraint
G Greater than or equal constraint
N Objective of a free row

COLUMNS Section

The COLUMNS section defines the nonzero entries in the objective and the constraint matrix.
The row names here must have been defined in the ROWS section.

Field Contents
2 Column name
3 Row name
4 Value for the entry whose row and column are given by fields 2 and 3
5 Row name
6 Value for the entry whose row and column are given by fields 2 and 5

Note: Fields 5 and 6 are optional.

The COLUMNS section can also contain markers. These are indicated by the name
’MARKER’ (with the quotes) in field 3 and the marker type in field 4 or 5.
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Marker type ’INTORG’ (with the quotes) begins an integer group. The marker type ’INTEND’
(with the quotes) ends this group. The variables corresponding to the columns defined within
this group are required to be integer.

RHS Section

The RHS section defines the right-hand side of the constraints. An MPS file can contain more
than one RHS set, distinguished by the RHS set name. The row names here must be defined in
the ROWS section.

Field Contents
2 RHS name
3 Row name
4 Value for the entry whose row and column are given by fields 2 and 3
5 Row name
6 Value for the entry whose row and column are given by fields 2 and 5

Note: Fields 5 and 6 are optional.

RANGES Section

The optional RANGES section defines two-sided constraints. An MPS file can contain more
than one range set, distinguished by the range set name. The row names here must have been
defined in the ROWS section.

Field Contents
2 Range set name
3 Row name
4 Value for the entry whose row and column are given by fields 2 and 3
5 Row name
6 Value for the entry whose row and column are given by fields 2 and 5

Note: Fields 5 and 6 are optional.

Ranges change one-sided constraints, defined in the RHS section, into two-sided constraints.
The two-sided constraint for row i depends on the range value, ri, defined in this section. The
right-hand side value, bi, is defined in the RHS section. The two sided constraints for row i are
given in the following table:

Row Type Lower Constraint Upper Constraint
G bi bi + |ri|
L bi − |ri| bi
E bi +min(0, ri) bi +max(0, ri)

BOUNDS Section

The optional BOUNDS section defines bounds on the variables. By default, the bounds are
0 ≤ xi ≤ ∞. The bounds can also be used to indicate that a variable must be an integer.
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More than one bound can be set for a single variable. For example, to set 2 ≤ xi ≤ 6 use a LO
bound with value 2 to set 2 ≤ xi and an UP bound with value 6 to add the condition xi ≤ 6.

An MPS file can contain more than one bounds set, distinguished by the bound set name.

Field Contents
1 Bounds type
2 Bounds set name
3 Column name
4 Value for the entry whose set and column are given by fields 2 and 3
5 Column name
6 Value for the entry whose set and column are given by fields 2 and 5

Note: Fields 5 and 6 are optional.

The bound types are as follows. Here bi are the bound values defined in this section, the xi are
the variables, and I is the set of integers.

Bound
Type

Definintion Formula

LO Lower bound bi ≤ xi

UP Upper bound xi ≤ bi
FX Fixed Variable xi = bi
FR Free variable −∞ ≤ xi ≤ ∞
MI Lower bound is minus infinity −∞ ≤ xi

PL Upper bound is positive infinity xi ≤ ∞
BV Binary variable (variable must be 0 or 1) xi ∈ {0, 1}
UI Upper bound and integer xi ≤ bi and

xi ∈ I
LI Lower bound and integer bi ≤ xi and

xi ∈ I
SC Semicontinuous 0 or bi ≤ xi

The bound type names are not case sensitive.

If the bound type is UP or UI and bi ≤ xi then the lower bound is set to −∞.

ENDATA Section

The ENDATA section ends the MPS file.

Example: Reading an MPS file

This example reads the data for a linear programming problem from an MPS file.

using System;
using System.IO;
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using Imsl.Math;

public class MPSReaderEx1
{

public static void Main(String[] args)
{

FileStream aFile = File.OpenRead("testprob.mps");
StreamReader sr = new StreamReader(aFile);
MPSReader mps = new MPSReader();
mps.Read(sr);

Console.Out.WriteLine(mps.Name);
Console.Out.WriteLine(mps.NameRHS);
Console.Out.WriteLine(mps.NameBounds);
Console.Out.WriteLine(mps.NameRanges);

int nRows = mps.NumberOfRows;
System.Console.Out.WriteLine("NumberOfConstraints " + nRows);
for (int i = 0; i < nRows; i++)
{

System.Console.Out.WriteLine(" " + mps.GetLowerRange(i) +
" <= row[" + i + "] = " + mps.GetNameRow(i) +
" <= " + mps.GetUpperRange(i));

}

int nColumns = mps.NumberOfColumns;
System.Console.Out.WriteLine("NumberOfColumns " + nColumns);
for (int i = 0; i < nColumns; i++)
{

System.Console.Out.WriteLine(" " + mps.GetLowerBound(i) +
" <= var[" + i + "] = " + mps.GetNameColumn(i) +
" <= " + mps.GetUpperBound(i));

}

System.Console.Out.WriteLine("NumberOfNonZeros " + mps.NumberOfNonZeros);
for (int iRow = 0; iRow < nRows; iRow++)
{

System.Console.Out.WriteLine(" row " + mps.GetNameRow(iRow));
System.Collections.IEnumerator iter = mps.GetRow(iRow).Iterator();
while (iter.MoveNext())
{

MPSReader.Element elem = (MPSReader.Element) iter.Current;
int iColumn = elem.Column;
System.String nameColumn = mps.GetNameColumn(iColumn);
System.Console.Out.WriteLine(" " +

nameColumn + ": " + elem.Value);
}

}
}

}
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Output

TESTPROB
RHS1
BND1

NumberOfConstraints 3
-Infinity <= row[0] = LIM1 <= 5
10 <= row[1] = LIM2 <= Infinity
7 <= row[2] = MYEQN <= 7

NumberOfColumns 3
0 <= var[0] = XONE <= 4
-1 <= var[1] = YTWO <= 1
0 <= var[2] = ZTHREE <= Infinity

NumberOfNonZeros 6
row LIM1

XONE: 1
YTWO: 1

row LIM2
XONE: 1
ZTHREE: 1

row MYEQN
YTWO: -1
ZTHREE: 1

LinearProgramming Class

Summary

Solves a linear programming problem using the revised simplex algorithm.

public class Imsl.Math.LinearProgramming : ICloneable

Properties

MaximumIterations
public int MaximumIterations {get; set; }
Description

Sets the maximum number of iterations. Default is set to 10000.

ObjectiveValue
public double ObjectiveValue {get; }
Description

Returns the optimal value of the objective function.
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Constructor

LinearProgramming
public LinearProgramming(double[,] a, double[] b, double[] c)

Description

Constructor variables of type double.

Parameters

a – A double matrix with coefficients of the constraints

b – A double array containing the right-hand side of the constraints.

c – A double array containing the coefficients of the objective function.

System.ArgumentException id is thrown if the dimensions of a, b.length, and
c.length are not consistent

Methods

Clone
Final public Object Clone()

Description

Creates and returns a copy of this object.

Returns

A copy of this object.

GetDualSolution
public double[] GetDualSolution()

Description

Returns the dual solution.

Returns

A double array containing the dual solution of the linear programming problem.

GetSolution
public double[] GetSolution()

Description

Returns the solution x of the linear programming problem.

Optimization LinearProgramming Class • 161



Returns

A double array containing the solution x of the linear programming problem.

SetConstraintType
public void SetConstraintType(int[] constraintType)

Description

Sets the types of general constraints in the matrix a.

Let ri = ai1x1 + · · ·+ ainxn

constraintType Constraint
0 ri = bi

1 ri ≤ bui

2 ri ≥ bi

3 bi ≤ ri ≤ bui

Parameter

constraintType – A int array containing the types of general constraints.

SetLowerBound
public void SetLowerBound(double[] lowerBound)

Description

Sets the lower bounds on the variables.

If there is no lower bound on a variable, then 10e30 should be set as the lower bound.

Parameter

lowerBound – A double array containing the lower bounds on the variables.

SetUpperBound
public void SetUpperBound(double[] upperBound)

Description

Sets the upper bound on the variables.

If there is no upper bound on a variable, then -10e30 should be set as the upper bound.

Parameter

upperBound – A double array containing the upper bound on the variables.

SetUpperLimit
public void SetUpperLimit(double[] upperLimit)
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Description

Sets the upper limit of the constraints.

If no such constraint exists, then bu is not needed.

Parameter

upperLimit – A double array containing the upper limit of the constraints that
have both the lower and the upper bounds.

Solve
public void Solve()

Description

Solves the problem using the revised simplex algorithm.

Imsl.Math.BoundsInconsistentException id is thrown if the bounds are inconsistent

Imsl.Math.ProblemInfeasibleException id is thrown if there is no feasible solution to
the problem

Imsl.Math.ProblemUnboundedException id is thrown if there is no finite solution to the
problem

Imsl.Math.NumericDifficultyException id is thrown if there is a numerical problem
during the solution

Description

Class LinearProgramming uses a revised simplex method to solve linear programming
problems, i.e., problems of the form

min
x ∈ Rn

cTx

subject to

bl ≤ Ax ≤ bu

xl ≤ x ≤ xu

where c is the objective coefficient vector, A is the coefficient matrix, and the vectors bl, bu, xl,
and xu are the lower and upper bounds on the constraints and the variables, respectively.

For a complete description of the revised simplex method, see Murtagh (1981) or Murty (1983).
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Example 1: Linear Programming

The linear programming problem in the standard form

min f(x) = −x1 − 3x2

subject to:

x1 + x2 + x3 = 1.5
x1 + x2 − x4 = 0.5
x1 + x5 = 1.0
x2 + x6 = 1.0
xi ≥ 0, for i = 1, . . . , 6

is solved.

using System;
using Imsl.Math;

public class LinearProgrammingEx1
{

public static void Main(String[] args)
{

double[,] a = {{1.0, 1.0, 1.0, 0.0, 0.0, 0.0},
{1.0, 1.0, 0.0, - 1.0, 0.0, 0.0},
{1.0, 0.0, 0.0, 0.0, 1.0, 0.0},
{0.0, 1.0, 0.0, 0.0, 0.0, 1.0}};

double[] b = new double[]{1.5, 0.5, 1.0, 1.0};
double[] c = new double[]{- 1.0, - 3.0, 0.0, 0.0, 0.0, 0.0};

LinearProgramming zf = new LinearProgramming(a, b, c);

zf.Solve();
new PrintMatrix("Solution").Print(zf.GetSolution());

}
}

Output

Solution
0

0 0.5
1 1
2 0
3 1
4 0.5
5 0
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Example 2: Linear Programming

The linear programming problem

min f(x) = −x1 − 3x2

subject to:

0.5 ≤ x1 + x2 ≤ 1.5
0 ≤ x1 ≤ 1.0
0 ≤ x2 ≤ 1.0

using System;
using Imsl.Math;

public class LinearProgrammingEx2
{

public static void Main(String[] args)
{

int[] constraintType = new int[]{3};
double[] upperBound = new double[]{1.0, 1.0};
double[,] a = {{1.0, 1.0}};
double[] b = new double[]{0.5};
double[] upperLimit = new double[]{1.5};
double[] c = new double[]{- 1.0, - 3.0};

LinearProgramming zf = new LinearProgramming(a, b, c);

zf.SetUpperLimit(upperLimit);
zf.SetConstraintType(constraintType);
zf.SetUpperBound(upperBound);
zf.Solve();
new PrintMatrix("Solution").Print(zf.GetSolution());
new PrintMatrix("Dual Solution").Print(zf.GetDualSolution());
Console.Out.WriteLine("Optimal Value = " + zf.ObjectiveValue);

}
}

Output

Solution
0

0 0.5
1 1

Dual Solution
0

0 -1

Optimal Value = -3.5

Optimization LinearProgramming Class • 165



QuadraticProgramming Class

Summary

Solves the convex quadratic programming problem subject to equality or inequality constraints.

public class Imsl.Math.QuadraticProgramming

Property

NoMoreProgress
public bool NoMoreProgress {get; }
Description

Contains status of true or false if computer rounding error is inhibiting improvement in
the objective function.

Usually the solution is close to optimum.

Constructor

QuadraticProgramming
public QuadraticProgramming(double[,] h, double[] g, double[,] aEquality,
double[] bEquality, double[,] aInequality, double[] bInequality)

Description

Solve a quadratic programming problem.

Parameters

h – A square array containing the Hessian. It must be positive definite.
g – A double array containing the coefficients of the linear term of the objective
function.
aEquality – A rectangular matrix containing the equality constraints. It can be null
if there are no equality constraints.
bEquality – A double array containing the right-side of the equality constraints. It
can be null if there are no equality constraints.
aInequality – A rectangular matrix containing the inequality constraints. It can be
null if there are no inequality constraints.
bInequality – A double array containing the right-side of the inequality
constraints. It can be null if there are no inequality constraints.

Imsl.Math.InconsistentSystemException id is thrown if the problem is inconsistent.
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Methods

GetDualSolution
public double[] GetDualSolution()

Description

Returns the dual (Lagrange multipliers).

Returns

A double array containing the dual.

GetSolution
public double[] GetSolution()

Description

Returns the solution.

Returns

A double array containing the unique solution.

Description

Class QuadraticProgramming is based on M.J.D. Powell’s implementation of the Goldfarb and
Idnani dual quadratic programming (QP) algorithm for convex QP problems subject to general
linear equality/inequality constraints (Goldfarb and Idnani 1983); i.e., problems of the form

min
x∈Rn

gTx+
1
2
xTHx

subject to

A1x = b1

A2x ≥ b2

given the vectors b1, b2, and g, and the matrices H, A1, and A2. H is required to be positive
definite. In this case, a unique x solves the problem or the constraints are inconsistent. If H is
not positive definite, a positive definite perturbation of H is used in place of H. For more
details, see Powell (1983, 1985).

If a perturbation of H, H + αI, is used in the QP problem, then H + αI also should be used in
the definition of the Lagrange multipliers.
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Example 1: Solve a Quadratic Programming Problem

The quadratic programming problem is to minimize

x2
0 + x2

1 + x2
2 + x2

3 + x2
4 − 2x1x2 − 2x3x4 − 2x0

subject to

x0 + x1 + x2 + x3 + x4 = 5

x2 − 2x3 − 2x4 = −3

using System;
using Imsl.Math;

public class QuadraticProgrammingEx1
{

public static void Main(String[] args)
{

double[,] h = {
{2, 0, 0, 0, 0},
{0, 2, - 2, 0, 0},
{0, - 2, 2, 0, 0},
{0, 0, 0, 2, - 2},
{0, 0, 0, - 2, 2}

};
double[,] aeq = {

{1, 1, 1, 1, 1},
{0, 0, 1, - 2, - 2}

};
double[] beq = new double[]{5, - 3};
double[] g = new double[]{- 2, 0, 0, 0, 0};

QuadraticProgramming qp =
new QuadraticProgramming(h, g, aeq, beq, null, null);

// Print the solution and its dual
new PrintMatrix("x").Print(qp.GetSolution());
new PrintMatrix("dual").Print(qp.GetDualSolution());

}
}

Output

x
0

0 1
1 1
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2 1
3 1
4 1

dual
0

0 0
1 -1.18329135783152E-32
2 0
3 0
4 0

Example 2: Solve a Quadratic Programming Problem

The quadratic programming problem is to minimize

x2
0 + x2

1 + x2
2

subject to

x0 + 2x1 − x2 = 4

x0 − x1 + x2 = −2

using System;
using Imsl.Math;

public class QuadraticProgrammingEx2
{

public static void Main(String[] args)
{

double[,] h = {
{2, 0, 0},
{0, 2, 0},
{0, 0, 2}

};
double[,] aeq = {

{1, 2, - 1},
{1, - 1, 1}

};
double[] beq = new double[]{4, - 2};
double[] g = new double[]{0, 0, 0};

QuadraticProgramming qp =
new QuadraticProgramming(h, g, aeq, beq, null, null);

// Print the solution and its dual
new PrintMatrix("x").Print(qp.GetSolution());
new PrintMatrix("dual").Print(qp.GetDualSolution());
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}
}

Output

x
0

0 0.285714285714286
1 1.42857142857143
2 -0.857142857142857

dual
0

0 1.14285714285714
1 -0.571428571428572
2 0

MinConGenLin Class

Summary

Minimizes a general objective function subject to linear equality/inequality constraints.

public class Imsl.Math.MinConGenLin

Properties

FinalActiveConstraintsNum
public int FinalActiveConstraintsNum {get; }
Description

Returns the final number of active constraints.

ObjectiveValue
public double ObjectiveValue {get; }
Description

Returns the value of the objective function.

Tolerance
public double Tolerance {get; set; }
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Description

The nonnegative tolerance on the first order conditions at the calculated solution.

Constructor

MinConGenLin
public MinConGenLin(Imsl.Math.MinConGenLin.IFunction fcn, int nvar, int
ncon, int neq, double[] a, double[] b, double[] lowerBound, double[]
upperBound)

Description

Constructor for MinConGenLin.
Parameters

fcn – The user-supplied MinConGenLin.IFunction to be minimized.
nvar – An int scalar containing the number of variables.
ncon – An int scalar containing the number of linear constraints (excluding simple
bounds).
neq – An int scalar containing the number of linear equality constraints.
a – A double array containing the equality constraint gradients in the first neq rows
followed by the inequality constraint gradients. a.length = ncon * nvar.
b – A double array containing the right-hand sides of the linear constraints.
lowerBound – A double array containing the lower bounds on the variables.
lowerBound.length = nvar.
upperBound – A double array containing the upper bounds on the variables.
upperBound.length = nvar.

System.ArgumentException id is thrown if the dimensions of nvar, ncon, neq, a.length
, b.length, lowerBound.length and upperBound.length are not consistent

Methods

GetFinalActiveConstraints
public int[] GetFinalActiveConstraints()

Description

Returns the indices of the final active constraints.
Returns

An int array containing the indices of the final active constraints.

GetLagrangeMultiplierEstimate
public double[] GetLagrangeMultiplierEstimate()
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Description

Returns the Lagrange multiplier estimates of the final active constraints.

Returns

A double array containing the Lagrange multiplier estimates of the final active
constraints.

GetSolution
public double[] GetSolution()

Description

Returns the computed solution.

Returns

A double array containing the computed solution.

SetGuess
public void SetGuess(double[] guess)

Description

Sets an initial guess of the solution.

Parameter

guess – A double array containing an initial guess.

Solve
public void Solve()

Description

Minimizes a general objective function subject to linear equality/inequality constraints.

Imsl.Math.ConstraintsInconsistentException id is thrown if the constraints are
inconsistent.

Imsl.Math.VarBoundsInconsistentException id is thrown if the bounds on the
variables are inconsistent.

Imsl.Math.ConstraintsNotSatisfiedException id is thrown if a solution satisfying the
constraints could not be found.

Imsl.Math.EqualityConstraintsException id is thrown if the variables are determined
by the constraints.

Description

The class MinConGenLin is based on M.J.D. Powell’s TOLMIN, which solves linearly
constrained optimization problems, i.e., problems of the form

min f(x)
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subject to

A1x = b1

A2x ≤ b2

xl ≤ x ≤ xu

given the vectors b1, b2, xl, and xu and the matrices A1 and A2.

The algorithm starts by checking the equality constraints for inconsistency and redundancy. If
the equality constraints are consistent, the method will revise x0, the initial guess, to satisfy

A1x = b1

Next, x0 is adjusted to satisfy the simple bounds and inequality constraints. This is done by
solving a sequence of quadratic programming subproblems to minimize the sum of the
constraint or bound violations.

Now, for each iteration with a feasible xk, let Jk be the set of indices of inequality constraints
that have small residuals. Here, the simple bounds are treated as inequality constraints. Let Ik
be the set of indices of active constraints. The following quadratic programming problem

min f
(
xk
)

+ dT∇ f
(
xk
)

+
1
2
dTBkd

subject to

ajd = 0, j ∈ Ik

ajd ≤ 0, j ∈ Jk

is solved to get (dk, λk) where aj is a row vector representing either a constraint in A1 or A2 or
a bound constraint on x. In the latter case, the aj = ej for the bound constraint xi ≤ (xu)i and
aj = −ei for the constraint −xi ≤ (xl)i. Here, ei is a vector with 1 as the i-th component, and
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zeros elsewhere. Variables λk are the Lagrange multipliers, and Bk is a positive definite
approximation to the second derivative ∇2f(xk).

After the search direction dk is obtained, a line search is performed to locate a better point.
The new point xk+1 = xk + αkdk has to satisfy the conditions

f(xk + αkdk) ≤ f(xk) + 0.1αk(dk)T∇f(xk)

and

(dk)T∇f(xk + αkdk) ≥ 0.7(dk)T∇f(xk)

The main idea in forming the set Jk is that, if any of the equality constraints restricts the
step-length αk, then its index is not in Jk. Therefore, small steps are likely to be avoided.

Finally, the second derivative approximation BK , is updated by the BFGS formula, if the
condition

(
dK
)T ∇f (xk + αkdk

)
−∇f

(
xk
)
> 0

holds. Let xk ← xk+1, and start another iteration.

The iteration repeats until the stopping criterion

∥∥∇f(xk)−AkλK
∥∥

2
≤ τ

is satisfied. Here τ is the supplied tolerance. For more details, see Powell (1988, 1989).

Example 1: Linear Constrained Optimization

The problem

min f(x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 − 2x2x3 − 2x4x5 − 2x1

subject to

x1 + x2 + x3 + x4 + x5 = 5

x3 − 2x4 − 2x5 = −3
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0 ≤ x ≤ 10

is solved.

using System;
using Imsl.Math;

public class MinConGenLinEx1 : MinConGenLin.IFunction
{

public double F(double[] x)
{

return x[0] * x[0] + x[1] * x[1] + x[2] * x[2] + x[3] * x[3] +
x[4] * x[4] - 2.0 * x[1] * x[2] - 2.0 * x[3] *
x[4] - 2.0 * x[0];

}

public static void Main(String[] args)
{

int neq = 2;
int ncon = 2;
int nvar = 5;
double[] a = new double[]{1.0, 1.0, 1.0, 1.0, 1.0,

0.0, 0.0, 1.0, - 2.0, - 2.0};
double[] b = new double[]{5.0, - 3.0};
double[] xlb = new double[]{0.0, 0.0, 0.0, 0.0, 0.0};
double[] xub = new double[]{10.0, 10.0, 10.0, 10.0, 10.0};

MinConGenLin.IFunction fcn = new MinConGenLinEx1();
MinConGenLin zf = new MinConGenLin(fcn, nvar, ncon, neq, a, b,

xlb, xub);
zf.Solve();
new PrintMatrix("Solution").Print(zf.GetSolution());

}
}

Output

Solution
0

0 1
1 1
2 1
3 1
4 1

Example 2: Linear Constrained Optimization

The problem
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min f(x) = −x0x1x2

subject to

−x0 − 2x1 − 2x2 ≤ 0

x0 + 2x1 + 2x2 ≤ 72

0 ≤ x0 ≤ 20

0 ≤ x1 ≤ 11

0 ≤ x2 ≤ 42

is solved with an initial guess of x0 = 10, x1 = 10 and x2 = 10.

using System;
using Imsl.Math;

public class MinConGenLinEx2 : MinConGenLin.IGradient
{

public double F(double[] x)
{

return - x[0] * x[1] * x[2];
}

public void Gradient(double[] x, double[] g)
{

g[0] = - x[1] * x[2];
g[1] = - x[0] * x[2];
g[2] = - x[0] * x[1];

}

public static void Main(String[] args)
{

int neq = 0;
int ncon = 2;
int nvar = 3;
double[] a = new double[]{- 1.0, - 2.0, - 2.0, 1.0, 2.0, 2.0};
double[] xlb = new double[]{0.0, 0.0, 0.0};
double[] xub = new double[]{20.0, 11.0, 42.0};
double[] b = new double[]{0.0, 72.0};

MinConGenLin.IGradient fcn = new MinConGenLinEx2();
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MinConGenLin zf = new MinConGenLin(fcn, nvar, ncon, neq, a, b,
xlb, xub);

zf.SetGuess(new double[]{10.0, 10.0, 10.0});
zf.Solve();
new PrintMatrix("Solution").Print(zf.GetSolution());
Console.Out.WriteLine("Objective value = " +

zf.ObjectiveValue);
}

}

Output

Solution
0

0 20
1 11
2 15

Objective value = -3300

MinConGenLin.IFunction Interface

Summary

Public interface for the user-supplied function to evaluate the function to be minimized.

public interface Imsl.Math.MinConGenLin.IFunction

Method

F
abstract public double F(double[] x)

Description

Public interface for the function to be minimized.

Parameter

x – A double array, the point at which the function is evaluated. x.length equals
the number of variables.

Returns

A double scalar, the function value at x.
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MinConGenLin.IGradient Interface

Summary

Public interface for the user-supplied function to compute the gradient.

public interface Imsl.Math.MinConGenLin.IGradient :
Imsl.Math.MinConGenLin.IFunction

Method

Gradient
abstract public void Gradient(double[] x, double[] g)

Description

Public interface for the user-supplied function to compute the gradient at point x.

Parameters

x – A double array, the point at which the gradient is evaluated. x.length equals
the number of variables.

g – A double array which, on return, contains the values of the gradient of the
objective function.

BoundedLeastSquares Class

Summary

Solves a nonlinear least-squares problem subject to bounds on the variables using a modified
Levenberg-Marquardt algorithm.

public class Imsl.Math.BoundedLeastSquares

Properties

AbsoluteTolerance
public double AbsoluteTolerance {get; set; }
Description

The absolute function tolerance.
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Digits
public int Digits {get; set; }
Description

The number of good digits in the function.

GradientTolerance
public double GradientTolerance {get; set; }
Description

The scaled gradient tolerance.

MaximumFunctionEvals
public int MaximumFunctionEvals {get; set; }
Description

The maximum number of function evaluations.

MaximumIterations
public int MaximumIterations {get; set; }
Description

The maximum number of iterations.

MaximumJacobianEvals
public int MaximumJacobianEvals {get; set; }
Description

The maximum number of Jacobian evaluations.

MaximumStepsize
public double MaximumStepsize {get; set; }
Description

The maximum allowable step size.

RelativeTolerance
public double RelativeTolerance {get; set; }
Description

The relative function tolerance.

ScaledStepTolerance
public double ScaledStepTolerance {get; set; }
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Description

The scaled step tolerance.

TrustRegion
public double TrustRegion {get; set; }
Description

The size of initial trust region radius.

Constructor

BoundedLeastSquares
public BoundedLeastSquares(Imsl.Math.BoundedLeastSquares.IFunction f, int
mFunctions, int nVariables, int boundType, double[] lowerBound, double[]
upperBound)

Description

Constructor for BoundedLeastSquares.

Parameters

f – The user-supplied BoundedLeastSquares.IFunction to be minimized.

mFunctions – A int scalar containing the number of functions.

nVariables – A int scalar containing the number of variables.

boundType – A int scalar containing the types of bounds on the variable.

boundType Action
0 User will supply all the bounds.
1 All variables are nonnegative.
2 All variables are nonpositive.
3 User supplies only the bounds on first variable, all other vari-

ables will have the same bounds.

lowerBound – A double array containing the lower bounds on the variables.

upperBound – A double array containing the upper bounds on the variables.

System.ArgumentException id is thrown if the dimensions of mFunctions, nVariables,
boundType, lowerBound.length and upperBound.length are not consistent

Methods

GetJacobianSolution
public double[,] GetJacobianSolution()
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Description

Returns the Jacobian at the approximate solution.
Returns

A mFunctions x nVariables double matrix containing the Jacobian at the approximate
solution.

GetResiduals
public double[] GetResiduals()

Description

Returns the residuals at the approximate solution.
Returns

A double array containing the residuals at the approximate solution.

GetSolution
public double[] GetSolution()

Description

Returns the solution.
Returns

A double array containing the computed solution.

SetFscale
public void SetFscale(double[] fscale)

Description

Sets the diagonal scaling matrix for the functions.
The i-th component of fscale is a positive scalar specifying the reciprocal magnitude of
the i-th component function of the problem. Default: fscale[] = 1
Parameter

fscale – A double array containing the diagonal scaling for the functions.

SetGuess
public void SetGuess(double[] guess)

Description

Sets the initial guess of the solution.
Parameter

guess – A double array containing an initial guess.

SetInternalScale
public void SetInternalScale()
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Description

The internal variable scaling option.

With this option, the values for xscale are set internally.

SetXscale
public void SetXscale(double[] xscale)

Description

The scaling vector for the variables.

Argument xscale is used mainly in scaling the gradient and the distance between two
points. See GradientTolernce and ScaledStepTolerance for more details. Default:
xscale[] = 1

Parameter

xscale – A double array containing the scaling vector for the variables.

solve
public void solve()

Description

Solves a nonlinear least-squares problem subject to bounds on the variables using a
modified Levenberg-Marquardt algorithm.

Imsl.Math.FalseConvergenceException id is thrown if there is a problem with
convergence.

Description

Class BoundedLeastSquares uses a modified Levenberg-Marquardt method and an active set
strategy to solve nonlinear least-squares problems subject to simple bounds on the variables.
The problem is stated as follows:

min
1
2
F (x)T

F (x) =
1
2

m∑
i=1

fi (x)2

subject to
l ≤ x ≤ u

here m ≥ n, F : Rn → Rm, and fi(x) is the i-th component function of F(x). From a given
starting point, an active set IA, which contains the indices of the variables at their bounds, is
built. A variable is called a ”free variable” if it is not in the active set. The routine then
computes the search direction for the free variables according to the formula

d = −
(
JTJ + µI

)−1
JTF

where µ is the Levenberg-Marquardt parameter, F = F(x), and J is the Jacobian with respect
to the free variables. The search direction for the variables in IA is set to zero. The trust region
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approach discussed by Dennis and Schnabel (1983) is used to find the new point. Finally, the
optimality conditions are checked. The conditions are:

‖g (xi)‖ ≤ ε, li < xi < ui

g (xi) < 0, xi = ui

g (xi) > 0, xi = li

where ε is a gradient tolerance. This process is repeated until the optimality criterion is
achieved.

The active set is changed only when a free variable hits its bounds during an iteration or the
optimality condition is met for the free variables but not for all variables in IA, the active set.
In the latter case, a variable that violates the optimality condition will be dropped out of IA.
For more details on the Levenberg-Marquardt method, see Levenberg (1944) or Marquardt
(1963). For more detail on the active set strategy, see Gill and Murray (1976).

Example 1: Bounded Least Squares

The nonlinear least-squares problem

min
1
2

1∑
i=0

fi (x)2

−2 ≤ x0 ≤ 0.5

−1 ≤ x1 ≤ 2

where

f0(x) = 10(x1 − x2
0) and f1(x) = (1− x0)

is solved.

using System;
using Imsl.Math;

public class BoundedLeastSquaresEx1 : BoundedLeastSquares.IFunction
{

public void F(double[] x, double[] f)
{

f[0] = 10.0 * (x[1] - x[0] * x[0]);
f[1] = 1.0 - x[0];

}
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public static void Main(String[] args)
{

int m = 2;
int n = 2;
int ibtype = 0;
double[] xlb = new double[]{- 2.0, - 1.0};
double[] xub = new double[]{0.5, 2.0};

BoundedLeastSquares.IFunction rosbck =
new BoundedLeastSquaresEx1();

BoundedLeastSquares zf =
new BoundedLeastSquares(rosbck, m, n, ibtype, xlb, xub);

zf.solve();
new PrintMatrix("Solution").Print(zf.GetSolution());

}
}

Output

Solution
0

0 0.5
1 0.250000000009201

Example 2: Bounded Least Squares

The nonlinear least-squares problem

min
1
2

1∑
i=0

fi (x)2

−2 ≤ x0 ≤ 0.5

−1 ≤ x1 ≤ 2

where

f0(x) = 10(x1 − x2
0) and f1(x) = (1− x0)

is solved. An initial guess (-1.2, 1.0) is supplied, as well as the analytic Jacobian. The residual
at the approximate solution is returned.

using System;
using Imsl.Math;
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public class BoundedLeastSquaresEx2 : BoundedLeastSquares.IJacobian
{

public void F(double[] x, double[] f)
{

f[0] = 10.0 * (x[1] - x[0] * x[0]);
f[1] = 1.0 - x[0];

}

public void Jacobian(double[] x, double[] fjac)
{

fjac[0] = - 20.0 * x[0];
fjac[1] = 10.0;
fjac[2] = - 1.0;
fjac[3] = 0.0;

}

public static void Main(String[] args)
{

int m = 2;
int n = 2;
int ibtype = 0;
double[] xlb = new double[]{- 2.0, - 1.0};
double[] xub = new double[]{0.5, 2.0};

BoundedLeastSquares.IJacobian rosbck =
new BoundedLeastSquaresEx2();

BoundedLeastSquares zf =
new BoundedLeastSquares(rosbck, m, n, ibtype, xlb, xub);

zf.SetGuess(new double[]{- 1.2, 1.0});
zf.solve();
new PrintMatrix("Solution").Print(zf.GetSolution());
new PrintMatrix("Residuals").Print(zf.GetResiduals());

}
}

Output

Solution
0

0 0.5
1 0.25

Residuals
0

0 0
1 0.5

Optimization BoundedLeastSquares Class • 185



BoundedLeastSquares.IFunction Interface

Summary

Public interface for the user-supplied function to evaluate the function that defines the
least-squares problem.

public interface Imsl.Math.BoundedLeastSquares.IFunction

Method

F
abstract public void F(double[] x, double[] fvalue)

Description

Public interface for the user-supplied function to evaluate the function that defines the
least-squares problem.

Parameters

x – A double array, the point at which the function is to evaluated. x.length =
nVariables.

fvalue – A double array, the function values at point x. f.Length = mFunctions.

BoundedLeastSquares.IJacobian Interface

Summary

Public interface for the user-supplied function to compute the Jacobian.

public interface Imsl.Math.BoundedLeastSquares.IJacobian :
Imsl.Math.BoundedLeastSquares.IFunction

Method

Jacobian
abstract public void Jacobian(double[] x, double[] fjac)

Description

Public interface for the user-supplied function to compute the Jacobian.
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Parameters

x – A double array, the point at which the Jacobian is to evaluated. x.length =
nVariables.

fjac – A double array which, on return, contains the computed Jacobian at the
point x. fjac.length = mFunctions x nVariables.

MinConNLP Class

Summary

General nonlinear programming solver.

public class Imsl.Math.MinConNLP

Properties

BindingThreshold
public double BindingThreshold {get; set; }
Description

The binding threshold for constraints.

In the initial phase of minimization a constraint is considered binding if
gi(x)

max(1,‖∇gi(x)‖) ≤ BindingThreshold i = Me + 1, . . . ,M

Good values are between .01 and 1.0. If BindingThreshold is chosen too small then
identification of the correct set of binding constraints may be delayed. Contrary, if
BindingThreshold is too large, then the method will often escape to the full regularized
SQP method, using individual slack variables for any active constraint, which is quite
costly. For well scaled problems BindingThreshold = 1.0 is reasonable. By default,
BindingThreshold is set to .5 * PenaltyBound.

BoundViolationBound
public double BoundViolationBound {get; set; }
Description

The amount by which bounds may be violated during numerical differentiation.

By default, BoundViolationBound is set to 1.0.

DifferentiationType
public int DifferentiationType {get; set; }
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Description

The type of numerical differentiation to be used.

FunctionPrecision
public double FunctionPrecision {get; set; }
Description

The relative precision of the function evaluation routine.

By default, FunctionPrecision is set to 2.2e-16.

GradientPrecision
public double GradientPrecision {get; set; }
Description

The relative precision in gradients.

By default, GradientPrecision is set to 2.2e-16.

MaximumIterations
public int MaximumIterations {get; set; }
Description

The maximum number of iterations allowed.

By default, MaximumIterations is set to 200.

MultiplierError
public double MultiplierError {get; set; }
Description

The error allowed in the multipliers.

A negative multiplier of an inequality constraint is accepted (as zero) if its absolute value
is less than MultiplierError. By default, MultiplierError is set to e2 log ε/3.

PenaltyBound
public double PenaltyBound {get; set; }
Description

The universal bound for describing how much the unscaled penalty-term may deviate
from zero.

A small PenaltyBound diminishes the efficiency of the solver because the iterates then
will follow the boundary of the feasible set closely. Conversely, a large PenaltyBound may
degrade the reliability of the code. By default, PenaltyBound is set to 1.0.

ScalingBound
public double ScalingBound {get; set; }
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Description

The scaling bound for the internal automatic scaling of the objective function.

By default, ScalingBound is set to 1.0e4.

ViolationBound
public double ViolationBound {get; set; }
Description

Defines allowable constraint violations of the final accepted result.

Constraints are satisfied if |gi(x)| ≤ V iolationBound, and gi(x) ≥ −V iolationBound
respectively. By default, ViolationBound is set to
min(BindingThreshold/10,max(epsdif,min(BindingThreshold/10,max((1.e−
6)BindingThreshold, smallw))).

Constructor

MinConNLP
public MinConNLP(int mTotalConstraints, int mEqualityConstraints, int
nVariables)

Description

Nonlinear programming solver constructor.

Parameters

mTotalConstraints – An int scalar value which defines the total number of
constraints.
mEqualityConstraints – An int scalar value which defines the number of equality
constraints.
nVariables – An int scalar value which defines the number of variables.

Methods

GetConstraintResiduals
public double[] GetConstraintResiduals()

Description

Returns the constraint residuals.

Returns

A double array containing the constraint residuals.

GetLagrangeMultiplierEst
public double[] GetLagrangeMultiplierEst()
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Description

Returns the Lagrange multiplier estimates of the constraints.

Returns

A double array containing the Lagrange multiplier estimates of the constraints.

SetGuess
public void SetGuess(double[] guess)

Description

Sets the initial guess of the minimum point of the input function.

By default, the elements of this array are set to x, (with the smallest value of ‖x‖2) that
satisfies the bounds.

Parameter

guess – A double array specifying the initial guess of the minimum point of the
input function.

SetXlowerBound
public void SetXlowerBound(double[] lower)

Description

Sets the lower bounds on the variables.

By default, the elements of this array are set to -1.79e308.

Parameter

lower – A double array specifying the lower bounds on the variables.

SetXscale
public void SetXscale(double[] scale)

Description

The internal scaling of the variables.

The initial value given and the objective function and gradient evaluations, however, are
always given in the original unscaled variables. The first internal variable is obtained by
dividing the values x[i] by Xscale[i]. By default, Xscale[i] is set to 1.0.

Parameter

scale – A double array specifying the internal scaling of the variables.

System.ArgumentException id is thrown if Xscale[i] is less than or equal to 0.0

SetXupperBound
public void SetXupperBound(double[] upper)
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Description

Sets the upper bounds on the variables.

By default, the elements of this array are set to 1.79e308.

Parameter

upper – A double array specifying the upper bounds on the variables.

Solve
public double[] Solve(Imsl.Math.MinConNLP.IFunction f)

Description

Solve a general nonlinear programming problem using the successive quadratic
programming algorithm with a finite-difference gradient or with a user-supplied gradient.

Parameter

f – Defines the user-supplied MinConNLP.IFunction to be evaluated at a given
point. f can be used to supply a MinConNLP.IGradient of the function. If f
implements IGradient the user-supplied gradient is used. Otherwise, an attempt to
solve the problem is made using a finite-difference gradient.

Returns

A double array containing the solution of the nonlinear programming problem.

Imsl.Math.ConstraintEvaluationException id is thrown if a constraint evaluation
returns an error.

Imsl.Math.ObjectiveEvaluationException id is thrown if objective evaluation returns
an error.

Imsl.Math.WorkingSetSingularException id is thrown if

Imsl.Math.QPInfeasibleException id is thrown if the working set is singular in dual
extended QP.

Imsl.Math.PenaltyFunctionPointInfeasibleException id is thrown if the penalty
function point infeasible.

Imsl.Math.LimitingAccuracyException id is thrown if limiting accuracy reached for a
singular problem.

Imsl.Math.TooManyIterationsException id is thrown if maximum number of iterations
exceeded.

Imsl.Math.NoAcceptableStepsizeException id is thrown if there is no acceptable
stepsize.

Imsl.Math.BadInitialGuessException id is thrown if the penalty function point
infeasible for original problem.

Imsl.Math.IllConditionedException id is thrown if the problem is singular or
ill-conditioned.

Imsl.Math.SingularException id is thrown ifthe problem is singular.
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Imsl.Math.LinearlyDependentGradientsException id is thrown if the working set
gradients are linearly dependent.

Imsl.Math.TerminationCriteriaNotSatisfiedException id is thrown if termination
criteria are not satisfied.

Description

MinConNLP is based on the FORTRAN subroutine, DONLP2, by Peter Spellucci and licensed
from TU Darmstadt. MinConNLP uses a sequential equality constrained quadratic programming
method with an active set technique, and an alternative usage of a fully regularized mixed
constrained subproblem in case of nonregular constraints (i.e. linear dependent gradients in the
”working sets”). It uses a slightly modified version of the Pantoja-Mayne update for the
Hessian of the Lagrangian, variable dual scaling and an improved Armjijo-type stepsize
algorithm. Bounds on the variables are treated in a gradient-projection like fashion. Details
may be found in the following two papers:

P. Spellucci: An SQP method for general nonlinear programs using only equality constrained
subproblems. Math. Prog. 82, (1998), 413-448.

P. Spellucci: A new technique for inconsistent problems in the SQP method. Math. Meth. of
Oper. Res. 47, (1998), 355-500. (published by Physica Verlag, Heidelberg, Germany).

The problem is stated as follows:

min
x ∈ Rn

f (x)

subject to

gj (x) = 0, for j = 1, . . . , me

gj (x) ≥ 0, for j = me + 1, . . . , m

xl ≤ x ≤ xu

where all problem functions are assumed to be continuously differentiable. Although default
values are provided for optional input arguments, it may be necessary to adjust these values for
some problems. Through the use of member functions, MinConNLP allows for several parameters
of the algorithm to be adjusted to account for specific characteristics of problems. The DONLP2
Users Guide provides detailed descriptions of these parameters as well as strategies for
maximizing the performance of the algorithm. In addition, the following are a number of
guidelines to consider when using MinConNLP:
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• A good initial starting point is very problem specific and should be provided by the
calling program whenever possible. See method SetGuess.

• Gradient approximation methods can have an effect on the success of MinConNLP.
Selecting a higher order approximation method may be necessary for some problems. See
property DifferentiationType.

• If a two sided constraint li ≤ gi (x) ≤ ui is transformed into two constraints, g2i (x) ≥ 0
and g2i+1 (x) ≥ 0, then choose BindingThreshold < 1/2 (ui − li) /max {1, ‖∇gi (x) ‖}, or
at least try to provide an estimate for that value. This will increase the efficiency of the
algorithm. See property BindingThreshold.

• The parameter ierr provided in the interface to the user supplied function F can be very
useful in cases when evaluation is requested at a point that is not possible or reasonable.
For example, if evaluation at the requested point would result in a floating point
exception, then setting ierr to true and returning without performing the evaluation
will avoid the exception. MinConNLP will then reduce the stepsize and try the step again.
Note, if ierr is set to true for the initial guess, then an error is issued.

Example 1: Solving a general nonlinear programming problem

A general nonlinear programming problem is solved using a finite difference gradient.

using System;
using Imsl.Math;

public class MinConNLPEx1 : MinConNLP.IFunction
{

public double F(double[] x, int iact, bool[] ierr)
{

double result;
ierr[0] = false;
if (iact == 0)
{

result = (x[0] - 2.0) * (x[0] - 2e0) +
(x[1] - 1.0) * (x[1] - 1.0);

return result;
}
else
{

switch (iact)
{

case 1:
result = (x[0] - 2.0 * x[1] + 1.0);
return result;

case 2:
result = (-(x[0] * x[0]) / 4.0 - (x[1] * x[1])

+ 1.0);
return result;
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default:
ierr[0] = true;
return 0.0;

}
}

}

public static void Main(String[] args)
{

int m = 2;
int me = 1;
int n = 2;
MinConNLP minconnon = new MinConNLP(m, me, n);
minconnon.SetGuess(new double[]{2.0, 2.0});
double[] x = minconnon.Solve(new MinConNLPEx1());
new PrintMatrix("x").Print(x);

}
}

Output

x
0

0 0.822875655532512
1 0.911437827766256

Example 2: Solving a general nonlinear programming problem

A general nonlinear programming problem is solved using a user-supplied gradient.

using System;
using Imsl.Math;

public class MinConNLPEx2 : MinConNLP.IGradient
{

public double F(double[] x, int iact, bool[] ierr)
{

double result;
ierr[0] = false;
if (iact == 0)
{

result = (x[0] - 2.0) * (x[0] - 2.0) +
(x[1] - 1.0) * (x[1] - 1.0);

return result;
}
else
{
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switch (iact)
{

case 1:
result = (x[0] - 2.0 * x[1] + 1.0);
return result;

case 2:
result = (-(x[0] * x[0]) / 4.0 -

(x[1] * x[1]) + 1.0);
return result;

default:
ierr[0] = true;
return 0.0;

}
}

}

public void Gradient(double[] x, int iact, double[] result)
{

if (iact == 0)
{

result[0] = 2.0 * (x[0] - 2.0);
result[1] = 2.0 * (x[1] - 1.0);
return;

}
else
{

switch (iact)
{

case 1:
result[0] = 1.0;
result[1] = - 2.0;
return;

case 2:
result[0] = - 0.5 * x[0];
result[1] = - 2.0 * x[1];
return;

}
}

}

public static void Main(String[] args)
{

int m = 2;
int me = 1;
int n = 2;
MinConNLP minconnon = new MinConNLP(m, me, n);
minconnon.SetGuess(new double[]{2.0, 2.0});
double[] x = minconnon.Solve(new MinConNLPEx2());
new PrintMatrix("x").Print(x);
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}
}

Output

x
0

0 0.822875655532512
1 0.911437827766256

MinConNLP.IFunction Interface

Summary

Public interface for the user supplied function to the MinConNLP object.

public interface Imsl.Math.MinConNLP.IFunction

Method

F
abstract public double F(double[] x, int iact, bool[] ierr)

Description

Compute the value of the function at the given point.

Parameters

x – An input double array, the point at which the objective function or constraint is
to be evaluated.

iact – An input int value indicating whether evaluation of the objective function is
requested or evaluation of a constraint is requested. If iact is zero, then an objective
function evaluation is requested. If iact is nonzero then the value of iact indicates
the index of the constraint to evaluate. (1 indicates the first constraint, 2 indicates
the second, etc.)

ierr – An input/output boolean array of length 1. On input ierr[0] is set to false. If
an error or other undesirable condition occurs during evaluation, then ierr[0] should
be set to true. Setting ierr[0] to true will result in the step size being reduced and the
step being tried again. (If ierr[0] is set to true for xguess, then an error is issued.)

196 • MinConNLP.IFunction Interface IMSL C# Numerical Library



Returns

A double. If iact is zero, then the value of the objective function at x is returned. If iact
is nonzero, then the computed constraint value at the point x is returned.

MinConNLP.IGradient Interface

Summary

Public interface for the user supplied function to compute the gradient for MinConNLP object.

public interface Imsl.Math.MinConNLP.IGradient : Imsl.Math.MinConNLP.IFunction

Method

Gradient
abstract public void Gradient(double[] x, int iact, double[] result)

Description

Computes the value of the gradient of the function at the given point.

Parameters

x – An input double array, the point at which the gradient of the objective function
or gradient of a constraint is to be evaluated.

iact – An input int value indicating whether evaluation of the objective function
gradient is requested or evaluation of a constraint gradient is requested. If iact is
zero, then an objective function gradient evaluation is requested. If iact is nonzero
then the value of iact indicates the index of the constraint gradient to evaluate. (1
indicates the first constraint, 2 indicates the second, etc.)

result – A double array. If iact is zero, then the value of the objective function
gradient at x is returned in result. If iact is nonzero, then the computed gradient of
the requested constraint value at the point x is returned in result.
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Chapter 9: Special Functions

Types
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Sfun Class

Summary

Collection of special functions.

public class Imsl.Math.Sfun

Fields

EpsilonLarge
public double EpsilonLarge

Description

The largest relative spacing for doubles.

EpsilonSmall
public double EpsilonSmall

Description

The smallest relative spacing for doubles.
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Methods

Asinh
static public double Asinh(double x)

Description

Returns the hyperbolic arc sine of a double.

Parameter

x – A double value for which the hyperbolic arc sine is desired.

Returns

A double specifying the hyperbolic arc sine value.

Beta
static public double Beta(double a, double b)

Description

Returns the value of the Beta function.

The Beta function is defined to be

β(a, b) =
Γ(a)Γ(b)
Γ(a+ b)

=
∫ 1

0

ta−1(1− t)b−1dt

See Gamma for the definition of Γ (x).

The method Beta requires that both arguments be positive.

Parameters

a – A double value.

b – A double value.

Returns

A double value specifying the Beta function.

BetaIncomplete
static public double BetaIncomplete(double x, double p, double q)

Description

Returns the incomplete Beta function ratio.

The incomplete beta function is defined to be

Ix(p, q) =
βx(p, q)
β(p, q)

=
1

β(p, q)

∫ x

0

tp−1(1− t)q−1dt for 0 ≤ x ≤ 1, p > 0, q > 0
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See Beta for the definition of β (p, q).

The parameters p and q must both be greater than zero. The argument x must lie in the
range 0 to 1. The incomplete beta function can underflow for sufficiently small x and
large p; however, this underflow is not reported as an error. Instead, the value zero is
returned as the function value.

The method BetaIncomplete is based on the work of Bosten and Battiste (1974).

Parameters

x – A double value specifying the upper limit of integration It must be in the
interval [0,1] inclusive.

p – A double value specifying the first Beta parameter. It must be positive.

q – A double value specifying the second Beta parameter. It must be positive.

Returns

A double value specifying the incomplete Beta function ratio.

Cot
static public double Cot(double x)

Description

Returns the cotangent of a double.

Parameter

x – A double value

Returns

A double value specifying the cotangent of x. If x is NaN, the result is NaN.

Erf
static public double Erf(double x)

Description

Returns the error function of a double.

The error function method, Erf(x), is defined to be

erf (x) =
2√
π

∫ x

0

e−t2dt

All values of x are legal.
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Error FunctionError Function
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Parameter

x – A double value.

Returns

A double value specifying the error function of x.
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Erfc
static public double Erfc(double x)

Description

Returns the complementary error function of a double.

The complementary error function method, Erfc (x), is defined to be

erfc (x) =
2√
π

∫ ∞

x

e−t2dt

The argument x must not be so large that the result underflows. Approximately, x should
be less than

[
−ln

(√
πs
)]1/2

where s = Double.Epsilon is the smallest representable positive floating-point number.
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Parameter

x – A double value.

Returns

A double value specifying the complementary error function of x.

ErfcInverse
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static public double ErfcInverse(double x)

Description

Returns the inverse of the complementary error function.

The Erfcinverse(x) method computes the inverse of the complementary error function
erfc x, defined in Erfc.

Erfcinverse(x) is defined for 0 < x < 2. If xmax < x < 2, then the answer will be less
accurate than half precision. Very approximately,

xmax ≈ 2−
√
ε/(4π)

where ε = machine precision (approximately 1.11e-16).
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Parameter

x – A double value, 0 ≤ x ≤ 2.

Returns

A double value specifying the inverse of the error function of x.
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ErfInverse
static public double ErfInverse(double x)

Description

Returns the inverse of the error function.

ErfInverse(X) method computes the inverse of the error function erf x, defined in Erf.

The method ErfInverse(X) is defined for xmax < |x| < 1, then the answer will be less
accurate than half precision. Very approximately,

xmax ≈ 1−
√
ε/ (4π)

where ε is the machine precision (approximately 1.11e-16).
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Parameter

x – A double value.

Returns

A double value specifying the inverse of the error function of x.
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Fact
static public double Fact(int n)

Description

Returns the factorial of an integer.

Parameter

n – An int value.

Returns

A double value specifying the factorial of n, n!. If x is negative, the result is NaN.

Gamma
static public double Gamma(double x)

Description

Returns the Gamma function of a double.

The Gamma function, Γ(x), is defined to be

Γ (x) =
∫ ∞

0

tx−1e−tdt for x > 0

For x < 0, the above definition is extended by analytic continuation.

The Gamma function is not defined for integers less than or equal to zero. Also, the
argument x must be greater than −170.56 so that Γ(x) does not underflow, and x must be
less than 171.64 so that Γ(x) does not overflow. The underflow limit occurs first for
arguments that are close to large negative half integers. Even though other arguments
away from these half integers may yield machine-representable values of Γ(x), such
arguments are considered illegal. Users who need such values should use the Log Gamma.
Finally, the argument should not be so close to a negative integer that the result is less
accurate than half precision.
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Parameter

x – A double value.

Returns

A double value specifying the Gamma function of x. If x is a negative integer, the result
is NaN.
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Log10
static public double Log10(double x)

Description

Returns the common (base 10) logarithm of a double.

Parameter

x – A double value.

Returns

A double value specifying the common logarithm of x.

Log1p
static public double Log1p(double x)

Description

Returns log(1+x), the logarithm of (x plus 1).

Specifically:

Log1p(±0) returns ±0.

Log1p(−1) returns −∞.

Log1p(x) returns NaN, if x < −1.

Log1p(±∞) returns ±∞.

Parameter

x – A double value representing the argument.

Returns

A double value representing Log(1+x).

LogBeta
static public double LogBeta(double a, double b)

Description

Returns the logarithm of the Beta function.

Method LogBeta computes lnβ (a, b) = lnβ (b, a). See Beta for the definition of β (a, b).

LogBeta is defined for a ¿ 0 and b ¿ 0. It returns accurate results even when a or b is very
small. It can overflow for very large arguments; this error condition is not detected except
by the computer hardware.

Parameters

a – A double value.

b – A double value.
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Returns

A double value specifying the natural logarithm of the Beta function.

LogGamma
static public double LogGamma(double x)

Description

Returns the logarithm of the Gamma function of the absolute value of a double.

Method LogGamma computes ln |Γ(x)|. See Gamma for the definition of Γ(x).

The Gamma function is not defined for integers less than or equal to zero. Also, |x| must
not be so large that the result overflows. Neither should x be so close to a negative integer
that the accuracy is worse than half precision.
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Parameter

x – A double value.

Returns

A double value specifying the natural logarithm of the Gamma function of |x|. If x is a
negative integer, the result is NaN.
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Poch
static public double Poch(double a, double x)

Description

Returns a generalization of Pochhammer’s symbol.

Method Poch evaluates Pochhammer’s symbol (a)n = (a)(a− 1) . . . (a− n+ 1) for n a
nonnegative integer. Pochhammer’s generalized symbol is defined to be

(a)x =
Γ (a+ x)

Γ (a)

See Gamma for the definition of Γ(x).

Note that a straightforward evaluation of Pochhammer’s generalized symbol with either
Gamma or Log Gamma functions can be especially unreliable when a is large or x is
small.

Substantial loss can occur if a + x or a are close to a negative integer unless |x| is
sufficiently small. To insure that the result does not overflow or underflow, one can keep
the arguments a and a + x well within the range dictated by the Gamma function
method Gamma or one can keep |x| small whenever a is large. Poch also works for a
variety of arguments outside these rough limits, but any more general limits that are also
useful are difficult to specify.

Parameters

a – A double value specifying the first argument.
x – A double value specifying the second, differential argument.

Returns

A double value specifying the generalized Pochhammer symbol,
Gamma(a+x)/Gamma(a).

R9lgmc
static public double R9lgmc(double x)

Description

Returns the Log Gamma correction term for argument values greater than or equal to
10.0.

Parameter

x – A double value.

Returns

A double value specifying the Log Gamma correction term.

Sign
static public double Sign(double x, double y)
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Description

Returns the value of x with the sign of y.

Parameters

x – A double value.

y – A double value.

Returns

A double value specifying the absolute value of x and the sign of y.

Example: The Special Functions

Various special functions are exercised. Their use in this example typifies the manner in which
other special functions in the Sfun class would be used.

using System;
using Imsl.Math;

public class SfunEx1
{

public static void Main(String[] args)
{

double result;

// Log base 10 of x
double x = 100.0;
result = Sfun.Log10(x);
Console.Out.WriteLine("The log base 10 of 100. is " + result);

// Factorial of 10
int n = 10;
result = Sfun.Fact(n);
Console.Out.WriteLine("10 factorial is " + result);

// Gamma of 5.0
double x1 = 5.0;
result = Sfun.Gamma(x1);
Console.Out.WriteLine

("The Gamma function at 5.0 is " + result);

// LogGamma of 1.85
double x2 = 1.85;
result = Sfun.LogGamma(x2);
Console.Out.WriteLine

("The logarithm of the absolute value of the " +
"Gamma function \n at 1.85 is " + result);

// Beta of (2.2, 3.7)
double a = 2.2;
double b = 3.7;
result = Sfun.Beta(a, b);

Special Functions Sfun Class • 215



Console.Out.WriteLine("Beta(2.2, 3.7) is " + result);

// LogBeta of (2.2, 3.7)
double a1 = 2.2;
double b1 = 3.7;
result = Sfun.LogBeta(a1, b1);
Console.Out.WriteLine("logBeta(2.2, 3.7) is " + result + "\n");

}
}

Output

The log base 10 of 100. is 2
10 factorial is 3628800
The Gamma function at 5.0 is 24
The logarithm of the absolute value of the Gamma function

at 1.85 is -0.0559238130196572
Beta(2.2, 3.7) is 0.0453759834847081
logBeta(2.2, 3.7) is -3.09277231203789

Bessel Class

Summary

Collection of Bessel functions.

public class Imsl.Math.Bessel

Methods

I
static public double[] I(double x, int n)

Description

Evaluates a sequence of modified Bessel functions of the first kind with integer order and
real argument.

Bessel.I[i] contains the value of the Bessel function of order i. The Bessel function In(x)
is defined to be

In (x) =
1
π

∫ π

0

ex cos θ cos (n θ) d θ
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The input x must satisfy |x| ≤ log(b) where b is the largest representable floating-point
number. The algorithm is based on a code due to Sookne (1973b), which uses backward
recursion.

Parameters

x – A double representing the argument of the Bessel functions to be evaluated.

n – The int order of the last element in the sequence.

Returns

A double array of length n+1 containing the values of the function through the series.

I
static public double[] I(double xnu, double x, int n)

Description

Evaluates a sequence of modified Bessel functions of the first kind with real order and real
argument.

Bessel.I[i] contains the value of the Bessel function of order i+xnu. The Bessel function
Iv(x), is defined to be

Iν(x) =
1
π

∫ π

0

ex cos θ cos(νθ)d θ − sin(νπ)
π

∫ ∞

0

e−x cosh t−vtdt

Here, argument xnu is represented by ν in the above equation.

The input x must be nonnegative and less than or equal to log(b) (b is the largest
representable number). The argument ν = xnu must satisfy 0 ≤ ν ≤ 1.

This function is based on a code due to Cody (1983), which uses backward recursion.

Parameters

xnu – A double representing the lowest order desired. xnu must be at least zero and
less than 1.

x – A double representing the argument of the Bessel functions to be evaluated.

n – The int order of the last element in the sequence.

Returns

A double array of length n + 1 containing the values of the function through the series.

J
static public double[] J(double x, int n)
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Description

Evaluates a sequence of Bessel functions of the first kind with integer order and real
argument.

Bessel.J[i] contains the value of the Bessel function of order i at x for i = 0 to n. The
Bessel function Jn(x), is defined to be

Jn (x) =
1
π

∫ π

0

cos (x sin θ − n θ) d θ

The algorithm is based on a code due to Sookne (1973b) that uses backward recursion
with strict error control.

Parameters

x – A double representing the argument for which the sequence of Bessel functions is
to be evaluated.

n – A int which specifies the order of the last element in the sequence.

Returns

A double array of length n + 1 containing the values of the function through the series.

J
static public double[] J(double xnu, double x, int n)

Description

Evaluate a sequence of Bessel functions of the first kind with real order and real positive
argument.

The Bessel function Jv(x), is defined to be

Jν(x) =
(x/2)ν

√
πΓ(ν + 1/2)

∫ π

0

cos (x cos θ) sin2ν θ d θ

This code is based on the work of Gautschi (1964) and Skovgaard (1975). It uses
backward recursion.

Parameters

xnu – A double representing the lowest order desired. xnu must be at least zero and
less than 1.

x – A double representing the argument for which the sequence of Bessel functions is
to be evaluated.

n – A int representing the order of the last element in the sequence. If order is the
highest order desired, set n to int(order).
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Returns

A double array of length n+1 containing the values of the function through the series.
Bessel.J[I] contains the value of the Bessel function of order I + v at x for I=0 to n.

K
static public double[] K(double x, int n)

Description

Evaluates a sequence of modified Bessel functions of the third kind with integer order and
real argument.

This function uses exKν+k−1 for k = 1, . . . , n and ν = 0. For the definition of Kv(x), see
below.

Parameters

x – A double representing the argument for which the sequence of Bessel functions is
to be evaluated.

n – A int which specifies the order of the last element in the sequence.

Returns

A double array of length n + 1 containing the values of the function through the series.

K
static public double[] K(double xnu, double x, int n)

Description

Evaluates a sequence of modified Bessel functions of the third kind with fractional order
and real argument.

Bessel.K[I] contains the value of the Bessel function of order I + v at x for I = 0 to n.
The Bessel function Kv(x) is defined to be

Kν(x) =
π

2
eνπi/2 [i Jν(ix)− Yν(ix)] for− π < arg x ≤ π

2
Currently, xnu (represented by ν in the above equation) is restricted to be less than one

in absolute value. A total of n values is stored in the result, K.

K[0] = Kv(x), K[1] = Kv+1(x), . . ., K [n− 1] = Kv+n−1(x).

This method is based on the work of Cody (1983).

Parameters

xnu – A double representing the fractional order of the function. xnu must be less
than one in absolute value.

x – A double representing the argument for which the sequence of Bessel functions is
to be evaluated.

n – A int representing the order of the last element in the sequence. If order is the
highest order desired, set n to int(order).
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Returns

A double array of length n+1 containing the values of the function through the series.

ScaledK
static public double[] ScaledK(double v, double x, int n)

Description

Evaluate a sequence of exponentially scaled modified Bessel functions of the third kind
with fractional order and real argument.

If n is positive, Bessel.K[I] contains ex times the value of the Bessel function of order I +
v at x for I = 0 to n.

If n is negative, Bessel.K[I] contains ex times the value of the Bessel function of order v - I
at x for I = 0 to n. This function evaluates exKν+i−1(x), for i=1,...,n where K is the
modified Bessel function of the third kind. Currently, v is restricted to be less than 1 in
absolute value. A total of |n|+ 1 elements are returned in the array. This code is
particularly useful for calculating sequences for large x provided n = x. (Overflow becomes
a problem if n << x.) n must not be zero, and x must be greater than zero. |ν| must be
less than 1. Also, when |n| is large compared with x, |v + n| must not be so large that

exKν+n(x) = ex Γ(|ν + n|)
2(x/2)ν+n

overflows. The code is based on work of Cody (1983).

Parameters

v – A double representing the fractional order of the function. v must be less than
one in absolute value.
x – A double representing the argument for which the sequence of Bessel functions is
to be evaluated.
n – A int representing the order of the last element in the sequence. If order is the
highest order desired, set n to int(order).

Returns

A double array of length n+1 containing the values of the function through the series.

Y
static public double[] Y(double xnu, double x, int n)

Description

Evaluate a sequence of Bessel functions of the second kind with real nonnegative order
and real positive argument.

Bessel.K[I] contains the value of the Bessel function of order I + v at x for I=0 to n. The
Bessel function Yv(x) is defined to be

Yν(x) =
1
π

∫ π

0

cos(x sin θ − νθ)d θ
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− 1
π

∫ ∞

0

[
eνt + e−νt cos (νπ)

]
e−x sinh t dt

The variable xnu (represented by ν in the above equation) must satisfy 0 ≤ ν < 1. If this
condition is not met, then Y is set to NaN. In addition, x must be in [xm, xM ] where
xm = 6(16−32) and xm = 169. If x < xm, then the largest representable number is
returned; and if x < xM , then zero is returned.

The algorithm is based on work of Cody and others, (see Cody et al. 1976; Cody 1969;
NATS FUNPACK 1976). It uses a special series expansion for small arguments. For
moderate arguments, an analytic continuation in the argument based on Taylor series
with special rational minimax approximations providing starting values is employed. An
asymptotic expansion is used for large arguments.

Parameters

xnu – A double representing the lowest order desired. xnu must be at least zero and
less than 1.

x – A double representing the argument for which the sequence of Bessel functions is
to be evaluated.

n – A int which specifies that n + 1 elements will be evaluated in the sequence.

Returns

A double array of length n + 1 containing the values of the function through the series.

Example: The Bessel Functions

The Bessel functions I, J, and K are exercised for orders 0, 1, 2, and 3 at argument 10.e0.

using System;
using Imsl.Math;

public class BesselEx1
{

public static void Main(String[] args)
{

double x = 10e0;
int hiorder = 4;
// Exercise some of the Bessel functions with argument 10.0
double[] bi = Bessel.I(x, hiorder);
double[] bj = Bessel.J(x, hiorder);
double[] bk = Bessel.K(x, hiorder);

Console.Out.WriteLine("Order Bessel.I " +
"Bessel.J Bessel.K");

for (int i = 0; i < 4; i++)
{

Console.Out.WriteLine(i + " " + bi[i] + " " + bj[i]
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+ " " + bk[i]);
}
Console.Out.WriteLine();

}
}

Output

Order Bessel.I Bessel.J Bessel.K
0 2815.71662846626 -0.245935764451348 1.77800623161676E-05
1 2670.98830370126 0.0434727461688615 1.86487734538256E-05
2 2281.51896772601 0.254630313685121 2.15098170069328E-05
3 1758.38071661085 0.0583793793051867 2.72527002565987E-05
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Chapter 10: Miscellaneous

Types

structure Complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
structure Physical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225
class EpsilonAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

Complex Structure

Summary

Set of mathematical functions for complex numbers. It provides the basic operations (addition,
subtraction, multiplication, division) as well as a set of complex functions.

public structure Imsl.Math.Complex : System.IComparable, System.IFormattable

Field

I
public Imsl.Math.Complex I

Description

The imaginary unit.

This constant is set to new Complex(0,1).

Constructors

Complex
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public Complex(Imsl.Math.Complex z)

Description

Constructs a Complex equal to the argument.

Parameter

z – A Complex object.

System.NullReferenceException id is thrown if z is null

Complex
public Complex(double re, double im)

Description

Constructs a Complex with real and imaginary parts given by the input arguments.

Parameters

re – A double value equal to the real part of the Complex object.

im – A double value equal to the imaginary part of the Complex object.

Complex
public Complex(double re)

Description

Constructs a Complex with a zero imaginary part.

Parameter

re – A double value equal to the real part of the Complex object.

19

Example: Roots of a Quadratic Equation

The two roots of the quadratic equation ax2 + bx+ c are computed using the formula

−b±
√
b2 − 4ac

2a

using System;
using Imsl.Math;

public class ComplexEx1
{

public static void Main(String[] args)
{

Complex a = new Complex(2.0, 3.0);
double b = 4.0;
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Complex c = new Complex(1.0, -2.0);

Complex disc = Complex.Sqrt(b*b - 4.0*a*c);
Complex root1 = (-b + disc) / (2.0*a);
Complex root2 = (-b - disc) / (2.0*a);

Console.Out.WriteLine("Root1 = " + root1);
Console.Out.WriteLine("Root2 = " + root2);

}
}

Output

Root1 = 0.19555270402037395+0.71433567154613054i
Root2 = -0.81093731940498925+0.20874125153079251i

Physical Structure

Summary

Return the value of various mathematical and physical constants.

public structure Imsl.Math.Physical

Constructors

Physical
public Physical(double magnitude, string units)

Description

Constructs a new Physical object and initializes this object to a double value.

Parameters

magnitude – A double value to which the copy of the object is initialized.
units – A String specifying the unit.

Physical
public Physical(double magnitude, int length, int mass, int time, int
current, int temperature)

Description

Constructs a new Physical object and initializes this object to a double value along with
int values for length, mass, time, current, and temperature.
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Parameters

magnitude – A double value to which this object is initialized.
length – An int value assigned to this object’s length.
mass – An int value assigned to this object’s mass.
time – An int value assigned to this object’s time.
current – An int value assigned to this object’s current.
temperature – An int value assigned to this object’s temperature.

12

Example: Compute Kinetic Energy

The kinetic energy of a mass in motion is given by

T =
1
2
mv2

where m is the mass and v is the velocity. In this example the mass is 2.4 pounds and the
velocity is 6.7 meters per second. The infix operators defined by Physical automatically
handle the unit convertions and computes the current units for the result.

using System;
using Imsl.Math;

public class PhysicalEx1
{

public static void Main(String[] args)
{

Physical mass = new Physical(2.4, "pound");
Physical velocity = new Physical(6.7, "m/s");
Physical energy = 0.5*mass*velocity*velocity;
Console.Out.WriteLine("Kinetic energy is " + energy);

}
}

Output

Kinetic energy is 24.43411378716 m^2*kg/s^2

EpsilonAlgorithm Class

Summary

The class is used to determine the limit of a sequence of approximations, by means of the
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Epsilon algorithm of P. Wynn.

public class Imsl.Math.EpsilonAlgorithm

Property

ErrorEstimate
public double ErrorEstimate {get; }
Description

Returns the current error estimate.

Constructors

EpsilonAlgorithm
public EpsilonAlgorithm()

Description

The class is used to determine the limit of a sequence of approximations, by means of the
Epsilon algorithm of P. Wynn.

An estimate of the absolute error is also given. The condensed Epsilon table is computed.
Only those elements needed for the computation of the next diagonal are preserved.

EpsilonAlgorithm
public EpsilonAlgorithm(int maxTableSize)

Description

The class is used to determine the limit of a sequence of approximations, by means of the
Epsilon algorithm of P. Wynn.

An estimate of the absolute error is also given. The condensed Epsilon table is computed.
Only those elements needed for the computation of the next diagonal are preserved.

Parameter

maxTableSize – A int which specifies the maximum size of Episilon Table to be
computed.

Method

Extrapolate
public double Extrapolate(double x)
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Description

Extrapolates the convergence limit of a sequence.

Parameter

x – A double which specifies the next point in the original series.

Returns

A double containing the estimate of the limit of the series.

Description

An estimate of the absolute error is also given. The condensed Epsilon table is computed. Only
those elements needed for the computation of the next diagonal are preserved.
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Chapter 11: Printing Functions

Types

class PrintMatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
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class PrintMatrixFormat.ParsePosition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237
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enumeration PrintMatrixFormat.RowLabelType . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

PrintMatrix Class

Summary

Matrix printing utilities.

public class Imsl.Math.PrintMatrix

Constructors

PrintMatrix
public PrintMatrix()

Description

Creates an instance of the PrintMatrix class without a title and directs it to the default
output stream.

The matrix is printed without a title to System.Console.Out.
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PrintMatrix
public PrintMatrix(System.IO.TextWriter writer)

Description

Creates an instance of the PrintMatrix class without a title and directs it to a specified
output stream.

Parameter

writer – The TextWriter to which the matrix is to be written.

PrintMatrix
public PrintMatrix(string title)

Description

Creates a PrintMatrix object with a title directed to the default output stream.

The matrix is printed without a title to System.Console.Out.

Parameter

title – A String which specifies the title to be printed above the matrix.

PrintMatrix
public PrintMatrix(System.IO.TextWriter writer, string title)

Description

Creates a PrintMatrix object with a title directed to a specified output stream.

Parameters

writer – A String which specifies the TextWriter to which the matrix is to be
written.

title – The title to be printed above the matrix.

Methods

Print
void Print(string text)

Description

Prints a string.

This function can be overridden to print to something other than a PrintStream.
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Parameter

text – The String to be printed.

Print
public void Print(Object array)

Description

Prints an nRow by nColumn matrix with the default format.

Parameter

array – A two-dimensional, non-empty, rectangular Object array.

Print
public void Print(Imsl.Math.PrintMatrixFormat pmf, Object array)

Description

Prints an nRow by nColumn matrix with specified format.

Parameters

pmf – A PrintMatrixFormat matrix format.
array – A two-dimensional, non-empty, rectangular Object array.

PrintHTML
public void PrintHTML(Imsl.Math.PrintMatrixFormat pmf, Object array, int
nRows, int nColumns)

Description

Prints an nRow by nColumn matrix with specified format for HTML output.

Parameters

pmf – A PrintMatrixFormat matrix format.
array – The Matrix to be printed.
nRows – An int specifying the number of rows in the matrix.
nColumns – An int specifying the number of columns in the matrix.

Println
void Println()

Description

Prints a newline.

This function can be overridden to print to something other than a PrintStream.

SetColumnSpacing
public Imsl.Math.PrintMatrix SetColumnSpacing(int columnSpacing)
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Description

Sets the number of spaces between columns.

The default value is 2.

Parameter

columnSpacing – An int specifying the number of spaces between columns.

Returns

The PrintMatrix object.

SetEqualColumnWidths
public Imsl.Math.PrintMatrix SetEqualColumnWidths(bool equalColumnWidths)

Description

Force all of the columns to have the same width.

Parameter

equalColumnWidths – A boolean which specifies that all column widths will be
equal.

Returns

The PrintMatrix object.

SetMatrixType
public Imsl.Math.PrintMatrix SetMatrixType(Imsl.Math.PrintMatrix.MatrixType
matrixType)

Description

Set matrix type.

Values for matrixType are:

Value Enumeration
0 MatrixType.Full
1 MatrixType.UpperTriangular
2 MatrixType.LowerTriangular
3 MatrixType.StrictUpperTriangular
4 MatrixType.StrictLowerTriangular

Parameter

matrixType – An int specifying the matrix type.

Returns

The PrintMatrix object.

SetPageWidth
public Imsl.Math.PrintMatrix SetPageWidth(int pageWidth)
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Description

Sets the page width.

The default value is the largest possible integer.

Parameter

pageWidth – An int specifying the page width.

Returns

The PrintMatrix object.

SetTitle
public Imsl.Math.PrintMatrix SetTitle(string title)

Description

Sets the matrix title.

Parameter

title – A String specifying the title of the matrix.

Returns

The PrintMatrix object.

Example: Matrix and PrintMatrix

The 1 norm of a matrix is found using a method from the Matrix class. The matrix is printed
using the PrintMatrix class.

using System;
using Imsl.Math;

public class PrintMatrixEx1
{

public static void Main(String[] args)
{

double nrm1;
double[,] a = {{0.0, 1.0, 2.0, 3.0},

{4.0, 5.0, 6.0, 7.0},
{8.0, 9.0, 8.0, 1.0},
{6.0, 3.0, 4.0, 3.0}};

// Get the 1 norm of matrix a
nrm1 = Matrix.OneNorm(a);

// Construct a PrintMatrix object with a title
PrintMatrix p = new PrintMatrix("A Simple Matrix");

// Print the matrix and its 1 norm
p.Print(a);
Console.Out.WriteLine("The 1 norm of the matrix is " + nrm1);
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}
}

Output

A Simple Matrix
0 1 2 3

0 0 1 2 3
1 4 5 6 7
2 8 9 8 1
3 6 3 4 3

The 1 norm of the matrix is 20

PrintMatrixFormat Class

Summary

This class can be used to customize the actions of PrintMatrix.

public class Imsl.Math.PrintMatrixFormat

Properties

FirstColumnNumber
public int FirstColumnNumber {get; set; }
Description

Turns on column labeling with index numbers and sets the index for the label of the first
column.

This is usually 0 or 1. The default is 0.

FirstRowNumber
public int FirstRowNumber {get; set; }
Description

Turns on row labeling with index numbers and sets the index for the label of the first row.

This is usually 0 or 1. The default is 0.

NumberFormat
public string NumberFormat {get; set; }
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Description

The NumberFormat to be used in formatting double and Complex (p. 223) entries.

Constructor

PrintMatrixFormat
public PrintMatrixFormat()

Description

Constructs a PrintMatrixFormat object.

Methods

Format
virtual public string Format(Imsl.Math.PrintMatrixFormat.FormatType type,
Object entry, int row, int col, Imsl.Math.PrintMatrixFormat.ParsePosition
pos)

Description

Returns a formatted string.

Note, if type is not FormatType.Entry, pos will be set based on the following criteria.

entry behavior
double The index is the position of the decimal point.
int The index is the position of the end of the formatted integer.

See Also: Imsl.Math.PrintMatrixFormat.FormatType (p. 239)

Parameters

type – The type of string requested. See PrintMatrixFormat.FormatType
Enumeration.

entry – The entry to be formatted. This is only used if type equals
Imsl.Math.PrintMatrixFormat.FormatType.Entry (p. 241). For other values of type,
this can be set to null.

row – The (0-based) row number of the element to be formatted. This is -1 if there is
no row number associated with this request.

col – The (0-based) column number of the element to be formatted. This is -1 if
there is no column number associated with this request.

pos – A ParsePosition object used to indicate the alignment center of the return
string. This is used only if type is Imsl.Math.PrintMatrixFormat.FormatType.Entry
(p. 241).
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Returns

A String to be put into the printed table.

SetColumnLabels
public void SetColumnLabels(string[] columnLabels)

Description

Turns on column labeling using the given labels.

Parameter

columnLabels – An array of Strings to be used as column labels. If there are more
columns than labels, the labels are reused.

SetNoColumnLabels
virtual public void SetNoColumnLabels()

Description

Turns off column labels.

SetNoRowLabels
virtual public void SetNoRowLabels()

Description

Turns off row labels.

Description

By default, entries are formatted using the data type’s ToString method.

See Also

Imsl.Math.PrintMatrix (p. 229)

Example: Matrix Formatting

A simple matrix is printed using the default format with the PrintMatrix class. The
PrintMatrixFormat class is then used to change the default format.

using System;
using Imsl.Math;

public class PrintMatrixFormatEx1
{

public static void Main(String[] args)
{
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double[,] a = {{0.0, 1.0, 2.0, 3.0},
{4.0, 5.0, 6.0, 7.0},
{8.0, 9.0, 8.0, 1.0},
{6.0, 3.0, 4.0, 3.0}};

// Construct a PrintMatrix object with a title
PrintMatrix p = new PrintMatrix("A Simple Matrix");

// Print the matrix
p.Print(a);

// Turn row and column labels off
PrintMatrixFormat mf = new PrintMatrixFormat();
mf.SetNoRowLabels();
mf.SetNoColumnLabels();

// Print the matrix
p.Print(mf, a);

}
}

Output

A Simple Matrix
0 1 2 3

0 0 1 2 3
1 4 5 6 7
2 8 9 8 1
3 6 3 4 3

A Simple Matrix

0 1 2 3
4 5 6 7
8 9 8 1
6 3 4 3

PrintMatrixFormat.ParsePosition Class

Summary

Tracks the current position during parsing.

public class Imsl.Math.PrintMatrixFormat.ParsePosition
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Property

Index
public int Index {get; set; }
Description

Current parse position.

Constructor

ParsePosition
public ParsePosition(int index)

Description

Creates a ParsePosition.

Parameter

index – The intial position.

PrintMatrix.MatrixType Enumeration

Summary

MatrixType indicates what part of the matrix is to be printed.

public enumeration Imsl.Math.PrintMatrix.MatrixType

Fields

Full
public Imsl.Math.PrintMatrix.MatrixType Full

Description

Indicates that the full matrix is to be printed.

LowerTriangular
public Imsl.Math.PrintMatrix.MatrixType LowerTriangular
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Description

Indicates that only the lower triangular elements of the matrix are to be printed. The
matrix still must be a rectangular matrix.

StrictLowerTriangular
public Imsl.Math.PrintMatrix.MatrixType StrictLowerTriangular

Description

Indicates that only the strict lower triangular elements of the matrix are to be printed.
The matrix still must be a rectangular matrix.

StrictUpperTriangular
public Imsl.Math.PrintMatrix.MatrixType StrictUpperTriangular

Description

Indicates that only the strict upper triangular elements of the matrix are to be printed.
The matrix still must be a rectangular matrix.

UpperTriangular
public Imsl.Math.PrintMatrix.MatrixType UpperTriangular

Description

Indicates that only the upper triangular elements of the matrix are to be printed. The
matrix still must be a rectangular matrix.

PrintMatrixFormat.FormatType Enumeration

Summary

FormatType specifies the argument to format.

public enumeration Imsl.Math.PrintMatrixFormat.FormatType

Fields

BeginColumnLabel
public Imsl.Math.PrintMatrixFormat.FormatType BeginColumnLabel
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Description

Indicates that the formatting string for ending a column label is to be returned.

BeginColumnLabels
public Imsl.Math.PrintMatrixFormat.FormatType BeginColumnLabels

Description

Indicates that the formatting string for beginning a column label row is to be returned.

BeginEntry
public Imsl.Math.PrintMatrixFormat.FormatType BeginEntry

Description

Indicates that the formatted string for beginning an entry is to be returned.

BeginMatrix
public Imsl.Math.PrintMatrixFormat.FormatType BeginMatrix

Description

Indicates that the formatting string for beginning a matrix is to be returned.

BeginRow
public Imsl.Math.PrintMatrixFormat.FormatType BeginRow

Description

Indicates that the formatting string for beginning a row is to be returned.

BeginRowLabel
public Imsl.Math.PrintMatrixFormat.FormatType BeginRowLabel

Description

Indicates that the formatting string for beginning a row label is to be returned.

ColumnLabel
public Imsl.Math.PrintMatrixFormat.FormatType ColumnLabel

Description

Indicates that the formatted string for a given column label is to be returned.

EndColumnLabel
public Imsl.Math.PrintMatrixFormat.FormatType EndColumnLabel
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Description

Indicates that the formatting string for ending a column label is to be returned.

EndColumnLabels
public Imsl.Math.PrintMatrixFormat.FormatType EndColumnLabels

Description

Indicates that the formatting string for ending a column label row is to be returned.

EndEntry
public Imsl.Math.PrintMatrixFormat.FormatType EndEntry

Description

Indicates that the formatted string for ending an entry is to be returned.

EndMatrix
public Imsl.Math.PrintMatrixFormat.FormatType EndMatrix

Description

Indicates that the formatting string for ending a matrix is to be returned.

EndRow
public Imsl.Math.PrintMatrixFormat.FormatType EndRow

Description

Indicates that the formatting string for ending a row is to be returned.

EndRowLabel
public Imsl.Math.PrintMatrixFormat.FormatType EndRowLabel

Description

Indicates that the formatting string for ending a row label is to be returned.

Entry
public Imsl.Math.PrintMatrixFormat.FormatType Entry

Description

Indicates that the formatted string for a given entry is to be returned.

RowLabel
public Imsl.Math.PrintMatrixFormat.FormatType RowLabel

Description

Indicates that the formatted string for a given row label is to be returned.
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PrintMatrixFormat.ColumnLabelType Enumeration

Summary

Type for column labels.

public enumeration Imsl.Math.PrintMatrixFormat.ColumnLabelType

Fields

LabelNone
public Imsl.Math.PrintMatrixFormat.ColumnLabelType LabelNone

Description

Specifies no column labels will be displayed.

LabelNumber
public Imsl.Math.PrintMatrixFormat.ColumnLabelType LabelNumber

Description

Specifies column labels will be an array of ints.

LabelString
public Imsl.Math.PrintMatrixFormat.ColumnLabelType LabelString

Description

Specifies column labels will be an array of Strings.

PrintMatrixFormat.RowLabelType Enumeration

Summary

Type for row labels.

public enumeration Imsl.Math.PrintMatrixFormat.RowLabelType

Fields

LabelNone
public Imsl.Math.PrintMatrixFormat.RowLabelType LabelNone
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Description

Specifies no row labels will be displayed.

LabelNumber
public Imsl.Math.PrintMatrixFormat.RowLabelType LabelNumber

Description

Specifies row labels will be an array of ints.
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Chapter 12: Basic Statistics

Types

class Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
class Covariances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
enumeration Covariances.MatrixType . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
class NormOneSample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
class NormTwoSample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
class Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
class Ranks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
enumeration Ranks.Tie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
class EmpiricalQuantiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
class TableOneWay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
class TableTwoWay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
class TableMultiWay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .310
class TableMultiWay.TableBalanced. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .316
class TableMultiWay.TableUnbalanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

Usage Notes

The methods/classes for the computations of basic statistics generally have relatively simple
arguments. Most of the methods/classes in this chapter allow for missing values. Missing value
codes can be set by using Double.NaN.

Several methods/classes in this chapter perform statistical tests. These methods in the classes
generally return a ”p-value” for the test. The p-value is between 0 and 1 and is the probability
of observing data that would yield a test statistic as extreme or more extreme under the
assumption of the null hypothesis. Hence, a small p-value is evidence for the rejection of the
null hypothesis.
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Summary Class

Summary

Computes basic univariate statistics.

public class Imsl.Stat.Summary

Constructor

Summary
public Summary()

Description

Constructs a new summary statistics object.

Methods

GetConfidenceMean
public double[] GetConfidenceMean(double p)

Description

Returns the confidence interval for the mean (assuming normality).

Parameter

p – A double which specifies the confidence level desired, usually 0.90, 0.95 or 0.99.

Returns

A double array of length 2 which contains the lower and upper confidence limits for the
mean.

GetConfidenceVariance
public double[] GetConfidenceVariance(double p)

Description

Returns the confidence interval for the variance (assuming normality).

Parameter

p – A double which specifies the confidence level desired, usually 0.90, 0.95 or 0.99.
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Returns

A double array of length 2 which contains the lower and upper confidence limits for the
variance.

GetKurtosis
public double GetKurtosis()

Description

Returns the kurtosis.

Returns

A double representing the kurtosis.

GetKurtosis
static public double GetKurtosis(double[] x)

Description

Returns the kurtosis of the given data set.

Parameter

x – A double array containing the data set whose kurtosis is to be found.

Returns

A double which specifies the kurtosis of the given data set.

GetKurtosis
static public double GetKurtosis(double[] x, double[] weight)

Description

Returns the kurtosis of the given data set and associated weights.

Parameters

x – A double array containing the data set whose kurtosis is to be found.

weight – A double array containing the weights associated with the data points x.

Returns

A double which specifies the kurtosis of the given data set.

GetMaximum
public double GetMaximum()

Description

Returns the maximum.
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Returns

A double representing the maximum.

GetMaximum
static public double GetMaximum(double[] x)

Description

Returns the maximum of the given data set.

Parameter

x – A double array containing the data set whose maximum is to be found.

Returns

A double which specifies the maximum of the given data set.

GetMean
public double GetMean()

Description

Returns the population mean.

Returns

A double representing the population mean.

GetMean
static public double GetMean(double[] x)

Description

Returns the mean of the given data set.

Parameter

x – A double array containing the data set whose mean is to be found.

Returns

A double which specifies the mean of the given data set.

GetMean
static public double GetMean(double[] x, double[] weight)

Description

Returns the mean of the given data set with associated weights.

Parameters

x – A double array containing the data set whose mean is to be found.

weight – A double array containing the weights associated with the data points x.
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Returns

A double which specifies the mean of the given data set.

GetMedian
static public double GetMedian(double[] x)

Description

Returns the median of the given data set.

Parameter

x – A double array containing the data set whose median is to be found.

Returns

A double which specifies the median of the given data set.

GetMinimum
public double GetMinimum()

Description

Returns the minimum.

Returns

A double representing the minimum.

GetMinimum
static public double GetMinimum(double[] x)

Description

Returns the minimum of the given data set.

Parameter

x – A double array containing the data set whose minimum is to be found.

Returns

A double which specifies the minimum of the given data set.

GetMode
static public double GetMode(double[] x)

Description

Returns the mode of the given data set.

Ties are broken at random.

Parameter

x – A double array containing the data set whose mode is to be found.
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Returns

A double which specifies the mode of the given data set.

GetSampleStandardDeviation
public double GetSampleStandardDeviation()

Description

Returns the sample standard deviation.

Returns

A double representing the sample standard deviation.

GetSampleStandardDeviation
static public double GetSampleStandardDeviation(double[] x)

Description

Returns the sample standard deviation of the given data set.

Parameter

x – A double array containing the data set whose sample standard deviation is to be
found.

Returns

A double which specifies the sample standard deviation of the given data set.

GetSampleStandardDeviation
static public double GetSampleStandardDeviation(double[] x, double[] weight)

Description

Returns the sample standard deviation of the given data set and associated weights.

Parameters

x – A double array containing the data set whose sample standard deviation is to be
found.

weight – A double array containing the weights associated with the data points x.

Returns

A double which specifies the sample standard deviation of the given data set.

GetSampleVariance
public double GetSampleVariance()

Description

Returns the sample variance.
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Returns

A double representing the sample variance.

GetSampleVariance
static public double GetSampleVariance(double[] x)

Description

Returns the sample variance of the given data set.

Parameter

x – A double array containing the data set whose sample variance is to be found.

Returns

A double which specifies the sample variance of the given data set.

GetSampleVariance
static public double GetSampleVariance(double[] x, double[] weight)

Description

Returns the sample variance of the given data set and associated weights.

Parameters

x – A double array containing the data set whose sample variance is to be found.

weight – A double array containing the weights associated with the data points x.

Returns

A double which specifies the sample variance of the given data set.

GetSkewness
public double GetSkewness()

Description

Returns the skewness.

Returns

A double representing the skewness.

GetSkewness
static public double GetSkewness(double[] x)

Description

Returns the skewness of the given data set.

Parameter

x – A double array containing the data set whose skewness is to be found.
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Returns

A double which specifies the skewness of the given data set.

GetSkewness
static public double GetSkewness(double[] x, double[] weight)

Description

Returns the skewness of the given data set and associated weights.

Parameters

x – A double array containing the data set whose skewness is to be found.

weight – A double array containing the weights associated with the data points x.

Returns

A double which specifies the skewness of the given data set.

GetStandardDeviation
public double GetStandardDeviation()

Description

Returns the population standard deviation.

Returns

A double representing the population standard deviation.

GetStandardDeviation
static public double GetStandardDeviation(double[] x)

Description

Returns the population standard deviation of the given data set.

Parameter

x – A double array containing the data set whose standard deviation is to be found.

Returns

A double which specifies the population standard deviation of the given data set.

GetStandardDeviation
static public double GetStandardDeviation(double[] x, double[] weight)

Description

Returns the population standard deviation of the given data set and associated weights.

Parameters

x – A double array containing the data set whose standard deviation is to be found.

weight – A double array containing the weights associated with the data points x.
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Returns

A double which specifies the population standard deviation of the given data set.

GetVariance
public double GetVariance()

Description

Returns the population variance.

Returns

A double representing the population variance.

GetVariance
static public double GetVariance(double[] x)

Description

Returns the population variance of the given data set.

Parameter

x – A double array containing the data set whose population variance is to be found.

Returns

A double which specifies the population variance of the given data set.

GetVariance
static public double GetVariance(double[] x, double[] weight)

Description

Returns the population variance of the given data set and associated weights.

Parameters

x – A double array containing the data set whose population variance is to be found.

weight – A double array containing the weights associated with the data points x.

Returns

A double which specifies the population variance of the given data set.

Update
public void Update(double x)

Description

Adds an observation to the Summary object.
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Parameter

x – A double which specifies the data observation to be added.

Update
public void Update(double x, double weight)

Description

Adds an observation and associated weight to the Summary object.

Parameters

x – A double which specifies the data observation to be added.

weight – A double which specifies the weight associated with the observation.

Update
public void Update(double[] x)

Description

Adds a set of observations to the Summary object.

Parameter

x – A double array of data observations to be added.

Update
public void Update(double[] x, double[] weight)

Description

Adds a set of observations and associated weights to the Summary object.

Parameters

x – A double array of data observations to be added.

weight – A double array of weights associated with the observations.

Description

For the data in x, Summary computes the sample mean, variance, minimum, maximum, and
other basic statistics. It also computes confidence intervals for the mean and variance if the
sample is assumed to be from a normal population.

Missing values, that is, values equal to NaN (not a number), are excluded from the
computations. The sum of the weights is used only in computing the mean (of course, then the
weighted mean is used in computing the central moments). The definitions of some of the
statistics are given below in terms of a single variable x. The i-th datum is xi, with
corresponding weight wi. If weights are not specified, the wi are identically one. The
summation in each case is over the set of valid observations, based on the presence of missing
values in the data.
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Number of nonmissing observations,

n =
∑

fi

Mean,

x̄w =
∑
fiwixi∑
fiwi

Variance,

s2w =
∑
fiwi (xi − x̄w)2

n− 1

Skewness,

∑
fiwi (xi − x̄w)3 /n

[
∑
fiwi (xi − x̄w)2 /n]3/2

Excess or Kurtosis,

∑
fiwi (xi − x̄w)4 /n

[
∑
fiwi (xi − x̄w)2 /n]2

− 3

Minimum,

xmin = min(xi)

Maximum,

xmax = max(xi)

Example: Summary Statistics

Summary statistics for a small data set are computed.
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using System;
using Imsl.Stat;

public class SummaryEx1
{

internal static readonly double[] data1 =
new double[]{ 3, 6.4, 2, 1.6, - 8, 12,

- 7, 6.4, 22, 1, 0, - 3.2};

public static void Main(String[] args)
{

Summary summary = new Summary();
summary.Update(data1);

Console.Out.WriteLine
("The minimum is " + summary.GetMinimum());

Console.Out.WriteLine();

Console.Out.WriteLine
("The maximum is " + summary.GetMaximum());

Console.Out.WriteLine();

Console.Out.WriteLine("The mean is " + summary.GetMean());
Console.Out.WriteLine();

Console.Out.WriteLine
("The variance is " + summary.GetVariance());

Console.Out.WriteLine();

Console.Out.WriteLine
("The sample variance is " + summary.GetSampleVariance());

Console.Out.WriteLine();

Console.Out.WriteLine("The standard deviation is " +
summary.GetStandardDeviation());

Console.Out.WriteLine();

Console.Out.WriteLine
("The skewness is " + summary.GetSkewness());

Console.Out.WriteLine();

Console.Out.WriteLine
("The kurtosis is " + summary.GetKurtosis());

Console.Out.WriteLine();

double[] confmn = new double[2];
confmn = summary.GetConfidenceMean(0.95);
Console.Out.WriteLine("The confidence Mean is {" + confmn[0] +

", " + confmn[1] + "}");
Console.Out.WriteLine();

double[] confvr = new double[2];
confvr = summary.GetConfidenceVariance(0.95);
Console.Out.WriteLine("The confidence Variance is {" +

confvr[0] + ", " + confvr[1] + "}");
}
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}

Output

The minimum is -8

The maximum is 22

The mean is 3.01666666666667

The variance is 61.7097222222222

The sample variance is 67.319696969697

The standard deviation is 7.85555359107315

The skewness is 0.863222413428583

The kurtosis is 0.567706048385121

The confidence Mean is {-2.19645146860124, 8.22978480193457}

The confidence Variance is {33.7826187272065, 194.068533277244}

Covariances Class

Summary

Computes the sample variance-covariance or correlation matrix.

public class Imsl.Stat.Covariances

Properties

MissingValueMethod
public int MissingValueMethod {get; set; }
Description

Sets the method used to exclude missing values in x from the computations.

The methods are as follows:
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MissingValueMethod Action
0 The exclusion is listwise, default. (The entire row of x is

excluded if any of the values of the row is equal to the missing
value code.)

1 Raw crossproducts are computed from all valid pairs and
means, and variances are computed from all valid data on the
individual variables. Corrected crossproducts, covariances,
and correlations are computed using these quantities.

2 Raw crossproducts, means, and variances are computed as in
the case of MissingValueMethod = 1. However, corrected
crossproducts and covariances are computed only from the
valid pairs of data. Correlations are computed using these
covariances and the variances from all valid data.

3 Raw crossproducts, means, variances, and covariances are
computed as in the case of MissingValueMethod = 2. Cor-
relations are computed using these covariances, but the vari-
ances used are computed from the valid pairs of data.

Double.NaN is interpreted as the missing value code.

NumRowMissing
public int NumRowMissing {get; }
Description

Returns the total number of observations that contain any missing values (Double.NaN).

Observations
public int Observations {get; }
Description

Returns the sum of the frequencies.

If MissingValueMethod = 0, observations with missing values are not included.
Otherwise, all observations are included except for observations with missing values for
the weight or the frequency.

SumOfWeights
public double SumOfWeights {get; }
Description

Returns the sum of the weights of all observations.

If MissingValueMethod = 0, observations with missing values are not included.
Otherwise, all observations are included except for observations with mssing values for the
weight or the frequency.
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Constructor

Covariances
public Covariances(double[,] x)

Description

Constructor for Covariances.

Parameter

x – A double matrix containing the data.

System.ArgumentException id is thrown if x.GetLength(0), and x.GetLength(1) are
equal to 0

Methods

Compute
public double[,] Compute(Imsl.Stat.Covariances.MatrixType matrixType)

Description

Computes the matrix.

Parameter

matrixType – A Covariances.MatrixType indicating the type of matrix to
compute.

Returns

A double matrix containing computed result.

Imsl.Stat.TooManyObsDeletedException id is thrown if more observations have been
deleted than were originally entered
i.e. the sum of frequencies has become negative

Imsl.Stat.MoreObsDelThanEnteredException id is thrown if more observations are
being deleted from ”variance-covariance” matrix than were originally entered.
The corresponding row,column of the incidence matrix is less than zero.

Imsl.Stat.DiffObsDeletedException id is thrown if different observations are being
deleted than were originally entered

GetIncidenceMatrix
public int[,] GetIncidenceMatrix()
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Description

Returns the incidence matrix.

If MissingValueMethod is 0, incidence matrix is 1 x 1 and contains the number of valid
observations; otherwise, incidence matrix is x.GetLength(1) x x.GetLength(1) and
contains the number of pairs of valid observations used in calculating the crossproducts
for covariance.

Returns

An int matrix containing the incidence matrix.

GetMeans
public double[] GetMeans()

Description

Returns the means of the variables in x.

The components of the array correspond to the columns of x.

Returns

A double array containing the means of the variables in x.

SetFrequencies
public void SetFrequencies(double[] frequencies)

Description

The frequency for each observation.

Default: frequencies[] = 1.

Parameter

frequencies – A double array of size x.GetLength(0) containing the frequency for
each observation.

SetWeights
public void SetWeights(double[] weights)

Description

Sets the weight for each observation.

Default: weights[] = 1.

Parameter

weights – A double array of size x.GetLength(0) containing the weight for each
observation.
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Description

Class Covariances computes estimates of correlations, covariances, or sums of squares and
crossproducts for a data matrix x. Weights and frequencies are allowed but not required.

The means, (corrected) sums of squares, and (corrected) sums of crossproducts are computed
using the method of provisional means. Let xki denote the mean based on i observations for the
k-th variable, fi denote the frequency of the i-th observation, wi denote the weight of the i-th
observations, and cjki denote the sum of crossproducts (or sum of squares if j = k) based on i
observations. Then the method of provisional means finds new means and sums of
crossproducts as shown in the example below.

The means and crossproducts are initialized as follows:

xk0 = 0.0 for k = 1, . . . , p

cjk0 = 0.0 for j, k = 1, . . . , p

where p denotes the number of variables. Letting xk,i+1 denote the k-th variable of observation
i + 1, each new observation leads to the following updates for xki and cjki using the update
constant ri+1:

ri+1 =
fi+1wi+1

i+1∑
l=1

flwl

x̄k, i+1 = x̄ki + (xk, i+1 − x̄ki) ri+1

cjk, i+1 = cjki + fi+1wi+1 (xj, i+1 − x̄ji) (xk, i+1 − x̄ki) (1− ri+1)

The default value for weights and frequencies is 1. Means and variances are computed based on
the valid data for each variable or, if required, based on all the valid data for each pair of
variables.

Example: Covariances

This example illustrates the use of Covariances class for the first 50 observations in the Fisher
iris data (Fisher 1936). Note that the first variable is constant over the first 50 observations.
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using System;
using Imsl.Stat;
using PrintMatrix = Imsl.Math.PrintMatrix;
using PrintMatrixFormat = Imsl.Math.PrintMatrixFormat;

public class CovariancesEx1
{

public static void Main(String[] args)
{

double[,] x = {{1.0, 5.1, 3.5, 1.4, .2},
{1.0, 4.9, 3.0, 1.4, .2},
{1.0, 4.7, 3.2, 1.3, .2},
{1.0, 4.6, 3.1, 1.5, .2},
{1.0, 5.0, 3.6, 1.4, .2},
{1.0, 5.4, 3.9, 1.7, .4},
{1.0, 4.6, 3.4, 1.4, .3},
{1.0, 5.0, 3.4, 1.5, .2},
{1.0, 4.4, 2.9, 1.4, .2},
{1.0, 4.9, 3.1, 1.5, .1},
{1.0, 5.4, 3.7, 1.5, .2},
{1.0, 4.8, 3.4, 1.6, .2},
{1.0, 4.8, 3.0, 1.4, .1},
{1.0, 4.3, 3.0, 1.1, .1},
{1.0, 5.8, 4.0, 1.2, .2},
{1.0, 5.7, 4.4, 1.5, .4},
{1.0, 5.4, 3.9, 1.3, .4},
{1.0, 5.1, 3.5, 1.4, .3},
{1.0, 5.7, 3.8, 1.7, .3},
{1.0, 5.1, 3.8, 1.5, .3},
{1.0, 5.4, 3.4, 1.7, .2},
{1.0, 5.1, 3.7, 1.5, .4},
{1.0, 4.6, 3.6, 1.0, .2},
{1.0, 5.1, 3.3, 1.7, .5},
{1.0, 4.8, 3.4, 1.9, .2},
{1.0, 5.0, 3.0, 1.6, .2},
{1.0, 5.0, 3.4, 1.6, .4},
{1.0, 5.2, 3.5, 1.5, .2},
{1.0, 5.2, 3.4, 1.4, .2},
{1.0, 4.7, 3.2, 1.6, .2},
{1.0, 4.8, 3.1, 1.6, .2},
{1.0, 5.4, 3.4, 1.5, .4},
{1.0, 5.2, 4.1, 1.5, .1},
{1.0, 5.5, 4.2, 1.4, .2},
{1.0, 4.9, 3.1, 1.5, .2},
{1.0, 5.0, 3.2, 1.2, .2},
{1.0, 5.5, 3.5, 1.3, .2},
{1.0, 4.9, 3.6, 1.4, .1},
{1.0, 4.4, 3.0, 1.3, .2},
{1.0, 5.1, 3.4, 1.5, .2},
{1.0, 5.0, 3.5, 1.3, .3},
{1.0, 4.5, 2.3, 1.3, .3},
{1.0, 4.4, 3.2, 1.3, .2},
{1.0, 5.0, 3.5, 1.6, .6},
{1.0, 5.1, 3.8, 1.9, .4},
{1.0, 4.8, 3.0, 1.4, .3},
{1.0, 5.1, 3.8, 1.6, .2},
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{1.0, 4.6, 3.2, 1.4, .2},
{1.0, 5.3, 3.7, 1.5, .2},
{1.0, 5.0, 3.3, 1.4, .2}};

Covariances co = new Covariances(x);

PrintMatrix pm =
new PrintMatrix("Sample Variances-covariances Matrix");

PrintMatrixFormat pmf = new PrintMatrixFormat();
pmf.NumberFormat = "0.0000";
pm.SetMatrixType(PrintMatrix.MatrixType.UpperTriangular);

pm.Print(pmf,
co.Compute(Covariances.MatrixType.VarianceCovariance));

}
}

Output

Sample Variances-covariances Matrix
0 1 2 3 4

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.1242 0.0992 0.0164 0.0103
2 0.1437 0.0117 0.0093
3 0.0302 0.0061
4 0.0111

Covariances.MatrixType Enumeration

Summary

Specifies the type of matrix to be computed.

public enumeration Imsl.Stat.Covariances.MatrixType

Fields

CorrectedSSCP
public Imsl.Stat.Covariances.MatrixType CorrectedSSCP

Description

Indicates corrected sums of squares and crossproducts matrix.

Correlation
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public Imsl.Stat.Covariances.MatrixType Correlation

Description

Indicates correlation matrix.

StdevCorrelation
public Imsl.Stat.Covariances.MatrixType StdevCorrelation

Description

Indicates correlation matrix except for the diagonal elements which are the standard
deviations.

VarianceCovariance
public Imsl.Stat.Covariances.MatrixType VarianceCovariance

Description

Indicates variance-covariance matrix.

NormOneSample Class

Summary

Computes statistics for mean and variance inferences using a sample from a normal population.

public class Imsl.Stat.NormOneSample

Properties

ChiSquaredTest
public double ChiSquaredTest {get; }
Description

Returns the test statistic associated with the chi-squared test for variances.

The chi-squared test is a test of the hypothesis ω2 = ω2
0 where ω2

0 is the null hypothesis
value as described in ChiSquaredTestNull.

ChiSquaredTestDF
public int ChiSquaredTestDF {get; }
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Description

Returns the degrees of freedom associated with the chi-squared test for variances.

The chi-squared test is a test of the hypothesis ω2 = ω2
0 where ω2

0 is the null hypothesis
value as described in ChiSquaredTestNull.

ChiSquaredTestNull
public double ChiSquaredTestNull {get; set; }
Description

The null hypothesis value for the chi-squared test.

The default is 1.0.

ChiSquaredTestP
public double ChiSquaredTestP {get; }
Description

Returns the probability of a larger chi-squared associated with the chi-squared test for
variances.

The chi-squared test is a test of the hypothesis ω2 = ω2
0 where ω2

0 is the null hypothesis
value as described in ChiSquaredTestNull.

ConfidenceMean
public double ConfidenceMean {get; set; }
Description

The confidence level (in percent) for a two-sided interval estimate of the mean.

ConfidenceMean must be between 0.0 and 1.0 and is often 0.90, 0.95 or 0.99. For a
one-sided confidence interval with confidence level c (at least 50 percent), set
ConfidenceMean = 1.0 - 2.0 * (1.0 - c). If the confidence mean is not specified, a
95-percent confidence interval is computed.

ConfidenceVariance
public double ConfidenceVariance {get; set; }
Description

The confidence level (in percent) for two-sided interval estimate of the variances.

ConfidenceVariance must be between 0.0 and 1.0 and is often 0.90, 0.95 or 0.99. For a
one-sided confidence interval with confidence level c (at least 50 percent), set
ConfidenceVariance = 1.0 - 2.0 * (1.0 - c). If the confidence mean is not specified, a
95-percent confidence interval is computed.

LowerCIMean
public double LowerCIMean {get; }
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Description

Returns the lower confidence limit for the mean.

LowerCIVariance
public double LowerCIVariance {get; }
Description

Returns the lower confidence limits for the variance.

Mean
public double Mean {get; }
Description

Returns the mean of the sample.

StdDev
public double StdDev {get; }
Description

Returns the standard deviation of the sample.

TTest
public double TTest {get; }
Description

Returns the test statistic associated with the t test.

The t test is a test, against a two-sided alternative, of the null hypothesis value described
in TTestNull.

TTestDF
public int TTestDF {get; }
Description

Returns the degrees of freedom associated with the t test for the mean.

The t test is a test, against a two-sided alternative, of the null hypothesis value described
in TTestNull.

TTestNull
public double TTestNull {get; set; }
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Description

Sets the Null hypothesis value for t test for the mean.

TTestNull = 0.0 by default.

TTestP
public double TTestP {get; }
Description

Returns the probability associated with the t test of a larger t in absolute value.

The t test is a test, against a two-sided alternative, of the null hypothesis value described
in TTestNull.

UpperCIMean
public double UpperCIMean {get; }
Description

Returns the upper confidence limit for the mean.

UpperCIVariance
public double UpperCIVariance {get; }
Description

Returns the upper confidence limits for the variance.

Constructor

NormOneSample
public NormOneSample(double[] x)

Description

Constructor to compute statistics for mean and variance inferences using a sample from a
normal population.

Parameter

x – A one-dimension double array containing the observations.

Description

The statistics for mean and variance inferences are computed by using a sample from a normal
population, including methods for the confidence intervals and tests for both mean and
variance. The definitions of mean and variance are given below. The summation in each case is
over the set of valid observations, based on the presence of missing values in the data.

Property Mean, returns value

Basic Statistics NormOneSample Class • 267



x̄ =
∑
xi

n

∆d
sZt

Property StdDev, returns value

s =

√∑
(xi − x̄)2

n− 1

The property TTest returns the t statistic for the two-sided test concerning the population
mean which is given by

t =
x̄− µ0

s/
√
n

where s and x̄ are given above. This quantity has a T distribution with n - 1 degrees of
freedom. The property TTestDF returns the degree of freedom.

Property ChiSquaredTest returns the chi-squared statistic for the two-sided test concerning
the population variance which is given by

χ2 =
(n− 1) s2

σ2
0

where s is given above. This quantity has a χ2 distribution with n - 1 degrees of freedom.
Property ChiSquaredTestDF returns the degrees of freedom.

Example 1: NormOneSample

This example uses data from Devore (1982, p335), which is based on data published in the
Journal of Materials. There are 15 observations. The hypothesis H0 : µ = 20.0 is tested. The
extremely large t value and the correspondingly small p-value provide strong evidence to reject
the null hypothesis.

using System;
using Imsl.Stat;

public class NormOneSampleEx1
{

public static void Main(String[] args)
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{

double mean, stdev, lomean, upmean;
int df;
double t, pvalue;
double[] x = new double[]{ 26.7, 25.8, 24.0, 24.9, 26.4,

25.9, 24.4, 21.7, 24.1, 25.9,
27.3, 26.9, 27.3, 24.8, 23.6};

/* Perform Analysis*/

NormOneSample n1samp = new NormOneSample(x);

mean = n1samp.Mean;
stdev = n1samp.StdDev;
lomean = n1samp.LowerCIMean;
upmean = n1samp.UpperCIMean;
n1samp.TTestNull = 20.0;
df = n1samp.TTestDF;
t = n1samp.TTest;
pvalue = n1samp.TTestP;

/* Print results */

Console.Out.WriteLine("Sample Mean = " + mean);
Console.Out.WriteLine("Sample Standard Deviation = " + stdev);
Console.Out.WriteLine

("95% CI for the mean is " + lomean + " " + upmean);
Console.Out.WriteLine("T Test results");
Console.Out.WriteLine("df = " + df);
Console.Out.WriteLine("t = " + t);
Console.Out.WriteLine("pvalue = " + pvalue);
Console.Out.WriteLine("");

/* CI variance */
double ciLoVar = n1samp.LowerCIVariance;
double ciUpVar = n1samp.UpperCIVariance;
Console.Out.WriteLine

("CI variance is " + ciLoVar + " " + ciUpVar);
/*chi-squared test */
df = n1samp.ChiSquaredTestDF;
t = n1samp.ChiSquaredTest;
pvalue = n1samp.ChiSquaredTestP;
Console.Out.WriteLine("Chi-squared Test results");
Console.Out.WriteLine("Chi-squared df = " + df);
Console.Out.WriteLine("Chi-squared t = " + t);
Console.Out.WriteLine("Chi-squared pvalue = " + pvalue);

}
}
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Output

Sample Mean = 25.3133333333333
Sample Standard Deviation = 1.57881812336528
95% CI for the mean is 24.4390129997097 26.187653666957
T Test results
df = 14
t = 13.0340861992294
pvalue = 3.21471738118362E-09

CI variance is 1.33609260499922 6.19986346723949
Chi-squared Test results
Chi-squared df = 14
Chi-squared t = 34.8973333333333
Chi-squared pvalue = 0.0015223176141822

NormTwoSample Class

Summary

Computes statistics for mean and variance inferences using samples from two normal
populations.

public class Imsl.Stat.NormTwoSample

Properties

ChiSquaredTest
public double ChiSquaredTest {get; }
Description

The test statistic associated with the chi-squared test for common, or pooled, variances.

The chi-squared test is a test of the hypothesis ω2 = ω2
0 where ω2

0 is the null hypothesis
value as described in ChiSquaredTestNull.

ChiSquaredTestDF
public int ChiSquaredTestDF {get; }
Description

The degrees of freedom associated with the chi-squared test for the common, or pooled,
variances.

The chi-squared test is a test of the hypothesis ω2 = ω2
0 where ω2

0 is the null hypothesis
value as described in ChiSquaredTestNull.

270 • NormTwoSample Class IMSL C# Numerical Library



ChiSquaredTestNull
public double ChiSquaredTestNull {get; set; }
Description

The null hypothesis value for the chi-squared test.

The default is 1.0.

ChiSquaredTestP
public double ChiSquaredTestP {get; }
Description

The probability of a larger chi-squared associated with the chi-squared test for common,
or pooled, variances.

The chi-squared test is a test of the hypothesis ω2 = ω2
0 where ω2

0 is the null hypothesis
value as described in ChiSquaredTestNull.

ConfidenceMean
public double ConfidenceMean {get; set; }
Description

The confidence level (in percent) for a two-sided interval estimate of the mean of x - the
mean of y, in percent.

ConfidenceMean must be between 0.0 and 1.0 and is often 0.90, 0.95 or 0.99. For a
one-sided confidence interval with confidence level c (at least 50 percent), set
ConfidenceMean = 1.0− 2.0(1.0− c). If the confidence mean is not specified, a 95-percent
confidence interval is computed, ConfidenceMean = .95.

ConfidenceVariance
public double ConfidenceVariance {get; set; }
Description

The confidence level (in percent) for two-sided interval estimate of the variances.

Under the assumption of equal variances, the pooled variance is used to obtain a
two-sided ConfidenceVariance percent confidence interval for the common variance with
Imsl.Stat.NormTwoSample.LowerCICommonVariance (p. 272) or
Imsl.Stat.NormTwoSample.UpperCICommonVariance (p. 274). Without making the
assumption of equal variances, UnequalVariances (p. 274), the ratio of the variances is of
interest. A two-sided ConfidenceVariance percent confidence interval for the ratio of the
variance of the first sample to that of the second sample is given by the
LowerCIRatioVariance and UpperCIRatioVariance. See UnequalVariances (p. 274) and
UpperCIRatioVariance (p. 275). The confidence intervals are symmetric in probability.
ConfidenceVariance must be between 0.0 and 1.0 and is often 0.90, 0.95 or 0.99. The
default is 0.95.
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DiffMean
public double DiffMean {get; }
Description

The difference of means for the two samples.

value = mean of x - mean of y

FTest
public double FTest {get; }
Description

The F test value of the F test for equality of variances.

FTestDFdenominator
public int FTestDFdenominator {get; }
Description

The denominator degrees of freedom of the F test for equality of variances.

FTestDFnumerator
public int FTestDFnumerator {get; }
Description

The numerator degrees of freedom of the F test for equality of variances.

FTestP
public double FTestP {get; }
Description

The probability of a larger F in absolute value for the F test for equality of variances,
assuming equal variances.

LowerCICommonVariance
public double LowerCICommonVariance {get; }
Description

The lower confidence limits for the common, or pooled, variance.

LowerCIDiff
public double LowerCIDiff {get; }

272 • NormTwoSample Class IMSL C# Numerical Library



Description

The lower confidence limit for the mean of the first population minus the mean of the
second for equal or unequal variances.

If UnequalVariances (p. 274) is true then the lower confidence limit for unequal variances
will be returned.

LowerCIRatioVariance
public double LowerCIRatioVariance {get; }
Description

The approximate lower confidence limit for the ratio of the variance of the first
population to the second.

MeanX
public double MeanX {get; }
Description

The mean of the first sample, x.

MeanY
public double MeanY {get; }
Description

The mean of the second sample, y.

PooledVariance
public double PooledVariance {get; }
Description

The Pooled variance for the two samples.

StdDevX
public double StdDevX {get; }
Description

The standard deviation of the first sample, x.

StdDevY
public double StdDevY {get; }
Description

The standard deviation of the second sample, y.

TTest
public double TTest {get; }
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Description

The test statistic for the Satterthwaite’s approximation for equal or unequal variances.

If UnequalVariances (p. 274) is true then the test statistic for unequal variances will be
returned.

TTestDF
public double TTestDF {get; }
Description

The degrees of freedom for the Satterthwaite’s approximation for t-test for either equal or
unequal variances.

If UnequalVariances (p. 274) is true then the degrees of freedom for unequal variances
will be returned.

TTestNull
public double TTestNull {get; set; }
Description

The Null hypothesis value for t-test for the mean.

TTestNull = 0.0 by default.

TTestP
public double TTestP {get; }
Description

The approximate probability of a larger t for the Satterthwaite’s approximation for equal
or unequal variances.

If UnequalVariances (p. 274) is true then the approximate probability of a larger t for
unequal variances will be returned.

UnequalVariances
public bool UnequalVariances {get; set; }
Description

Specifies whether to return statistics based on equal or unequal variances.

A value of true will cause statistics for unequal variances to be returned. A value of
false will cause statistics for equal variances to be returned. The default is to return
statistics for equal variances.

UpperCICommonVariance
public double UpperCICommonVariance {get; }
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Description

The upper confidence limits for the common, or pooled, variance.

UpperCIDiff
public double UpperCIDiff {get; }
Description

The upper confidence limit for the mean of the first population minus the mean of the
second for equal or unequal variances.

If UnequalVariances (p. 274) is true then the upper confidence limit for unequal
variances will be returned.

UpperCIRatioVariance
public double UpperCIRatioVariance {get; }
Description

The approximate upper confidence limit for the ratio of the variance of the first
population to the second.

Constructor

NormTwoSample
public NormTwoSample(double[] x, double[] y)

Description

Constructor to compute statistics for mean and variance inferences using samples from
two normal populations.

Parameters

x – A double array containing the first sample.

y – A double array containing the second sample.

Methods

DowndateX
public void DowndateX(double[] x)

Description

Removes the observations in x from the first sample.
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Parameter

x – A double array containing the values to remove from the first sample.

DowndateY
public void DowndateY(double[] y)

Description

Removes the observations in y from the second sample.

Parameter

y – A double array containing the values to remove from the second sample.

Update
public void Update(double[] x, double[] y)

Description

Concatenates samples x and y to the samples provided in the constructor.

Parameters

x – A double array containing updates to the first sample.

y – A double array containing updates to the second sample.

UpdateX
public void UpdateX(double[] x)

Description

Concatenates the values in x to the first sample provided in the constructor.

Parameter

x – A double array containing updates for the first sample.

UpdateY
public void UpdateY(double[] y)

Description

Concatenates the values in y to the second sample provided in the constructor.

Parameter

y – A double array containing updates for the second sample.
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Description

Class NormTwoSample computes statistics for making inferences about the means and variances
of two normal populations, using independent samples in x1 and x2. For inferences concerning
parameters of a single normal population, see class NormOneSample.

Let µ1 and σ2
1 be the mean and variance of the first population, and let µ2 and σ2

2 be the
corresponding quantities of the second population. The function contains test confidence
intervals for difference in means, equality of variances, and the pooled variance.

The means and variances for the two samples are as follows:

x̄1 =
(∑

x1i/n1

)
, x̄2 =

(∑
x2i

)
/n2

and

s21 =
∑

(x1i − x̄1)
2
/ (n1 − 1) , s22 =

∑
(x2i − x̄2)

2
/ (n2 − 1)

Inferences about the Means

The test that the difference in means equals a certain value, for example, µ0, depends on
whether or not the variances of the two populations can be considered equal. If the variances
are equal and meanHypothesis equals 0, the test is the two-sample t-test, which is equivalent to
an analysis-of-variance test. The pooled variance for the difference-in-means test is as follows:

s2 =
(n1 − 1) s1 + (n2 − 1) s2

n1 + n2 − 2

The t statistic is as follows:

t =
x̄1 − x̄2 − µ0

s
√

(1/n1) + (1/n2)

Also, the confidence interval for the difference in means can be obtained by first assigning the
unequal variances flag to false. This can be done by setting the UnequalVariances property.
The confidence interval can then be obtained by the LowerCIDiff and UpperCIDiff properties.

If the population variances are not equal, the ordinary t statistic does not have a t distribution
and several approximate tests for the equality of means have been proposed. (See, for example,
Anderson and Bancroft 1952, and Kendall and Stuart 1979.) One of the earliest tests devised
for this situation is the Fisher-Behrens test, based on Fisher’s concept of fiducial probability. A
procedure used in the TTest, LowerCIDiff and UpperCIDiff properties assuming unequal
variances are specified is the Satterthwaite’s procedure, as suggested by H.F. Smith and
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modified by F.E. Satterthwaite (Anderson and Bancroft 1952, p. 83). Set UnequalVariances
true to obtain results assuming unequal variances.

The test statistic is

t′ = (x̄1 − x̄2 − µ0) /sd

where

sd =
√

(s21/n1) + (s22/n2)

Under the null hypothesis of µ1 − µ2 = c, this quantity has an approximate t distribution with
degrees of freedom df, given by the following equation:

df =
s4d

(s2
1/n1)2

n1−1 + (s2
2/n2)2

n2−1

Inferences about Variances

The F statistic for testing the equality of variances is given by F = s2max/s
2
min, where s2max is

the larger of s21 and s22. If the variances are equal, this quantity has an F distribution with
n1 − 1 and n2 − 1 degrees of freedom.

It is generally not recommended that the results of the F test be used to decide whether to use
the regular t-test or the modified t′ on a single set of data. The modified t′ (Satterthwaite’s
procedure) is the more conservative approach to use if there is doubt about the equality of the
variances.

Example 1: NormTwoSample

This example taken from Conover and Iman(1983, p294), involves scores on arithmetic tests of
two grade-school classes.

Scores for Standard Group Scores for Experimental Group
72 111
75 118
77 128
80 138
104 140
110 150
125 163

164
169

278 • NormTwoSample Class IMSL C# Numerical Library



The question is whether a group taught by an experimental method has a higher mean score.
The difference in means and the t test are ouput. The variances of the two populations are
assumed to be equal. It is seen from the output that there is strong reason to believe that the
two means are different (t value of -4.804). Since the lower 97.5-percent confidence limit does
not include 0, the null hypothesis is that µ1 ≤ µ2 would be rejected at the 0.05 significance
level. (The closeness of the values of the sample variances provides some qualitative
substantiation of the assumption of equal variances.)

using System;
using Imsl.Stat;

public class NormTwoSampleEx1
{

public static void Main(String[] args)
{

double mean;
double[] x1 =

new double[]{72.0, 75.0, 77.0, 80.0, 104.0, 110.0, 125.0};
double[] x2 =

new double[]{ 111.0, 118.0, 128.0, 138.0, 140.0,
150.0, 163.0, 164.0, 169.0};

/* Perform Analysis for one sample x2*/
NormTwoSample n2samp = new NormTwoSample(x1, x2);
mean = n2samp.DiffMean;

Console.Out.WriteLine("x1mean-x2mean = " + mean);
Console.Out.WriteLine("X1 mean =" + n2samp.MeanX);
Console.Out.WriteLine("X2 mean =" + n2samp.MeanY);

double pVar = n2samp.PooledVariance;
Console.Out.WriteLine("pooledVar = " + pVar);

double loCI = n2samp.LowerCIDiff;
double upCI = n2samp.UpperCIDiff;
Console.Out.WriteLine

("95% CI for the mean is " + loCI + " " + upCI);

loCI = n2samp.LowerCIDiff;
upCI = n2samp.UpperCIDiff;
Console.Out.WriteLine

("95% CI for the ueq mean is " + loCI + " " + upCI);

Console.Out.WriteLine("T Test Results");
double tDF = n2samp.TTestDF;
double tT = n2samp.TTest;
double tPval = n2samp.TTestP;
Console.Out.WriteLine("T default = " + tDF);
Console.Out.WriteLine("t = " + tT);
Console.Out.WriteLine("p-value = " + tPval);

double stdevX = n2samp.StdDevX;
double stdevY = n2samp.StdDevY;
Console.Out.WriteLine("stdev x1 =" + stdevX);
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Console.Out.WriteLine("stdev x2 =" + stdevY);
}

}

Output

x1mean-x2mean = -50.4761904761905
X1 mean =91.8571428571428
X2 mean =142.333333333333
pooledVar = 434.632653061224
95% CI for the mean is -73.0100196252951 -27.9423613270859
95% CI for the ueq mean is -73.0100196252951 -27.9423613270859
T Test Results
T default = 14
t = -4.80436150471634
p-value = 0.000280258365677279
stdev x1 =20.8760514420118
stdev x2 =20.8266655996585

Sort Class

Summary

A collection of sorting functions.

public class Imsl.Stat.Sort

Constructor

Sort
public Sort()

Description

Initializes a new instance of the Imsl.Stat.Sort (p. 280) class.

Methods

Ascending
static public void Ascending(double[] ra, int[] iperm)

Description

Sort an array into ascending order.
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Parameters

ra – A double array to be sorted into ascending order.

iperm – A int array specifying the rearrangement (permutation) of the observations
(rows) of ra.

Ascending
static public void Ascending(int[] ra, int[] iperm)

Description

Sort an array into ascending order.

Parameters

ra – an intarray to be sorted into ascending order

iperm – an int array to be sorted using the same permutations applied to ra.
Typically, you would initialize this to 0, 1, ...

Ascending
static public void Ascending(double[] ra)

Description

Sort an array into ascending order.

Parameter

ra – A double array to be sorted into ascending order.

Ascending
static public void Ascending(int[] ra)

Description

Function to sort an integer array into ascending order.

Parameter

ra – A int array to be sorted into ascending order.

Ascending
static public void Ascending(double[,] ra, int nKeys)

Description

Sort a matrix into ascending order by specified keys.
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Parameters

ra – A double matrix to be sorted into ascending order.

nKeys – A int containing the first nKeys columns of ra to be used as the sorting
keys.

Ascending
static public void Ascending(double[,] ra, int[] indkeys)

Description

Sort a matrix into ascending order by specified keys.

Parameters

ra – A double matrix to be sorted into ascending order.

indkeys – A int array containing the order the columns of ra are to be sorted.

Ascending
static public void Ascending(double[,] ra, int nKeys, int[] iperm)

Description

Sort an array into ascending order by specified keys.

Parameters

ra – A double array to be sorted into ascending order.

nKeys – A int containing the first nKeys columns of ra to be used as the sorting
keys.

iperm – A int array specifying the rearrangement (permutation) of the observations
(rows) of ra.

Ascending
static public void Ascending(double[,] ra, int[] indkeys, int[] iperm)

Description

Sort a matrix into ascending order by specified keys.

Parameters

ra – A double matrix to be sorted into ascending order.

indkeys – A int array containing the order the columns of ra are to be sorted.

iperm – A int array specifying the rearrangement (permutation) of the observations
(rows) of ra.

Descending
static public void Descending(double[] ra, int[] iperm)
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Description

Sort an array into descending order.

Parameters

ra – A double array to be sorted into descending order.

iperm – A int array specifying the rearrangement (permutation) of the observations
(rows) of ra.

Descending
static public void Descending(double[] ra)

Description

Sort an array into descending order.

Parameter

ra – A double array to be sorted into descending order.

Descending
static public void Descending(double[,] ra, int nKeys)

Description

Sorts a matrix into descending order by specified keys.

Parameters

ra – A double matrix to be sorted into descending order.

nKeys – A int containing the first nKeys columns of ra to be used as the sorting
keys.

Descending
static public void Descending(double[,] ra, int[] indkeys)

Description

Sorts a matrix into descending order by specified keys.

Parameters

ra – A double matrix to be sorted into descending order.

indkeys – A int array containing the order the columns of ra are to be sorted.

Descending
static public void Descending(double[,] ra, int nKeys, int[] iperm)

Description

Sorts an array into descending order by specified keys.
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Parameters

ra – A double array to be sorted into descending order.
nKeys – A int containing the first nKeys columns of ra to be used as the sorting
keys.
iperm – A int array specifying the rearrangement (permutation) of the observations
(rows) of ra.

Descending
static public void Descending(double[,] ra, int[] indkeys, int[] iperm)

Description

Sorts a matrix into descending order by specified keys.

Parameters

ra – A double matrix to be sorted into descending order.
indkeys – A int array containing the order the columns of ra are to be sorted.
iperm – A int array specifying the rearrangement (permutation) of the observations
(rows) of ra.

Description

Class Sort contains ascending and descending methods for sorting elements of an array or a
matrix. The array ascending method sorts the elements of an array, A, into ascending order by
algebraic value. The array A is divided into two parts by picking a central element T of the
array. The first and last elements of A are compared with T and exchanged until the three
values appear in the array in ascending order. The elements of the array are rearranged until
all elements greater than or equal to the central element appear in the second part of the array
and all those less than or equal to the central element appear in the first part. The upper and
lower subscripts of one of the segments are saved, and the process continues iteratively on the
other segment. When one segment is finally sorted, the process begins again by retrieving the
subscripts of another unsorted portion of the array. On completion, Aj ≤ Ai for j < i. For
more details, see Singleton (1969), Griffin and Redish (1970), and Petro (1970).

The matrix ascending method sorts the rows of real matrix x using a particular row in x as the
keys. The sort is algebraic with the first key as the most significant, the second key as the next
most significant, etc. When x is sorted in ascending order, the resulting sorted array is such
that the following is true:

• For i = 0, 1, . . . ,n observations− 2, x[i][indices keys [0]] ≤ x[i+ 1][indices keys[0]]

• For k = 1, . . . ,n keys− 1, ifx[i][indices keys[j]] = x[i + 1][indices keys[j]] for
j = 0, 1, . . . , k − 1, then x[i][indices keys[k]] = x[i+ 1][indices keys[k]]

The observations also can be sorted in descending order.

The rows of x containing the missing value code NaN in at least one of the specified columns
are considered as an additional group. These rows are moved to the end of the sorted x. The
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sorting algorithm is based on a quicksort method given by Singleton (1969) with modifications
by Griffen and Redish (1970) and Petro (1970).

All other methods in this class work off of the ascending methods.

Example 1: Sorting

An array is sorted by increasing value. A permutation array is also computed. Note that the
permutation array begins at 0 in this example.

using System;
using Imsl.Math;
using Imsl.Stat;

public class SortEx1
{

public static void Main(String[] args)
{

double[] ra = new double[]{ 10.0, - 9.0, 8.0, - 7.0, 6.0,
5.0, 4.0, - 3.0, - 2.0, - 1.0};

int[] iperm = new int[]{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

PrintMatrix pm = new PrintMatrix("The Input Array");
PrintMatrixFormat mf = new PrintMatrixFormat();
mf.SetNoRowLabels();
mf.SetNoColumnLabels();
// Print the array
pm.Print(mf, ra);
Console.Out.WriteLine();

// Sort the array
Sort.Ascending(ra, iperm);

pm = new PrintMatrix("The Sorted Array - Lowest to Highest");
mf = new PrintMatrixFormat();
mf.SetNoRowLabels();
mf.SetNoColumnLabels();

// Print the array
pm.Print(mf, ra);

pm = new PrintMatrix("The Resulting Permutation Array");
mf = new PrintMatrixFormat();
mf.SetNoRowLabels();
mf.SetNoColumnLabels();
// Print the array
pm.Print(mf, iperm);

}
}
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Output

The Input Array

10
-9
8
-7
6
5
4
-3
-2
-1

The Sorted Array - Lowest to Highest

-9
-7
-3
-2
-1
4
5
6
8
10

The Resulting Permutation Array

1
3
7
8
9
6
5
4
2
0

Example 2: Sorting

The rows of a 10 x 3 matrix x are sorted in ascending order using Columns 0 and 1 as the keys.
There are two missing values (NaNs) in the keys. The observations containing these values are
moved to the end of the sorted array.

using System;
using Imsl.Math;
using Imsl.Stat;
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public class SortEx2
{

public static void Main(String[] args)
{

int nKeys = 2;
double[,] x = {

{1.0, 1.0, 1.0}, {2.0, 1.0, 2.0},
{1.0, 1.0, 3.0}, {1.0, 1.0, 4.0},
{2.0, 2.0, 5.0}, {1.0, 2.0, 6.0},
{1.0, 2.0, 7.0}, {1.0, 1.0, 8.0},
{2.0, 2.0, 9.0}, {1.0, 1.0, 9.0}};

int[] iperm = new int[]{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
x[4,1] = Double.NaN;
x[6,0] = Double.NaN;

PrintMatrix pm = new PrintMatrix("The Input Array");
PrintMatrixFormat mf = new PrintMatrixFormat();
mf.SetNoRowLabels();
mf.SetNoColumnLabels();
// Print the array
pm.Print(mf, x);
Console.Out.WriteLine();

Sort.Ascending(x, nKeys, iperm);

pm = new PrintMatrix("The Sorted Array - Lowest to Highest");
mf = new PrintMatrixFormat();
mf.SetNoRowLabels();
mf.SetNoColumnLabels();

// Print the array
pm.Print(mf, x);

pm = new PrintMatrix("The permutation array");
mf = new PrintMatrixFormat();
mf.SetNoRowLabels();
mf.SetNoColumnLabels();
pm.Print(mf, iperm);

}
}

Output

The Input Array

1 1 1
2 1 2
1 1 3
1 1 4
2 NaN 5
1 2 6
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NaN 2 7
1 1 8
2 2 9
1 1 9

The Sorted Array - Lowest to Highest

1 1 1
1 1 9
1 1 3
1 1 4
1 1 8
1 2 6
2 1 2
2 2 9
NaN 2 7
2 NaN 5

The permutation array

0
9
2
3
7
5
1
8
6
4

Ranks Class

Summary

Compute the ranks, normal scores, or exponential scores for a vector of observations.

public class Imsl.Stat.Ranks

Properties

Fuzz
public double Fuzz {get; set; }
Description

The fuzz factor used in determining ties.
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Random
public System.Random Random {get; set; }
Description

The Random object.

TieBreaker
public Imsl.Stat.Ranks.Tie TieBreaker {get; set; }
Description

The tie breaker for Ranks.

Constructor

Ranks
public Ranks()

Description

Constructor for the Ranks class.

Methods

ExpectedNormalOrderStatistic
static public double ExpectedNormalOrderStatistic(int i, int n)

Description

Returns the expected value of a normal order statistic.

Parameters

i – A int which specifies the rank of the order statistic.

n – A int which specifies the sample size.

Returns

A double, the expected value of the i-th order statistic in a sample of size n from the
standard normal distribution.

GetBlomScores
public double[] GetBlomScores(double[] x)

Description

Gets the Blom version of normal scores for each observation.
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Parameter

x – A double array which contains the observations to be ranked.

Returns

A double array which contains the Blom version of normal scores for each observation in
x.

GetNormalScores
public double[] GetNormalScores(double[] x)

Description

Gets the expected value of normal order statistics (for tied observations, the average of
the expected normal scores).

For tied observations GetNormalScores returns an average of the expected normal scores.

Parameter

x – A double array which contains the observations.

Returns

A double array which contains the expected value of normal order statistics for the
observations in x.

GetRanks
public double[] GetRanks(double[] x)

Description

Gets the rank for each observation.

Parameter

x – A double array which contains the observations to be ranked.

Returns

A double array which contains the rank for each observation in x.

GetSavageScores
public double[] GetSavageScores(double[] x)

Description

Gets the Savage scores. (the expected value of exponential order statistics)

Parameter

x – A double array which contains the observations.
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Returns

A double array which contains the Savage scores for the observations in x. (the expected
value of exponential order statistics)

GetTukeyScores
public double[] GetTukeyScores(double[] x)

Description

Gets the Tukey version of normal scores for each observation.

Parameter

x – A double array which contains the observations to be ranked.

Returns

A double array which contains the Tukey version of normal scores for each observation in
x.

GetVanDerWaerdenScores
public double[] GetVanDerWaerdenScores(double[] x)

Description

Gets the Van der Waerden version of normal scores for each observation.

Parameter

x – A double array which contains the observations to be ranked.

Returns

A double array which contains the Van der Waerden version of normal scores for each
observation in x.

Description

The class Ranks can be used to compute the ranks, normal scores, or exponential scores of the
data in X. Ties in the data can be resolved in four different ways, as specified by property
TieBreaker. The type of values returned can vary depending on the member function called:

GetRanks: Ordinary Ranks

For this member function, the values output are the ordinary ranks of the data in X. If X[i] has
the smallest value among those in X and there is no other element in X with this value, then
GetRanks(i) = 1. If both X[i] and X[j] have the same smallest value, then

if TieBreaker = 0, Ranks[i] = GetRanks([j] = 1.5

if TieBreaker = 1, Ranks[i] = Ranks[j] = 2.0

if TieBreaker = 2, Ranks[i] = Ranks[j] = 1.0

if TieBreaker = 3, Ranks[i] = 1.0 and Ranks[j] = 2.0
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or Ranks[i] = 2.0 and Ranks[j] = 1.0.

GetBlomScores: Normal Scores, Blom Version

Normal scores are expected values, or approximations to the expected values, of order statistics
from a normal distribution. The simplest approximations are obtained by evaluating the inverse
cumulative normal distribution function, Cdf.InverseNormal, at the ranks scaled into the open
interval (0, 1). In the Blom version (see Blom 1958), the scaling transformation for the rank
ri(1 ≤ ri ≤ n, where n is the sample size is (ri − 3/8)/(n+ 1/4). The Blom normal score
corresponding to the observation with rank ri is

Φ−1

(
ri − 3/8
n+ 1/4

)

where Φ(·) is the normal cumulative istribution function.

Adjustments for ties are made after the normal score transformation. That is, if X[i] equals X[j]
(within fuzz) and their value is the k-th smallest in the data set, the Blom normal scores are
determined for ranks of k and k + 1, and then these normal scores are averaged or selected in
the manner specified by TieBreaker, which is set by the property TieBreaker. (Whether the
transformations are made first or ties are resolved first makes no difference except when
averaging is done.)

GetTukeyScores: Normal Scores, Tukey Version

In the Tukey version (see Tukey 1962), the scaling transformation for the rank ri is
(ri − 1/3)/(n+ 1/3). The Tukey normal score corresponding to the observation with rank ri is

Φ−1

(
ri − 1/3
n+ 1/3

)

Ties are handled in the same way as discussed above for the Blom normal scores.

GetVanDerWaerdenScores: Normal Scores, Van der Waerden Version

In the Van der Waerden version (see Lehmann 1975, page 97), the scaling transformation for
the rank ri is ri/(n+ 1). The Van der Waerden normal score corresponding to the observation
with rank ri is

Φ−1

(
ri

n+ 1

)

Ties are handled in the same way as discussed above for the Blom normal scores.

GetNormalScores: Expected Value of Normal Order Statistics

The member function GetNormalScores returns the expected values of the normal order
statistics. If the value in X[i] is the k-th smallest, then the value output in SCORE[i] is E(Zk),
where E(·) is the expectation operator and Zk is the k-th order statistic in a sample of size
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x.length from a standard normal distribution. Ties are handled in the same way as discussed
above for the Blom normal scores.

GetSavageScores: Savage Scores

The member function GetSavageScores returns the expected values of the exponential order
statistics. These values are called Savage scores because of their use in a test discussed by
Savage (1956) (see Lehman 1975). If the value in X[i] is the k-th smallest, then the i-th output
value output is E(Yk), where Yk is the k-th order statistic in a sample of size n from a standard
exponential distribution. The expected value of the k-th order statistic from an exponential
sample of size n is

1
n

+
1

n− 1
+ . . .+

1
n− k + 1

Ties are handled in the same way as discussed above for the Blom normal scores.

Example: Ranks

In this data from Hinkley (1977) note that the fourth and sixth observations are tied and that
the third and twentieth are tied.

using System;
using Imsl.Stat;
using Imsl.Math;

public class RanksEx1
{

public static void Main(String[] args)
{

double[] x = new double[]{0.77, 1.74, 0.81, 1.20, 1.95, 1.20,
0.47, 1.43, 3.37, 2.20, 3.00,
3.09, 1.51, 2.10, 0.52, 1.62,
1.31, 0.32, 0.59, 0.81, 2.81,
1.87, 1.18, 1.35, 4.75, 2.48,
0.96, 1.89, 0.90, 2.05};

PrintMatrixFormat mf = new PrintMatrixFormat();
mf.SetNoRowLabels();
mf.SetNoColumnLabels();

Ranks ranks = new Ranks();
double[] score = ranks.GetRanks(x);
new PrintMatrix("The Ranks of the Observations - " +

"Ties Averaged").Print(mf, score);
Console.Out.WriteLine();

ranks = new Ranks();
ranks.TieBreaker = Imsl.Stat.Ranks.Tie.Highest;
score = ranks.GetBlomScores(x);
new PrintMatrix("The Blom Scores of the Observations - " +
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"Highest Score used in Ties").Print(mf, score);
Console.Out.WriteLine();

ranks = new Ranks();
ranks.TieBreaker = Imsl.Stat.Ranks.Tie.Lowest;
score = ranks.GetTukeyScores(x);
new PrintMatrix("The Tukey Scores of the Observations - " +

"Lowest Score used in Ties").Print(mf, score);
Console.Out.WriteLine();

ranks = new Ranks();
ranks.TieBreaker = Imsl.Stat.Ranks.Tie.Random;
Imsl.Stat.Random random = new Imsl.Stat.Random(123457);
random.Multiplier = 16807;
ranks.Random = random;
score = ranks.GetVanDerWaerdenScores(x);
new PrintMatrix("The Van Der Waerden Scores of the " +

"Observations - Ties untied by Random").Print(mf, score);
}

}

Output

The Ranks of the Observations - Ties Averaged

5
18
6.5
11.5
21
11.5
2
15
29
24
27
28
16
23
3
17
13
1
4
6.5
26
19
10
14
30
25
9
20
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8
22

The Blom Scores of the Observations - Highest Score used in Ties

-1.02410618374162
0.208663745751154
-0.775546958322378
-0.294213138930921
0.472789120992267
-0.294213138930921
-1.60981606718445
-0.0414437330939966
1.60981606718445
0.775546958322378
1.17581347255003
1.36087334286719
0.0414437330939965
0.668002132269574
-1.36087334286719
0.124617407947998
-0.208663745751155
-2.04028132201041
-1.17581347255003
-0.775546958322378
1.02410618374162
0.294213138930921
-0.472789120992267
-0.124617407947998
2.04028132201041
0.892918486444395
-0.56768639112746
0.381975767696542
-0.668002132269574
0.56768639112746

The Tukey Scores of the Observations - Lowest Score used in Ties

-1.0200762327862
0.208082136154993
-0.88970115508476
-0.380874057516038
0.471389465588488
-0.380874057516038
-1.59868725959458
-0.0413298117447387
1.59868725959458
0.772935693128221
1.17060337087942
1.35372485367826
0.0413298117447388
0.665869518001049
-1.35372485367826
0.124273282084069

Basic Statistics Ranks Class • 295



-0.208082136154993
-2.01450973381435
-1.17060337087942
-0.88970115508476
1.0200762327862
0.293381232121193
-0.471389465588488
-0.124273282084069
2.01450973381435
0.889701155084761
-0.565948821932863
0.380874057516038
-0.665869518001048
0.565948821932863

The Van Der Waerden Scores of the Observations - Ties untied by Random

-0.989168627340635
0.203544231532486
-0.75272879425817
-0.372289360465191
0.460494539103116
-0.286893916923039
-1.51792915959428
-0.0404405085656462
1.51792915959428
0.75272879425817
1.13097760824516
1.30015343336342
0.0404405085656462
0.649323913186466
-1.30015343336342
0.121587382750483
-0.203544231532486
-1.84859628850141
-1.13097760824516
-0.864894358685283
0.989168627340635
0.286893916923039
-0.460494539103116
-0.121587382750483
1.84859628850141
0.864894358685283
-0.552442584646774
0.372289360465191
-0.649323913186466
0.552442584646775
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Ranks.Tie Enumeration

Summary

Determines how to break a tie.

public enumeration Imsl.Stat.Ranks.Tie

Fields

Average
public Imsl.Stat.Ranks.Tie Average

Description

Use the average score in the group of ties.

Highest
public Imsl.Stat.Ranks.Tie Highest

Description

Use the highest score in the group of ties.

Lowest
public Imsl.Stat.Ranks.Tie Lowest

Description

Use the lowest score in the group of ties.

Random
public Imsl.Stat.Ranks.Tie Random

Description

Use one of the group of ties chosen at random.

EmpiricalQuantiles Class

Summary

Computes empirical quantiles.

public class Imsl.Stat.EmpiricalQuantiles
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Property

TotalMissing
public int TotalMissing {get; }
Description

The total number of missing values.

Constructor

EmpiricalQuantiles
public EmpiricalQuantiles(double[] x, double[] qProp)

Description

Computes empirical quantiles.

Parameters

x – A double array containing the data.

qProp – A double array containing the quantile proportions.

Methods

GetQ
public double[] GetQ()

Description

Returns the empirical quantiles.

Q[i] corresponds to the empirical quantile at proportion qProp[i]. The quantiles are
determined by linear interpolation between adjacent ordered sample values.

Returns

A double array of length qProp.Length containing the empirical quantiles.

GetXHi
public double[] GetXHi()

Description

Returns the smallest element of x greater than or equal to the desired quantile.
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Returns

A double array of length qProp.Length containing the smallest element of x greater than
or equal to the desired quantile.

GetXLo
public double[] GetXLo()

Description

Returns the largest element of x less than or equal to the desired quantile.

Returns

A double array of length qProp.Length containing the largest element of x less than or
equal to the desired quantile.

Description

The class EmpiricalQuantiles determines the empirical quantiles, as indicated in the array
qProp, from the data in x. The algorithm first checks to see if x is sorted; if x is not sorted, the
algorithm does either a complete or partial sort, depending on how many order statistics are
required to compute the quantiles requested. The algorithm returns the empirical quantiles
and, for each quantile, the two order statistics from the sample that are at least as large and at
least as small as the quantile. For a sample of size n, the quantile corresponding to the
proportion p is defined as

Q(p) = (1− f)x(j) + fx(j+1)

where j = bp(n+ 1)c, f = p(n+ 1)− j, and x(j), is the j-th order statistic, if 1 ≤ j ≤ n;
otherwise, the empirical quantile is the smallest or largest order statistic.

Example: Empirical Quantiles

In this example, five empirical quantiles from a sample of size 30 are obtained. Notice that the
0.5 quantile corresponds to the sample median. The data are from Hinkley (1977) and
Velleman and Hoaglin (1981). They are the measurements (in inches) of precipitation in
Minneapolis/St. Paul during the month of March for 30 consecutive years.

using System;
using Imsl.Stat;

public class EmpiricalQuantilesEx1
{

public static void Main(String[] args)
{

double[] x = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59,
0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90,
2.05};

double[] qProp = {0.01, 0.5, 0.90, 0.95, 0.99};
EmpiricalQuantiles eq = new EmpiricalQuantiles(x, qProp);
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double[] Q = eq.GetQ();
double[] XLo = eq.GetXLo();
double[] XHi = eq.GetXHi();

Console.WriteLine(" Smaller Empirical Larger");
Console.WriteLine(" Quantile Datum Quantile Datum");
for (int i=0; i < qProp.Length; i++)

Console.WriteLine(" {0}\t\t{1}\t\t{2}\t\t{3}",
qProp[i], XLo[i], Q[i], XHi[i]);

}
}

Output

Smaller Empirical Larger
Quantile Datum Quantile Datum
0.01 0.32 0.32 0.32
0.5 1.43 1.47 1.51
0.9 3 3.081 3.09
0.95 3.37 3.991 4.75
0.99 4.75 4.75 4.75

TableOneWay Class

Summary

Tallies observations into a one-way frequency table.

public class Imsl.Stat.TableOneWay

Properties

Maximum
public double Maximum {get; }
Description

The maximum value of x.

Minimum
public double Minimum {get; }
Description

The minimum value of x.
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Constructor

TableOneWay
public TableOneWay(double[] x, int nIntervals)

Description

Constructor for TableOneWay.

Parameters

x – A double array containing the observations.

nIntervals – A int scalar containing the number of intervals (bins).

Methods

GetFrequencyTable
public double[] GetFrequencyTable()

Description

Returns the one-way frequency table.

nIntervals intervals of equal length are used with the initial interval starting with the
minimum value in x and the last interval ending with the maximum value in x. The
initial interval is closed on the left and the right. The remaining intervals are open on the
left and the closed on the right. Each interval is of length (max-min)/nIntervals, where
max is the maximum value of x and min is the minimum value of x.

Returns

A double array containing the one-way frequency table.

GetFrequencyTable
public double[] GetFrequencyTable(double lowerBound, double upperBound)

Description

Returns a one-way frequency table using known bounds.

The one-way frequency table is computed using two semi-infinite intervals as the initial
and last intervals. The initial interval is closed on the right and includes lowerBound as
its right endpoint. The last interval is open on the left and includes all values greater
than upperBound. The remaining nIntervals - 2 intervals are each of length
(upperBound - lowerBound) / (nIntervals - 2) and are open on the left and closed
on the right. nIntervals must be greater than or equal to 3.

Parameters

lowerBound – A double specifies the right endpoint.

upperBound – A double specifies the left endpoint.
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Returns

A double array containing the one-way frequency table.

GetFrequencyTableUsingClassmarks
public double[] GetFrequencyTableUsingClassmarks(double[] classmarks)

Description

Returns the one-way frequency table using class marks.

Equally spaced class marks in ascending order must be provided in the array classmarks
of length nIntervals. The class marks are the midpoints of each of the nIntervals.
Each interval is assumed to have length classmarks[1] - classmarks[0]. nIntervals
must be greater than or equal to 2.

Parameter

classmarks – A double array containing either the cutpoints or the class marks.

Returns

A double array containing the one-way frequency table.

GetFrequencyTableUsingCutpoints
public double[] GetFrequencyTableUsingCutpoints(double[] cutpoints)

Description

Returns the one-way frequency table using cutpoints.

The cutpoints are boundaries that must be provided in the array cutpoints of length
nIntervals-1. This option allows unequal interval lengths. The initial interval is closed
on the right and includes the initial cutpoint as its right endpoint. The last interval is
open on the left and includes all values greater than the last cutpoint. The remaining
nIntervals-2 intervals are open on the left and closed on the right. Argument
nIntervals must be greater than or equal to 3 for this option.

Parameter

cutpoints – A double array containing the cutpoints.

Returns

A double array containing the one-way frequency table.

Example: TableOneWay

The data for this example is from Hinkley (1977) and Belleman and Hoaglin (1981). The
measurements (in inches) are for precipitation in Minneapolis/St. Paul during the month of
March for 30 consecutive years.

The first test uses the default tally method which may be appropriate when the range of data is
unknown. The minimum and maximum data bounds are displayed.

302 • TableOneWay Class IMSL C# Numerical Library



The second test computes the table usings known bounds, where the lower bound is 0.5 and the
upper bound is 4.5. The eight interior intervals each have width (4.5 - 0.5)/(10-2) = 0.5. The
10 intervals are (−∞, 0.5], (0.5,1.0],...,(4.0,4.5], and (4.5,∞].

In the third test, 10 class marks, 0.25, 0.75, 1.25,...,4.75, are input. This defines the class
intervals (0.0,0.5],(0.5,1.0],...,(4.0,4.5],(4.5,5.0]. Note that unlike the previous test, the initial
and last intervals are the same length as the remaining intervals.

In the fourth test, cutpoints, 0.5,1.0, 1.5, 2.0, ...,4.5, are input to define the same 10 intervals as
in the second test. Here again, the initial and last intervals are semi- infinite intervals.

using System;
using Imsl.Stat;

public class TableOneWayEx1
{

public static void Main(String[] args)
{

int nIntervals = 10;

double[] x = new double[]{ 0.77, 1.74, 0.81, 1.20, 1.95,
1.20, 0.47, 1.43, 3.37, 2.20,
3.00, 3.09, 1.51, 2.10, 0.52,
1.62, 1.31, 0.32, 0.59, 0.81,
2.81, 1.87, 1.18, 1.35, 4.75,
2.48, 0.96, 1.89, 0.9, 2.05};

double[] cutPoints = new double[]{ 0.5, 1.0, 1.5, 2.0, 2.5,
3.0, 3.5, 4.0, 4.5};

double[] classMarks = new double[]{ 0.25, 0.75, 1.25, 1.75,
2.25, 2.75, 3.25, 3.75,
4.25, 4.75};

TableOneWay fTbl = new TableOneWay(x, nIntervals);

double[] table = fTbl.GetFrequencyTable();

Console.Out.WriteLine("Example 1 ");
for (int i = 0; i < table.Length; i++)

Console.Out.WriteLine(i + " " + table[i]);

Console.Out.WriteLine("--------------------------");
Console.Out.WriteLine("Lower bounds= " + fTbl.Minimum);
Console.Out.WriteLine("Upper bounds= " + fTbl.Maximum);
Console.Out.WriteLine("--------------------------");
/* getFrequencyTable using a set of known bounds */
table = fTbl.GetFrequencyTable(0.5, 4.5);
for (int i = 0; i < table.Length; i++)

Console.Out.WriteLine(i + " " + table[i]);

Console.Out.WriteLine("---------------------");

table = fTbl.GetFrequencyTableUsingClassmarks(classMarks);
for (int i = 0; i < table.Length; i++)

Console.Out.WriteLine(i + " " + table[i]);
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Console.Out.WriteLine("--------------------");
table = fTbl.GetFrequencyTableUsingCutpoints(cutPoints);
for (int i = 0; i < table.Length; i++)

Console.Out.WriteLine(i + " " + table[i]);
}

}

Output

Example 1
0 4
1 8
2 5
3 5
4 3
5 1
6 3
7 0
8 0
9 1
--------------------------
Lower bounds= 0.32
Upper bounds= 4.75
--------------------------
0 2
1 7
2 6
3 6
4 4
5 2
6 2
7 0
8 0
9 1
---------------------
0 2
1 7
2 6
3 6
4 4
5 2
6 2
7 0
8 0
9 1
--------------------
0 2
1 7
2 6
3 6
4 4
5 2
6 2
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7 0
8 0
9 1

TableTwoWay Class

Summary

Tallies observations into a two-way frequency table.

public class Imsl.Stat.TableTwoWay

Properties

MaximumX
public double MaximumX {get; }
Description

The maximum value of x.

MaximumY
public double MaximumY {get; }
Description

The maximum value of y.

MinimumX
public double MinimumX {get; }
Description

The minimum value of x.

MinimumY
public double MinimumY {get; }
Description

The minimum value of y.

Constructor

TableTwoWay
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public TableTwoWay(double[] x, int xIntervals, double[] y, int yIntervals)

Description

Constructor for TableTwoWay.

Parameters

x – A double array containing the data for the first variable.

xIntervals – A int scalar containing the number of intervals (bins) for variable x.

y – A double array containing the data for the second variable.

yIntervals – A int scalar containing the number of intervals (bins) for variable y.

Methods

GetFrequencyTable
public double[,] GetFrequencyTable()

Description

Returns the two-way frequency table.

Intervals of equal length are used. Let xmin and xmax be the minimum and maximum
values in x, respectively, with similiar meanings for ymin and ymax. Then, the first row of
the output table is the tally of observations with the x value less than or equal to xmin +
(xmax - xmin)/xIntervals, and the y value less than or equal to ymin + (ymax -
ymin)/yIntervals.

Returns

A two-dimensional double array containing the two-way frequency table.

GetFrequencyTable
public double[,] GetFrequencyTable(double xLowerBound, double xUpperBound,
double yLowerBound, double yUpperBound)

Description

Compute a two-way frequency table using intervals of equal length and user supplied
upper and lower bounds, xLowerBound, xUpperBound, yLowerBound, yUpperBound.

The first and last intervals for both variables are semi-infinite in length. xIntervals and
yIntervals must be greater than or equal to 3.

Parameters

xLowerBound – A double specifies the right endpoint for x.

xUpperBound – A double specifies the left endpoint for x.

yLowerBound – A double specifies the right endpoint for y.

yUpperBound – A double specifies the left endpoint for y.
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Returns

A two dimensional double array containing the two-way frequency table.

GetFrequencyTableUsingClassmarks
public double[,] GetFrequencyTableUsingClassmarks(double[] cx, double[] cy)

Description

Returns the two-way frequency table using either cutpoints or class marks.

Cutpoints are boundaries and class marks are the midpoints of xIntervals and
yIntervals.

Equally spaced class marks in ascending order must be provided in the arrays cx and cy.
The class marks the midpoints of each interval. Each interval is taken to have length
cx[1] - cx[0] in the x direction and cy[1] - cy[0] in the y direction. The total
number of elements in the output table may be less than the number of observations of
input data. Arguments xIntervals and yIntervals must be greater than or equal to 2
for this option.

Parameters

cx – A double array containing either the cutpoints or the class marks for x.

cy – A double array containing either the cutpoints or the class marks for y.

Returns

A two dimensional double array containing the two-way frequency table.

GetFrequencyTableUsingCutpoints
public double[,] GetFrequencyTableUsingCutpoints(double[] cx, double[] cy)

Description

Returns the two-way frequency table using cutpoints.

The cutpoints (boundaries) must be provided in the arrays cx and cy, of length
(xIntervals-1) and (yIntervals-1) respectively. The first row of the output table is the
tally of observations for which the x value is less than or equal to cx[0], and the y value
is less than or equal to cy[0]. This option allows unequal interval lengths. Arguments cx
and cy must be greater than or equal to 2.

Parameters

cx – A double array containing either the cutpoints or the class marks for x.

cy – A double array containing either the cutpoints or the class marks for y.

Returns

A two dimensional double array containing the two-way frequency table.
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Example: TableTwoWay

The data for x in this example is from Hinkley (1977) and Belleman and Hoaglin (1981). The
measurements (in inches) are for precipitation in Minneapolis/St. Paul during the month of
March for 30 consecutive years. The data for y were created by adding small integers to the
data in x.

The first test uses the default tally method which may be appropriate when the range of data is
unknown. The minimum and maximum data bounds are displayed.

The second test computes the table using known bounds, where the x lower, x upper, y lower, y
upper bounds are chosen so that the intervals will be 0 to 1, 1 to 2, and so on for x and 1 to 2,
2 to 3 and so on for y.

In the third test, the class boundaries are input at the same intervals as in the second test. The
first element of cmx and cmy specify the first cutpoint between classes.

The fourth test uses the cutpoints tally option with cutpoints such that the intervals are
specified as in the previous tests.

using System;
using Imsl.Stat;
using PrintMatrix = Imsl.Math.PrintMatrix;

public class TableTwoWayEx1
{

public static void Main(String[] args)
{

int nx = 5;
int ny = 6;

double[] x = new double[]{ 0.77, 1.74, 0.81, 1.20, 1.95,
1.20, 0.47, 1.43, 3.37, 2.20,
3.00, 3.09, 1.51, 2.10, 0.52,
1.62, 1.31, 0.32, 0.59, 0.81,
2.81, 1.87, 1.18, 1.35, 4.75,
2.48, 0.96, 1.89, 0.9, 2.05};

double[] y = new double[]{ 1.77, 3.74, 3.81, 2.20, 3.95,
4.20, 1.47, 3.43, 6.37, 3.20,
5.00, 6.09, 2.51, 4.10, 3.52,
2.62, 3.31, 3.32, 1.59, 2.81,
5.81, 2.87, 3.18, 4.35, 5.75,
4.48, 3.96, 2.89, 2.9, 5.05};

TableTwoWay fTbl = new TableTwoWay(x, nx, y, ny);

double[,] table = fTbl.GetFrequencyTable();

Console.Out.WriteLine("Example 1 ");
Console.Out.WriteLine("Use Min and Max for bounds");
new PrintMatrix("counts").Print(table);

Console.Out.WriteLine("--------------------------");
Console.Out.WriteLine("Lower xbounds= " + fTbl.MinimumX);
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Console.Out.WriteLine("Upper xbounds= " + fTbl.MaximumX);
Console.Out.WriteLine("Lower ybounds= " + fTbl.MinimumY);
Console.Out.WriteLine("Upper ybounds= " + fTbl.MaximumY);
Console.Out.WriteLine("--------------------------");

double xlo = 1.0;
double xhi = 4.0;
double ylo = 2.0;
double yhi = 6.0;
Console.Out.WriteLine("");
Console.Out.WriteLine("Use Known bounds");
table = fTbl.GetFrequencyTable(xlo, xhi, ylo, yhi);
new PrintMatrix("counts").Print(table);

double[] cmx = new double[]{0.5, 1.5, 2.5, 3.5, 4.5};
double[] cmy = new double[]{1.5, 2.5, 3.5, 4.5, 5.5, 6.5};
table = fTbl.GetFrequencyTableUsingClassmarks(cmx, cmy);
Console.Out.WriteLine("");
Console.Out.WriteLine("Use Class Marks");
new PrintMatrix("counts").Print(table);

double[] cpx = new double[]{1, 2, 3, 4};
double[] cpy = new double[]{2, 3, 4, 5, 6};
table = fTbl.GetFrequencyTableUsingCutpoints(cpx, cpy);
Console.Out.WriteLine("");
Console.Out.WriteLine("Use Cutpoints");
new PrintMatrix("counts").Print(table);

}
}

Output

Example 1
Use Min and Max for bounds

counts
0 1 2 3 4 5

0 4 2 4 2 0 0
1 0 4 3 2 1 0
2 0 0 1 2 0 1
3 0 0 0 0 1 2
4 0 0 0 0 0 1

--------------------------
Lower xbounds= 0.32
Upper xbounds= 4.75
Lower ybounds= 1.47
Upper ybounds= 6.37
--------------------------

Use Known bounds
counts

0 1 2 3 4 5
0 3 2 4 0 0 0

Basic Statistics TableTwoWay Class • 309



1 0 5 5 2 0 0
2 0 0 1 3 2 0
3 0 0 0 0 0 2
4 0 0 0 0 1 0

Use Class Marks
counts

0 1 2 3 4 5
0 3 2 4 0 0 0
1 0 5 5 2 0 0
2 0 0 1 3 2 0
3 0 0 0 0 0 2
4 0 0 0 0 1 0

Use Cutpoints
counts

0 1 2 3 4 5
0 3 2 4 0 0 0
1 0 5 5 2 0 0
2 0 0 1 3 2 0
3 0 0 0 0 0 2
4 0 0 0 0 1 0

TableMultiWay Class

Summary

Tallies observations into a multi-way frequency table.

public class Imsl.Stat.TableMultiWay

Properties

BalancedTable
public Imsl.Stat.TableMultiWay.TableBalanced BalancedTable {get; }
Description

An object containing the balanced table.

UnbalancedTable
public Imsl.Stat.TableMultiWay.TableUnbalanced UnbalancedTable {get; }
Description

An object containing the unbalanced table.
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Constructors

TableMultiWay
public TableMultiWay(double[,] x, int nKeys)

Description

Constructor for TableMultiWay.

Parameters

x – A double matrix containing the observations and variables.

nKeys – A int array containing the variables(columns) for which computations are
to be performed.

TableMultiWay
public TableMultiWay(double[,] x, int[] indkeys)

Description

Constructor for TableMultiWay.

Parameters

x – A double matrix containing the observations and variables.

indkeys – A int array containing the variables(columns) for which computations
are to be performed.

Methods

GetGroups
public int[] GetGroups()

Description

Returns the number of observations (rows) in each group.

The number of groups is the length of the returned array. A group contains observations
in x that are equal with respect to the method of comparison. If n contains the returned
integer array, then the first n[0] rows of the sorted x are group number 1. The next n[1]
rows of the sorted x are group number 2, etc. The last n[n.length - 1] rows of the
sorted x are group number n.length.

Returns

A int array containing the number of observations (row) in each group.

SetFrequencies
public void SetFrequencies(double[] frequencies)
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Description

Sets the frequencies for each observation in x.

Length of input must be the same as the number of observations or number of rows in x.

Default frequencies[] = 1.

Parameter

frequencies – A double array containing the frequency for each observation in x.

Description

The TableMultiWay class determines the distinct values in multivariate data and computes
frequencies for the data. This class accepts the data in the matrix x, but performs
computations only for the variables (columns) in the first nkeys columns of x or by the
variables specified in indkeys. In general, the variables for which frequencies should be
computed are discrete; they should take on a relatively small number of different values.
Variables that are continuous can be grouped first. TableMultiWay can be used to group
variables and determine the frequencies of groups.

The read-only property BalancedTable returns a TableBalanced object. Its GetValues
method returns an array with the unique values in the vector of the variables and tallies the
number of unique values of each variable table. Each combination of one value from each
variable forms a cell in a multi-way table. The frequencies of these cells are entered in a table
so that the first variable cycles through its values exactly once, and the last variable cycles
through its values most rapidly. Some cells cannot correspond to any observations in the data;
in other words, ”missing cells” are included in table and have a value of 0.

The read-only property UnbalancedTable returns a TableUnbalanced object. The frequency of
each cell is entered in the unbalanced table so that the first variable cycles through its values
exactly once and the last variable cycles through its values most rapidly. table is returned by
UnbalancedTable property. All cells have a frequency of at least 1, i.e., there is no ”missing
cell.” The array listCells, returned by method GetListCells can be considered ”parallel” to
table because row i of listCells is the set of nkeys values that describes the cell for which
row i of tablecontains the corresponding frequency.

Example 1: TableMultiWay

The same data used in SortEx2 is used in this example. It is a 10 x 3 matrix using Columns 0
and 1 as keys. There are two missing values (NaNs) in the keys. NaN is displayed as a ?. Table
MultiWay determines the number of groups of different observations.

using System;
using Imsl.Stat;
using Imsl.Math;

public class TableMultiWayEx1
{

public static void Main(String[] args)
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{
int nKeys = 2;
double[,] x = {

{1.0, 1.0, 1.0}, {2.0, 1.0, 2.0},
{1.0, 1.0, 3.0}, {1.0, 1.0, 4.0},
{2.0, 2.0, 5.0}, {1.0, 2.0, 6.0},
{1.0, 2.0, 7.0}, {1.0, 1.0, 8.0},
{2.0, 2.0, 9.0}, {1.0, 1.0, 9.0}};

x[4,1] = Double.NaN;
x[6,0] = Double.NaN;

PrintMatrix pm = new PrintMatrix("The Input Array");
PrintMatrixFormat mf = new PrintMatrixFormat();
mf.SetNoRowLabels();
mf.SetNoColumnLabels();
// Print the array
pm.Print(mf, x);
Console.Out.WriteLine();

TableMultiWay tbl = new TableMultiWay(x, nKeys);
int[] ngroups = tbl.GetGroups();
Console.Out.WriteLine(" ngroups");
for (int i = 0; i < ngroups.Length; i++)

Console.Out.Write(ngroups[i] + " ");
}

}

Output

The Input Array

1 1 1
2 1 2
1 1 3
1 1 4
2 NaN 5
1 2 6
NaN 2 7
1 1 8
2 2 9
1 1 9

ngroups
5 1 1 1

Example 2: TableMultiWay

The table of frequencies for a data matrix of size 30 x 2 is output.
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using System;
using Imsl.Stat;
using Imsl.Math;

public class TableMultiWayEx2
{

public static void Main(String[] args)
{

int[] indkeys = new int[]{0, 1};
double[,] x = {

{0.5, 1.5}, {1.5, 3.5},
{0.5, 3.5}, {1.5, 2.5},
{1.5, 3.5}, {1.5, 4.5},
{0.5, 1.5}, {1.5, 3.5},
{3.5, 6.5}, {2.5, 3.5},
{2.5, 4.5}, {3.5, 6.5},
{1.5, 2.5}, {2.5, 4.5},
{0.5, 3.5}, {1.5, 2.5},
{1.5, 3.5}, {0.5, 3.5},
{0.5, 1.5}, {0.5, 2.5},
{2.5, 5.5}, {1.5, 2.5},
{1.5, 3.5}, {1.5, 4.5},
{4.5, 5.5}, {2.5, 4.5},
{0.5, 3.5}, {1.5, 2.5},
{0.5, 2.5}, {2.5, 5.5}};

TableMultiWay tbl = new TableMultiWay(x, indkeys);

int[] nvalues = tbl.BalancedTable.GetNvalues();

double[] values = tbl.BalancedTable.GetValues();

Console.Out.WriteLine(" row values");
for (int i = 0; i < nvalues[0]; i++)

Console.Out.Write(values[i] + " ");
Console.Out.WriteLine("");
Console.Out.WriteLine("");
Console.Out.WriteLine(" column values");
for (int i = 0; i < nvalues[1]; i++)

Console.Out.Write(values[i + nvalues[0]] + " ");

double[] table = tbl.BalancedTable.GetTable();

Console.Out.WriteLine("");
Console.Out.WriteLine("");
Console.Out.WriteLine(" Table");

Console.Out.Write(" ");
for (int i = 0; i < nvalues[1]; i++)

Console.Out.Write(values[i + nvalues[0]] + " ");
Console.Out.WriteLine("");
for (int i = 0; i < nvalues[0]; i++)
{

Console.Out.Write(values[i] + " ");
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for (int j = 0; j < nvalues[1]; j++)
Console.Out.Write(table[j + (nvalues[1] * i)] + " ");

Console.Out.WriteLine(" ");
}

}
}

Output

row values
0.5 1.5 2.5 3.5 4.5

column values
1.5 2.5 3.5 4.5 5.5 6.5

Table
1.5 2.5 3.5 4.5 5.5 6.5

0.5 3 2 4 0 0 0
1.5 0 5 5 2 0 0
2.5 0 0 1 3 2 0
3.5 0 0 0 0 0 2
4.5 0 0 0 0 1 0

Example 3: TableMultiWay

The unbalanced table of frequencies for a data matrix of size 4 x 3 is output.

using System;
using Imsl.Stat;
using Imsl.Math;

public class TableMultiWayEx3
{

public static void Main(String[] args)
{

int[] indkeys = new int[]{0, 1};
double[,] x = {

{2.0, 5.0, 1.0}, {1.0, 5.0, 2.0},
{1.0, 6.0, 3.0}, {2.0, 6.0, 4.0}};

double[] frq = new double[]{1.0, 2.0, 3.0, 4.0};

TableMultiWay tbl = new TableMultiWay(x, indkeys);
tbl.SetFrequencies(frq);

int ncells = tbl.UnbalancedTable.NCells;
double[] listCells = tbl.UnbalancedTable.GetListCells();
double[] table = tbl.UnbalancedTable.GetTable();

PrintMatrix pm = new PrintMatrix("List Cells");
PrintMatrixFormat mf = new PrintMatrixFormat();
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mf.SetNoRowLabels();
mf.SetNoColumnLabels();
// Print the array
pm.Print(mf, listCells);
Console.Out.WriteLine();

pm = new PrintMatrix("Unbalanced Table");
mf = new PrintMatrixFormat();
mf.SetNoRowLabels();
mf.SetNoColumnLabels();
// Print the array
pm.Print(mf, table);
Console.Out.WriteLine();

}
}

Output

List Cells

1
5
1
6
2
5
2
6

Unbalanced Table

2
3
1
4

TableMultiWay.TableBalanced Class

Summary

Tallies the number of unique values of each variable.

public class Imsl.Stat.TableMultiWay.TableBalanced

316 • TableMultiWay.TableBalanced Class IMSL C# Numerical Library



Methods

GetNvalues
public int[] GetNvalues()

Description

Returns an array of length nkeys containing in its i-th element (i=0,1,...nkeys-1), the
number of levels or categories of the i-th classification variable (column).

Returns

A int array containing the number of levels or for each variable (column) in x.

GetTable
public double[] GetTable()

Description

Returns an array containing the frequencies for each variable.

The array is of length nValues[0] x nValues[1] x ... x nValues[nkeys] containing
the frequencies in the cells of the table to be fit, where nValues contains the result from
getNValues.

Empty cells are included in table, and each element of table is nonnegative. The cells of
table are sequenced so that the first variable cycles through its nValues[0] categories one
time, the second variable cycles through its nValues[1] categories nValues[0] times, the
third variable cycles through its nValues[2] categories nValues[0] * nValues[1] times,
etc., up to the nkeys-th variable, which cycles through its nValues[nkeys - 1]
categories nValues[0] * nValues[1] * ... * nValues[nkeys - 2] times.

Returns

A double array containing the frequencies for each variable in x.

GetValues
public double[] GetValues()

Description

Returns the values of the classification variables.

GetValues returns an array of length nValues[0] + nValues[1] + ... +
nValues[nkeys - 1]. The first nValues[0] elements contain the values for the first
classification variable. The next nValues[1] contain the values for the second variable.
The last nValues[nkeys - 1] positions contain the values for the last classification
variable, where nValues contains the result from getNValues.

Returns

A double array containing the values of the classification variables.
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TableMultiWay.TableUnbalanced Class

Summary

Tallies the frequency of each cell in x.

public class Imsl.Stat.TableMultiWay.TableUnbalanced

Property

NCells
public int NCells {get; }
Description

Returns the number of non-empty cells.

Methods

GetListCells
public double[] GetListCells()

Description

Returns for each row, a list of the levels of nkeys coorresponding classification variables
that describe a cell.

Returns

A double array containing the list of levels of nkeys corresponding classification variables
that describe a cell.

GetTable
public double[] GetTable()

Description

Returns the frequency for each cell.

Returns

A double array containing the frequency for each cell.
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Chapter 13: Regression
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Usage Notes

The regression models in this chapter include the simple and multiple linear regression models,
the multivariate general linear model, and the nonlinear regression model. Functions for fitting
regression models, computing summary statistics from a fitted regression, computing
diagnostics, and computing confidence intervals for individual cases are provided. This chapter
also provides methods for building a model from a set of candidate variables.

Simple and Multiple Linear Regression

The simple linear regression model is

yi = β0 + β1xi + ε1 i = 1, 2, . . . , n
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where the observed values of the yi’s constitute the responses or values of the dependent
variable, the xi’s are the settings of the independent (explanatory) variable, β0 and β1 are the
intercept and slope parameters (respectively) and the ε1’s are independently distributed normal
errors, each with mean 0 and variance σ2.

The multiple linear regression model is

yi = β0 + β1xi1 + β2xi2 + . . .+ βkxik + ε1 i = 1, 2, . . . , n

where the observed values of the yi’s constitute the responses or values of the dependent
variable; the xi1’s,xi2’s,. . . ,xik’s are the settings of the k independent (explanatory) variables;
β0, β1, . . . , βk are the regression coefficients; and the ε1’s are independently distributed normal
errors, each with mean 0 and variance σ2.

The class LinearRegression fits both the simple and multiple linear regression models using a
fast Given’s transformation and includes an option for excluding the intercept β0. The
responses are input in array y, and the independent variables are input in array x, where the
individual cases correspond to the rows and the variables correspond to the columns.

After the model has been fitted using the LinearRegression class, properties such as
CoefficientTTests can be used to retrieve summary statistics. Predicted values, confidence
intervals, and case statistics for the fitted model can be obtained from inner class
LinearRegression.CaseStatistics.

No Intercept Model

Several functions provide the option for excluding the intercept from a model. In most practical
applications, the intercept should be included in the model. For functions that use the sums of
squares and crossproducts matrix as input, the no-intercept case can be handled by using the
raw sums of squares and crossproducts matrix as input in place of the corrected sums of
squares and crossproducts. The raw sums of squares and crossproducts matrix can be
computed as (x1, x2, . . . , xk, y)

T (x1, x2, . . . , xk, y).

Variable Selection

Variable selection can be performed by SelectionRegression, which computes all best-subset
regressions, or by StepwiseRegression , which computes stepwise regression. The method
used by SelectionRegression is generally preferred over that used by StepwiseRegression
because SelectionRegression implicitly examines all possible models in the search for a
model that optimizes some criterion while stepwise does not examine all possible models.
However, the computer time and memory requirements for SelectionRegression can be much
greater than that for StepwiseRegression when the number of candidate variables is large.
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Nonlinear Regression Model

The nonlinear regression model is

yi = f(xi; θ) + εi i = 1, 2, . . . , n

where the observed values of the yi’s constitute the responses or values of the dependent
variable, the xi’s are the known vectors of values of the independent (explanatory) variables, f
is a known function of an unknown regression parameter vector θ, and the εi’s are
independently distributed normal errors each with mean 0 and variance σ2.

Class NonlinearRegression performs the least-squares fit to the data for this model.

Weighted Least Squares

Classes throughout the chapter generally allow weights to be assigned to the observations. A
weight argument is used throughout to specify the weighting for particular rows of X.

Computations that relate to statistical inference-e.g., t tests, F tests, and confidence
intervals-are based on the multiple regression model except that the variance of εi is assumed
to equal σ2 times the reciprocal of the corresponding weight.

If a single row of the data matrix corresponds to ni observations, the vector frequencies can
be used to specify the frequency for each row of X. Degrees of freedom for error are affected by
frequencies but are unaffected by weights.

Summary Statistics

Property and methods LinearRegression.ANOVA, LinearRegression.CoefficientTTests,
NonlinearRegression.GetR() and StepwiseRegression.CoefficientVIF can be used to
compute statistics related to a regression for each of the dependent variables fitted by the
indicated regression. The summary statistics include the model analysis of variance table,
sequential sums of squares and F-statistics, coefficient estimates, estimated standard errors,
t-statistics, variance inflation factors and estimated variance-covariance matrix of the estimated
regression coefficients.

The summary statistics are computed under the model y = Xβ + ε, where y is the n× 1 vector
of responses, X is the n× p matrix of regressors with rank (X) = r, is the p× 1 vector of
regression coefficients, and εis the n× 1 vector of errors whose elements are independently
normally distributed with mean 0 and variance σ2/wi.

Given the results of a weighted least-squares fit of this model (with the wi’s as the weights),
most of the computed summary statistics are output in the following variables:

ANOVA Class

The ANOVA property in several of the regression classes returns an ANOVA object. Summary
statistics can be retrieved via specific ”get” methods or the ANOVA.GetArray() method. This
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returns a one-dimensional array. In StepwiseRegression, ANOVA.GetArray() returns
Double.NaN for the last two elements of the array because they cannot be computed from the
input. The array contains statistics related to the analysis of variance. The sources of variation
examined are the regression, error, and total. The first 10 elements of the ANOVA.GetArray()
and the notation frequently used for these is described in the following table (here, AOV =
ANOVA.GetArray()):

Model Analysis of Variance Table

Variation Src. Deg. of Freedom Sum of Squares Mean Square F p-value
Regression DFR = AOV[0] SSR = AOV[3] MSR = AOV[6] AOV[8] AOV[9]

Error DFE = AOV[1] SSE = AOV[4] s2 = AOV[7]
Total DFT = AOV[2] SST = AOV[5]

If the model has an intercept (default), the total sum of squares is the sum of squares of the
deviations of yi from its (weighted) mean ȳ–the so-called corrected total sum of squares,
denoted by the following:

SST =
n∑

i=1

wi (yi − ȳ)2

If the model does not have an intercept (hasIntercept = false), the total sum of squares is
the sum of squares of yi-the so-called uncorrected total sum of squares, denoted by the following:

SST =
n∑

i=1

wiy
2
i

The error sum of squares is given as follows:

SSE =
n∑

i=1

wi (yi − ŷi)
2

The error degrees of freedom is defined by DFE = n− r.

The estimate of σ2 is given by s2 = SSE/DFE, which is the error mean square.

The computed F statistic for the null hypothesis, H0 : β1 = β2 = . . . βk = 0, versus the
alternative that at least one coefficient is nonzero is given by F = s2 = MSR/s2. The p-value
associated with the test is the probability of an F larger than that computed under the
assumption of the model and the null hypothesis. A small p-value (less than 0.05) is customarily
used to indicate there is sufficient evidence from the data to reject the null hypothesis.

The remaining five elements in AOV frequently are displayed together with the actual analysis of
variance table. The quantities R-squared (R2 = AOV[10]) and adjusted R-squared
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R2
a = (AOV[11])

are expressed as a percentage and are defined as follows:

R2 = 100 (SSR/SST) = 100 (1− SSE/SST)

R2
a = 100 max

{
0, 1− s2

SST/DFT

}
The square root of s2 (s = AOV[12]) is frequently referred to as the estimated standard
deviation of the model error.

The overall mean of the responses ȳ is output in AOV[13].

The coefficient of variation (CV = AOV[14]) is expressed as a percentage and defined by
CV = 100s/ȳ.

LinearRegression.CoefficientTTests

A nested class within the LinearRegression and StepwiseRegression classes. The statistics
(estimated standard error, t statistic and p-value) associated with each coefficient can be
retrieved via associated ”Get” methods.

GetR()

Estimated variance-covariance matrix of the estimated regression coefficients.

Diagnostics for Individual Cases

Diagnostics for individual cases (observations) are computed by the
LinearRegression.CaseStatistics class for linear regression.

Statistics computed include predicted values, confidence intervals, and diagnostics for detecting
outliers and cases that greatly influence the fitted regression.

The diagnostics are computed under the model y = Xβ + ε, where y is the n× 1 vector of
responses, X is the n× p matrix of regressors with rank(X) = r, β is the p× 1 vector of
regression coefficients, and ε is the n× 1 vector of errors whose elements are independently
normally distributed with mean 0 and variance φ2/wi.

Given the results of a weighted least-squares fit of this model (with the wi’s as the weights), the
following five diagnostics are computed:

1. leverage

2. standardized residual

3. jackknife residual

4. Cook’s distance
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5. DFFITS

The definition of these terms is given in the discussion that follows:Let xi be a column vector
containing the elements of the i-th row of X. A case can be unusual either because of xi or
because of the response yi. The leverage hi is a measure of uniqueness of the xi. The leverage
is defined by

hi = [xT
i

(
XTWX

)−
xi]wi

where W = diag (w1, w2 . . . , wn) and
(
XTWT

)− denotes a generalized inverse of XTWT . The
average value of the hi’s is r/n. Regression functions declare xi unusual if hi > 2r/n. Hoaglin
and Welsch (1978) call a data point highly influential (i.e., a leverage point) when this occurs.

Let ei denote the residual

yi − ŷi

for the i-th case. The estimated variance of ei is (1− hi)s2wi, where s2 is the residual mean
square from the fitted regression. The i-th standardized residual (also called the internally
studentized residual) is by definition

ri = ei

√
wi

s2 (1− hi)

and ri follows an approximate standard normal distribution in large samples.

The i-th jackknife residual or deleted residual involves the difference between yi and its
predicted value, based on the data set in which the i-th case is deleted. This difference equals
ei/ (1− hi). The jackknife residual is obtained by standardizing this difference. The residual
mean square for the regression in which the i-th case is deleted is as follows:

s2i =
(n− r) s2 − wie

2
i / (1− hi)

n− r − 1

The jackknife residual is defined as

ti = ei

√
wi

s2i (1− hi)

and ti follows a ti distribution with n− r × 1 degrees of freedom.

Cook’s distance for the i-th case is a measure of how much an individual case affects the
estimated regression coefficients. It is given as follows:

Di =
wihie

2
i

rs2 (1− hi)
2
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Weisberg (1985) states that if Di exceeds the 50-th percentile of the F(r, n - r) distribution, it
should be considered large. (This value is about 1. This statistic does not have an F
distribution.)

DFFITS, like Cook’s distance, is also a measure of influence. For the i-th case, DFFITS is
computed by the formula below.

DFFITSi = ei

√
wihi

s2i (1− hi)
2

Hoaglin and Welsch (1978) suggest that DFFITS greater than

2
√
r/n

is large.

Transformations

Transformations of the independent variables are sometimes useful in order to satisfy the
regression model. The inclusion of squares and crossproducts of the variables

(
x1, x2, x

2
1, x

2
2, x1x2

)
is often needed. Logarithms of the independent variables are used also. (See Draper and Smith
1981, pp. 218-222; Box and Tidwell 1962; Atkinson 1985, pp. 177-180; Cook and Weisberg
1982, pp. 78-86.)

When the responses are described by a nonlinear function of the parameters, a transformation
of the model equation often can be selected so that the transformed model is linear in the
regression parameters. For example, by taking natural logarithms on both sides of the
equation, the exponential model

y = eβ0+β1x1ε

can be transformed to a model that satisfies the linear regression model provided the εi’s have a
log-normal distribution (Draper and Smith, pp. 222-225).

When the responses are nonnormal and their distribution is known, a transformation of the
responses can often be selected so that the transformed responses closely satisfy the regression
model, assumptions. The square-root transformation for counts with a Poisson distribution and
the arc-sine transformation for binomial proportions are common examples (Snedecor and
Cochran 1967, pp. 325-330; Draper and Smith, pp. 237-239).
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Missing Values

NaN (Not a Number) is the missing value code used by the regression functions. Use field
Double.NaN to retrieve NaN. Any element of the data matrix that is missing must be set to
Double.NaN. In fitting regression models, any observation containing NaN for the independent,
dependent, weight, or frequency variables is omitted from the computation of the regression
parameters.

LinearRegression Class

Summary

Fits a multiple linear regression model with or without an intercept.

public class Imsl.Stat.LinearRegression

Properties

ANOVA
public Imsl.Stat.ANOVA ANOVA {get; }
Description

Returns an analysis of variance table and related statistics.

CoefficientTTests
public Imsl.Stat.LinearRegression.CoefficientTTestsValue CoefficientTTests
{get; }
Description

Returns statistics relating to the regression coefficients.

HasIntercept
public bool HasIntercept {get; }
Description

A bool which indicates whether or not an intercept is in this regression model.

Rank
public int Rank {get; }
Description

Returns the rank of the matrix.
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Constructor

LinearRegression
public LinearRegression(int nVariables, bool hasIntercept)

Description

Constructs a new linear regression object.

Parameters

nVariables – An int which specifies the number of regression variables.

hasIntercept – A bool which indicates whether or not an intercept is in this
regression model.

Methods

GetCaseStatistics
virtual public Imsl.Stat.LinearRegression.CaseStatistics
GetCaseStatistics(double[] x, double y, double w, int pred)

Description

Returns the case statistics for an observation, weight, and future response count for the
desired prediction interval.

Parameters

x – A double array containing the independent (explanatory) variables. Its length
must be equal to the number of variables set in the constructor.

y – A double representing the dependent (response) variable.

w – A double representing the weight.

pred – An int representing the number of future responses for which the prediction
interval is desired on the average of the future responses.

Returns

The CaseStatistics for the observation.

GetCaseStatistics
virtual public Imsl.Stat.LinearRegression.CaseStatistics
GetCaseStatistics(double[] x, double y, int pred)

Description

Returns the case statistics for an observation and future response count for the desired
prediction interval.
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Parameters

x – A double array containing the independent (explanatory) variables. Its length
must be equal to the number of variables set in the constructor.

y – A double representing the dependent (response) variable.

pred – An int representing the number of future responses for which the prediction
interval is desired on the average of the future responses.

Returns

The CaseStatistics for the observation.

GetCaseStatistics
virtual public Imsl.Stat.LinearRegression.CaseStatistics
GetCaseStatistics(double[] x, double y, double w)

Description

Returns the case statistics for an observation and a weight.

Parameters

x – A double array containing the independent (explanatory) variables. Its length
must be equal to the number of variables set in the constructor.

y – A double representing the dependent (response) variable.

w – A double representing the weight.

Returns

The CaseStatistics for the observation.

GetCaseStatistics
virtual public Imsl.Stat.LinearRegression.CaseStatistics
GetCaseStatistics(double[] x, double y)

Description

Returns the case statistics for an observation.

Parameters

x – A double array containing the independent (explanatory) variables. Its length
must be equal to the number of variables set in the LinearRegression constructor.

y – A double representing the dependent (response) variable.

Returns

The CaseStatistics for the observation.

GetCoefficients
public double[] GetCoefficients()
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Description

Returns the regression coefficients.

If HasIntercept is false its length is equal to the number of variables. If HasIntercept
is true then its length is the number of variables plus one and the 0-th entry is the value
of the intercept.

Returns

A double array containing the regression coefficients.

Imsl.Math.SingularMatrixException id is thrown when the regression matrix is
singular

GetR
public double[,] GetR()

Description

Returns a copy of the R matrix.

R is the upper triangular matrix containing the R matrix from a QR decomposition of the
matrix of regressors.

Returns

A double matrix containing a copy of the R matrix.

GetRank
public int GetRank()

Description

Returns the rank of the matrix.

Returns

An int containing the rank of the matrix.

Update
public void Update(double[] x, double y)

Description

Updates the regression object with a new observation.

x.length must be equal to the number of variables set in the constructor.

Parameters

x – A double array containing the independent (explanatory) variables.

y – A double representing the dependent (response) variable.

Update
public void Update(double[] x, double y, double w)
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Description

Updates the regression object with a new observation and weight.

x.length must be equal to the number of variables set in the constructor.

Parameters

x – A double array containing the independent (explanatory) variables.

y – A double representing the dependent (response) variable.

w – A double representing the weight.

Update
public void Update(double[,] x, double[] y)

Description

Updates the regression object with a new set of observations.

The number of rows in x must equal y.length and the number of columns must be equal
to the number of variables set in the constructor.

Parameters

x – A double matrix containing the independent (explanatory) variables.

y – A double array containing the dependent (response) variables.

Update
public void Update(double[,] x, double[] y, double[] w)

Description

Updates the regression object with a new set of observations and weights.

The number of rows in x must equal y.length and the number of columns must be equal
to the number of variables set in the constructor.

Parameters

x – A double matrix containing the independent (explanatory) variables.

y – A double array containing the dependent (response) variables.

w – A double array representing the weights.

Description

Fits a multiple linear regression model with or without an intercept. If the constructor
argument hasIntercept is true, the multiple linear regression model is

yi = β0 + β1xi1 + β2xi2 + . . .+ βkxik + εi i = 1, 2, . . . , n

where the observed values of the yi’s constitute the responses or values of the dependent
variable, the xi1’s, xi2’s, . . . , xik’s are the settings of the independent variables, β0, β1, . . . , βk

are the regression coefficients, and the ei’s are independently distributed normal errors each
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with mean zero and variance σ2/wi. If hasIntercept is false, β0 is not included in the
model.

LinearRegression computes estimates of the regression coefficients by minimizing the sum of
squares of the deviations of the observed response yi from the fitted response

ŷi

for the observations. This minimum sum of squares (the error sum of squares) is in the ANOVA
output and denoted by

SSE =
n∑

i=1

wi(yi − ŷi)2

In addition, the total sum of squares is output in the ANOVA table. For the case,
hasIntercept is true; the total sum of squares is the sum of squares of the deviations of yi

from its mean

ȳ

–the so-called corrected total sum of squares; it is denoted by

SST =
n∑

i=1

wi(yi − ȳ)2

For the case hasIntercept is false, the total sum of squares is the sum of squares of yi –the
so-called uncorrected total sum of squares; it is denoted by

SST =
n∑

i=1

y2
i

See Draper and Smith (1981) for a good general treatment of the multiple linear regression
model, its analysis, and many examples.

In order to compute a least-squares solution, LinearRegression performs an orthogonal
reduction of the matrix of regressors to upper triangular form. Givens rotations are used to
reduce the matrix. This method has the advantage that the loss of accuracy resulting from
forming the crossproduct matrix used in the normal equations is avoided, while not requiring
the storage of the full matrix of regressors. The method is described by Lawson and Hanson,
pages 207-212.

From a general linear model fitted using the wi’s as the weights, inner class
Imsl.Stat.LinearRegression.CaseStatistics (p. 335) can also compute predicted values,
confidence intervals, and diagnostics for detecting outliers and cases that greatly influence the
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fitted regression. Let xi be a column vector containing elements of the i-th row of X. Let
W = diag(w1, w2, ..., wn). The leverage is defined as

hi = [xT
i (XTWX)−xi]wi

(In the case of linear equality restrictions on β, the leverage is defined in terms of the reduced
model.) Put D = diag(d1, d2, ..., dk) with dj = 1 if the j-th diagonal element of R is positive
and 0 otherwise. The leverage is computed as hi = (aTDa)wi where a is a solution to
RTa = xi. The estimated variance of

ŷi = xT
i β̂

is given by his
2/wi, where s2 = SSE/DFE. The computation of the remainder of the case

statistics follows easily from their definitions.

Let ei denote the residual
yi − ŷi

for the ith case. The estimated variance of ei is (1− hi)s2/wi where s2 is the residual mean
square from the fitted regression. The ith standardized residual (also called the internally
studentized residual) is by definition

ri = ei

√
wi

s2(1− hi)

and ri follows an approximate standard normal distribution in large samples.

The ith jackknife residual or deleted residual involves the difference between yi and its
predicted value based on the data set in which the ith case is deleted. This difference equals
ei/(1− hi). The jackknife residual is obtained by standardizing this difference. The residual
mean square for the regression in which the ith case is deleted is

s2i =
(n− r)s2 − wie

2
i /(1− hi)

n− r − 1

The jackknife residual is defined to be

ti = ei

√
wi

s2i (1− hi)

and ti follows a t distribution with n− r − 1 degrees of freedom.

Cook’s distance for the ith case is a measure of how much an individual case affects the
estimated regression coefficients. It is given by

Di =
wihie

2
i

rs2(1− hi)2

Weisberg (1985) states that if Di exceeds the 50-th percentile of the F (r, n− r) distribution, it
should be considered large. (This value is about 1. This statistic does not have an F
distribution.)
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DFFITS, like Cook’s distance, is also a measure of influence. For the ith case, DFFITS is
computed by the formula

DFFITSi = ei

√
wihi

s2i (1− hi)2

Hoaglin and Welsch (1978) suggest that DFFITSi greater than

2
√
r/n

is large.

Often predicted values and confidence intervals are desired for combinations of settings of the
effect variables not used in computing the regression fit. This can be accomplished using a
single data matrix by including these settings of the variables as part of the data matrix and by
setting the response equal to Double.NaN. LinearRegression will omit the case when
performing the fit and a predicted value and confidence interval for the missing response will be
computed from the given settings of the effect variables.

Example: Linear Regression

The coefficients of a simple linear regression model, without an intercept, are computed.

using System;
using Imsl.Stat;

public class LinearRegressionEx1
{

public static void Main(String[] args)
{

// y = 4*x0 + 3*x1
LinearRegression r = new LinearRegression(2, false);
double[] c = new double[]{4, 3};
double[] x0 = {1, 5};
double[] x1 = {0, 2};
double[] x2 = {-1, 4};

r.Update(x0, 1 * c[0] + 5 * c[1]);
r.Update(x1, 0 * c[0] + 2 * c[1]);
r.Update(x2, - 1 * c[0] + 4 * c[1]);
double[] coef = r.GetCoefficients();
Console.Out.WriteLine

("The computed regression coefficients are {" +
coef[0] + ", " + coef[1] + "}");

}
}

Output

The computed regression coefficients are {4, 3}
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Example: Linear Regression Case Statistics

Selected case statistics of a simple linear regression model, with an intercept, are computed.

using System;
using Imsl.Stat;
using Imsl.Math;

public class LinearRegressionEx2
{

public static void Main(String[] args)
{

LinearRegression r = new LinearRegression(2, true);
double[] y = {3, 4, 5, 7, 7, 8, 9};
double[,] x = {{1, 1},{1, 2},{1, 3},{1,4},{1,5},{0,6},{1,7}};
double[,] results = new double[7,5];
double[] confint = new double[2];
r.Update(x, y);
double[] xTmp = new double[2];
for (int k=0; k<7; k++){

xTmp[0] = x[k,0];
xTmp[1] = x[k,1];
LinearRegression.CaseStatistics cs = r.GetCaseStatistics(xTmp,y[k]);
cs.Effects = -2;
results[k,0] = cs.JackknifeResidual;
results[k,1] = cs.CooksDistance;
results[k,2] = cs.DFFITS;
confint = cs.ConfidenceInterval;
results[k,3] = confint[0];
results[k,4] = confint[1];
}

PrintMatrix p = new PrintMatrix("Selected Case Statistics");
PrintMatrixFormat mf = new PrintMatrixFormat();
String[] labels = {"Jackknife Residual.","Cook’s D","DFFITS", "[Conf. Interval", "on the Mean]"};
mf.SetColumnLabels(labels);
p.Print(mf, results);

}
}

Output

Selected Case Statistics
Jackknife Residual. Cook’s D DFFITS [Conf. Interval on the Mean]

0 -0.343038692852844 0.0448855192564415 -0.323965838130963 2.26094652131247 3.99619633583039
1 -0.327326835353989 0.0183908045977011 -0.207019667802706 3.4674120686278 4.81830221708648
2 -0.337597012047161 0.0111298613543336 -0.161225169613381 4.6125816288173 5.70170408546842
3 Infinity 0.275862068965519 Infinity 5.64823106667496 6.69462607618219
4 -0.417763902391217 0.0235122737669971 -0.236601469253295 6.5629846966826 7.80844387474598
5 NaN NaN NaN 6.73635797432486 9.26364202567514
6 -0.742307488958098 0.372413793103455 -0.995910003310489 8.2011181029417 10.2274533256297
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LinearRegression.CaseStatistics Class

Summary

Inner Class CaseStatistics allows for the computation of predicted values, confidence
intervals, and diagnostics for detecting outliers and cases that greatly influence the fitted
regression.

public class Imsl.Stat.LinearRegression.CaseStatistics

Properties

ConfidenceInterval
virtual public double[] ConfidenceInterval {get; }

Description

Returns the Confidence Interval on the mean for an observation.

ConLevelMean
virtual public double ConLevelMean {set; }

Description

Sets the confidence level for two-sided interval estimates on the mean, in percent.

Default = 0.95.

ConLevelPred
virtual public double ConLevelPred {set; }

Description

Sets the confidence level for two-sided prediction intervals, in percent.

Default = 0.95.

CooksDistance
virtual public double CooksDistance {get; }

Description

Returns Cook’s Distance for an observation.

DFFITS
virtual public double DFFITS {get; }
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Description

Returns DFFITS for an observation.

Effects
virtual public int Effects {set; }

Description

Sets the effect option.

The absolute value is used to specify the number of effects (sources of variation) due to
the model. The sign of Effect specifies the following:

Effects Meaning
< 0 Each effect corresponds to a single regressor (coefficient) in the

model.
> 0 Currently not used. This will result in an

IllegalArgumentException being thrown.
0 There are no effects in the model. hasIntercept must be set to

true.

Default = -1.

JackknifeResidual
virtual public double JackknifeResidual {get; }

Description

Returns the Jackknife Residual for an observation.

Leverage
virtual public double Leverage {get; }

Description

Returns the Leverage for an observation.

ObservedResponse
virtual public double ObservedResponse {get; }

Description

Returns the observed response for an observation.

PredictedResponse
virtual public double PredictedResponse {get; }
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Description

Returns the predicted response for an observation.

PredictionInterval
virtual public double[] PredictionInterval {get; }

Description

Returns the Prediction Interval for an observation.

Residual
virtual public double Residual {get; }

Description

Returns the Residual for an observation.

StandardizedResidual
virtual public double StandardizedResidual {get; }

Description

Returns the Standardized Residual for an observation.

Statistics
virtual public double[] Statistics {get; }

Description

Returns the case statistics for an observation.

Elements 0 through 11 contain the following:

Index Description
0 Observed response
1 Predicted response
2 Residual
3 Leverage
4 Standardized residual
5 Jackknife residual
6 Cook’s distance
7 DFFITS
8,9 Confidence interval on the mean
10,11 Prediction interval

Example: Linear Regression Case Statistics

Selected case statistics of a simple linear regression model, with an intercept, are computed.
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using System;
using Imsl.Stat;
using Imsl.Math;

public class LinearRegressionEx2
{

public static void Main(String[] args)
{

LinearRegression r = new LinearRegression(2, true);
double[] y = {3, 4, 5, 7, 7, 8, 9};
double[,] x = {{1, 1},{1, 2},{1, 3},{1,4},{1,5},{0,6},{1,7}};
double[,] results = new double[7,5];
double[] confint = new double[2];
r.Update(x, y);
double[] xTmp = new double[2];
for (int k=0; k<7; k++){

xTmp[0] = x[k,0];
xTmp[1] = x[k,1];
LinearRegression.CaseStatistics cs = r.GetCaseStatistics(xTmp,y[k]);
cs.Effects = -2;
results[k,0] = cs.JackknifeResidual;
results[k,1] = cs.CooksDistance;
results[k,2] = cs.DFFITS;
confint = cs.ConfidenceInterval;
results[k,3] = confint[0];
results[k,4] = confint[1];
}

PrintMatrix p = new PrintMatrix("Selected Case Statistics");
PrintMatrixFormat mf = new PrintMatrixFormat();
String[] labels = {"Jackknife Residual.","Cook’s D","DFFITS", "[Conf. Interval", "on the Mean]"};
mf.SetColumnLabels(labels);
p.Print(mf, results);

}
}

Output

Selected Case Statistics
Jackknife Residual. Cook’s D DFFITS [Conf. Interval on the Mean]

0 -0.343038692852844 0.0448855192564415 -0.323965838130963 2.26094652131247 3.99619633583039
1 -0.327326835353989 0.0183908045977011 -0.207019667802706 3.4674120686278 4.81830221708648
2 -0.337597012047161 0.0111298613543336 -0.161225169613381 4.6125816288173 5.70170408546842
3 Infinity 0.275862068965519 Infinity 5.64823106667496 6.69462607618219
4 -0.417763902391217 0.0235122737669971 -0.236601469253295 6.5629846966826 7.80844387474598
5 NaN NaN NaN 6.73635797432486 9.26364202567514
6 -0.742307488958098 0.372413793103455 -0.995910003310489 8.2011181029417 10.2274533256297
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LinearRegression.CoefficientTTestsValue Class

Summary

CoefficientTTestsValue contains statistics related to the regression coefficients.

public class Imsl.Stat.LinearRegression.CoefficientTTestsValue

Constructor

CoefficientTTestsValue
public CoefficientTTestsValue(Imsl.Stat.LinearRegression lr)

Description

CoefficientTTestsValue contains statistics related to the regression coefficients.

Parameter

lr – A LinearRegression object used to calculate the regression statistics.

Methods

GetCoefficient
public double GetCoefficient(int i)

Description

Returns the estimate for a coefficient.

Parameter

i – An int which specifies the index of the coefficient whose estimate is to be
returned.

Returns

A double which specifies the estimate for the i-th coefficient.

GetPValue
public double GetPValue(int i)

Description

Returns the p-value for the two-sided test.

Parameter

i – An int which specifies the index of the coefficient whose p-value estimate is to
be returned.
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Returns

A double which specifies the estimated p-value for the i-th coefficient estimate.

GetStandardError
public double GetStandardError(int i)

Description

Returns the estimated standard error for a coefficient estimate.

Parameter

i – An int which specifies the index of the coefficient whose standard error estimate
is to be returned.

Returns

A double which specifies the estimated standard error for the i-th coefficient estimate.

GetTStatistic
public double GetTStatistic(int i)

Description

Returns the t-statistic for the test that the i-th coefficient is zero.

Parameter

i – An int which specifies the index of the coefficient whose standard error estimate
is to be returned.

Returns

A double which specifies the estimated standard error for the i-th coefficient estimate.

NonlinearRegression Class

Summary

Fits a multivariate nonlinear regression model using least squares.

public class Imsl.Stat.NonlinearRegression

Properties

AbsoluteTolerance
virtual public double AbsoluteTolerance {set; }
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Description

The absolute function tolerance.

The tolerance must be greater than or equal to zero.

The default value is 4.93e-32.

Coefficients
virtual public double[] Coefficients {get; }

Description

The regression coefficients.

DFError
virtual public double DFError {get; }

Description

The degrees of freedom for error.

Digits
virtual public int Digits {set; }

Description

The number of good digits in the residuals.

The number of digits must be greater than zero.

The default value is 15.

ErrorStatus
virtual public int ErrorStatus {get; }

Description

Characterizes the performance of NonlinearRegression.

Value Description
0 All convergence tests were met.
1 Scaled step tolerance was satisfied. The current point may be an

approximate local solution, or the algorithm is making very slow
progress and is not near a solution, or StepTolerance is too big.

2 Scaled actual and predicted reductions in the function are less
than or equal to the relative function convergence tolerance
RelativeTolerance.

3 Iterates appear to be converging to a noncritical point. Incorrect
gradient information, a discontinuous function, or stopping tolerances
being too tight may be the cause.

4 Five consecutive steps with the maximum stepsize have been taken.
Either the function is unbounded below, or has a finite asymptote in
some direction, or the MaxStepsize is too small.
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See Also: RelativeTolerance (p. 343), StepTolerance (p. 343), MaxStepsize (p. 342)

FalseConvergenceTolerance
virtual public double FalseConvergenceTolerance {set; }

Description

The false convergence tolerance.

The tolerance must be greater than or equal to zero.

The default value is 2.22e-14.

GradientTolerance
virtual public double GradientTolerance {set; }

Description

The gradient tolerance.

The tolerance must be greater than or equal to zero.

The default value is 6.055e-6.

Guess
virtual public double[] Guess {set; }

Description

The initial guess of the parameter values.

The default value is an array of zeroes.

InitialTrustRegion
virtual public double InitialTrustRegion {set; }

Description

The initial trust region radius.

The initial trust radius must be greater than zero.

The default value is set based on the initial scaled Cauchy step.

MaxIterations
virtual public int MaxIterations {set; }

Description

The maximum number of iterations allowed during optimization

The value must be greater than 0.

The default value is 100.

MaxStepsize
virtual public double MaxStepsize {set; }
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Description

The maximum allowable stepsize.

The maximum allowable stepsize must be greater than zero. If this property is not set
then the maximum stepsize is set to a default value based on a scaled theta.

R
virtual public double[,] R {get; }

Description

A copy of the R matrix.

The upper triangular matrix containing the R matrix from a QR decomposition of the
matrix of regressors.

Rank
virtual public int Rank {get; }

Description

The rank of the matrix.

RelativeTolerance
virtual public double RelativeTolerance {set; }

Description

The relative function tolerance

The relative function tolerance must be greater than or equal to zero.

The default value is 1.0e-20.

Scale
virtual public double[] Scale {set; }

Description

The scaling array for theta.

The elements of the scaling array must be greater than zero. Scale is used mainly in
scaling the gradient and the distance between points. If good starting values of theta are
known and are nonzero, then a good choice is Scale[i]=1.0/theta[i]. Otherwise, if
theta is known to be in the interval (-10.e5, 10.e5), set Scale[i]=10.e-5. By default, the
elements of the scaling array are set to 1.0. The default value is an array of ones.

StepTolerance
virtual public double StepTolerance {set; }
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Description

The step tolerance.

The step tolerance must be greater than or equal to zero.

The default value is 3.667e-11.

Constructor

NonlinearRegression
public NonlinearRegression(int nparm)

Description

Constructs a new nonlinear regression object.

Parameter

nparm – An int which specifies the number of unknown parameters in the regression.

Methods

GetCoefficient
virtual public double GetCoefficient(int i)

Description

Returns the estimate for a coefficient.

Parameter

i – An int which specifies the index of a coefficient whose estimate is to be returned.

Returns

A double which contains the estimate for the i-th coefficient or null if
Imsl.Stat.NonlinearRegression.Solve(Imsl.Stat.NonlinearRegression.IFunction) (p. 344)
has not been called.

GetSSE
virtual public double GetSSE()

Description

Returns the sums of squares for error.

Returns

A double which contains the sum of squares for error or null if
Imsl.Stat.NonlinearRegression.Solve(Imsl.Stat.NonlinearRegression.IFunction) (p. 344)
has not been called.
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Solve
virtual public double[] Solve(Imsl.Stat.NonlinearRegression.IFunction F)

Description

Solves the least squares problem and returns the regression coefficients.

Parameter

F – An Imsl.Stat.NonlinearRegression.IFunction (p. 354) whose coefficients are to be
computed.

Returns

A double array containing the regression coefficients.

Imsl.Stat.TooManyIterationsException id is thrown when the number of allowed
iterations is exceeded

Imsl.Stat.NegativeFreqException id is thrown when the specified frequency is
negative

Imsl.Stat.NegativeWeightException id is thrown when the weight is negative

Description

The nonlinear regression model is

yi = f(xi; θ) + εi i = 1, 2, . . . , n

where the observed values of the yi constitute the responses or values of the dependent variable,
the known xi are vectors of values of the independent (explanatory) variables, θ is the vector of
p regression parameters, and the εi are independently distributed normal errors each with mean
zero and variance σ2. For this model, a least squares estimate of θ is also a maximum likelihood
estimate of θ.

The residuals for the model are

ei(θ) = yi − f(xi; θ) i = 1, 2, . . . , n

A value of θ that minimizes

n∑
i=1

[ei(θ)]2

is the least-squares estimate of θ calculated by this class. NonlinearRegression accepts these
residuals one at a time as input from a user-supplied function. This allows
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NonlinearRegression to handle cases where n is so large that data cannot reside in an array
but must reside in a secondary storage device.

NonlinearRegression is based on MINPACK routines LMDIF and LMDER by More’ et al. (1980).
NonlinearRegression uses a modified Levenberg-Marquardt method to generate a sequence of
approximations to the solution. Let θ̂c be the current estimate of θ. A new estimate is given by

θ̂c + sc

where sc is a solution to

(J(θ̂c)TJ(θ̂c) + µcI)sc = J(θ̂c)T e(θ̂c)

Here, J(θ̂c) is the Jacobian evaluated at θ̂c.

The algorithm uses a ”trust region” approach with a step bound of δ̂c. A solution of the
equations is first obtained for µc = 0. If ||sc||2 < δc, this update is accepted; otherwise, µc is set
to a positive value and another solution is obtained. The method is discussed by Levenberg
(1944), Marquardt (1963), and Dennis and Schnabel (1983, pages 129 - 147, 218 - 338).

Forward finite differences are used to estimate the Jacobian numerically unless the user
supplied function computes the derivatives. In this case the Jacobian is computed analytically
via the user-supplied function.

NonlinearRegression does not actually store the Jacobian but uses fast Givens
transformations to construct an orthogonal reduction of the Jacobian to upper triangular form.
The reduction is based on fast Givens transformations (see Golub and Van Loan 1983, pages
156-162, Gentleman 1974). This method has two main advantages:

1. The loss of accuracy resulting from forming the crossproduct matrix used in the equations
for sc is avoided.

2. The n x p Jacobian need not be stored saving space when n > p.

A weighted least squares fit can also be performed. This is appropriate when the variance of εi
in the nonlinear regression model is not constant but instead is σ2/wi. Here, wi are weights
input via the user supplied function. For the weighted case, NonlinearRegression finds the
estimate by minimizing a weighted sum of squares error.

Programming Notes

Nonlinear regression allows users to specify the model’s functional form. This added flexibility
can cause unexpected convergence problems for users who are unaware of the limitations of the
algorithm. Also, in many cases, there are possible remedies that may not be immediately
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obvious. The following is a list of possible convergence problems and some remedies. No
one-to-one correspondence exists between the problems and the remedies. Remedies for some
problems may also be relevant for the other problems.

1. A local minimum is found. Try a different starting value. Good starting values can often
be obtained by fitting simpler models. For example, for a nonlinear function

f(x; θ) = θ1e
θ2x

good starting values can be obtained from the estimated linear regression coefficients β̂0

and β̂1 from a simple linear regression of ln y on ln x. The starting values for the
nonlinear regression in this case would be

θ1 = eβ̂0 and θ2 = β̂1

If an approximate linear model is unclear, then simplify the model by reducing the
number of nonlinear regression parameters. For example, some nonlinear parameters for
which good starting values are known could be set to these values. This simplifies the
approach to computing starting values for the remaining parameters.

2. The estimate of θ is incorrectly returned as the same or very close to the initial estimate.

• The scale of the problem may be orders of magnitude smaller than the assumed
default of 1 causing premature stopping. For example, if the sums of squares for
error is less than approximately (2.22e−16)2, the routine stops. See Example 3,
which shows how to shut down some of the stopping criteria that may not be
relevant for your particular problem and which also shows how to improve the speed
of convergence by the input of the scale of the model parameters.

• The scale of the problem may be orders of magnitude larger than the assumed
default causing premature stopping. The information with regard to the input of the
scale of the model parameters in Example 3 is also relevant here. In addition, the
maximum allowable step size Imsl.Stat.NonlinearRegression.MaxStepsize (p. 342) in
Example 3 may need to be increased.

• The residuals are input with accuracy much less than machine accuracy, causing
premature stopping because a local minimum is found. Again see Example 3 to see
how to change some default tolerances. If you cannot improve the precision of the
computations of the residual, you need to use method
Imsl.Stat.NonlinearRegression.Digits (p. 341) to indicate the actual number of good
digits in the residuals.

3. The model is discontinuous as a function of θ. There may be a mistake in the
user-supplied function. Note that the function f(x; θ) can be a discontinuous function of x.
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4. The R matrix value given by Imsl.Stat.NonlinearRegression.R (p. 343) is inaccurate. If
only a function is supplied try providing the Imsl.Stat.NonlinearRegression.IDerivative (p.
353). If the derivative is supplied try providing only
Imsl.Stat.NonlinearRegression.IFunction (p. 354).

5. Overflow occurs during the computations. Make sure the user-supplied functions do not
overflow at some value of θ.

6. The estimate of θ is going to infinity. A parameterization of the problem in terms of
reciprocals may help.

7. Some components of θ are outside known bounds. This can sometimes be handled by
making a function that produces artificially large residuals outside of the bounds (even
though this introduces a discontinuity in the model function).

Note that the Imsl.Stat.NonlinearRegression.Solve(Imsl.Stat.NonlinearRegression.IFunction) (p.
344) method must be called before using any property as a right operand, otherwise the value is
null.

Example 1: Nonlinear Regression using Finite Differences

In this example a nonlinear model is fitted. The derivatives are obtained by finite differences.

using System;
using Imsl.Math;
using Imsl.Stat;
public class NonlinearRegressionEx1 : NonlinearRegression.IFunction
{

public bool f(double[] theta, int iobs, double[] frq, double[] wt, double[] e)
{

double[] ydata =
new double[]{ 54.0, 50.0, 45.0, 37.0, 35.0,

25.0, 20.0, 16.0, 18.0, 13.0,
8.0, 11.0, 8.0, 4.0, 6.0};

double[] xdata =
new double[]{ 2.0, 5.0, 7.0, 10.0, 14.0,

19.0, 26.0, 31.0, 34.0, 38.0,
45.0, 52.0, 53.0, 60.0, 65.0};

bool iend;
int nobs = 15;

if (iobs < nobs)
{

wt[0] = 1.0;
frq[0] = 1.0;
iend = true;
e[0] = ydata[iobs] - theta[0] * Math.Exp(theta[1] * xdata[iobs]);

}
else
{

iend = false;
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}
return iend;

}
public static void Main(String[] args)
{

int nparm = 2;
double[] theta = new double[]{60.0, - 0.03};
NonlinearRegression regression = new NonlinearRegression(nparm);
regression.Guess = theta;
NonlinearRegression.IFunction fcn = new NonlinearRegressionEx1();
double[] coef = regression.Solve(fcn);

Console.Out.WriteLine
("The computed regression coefficients are {" + coef[0] + ", "
+ coef[1] + "}");

Console.Out.WriteLine("The computed rank is " + regression.Rank);
Console.Out.WriteLine("The degrees of freedom for error are " +

regression.DFError);
Console.Out.WriteLine("The sums of squares for error is "

+ regression.GetSSE());
new PrintMatrix("R from the QR decomposition ").Print(regression.R);

}
}

Output

The computed regression coefficients are {58.6065629385189, -0.0395864472964795}
The computed rank is 2
The degrees of freedom for error are 13
The sums of squares for error is 49.4592998624719

R from the QR decomposition
0 1

0 1.87385998095046 1139.92835934133
1 0 1139.79755002385

Example 2: Nonlinear Regression with User-supplied Derivatives

In this example a nonlinear model is fitted. The derivatives are supplied by the user.

using System;
using Imsl.Math;
using Imsl.Stat;
public class NonlinearRegressionEx2 : NonlinearRegression.IDerivative
{

double[] ydata = new double[]{
54.0, 50.0, 45.0, 37.0, 35.0, 25.0, 20.0,
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16.0, 18.0, 13.0, 8.0, 11.0, 8.0, 4.0, 6.0};
double[] xdata = new double[]{

2.0, 5.0, 7.0, 10.0, 14.0, 19.0, 26.0, 31.0,
34.0, 38.0, 45.0, 52.0, 53.0, 60.0, 65.0};

bool iend;
int nobs = 15;

public bool f(double[] theta, int iobs, double[] frq, double[] wt, double[] e)
{

if (iobs < nobs)
{

wt[0] = 1.0;
frq[0] = 1.0;
iend = true;
e[0] = ydata[iobs] - theta[0] * Math.Exp(theta[1] * xdata[iobs]);

}
else
{

iend = false;
}
return iend;

}

public bool derivative(double[] theta, int iobs, double[] frq,
double[] wt, double[] de)

{
if (iobs < nobs)
{

wt[0] = 1.0;
frq[0] = 1.0;
iend = true;
de[0] = - Math.Exp(theta[1] * xdata[iobs]);
de[1] = (- theta[0]) * xdata[iobs] *

Math.Exp(theta[1] * xdata[iobs]);
}
else
{

iend = false;
}
return iend;

}
public static void Main(String[] args)
{

int nparm = 2;
double[] theta = new double[]{60.0, - 0.03};
NonlinearRegression regression = new NonlinearRegression(nparm);
regression.Guess = theta;
double[] coef = regression.Solve(new NonlinearRegressionEx2());

Console.Out.WriteLine("The computed regression coefficients are {" +
coef[0] + ", " + coef[1] + "}");

Console.Out.WriteLine("The computed rank is " + regression.Rank);
Console.Out.WriteLine("The degrees of freedom for error are " +

regression.DFError);
Console.Out.WriteLine("The sums of squares for error is " +
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regression.GetSSE());
new PrintMatrix("R from the QR decomposition ").Print(regression.R);

}
}

Output

The computed regression coefficients are {58.6065629254192, -0.0395864472775247}
The computed rank is 2
The degrees of freedom for error are 13
The sums of squares for error is 49.4592998624722

R from the QR decomposition
0 1

0 1.87385998422826 1139.92837730064
1 0 1139.79757620697

Example 3: NonlinearRegression using Set Methods

In this example, some nondefault tolerances and scales are used to fit a nonlinear model. The
data is 1.e-10 times the data of Example 1. In order to fit this model without rescaling the data,
we first set the absolute function tolerance to 0.0. The default value would cause the program
to terminate after one iteration because the residual sum of squares is roughly 1.e-19. We also
set the relative function tolerance to 0.0. The gradient tolerance is properly scaled for this
problem so we leave it at its default value. Finally, we set the elements of scale to the absolute
value of the recipricol of the starting value. The derivatives are obtained by finite differences.

using System;
using Imsl.Math;
using Imsl.Stat;
public class NonlinearRegressionEx3 : NonlinearRegression.IFunction
{

public bool f(double[] theta, int iobs, double[] frq, double[] wt, double[] e)
{

double[] ydata = new double[]{
54e-10, 50e-10, 45e-10, 37e-10, 35e-10, 25e-10, 20e-10,
16e-10, 18e-10, 13e-10, 8e-10, 11e-10, 8e-10, 4e-10, 6e-10};

double[] xdata = new double[]{
2.0, 5.0, 7.0, 10.0, 14.0, 19.0, 26.0, 31.0, 34.0, 38.0,
45.0, 52.0, 53.0, 60.0, 65.0};

bool iend;
int nobs = 15;
if (iobs < nobs)
{

wt[0] = 1.0;
frq[0] = 1.0;
iend = true;
e[0] = ydata[iobs] - theta[0] * Math.Exp(theta[1] * xdata[iobs]);
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}
else
{

iend = false;
}
return iend;

}
public static void Main(String[] args)
{

int nparm = 2;
double[] theta = new double[]{6e-9, - 0.03};
double[] scale = new double[nparm];
NonlinearRegression regression = new NonlinearRegression(nparm);
regression.Guess = theta;
regression.AbsoluteTolerance = 0.0;
regression.RelativeTolerance = 0.0;
scale[0] = 1.0 / Math.Abs(theta[0]);
scale[1] = 1.0 / Math.Abs(theta[1]);
regression.Scale = scale;
NonlinearRegression.IFunction fcn = new NonlinearRegressionEx3();
double[] coef = regression.Solve(fcn);
Console.Out.WriteLine("The computed regression coefficients are {" +

coef[0] + ", " + coef[1] + "}");
Console.Out.WriteLine("The computed rank is " + regression.Rank);
Console.Out.WriteLine("The degrees of freedom for error are " + regression.DFError);
Console.Out.WriteLine("The sums of squares for error is " + regression.GetSSE());
new PrintMatrix("R from the QR decomposition ").Print(regression.R);

}
}

Output

The computed regression coefficients are {5.78378362045064E-09, -0.0396252538454606}
The computed rank is 2
The degrees of freedom for error are 13
The sums of squares for error is 5.1663766194061E-19

R from the QR decomposition
0 1

0 1.87310563181707 5.74734586570442E-09
1 0 5.83713991871454E-11
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NonlinearRegression.IDerivative Interface

Summary

Public interface for the user supplied function to compute the derivative for
NonlinearRegression.

public interface Imsl.Stat.NonlinearRegression.IDerivative :
Imsl.Stat.NonlinearRegression.IFunction

Method

derivative
abstract public bool derivative(double[] theta, int iobs, double[] frq,
double[] wt, double[] de)

Description

Computes the weight, frequency, and partial derivatives of the residual given the
parameter vector theta for a single observation.

The length of theta corresponds to the number of unknown parameters in the regression
function.

The function is evaluated at observation y[iobs].

Use wt = 1.0 for equal weighting (unweighted least squares).

The length of de corresponds to the number of unknown parameters in the regression
function.

Parameters

theta – An input double array which contains the parameter values of the
regression function.

iobs – An input int value indicating the observation index.

frq – An output double array of length 1 containing the frequency for observation
y[iobs].

wt – An output double array of length 1 containing the weight for the observation
y[iobs].

de – An output double array containing the partial derivatives of the error
(residual) for observation y[iobs].

Returns

A boolean value representing the completion indicator. true indicates iobs is less than
the number of observations. false indicates iobs is greater than or equal to the number
of observations and wt, freq, and de are not output.
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NonlinearRegression.IFunction Interface

Summary

Public interface for the user supplied function for NonlinearRegression.

public interface Imsl.Stat.NonlinearRegression.IFunction

Method

f
abstract public bool f(double[] theta, int iobs, double[] frq, double[] wt,
double[] e)

Description

Computes the weight, frequency, and residual given the parameter vector theta for a
single observation.

The length of theta corresponds to the number of unknown parameters in the model.

The function is evaluated at observation y[iobs].

Use wt = 1.0 for equal weighting (unweighted least squares).

Parameters

theta – An input double array containing the parameter values of the model.

iobs – An input int value indicating the observation index.

frq – An output double array of length 1 containing the frequency for observation
y[iobs].

wt – An output double array of length 1 containing the weight for observation
y[iobs].

e – An output double array of length 1 which contains the error (residual) for
observation y[iobs].

Returns

A boolean value representing the completion indicator. true indicates iobs is less than
the number of observations. false indicates iobs is greater than or equal to the number
of observations and wt, freq, and e are not output.

354 • NonlinearRegression.IFunction Interface IMSL C# Numerical Library



SelectionRegression Class

Summary

Selects the best multiple linear regression models.

public class Imsl.Stat.SelectionRegression

Properties

CriterionOption
virtual public Imsl.Stat.SelectionRegression.Criterion CriterionOption {get;
set; }
Description

The criterion option used to calculate the regression estimates.
By default for all criteria, subset size 1,2, ..., k = nCandidate are considered. However, for
R2 the maximum number of subsets can be restricted using property
Imsl.Stat.SelectionRegression.MaximumSubsetSize (p. 356).

Criterion Option Description
RSquared For R2, subset sizes 1, 2, ..., MaximumSubsetSize

are examined. This is the default with
MaximumSubsetSize = nCandidate.

AdjustedRSquared For Adjusted R2, subset sizes 1, 2, ..., nCandidate are
examined.

MallowsCP For Mallow’s Cp Subset sizes 1, 2, ..., nCandidate are
examined.

See Also: RSquared (p. 366), AdjustedRSquared (p. 366), MallowsCP (p. 366)

MaximumBestFound
virtual public int MaximumBestFound {set; }

Description

The maximum number of best regressions to be found.
If the R2 criterion option is selected, the MaximumBestFound best regressions for each
subset size examined are reported. If the adjusted R2 or Mallow’s Cp criteria are selected,
the MaximumBestFound among all possible regressions are found. The default value is 1.
See Also: RSquared (p. 366), AdjustedRSquared (p. 366), MallowsCP (p. 366)

MaximumGoodSaved
virtual public int MaximumGoodSaved {set; }
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Description

The maximum number of good regressions for each subset size saved.

MaximumGoodSaved must be greater than or equal to
Imsl.Stat.SelectionRegression.MaximumBestFound (p. 355). Normally,
MaximumGoodSaved should be less than or equal to 10. It should never need be larger
than MaximumSubsetSize, the maximum number of subsets for any subset size.
Computing time required is inversely related to MaximumGoodSaved. The default value is
maximum(10,Imsl.Stat.SelectionRegression.MaximumSubsetSize (p. 356)).

MaximumSubsetSize
virtual public int MaximumSubsetSize {set; }

Description

The maximum subset size if R2 criterion is used.

Default: MaximumSubsetSize = nCandidate.

See Also: RSquared (p. 366), AdjustedRSquared (p. 366), MallowsCP (p. 366)

Statistics
virtual public Imsl.Stat.SelectionRegression.SummaryStatistics Statistics
{get; }
Description

A SummaryStatistics object.

Constructor

SelectionRegression
public SelectionRegression(int nCandidate)

Description

Constructs a new SelectionRegression object.

nCandidate must be greater than 2.

Parameter

nCandidate – An int containing the number of candidate variables (independent
variables).

Methods

Compute
virtual public void Compute(double[,] cov, int nObservations)
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Description

Computes the best multiple linear regression models using a user-supplied covariance
matrix.

cov can be computed using the Imsl.Stat.Covariances (p. 257) class.

Parameters

cov – A double matrix containing a variance-covariance or sum-of- squares and
crossproducts matrix, in which the last column must correspond to the dependent
variable.
nObservations – An int containing the number of observations used to compute
cov.

Imsl.Stat.NoVariablesException id is thrown if no variables can enter any model

Compute
virtual public void Compute(double[,] x, double[] y, double[] weights,
double[] frequencies)

Description

Computes the best weighted multiple linear regression models using frequencies for each
observation.

The number of columns in x must be equal to the number of variables set in the
constructor.

Parameters

x – A double matrix containing the observations of the candidate (independent)
variables.
y – A double array containing the observations of the dependent variable.
weights – A double array containing the weight for each of the observations.
frequencies – A double array containing the frequency for each of the observations
of x.

Imsl.Stat.NoVariablesException id is thrown if no variables can enter any model
Imsl.Stat.NegativeFreqException id is thrown if a frequency is less than zero.
Imsl.Stat.NegativeWeightException id is thrown if a weight is less than zero.
Imsl.Stat.TooManyObsDeletedException id is thrown if more observations have been

deleted than were originally entered
Imsl.Stat.MoreObsDelThanEnteredException id is thrown if more observations are

being deleted from the output covariance matrix than were originally entered
Imsl.Stat.DiffObsDeletedException id is thrown if different observations are being

deleted from the return matrix than were originally entered

Compute
virtual public void Compute(double[,] x, double[] y, double[] weights)
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Description

Computes the best weighted multiple linear regression models.

The number of columns in x must be equal to the number of variables set in the
constructor.

Parameters

x – A double matrix containing the observations of the candidate (independent)
variables.

y – A double array containing the observations of the dependent variable.

weights – A double array containing the weight for each of the observations.

Imsl.Stat.NoVariablesException id is thrown if no variables can enter any model

Imsl.Stat.NegativeWeightException id is thrown if a weight is less than zero.

Imsl.Stat.TooManyObsDeletedException id is thrown if more observations have been
deleted than were originally entered

Imsl.Stat.MoreObsDelThanEnteredException id is thrown if more observations are
being deleted from the output covariance matrix than were originally entered

Imsl.Stat.DiffObsDeletedException id is thrown if different observations are being
deleted from the return matrix than were originally entered

Compute
virtual public void Compute(double[,] x, double[] y)

Description

Computes the best multiple linear regression models.

The number of columns in x must be equal to the number of variables set in the
constructor.

Parameters

x – A double matrix containing the observations of the candidate (independent)
variables.

y – A double array containing the observations of the dependent variable.

Imsl.Stat.NoVariablesException id is thrown if no variables can enter any model

Imsl.Stat.TooManyObsDeletedException id is thrown if more observations have been
deleted than were originally entered

Imsl.Stat.MoreObsDelThanEnteredException id is thrown if more observations are
being deleted from the output covariance matrix than were originally entered

Imsl.Stat.DiffObsDeletedException id is thrown if different observations are being
deleted from the return matrix than were originally entered
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Description

Class SelectionRegression finds the best subset regressions for a regression problem with
three or more independent variables. Typically, the intercept is forced into all models and is not
a candidate variable. In this case, a sum-of-squares and crossproducts matrix for the
independent and dependent variables corrected for the mean is computed internally. Optionally,
SelectionRegression supports user-calculated sum-of-squares and crossproducts matrices; see
the description of the
Imsl.Stat.SelectionRegression.Compute(System.Double[0:,0:],System.Double[]) (p. 358) method.

”Best” is defined by using one of the following three criteria:

• R2 (in percent)

R2 = 100(1− SSEp

SST
)

• R2
a (adjusted R2)

R2
a = 100[1− (

n− 1
n− p

)
SSEp

SST
]

Note that maximizing the R2
a is equivalent to minimizing the residual mean squared error:

SSEp

(n− p)

• Mallow’s Cp statistic

Cp =
SSEp

s2k
+ 2p− n

Here, n is equal to the sum of the frequencies (or the number of rows in x if frequencies are not
specified in the Compute method), and SST is the total sum-of-squares. k is the number of
candidate or independent variables, represented as the nCandidate argument in the
SelectionRegression constructor. SSEp is the error sum-of-squares in a model containing p
regression parameters including β0 (or p - 1 of the k candidate variables). Variable

S2
k

is the error mean square from the model with all k variables in the model. Hocking (1972) and
Draper and Smith (1981, pp. 296-302) discuss these criteria.

Class SelectionRegression is based on the algorithm of Furnival and Wilson (1974). This
algorithm finds the maximum number of good saved candidate regressions for each possible

Regression SelectionRegression Class • 359



subset size. For more details, see method MaximumGoodSaved. These regressions are used to
identify a set of best regressions. In large problems, many regressions are not computed. They
may be rejected without computation based on results for other subsets; this yields an efficient
technique for considering all possible regressions.

There are cases when the user may want to input the variance-covariance matrix rather than
allow it to be calculated. This can be accomplished using the appropriate Compute method.
Three situations in which the user may want to do this are as follows:

1. The intercept is not in the model. A raw (uncorrected) sum of squares and crossproducts
matrix for the independent and dependent variables is required. Argument nObservations
must be set to 1 greater than the number of observations. Form ATA, where A = [A, Y],
to compute the raw sum-of-squares and crossproducts matrix.

2. An intercept is a candidate variable. A raw (uncorrected) sum of squares and
crossproducts matrix for the constant regressor (= 1.0), independent, and dependent
variables is required for cov. In this case, cov contains one additional row and column
corresponding to the constant regressor. This row and column contain the sum-of-squares
and crossproducts of the constant regressor with the independent and dependent
variables. The remaining elements in cov are the same as in the previous case. Argument
nObservations must be set to 1 greater than the number of observations.

3. There are m variables that must be forced into the models. A sum-of-squares and
crossproducts matrix adjusted for the m variables is required (calculated by regressing the
candidate variables on the variables to be forced into the model). Argument
nObservations must be set to m less than the number of observations.

Programming Notes

SelectionRegression can save considerable CPU time over explicitly computing all possible
regressions. However, the function has some limitations that can cause unexpected results for
users who are unaware of the limitations of the software.

1. For k + 1 > − log2(ε), where ε is the largest relative spacing for double precision, some
results can be incorrect. This limitation arises because the possible models indicated (the
model numbers 1, 2, ..., 2k) are stored as floating-point values; for sufficiently large k, the
model numbers cannot be stored exactly. On many computers, this means
SelectionRegression (for k > 49) can produce incorrect results.

2. SelectionRegression eliminates some subsets of candidate variables by obtaining lower
bounds on the error sum-of-squares from fitting larger models. First, the full model
containing all independent variables is fit sequentially using a forward stepwise procedure
in which one variable enters the model at a time, and criterion values and model numbers
for all the candidate variables that can enter at each step are stored. If linearly dependent
variables are removed from the full model, a ”VariablesDeleted” warning is issued. In this
case, some submodels that contain variables removed from the full model because of
linear dependency can be overlooked if they have not already been identified during the
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initial forward stepwise procedure. If this warning is issued and you want the variables
that were removed from the full model to be considered in smaller models, you can rerun
the program with a set of linearly independent variables.

Example 1: SelectionRegression

This example uses a data set from Draper and Smith (1981, pp. 629-630). Class
SelectionRegression is invoked to find the best regression for each subset size using the R2

criterion.

using System;
using Imsl.Math;
using Imsl.Stat;

public class SelectionRegressionEx1
{

public static void Main(String[] args)
{

double[,] x = { {7.0, 26.0, 6.0, 60.0},
{1.0, 29.0, 15.0, 52.0},
{11.0, 56.0, 8.0, 20.0},
{11.0, 31.0, 8.0, 47.0},
{7.0, 52.0, 6.0, 33.0},
{11.0, 55.0, 9.0, 22.0},
{3.0, 71.0, 17.0, 6.0},
{1.0, 31.0, 22.0, 44.0},
{2.0, 54.0, 18.0, 22.0},
{21.0, 47.0, 4.0, 26},
{1.0, 40.0, 23.0, 34.0},
{11.0, 66.0, 9.0, 12.0},
{10.0, 68.0, 8.0, 12.0}

};

double[] y = new double[]{ 78.5, 74.3, 104.3,
87.6, 95.9, 109.2,
102.7, 72.5, 93.1,
115.9, 83.8, 113.3,
109.4};

SelectionRegression sr = new SelectionRegression(4);
sr.Compute(x, y);
SelectionRegression.SummaryStatistics stats = sr.Statistics;

for (int i = 1; i <= 4; i++)
{

double[] tmpCrit = stats.GetCriterionValues(i);
int[,] indvar = stats.GetIndependentVariables(i);
Console.Out.WriteLine("Regressions with "+i+" variable(s) (R-squared)");
for (int j = 0; j < tmpCrit.GetLength(0); j++)
{

Console.Out.Write(" " + tmpCrit[j] + " ");
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for (int k = 0; k < indvar.GetLength(1); k++)
Console.Out.Write(indvar[j,k] + " ");

Console.Out.WriteLine("");
}
Console.Out.WriteLine("");

}

// Setup a PrintMatrix object for use in the loop below.
PrintMatrix pm = new PrintMatrix();
pm.SetColumnSpacing(8);
PrintMatrixFormat tst = new PrintMatrixFormat();
tst.SetNoColumnLabels();
tst.SetNoRowLabels();

tst.NumberFormat = "0.000";
for (int i = 0; i < 4; i++)
{

double[,] tmpCoef = stats.GetCoefficientStatistics(i);
Console.Out.WriteLine("\n\nRegressions with "+(i+1)+" variable(s) (R-squared)");
Console.Out.WriteLine("Variable Coefficient Standard Error t-statistic p-value");
pm.Print(tst, tmpCoef);

}
}

}

Output

Regressions with 1 variable(s) (R-squared)
67.4541964131609 4
66.6268257633294 2
53.3948023835034 1
28.5872731229812 3

Regressions with 2 variable(s) (R-squared)
97.8678374535632 1 2
97.2471047716931 1 4
93.5289640615808 3 4
68.006040795005 2 4
54.8166748844824 1 3

Regressions with 3 variable(s) (R-squared)
98.2335451200427 1 2 4
98.2284679219087 1 2 3
98.1281092587344 1 3 4
97.2819959386273 2 3 4

Regressions with 4 variable(s) (R-squared)
98.237562040768 1 2 3 4

Regressions with 1 variable(s) (R-squared)
Variable Coefficient Standard Error t-statistic p-value
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4.000 -0.738 0.155 -4.775 0.001

Regressions with 2 variable(s) (R-squared)
Variable Coefficient Standard Error t-statistic p-value

1.000 1.468 0.121 12.105 0.000
2.000 0.662 0.046 14.442 0.000

Regressions with 3 variable(s) (R-squared)
Variable Coefficient Standard Error t-statistic p-value

1.000 1.452 0.117 12.410 0.000
2.000 0.416 0.186 2.242 0.052
4.000 -0.237 0.173 -1.365 0.205

Regressions with 4 variable(s) (R-squared)
Variable Coefficient Standard Error t-statistic p-value

1.000 1.551 0.745 2.083 0.071
2.000 0.510 0.724 0.705 0.501
3.000 0.102 0.755 0.135 0.896
4.000 -0.144 0.709 -0.203 0.844

Example 2: SelectionRegression

This example uses the same data set as the first example, but Mallow’s Cp statistic is used as
the criterion rather than R2. Note that when Mallow’s Cp statistic (or adjusted R2) is specified,
MaximumBestFound is used to indicate the total number of ”best” regressions (rather than
indicating the number of best regressions per subset size, as in the case of the R2 criterion). In
this example, the three best regressions are found to be (1, 2), (1, 2, 4), and (1, 2, 3).

using System;
using Imsl.Math;
using Imsl.Stat;

public class SelectionRegressionEx2
{

public static void Main(String[] args)
{

double[,] x = { {7.0, 26.0, 6.0, 60.0},
{1.0, 29.0, 15.0, 52.0},
{11.0, 56.0, 8.0, 20.0},
{11.0, 31.0, 8.0, 47.0},
{7.0, 52.0, 6.0, 33.0},
{11.0, 55.0, 9.0, 22.0},
{3.0, 71.0, 17.0, 6.0},
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{1.0, 31.0, 22.0, 44.0},
{2.0, 54.0, 18.0, 22.0},
{21.0, 47.0, 4.0, 26},
{1.0, 40.0, 23.0, 34.0},
{11.0, 66.0, 9.0, 12.0},
{10.0, 68.0, 8.0, 12.0}

};

double[] y = new double[]{ 78.5, 74.3, 104.3, 87.6,
95.9, 109.2, 102.7, 72.5,
93.1, 115.9, 83.8, 113.3,
109.4};

SelectionRegression sr = new SelectionRegression(4);
sr.CriterionOption = Imsl.Stat.SelectionRegression.Criterion.MallowsCP;
sr.MaximumBestFound = 3;
sr.Compute(x, y);
SelectionRegression.SummaryStatistics stats = sr.Statistics;

for (int i = 1; i <= 4; i++)
{

double[] tmpCrit = stats.GetCriterionValues(i);
int[,] indvar = stats.GetIndependentVariables(i);
Console.Out.WriteLine("Regressions with "+i+" variable(s) (MallowsCP)");
for (int j = 0; j < tmpCrit.GetLength(0); j++)
{

Console.Out.Write(" " + tmpCrit[j] + " ");
for (int k = 0; k < indvar.GetLength(1); k++)

Console.Out.Write(indvar[j,k] + " ");
Console.Out.WriteLine("");

}
Console.Out.WriteLine("");

}

// Setup a PrintMatrix object for use in the loop below.
PrintMatrix pm = new PrintMatrix();
pm.SetColumnSpacing(9);
PrintMatrixFormat tst = new PrintMatrixFormat();
tst.SetNoColumnLabels();
tst.SetNoRowLabels();

tst.NumberFormat = "0.000";
for (int i = 0; i < 3; i++)
{

double[,] tmpCoef = stats.GetCoefficientStatistics(i);
Console.Out.WriteLine("\n\nRegressions with "+(i+1)+" variable(s) (MallowsCP)");
Console.Out.WriteLine("Variable Coefficient Standard Error t-statistic p-value");
pm.Print(tst, tmpCoef);

}
}

}
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Output

Regressions with 1 variable(s) (MallowsCP)
138.730833491679 4
142.486406936963 2
202.548769123452 1
315.154284140084 3

Regressions with 2 variable(s) (MallowsCP)
2.67824159831843 1 2
5.49585082475865 1 4
22.3731119646976 3 4
138.225919754643 2 4
198.094652569591 1 3

Regressions with 3 variable(s) (MallowsCP)
3.01823347348735 1 2 4
3.04127972306417 1 2 3
3.49682444234848 1 3 4
7.33747399565598 2 3 4

Regressions with 4 variable(s) (MallowsCP)
5 1 2 3 4

Regressions with 1 variable(s) (MallowsCP)
Variable Coefficient Standard Error t-statistic p-value

1.000 1.468 0.121 12.105 0.000
2.000 0.662 0.046 14.442 0.000

Regressions with 2 variable(s) (MallowsCP)
Variable Coefficient Standard Error t-statistic p-value

1.000 1.452 0.117 12.410 0.000
2.000 0.416 0.186 2.242 0.052
4.000 -0.237 0.173 -1.365 0.205

Regressions with 3 variable(s) (MallowsCP)
Variable Coefficient Standard Error t-statistic p-value

1.000 1.696 0.205 8.290 0.000
2.000 0.657 0.044 14.851 0.000
3.000 0.250 0.185 1.354 0.209

Regression SelectionRegression Class • 365



SelectionRegression.Criterion Enumeration

Summary

Criterion Methods.

public enumeration Imsl.Stat.SelectionRegression.Criterion

Fields

AdjustedRSquared
public Imsl.Stat.SelectionRegression.Criterion AdjustedRSquared

Description

Indicates R2
a (adjusted R2) criterion regression.

MallowsCP
public Imsl.Stat.SelectionRegression.Criterion MallowsCP

Description

Indicates Mallow’s Cp criterion regression.

RSquared
public Imsl.Stat.SelectionRegression.Criterion RSquared

Description

Indicates R2 criterion regression.

SelectionRegression.SummaryStatistics Class

Summary

SummaryStatistics contains statistics related to the regression coefficients.

public class Imsl.Stat.SelectionRegression.SummaryStatistics

Methods

GetCoefficientStatistics
virtual public double[,] GetCoefficientStatistics(int regressionIndex)
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Description

Returns the coefficients statistics for each of the best regressions found for each subset
considered.

The value set using Imsl.Stat.SelectionRegression.MaximumBestFound (p. 355)
determines the total number of best regressions to find. The number of best regression is
equal to (Imsl.Stat.SelectionRegression.MaximumSubsetSize (p. 356) x
MaximumBestFound), if criterion RSquared is specified or it is equal to MaximumBestFound
if either MallowsCP or AdjustedRSquared is specified.

Each row contains statistics related to the regression coefficients of the best models. The
regressions are ordered so that the better regressions appear first. The statistic in the
columns are as follows (inferences are conditional on the selected model):

Column Description
0 variable number
1 coefficient estimate
2 estimated standard error of the estimate
3 t-statistic for the test that the coefficient is 0
4 p-value for the two-sided t test

There will be 0 to (MaximumSubsetSize x MaximumBestFound - 1) best regressions if
RSquared is specified or 0 to (MaximumBestFound - 1) if either MallowsCP or
AdjustedRSquared is specified.

See Also: RSquared (p. 366), AdjustedRSquared (p. 366), MallowsCP (p. 366)

Parameter

regressionIndex – An int which specifies the index of the best regression statistics
to return.

Returns

A two-dimensional double array containing the regression statistics.

GetCriterionValues
virtual public double[] GetCriterionValues(int numVariables)

Description

Returns an array containing the values of the best criterion for the number of variables
considered.

Parameter

numVariables – An int which specifies the number of variables considered.

Returns

A double array with Imsl.Stat.SelectionRegression.MaximumSubsetSize (p. 356) rows
and nCandidate columns containing the criterion values.
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GetIndependentVariables
virtual public int[,] GetIndependentVariables(int numVariables)

Description

Returns the identification numbers for the independent variables for the number of
variables considered and in the same order as the criteria returned by
Imsl.Stat.SelectionRegression.SummaryStatistics.GetCriterionValues(System.Int32) (p.
367).

Parameter

numVariables – An int which specifies the number of variables considered.

Returns

An int array containing the identification numbers for the independent variables
considered.

StepwiseRegression Class

Summary

Builds multiple linear regression models using forward selection, backward selection, or stepwise
selection.

public class Imsl.Stat.StepwiseRegression

Properties

ANOVA
virtual public Imsl.Stat.ANOVA ANOVA {get; }

Description

An analysis of variance table and related statistics.

CoefficientTTests
virtual public Imsl.Stat.StepwiseRegression.CoefficientTTestsValue
CoefficientTTests {get; }
Description

The student-t test statistics for the regression coefficients.

CoefficientVIF
virtual public double[] CoefficientVIF {get; }
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Description

The variance inflation factors for the final model in this invocation.

The elements are in the same order as the independent variables in x (or, if the covariance
matrix is specified, the elements are in the same order as the variables in cov). Each
element corresponding to a variable not in the model contains statistics for a model which
includes the variables of the final model and the variables corresponding to the element in
question.

The square of the multiple correlation coefficient for the i-th regressor after all others can
be obtained from the i-th element for the returned array by the following formula:

1.0− 1.0
V IF

CovariancesSwept
virtual public double[,] CovariancesSwept {get; }

Description

Results after cov has been swept for the columns corresponding to the variables in the
model.

The estimated variance-covariance matrix of the estimated regression coefficients in the
final model can be obtained by extracting the rows and columns corresponding to the
independent variables in the final model and multiplying the elements of this matrix by
the error mean square.

Force
virtual public int Force {set; }

Description

Forces independent variables into the model based on their level assigned from Levels.

Variables with levels 1, 2, ..., Force are forced into the model as independent variables.

See Also: Levels (p. 370)

History
virtual public double[] History {get; }

Description

The stepwise regression history for the independent variables.

The last element corresponds to the dependent variable.

History[i] Status of i-th Variable
0.0 This variable has never been added to the model.
0.5 This variable was added into the model during initialization.
k > 0.0 This variable was added to the model during the k-th step.
k < 0.0 This variable was deleted from model during the k-th step
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See Also: Levels (p. 370)

Levels
virtual public int[] Levels {set; }

Description

The levels of priority for variables entering and leaving the regression.

Each variable is assigned a positive value which indicates its level of entry into the model.
A variable can enter the model only after all variables with smaller nonzero levels of entry
have entered. Similarly, a variable can only leave the model after all variables with higher
levels of entry have left. Variables with the same level of entry compete for entry
(deletion) at each step. A value Levels[i]=0 means the i-th variable never enters the
model. A value Levels[i]=-1 means the i-th variable is the dependent variable. The last
element in Levels must correspond to the dependent variable, except when the
variance-covariance or sum-of-squares and crossproducts matrix is supplied.

Default: 1, 1, ..., 1, -1 where -1 corresponds to the dependent variable.

See Also: Force (p. 369)

Method
virtual public Imsl.Stat.StepwiseRegression.Direction Method {set; }

Description

Specifies the stepwise selection method, forward, backward, or stepwise Regression.

Fields Forward, Backward, and Stepwise should be used.

Default: Direction.Stepwise.

See Also: Forward (p. 378), Backward (p. 378), Stepwise (p. 378)

PValueIn
virtual public double PValueIn {set; }

Description

Defines the largest p-value for variables entering the model.

Variables with p-value less than PValueIn may enter the model. Backward regression does
not use this value.

Default: PValueIn = 0.05.

PValueOut
virtual public double PValueOut {set; }
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Description

Defines the smallest p-value for removing variables.

Variables with p-values greater than PValueOut may leave the model. PValueOut must be
greater than or equal to PValueIn. A common choice for PValueOut is 2*PValueIn.
Forward regression does not use this value.

Default: PValueOut = 0.10.

Swept
virtual public double[] Swept {get; }

Description

An array containing information indicating whether or not a particular variable is in the
model.

The last element corresponds to the dependent variable. A +1 in the i-th position
indicates that the variable is in the selected model. A -1 indicates that the variable is not
in the selected model.

See Also: Levels (p. 370)

Tolerance
virtual public double Tolerance {set; }

Description

The tolerance used to detect linear dependence among the independent variables.

Default: Tolerance = 2.2204460492503e-16.

Constructors

StepwiseRegression
public StepwiseRegression(double[,] x, double[] y)

Description

Creates a new instance of StepwiseRegression.

Parameters

x – A double matrix of nObs by nVars, where nObs is the number of observations
and nVars is the number of independent variables.

y – A double array containing the observations of the dependent variable.

Imsl.Stat.TooManyObsDeletedException id is thrown if more observations have been
deleted than were originally entered

Imsl.Stat.MoreObsDelThanEnteredException id is thrown if more observations are
being deleted from the output covariance matrix than were originally entered
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Imsl.Stat.DiffObsDeletedException id is thrown if different observations are being
deleted from the return matrix than were originally entered

StepwiseRegression
public StepwiseRegression(double[,] x, double[] y, double[] weights)

Description

Creates a new instance of weighted StepwiseRegression.

Parameters

x – A double matrix of nObs by nVars, where nObs is the number of observations
and nVars is the number of independent variables.

y – A double array containing the observations of the dependent variable.

weights – A double array containing the weight for each observation of x.

Imsl.Stat.TooManyObsDeletedException id is thrown if more observations have been
deleted than were originally entered

Imsl.Stat.MoreObsDelThanEnteredException id is thrown if more observations are
being deleted from the output covariance matrix than were originally entered

Imsl.Stat.DiffObsDeletedException id is thrown if different observations are being
deleted from the return matrix than were originally entered

Imsl.Stat.NegativeWeightException id is thrown if a weight is less than zero.

StepwiseRegression
public StepwiseRegression(double[,] x, double[] y, double[] weights,
double[] frequencies)

Description

Creates a new instance of weighted StepwiseRegression using observation frequencies.

Parameters

x – A double matrix of nObs by nVars, where nObs is the number of observations
and nVars is the number of independent variables.

y – A double array containing the observations of the dependent variable.

weights – A double array containing the weight for each observation of x.

frequencies – A double array containing the frequency for each row of x.

Imsl.Stat.TooManyObsDeletedException id is thrown if more observations have been
deleted than were originally entered

Imsl.Stat.MoreObsDelThanEnteredException id is thrown if more observations are
being deleted from the output covariance matrix than were originally entered

Imsl.Stat.DiffObsDeletedException id is thrown if different observations are being
deleted from the return matrix than were originally entered
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Imsl.Stat.NegativeWeightException id is thrown if a weight is less than zero.
Imsl.Stat.NegativeFreqException id is thrown if a frequency is less than zero.

StepwiseRegression
public StepwiseRegression(double[,] cov, int nObservations)

Description

Creates a new instance of StepwiseRegression from a user-supplied variance-covariance
matrix.

cov can be computed using the Imsl.Stat.Covariances (p. 257) class.

Parameters

cov – A double matrix containing a variance-covariance or sum-of- squares and
crossproducts matrix, in which the last column must correspond to the dependent
variable.
nObservations – An int containing the number of observations associated with cov.

Method

Compute
virtual public void Compute()

Description

Builds the multiple linear regression models using forward selection, backward selection,
or stepwise selection.

Imsl.Stat.NoVariablesEnteredException id is thrown if no variables entered the
model. All elements of the Imsl.Stat.StepwiseRegression.ANOVA (p. 368) table are
set to NaN

Imsl.Stat.CyclingIsOccurringException id is thrown if cycling occurs

Description

Class StepwiseRegression builds a multiple linear regression model using forward selection,
backward selection, or forward stepwise (with a backward glance) selection.

Levels of priority can be assigned to the candidate independent variables using
Imsl.Stat.StepwiseRegression.Levels (p. 370). All variables with a priority level of 1 must enter
the model before variables with a priority level of 2. Similarly, variables with a level of 2 must
enter before variables with a level of 3, etc. Variables also can be forced into the model using
Imsl.Stat.StepwiseRegression.Force (p. 369). Note that specifying ”force” without also
specifying levels of priority will result in all variables being forced into the model.

Typically, the intercept is forced into all models and is not a candidate variable. In this case, a
sum-of-squares and crossproducts matrix for the independent and dependent variables
corrected for the mean is required. Other possibilities are as follows:
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1. The intercept is not in the model. A raw (uncorrected) sum-of-squares and crossproducts
matrix for the independent and dependent variables is required as input in cov. Argument
nObservations must be set to one greater than the number of observations.

2. An intercept is a candidate variable. A raw (uncorrected) sum-of-squares and
crossproducts matrix for the constant regressor (=1), independent and dependent
variables are required for cov. In this case, cov contains one additional row and column
corresponding to the constant regressor. This row/column contains the sum-of-squares
and crossproducts of the constant regressor with the independent and dependent
variables. The remaining elements in cov are the same as in the previous case. Argument
nObservations must be set to one greater than the number of observations.

The stepwise regression algorithm is due to Efroymson (1960). StepwiseRegression uses
sweeps of the covariance matrix (input in cov, if the covariance matrix is specified, or generated
internally) to move variables in and out of the model (Hemmerle 1967, Chapter 3). The
SWEEP operator discussed in Goodnight (1979) is used. A description of the stepwise
algorithm is also given by Kennedy and Gentle (1980, pp. 335-340). The advantage of stepwise
model building over all possible regression (SelectionRegression) is that it is less demanding
computationally when the number of candidate independent variables is very large. However,
there is no guarantee that the model selected will be the best model (highest R2) for any subset
size of independent variables.

Example: StepwiseRegression

This example uses a data set from Draper and Smith (1981, pp. 629-630). Method compute is
invoked to find the best regression for each subset size using the R2 criterion. By default,
stepwise regression is performed.

using System;
using Imsl.Math;
using Imsl.Stat;

public class StepwiseRegressionEx1
{

public static void Main(String[] args)
{

double[,] x = {
{7.0, 26.0, 6.0, 60.0},
{1.0, 29.0, 15.0, 52.0},
{11.0, 56.0, 8.0, 20.0},
{11.0, 31.0, 8.0, 47.0},
{7.0, 52.0, 6.0, 33.0},
{11.0, 55.0, 9.0, 22.0},
{3.0, 71.0, 17.0, 6.0},
{1.0, 31.0, 22.0, 44.0},
{2.0, 54.0, 18.0, 22.0},
{21.0, 47.0, 4.0, 26},
{1.0, 40.0, 23.0, 34.0},
{11.0, 66.0, 9.0, 12.0},
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{10.0, 68.0, 8.0, 12.0}};

double[] y = new double[]{78.5, 74.3, 104.3, 87.6,
95.9, 109.2, 102.7, 72.5,
93.1, 115.9, 83.8, 113.3, 109.4};

StepwiseRegression sr = new StepwiseRegression(x, y);
sr.Compute();

PrintMatrix pm = new PrintMatrix();
PrintMatrixFormat pmf = new PrintMatrixFormat();

pmf.NumberFormat = "0.000";
pm.SetTitle("*** ANOVA *** "); pm.Print(sr.ANOVA.GetArray());

StepwiseRegression.CoefficientTTestsValue coefT = sr.CoefficientTTests;
double[,] coef = new double[4,4];
for (int i = 0; i < 4; i++)
{

coef[i,0] = coefT.GetCoefficient(i);
coef[i,1] = coefT.GetStandardError(i);
coef[i,2] = coefT.GetTStatistic(i);
coef[i,3] = coefT.GetPValue(i);

}
pm.SetTitle("*** Coef *** "); pm.Print(pmf, coef);
pm.SetTitle("*** Swept *** "); pm.Print(sr.Swept);
pm.SetTitle("*** History *** "); pm.Print(sr.History);
pm.SetTitle("*** VIF *** "); pm.Print(sr.CoefficientVIF);
pm.SetTitle("*** CovS *** "); pm.Print(pmf, sr.CovariancesSwept);

}
}

Output

*** ANOVA ***
0

0 2
1 10
2 12
3 2641.00096476634
4 74.7621121567348
5 2715.76307692308
6 1320.50048238317
7 7.47621121567348
8 176.62696308189
9 1.58106023181431E-08
10 97.2471047716931
11 96.6965257260318
12 2.73426612012684
13 NaN
14 NaN

*** Coef ***
0 1 2 3
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0 1.440 0.138 10.403 0.000
1 0.416 0.186 2.242 0.052
2 -0.410 0.199 -2.058 0.070
3 -0.614 0.049 -12.621 0.000

*** Swept ***
0

0 1
1 -1
2 -1
3 1
4 -1

*** History ***
0

0 2
1 0
2 0
3 1
4 0

*** VIF ***
0

0 1.0641052101769
1 18.780308640958
2 3.45960147891528
3 1.0641052101769

*** CovS ***
0 1 2 3 4

0 0.003 -0.029 -0.946 0.000 1.440
1 -0.029 154.720 -142.800 0.907 64.381
2 -0.946 -142.800 142.302 0.070 -58.350
3 0.000 0.907 0.070 0.000 -0.614
4 1.440 64.381 -58.350 -0.614 74.762

StepwiseRegression.CoefficientTTestsValue Class

Summary

CoefficientTTestsValue contains statistics related to the student-t test, for each regression
coefficient.

public class Imsl.Stat.StepwiseRegression.CoefficientTTestsValue
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Methods

GetCoefficient
virtual public double GetCoefficient(int index)

Description

Returns the estimate for a coefficient of the independent variable.

index must be between 1 and the number of independent variables.

Parameter

index – An int which specifies the index of the coefficient whose estimate is to be
returned.

Returns

A double which contains the estimate for the coefficient.

GetPValue
virtual public double GetPValue(int index)

Description

Returns the p-value for the two-sided test H0 : β = 0 vs. H1 : β 6= 0.

index must be between 1 and the number of independent variables.

Parameter

index – An int which specifies the index of the coefficient whose p-value is to be
returned.

Returns

A double which contains the estimated p-value for the coefficient.

GetStandardError
virtual public double GetStandardError(int index)

Description

Returns the estimated standard error for a coefficient estimate.

index must be between 1 and the number of independent variables.

Parameter

index – An int which specifies the index of the coefficient whose standard error
estimate is to be returned.

Returns

A double which contains the estimated standard error for the coefficient.

GetTStatistic
virtual public double GetTStatistic(int index)
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Description

Returns the student-t test statistic for testing the i-th coefficient equal to zero
(βindex = 0).

index must be between 1 and the number of independent variables.

Parameter

index – An int which specifies the index of the coefficient whose t-test statistic is to
be returned.

Returns

A double which contains the estimated t-test statistic for the coefficient.

StepwiseRegression.Direction Enumeration

Summary

Direction indicator.

public enumeration Imsl.Stat.StepwiseRegression.Direction

Fields

Backward
public Imsl.Stat.StepwiseRegression.Direction Backward

Description

Indicates backward regression. An attempt is made to remove a variable from the model.
A variable is removed if its p-value exceeds PValueOut. During initialization, all
candidate independent variables enter the model.

Forward
public Imsl.Stat.StepwiseRegression.Direction Forward

Description

Indicates forward regression. An attempt is made to add a variable to the model. A
variable is added if its p-value is less than PValueIn. During intitialization, only forced
variables enter the model.

Stepwise
public Imsl.Stat.StepwiseRegression.Direction Stepwise
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Description

Indicates stepwise regression. A backward step is attempted. After the backward step, a
forward step is attempted. This is a stepwise step. Any forced variables enter the model
during initialization.

UserBasisRegression Class

Summary

Generates summary statistics using user-supplied functions in a nonlinear regression model.

public class Imsl.Stat.UserBasisRegression

Property

ANOVA
public Imsl.Stat.ANOVA ANOVA {get; }
Description

An analysis of variance table and related statistics.

Constructor

UserBasisRegression
public UserBasisRegression(Imsl.Stat.IRegressionBasis basis, int nBasis,
bool hasIntercept)

Description

Constructs a UserBasisRegression object.

Parameters

basis – A IRegressionBasis basis function supplied by the user.

nBasis – A int which specifies the number of basis functions.

hasIntercept – A boolean which specifies whether or not the model has an
intercept.

Methods

GetCoefficients
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public double[] GetCoefficients()

Description

Returns the regression coefficients.

If hasIntercept is false its length is equal to the number of variables. If hasIntercept is
true then its length is the number of variables plus one and the 0-th entry is the value of
the intercept.

Returns

A double array containing the regression coefficients.

Imsl.Math.SingularMatrixException id is thrown when the regression matrix is
singular

Update
public void Update(double x, double y, double w)

Description

Adds a new observation and associated weight to the IRegressionBasis object.

Parameters

x – A double containing the independent (explanatory) variable.

y – A double containing the dependent (response) variable.

w – A double representing the weight.

Example: Regression with User-supplied Basis Functions

In this example, we fit the function 1 + sin(x) + 7 * sin(3x) with no error introduced. The
function is evaluated at 90 equally spaced points on the interval [0, 6]. Four basis functions are
used, sin(kx) for k = 1,...,4 with no intercept.

using System;
using Imsl.Stat;
using Imsl.Math;

public class UserBasisRegressionEx1 : IRegressionBasis
{

public double Basis(int index, double x)
{

return System.Math.Sin((index + 1) * x);
}

public static void Main(String[] args)
{

double[] coef = new double[4];
IRegressionBasis basis = new UserBasisRegressionEx1();
UserBasisRegression ubr =

new UserBasisRegression(basis, 4, false);
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for (int k = 0; k < 90; k++)
{

double x = 6.0 * k / 89.0;
double y = 1.0 + Math.Sin(x) + 7.0 * Math.Sin(3.0 * x);
ubr.Update(x, y, 1.0);

}
coef = ubr.GetCoefficients();
new PrintMatrix

("The regression coefficients are:").Print(coef);
}

}

Output

The regression coefficients are:
0

0 1.01010532376649
1 0.0199013147736359
2 7.02909074858517
3 0.0374000977854433

IRegressionBasis Interface

Summary

Interface for user supplied function to UserBasisRegression object.

public interface Imsl.Stat.IRegressionBasis

Method

Basis
abstract public double Basis(int index, double x)

Description

Basis function for the nonlinear least-squares function.

Parameters

index – A int which specifies the index of the basis function to be evaluated at x.

x – A double which specifies the point at which the function is to be evaluated.
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Returns

A double which specifies the returned value of the function at x.
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Chapter 14: Analysis of Variance

Types

class ANOVA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
class ANOVAFactorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
enumeration ANOVAFactorial.ErrorCalculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
class MultipleComparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

Usage Notes

The classes described in this chapter are for commonly-used experimental designs. Typically,
responses are stored in the input vector y in a pattern that takes advantage of the balanced
design structure. Consequently, the full set of model subscripts is not needed to identify each
response. The classes assume the usual pattern, which requires that the last model subscript
change most rapidly, followed by the model subscript next in line, and so forth, with the first
subscript changing at the slowest rate. This pattern is referred to as lexicographical ordering.

ANOVA class allows missing responses if confidence interval information is not requested.
Double.NaN (Not a Number) is the missing value code used by these classes. Any element of y
that is missing must be set to NaN. Other classes described in this chapter do not allow missing
responses because the classes generally deal with balanced designs.

As a diagnostic tool for determination of the validity of a model, classes in this chapter
typically perform a test for lack of fit when n(n > 1) responses are available in each cell of the
experimental design.

ANOVA Class

Summary

Analysis of Variance table and related statistics.
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public class Imsl.Stat.ANOVA

Properties

AdjustedRSquared
public double AdjustedRSquared {get; }
Description

Returns the adjusted R-squared (in percent).

CoefficientOfVariation
public double CoefficientOfVariation {get; }
Description

Returns the coefficient of variation (in percent).

DegreesOfFreedomForError
public double DegreesOfFreedomForError {get; }
Description

Returns the degrees of freedom for error.

DegreesOfFreedomForModel
public double DegreesOfFreedomForModel {get; }
Description

Returns the degrees of freedom for the model.

ErrorMeanSquare
public double ErrorMeanSquare {get; }
Description

Returns the error mean square.

F
public double F {get; }
Description

Returns the F statistic.

MeanOfY
public double MeanOfY {get; }
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Description

Returns the mean of the response (dependent variable).

ModelErrorStdev
public double ModelErrorStdev {get; }
Description

Returns the estimated standard deviation of the model error.

ModelMeanSquare
public double ModelMeanSquare {get; }
Description

Returns the model mean square.

P
public double P {get; }
Description

Returns the p-value.

RSquared
public double RSquared {get; }
Description

Returns the R-squared (in percent).

SumOfSquaresForError
public double SumOfSquaresForError {get; }
Description

Returns the sum of squares for error.

SumOfSquaresForModel
public double SumOfSquaresForModel {get; }
Description

Returns the sum of squares for model.

TotalDegreesOfFreedom
public double TotalDegreesOfFreedom {get; }
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Description

Returns the total degrees of freedom.

TotalMissing
public int TotalMissing {get; }
Description

Returns the total number of missing values.

Elements of Y containing NaN (not a number) are omitted from the computations.

TotalSumOfSquares
public double TotalSumOfSquares {get; }
Description

Returns the total sum of squares.

Constructors

ANOVA
public ANOVA(double[][] y)

Description

Analyzes a one-way classification model.

The rows in y correspond to observation groups. Each row of y can contain a different
number of observations.

Parameter

y – Two-dimension double array containing the responses.

ANOVA
public ANOVA(double dfr, double ssr, double dfe, double sse, double gmean)

Description

Construct an analysis of variance table and related statistics. Intended for use by the
LinearRegression class.

If the grand mean is not known it may be set to not-a-number.

Parameters

dfr – A double representing the degrees of freedom for the model.
ssr – A double representing the sum of squares for the model.
dfe – A double representing the degrees of freedom for the error.
sse – A double representing the sum of squares for the error.
gmean – A double representing the grand mean.
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Methods

GetArray
public double[] GetArray()

Description

Returns the ANOVA values as an array.

Returns

A double[15] array containing the following values.

index Value
0 Degrees of freedom for model
1 Degrees of freedom for error
2 Total degrees of freedom
3 Sum of squares for model
4 Sum of squares for error
5 Total sum of squares
6 Model mean square
7 Error mean square
8 F statistic
9 p-value
10 R-squared (in percent)
11 Adjusted R-squared (in percent)
12 Estimated standard deviation of the model error
13 Mean of the response (dependent variable)
14 Coefficient of variation (in percent)

GetDunnSidak
public double GetDunnSidak(int i, int j)

Description

Computes the confidence intervals on i-th mean - j-th mean using the Dunn-Sidak
method.

Parameters

i – An int indicating the i-th mean, µi.

j – An int containing the j-th mean µj .

Returns

The confidence intervals on i-th mean - j-th mean using the Dunn-Sidak method.

GetGroupInformation
public double[][] GetGroupInformation()
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Description

Returns information concerning the groups.

Row i contains information pertaining to the i-th group. The information in the columns
is as follows:

Column Information
0 Group Number
1 Number of nonmissing observations
2 Group Mean
3 Group Standard Deviation

Returns

A two-dimensional double array containing information concerning the groups.

Example: ANOVA

This example computes a one-way analysis of variance for data discussed by Searle (1971, Table
5.1, pages 165-179). The responses are plant weights for 6 plants of 3 different types - 3 normal,
2 off-types, and 1 aberrant. The 3 normal plant weights are 101, 105, and 94. The 2 off-type
plant weights are 84 and 88. The 1 aberrant plant weight is 32. Note in the results that for the
group with only one response, the standard deviation is undefined and is set to NaN (not a
number).

using System;
using Imsl.Stat;
using Imsl.Math;

public class ANOVAEx1
{

public static void Main(String[] args)
{

double[][] y = { new double[]{101, 105, 94},
new double[]{84, 88},
new double[]{32}};

ANOVA anova = new ANOVA(y);
double[] aov = anova.GetArray();

Console.Out.WriteLine
("Degrees Of Freedom For Model = " + aov[0]);

Console.Out.WriteLine
("Degrees Of Freedom For Error = " + aov[1]);

Console.Out.WriteLine
("Total (Corrected) Degrees Of Freedom = " + aov[2]);

Console.Out.WriteLine("Sum Of Squares For Model = " + aov[3]);
Console.Out.WriteLine("Sum Of Squares For Error = " + aov[4]);
Console.Out.WriteLine

("Total (Corrected) Sum Of Squares = " + aov[5]);
Console.Out.WriteLine("Model Mean Square = " + aov[6]);
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Console.Out.WriteLine("Error Mean Square = " + aov[7]);
Console.Out.WriteLine("F statistic = " + aov[8]);
Console.Out.WriteLine("P value= " + aov[9]);
Console.Out.WriteLine("R Squared (in percent) = " + aov[10]);
Console.Out.WriteLine

("Adjusted R Squared (in percent) = " + aov[11]);
Console.Out.WriteLine

("Model Error Standard deviation = " + aov[12]);
Console.Out.WriteLine("Mean Of Y = " + aov[13]);
Console.Out.WriteLine

("Coefficient Of Variation (in percent) = " + aov[14]);
Console.Out.WriteLine

("Total number of missing values = " + anova.TotalMissing);

PrintMatrixFormat pmf = new PrintMatrixFormat();
String[] labels =

new String[]{"Group", "N", "Mean", "Std. Deviation"};
pmf.SetColumnLabels(labels);
pmf.NumberFormat = null;
new PrintMatrix("Group Information").Print(pmf,

(Object)anova.GetGroupInformation());
}

}

Output

Degrees Of Freedom For Model = 2
Degrees Of Freedom For Error = 3
Total (Corrected) Degrees Of Freedom = 5
Sum Of Squares For Model = 3480
Sum Of Squares For Error = 70
Total (Corrected) Sum Of Squares = 3550
Model Mean Square = 1740
Error Mean Square = 23.3333333333333
F statistic = 74.5714285714286
P value= 0.00276888252534978
R Squared (in percent) = 98.0281690140845
Adjusted R Squared (in percent) = 96.7136150234742
Model Error Standard deviation = 4.83045891539648
Mean Of Y = 84
Coefficient Of Variation (in percent) = 5.75054632785295
Total number of missing values = 0

Group Information
Group N Mean Std. Deviation

0 0 3 100 5.56776436283002
1 1 2 86 2.82842712474619
2 2 1 32 NaN
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ANOVAFactorial Class

Summary

Analyzes a balanced factorial design with fixed effects.

public class Imsl.Stat.ANOVAFactorial

Properties

ErrorIncludeType
public Imsl.Stat.ANOVAFactorial.ErrorCalculation ErrorIncludeType {get; set;
}
Description

The error included type.

ANOVAFactorial.ErrorCalculation.Pure, the default option, indicates factor
nSubscripts is error. Its main effect and all its interaction effects are pooled into the
error with the other (ModelOrder + 1)-way and higher-way interactions.

ANOVAFactorial.ErrorCalculation.Pooled indicates factor nSubscripts is not error.
Only (ModelOrder + 1)-way and higher-way interactions are included in the error.

ModelOrder
public int ModelOrder {get; set; }
Description

The number of factors to be included in the highest-way interaction in the model.

ModelOrder must be in the interval [1, nSubscripts-1]. For example:

ModelOrder of 1 indicates that a main effect model will be analyzed.

ModelOrder of 2 indicates that two-way interactions will be included in the model.

Default: ModelOrder = nSubscripts-1

Constructor

ANOVAFactorial
public ANOVAFactorial(int nSubscripts, int[] nLevels, double[] y)

Description

Constructor for ANOVAFactorial.

y must not contain NaN for any of its elements; i.e., missing values are not allowed.
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Parameters

nSubscripts – An int scalar containing the number of subscripts. Number of
factors in the model + 1 (for the error term).

nLevels – An int array of length nSubscripts containing the number of levels for
each of the factors for the first nSubscripts-1 elements. nLevels[nSubscripts-1]
is the number of observations per cell.

y – A double array of length nLevels[0] * nLevels[1] * ... *
nLevels[nSubscripts-1] containing the responses.

System.ArgumentException id is thrown if nLevels.length, and y.length are not
consistent

Methods

Compute
public double Compute()

Description

Analyzes a balanced factorial design with fixed effects.

Returns

A double scalar containing the p-value for the overall F test.

GetANOVATable
public double[] GetANOVATable()

Description

Returns the analysis of variance table.

The analysis of variance statistics are given as follows:
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Element Analysis of Variance Statistics
0 Degrees of freedom for the model
1 Degrees of freedom for error
2 Total (corrected) degrees of freedom
3 Sum of squares for the model
4 Sum of squares for error
5 Total (corrected) sum of squares
6 Model mean square
7 Error mean square
8 Overall F-statistic
9 p-value
10 R2 (in percent)
11 Adjusted R2 (in percent)
12 Estimate of the standard deviation
13 Overall mean of y
14 Coefficient of variation (in percent)

Returns

A double array containing the analysis of variance table.

GetMeans
public double[] GetMeans()

Description

Returns the subgroup means.

Returns

A double array containing the subgroup means.

GetTestEffects
public double[,] GetTestEffects()

Description

Returns statistics relating to the sums of squares for the effects in the model.

Here,

NEF =
(
n

1

)
+
(
n

2

)
+ · · ·+

(
n

min(n, |model order|)

)

where n is given by nSubscripts if ANOVAFactorial.ErrorCalculation.Pooled is
specified; otherwise, nSubscripts-1. Suppose the factors are A, B, C, and error. With
ModelOrder = 3, rows 0 through NEF-1 would correspond to A, B, C, AB, AC, BC, and
ABC, respectively.

The columns of the output matrix are as follows:
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Column Description
0 Degrees of freedom
1 Sum of squares
2 F-statistic
3 p-value

Returns

A double matrix containing statistics relating to the sums of squares for the effects in the
model.

Description

Class ANOVAFactorial performs an analysis for an n-way classification design with balanced
data. For balanced data, here must be an equal number of responses in each cell of the n-way
layout. The effects are assumed to be fixed effects. The model is an extension of the two-way
model to include n factors. The interactions (two-way, three-way, up to n-way) can be included
in the model, or some of the higher-way interactions can be pooled into error. The ModelOrder
property specifies the number of factors to be included in the highest-way interaction. For
example, if three-way and higher-way interactions are to be pooled into error, set ModelOrder
= 2. (By default, ModelOrder = nSubscripts - 1 with the last subscript being the error
subscript.) Pure indicates there are repeated responses within the n-way cell; Pooled indicates
otherwise.

Class ANOVAFactorial requires the responses as input into a single vector y in lexicographical
order, so that the response subscript associated with the first factor varies least rapidly,
followed by the subscript associated with the second factor, and so forth. Hemmerle (1967,
Chapter 5) discusses the computational method.

Example 1: Two-way Analysis of Variance

A two-way analysis of variance is performed with balanced data discussed by Snedecor and
Cochran (1967, Table 12.5.1, p. 347). The responses are the weight gains (in grams) of rats
that were fed diets varying in the source (A) and level (B) of protein. The model is

yijk = µ+ αi + βj + γij + εijk i = 1, 2; j = 1, 2, 3; k = 1, 2, ... , 10

where

2∑
i=1

αi = 0;
3∑

j=1

βj = 0;
2∑

i=1

γij = 0 for j = 1, 2, 3;

and

3∑
j=1

γij = 0 for j = 1, 2
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The first responses in each cell in the two-way layout are given in the following table:

Protein Source (A)
Protein Level
(B)

Beef Cereal Pork

High 73, 102, 118, 104,
81, 107, 100, 87,
117, 111

98, 74, 56, 111, 95,
88, 82, 77, 86, 92

94, 79, 96, 98, 102,
102, 108, 91, 120,
105

Low 90, 76, 90, 64, 86,
51, 72, 90, 95, 78

107, 95, 97, 80, 98,
74, 74, 67, 89, 58

49, 82, 73, 86, 81,
97, 106, 70, 61, 82

using System;
using Imsl.Stat;
using PrintMatrix = Imsl.Math.PrintMatrix;

public class ANOVAFactorialEx1
{

public static void Main(String[] args)
{

int nSubscripts = 3;
int[] nLevels = new int[]{3, 2, 10};
double[] y = new double[]{ 73.0, 102.0, 118.0,

104.0, 81.0, 107.0,
100.0, 87.0, 117.0,
111.0, 90.0, 76.0,
90.0, 64.0, 86.0,
51.0, 72.0, 90.0,
95.0, 78.0, 98.0,
74.0, 56.0, 111.0,
95.0, 88.0, 82.0,
77.0, 86.0, 92.0,
107.0, 95.0, 97.0,
80.0, 98.0, 74.0,
74.0, 67.0, 89.0,
58.0, 94.0, 79.0,
96.0, 98.0, 102.0,
102.0, 108.0, 91.0,
120.0, 105.0, 49.0,
82.0, 73.0, 86.0,
81.0, 97.0, 106.0,
70.0, 61.0, 82.0};

ANOVAFactorial af =
new ANOVAFactorial(nSubscripts, nLevels, y);

Console.Out.WriteLine
("P-value = " + af.Compute().ToString("0.000000"));

}
}

394 • ANOVAFactorial Class IMSL C# Numerical Library



Output

P-value = 0.002299

Example 2: Two-way Analysis of Variance

In this example, the same model and data is fit as in the example 1, but additional information
is printed.

using System;
using Imsl.Stat;

public class ANOVAFactorialEx2
{

public static void Main(String[] args)
{

int nSubscripts = 3, i;
int[] nLevels = new int[]{3, 2, 10};
double[] y = new double[]{ 73.0, 102.0, 118.0,

104.0, 81.0, 107.0,
100.0, 87.0, 117.0,
111.0, 90.0, 76.0,
90.0, 64.0, 86.0,
51.0, 72.0, 90.0,
95.0, 78.0, 98.0,
74.0, 56.0, 111.0,
95.0, 88.0, 82.0,
77.0, 86.0, 92.0,
107.0, 95.0, 97.0,
80.0, 98.0, 74.0,
74.0, 67.0, 89.0,
58.0, 94.0, 79.0,
96.0, 98.0, 102.0,
102.0, 108.0, 91.0,
120.0, 105.0, 49.0,
82.0, 73.0, 86.0,
81.0, 97.0, 106.0,
70.0, 61.0, 82.0};

String[] labels =
new String[]{"degrees of freedom for the model" +
" ", "degrees of freedom for error" +
" ",
"total (corrected) degrees of freedom ",
"sum of squares for the model ",
"sum of squares for error ",
"total (corrected) sum of squares ",
"model mean square ",
"error mean square ",
"F-statistic ",
"p-value ",
"R-squared (in percent) ",
"Adjusted R-squared (in percent) ",
"est. standard deviation of the model error ",
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"overall mean of y ",
"coefficient of variation (in percent) "};

String[] rlabels = new String[]{"A", "B", "A*B"};
String[] mlabels = new String[]{"grand mean ",

"A1 ", "A2 ", "A3 ",
"B1 ", "B2 ", "A1*B1 ",
"A1*B2 ", "A2*B1 ", "A2*B2 ",
"A3*B1 ", "A3*B2 "};

ANOVAFactorial af =
new ANOVAFactorial(nSubscripts, nLevels, y);

Console.Out.WriteLine
("P-value = " + af.Compute().ToString("0.000000"));

Console.Out.WriteLine
("\n * * * Analysis of Variance * * *");

double[] anova = af.GetANOVATable();
for (i = 0; i < anova.Length; i++)
{

Console.Out.WriteLine
(labels[i] + " " + anova[i].ToString("0.0000"));

}

Console.Out.WriteLine
("\n * * * Variation Due to the " + "Model * * *");

Console.Out.WriteLine
("Source\tDF\tSum of Squares\tMean Square" +
"\tProb. of Larger F");

double[,] te = af.GetTestEffects();
for (i = 0; i < te.GetLength(0); i++)
{

Console.Out.WriteLine(
rlabels[i] + "\t" +
te[i,0].ToString("0.0000") + "\t" +
te[i,1].ToString("0.0000") + "\t" +
te[i,2].ToString("0.0000") + "\t\t" +
te[i,3].ToString("0.0000"));

}

Console.Out.WriteLine("\n* * * Subgroup Means * * *");
double[] means = af.GetMeans();
for (i = 0; i < means.Length; i++)
{

Console.Out.WriteLine
(mlabels[i] + " " + means[i].ToString("0.0000"));

}
}

}

Output

P-value = 0.002299
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* * * Analysis of Variance * * *
degrees of freedom for the model 5.0000
degrees of freedom for error 54.0000
total (corrected) degrees of freedom 59.0000
sum of squares for the model 4612.9333
sum of squares for error 11586.0000
total (corrected) sum of squares 16198.9333
model mean square 922.5867
error mean square 214.5556
F-statistic 4.3000
p-value 0.0023
R-squared (in percent) 28.4768
Adjusted R-squared (in percent) 21.8543
est. standard deviation of the model error 14.6477
overall mean of y 87.8667
coefficient of variation (in percent) 16.6704

* * * Variation Due to the Model * * *
Source DF Sum of Squares Mean Square Prob. of Larger F
A 2.0000 266.5333 0.6211 0.5411
B 1.0000 3168.2667 14.7666 0.0003
A*B 2.0000 1178.1333 2.7455 0.0732

* * * Subgroup Means * * *
grand mean 87.8667
A1 89.6000
A2 84.9000
A3 89.1000
B1 95.1333
B2 80.6000
A1*B1 100.0000
A1*B2 79.2000
A2*B1 85.9000
A2*B2 83.9000
A3*B1 99.5000
A3*B2 78.7000

Example 3: Three-way Analysis of Variance

This example performs a three-way analysis of variance using data discussed by John (1971, pp.
91 92). The responses are weights (in grams) of roots of carrots grown with varying amounts of
applied nitrogen (A), potassium (B), and phosphorus (C). Each cell of the three-way layout has
one response. Note that the ABC interactions sum of squares, which is 186, is given incorrectly
by John (1971, Table 5.2.) The three-way layout is given in the following table:

A0

B0 B1 B2

C0 88.76 91.41 97.85
C1 87.45 98.27 95.85
C2 86.01 104.20 90.09
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A1

B0 B1 B2

C0 94.83 100.49 99.75
C1 84.57 97.20 112.30
C2 81.06 120.80 108.77

A2

B0 B1 B2

C0 99.90 100.23 104.50
C1 92.98 107.77 110.94
C2 94.72 118.39 102.87

using System;
using Imsl.Stat;

public class ANOVAFactorialEx3
{

public static void Main(String[] args)
{

int nSubscripts = 3, i;
int[] nLevels = new int[]{3, 3, 3};
double[] y = new double[]{ 88.76, 87.45, 86.01,

91.41, 98.27, 104.2,
97.85, 95.85, 90.09,
94.83, 84.57, 81.06,
100.49, 97.2, 120.8,
99.75, 112.3, 108.77,
99.9, 92.98, 94.72,
100.23, 107.77, 118.39,
104.51, 110.94, 102.87};

String[] labels =
new String[]{"degrees of freedom for the model" +
" ", "degrees of freedom for error" +
" ",
"total (corrected) degrees of freedom ",
"sum of squares for the model ",
"sum of squares for error ",
"total (corrected) sum of squares ",
"model mean square ",
"error mean square ",
"F-statistic ",

"p-value ",
"R-squared (in percent) ",
"Adjusted R-squared (in percent) ",
"est. standard deviation of the model error ",
"overall mean of y ",
"coefficient of variation (in percent) "};

String[] rlabels =
new String[]{"A", "B", "C", "A*B", "A*C", "B*C"};

ANOVAFactorial af =
new ANOVAFactorial(nSubscripts, nLevels, y);
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af.ErrorIncludeType = ANOVAFactorial.ErrorCalculation.Pooled;
Console.Out.WriteLine

("P-value = " + af.Compute().ToString("0.000000"));

Console.Out.WriteLine
("\n * * * Analysis of Variance * * *");

double[] anova = af.GetANOVATable();
for (i = 0; i < anova.Length; i++)
{

Console.Out.WriteLine
(labels[i] + " " + anova[i].ToString("0.0000"));

}

Console.Out.WriteLine
("\n * * * Variation Due to the " + "Model * * *");

Console.Out.WriteLine
("Source\tDF\tSum of Squares\tMean Square" +
"\tProb. of Larger F");

double[,] te = af.GetTestEffects();
for (i = 0; i < te.GetLength(0); i++)
{

System.Text.StringBuilder sb =
new System.Text.StringBuilder(rlabels[i]);

int len = sb.Length;
for (int j = 0; j < (8 - len); j++)

sb.Append(’ ’);
sb.Append(te[i,0].ToString("0.0000"));

len = sb.Length;
for (int j = 0; j < (16 - len); j++)

sb.Append(’ ’);
sb.Append(te[i,1].ToString("0.0000"));

len = sb.Length;
for (int j = 0; j < (32 - len); j++)

sb.Append(’ ’);
sb.Append(te[i,2].ToString("0.0000"));

len = sb.Length;
for (int j = 0; j < (48 - len); j++)

sb.Append(’ ’);
sb.Append(te[i,3].ToString("0.0000"));

Console.Out.WriteLine(sb.ToString());
}

}
}

Output

P-value = 0.008299
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* * * Analysis of Variance * * *
degrees of freedom for the model 18.0000
degrees of freedom for error 8.0000
total (corrected) degrees of freedom 26.0000
sum of squares for the model 2395.7290
sum of squares for error 185.7763
total (corrected) sum of squares 2581.5052
model mean square 133.0961
error mean square 23.2220
F-statistic 5.7315
p-value 0.0083
R-squared (in percent) 92.8036
Adjusted R-squared (in percent) 76.6116
est. standard deviation of the model error 4.8189
overall mean of y 98.9619
coefficient of variation (in percent) 4.8695

* * * Variation Due to the Model * * *
Source DF Sum of Squares Mean Square Prob. of Larger F
A 2.0000 488.3675 10.5152 0.0058
B 2.0000 1090.6564 23.4832 0.0004
C 2.0000 49.1485 1.0582 0.3911
A*B 4.0000 142.5853 1.5350 0.2804
A*C 4.0000 32.3474 0.3482 0.8383
B*C 4.0000 592.6238 6.3800 0.0131

ANOVAFactorial.ErrorCalculation Enumeration

Summary

ErrorCalculation members indicate whether interaction effects are pooled into the error or not.

public enumeration Imsl.Stat.ANOVAFactorial.ErrorCalculation

Fields

Pooled
public Imsl.Stat.ANOVAFactorial.ErrorCalculation Pooled

Description

Indicates factor nSubscripts is not error.

Pure
public Imsl.Stat.ANOVAFactorial.ErrorCalculation Pure

Description

Indicates factor nSubscripts is error. This is the default.
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MultipleComparisons Class

Summary

Performs Student-Newman-Keuls multiple comparisons test.

public class Imsl.Stat.MultipleComparisons

Property

Alpha
public double Alpha {get; set; }
Description

The significance level of the test

Alpha must be in the interval [0.01, 0.10]. Default: Alpha = 0.01

Constructor

MultipleComparisons
public MultipleComparisons(double[] means, int df, double stdError)

Description

Constructor for MultipleComparisons.

In fixed effects models, stdError equals the estimated standard error of a mean. For
example, in a one-way model stdError =

√
s2/n where s2 is the estimate of σ2 and n is

the number of responses in a sample mean. In models with random components, use
stdError = sedif/

√
2 where sedif is the estimated standard error of the difference of two

means.

Parameters

means – A double array containing the means.
df – A int scalar containing the degrees of freedom associated with stdError.
stdError – A double scalar containing the effective estimated standard error of a
mean.

Method

Compute
public int[] Compute()
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Description

Performs Student-Newman-Keuls multiple comparisons test.

Value equalMeans[I] = J indicates the I-th smallest mean and the next J-1 larger means
are declared equal. Value equalMeans[I] = 0 indicates no group of means starts with
the I-th smallest mean.

Returns

A int array , call it equalMeans, indicating the size of the groups of means declared to be
equal.

Description

Class MultipleComparisons performs a multiple comparison analysis of means using the
Student-Newman-Keuls method. The null hypothesis is equality of all possible ordered subsets
of a set of means. This null hypothesis is tested using the Studentized range of each of the
corresponding subsets of sample means. The method is discussed in many elementary statistics
texts, e.g., Kirk (1982, pp. 123-125).

Example: Multiple Comparisons Test

A multiple-comparisons analysis is performed using data discussed by Kirk (1982, pp. 123-125).
The results show that there are three groups of means with three separate sets of values: (36.7,
40.3, 43.4), (40.3, 43.4, 47.2), and (43.4, 47.2, 48.7).

using System;
using Imsl.Stat;
using PrintMatrix = Imsl.Math.PrintMatrix;

public class MultipleComparisonsEx1
{

public static void Main(String[] args)
{

double[] means = new double[]{36.7, 48.7, 43.4, 47.2, 40.3};

/* Perform multiple comparisons tests */
MultipleComparisons mc =

new MultipleComparisons(means, 45, 1.6970563);

new PrintMatrix("Size of Groups of Means").Print(mc.Compute());
}

}

Output

Size of Groups of Means
0

0 3
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1 3
2 3
3 0
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Chapter 15: Categorical and
Discrete Data Analysis

Types

class ContingencyTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
class CategoricalGenLinModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
enumeration CategoricalGenLinModel.DistributionParameterModel . . . . . . . . . . . . . . . . . . . . . . . . 437

Usage Notes

The ContingencyTable class computes many statistics of interest in a two-way table. Statistics
computed by this routine include the usual chi-squared statistics, measures of association,
Kappa, and many others.

ContingencyTable Class

Summary

Performs a chi-squared analysis of a two-way contingency table.

public class Imsl.Stat.ContingencyTable

Properties

ChiSquared
public double ChiSquared {get; }

405



Description

Returns the Pearson chi-squared test statistic.

ContingencyCoef
public double ContingencyCoef {get; }
Description

Returns contingency coefficient.

CramersV
public double CramersV {get; }
Description

Returns Cramer’s V.

DegreesOfFreedom
public int DegreesOfFreedom {get; }
Description

Returns the degrees of freedom for the chi-squared tests associated with the table.

ExactMean
public double ExactMean {get; }
Description

Returns the exact mean.

ExactStdev
public double ExactStdev {get; }
Description

Returns the exact standard deviation.

GSquared
public double GSquared {get; }
Description

Returns the likelihood ratio G2 (chi-squared).

GSquaredP
public double GSquaredP {get; }
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Description

Returns the probability of a larger G2 (chi-squared).

P
public double P {get; }
Description

Returns the Pearson chi-squared p-value for independence of rows and columns.

Phi
public double Phi {get; }
Description

Returns phi.

Constructor

ContingencyTable
public ContingencyTable(double[,] table)

Description

Constructs and performs a chi-squared analysis of a two-way contingency table.

Parameter

table – A double matrix containing the observed counts in the contingency table.

Methods

GetContributions
public double[,] GetContributions()

Description

Returns the contributions to chi-squared for each cell in the table.

The last row and column contain the total contribution to chi-squared for that row or
column.

Returns

A double matrix of size (table.GetLength(0)+1) * (table.GetLength(1)+1)

containing the contributions to chi-squared for each cell in the table.

GetExpectedValues
public double[,] GetExpectedValues()
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Description

Returns the expected values of each cell in the table.

The marginal totals are in the last row and column.

Returns

A double matrix of size (table.GetLength(0)+1) * (table.GetLength(1)+1)

containing the expected values of each cell in the table, under the null hypothesis.

GetStatistics
public double[,] GetStatistics()

Description

Returns the statistics associated with this table.

Each row corresponds to a statistic.

Row Statistics
0 gamma
1 Kendall’s τb
2 Stuart’s τc
3 Somers’ D for rows (given columns)
4 Somers’ D for columns (given rows)
5 product moment correlation
6 Spearman rank correlation
7 Goodman and Kruskal τ for rows (given columns)
8 Goodman and Kruskal τ for columns (given rows)
9 uncertainty coefficient U (symmetric)
10 uncertainty Ur|c (rows)
11 uncertainty Uc|r (columns)
12 optimal prediction λ (symmetric)
13 optimal prediction λr|c (rows)
14 optimal prediction λc|r (columns)
15 optimal prediction λ∗r|c (rows)
16 optimal prediction λ∗c|r (columns)
17 Test for linear trend in row probabilities if

table.GetLength(0) = 2. Test for linear trend in
column probabilities if table.GetLength(1) = 2 and
table.GetLength(0) is not 2

18 Kruskal-Wallis test for no row effect
19 Kruskal-Wallis test for no column effect
20 kappa (square tables only)
21 McNemar test of symmetry (square tables only)
22 McNemar one degree of freedom test of symmetry (square

tables only)

The columns are as follows:
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Column Value
0 estimated statistic
1 standard error for any parameter value
2 standard error under the null hypothesis
3 t value for testing the null hypothesis
4 p-value of the test in column 3

If a statistic cannot be computed, or if some value is not relevant for the computed
statistic, the entry is NaN (Not a Number).

In the McNemar tests, column 0 contains the statistic, column 1 contains the chi-squared
degrees of freedom, column 3 contains the exact p-value (1 degree of freedom only), and
column 4 contains the chi-squared asymptotic p-value. The Kruskal-Wallis test is the
same except no exact p-value is computed.

Returns

A double matrix of size 23 * 5 containing statistics associated with this table.

Description

Class ContingencyTable computes statistics associated with an r × c contingency table. The
function computes the chi-squared test of independence, expected values, contributions to
chi-squared, row and column marginal totals, some measures of association, correlation,
prediction, uncertainty, the McNemar test for symmetry, a test for linear trend, the odds and
the log odds ratio, and the kappa statistic (if the appropriate optional arguments are selected).

Notation

Let xij denote the observed cell frequency in the ij cell of the table and n denote the total
count in the table. Let pij = pi•pj• denote the predicted cell probabilities under the null
hypothesis of independence, where pi• and pj• are the row and column marginal relative
frequencies. Next, compute the expected cell counts as eij = npij .

Also required in the following are auv and buv for u, v = 1, . . . , n. Let (rs, cs) denote the row
and column response of observation s. Then, auv = 1, 0, or -1, depending on whether
ru < rv, ru = rv, or ru > rv, respectively. The buv are similarly defined in terms of the cs
variables.

Chi-squared Statistic

For each cell in the table, the contribution to χ2 is given as (xij − eij)2/eij . The Pearson
chi-squared statistic (denoted χ2) is computed as the sum of the cell contributions to
chi-squared. It has (r - 1) (c - 1) degrees of freedom and tests the null hypothesis of
independence, i.e., H0 : pij = pi•pj•. The null hypothesis is rejected if the computed value of χ2

is too large.

The maximum likelihood equivalent of χ2, G2 is computed as follows:

G2 = −2
∑
i,j

xij ln (xij/npij)
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G2 is asymptotically equivalent to χ2 and tests the same hypothesis with the same degrees of
freedom.

Measures Related to Chi-squared (Phi, Contingency Coefficient, and Cramer’s V)

There are three measures related to chi-squared that do not depend on sample size:

phi, φ=
√
χ2/n

contingency coefficient, P=
√
χ2/ (n+ χ2)

Cramer′sV , V =
√
χ2/ (nmin (r, c))

Since these statistics do not depend on sample size and are large when the hypothesis of
independence is rejected, they can be thought of as measures of association and can be
compared across tables with different sized samples. While both P and V have a range between
0.0 and 1.0, the upper bound of P is actually somewhat less than 1.0 for any given table (see
Kendall and Stuart 1979, p. 587). The significance of all three statistics is the same as that of
the χ2 statistic, which is contained in the ChiSquared property.

The distribution of the χ2 statistic in finite samples approximates a chi-squared distribution.
To compute the exact mean and standard deviation of the χ2 statistic, Haldane (1939) uses the
multinomial distribution with fixed table marginals. The exact mean and standard deviation
generally differ little from the mean and standard deviation of the associated chi-squared
distribution.

Standard Errors and p-values for Some Measures of Association

In Columns 1 through 4 of statistics, estimated standard errors and asymptotic p-values are
reported. Estimates of the standard errors are computed in two ways. The first estimate, in
Column 1 of the return matrix from the Statistics property, is asymptotically valid for any
value of the statistic. The second estimate, in Column 2 of the array, is only correct under the
null hypothesis of no association. The z-scores in Column 3 of statistics are computed using
this second estimate of the standard errors. The p-values in Column 4 are computed from this
z-score. See Brown and Benedetti (1977) for a discussion and formulas for the standard errors
in Column 2.

Measures of Association for Ranked Rows and Columns

The measures of association, φ, P, and V, do not require any ordering of the row and column
categories. Class ContingencyTable also computes several measures of association for tables in
which the rows and column categories correspond to ranked observations. Two of these tests,
the product-moment correlation and the Spearman correlation, are correlation coefficients
computed using assigned scores for the row and column categories. The cell indices are used for
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the product-moment correlation, while the average of the tied ranks of the row and column
marginals is used for the Spearman rank correlation. Other scores are possible.

Gamma, Kendall’s τb, Stuart’s τc, and Somers’ D are measures of association that are computed
like a correlation coefficient in the numerator. In all these measures, the numerator is computed
as the ”covariance” between the auv variables and buv variables defined above, i.e., as follows:

∑
u

∑
v

auvbuv

Recall that auv and buv can take values -1, 0, or 1. Since the product auvbuv = 1 only if auv

and buv are both 1 or are both -1, it is easy to show that this ”covariance” is twice the total
number of agreements minus the number of disagreements, where a disagreement occurs when
auvbuv = −1.

Kendall’s τb is computed as the correlation between the auv variables and the buv variables (see
Kendall and Stuart 1979, p. 593). In a rectangular table (r 6= c), Kendall’s τb cannot be 1.0 (if
all marginal totals are positive). For this reason, Stuart suggested a modification to the
denominator of τ in which the denominator becomes the largest possible value of the
”covariance.” This maximizing value is approximately n2m/(m− 1), where m = min (r, c).
Stuart’s τc uses this approximate value in its denominator. For large n, τc ≈ mτb/(m− 1).

Gamma can be motivated in a slightly different manner. Because the ”covariance” of the auv

variables and the buv variables can be thought of as twice the number of agreements minus the
disagreements, 2(A - D), where A is the number of agreements and D is the number of
disagreements, Gamma is motivated as the probability of agreement minus the probability of
disagreement, given that either agreement or disagreement occurred. This is shown as
γ = (A−D)/(A+D).

Two definitions of Somers’ D are possible, one for rows and a second for columns. Somers’ D
for rows can be thought of as the regression coefficient for predicting auv from buv. Moreover,
Somer’s D for rows is the probability of agreement minus the probability of disagreement, given
that the column variable, buv, is not 0. Somers’ D for columns is defined in a similar manner.

A discussion of all of the measures of association in this section can be found in Kendall and
Stuart (1979, p. 592).

Measures of Prediction and Uncertainty

Optimal Prediction Coefficients: The measures in this section do not require any ordering
of the row or column variables. They are based entirely upon probabilities. Most are discussed
in Bishop et al. (1975, p. 385).

Consider predicting (or classifying) the column for a given row in the table. Under the null
hypothesis of independence, choose the column with the highest column marginal probability
for all rows. In this case, the probability of misclassification for any row is 1 minus this
marginal probability. If independence is not assumed within each row, choose the column with
the highest row conditional probability. The probability of misclassification for the row
becomes 1 minus this conditional probability.
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Define the optimal prediction coefficient λc|r for predicting columns from rows as the
proportion of the probability of misclassification that is eliminated because the random
variables are not independent. It is estimated by

λc | r =
(1− p•m)− (1−

∑
i

pim)

1− p•m

where m is the index of the maximum estimated probability in the row (pim) or row margin
(p•m). A similar coefficient is defined for predicting the rows from the columns. The symmetric
version of the optimal prediction λ is obtained by summing the numerators and denominators
of λr|c and λc|r then dividing. Standard errors for these coefficients are given in Bishop et al.
(1975, p. 388).

A problem with the optimal prediction coefficients λ is that they vary with the marginal
probabilities. One way to correct this is to use row conditional probabilities. The optimal
prediction λ∗ coefficients are defined as the corresponding λ coefficients in which first the row
(or column) marginals are adjusted to the same number of observations. This yields

λ∗c | r =

∑
i

maxj pj | i −maxj(
∑
i

pj | i)

R−maxj(
∑
i

pj | i)

where i indexes the rows, j indexes the columns, and pj|i is the (estimated) probability of
column j given row i.

λ∗r | c

is similarly defined.

Goodman and Kruskal τ : A second kind of prediction measure attempts to explain the
proportion of the explained variation of the row (column) measure given the column (row)
measure. Define the total variation in the rows as follows:

n/2− (
∑

i

x2
i•)/ (2n)

Note that this is 1/(2n) times the sums of squares of the auv variables.

With this definition of variation, the Goodman and Kruskal τ coefficient for rows is computed
as the reduction of the total variation for rows accounted for by the columns, divided by the
total variation for the rows. To compute the reduction in the total variation of the rows
accounted for by the columns, note that the total variation for the rows within column j is
defined as follows:
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qj = x•j/2− (
∑

i

x2
ij)/ (2xi•)

The total variation for rows within columns is the sum of the qj variables. Consistent with the
usual methods in the analysis of variance, the reduction in the total variation is given as the
difference between the total variation for rows and the total variation for rows within the
columns.

Goodman and Kruskal’s τ for columns is similarly defined. See Bishop et al. (1975, p. 391) for
the standard errors.

Uncertainty Coefficients: The uncertainty coefficient for rows is the increase in the
log-likelihood that is achieved by the most general model over the independence model, divided
by the marginal log-likelihood for the rows. This is given by the following equation:

Ur|c =

∑
i,j

xij log (xi•x•j/nxij)∑
i

xi• log (xi•/n)

The uncertainty coefficient for columns is similarly defined. The symmetric uncertainty
coefficient contains the same numerator as Ur|c and Uc|rbut averages the denominators of these
two statistics. Standard errors for U are given in Brown (1983).

Kruskal-Wallis: The Kruskal-Wallis statistic for rows is a one-way analysis-of-variance-type
test that assumes the column variable is monotonically ordered. It tests the null hypothesis
that no row populations are identical, using average ranks for the column variable. The
Kruskal-Wallis statistic for columns is similarly defined. Conover (1980) discusses the
Kruskal-Wallis test.

Test for Linear Trend: When there are two rows, it is possible to test for a linear trend in
the row probabilities if it is assumed that the column variable is monotonically ordered. In this
test, the probabilities for row 1 are predicted by the column index using weighted simple linear
regression. This slope is given by

β̂ =

∑
j

x•j (x1j/x•j − x1•/n) (j − j̄)∑
j

x•j (j − j̄)2

where

j̄ =
∑

j

x•jj/n

is the average column index. An asymptotic test that the slope is 0 may then be obtained (in
large samples) as the usual regression test of zero slope.
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In two-column data, a similar test for a linear trend in the column probabilities is computed.
This test assumes that the rows are monotonically ordered.

Kappa: Kappa is a measure of agreement computed on square tables only. In the kappa
statistic, the rows and columns correspond to the responses of two judges. The judges agree
along the diagonal and disagree off the diagonal. Let

p0 =
∑

i

xii/n

denote the probability that the two judges agree, and let

pc =
∑

i

eii/n

denote the expected probability of agreement under the independence model. Kappa is then
given by (p0 − pc)/(1− pc).

McNemar Tests: The McNemar test is a test of symmetry in a square contingency table. In
other words, it is a test of the null hypothesis H0 : θij = θji. The multiple degrees-of-freedom
version of the McNemar test with r (r - 1)/2 degrees of freedom is computed as follows:

∑
i<j

(xij − xji)
2

(xij + xji)

The single degree-of-freedom test assumes that the differences, xij − xji, are all in one
direction. The single degree-of-freedom test will be more powerful than the multiple
degrees-of-freedom test when this is the case. The test statistic is given as follows:

(∑
i<j

(xij − xji)

)2

∑
i<j

(xij + xji)

The exact probability can be computed by the binomial distribution.

Example 1: Contingency Table

The following example is taken from Kendall and Stuart (1979) and involves the distance vision
in the right and left eyes.

using System;
using Imsl.Stat;
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public class ContingencyTableEx1
{

public static void Main(String[] args)
{

double[,] table = {{821, 112, 85, 35},
{116, 494, 145, 27},
{72, 151, 583, 87},
{43, 34, 106, 331}};

ContingencyTable ct = new ContingencyTable(table);
Console.Out.WriteLine("P-value = " + ct.P);

}
}

Output

P-value = 0

Example 2: Contingency Table

The following example, which illustrates the use of Kappa and McNemar tests, uses the same
distance vision data as in Example 1.

using System;
using Imsl.Stat;
using Imsl.Math;

public class ContingencyTableEx2
{

public static void Main(String[] args)
{

double[,] table = {{821.0, 112.0, 85.0, 35.0},
{116.0, 494.0, 145.0, 27.0},
{72.0, 151.0, 583.0, 87.0},
{43.0, 34.0, 106.0, 331.0}};

String[] rlabels = new String[]{"Gamma", "Tau B"
, "Tau C", "D-Row"
, "D-Column", "Correlation"
, "Spearman", "GK tau rows"
, "GK tau cols.", "U - sym."
, "U - rows", "U - cols."
, "Lambda-sym.", "Lambda-row"
, "Lambda-col."
, "l-star-rows"
, "l-star-col."
, "Lin. trend"
, "Kruskal row"
, "Kruskal col.", "Kappa"
, "McNemar"
, "McNemar df=1"};

ContingencyTable ct = new ContingencyTable(table);
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Console.Out.WriteLine("Pearson chi-squared statistic = " +
ct.ChiSquared.ToString("0.0000"));

Console.Out.WriteLine("p-value for Pearson chi-squared = " +
ct.P.ToString("0.0000"));

Console.Out.WriteLine("degrees of freedom = " +
ct.DegreesOfFreedom);

Console.Out.WriteLine("G-squared statistic = " +
ct.GSquared.ToString("0.0000"));

Console.Out.WriteLine("p-value for G-squared = " +
ct.GSquaredP.ToString("0.0000"));

Console.Out.WriteLine("degrees of freedom = " +
ct.DegreesOfFreedom);

PrintMatrix pm = new PrintMatrix("\n* * * Table Values * * *");
PrintMatrixFormat pmf = new PrintMatrixFormat();
pmf.NumberFormat = "0.00";
pm.Print(pmf, table);

pm.SetTitle("* * * Expected Values * * *");
pm.Print(pmf, ct.GetExpectedValues());

pmf.NumberFormat = "0.0000";
pm.SetTitle("* * * Contributions to Chi-squared* * *");
pm.Print(pmf, ct.GetContributions());

Console.Out.WriteLine("* * * Chi-square Statistics * * *");
Console.Out.WriteLine

("Exact mean = " + ct.ExactMean.ToString("0.0000"));
Console.Out.WriteLine("Exact standard deviation = " +

ct.ExactStdev.ToString("0.0000"));
Console.Out.WriteLine("Phi = " + ct.Phi.ToString("0.0000"));
Console.Out.WriteLine

("P = " + ct.ContingencyCoef.ToString("0.0000"));
Console.Out.WriteLine

("Cramer’s V = " + ct.CramersV.ToString("0.0000"));

Console.Out.WriteLine("\n stat. std. err. "
+ "std. err.(Ho) t-value(Ho) p-value");

double[,] stat = ct.GetStatistics();
for (int i = 0; i < stat.GetLength(0); i++)
{

System.Text.StringBuilder sb =
new System.Text.StringBuilder(rlabels[i]);

int len = sb.Length;
for (int j = 0; j < (13 - len); j++)

sb.Append(’ ’);
sb.Append(stat[i,0].ToString("0.0000"));

len = sb.Length;
for (int j = 0; j < (24 - len); j++)

sb.Append(’ ’);
sb.Append(stat[i,1].ToString("0.0000"));
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len = sb.Length;
for (int j = 0; j < (36 - len); j++)

sb.Append(’ ’);
sb.Append(stat[i,2].ToString("0.0000"));

len = sb.Length;
for (int j = 0; j < (50 - len); j++)

sb.Append(’ ’);
sb.Append(stat[i,3].ToString("0.0000"));

len = sb.Length;
for (int j = 0; j < (63 - len); j++)

sb.Append(’ ’);
sb.Append(stat[i,4].ToString("0.0000"));

Console.Out.WriteLine(sb.ToString());
}

}
}

Output

Pearson chi-squared statistic = 3304.3684
p-value for Pearson chi-squared = 0.0000
degrees of freedom = 9
G-squared statistic = 2781.0190
p-value for G-squared = 0.0000
degrees of freedom = 9

* * * Table Values * * *
0 1 2 3

0 821.00 112.00 85.00 35.00
1 116.00 494.00 145.00 27.00
2 72.00 151.00 583.00 87.00
3 43.00 34.00 106.00 331.00

* * * Expected Values * * *
0 1 2 3 4

0 341.69 256.92 298.49 155.90 1053.00
1 253.75 190.80 221.67 115.78 782.00
2 289.77 217.88 253.14 132.21 893.00
3 166.79 125.41 145.70 76.10 514.00
4 1052.00 791.00 919.00 480.00 3242.00

* * * Contributions to Chi-squared* * *
0 1 2 3 4

0 672.3626 81.7416 152.6959 93.7612 1000.5613
1 74.7802 481.8351 26.5189 68.0768 651.2109
2 163.6605 20.5287 429.8489 15.4625 629.5006
3 91.8743 66.6263 10.8183 853.7768 1023.0957
4 1002.6776 650.7317 619.8819 1031.0772 3304.3684

* * * Chi-square Statistics * * *

Categorical and Discrete Data Analysis ContingencyTable Class • 417



Exact mean = 9.0028
Exact standard deviation = 4.2402
Phi = 1.0096
P = 0.7105
Cramer’s V = 0.5829

stat. std. err. std. err.(Ho) t-value(Ho) p-value
Gamma 0.7757 0.0123 0.0149 52.1897 0.0000
Tau B 0.6429 0.0122 0.0123 52.1897 0.0000
Tau C 0.6293 0.0121 NaN 52.1897 0.0000
D-Row 0.6418 0.0122 0.0123 52.1897 0.0000
D-Column 0.6439 0.0122 0.0123 52.1897 0.0000
Correlation 0.6926 0.0128 0.0172 40.2669 0.0000
Spearman 0.6939 0.0127 0.0127 54.6614 0.0000
GK tau rows 0.3420 0.0123 NaN NaN NaN
GK tau cols. 0.3430 0.0122 NaN NaN NaN
U - sym. 0.3171 0.0110 NaN NaN NaN
U - rows 0.3178 0.0110 NaN NaN NaN
U - cols. 0.3164 0.0110 NaN NaN NaN
Lambda-sym. 0.5373 0.0124 NaN NaN NaN
Lambda-row 0.5374 0.0126 NaN NaN NaN
Lambda-col. 0.5372 0.0126 NaN NaN NaN
l-star-rows 0.5506 0.0136 NaN NaN NaN
l-star-col. 0.5636 0.0127 NaN NaN NaN
Lin. trend NaN NaN NaN NaN NaN
Kruskal row 1561.4859 3.0000 NaN NaN 0.0000
Kruskal col. 1563.0303 3.0000 NaN NaN 0.0000
Kappa 0.5744 0.0111 0.0106 54.3583 0.0000
McNemar 4.7625 6.0000 NaN NaN 0.5746
McNemar df=1 0.9487 1.0000 NaN 0.3459 0.3301

CategoricalGenLinModel Class

Summary

Analyzes categorical data using logistic, probit, Poisson, and other linear models.

public class Imsl.Stat.CategoricalGenLinModel

Properties

CaseAnalysis
virtual public double[,] CaseAnalysis {get; }

Description

The case analysis.

The matrix is nobs× 5 where nobs is the number of observations. The matrix contains:
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Column Statistic
0 Prediction.
1 The residual.
2 The estimated standard error of the residual.
3 The estimated influence of the observation.
4 The standardized residual.

Case studies are computed for all observations except where missing values prevent their
computation. The prediction in column 0 depends upon the model used as follows:

Model Prediction
0 The predicted mean for the observation.

1-4 The probability of a success on a single trial.

CensorColumn
virtual public int CensorColumn {set; }

Description

The column number in x which contains the interval type for each observation.

The valid codes are interpreted as:

x[i,CensorColumn] Censoring
0 Point observation. The response is unique and is given

by x[i,LowerEndpointColumn].
1 Right interval. The response is greater than or equal

to x[i,LowerEndpointColumn] and less than or equal
to the upper bound, if any, of the distribution.

2 Left interval. The response is less than or equal
to x[i,UpperEndpointColumn] and greater than or
equal to the lower bound of the distribution.

3 Full interval. The response is greater than or equal to
x[i,LowerEndpointColumn] but less than or equal to
x[i,UpperEndpointColumn].

Default: CensorColumn = 0.

ClassificationVariableColumn
virtual public int[] ClassificationVariableColumn {set; }

Description

An index vector to contain the column numbers in x that are classification variables.

By default this vector is not referenced.

ClassificationVariableCounts
virtual public int[] ClassificationVariableCounts {get; }
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Description

The number of values taken by each classification variable.

ClassificationVariableValues
virtual public double[] ClassificationVariableValues {get; }

Description

The distinct values of the classification variables in ascending order.

A null is returned if Imsl.Stat.CategoricalGenLinModel.Solve (p. 427) has not been
called prior to calling this method.

ConvergenceTolerance
virtual public double ConvergenceTolerance {set; }

Description

The convergence criterion.

Convergence is assumed when the maximum relative change in any coefficient estimate is
less than ConvergenceTolerance from one iteration to the next or when the relative
change in the log-likelihood, Imsl.Stat.CategoricalGenLinModel.OptimizedCriterion (p.
423), from one iteration to the next is less than ConvergenceTolerance/100.
ConvergenceTolerance must be greater than 0.

Default: ConvergenceTolerance = .001.

CovarianceMatrix
virtual public double[,] CovarianceMatrix {get; }

Description

The estimated asymptotic covariance matrix of the coefficients.

The covariance matrix is nCoef by nCoef where nCoef is the number of coefficients in the
model.

DesignVariableMeans
virtual public double[] DesignVariableMeans {get; }

Description

The means of the design variables.

ExtendedLikelihoodObservations
virtual public int[] ExtendedLikelihoodObservations {get; set; }
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Description

A vector indicating which observations are included in the extended likelihood.

ExtendedLikelihoodObservations is an int array of length nobs indicating which
observations are included in the extended likelihood where nobs is the number of
observations. The values within the array are interpreted as:

Value Status of observation
0 Observation i is in the likelihood.
1 Observation i cannot be in the likelihood because it contains at least

one missing value in x.
2 Observation i is not in the likelihood. Its estimated parameter is

infinite.

A null is returned if Imsl.Stat.CategoricalGenLinModel.Solve (p. 427) has not been
called prior to calling this method.

Default: All elements are zero.

FixedParameterColumn
virtual public int FixedParameterColumn {set; }

Description

The column number in x that contains a fixed parameter for each observation that is
added to the linear response prior to computing the model parameter.

The ”fixed” parameter allows one to test hypothesis about the parameters via the
log-likelihoods. By default the fixed parameter is assumed to be zero.

FrequencyColumn
virtual public int FrequencyColumn {set; }

Description

The column number in x that contains the frequency of response for each observation.

By default a frequency of 1 for each observation is assumed.

Hessian
virtual public double[,] Hessian {get; }

Description

The Hessian computed at the initial parameter estimates.

The Hessian matrix is nCoef by nCoef where nCoef is the number of coefficients in the
model. This member function will call Imsl.Stat.CategoricalGenLinModel.Solve (p. 427)
to get the Hessian if the Hessian has not already been computed.

InfiniteEstimateMethod
virtual public int InfiniteEstimateMethod {set; }
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Description

Specifies the method used for handling infinite estimates.

The value of InfiniteEstimateMethod is interpreted as follows:

InfiniteEstimateMethod Method
0 Remove a right or left-censored observation from

the log-likelihood whenever the probability of
the observation exceeds 0.995. At conver-
gence, use linear programming to check that
all removed observations actually have an es-
timated linear response that is infinite. Set
ExtendedLikelihoodObservations[i] for ob-
servation i to 2 if the linear response is infinite.
If not all removed observations have infinite linear
response, recompute the estimates based upon the
observations with estimated linear response that
is finite. This option is valid only for censoring
codes 1 and 2.

1 Iterate without checking for infinite estimates.

By default InfiniteEstimateMethod = 1.

LastParameterUpdates
virtual public double[] LastParameterUpdates {get; }

Description

The last parameter updates (excluding step halvings).

LowerEndpointColumn
virtual public int LowerEndpointColumn {set; }

Description

The column number in x that contains the lower endpoint of the observation interval for
full interval and right interval observations.

By default all observations are treated as ”point” observations and
x[i,LowerEndpointColumn] contains the observation point. If this member function is
not called, the last column of x is assumed to contain the ”point” observations.

MaxIterations
virtual public int MaxIterations {set; }
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Description

The maximum number of iterations allowed.
Default: MaxIterations = 30.

ModelIntercept
virtual public int ModelIntercept {set; }

Description

The intercept option.
Input ModelIntercept is interpreted as follows:

Value Action
0 No intercept is in the model (unless otherwise provided for by the user).
1 Intercept is automatically included in the model.

By default ModelIntercept = 1.

NRowsMissing
virtual public int NRowsMissing {get; }

Description

The number of rows of data in x that contain missing values in one or more specific
columns of x.
The columns of x included in the count are the columns containing the upper or lower
endpoints of full interval, left interval, or right interval observations. Also included are
the columns containing the frequency responses, fixed parameters, optional distribution
parameters, and interval type for each observation. Columns containing classification
variables and columns associated with each effect in the model are also included.

ObservationMax
virtual public int ObservationMax {set; }

Description

The maximum number of observations that can be handled in the linear programming.
Default: ObservationMax is set to the number of observations.

OptimizedCriterion
virtual public double OptimizedCriterion {get; }

Description

The optimized criterion.
The criterion to be maximized is a constant plus the log-likelihood.

OptionalDistributionParameterColumn
virtual public int OptionalDistributionParameterColumn {set; }

Categorical and Discrete Data Analysis CategoricalGenLinModel Class • 423



Description

The column number in x that contains an optional distribution parameter for each
observation.

The distribution parameter values are interpreted as follows depending on the model
chosen:

Model Meaning of x[i,OptionalDistributionParameterColumn]
0 The Poisson parameter is given by

x[i, OptionalDistributionParameterColumn]× eρ.
1 The number of successes required in the negative binomial is

given by x[i,OptionalDistributionParameterColumn].
2 x[i,OptionalDistributionParameterColumn] is not used.
3-5 The number of trials in the binomial distribution is given by

x[i,OptionalDistributionParameterColumn].

By default the distribution parameter is assumed to be 1.

Parameters
virtual public double[,] Parameters {get; }

Description

Parameter estimates and associated statistics.

Here, nCoef is the number of coefficients in the model. The statistics returned are as
follows:

Column Statistic
0 Coefficient estimate.
1 Estimated standard deviation of the estimated coefficient.
2 Asymptotic normal score for testing that the coefficient is zero.
3 ρ - value associated with the normal score in column 2.

Product
virtual public double[] Product {get; }

Description

The inverse of the Hessian times the gradient vector computed at the input parameter
estimates.

nCoef is the number of coefficients in the model. This member function will call
Imsl.Stat.CategoricalGenLinModel.Solve (p. 427) to get the product if the product has
not already been computed.

UpperBound
virtual public int UpperBound {set; }
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Description

Defines the upper bound on the sum of the number of distinct values taken on by each
classification variable.

Default: UpperBound = 1.

UpperEndpointColumn
virtual public int UpperEndpointColumn {set; }

Description

The column number in x that contains the upper endpoint of the observation interval for
full interval and left interval observations.

By default all observations are treated as ”point” observations.

Constructor

CategoricalGenLinModel
public CategoricalGenLinModel(double[,] x,
Imsl.Stat.CategoricalGenLinModel.DistributionParameterModel model)

Description

Constructs a new CategoricalGenLinModel.

Use one of the class members from the following table. The lower bound given in the
table is the minimum possible value of the response variable:

Model Distribution Function Lower-bound
0 Poisson Exponential 0
1 Negative Binomial Logistic 0
2 Logarithmic Logistic 1
3 Binomial Logistic 0
4 Binomial Probit 0
5 Binomial Log-log 0

Let γ be the dot product of a row in the design matrix with the parameters (plus the
fixed parameter, if used). Then, the functions used to model the distribution parameter
are given by:

Name Function
Exponential eγ

Logistic eγ/(1 + eγ)
Probit Φ(γ) (where Φ is the normal cdf)
Log-log 1− e−γ
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Parameters

x – A double input matrix containing the data where the number of rows in the
matrix is equal to the number of observations.
model – An int scalar which specifies the distribution of the response variable and
the function used to model the distribution parameter.

Methods

SetEffects
virtual public void SetEffects(int[] indef, int[] nvef)

Description

Initializes an index vector to contain the column numbers in x associated with each effect.
indef contains the column numbers in x that are associated with each effect. Member
function SetEffects(int [], nvef []) sets the number of variables associated with
each effect in the model. The first nvef[0] elements of indef give the column numbers of
the variables in the first effect. The next nvef[0] elements give the column numbers of
the variables in the second effect, etc. By default this vector is not referenced.
nvef contains the number of variables associated with each effect in the model. By default
this vector is not referenced.
Parameters

indef – An int vector of length
∑nef−1

k=0 nvef[k] where nef is the number of effects in
the model.
nvef – An int vector of length nef where nef is the number of effects in the model.

System.ArgumentException id is thrown when an element of indef is less than 0 or
greater than or equal to the number of columns of x or if an element of nvef is less
than or equal to 0

SetInitialEstimates
virtual public void SetInitialEstimates(int init, double[] estimates)

Description

Sets the initial parameter estimates option.
If this method is not called, init is set to 0.

init Action
0 Unweighted linear regression is used to obtain initial estimates.
1 The nCoef, number of coefficients, elements of estimates contain ini-

tial estimates of the parameters. Use of this option requires that the
user know nCoef beforehand.

estimates is used if init = 1. If this member function is not called, unweighted linear
regression is used to obtain the initial estimates.
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Parameters

init – An input int indicating the desired initialization method for the initial
estimates of the parameters.

estimates – An input double array of length nCoef containing the initial estimates
of the parameters where nCoef is the number of estimated coefficients in the model.

System.ArgumentException id is thrown when init is not in the range [0,1]

Solve
virtual public double[,] Solve()

Description

Returns the parameter estimates and associated statistics for a CategoricalGenLinModel
object.

Here, nCoef is the number of coefficients in the model. The statistics returned are as
follows:

Column Statistic
0 Coefficient estimate.
1 Estimated standard deviation of the estimated coefficient.
2 Asymptotic normal score for testing that the coefficient is zero.
3 ρ - value associated with the normal score in column 2.

Returns

An nCoef row by 4 column double matrix containing the parameter estimates and
associated statistics.

Imsl.Stat.ClassificationVariableException id is thrown when the number of values
taken by each classification variable has been set by the user to be less than or equal
to 1

Imsl.Stat.ClassificationVariableLimitException id is thrown when the sum of the
number of distinct values taken on by each classification variable exceeds the
maximum allowed, Imsl.Stat.CategoricalGenLinModel.UpperBound (p. 424)

Imsl.Stat.DeleteObservationsException id is thrown if the number of observations to
delete has grown too large

Description

Reweighted least squares is used to compute (extended) maximum likelihood estimates in some
generalized linear models involving categorized data. One of several models, including probit,
logistic, Poisson, logarithmic, and negative binomial models, may be fit for input point or
interval observations. (In the usual case, only point observations are observed.)

Let
γi = wi + xT

i β = wi + ηi
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be the linear response where xi is a design column vector obtained from a row of x, β is the
column vector of coefficients to be estimated, and wi is a fixed parameter that may be input in
x. When some of the γi are infinite at the supremum of the likelihood, then extended maximum
likelihood estimates are computed. Extended maximum likelihood is computed as the finite (but
nonunique) estimates β̂ that optimize the likelihood containing only the observations with finite
γ̂i. These estimates, when combined with the set of indices of the observations such that γ̂i is
infinite at the supremum of the likelihood, are called extended maximum estimates. When none
of the optimal γ̂i are infinite, extended maximum likelihood estimates are identical to
maximum likelihood estimates. Extended maximum likelihood estimation is discussed in more
detail by Clarkson and Jennrich (1991). In CategoricalGenLinModel, observations with
potentially infinite

η̂i = xT
i β̂

are detected and removed from the likelihood if
Imsl.Stat.CategoricalGenLinModel.InfiniteEstimateMethod (p. 421) = 0. See below.

The models available in CategoricalGenLinModel are:

Model Name Parameterization Response PDF
Model0 (Poisson) λ = N × ew+η f(y) = λye−λ/y!

Model1 (Negative Binomial) θ = ew+η

1+ew+η f(y) =
(
S + y − 1

y − 1

)
θS(1− θ)y

Model2 (Logarithmic) θ = ew+η

1+ew+η f(y) = (1− θ)y/(y ln θ)

Model3 (Logistic) θ = ew+η

1+ew+η f(y) =
(
N
y

)
θy(1− θ)N−y

Model4 (Probit) θ = Φ(w + η) f(y) =
(
N
y

)
θy(1− θ)N−y

Model5 (Log-log) θ = 1− e−ew+η

f(y) =
(
N
y

)
θy(1− θ)N−y

Here Φ denotes the cumulative normal distribution, N and S are known parameters specified for
each observation via column
Imsl.Stat.CategoricalGenLinModel.OptionalDistributionParameterColumn (p. 423) of x, and w
is an optional fixed parameter specified for each observation via column
Imsl.Stat.CategoricalGenLinModel.FixedParameterColumn (p. 421) of x. (By default N is
taken to be 1 for model = 0, 3, 4 and 5 and S is taken to be 1 for model = 1. By default w is
taken to be 0.) Since the log-log model (model = 5) probabilities are not symmetric with
respect to 0.5, quantitatively, as well as qualitatively, different models result when the
definitions of ”success” and ”failure” are interchanged in this distribution. In this model and all
other models involving θ, θ is taken to be the probability of a ”success.”

Note that each row vector in the data matrix can represent a single observation; or, through the
use of column Imsl.Stat.CategoricalGenLinModel.FrequencyColumn (p. 421) of the matrix x,
each vector can represent several observations. Also note that classification variables and their
products are easily incorporated into the models via the usual regression-type specifications.

428 • CategoricalGenLinModel Class IMSL C# Numerical Library



Computational Details

For interval observations, the probability of the observation is computed by summing the
probability distribution function over the range of values in the observation interval. For
right-interval observations, Pr(Y ≥ y) is computed as a sum based upon the equality
Pr(Y ≥ y) = 1− Pr(Y < y). Derivatives are similarly computed. CategoricalGenLinModel
allows three types of interval observations. In full interval observations, both the lower and the
upper endpoints of the interval must be specified. For right-interval observations, only the lower
endpoint need be given while for left-interval observations, only the upper endpoint is given.

The computations proceed as follows:

1. The input parameters are checked for consistency and validity.

2. Estimates of the means of the ”independent” or design variables are computed. The
frequency of the observation in all but the binomial distribution model is taken from
column FrequencyColumn of the data matrix x. In binomial distribution models, the
frequency is taken as the product of n = x[i,OptionalDistributionParameterColumn]
and x[i,FrequencyColumn]. In all cases these values default to 1. Means are computed
as

x̄ =
Σifixi

Σifi

3. If init = 0, initial estimates of the coefficients are obtained (based upon the observation
intervals) as multiple regression estimates relating transformed observation probabilities
to the observation design vector. For example, in the binomial distribution models, θ for
point observations may be estimated as

θ̂ = x[i, LowerEndpointColumn]/x[i, OptionalDistributionParameterColumn]

and, when model = 3, the linear relationship is given by(
ln(θ̂/(1− θ̂)) ≈ xβ

)
while if model = 4, (

Φ−1(θ̂) = xβ
)

For bounded interval observations, the midpoint of the interval is used for
x[i,Imsl.Stat.CategoricalGenLinModel.LowerEndpointColumn (p. 422)].
Right-interval observations are not used in obtaining initial estimates when the
distribution has unbounded support (since the midpoint of the interval is not defined).
When computing initial estimates, standard modifications are made to prevent illegal
operations such as division by zero.

Regression estimates are obtained at this point, as well as later, by use of linear regression.

4. Newton-Raphson iteration for the maximum likelihood estimates is implemented via
iteratively reweighted least squares. Let

Ψ(xT
i β)
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denote the log of the probability of the i-th observation for coefficients β. In the
least-squares model, the weight of the i-th observation is taken as the absolute value of
the second derivative of

Ψ(xT
i β)

with respect to
γi = xT

i β

(times the frequency of the observation), and the dependent variable is taken as the first
derivative Ψ with respect to γi, divided by the square root of the weight times the
frequency. The Newton step is given by

∆β =

(∑
i

|Ψ
′′
(γi)|xix

T
i

)−1∑
i

Ψ
′
(γi)xi

where all derivatives are evaluated at the current estimate of γ, and βn+1 = βn −∆β.
This step is computed as the estimated regression coefficients in the least-squares model.
Step halving is used when necessary to ensure a decrease in the criterion.

5. Convergence is assumed when the maximum relative change in any coefficient update
from one iteration to the next is less than
Imsl.Stat.CategoricalGenLinModel.ConvergenceTolerance (p. 420) or when the relative
change in the log-likelihood from one iteration to the next is less than
ConvergenceTolerance/100. Convergence is also assumed after
Imsl.Stat.CategoricalGenLinModel.MaxIterations (p. 422) or when step halving leads to a
step size of less than .0001 with no increase in the log-likelihood.

6. For interval observations, the contribution to the log-likelihood is the log of the sum of
the probabilities of each possible outcome in the interval. Because the distributions are
discrete, the sum may involve many terms. The user should be aware that data with wide
intervals can lead to expensive (in terms of computer time) computations.

7. If InfiniteEstimateMethod is set to 0, then the methods of Clarkson and Jennrich
(1991) are used to check for the existence of infinite estimates in

ηi = xT
i β

As an example of a situation in which infinite estimates can occur, suppose that
observation j is right censored with tj > 15 in a logistic model. If design matrix x is such
that xjm = 1 and xim = 0 for all i 6= j, then the optimal estimate of βm occurs at

β̂m =∞
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leading to an infinite estimate of both βm and ηj . In CategoricalGenLinModel, such
estimates may be ”computed.”

In all models fit by CategoricalGenLinModel, infinite estimates can only occur when the
optimal estimated probability associated with the left- or right-censored observation is 1.
If InfiniteEstimateMethod is set to 0, left- or right- censored observations that have
estimated probability greater than 0.995 at some point during the iterations are excluded
from the log-likelihood, and the iterations proceed with a log-likelihood based upon the
remaining observations. This allows convergence of the algorithm when the maximum
relative change in the estimated coefficients is small and also allows for the determination
of observations with infinite

ηi = xT
i β

At convergence, linear programming is used to ensure that the eliminated observations
have infinite ηi. If some (or all) of the removed observations should not have been
removed (because their estimated ηi′s must be finite), then the iterations are restarted
with a log-likelihood based upon the finite ηi observations. See Clarkson and Jennrich
(1991) for more details.

When InfiniteEstimateMethod is set to 1, no observations are eliminated during the
iterations. In this case, when infinite estimates occur, some (or all) of the coefficient
estimates β̂ will become large, and it is likely that the Hessian will become (numerically)
singular prior to convergence.

When infinite estimates for the η̂i are detected, linear regression (see Chapter 2,
Regression;) is used at the convergence of the algorithm to obtain unique estimates β̂.
This is accomplished by regressing the optimal η̂i or the observations with finite η against
xβ, yielding a unique β̂ (by setting coefficients β̂ that are linearly related to previous
coefficients in the model to zero). All of the final statistics relating to β̂ are based upon
these estimates.

8. Residuals are computed according to methods discussed by Pregibon (1981). Let `i(γi)
denote the log-likelihood of the i-th observation evaluated at γi. Then, the standardized
residual is computed as

ri =
`
′

i(γ̂i)√
`
′′
i (γ̂i)

where γ̂i is the value of γi when evaluated at the optimal β̂ and the derivatives here (and
only here) are with respect to γ rather than with respect to β. The denominator of this
expression is used as the ”standard error of the residual” while the numerator is the
”raw” residual.

Following Cook and Weisberg (1982), we take the influence of the i-th observation to be

`
′

i(γ̂i)T `
′′
(γ̂)−1`

′
(γ̂i)
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This quantity is a one-step approximation to the change in the estimates when the i-th
observation is deleted. Here, the partial derivatives are with respect to β.

Programming Notes

1. Classification variables are specified via
Imsl.Stat.CategoricalGenLinModel.ClassificationVariableColumn (p. 419). Indicator or
dummy variables are created for the classification variables.

2. To enhance precision ”centering” of covariates is performed if
Imsl.Stat.CategoricalGenLinModel.ModelIntercept (p. 423) is set to 1 and (number of
observations) - (number of rows in x missing one or more values) > 1. In doing so, the
sample means of the design variables are subtracted from each observation prior to its
inclusion in the model. On convergence the intercept, its variance and its covariance with
the remaining estimates are transformed to the uncentered estimate values.

3. Two methods for specifying a binomial distribution model are possible. In the first
method, x[i,FrequencyColumn] contains the frequency of the observation while
x[i,LowerEndpointColumn] is 0 or 1 depending upon whether the observation is a
success or failure. In this case, N = x[i,OptionalDistributionParameterColumn] is
always 1. The model is treated as repeated Bernoulli trials, and interval observations are
not possible.

A second method for specifying binomial models is to use x[i,LowerEndpointColumn] to
represent the number of successes in the x[i,OptionalDistributionParameterColumn] trials.
In this case, x[i,FrequencyColumn] will usually be 1, but it may be greater than 1, in which
case interval observations are possible.

Note that the Imsl.Stat.CategoricalGenLinModel.Solve (p. 427) method must be called before
using any property as a right operand, otherwise the value is null.

Example 1: Example: Mortality of beetles.

The first example is from Prentice (1976) and involves the mortality of beetles after exposure to
various concentrations of carbon disulphide. Both a logit and a probit fit are produced for
linear model µ+ βx. The data is given as

Covariate(x) N y
1.755 62 18
1.784 56 28
1.811 63 52
1.836 59 53
1.861 62 61
1.883 60 60
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using System;
using Imsl.Math;
using Imsl.Stat;

public class CategoricalGenLinModelEx1
{

public static void Main(String[] args)
{

// Set up a PrintMatrix object for later use.
PrintMatrixFormat mf;
PrintMatrix p;
p = new PrintMatrix();
mf = new PrintMatrixFormat();
mf.SetNoRowLabels();
mf.SetNoColumnLabels();

mf.NumberFormat = "0.0000";

double[,] x = {{1.69, 59.0, 6.0},
{1.724, 60.0, 13.0},
{1.755, 62.0, 18.0},
{1.784, 56.0, 28.0},
{1.811, 63.0, 52.0},
{1.836, 59.0, 53.0},
{1.861, 62.0, 61.0},
{1.883, 60.0, 60.0}};

CategoricalGenLinModel CATGLM3, CATGLM4;
// MODEL3
CATGLM3 = new CategoricalGenLinModel(x,

CategoricalGenLinModel.DistributionParameterModel.Model3);
CATGLM3.LowerEndpointColumn = 2;
CATGLM3.OptionalDistributionParameterColumn = 1;
CATGLM3.InfiniteEstimateMethod = 1;
CATGLM3.ModelIntercept = 1;
int[] nvef = new int[]{1};
int[] indef = new int[]{0};
CATGLM3.SetEffects(indef, nvef);
CATGLM3.UpperBound = 1;

Console.Out.WriteLine("MODEL3");
p.SetTitle("Coefficient Statistics");
p.Print(mf, CATGLM3.Solve());
Console.Out.WriteLine("Log likelihood " + CATGLM3.OptimizedCriterion);
p.SetTitle("Asymptotic Coefficient Covariance");
p.SetMatrixType(PrintMatrix.MatrixType.UpperTriangular);
p.Print(mf, CATGLM3.CovarianceMatrix);
p.SetMatrixType(PrintMatrix.MatrixType.Full);
p.SetTitle("Case Analysis");
p.Print(mf, CATGLM3.CaseAnalysis);
p.SetTitle("Last Coefficient Update");
p.Print(CATGLM3.LastParameterUpdates);
p.SetTitle("Covariate Means");
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p.Print(CATGLM3.DesignVariableMeans);
p.SetTitle("Observation Codes");
p.Print(CATGLM3.ExtendedLikelihoodObservations);
Console.Out.WriteLine("Number of Missing Values " + CATGLM3.NRowsMissing);

// MODEL4
CATGLM4 = new CategoricalGenLinModel(x,

CategoricalGenLinModel.DistributionParameterModel.Model4);
CATGLM4.LowerEndpointColumn = 2;
CATGLM4.OptionalDistributionParameterColumn = 1;
CATGLM4.InfiniteEstimateMethod = 1;
CATGLM4.ModelIntercept = 1;
CATGLM4.SetEffects(indef, nvef);
CATGLM4.UpperBound = 1;
CATGLM4.Solve();

Console.Out.WriteLine("\nMODEL4");
Console.Out.WriteLine("Log likelihood " + CATGLM4.OptimizedCriterion);
p.SetTitle("Coefficient Statistics");
p.Print(mf, CATGLM4.Parameters);

}
}

Output

MODEL3
Coefficient Statistics

-60.7568 5.1876 -11.7118 0.0000
34.2985 2.9164 11.7607 0.0000

Log likelihood -18.778179042334
Asymptotic Coefficient Covariance

26.9117 -15.1243
8.5052

Case Analysis

0.0577 2.5934 1.7916 0.2674 1.4475
0.1644 3.1390 2.8706 0.3470 1.0935
0.3629 -4.4976 3.7860 0.3108 -1.1879
0.6063 -5.9517 3.6562 0.2322 -1.6279
0.7954 1.8901 3.2020 0.2688 0.5903
0.9016 -0.1949 2.2878 0.2380 -0.0852
0.9558 1.7434 1.6193 0.1976 1.0767
0.9787 1.2783 1.1185 0.1382 1.1429

Last Coefficient Update
0

0 1.85192237772546E-07
1 1.33163785436183E-05

434 • CategoricalGenLinModel Class IMSL C# Numerical Library



Covariate Means
0

0 1.793
1 0

Observation Codes
0

0 0
1 0
2 0
3 0
4 0
5 0
6 0
7 0

Number of Missing Values 0

MODEL4
Log likelihood -18.2323545743845

Coefficient Statistics

-34.9441 2.6412 -13.2305 0.0000
19.7367 1.4852 13.2888 0.0000

Example 2: Example: Poisson Model.

In this example, the following data illustrate the Poisson model when all types of interval data
are present. The example also illustrates the use of classification variables and the detection of
potentially infinite estimates (which turn out here to be finite). These potential estimates lead
to the two iteration summaries. The input data is

ilt irt icen Class 1 Class 2
0 5 0 1 0
9 4 3 0 0
0 4 1 0 0
9 0 2 1 1
0 1 0 0 1

A linear model µ+ β1x1 + β2x2 is fit where x1 = 1 if the Class 1 variable is 0, x1 = 1,
otherwise, and the x2 variable is similarly defined.

using System;
using Imsl.Math;
using Imsl.Stat;

public class CategoricalGenLinModelEx2
{

public static void Main(String[] args)
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{
// Set up a PrintMatrix object for later use.
PrintMatrixFormat mf;
PrintMatrix p;
p = new PrintMatrix();
mf = new PrintMatrixFormat();
mf.SetNoRowLabels();
mf.SetNoColumnLabels();

mf.NumberFormat = "0.0000";

double[,] x = {
{0.0, 5.0, 0.0, 1.0, 0.0},
{9.0, 4.0, 3.0, 0.0, 0.0},
{0.0, 4.0, 1.0, 0.0, 0.0},
{9.0, 0.0, 2.0, 1.0, 1.0},
{0.0, 1.0, 0.0, 0.0, 1.0}};

CategoricalGenLinModel CATGLM;
CATGLM = new CategoricalGenLinModel(x,

CategoricalGenLinModel.DistributionParameterModel.Model0);
CATGLM.UpperEndpointColumn = 0;
CATGLM.LowerEndpointColumn = 1;
CATGLM.OptionalDistributionParameterColumn = 1;
CATGLM.CensorColumn = 2;
CATGLM.InfiniteEstimateMethod = 0;
CATGLM.ModelIntercept = 1;
int[] indcl = new int[]{3, 4};
CATGLM.ClassificationVariableColumn = indcl;
int[] nvef = new int[]{1, 1};
int[] indef = new int[]{3, 4};
CATGLM.SetEffects(indef, nvef);
CATGLM.UpperBound = 4;

p.SetTitle("Coefficient Statistics");
p.Print(mf, CATGLM.Solve());
Console.Out.WriteLine("Log likelihood " + CATGLM.OptimizedCriterion);
p.SetTitle("Asymptotic Coefficient Covariance");
p.SetMatrixType(PrintMatrix.MatrixType.UpperTriangular);
p.Print(mf, CATGLM.CovarianceMatrix);
p.SetMatrixType(PrintMatrix.MatrixType.Full);
p.SetTitle("Case Analysis");
p.Print(mf, CATGLM.CaseAnalysis);
p.SetTitle("Last Coefficient Update");
p.Print(CATGLM.LastParameterUpdates);
p.SetTitle("Covariate Means");
p.Print(CATGLM.DesignVariableMeans);
p.SetTitle("Distinct Values For Each Class Variable");
p.Print(CATGLM.ClassificationVariableValues);
Console.Out.WriteLine("Number of Missing Values " + CATGLM.NRowsMissing);

}
}

436 • CategoricalGenLinModel Class IMSL C# Numerical Library



Output

Coefficient Statistics

-0.5488 1.1713 -0.4685 0.6395
0.5488 0.6098 0.8999 0.3684
0.5488 1.0825 0.5069 0.6123

Log likelihood -3.11463849257844
Asymptotic Coefficient Covariance

1.3719 -0.3719 -1.1719
0.3719 0.1719

1.1719

Case Analysis

5.0000 0.0000 2.2361 1.0000 0.0000
6.9246 -0.4122 2.1078 0.7636 -0.1955
6.9246 0.4122 1.1727 0.2364 0.3515
0.0000 0.0000 0.0000 0.0000 NaN
1.0000 0.0000 1.0000 1.0000 0.0000

Last Coefficient Update
0

0 -2.84092901922464E-07
1 3.53822215072981E-10
2 7.09878432577707E-07

Covariate Means
0

0 0.6
1 0.6
2 0

Distinct Values For Each Class Variable
0

0 0
1 1
2 0
3 1

Number of Missing Values 0

CategoricalGenLinModel.DistributionParameterModel
Enumeration

Summary

Indicates the function used to model the distribution parameter.

Categorical and Discrete Data AnalysisCategoricalGenLinModel.DistributionParameterModel Enumeration • 437



public enumeration Imsl.Stat.CategoricalGenLinModel.DistributionParameterModel

Fields

Model0
public Imsl.Stat.CategoricalGenLinModel.DistributionParameterModel Model0

Description

Indicates an exponential function is used to model the distribution parameter. The
distribution of the response variable is Poisson. The lower bound of the response variable
is 0.

Model1
public Imsl.Stat.CategoricalGenLinModel.DistributionParameterModel Model1

Description

Indicates a logistic function is used to model the distribution parameter. The distribution
of the response variable is negative Binomial. The lower bound of the response variable is
0.

Model2
public Imsl.Stat.CategoricalGenLinModel.DistributionParameterModel Model2

Description

Indicates a logistic function is used to model the distribution parameter. The distribution
of the response variable is Logarithmic. The lower bound of the response variable is 1.

Model3
public Imsl.Stat.CategoricalGenLinModel.DistributionParameterModel Model3

Description

Indicates a logistic function is used to model the distribution parameter. The distribution
of the response variable is Binomial. The lower bound of the response variable is 0.

Model4
public Imsl.Stat.CategoricalGenLinModel.DistributionParameterModel Model4

Description

Indicates a probit function is used to model the distribution parameter. The distribution
of the response variable is Binomial. The lower bound of the response variable is 0.

Model5
public Imsl.Stat.CategoricalGenLinModel.DistributionParameterModel Model5
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Description

Indicates a log-log function is used to model the distribution parameter. The distribution
of the response variable is Binomial. The lower bound of the response variable is 0.

Miscellaneous CategoricalGenLinModel.DistributionParameterModel Enumeration • 439



440 • CategoricalGenLinModel.DistributionParameterModel EnumerationIMSL C# Numerical Library



Chapter 16: Nonparametric
Statistics

Types

class SignTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
class WilcoxonRankSum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

Usage Notes

Much of what is considered nonparametric statistics is included in other chapters. Topics of
possible interest in other chapters are: nonparametric measures of location and scale (see ”Basic
Statistics”), nonparametric measures in a contingency table (see ”Categorical and Discrete Data
Analysis”), measures of correlation in a contingency table (see ”Correlation and Covariance”),
and tests of goodness of fit and randomness (see ”Tests of Goodness of Fit and Randomness”).

Missing Values

Most classes described in this chapter automatically handle missing values (NaN, ”Not a
Number”; see Double.NaN).

Tied Observations

The WilcoxonRankSum class described in this chapter contains a set method, setFuzz.
Observations that are within fuzz of each other in absolute value are said to be tied. If fuzz =
0.0, observations must be identically equal before they are considered to be tied. Other positive
values of fuzz allow for numerical imprecision or roundoff error.
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SignTest Class

Summary

Performs a sign test.

public class Imsl.Stat.SignTest

Properties

NumPositiveDev
public int NumPositiveDev {get; }
Description

Returns the number of positive differences.

NumZeroDev
public int NumZeroDev {get; }
Description

Returns the number of zero differences.

Percentage
public double Percentage {get; set; }
Description

The percentage percentile of the population.

Percentile is the 100 * percentage percentile of the population.

Default: Percentage = 0.5.

Percentile
public double Percentile {get; set; }
Description

The hypothesized percentile of the population.

Default: Percentile = 0.0

Constructor

SignTest
public SignTest(double[] x)
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Description

Constructor for SignTest.

Parameter

x – A double array containing the data.

Method

Compute
public double Compute()

Description

Performs a sign test.

Call this value probability. If using default values, the null hypothesis is that the median
equals 0.0.

Returns

A double scalar containing the Binomial probability of NumPositiveDev or more positive
differences in x.length - number of zero differences trials.

Description

Class SignTest tests hypotheses about the proportion p of a population that lies below a value
q, where p and q corresponds to the Percentage and Percentile properties, respectively. In
continuous distributions, this can be a test that q is the 100 p-th percentile of the population
from which x was obtained. To carry out testing, SignTest tallies the number of values above q
in the number of positive differences x[j − 1]− Percentile for j = 1, 2, . . . , x.length. The
binomial probability of the number of values above q in the number of positive differences
x[j − 1]−Percentile for j = 1, 2, . . . , . . . , x.length or more values above q is then computed using
the proportion p and the sample size in x (adjusted for the missing observations and ties).

Hypothesis testing is performed as follows for the usual null and alternative hypotheses:

• H0 : Pr(x ≤ q) ≥ p (the p-th quantile is at least q)

H1 : Pr(x ≤ q) < p

Reject H0 if probability is less than or equal to the significance level.

• H0 : Pr(x ≤ q) ≤ p (the p-th quantile is at least q)

H1 : Pr(x ≤ q) > p

Reject H0 if probability is greater than or equal to 1 minus the significance level.

• H0 : Pr(x = q) = p(the p-th quantile is q)

H1 : Pr((x ≤ q) < p) or Pr((x ≤ q) > p)

Reject H0 if probability is less than or equal to half the significance level or greater than
or equal to 1 minus half the significance level.
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The assumptions are as follows:

1. They are independent and identically distributed.

2. Measurement scale is at least ordinal; i.e., an ordering less than, greater than, and equal
to exists in the observations.

Many uses for the sign test are possible with various values of p and q. For example, to perform
a matched sample test that the difference of the medians of y and z is 0.0, let p = 0.5, q = 0.0,
and xi = yi − zi in matched observations y and z. To test that the median difference is c, let q
= c.

Example 1: Sign Test

This example tests the hypothesis that at least 50 percent of a population is negative. Because
0.18 < 0.95, the null hypothesis at the 5-percent level of significance is not rejected.

using System;
using Imsl.Stat;

public class SignTestEx1
{

public static void Main(String[] args)
{

double[] x = new double[]{ 92.0, 139.0, - 6.0,
10.0, 81.0, - 11.0,
45.0, - 25.0, - 4.0,
22.0, 2.0, 41.0,
13.0, 8.0, 33.0,
45.0, - 33.0, - 45.0,
- 12.0};

SignTest st = new SignTest(x);

Console.Out.WriteLine
("Probability = " + st.Compute().ToString("0.000000"));

}
}

Output

Probability = 0.179642

Example 2: Sign Test

This example tests the null hypothesis that at least 75 percent of a population is negative.
Because 0.923 < 0.95, the null hypothesis at the 5-percent level of significance is rejected.
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using System;
using Imsl.Stat;

public class SignTestEx2
{

public static void Main(String[] args)
{

double[] x = new double[]{ 92.0, 139.0, - 6.0,
10.0, 81.0, - 11.0,
45.0, - 25.0, - 4.0,
22.0, 2.0, 41.0,
13.0, 8.0, 33.0,
45.0, - 33.0, - 45.0,
- 12.0};

SignTest st = new SignTest(x);

st.Percentage = 0.75;
st.Percentile = 0.0;
Console.Out.WriteLine

("Probability = " + st.Compute().ToString("0.000000"));
Console.Out.WriteLine

("Number of positive deviations = " + st.NumPositiveDev);
Console.Out.WriteLine("Number of ties = " + st.NumZeroDev);

}
}

Output

Probability = 0.922543
Number of positive deviations = 12
Number of ties = 0

WilcoxonRankSum Class

Summary

Performs a Wilcoxon rank sum test.

public class Imsl.Stat.WilcoxonRankSum

Constructor

WilcoxonRankSum
public WilcoxonRankSum(double[] x, double[] y)
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Description

Constructor for WilcoxonRankSum.

Parameters

x – A double array containing the first sample.
y – A double array containing the second sample.

Methods

Compute
public double Compute()

Description

Performs a Wilcoxon rank sum test.

Returns

A double scalar containing the two-sided p-value for the Wilcoxon rank sum statistic that
is computed with average ranks used in the case of ties.

GetStatistics
public double[] GetStatistics()

Description

Returns the statistics.

The statistics are as follows:

Row Statistics
0 Wilcoxon W statistic (the sum of the ranks of the x observa-

tions) adjusted for ties in such a manner that Wis as small as
possible

1 2 x E(W) - W, where E(W) is the expected value of W
2 probability of obtaining a statistic less than or equal to

min{W, 2 x E(W) - W}
3 W statistic adjusted for ties in such a manner that Wis as

large as possible
4 2 x E(W) - W, where E(W) is the expected value of W, ad-

justed for ties in such a manner that W is as large as possible
5 probability of obtaining a statistic less than or equal to

min{W, 2 x E(W) - W}, adjusted for ties in such a manner
that W is as large as possible

6 Wstatistic with average ranks used in case of ties
7 estimated standard error of Row 6 under the null hypothesis

of no difference
8 standard normal score associated with Row 6
9 two-sided p-value associated with Row 8
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Returns

A double array of length 10 containing statistics.

SetFuzz
public void SetFuzz(double fuzz)

Description

Sets the nonnegative constant used to determine ties in computing ranks in the combined
samples.

A tie is declared when two observations in the combined sample are within fuzz of each
other. Default: fuzz = 100× 2.2204460492503131e− 16×max(|xi1|, |xj2|)
Parameter

fuzz – A double scalar containing the nonnegative constant used to determine ties
in computing ranks in the combined samples.

Description

Class WilcoxonRankSum performs the Wilcoxon rank sum test for identical population
distribution functions. The Wilcoxon test is a linear transformation of the Mann-Whitney U
test. If the difference between the two populations can be attributed solely to a difference in
location, then the Wilcoxon test becomes a test of equality of the population means (or
medians) and is the nonparametric equivalent of the two-sample t-test. Class WilcoxonRankSum
obtains ranks in the combined sample after first eliminating missing values from the data. The
rank sum statistic is then computed as the sum of the ranks in the x sample. Three methods
for handling ties are used. (A tie is counted when two observations are within fuzz of each
other.) Method 1 uses the largest possible rank for tied observations in the smallest sample,
while Method 2 uses the smallest possible rank for these observations. Thus, the range of
possible rank sums is obtained.

Method 3 for handling tied observations between samples uses the average rank of the tied
observations. Asymptotic standard normal scores are computed for the W score (based on a
variance that has been adjusted for ties) when average ranks are used (see Conover 1980, p.
217), and the probability associated with the two-sided alternative is computed.

Hypothesis Tests

In each of the following tests, the first line gives the hypothesis (and its alternative) under the
assumptions 1 to 3 below, while the second line gives the hypothesis when assumption 4 is also
true. The rejection region is the same for both hypotheses and is given in terms of Method 3
for handling ties. If another method for handling ties is desired, another output statistic,
stat[0] or stat[3],should be used, where stat is the array containing the statistics returned
from the getStatistics method.
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Test Null Hypothesis Alternative Hypothesis Action

1
H0 : Pr(x1 < x2) = 0.5
H0 : E(x1) = E(x2)

H1 : Pr(x1 < x2) 6= 0.5
H1 : E(x1) 6= E(x2) Reject if stat[9] is less

than the significance level
of the test. Alternatively,
reject the null hypothesis if
stat[6] is too large or too
small.

2
H0 : Pr(x1 < x2) ≤ 0.5
H0 : E(x1) ≥ E(x2)

H1 : Pr(x1 < x2) 6= 0.5
H1 : E(x1) < E(x2) Reject if stat[6] is too

small

3
H0 : Pr(x1 < x2) ≥ 0.5
H0 : E(x1) ≤ E(x2)

H1 : Pr(x1 < x2) < 0.5
H1 : E(x1) > E(x2) Reject if stat[6] is too

large

Assumptions

1. x and y contain random samples from their respective populations.

2. All observations are mutually independent.

3. The measurement scale is at least ordinal (i.e., an ordering less than, greater than, or
equal to exists among the observations).

4. If f(x) and g(y) are the distribution functions of x and y, then g(y) = f(x + c) for some
constant c(i.e., the distribution of y is, at worst, a translation of the distribution of x).

Tables of critical values of the W statistic are given in the references for small samples.

Example 1: Wilcoxon Rank Sum Test

The following example is taken from Conover (1980, p. 224). It involves the mixing time of two
mixing machines using a total of 10 batches of a certain kind of batter, five batches for each
machine. The null hypothesis is not rejected at the 5-percent level of significance.

using System;
using Imsl;
using Imsl.Stat;

public class WilcoxonRankSumEx1
{

public static void Main(String[] args)
{

double[] x = new double[]{7.3, 6.9, 7.2, 7.8, 7.2};
double[] y = new double[]{7.4, 6.8, 6.9, 6.7, 7.1};

WilcoxonRankSum wilcoxon = new WilcoxonRankSum(x, y);
Console.Out.WriteLine

("p-value = " + wilcoxon.Compute().ToString("0.0000"));
}

}
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Output

p-value = 0.1412
Imsl.Stat.WilcoxonRankSum: "x.length" = 5 and "y.length" = 5.
Both sample sizes, "x.length" and "y.length", are less than 25.
Significance levels should be obtained from tabled values.
Imsl.Stat.WilcoxonRankSum: At least one tie is detected between the samples.

Example 2: Wilcoxon Rank Sum Test

The following example uses the same data as in example 1. Now, all the statistics are displayed.

using System;
using Imsl.Stat;
using PrintMatrix = Imsl.Math.PrintMatrix;

public class WilcoxonRankSumEx2
{

public static void Main(String[] args)
{

double[] x = new double[]{7.3, 6.9, 7.2, 7.8, 7.2};
double[] y = new double[]{7.4, 6.8, 6.9, 6.7, 7.1};
String[] labels =new String[]{

"Wilcoxon W statistic ......................",
"2*E(W) - W ................................",
"p-value ................................... ",
"Adjusted Wilcoxon statistic ...............",
"Adjusted 2*E(W) - W .......................",
"Adjusted p-value .......................... ",
"W statistics for averaged ranks............",
"Standard error of W (averaged ranks) ...... ",
"Standard normal score of W (averaged ranks) ",
"Two-sided p-value of W (averaged ranks) ... "};

WilcoxonRankSum wilcoxon = new WilcoxonRankSum(x, y);
wilcoxon.Compute();
double[] stat = wilcoxon.GetStatistics();

for (int i = 0; i < 10; i++)
{

Console.Out.WriteLine
(labels[i] + " " + stat[i].ToString("0.000"));

}
}

}

Output

Wilcoxon W statistic ...................... 34.000
2*E(W) - W ................................ 21.000
p-value ................................... 0.110
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Adjusted Wilcoxon statistic ............... 35.000
Adjusted 2*E(W) - W ....................... 20.000
Adjusted p-value .......................... 0.075
W statistics for averaged ranks............ 34.500
Standard error of W (averaged ranks) ...... 4.758
Standard normal score of W (averaged ranks) 1.471
Two-sided p-value of W (averaged ranks) ... 0.141
Imsl.Stat.WilcoxonRankSum: "x.length" = 5 and "y.length" = 5.
Both sample sizes, "x.length" and "y.length", are less than 25.
Significance levels should be obtained from tabled values.
Imsl.Stat.WilcoxonRankSum: At least one tie is detected between the samples.
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Chapter 17: Tests of Goodness of
Fit

Types

class ChiSquaredTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
class NormalityTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457

Usage Notes

The classes in this chapter are used to test for goodness of fit. The goodness-of-fit tests are
described in Conover (1980). There is a goodness-of-fit test for general distributions and a
chi-squared test. The user supplies the hypothesized cumulative distribution function for the
test. There is a class that can be used to test specifically for the normal distribution.

The chi-squared goodness-of-fit test may be used with discrete as well as continuous
distributions. The chi-squared goodness-of-fit test allows for missing values (NaN, not a
number) in the input data.

ChiSquaredTest Class

Summary

Chi-squared goodness-of-fit test.

public class Imsl.Stat.ChiSquaredTest
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Properties

ChiSquared
public double ChiSquared {get; }
Description

The chi-squared statistic.

DegreesOfFreedom
public double DegreesOfFreedom {get; }
Description

Returns the degrees of freedom in chi-squared.

P
public double P {get; }
Description

The p-value for the chi-squared statistic.

Constructors

ChiSquaredTest
public ChiSquaredTest(Imsl.Stat.ICdfFunction cdf, double[] cutpoints, int
nParameters)

Description

Constructor for the Chi-squared goodness-of-fit test.

Parameters

cdf – Object that implements the ICdfFunction interface.

cutpoints – A double array containing the cutpoints.

nParameters – A int which specifies the number of parameters estimated in
computing the Cdf.

Imsl.Stat.NotCDFException id is thrown if the function cdf.CdfFunction is not a
valid CDF.

ChiSquaredTest
public ChiSquaredTest(Imsl.Stat.ICdfFunction cdf, int nCutpoints, int
nParameters)
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Description

Constructor for the Chi-squared goodness-of-fit test

Parameters

cdf – Object that implements the ICdfFunction interface.

nCutpoints – A int which specifies the number of cutpoints.

nParameters – A int which specifies the number of parameters estimated in
computing the Cdf.

Imsl.Stat.NotCDFException id is thrown if the function cdf.CdfFunction is not a
valid CDF.

Imsl.Stat.DidNotConvergeException id is thrown if the interation to find the inverse
of the CDF did not converge. The inverse CDF is needed to compute the cutpoints.

Methods

GetCellCounts
public double[] GetCellCounts()

Description

Returns the cell counts.

Returns

A double array which contains the number of actual observations in each cell.

GetCutpoints
public double[] GetCutpoints()

Description

Returns the cutpoints.

The intervals defined by the cutpoints are such that the lower endpoint is not included
while the upper endpoint is included in the interval.

Returns

A double array which contains the cutpoints.

GetExpectedCounts
public double[] GetExpectedCounts()

Description

Returns the expected counts.
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Returns

A double array which contains the number of expected observations in each cell.

SetCutpoints
public void SetCutpoints(double[] cutpoints)

Description

Sets the cutpoints.

The intervals defined by the cutpoints are such that the lower endpoint is not included
while the upper endpoint is included in the interval.

Parameter

cutpoints – A double array which contains the cutpoints.

SetRange
public void SetRange(double lower, double upper)

Description

Sets endpoints of the range of the distribution.

Points outside of the range are ignored so that distributions conditional on the range can
be used. In this case, the point lower is excluded from the first interval, but the point
upper is included in the last interval.

By default, a range on the whole real line is used.

Parameters

lower – A double which specifies the lower range limit.

upper – A double which specifies the upper range limit.

Update
public void Update(double[] x, double[] freq)

Description

Adds new observations to the test.

Parameters

x – A double array which contains the new observations to be added to the test.

freq – A double array which contains the frequencies of the corresponding new
observations in x.

Update
public void Update(double x, double freq)
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Description

Adds a new observation to the test.
Parameters

x – A double which specifies the new observation to be added to the test.
freq – A double which specifies the frequency of the new observation, x.

Description

ChiSquaredTest performs a chi-squared goodness-of-fit test that a random sample of
observations is distributed according to a specified theoretical cumulative distribution. The
theoretical distribution, which may be continuous, discrete, or a mixture of discrete and
continuous distributions, is specified via a user-defined function F where F implements
ICdfFunction. Because the user is allowed to specify a range for the observations in the
SetRange method, a test that is conditional upon the specified range is performed.

ChiSquaredTest can be constructed in two different ways. The intervals can be specified via
the array cutpoints. Otherwise, the number of cutpoints can be given and equiprobable
intervals computed by the constructor. The observations are divided into these intervals.
Regardless of the method used to obtain them, the intervals are such that the lower endpoint is
not included in the interval while the upper endpoint is always included. The user should
determine the cutpoints when the cumulative distribution function has discrete elements since
ChiSquaredTest cannot determine them in this case.

By default, the lower and upper endpoints of the first and last intervals are −∞ and +∞,
respectively. The method SetRange can be used to change the range.

A tally of counts is maintained for the observations in x as follows:

If the cutpoints are specified by the user, the tally is made in the interval to which xi belongs,
using the user-specified endpoints.

If the cutpoints are determined by the class then the cumulative probability at xi, F (xi), is
computed using Cdf.

The tally for xi is made in interval number bmF (x) + 1c, where m is the number of categories
and b.c is the function that takes the greatest integer that is no larger than the argument of the
function. If the cutpoints are specified by the user, the tally is made in the interval to which xi

belongs using the endpoints specified by the user. Thus, if the computer time required to
calculate the cumulative distribution function is large, user-specified cutpoints may be preferred
in order to reduce the total computing time.

If the expected count in any cell is less than 1, then a rule of thumb is that the chi-squared
approximation may be suspect. A warning message to this effect is issued in this case, as well
as when an expected value is less than 5.

Example: The Chi-squared Goodness-of-fit Test

In this example, a discrete binomial random sample of size 1000 with binomial parameter
p = 0.3 and binomial sample size 5 is generated via Random.nextBinomial. Random.setSeed is
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first used to set the seed. After the ChiSquaredTest constructor is called, the random
observations are added to the test one at a time to simulate streaming data. The Chi-squared
statistic, p-value, and Degrees of freedom are then computed and printed.

using System;
using Imsl.Stat;

public class ChiSquaredTestEx1 : ICdfFunction
{

public double CdfFunction(double x)
{

return Cdf.Binomial((int) x, 5, 0.3);
}

public static void Main(String[] args)
{

// Seed the random number generator
Imsl.Stat.Random rn = new Imsl.Stat.Random(123457);
rn.Multiplier = 16807;

// Construct a ChiSquaredTest object
ICdfFunction bindf = new ChiSquaredTestEx1();

double[] cutp = new double[]{0.5, 1.5, 2.5, 3.5, 4.5};
int nParameters = 0;
ChiSquaredTest cst =

new ChiSquaredTest(bindf, cutp, nParameters);
for (int i = 0; i < 1000; i++)
{

cst.Update(rn.NextBinomial(5, 0.3), 1.0);
}

// Print goodness-of-fit test statistics
Console.Out.WriteLine

("The Chi-squared statistic is " + cst.ChiSquared);
Console.Out.WriteLine("The P-value is " + cst.P);
Console.Out.WriteLine

("The Degrees of freedom are " + cst.DegreesOfFreedom);
}

}

Output

The Chi-squared statistic is 4.79629666357385
The P-value is 0.441242957205531
The Degrees of freedom are 5
Imsl.Stat.ChiSquaredTest: An expected value is less than five.
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NormalityTest Class

Summary

Performs a test for normality.

public class Imsl.Stat.NormalityTest

Properties

ChiSquared
public double ChiSquared {get; }
Description

Returns the chi-square statistic for the chi-squared goodness-of-fit test.

Returns Double.NaN for other tests.

DegreesOfFreedom
public double DegreesOfFreedom {get; }
Description

Returns the degrees of freedom for the chi-squared goodness-of-fit test.

Returns Double.NaN for other tests.

MaxDifference
public double MaxDifference {get; }
Description

Returns the maximum absolute difference between the empirical and the theoretical
distributions for the Lilliefors test.

Returns Double.NaN for other tests.

ShapiroWilkW
public double ShapiroWilkW {get; }
Description

Returns the Shapiro-Wilk W statistic for the Shapiro-Wilk W test.

Returns Double.NaN for other tests.
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Constructor

NormalityTest
public NormalityTest(double[] x)

Description

Constructor for NormalityTest.

x.length must be in the range from 3 to 2,000, inclusive, for the Shapiro-Wilk W test
and must be greater than 4 for the Lilliefors test.

Parameter

x – A double array containing the observations.

Methods

ChiSquaredTest
public double ChiSquaredTest(int n)

Description

Performs the chi-squared goodness-of-fit test.

See Also: Imsl.Stat.NormalityTest.ChiSquaredTest(System.Int32) (p. 458)

Parameter

n – A int scalar containing the number of cells into which the observations are to be
tallied.

Returns

A double scalar containing the p-value for the chi-squared goodness-of-fit test.

Imsl.Stat.NoVariationInputException id is thrown if there is no variation in the
input data

Imsl.Stat.DidNotConvergeException id is thrown if the iteration did not converge

LillieforsTest
public double LillieforsTest()

Description

Performs the Lilliefors test.

Probabilities less than 0.01 are reported as 0.01, and probabilities greater than 0.10 for
the normal distribution are reported as 0.5. Otherwise, an approximate probability is
computed.
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Returns

A double scalar containing the p-value for the Lilliefors test.

Imsl.Stat.NoVariationInputException id is thrown if there is no variation in the
input data

Imsl.Stat.DidNotConvergeException id is thrown if the iteration did not converge

ShapiroWilkWTest
public double ShapiroWilkWTest()

Description

Performs the Shapiro-Wilk W test.

Returns

A double scalar containing the p-value for the Shapiro-Wilk W test.

Imsl.Stat.NoVariationInputException id is thrown if there is no variation in the
input data

Imsl.Stat.DidNotConvergeException id is thrown if the iteration did not converge

Description

Three methods are provided for testing normality: the Shapiro-Wilk W test, the Lilliefors test,
and the chi-squared test.

Shapiro-Wilk W Test

The Shapiro-Wilk W test is thought by D’Agostino and Stevens (1986, p. 406) to be one of the
best omnibus tests of normality. The function is based on the approximations and code given
by Royston (1982a, b, c). It can be used in samples as large as 2,000 or as small as 3. In the
Shapiro and Wilk test, W is given by

W =
(∑

aix(i)

)2

/
(∑

(xi − x̄)2
)

where x(i) is the i-th largest order statistic and x is the sample mean. Royston (1982) gives
approximations and tabled values that can be used to compute the coefficients ai, i = 1, . . . , n,
and obtains the significance level of the W statistic.

Lilliefors Test

This function computes Lilliefors test and its p-values for a normal distribution in which both
the mean and variance are estimated. The one-sample, two-sided Kolmogorov-Smirnov statistic
D is first computed. The p-values are then computed using an analytic approximation given by
Dallal and Wilkinson (1986). Because Dallal and Wilkinson give approximations in the range
(0.01, 0.10) if the computed probability of a greater D is less than 0.01, the p-value is set to
0.50. Note that because parameters are estimated, p-values in Lilliefors test are not the same as
in the Kolmogorov-Smirnov Test.
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Observations should not be tied. If tied observations are found, an informational message is
printed. A general reference for the Lilliefors test is Conover (1980). The original reference for
the test for normality is Lilliefors (1967).

Chi-Squared Test

This function computes the chi-squared statistic, its p-value, and the degrees of freedom of the
test. Argument n finds the number of intervals into which the observations are to be divided.
The intervals are equiprobable except for the first and last interval, which are infinite in length.

If more flexibility is desired for the specification of intervals, the same test can be performed
with class ChiSquaredTest.

Example: Shapiro-Wilk W Test

The following example is taken from Conover (1980, pp. 195, 364). The data consists of 50
two-digit numbers taken from a telephone book. The W test fails to reject the null hypothesis
of normality at the .05 level of significance.

using System;
using Imsl;
using Imsl.Stat;

public class NormalityTestEx1
{

public static void Main(String[] args)
{

double[] x = new double[]{
23.0, 36.0, 54.0, 61.0, 73.0, 23.0,
37.0, 54.0, 61.0, 73.0, 24.0, 40.0,
56.0, 62.0, 74.0, 27.0, 42.0, 57.0,
63.0, 75.0, 29.0, 43.0, 57.0, 64.0,
77.0, 31.0, 43.0, 58.0, 65.0, 81.0,
32.0, 44.0, 58.0, 66.0, 87.0, 33.0,
45.0, 58.0, 68.0, 89.0, 33.0, 48.0,
58.0, 68.0, 93.0, 35.0, 48.0, 59.0,
70.0, 97.0};

NormalityTest nt = new NormalityTest(x);

Console.Out.WriteLine
("p-value = " + nt.ShapiroWilkWTest().ToString("0.0000"));

Console.Out.WriteLine("Shapiro Wilk W Statistic = " +
nt.ShapiroWilkW.ToString("0.0000"));

}
}

Output

p-value = 0.2309
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Shapiro Wilk W Statistic = 0.9642
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Chapter 18: Time Series and
Forecasting

Types

class AutoCorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
enumeration AutoCorrelation.StdErr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .474
class CrossCorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
enumeration CrossCorrelation.StdErr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
class MultiCrossCorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
class ARMA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
enumeration ARMA.ParamEstimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
class Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
class GARCH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .523
class KalmanFilter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .529

Usage Notes

The classes in this chapter assume the time series does not contain any missing observations. If
missing values are present, they should be set to NaN (see Double.NaN), and the classes will
return an appropriate error message. To enable fitting of the model, the missing values must be
replaced by appropriate estimates.

General Methodology

A major component of the model identification step concerns determining if a given time series
is stationary. The sample correlation functions computed by the AutoCorrelation class methods
getAutoCorrelations and getPartialAutoCorrelations may be used to diagnose the
presence of nonstationarity in the data, as well as to indicate the type of transformation
required to induce stationarity.

The ”raw” data and sample correlation functions provide insight into the nature of the
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underlying model. Typically, this information is displayed in graphical form via time series
plots, plots of the lagged data, and various correlation function plots.

ARIMA Model (Autoregressive Integrated Moving Average)

A small, yet comprehensive, class of stationary time-series models consists of the nonseasonal
ARMA processes defined by

φ (B) (Wt − µ) = θ (B)At, t ∈ Z

where Z = . . . ,−2,−1, 0, 1, 2, . . . denotes the set of integers, B is the backward shift operator
defined by BkWt = Wt−k, µ is the mean of Wt, and the following equations are true:

φ(B) = 1− φ1B − φ2B
2 − · · · − φpB

p, p ≥ 0

θ(B) = 1− θ1B − θ2B2 − · · · − θqB
q, q ≥ 0

The model is of order (p, q) and is referred to as an ARMA (p, q) model.

An equivalent version of the ARMA (p, q) model is given by

φ(B)Wt = θ0 + θ(B)Ai, t ∈ Z

where θ0 is an overall constant defined by the following:

θ0 = µ

(
1−

p∑
i=1

φi

)

See Box and Jenkins (1976, pp. 92-93) for a discussion of the meaning and usefulness of the
overall constant.

If the ”raw” data, {Zt}, are homogeneous and nonstationary, then differencing using the
Difference class induces stationarity, and the model is called ARIMA (AutoRegressive
Integrated Moving Average). Parameter estimation is performed on the stationary time series
Wt,= ∆dZt , where ∆d = (1−B)d is the backward difference operator with period 1 and order
d, d > 0.

Typically, the method of moments includes setting property Method to MethodOfMoments in the
ARMA class for preliminary parameter stimates. These estimates can be used as initial values
into the least-squares procedure by setting property Method to LeastSquares in the ARMA
class. Other initial estimates provided by the user can be used. The least-squares procedure
can be used to compute conditional or unconditional least-squares estimates of the parameters,
depending on the choice of the backcasting length. The parameter estimates from either the
method of moments or least-squares procedures can be used in the forecast method. The
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functions for preliminary parameter estimation, least-squares parameter estimation, and
forecasting follow the approach of Box and Jenkins (1976, Programs 2-4, pp. 498-509).

AutoCorrelation Class

Summary

Computes the sample autocorrelation function of a stationary time series.

public class Imsl.Stat.AutoCorrelation

Properties

Mean
public double Mean {get; set; }
Description

The mean of the time series x.

Variance
public double Variance {get; }
Description

Returns the variance of the time series x.

Constructor

AutoCorrelation
public AutoCorrelation(double[] x, int maximumLag)

Description

Constructor to compute the sample autocorrelation function of a stationary time series.

maximumLag must be greater than or equal to 1 and less than the number of observations
in x.

Parameters

x – A one-dimensional double array containing the stationary time series.

maximumLag – An int containing the maximum lag of autocovariance,
autocorrelations, and standard errors of autocorrelations to be computed.
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Methods

GetAutoCorrelations
public double[] GetAutoCorrelations()

Description

Returns the autocorrelations of the time series x.

The 0-th element of this array is 1. The k-th element of this array contains the
autocorrelation of lag k where k = 1, ..., maximumLag.

Returns

A double array of length maximumLag +1 containing the autocorrelations of the time
series x.

GetAutoCovariances
public double[] GetAutoCovariances()

Description

Returns the variance and autocovariances of the time series x.

The 0-th element of the array contains the variance of the time series x. The k-th element
contains the autocovariance of lag k where k = 1, ..., maximumLag.

Returns

A double array of length maximumLag + 1 containing the variances and autocovariances
of the time series x.

Imsl.Stat.NonPosVarianceException id is thrown if the problem is ill-conditioned.

GetPartialAutoCorrelations
public double[] GetPartialAutoCorrelations()

Description

Returns the sample partial autocorrelation function of the stationary time series x.

Returns

A double array of length maximumLag containing the partial autocorrelations of the time
series x.

GetStandardErrors
public double[] GetStandardErrors(Imsl.Stat.AutoCorrelation.StdErr
stderrMethod)
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Description

Returns the standard errors of the autocorrelations of the time series x.

Method of computation for standard errors of the autocorrelation is chosen by the
stderrMethod parameter.

If stderrMethod is set to Bartletts, Bartlett’s formula is used to compute the standard
errors of autocorrelations.

If stderrMethod is set to Morans, Moran’s formula is used to compute the standard
errors of autocorrelations.

Parameter

stderrMethod – An int specifying the method to compute the standard errors of
autocorrelations of the time series x.

Returns

A double array of length maximumLag containing the standard errors of the
autocorrelations of the time series x.

Description

AutoCorrelation estimates the autocorrelation function of a stationary time series given a
sample of n observations {Xt} for t = 1, 2, . . . ,n.

Let
µ̂ = xmean

be the estimate of the mean µ of the time series {Xt} where

µ̂ =

pa µ for µ known
1
n

n∑
t=1

Xt for µ unknown

The autocovariance function σ(k) is estimated by

σ̂ (k) =
1
n

n−k∑
t=1

(Xt − µ̂) (Xt+k − µ̂) , k=0,1,. . . ,K

where K = maximumLag. Note that σ̂(0) is an estimate of the sample variance. The
autocorrelation function ρ(k) is estimated by

ρ̂(k) =
σ̂(k)
σ̂(0)

, k = 0, 1, . . . ,K

Note that ρ̂(0) ≡ 1 by definition.

The standard errors of sample autocorrelations may be optionally computed according to the
GetStandardErrors method argument stderrMethod. One method (Bartlett 1946) is based on a
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general asymptotic expression for the variance of the sample autocorrelation coefficient of a
stationary time series with independent, identically distributed normal errors. The theoretical
formula is

var{ρ̂(k)} =
1
n

∞∑
i=−∞

[
ρ2(i) + ρ(i− k)ρ(i+ k)− 4ρ(i)ρ(k)ρ(i− k) + 2ρ2(i)ρ2(k)

]

where ρ̂(k) assumes µ is unknown. For computational purposes, the autocorrelations ρ(k) are
replaced by their estimates ρ̂(k) for |k| ≤ K, and the limits of summation are bounded because
of the assumption that ρ(k) = 0 for all k such that |k| > K.

A second method (Moran 1947) utilizes an exact formula for the variance of the sample
autocorrelation coefficient of a random process with independent, identically distributed normal
errors. The theoretical formula is

var{ρ̂(k)} =
n− k

n(n+ 2)

where µ is assumed to be equal to zero. Note that this formula does not depend on the
autocorrelation function.

The method GetPartialAutoCorrelations returns the estimated partial autocorrelations of
the stationary time series given K = maximumLag sample autocorrelations ρ̂(k) for k=0,1,...,K.
Consider the AR(k) process defined by

Xt = φk1Xt−1 + φk2Xt−2 + · · ·+ φkkXt−k +At

where φkj denotes the j-th coefficient in the process. The set of estimates {φ̂kk} for k = 1, ..., K
is the sample partial autocorrelation function. The autoregressive parameters {φ̂kj} for j = 1,
..., k are approximated by Yule-Walker estimates for successive AR(k) models where k = 1, ...,
K. Based on the sample Yule-Walker equations

ρ̂(j) = φ̂k1ρ̂(j − 1) + φ̂k2ρ̂(j − 2) + · · ·+ φ̂kkρ̂(j − k), j = 1,2,. . . ,k

a recursive relationship for k=1, ..., K was developed by Durbin (1960). The equations are
given by

φ̂kk =


ρ̂(1) for k = 1
ρ̂(k) −

k−1P

j=1
φ̂k−1,j ρ̂(k−j)

1 −
k−1P

j=1
φ̂k−1,j ρ̂(j)

for k = 2, . . . ,K

and

φ̂kj =
{
φ̂k−1,j − φ̂kkφ̂k−1,k−j for j = 1, 2, . . . , k− 1
φ̂kk for j = k
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This procedure is sensitive to rounding error and should not be used if the parameters are near
the nonstationarity boundary. A possible alternative would be to estimate {φkk} for successive
AR(k) models using least or maximum likelihood. Based on the hypothesis that the true
process is AR(p), Box and Jenkins (1976, page 65) note

var{φ̂kk} '
1
n

k ≥ p + 1

See Box and Jenkins (1976, pages 82-84) for more information concerning the partial
autocorrelation function.

Example 1: AutoCorrelation

Consider the Wolfer Sunspot Data (Anderson 1971, p. 660) consisting of the number of
sunspots observed each year from 1749 through 1924. The data set for this example consists of
the number of sunspots observed from 1770 through 1869. This example computes the
estimated autocovariances, estimated autocorrelations, and estimated standard errors of the
autocorrelations using both Barlett and Moran formulas.

using System;
using Imsl.Stat;
using PrintMatrix = Imsl.Math.PrintMatrix;

public class AutoCorrelationEx1
{

public static void Main(String[] args)
{

double[] x = new double[]{ 100.8, 81.6, 66.5, 34.8, 30.6,
7, 19.8, 92.5, 154.4, 125.9,
84.8, 68.1, 38.5, 22.8, 10.2,
24.1, 82.9, 132, 130.9, 118.1,
89.9, 66.6, 60, 46.9, 41,
21.3, 16, 6.4, 4.1, 6.8,
14.5, 34, 45, 43.1, 47.5,
42.2, 28.1, 10.1, 8.1, 2.5,
0, 1.4, 5, 12.2, 13.9,
35.4, 45.8, 41.1, 30.4, 23.9,
15.7, 6.6, 4, 1.8, 8.5,
16.6, 36.3, 49.7, 62.5, 67,
71, 47.8, 27.5, 8.5, 13.2,
56.9, 121.5, 138.3, 103.2, 85.8,
63.2, 36.8, 24.2, 10.7, 15,
40.1, 61.5, 98.5, 124.3, 95.9,
66.5, 64.5, 54.2, 39, 20.6,
6.7, 4.3, 22.8, 54.8, 93.8,
95.7, 77.2, 59.1, 44, 47,
30.5, 16.3, 7.3, 37.3, 73.9};

AutoCorrelation ac = new AutoCorrelation(x, 20);
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new PrintMatrix
("AutoCovariances are: ").Print(ac.GetAutoCovariances());

Console.Out.WriteLine();
new PrintMatrix

("AutoCorrelations are: ").Print(ac.GetAutoCorrelations());
Console.Out.WriteLine("Mean = " + ac.Mean);
Console.Out.WriteLine();
new PrintMatrix

("Standard Error using Bartlett are: ").Print
(ac.GetStandardErrors(AutoCorrelation.StdErr.Bartletts));

Console.Out.WriteLine();
new PrintMatrix

("Standard Error using Moran are: ").Print
(ac.GetStandardErrors(AutoCorrelation.StdErr.Morans));

Console.Out.WriteLine();
new PrintMatrix

("Partial AutoCovariances: ").
Print(ac.GetPartialAutoCorrelations());

ac.Mean = 50;
new PrintMatrix

("AutoCovariances are: ").Print
(ac.GetAutoCovariances());

Console.Out.WriteLine();
new PrintMatrix

("AutoCorrelations are: ").
Print(ac.GetAutoCorrelations());

Console.Out.WriteLine();
new PrintMatrix

("Standard Error using Bartlett are: ").Print
(ac.GetStandardErrors(AutoCorrelation.StdErr.Bartletts));

}
}

Output

AutoCovariances are:
0

0 1382.908024
1 1115.02915024
2 592.00446848
3 95.29741072
4 -235.95179904
5 -370.0108088
6 -294.25541456
7 -60.44237232
8 227.63259792
9 458.38076816
10 567.8407384
11 546.12202864
12 398.93728688
13 197.75742912
14 26.89107936
15 -77.2807224
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16 -143.73279616
17 -202.04799792
18 -245.37223168
19 -230.81567344
20 -142.8788232

AutoCorrelations are:
0

0 1
1 0.806293065691258
2 0.428086653780237
3 0.0689108813212006
4 -0.170620023128885
5 -0.267559955093586
6 -0.212780177317129
7 -0.043706718936501
8 0.164604293249802
9 0.331461500117813
10 0.410613524938228
11 0.394908424249623
12 0.288477093166393
13 0.143001143740562
14 0.0194453129877855
15 -0.0558827637549379
16 -0.10393518127421
17 -0.146103713633525
18 -0.17743206881559
19 -0.166906019369514
20 -0.103317661565611

Mean = 46.976

Standard Error using Bartlett are:
0

0 0.0347838253702384
1 0.0962419914340011
2 0.156783378574532
3 0.205766777086907
4 0.230955675779118
5 0.228994712235613
6 0.208621905639667
7 0.178475936561125
8 0.145727084432033
9 0.134405581638002
10 0.150675803916788
11 0.174348147103935
12 0.190619474429408
13 0.195490061669564
14 0.195892530944597
15 0.196285328179458
16 0.196020624500033
17 0.198716030900604
18 0.205358590947539
19 0.2093868822353
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Standard Error using Moran are:
0

0 0.0985184366143778
1 0.0980196058819607
2 0.0975182235357506
3 0.0970142500145332
4 0.0965076447241154
5 0.0959983659991659
6 0.0954863710632231
7 0.0949716159867634
8 0.094454055643212
9 0.0939336436627724
10 0.0934103323839415
11 0.0928840728025648
12 0.0923548145182799
13 0.0918225056781811
14 0.0912870929175277
15 0.090748521297303
16 0.0902067342384192
17 0.0896616734523426
18 0.0891132788679007
19 0.0885614885540095

Partial AutoCovariances:
0

0 0.806293065691258
1 -0.634544877310468
2 0.0782508772709519
3 -0.0585660846582815
4 -0.00094221571933657
5 0.171719898229681
6 0.108591873581717
7 0.11000138764865
8 0.0785374339029981
9 0.0791563332964613
10 0.0687065876031485
11 -0.0378019674610775
12 0.0811184838397538
13 0.0334124214991749
14 -0.0348467839607946
15 -0.130648157884444
16 -0.154900984829049
17 -0.119085063160732
18 -0.0161889037437313
19 -0.00385175459253345

AutoCovariances are:
0

0 1392.0526
1 1126.5241
2 604.1624
3 106.7545
4 -225.882
5 -361.0259
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6 -286.5701
7 -53.7603
8 235.9665
9 470.7857
10 584.0143
11 564.7639
12 418.3631
13 216.1044
14 43.125
15 -63.4683
16 -131.5012
17 -189.0627
18 -229.6888
19 -212.1559
20 -121.5693

AutoCorrelations are:
0

0 1
1 0.809253975029392
2 0.434008312616923
3 0.0766885532917362
4 -0.162265420142888
5 -0.259347886710603
6 -0.205861545749061
7 -0.0386194458456527
8 0.16950975846746
9 0.338195338308337
10 0.419534649768263
11 0.405705861976767
12 0.300536847530043
13 0.155241547625427
14 0.0309794328174093
15 -0.04559332025241
16 -0.0944656832651295
17 -0.135815773053403
18 -0.165000086922003
19 -0.152405088715757
20 -0.0873309672350025

Standard Error using Bartlett are:
0

0 0.0344591054641365
1 0.0972222809088609
2 0.15947410033087
3 0.209799660647689
4 0.235599778243579
5 0.233236443705991
6 0.211657508693781
7 0.180412936841618
8 0.14689653606348
9 0.133747601649498
10 0.148150190923942
11 0.172282351100035
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12 0.190275929042947
13 0.196791614240352
14 0.197983743593071
15 0.198474748794747
16 0.198318159677368
17 0.201022833791806
18 0.207071652966429
19 0.210217650328868

AutoCorrelation.StdErr Enumeration

Summary

Standard Error computation method.

public enumeration Imsl.Stat.AutoCorrelation.StdErr

Fields

Bartletts
public Imsl.Stat.AutoCorrelation.StdErr Bartletts

Description

Indicates standard error computation using Bartlett’s formula.

Morans
public Imsl.Stat.AutoCorrelation.StdErr Morans

Description

Indicates standard error computation using Moran’s formula.

CrossCorrelation Class

Summary

Computes the sample cross-correlation function of two stationary time series.

public class Imsl.Stat.CrossCorrelation
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Properties

MeanX
public double MeanX {get; set; }
Description

Estimate of the mean of time series x.

MeanY
public double MeanY {get; set; }
Description

Estimate of the mean of time series y.

VarianceX
public double VarianceX {get; }
Description

Returns the variance of time series x.

VarianceY
public double VarianceY {get; }
Description

Returns the variance of time series y.

Constructor

CrossCorrelation
public CrossCorrelation(double[] x, double[] y, int maximumLag)

Description

Constructor to compute the sample cross-correlation function of two stationary time
series.

maximumLag must be greater than or equal to 1 and less than the minimum of the number
of observations of x and y.

Parameters

x – A one-dimensional double array containing the first stationary time series.

y – A one-dimensional double array containing the second stationary time series.

maximumLag – An int containing the maximum lag of the cross-covariance and
cross-correlations to be computed.
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Methods

GetAutoCorrelationX
public double[] GetAutoCorrelationX()

Description

Returns the autocorrelations of the time series x.

The 0-th element of this array is 1. The k-th element of this array contains the
autocorrelation of lag k where k = 1, ..., maximumLag.

Returns

A double array of length maximumLag + 1 containing the autocorrelations of the time
series x.

Imsl.Stat.NonPosVarianceException id is thrown if the problem is ill-conditioned.

GetAutoCorrelationY
public double[] GetAutoCorrelationY()

Description

Returns the autocorrelations of the time series y.

The 0-th element of this array is 1. The k-th element of this array contains the
autocorrelation of lag k where k = 1, ..., maximumLag.

Returns

A double array of length maximumLag + 1 containing the autocorrelations of the time
series y.

Imsl.Stat.NonPosVarianceException id is thrown if the problem is ill-conditioned.

GetAutoCovarianceX
public double[] GetAutoCovarianceX()

Description

Returns the autocovariances of the time series x.

The 0-th element of the array contains the variance of the time series x. The k-th
elements contains the autocovariance of lag k where k = 1, ..., maximumLag.

Returns

A double array of length maximumLag + 1 containing the variances and autocovariances
of the time series x.

Imsl.Stat.NonPosVarianceException id is thrown if the problem is ill-conditioned.

GetAutoCovarianceY
public double[] GetAutoCovarianceY()
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Description

Returns the autocovariances of the time series y.

The 0-th element of the array contains the variance of the time series y. The k-th
elements contains the autocovariance of lag k where k = 1, ..., maximumLag.

Returns

A double array of length maximumLag + 1 containing the variances and autocovariances
of the time series y.

Imsl.Stat.NonPosVarianceException id is thrown if the problem is ill-conditioned.

GetCrossCorrelations
public double[] GetCrossCorrelations()

Description

Returns the cross-correlations between the time series x and y.

The cross-correlation between x and y at lag k, where k = -maximumLag,..., 0,
1,...,maximumLag, corresponds to output array indices 0, 1,..., (2*maximumLag).

Returns

A double array of length 2 * maximumLag + 1 containing the cross-correlations between
the time series x and y.

Imsl.Stat.NonPosVarianceXYException id is thrown if the problem is ill-conditioned.
The variance is too small to work with.

GetCrossCovariances
public double[] GetCrossCovariances()

Description

Returns the cross-covariances between the time series x and y.

The cross-covariance between x and y at lag k, where k = -maximumLag,..., 0,
1,...,maximumLag, corresponds to output array indices 0, 1,..., (2*maximumLag).

Returns

A double array of length 2 * maximumLag + 1 containing the cross-covariances between
the time series x and y.

GetStandardErrors
public double[] GetStandardErrors(Imsl.Stat.CrossCorrelation.StdErr
stderrMethod)
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Description

Returns the standard errors of the cross-correlations between the time series x and y.

The standard error of cross-correlations between x and y at lag k, where k =
-maximumLag,..., 0, 1,..., maximumLag, corresponds to output array indices 0, 1,...,
(2*maximumLag).

Method of computation for standard errors of the cross-correlation is determined by the
stderrMethod parameter. If stderrMethod is set to Bartletts, Bartlett’s formula is
used to compute the standard errors of cross-correlations. If stderrMethod is set to
BartlettsNoCC, Bartlett’s formula is used to compute the standard errors of
cross-correlations, with the assumption of no cross-correlation.

Parameter

stderrMethod – An int specifying the method to compute the standard errors of
cross-correlations between the time series x and y.

Returns

A double array of length 2 * maximumLag + 1 containing the standard errors of the
cross-correlations between the time series x and y.

Imsl.Stat.NonPosVarianceException id is thrown if the problem is ill-conditioned.

Description

CrossCorrelation estimates the cross-correlation function of two jointly stationary time series
given a sample of n = x.Length observations {Xt} and {Yt} for t = 1,2, ..., n.

Let
µ̂x = xmean

be the estimate of the mean µX of the time series {Xt} where

µ̂X =

 µX for µX known
1
n

n∑
t=1

Xt for µX unknown

The autocovariance function of {Xt}, σX(k), is estimated by

σ̂X (k) =
1
n

n−k∑
t=1

(Xt − µ̂X) (Xt+k − µ̂X) , k=0,1,. . . ,K

where K = maximumLag. Note that σ̂X(0) is equivalent to the sample variance of x returned by
property VarianceX. The autocorrelation function ρX(k) is estimated by

ρ̂X(k) =
σ̂X(k)
σ̂X(0)

, k = 0, 1, . . . ,K
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Note that ρ̂x(0) ≡ 1 by definition. Let

µ̂Y = ymean, σ̂Y (k), andρ̂Y (k)

be similarly defined.

The cross-covariance function σXY (k) is estimated by

σ̂XY (k) =


1
n

n−k∑
t=1

(Xt − µ̂X)(Yt+k − µ̂Y ) k = 0, 1, . . . ,K

1
n

n∑
t=1−k

(Xt − µ̂X)(Yt+k − µ̂Y ) k = −1,−2, . . . ,−K

The cross-correlation function ρXY (k) is estimated by

ρ̂XY (k) =
σ̂XY (k)

[σ̂X(0)σ̂Y (0)]
1
2

k = 0,±1, . . . ,±K

The standard errors of the sample cross-correlations may be optionally computed according to
the GetStandardErrors method argument stderrMethod. One method is based on a general
asymptotic expression for the variance of the sample cross-correlation coefficient of two jointly
stationary time series with independent, identically distributed normal errors given by Bartlet
(1978, page 352). The theoretical formula is

var {ρ̂XY (k)} = 1
n−k

∞∑
i=−∞

[ ρX(i) + ρXY (i− k)ρXY (i+ k)

−2ρXY (k){ρX(i)ρXY (i+ k) + ρXY (−i)ρY (i+ k)}
+ρ2

XY (k){ρX(i) + 1
2ρ

2
X(i) + 1

2ρ
2
Y (i)} ]

For computational purposes, the autocorrelations ρX(k) and ρY (k) and the cross-correlations
ρXY (k) are replaced by their corresponding estimates for |k| ≤ K, and the limits of summation
are equal to zero for all k such that |k| > K.

A second method evaluates Bartlett’s formula under the additional assumption that the two
series have no cross-correlation. The theoretical formula is

var{ρ̂XY (k)} =
1

n− k

∞∑
i=−∞

ρX(i)ρY (i) k ≥ 0

For additional special cases of Bartlett’s formula, see Box and Jenkins (1976, page 377).

An important property of the cross-covariance coefficient is σXY (k) = σY X(−k) for k ≥ 0. This
result is used in the computation of the standard error of the sample cross-correlation for lag
k < 0. In general, the cross-covariance function is not symmetric about zero so both positive
and negative lags are of interest.

Example 1: CrossCorrelation

Consider the Gas Furnace Data (Box and Jenkins 1976, pages 532-533) where X is the input
gas reate in cubic feet/minute and Y is the percent CO2 in the outlet gas. The

Time Series and Forecasting CrossCorrelation Class • 479



CrossCorrelation methods GetCrossCovariance and GetCrossCorrelation are used to
compute the cross-covariances and cross-correlations between time series X and Y with lags
from -maximumLag = -10 through lag maximumLag = 10. In addition, the estimated standard
errors of the estimated cross-correlations are computed. In the first invocation of method
GetStandardErrors stderrMethod = Bartletts, the standard errors are based on the
assumption that autocorrelations and cross-correlations for lags greater than maximumLag or
less than -maximumLag are zero. In the second invocation of method GetStandardErrors with
stderrMethod = BartlettsNoCC, the standard errors are based on the additional assumption
that all cross-correlations for X and Y are zero.

using System;
using Imsl.Stat;
using PrintMatrix = Imsl.Math.PrintMatrix;

public class CrossCorrelationEx1
{

public static void Main(String[] args)
{

double[] x2 = new double[]{100.8, 81.6, 66.5, 34.8, 30.6,
7, 19.8, 92.5, 154.4, 125.9,
84.8, 68.1, 38.5, 22.8, 10.2,
24.1, 82.9, 132, 130.9, 118.1,
89.9, 66.6, 60, 46.9, 41,
21.3, 16, 6.4, 4.1, 6.8,
14.5, 34, 45, 43.1, 47.5,
42.2, 28.1, 10.1, 8.1, 2.5,
0, 1.4, 5, 12.2, 13.9,
35.4, 45.8, 41.1, 30.4, 23.9,
15.7, 6.6, 4, 1.8, 8.5,
16.6, 36.3, 49.7, 62.5, 67,
71, 47.8, 27.5, 8.5, 13.2,
56.9, 121.5,138.3, 103.2, 85.8,
63.2, 36.8, 24.2, 10.7, 15,
40.1, 61.5, 98.5, 124.3, 95.9,
66.5, 64.5, 54.2, 39, 20.6,
6.7, 4.3, 22.8, 54.8, 93.8,
95.7, 77.2, 59.1, 44, 47,
30.5, 16.3, 7.3, 37.3, 73.9};

double[] x = new double[]{- 0.109, 0.0, 0.178, 0.339, 0.373,
0.441, 0.461, 0.348, 0.127,
- 0.18, - 0.588, - 1.055, - 1.421,
- 1.52, - 1.302, - 0.814, - 0.475,
- 0.193, 0.088, 0.435, 0.771,
0.866, 0.875, 0.891, 0.987, 1.263,
1.775, 1.976, 1.934, 1.866, 1.832,
1.767, 1.608, 1.265, 0.79, 0.36,
0.115, 0.088, 0.331, 0.645, 0.96,
1.409, 2.67, 2.834, 2.812, 2.483,
1.929, 1.485, 1.214, 1.239, 1.608,
1.905, 2.023, 1.815, 0.535, 0.122,
0.009, 0.164, 0.671, 1.019, 1.146,
1.155, 1.112, 1.121, 1.223, 1.257,
1.157, 0.913, 0.62, 0.255, - 0.28,
- 1.08, - 1.551, - 1.799, - 1.825,
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- 1.456, - 0.944, - 0.57, - 0.431,
- 0.577, - 0.96, - 1.616, - 1.875,
- 1.891, - 1.746, - 1.474, - 1.201,
- 0.927, - 0.524, 0.04, 0.788,
0.943, 0.93, 1.006, 1.137, 1.198,
1.054, 0.595, - 0.08, - 0.314,
- 0.288, - 0.153, - 0.109, - 0.187,
- 0.255, - 0.229, - 0.007, 0.254,
0.33, 0.102, - 0.423, - 1.139,
- 2.275, - 2.594, - 2.716, - 2.51,
- 1.79, - 1.346, - 1.081, - 0.91,
- 0.876, - 0.885, - 0.8, - 0.544,
- 0.416, - 0.271, 0.0, 0.403,
0.841, 1.285, 1.607, 1.746, 1.683,
1.485, 0.993, 0.648, 0.577, 0.577,
0.632, 0.747, 0.9, 0.993, 0.968,
0.79, 0.399, - 0.161, - 0.553,
- 0.603, - 0.424, - 0.194, - 0.049,
0.06, 0.161, 0.301, 0.517, 0.566,
0.56, 0.573, 0.592, 0.671, 0.933,
1.337, 1.46, 1.353, 0.772, 0.218,
- 0.237, - 0.714, - 1.099, -1.269,
- 1.175, - 0.676, 0.033, 0.556,
0.643, 0.484, 0.109, - 0.31, -0.697,
- 1.047, - 1.218, - 1.183, -0.873,
-0.336, 0.063, 0.084, 0.0, 0.001,
0.209, 0.556, 0.782, 0.858, 0.918,
0.862, 0.416, - 0.336, - 0.959,
- 1.813, - 2.378, - 2.499, -2.473,
- 2.33, - 2.053, - 1.739, - 1.261,
- 0.569, - 0.137, - 0.024, - 0.05,
- 0.135, - 0.276, - 0.534, -0.871,
- 1.243, - 1.439, - 1.422, -1.175,
- 0.813, - 0.634, - 0.582, -0.625,
- 0.713, - 0.848, - 1.039, -1.346,
- 1.628, - 1.619, - 1.149, -0.488,
- 0.16, - 0.007, - 0.092, - 0.62,
- 1.086, - 1.525, - 1.858, -2.029,
- 2.024, - 1.961, - 1.952, -1.794,
- 1.302, - 1.03, - 0.918, - 0.798,
- 0.867, - 1.047,- 1.123, - 0.876,
- 0.395, 0.185, 0.662, 0.709,
0.605, 0.501, 0.603, 0.943, 1.223,
1.249, 0.824, 0.102, 0.025, 0.382,
0.922, 1.032, 0.866, 0.527, 0.093,
- 0.458, - 0.748, - 0.947, -1.029,
- 0.928, - 0.645, - 0.424, -0.276,
- 0.158, - 0.033, 0.102, 0.251,
0.28, 0.0, -0.493, -0.759, -0.824,
- 0.74, - 0.528, - 0.204, 0.034,
0.204, 0.253, 0.195, 0.131, 0.017,
- 0.182, - 0.262};

double[] y = new double[]{53.8, 53.6, 53.5, 53.5, 53.4, 53.1,
52.7, 52.4, 52.2, 52.0, 52.0,
52.4, 53.0, 54.0, 54.9, 56.0,
56.8, 56.8, 56.4, 55.7, 55.0,
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54.3, 53.2, 52.3, 51.6, 51.2,
50.8, 50.5, 50.0, 49.2, 48.4,
47.9, 47.6, 47.5, 47.5, 47.6,
48.1, 49.0, 50.0, 51.1, 51.8,
51.9, 51.7, 51.2, 50.0, 48.3,
47.0, 45.8, 45.6, 46.0, 46.9,
47.8, 48.2, 48.3, 47.9, 47.2,
47.2, 48.1, 49.4, 50.6, 51.5,
51.6, 51.2, 50.5, 50.1, 49.8,
49.6, 49.4, 49.3, 49.2, 49.3,
49.7, 50.3, 51.3, 52.8, 54.4,
56.0, 56.9, 57.5, 57.3, 56.6,
56.0, 55.4, 55.4, 56.4, 57.2,
58.0, 58.4, 58.4, 58.1, 57.7,
57.0, 56.0, 54.7, 53.2, 52.1,
51.6, 51.0, 50.5, 50.4, 51.0,
51.8, 52.4, 53.0, 53.4, 53.6,
53.7, 53.8, 53.8, 53.8, 53.3,
53.0, 52.9, 53.4, 54.6, 56.4,
58.0, 59.4, 60.2, 60.0, 59.4,
58.4, 57.6, 56.9, 56.4, 56.0,
55.7, 55.3, 55.0, 54.4, 53.7,
52.8, 51.6, 50.6, 49.4, 48.8,
48.5, 48.7, 49.2, 49.8, 50.4,
50.7, 50.9, 50.7, 50.5, 50.4,
50.2, 50.4, 51.2, 52.3, 53.2,
53.9, 54.1, 54.0, 53.6, 53.2,
53.0, 52.8, 52.3, 51.9, 51.6,
51.6, 51.4, 51.2, 50.7, 50.0,
49.4, 49.3, 49.7, 50.6, 51.8,
53.0, 54.0, 55.3, 55.9, 55.9,
54.6, 53.5, 52.4, 52.1, 52.3,
53.0, 53.8, 54.6, 55.4, 55.9,
55.9, 55.2, 54.4, 53.7, 53.6,
53.6, 53.2, 52.5, 52.0, 51.4,
51.0, 50.9, 52.4, 53.5, 55.6,
58.0, 59.5, 60.0, 60.4, 60.5,
60.2, 59.7, 59.0, 57.6, 56.4,
55.2, 54.5, 54.1, 54.1, 54.4,
55.5, 56.2, 57.0, 57.3, 57.4,
57.0, 56.4, 55.9, 55.5, 55.3,
55.2, 55.4, 56.0, 56.5, 57.1,
57.3, 56.8, 55.6, 55.0, 54.1,
54.3, 55.3, 56.4, 57.2, 57.8,
58.3, 58.6, 58.8, 58.8, 58.6,
58.0, 57.4, 57.0, 56.4, 56.3,
56.4, 56.4, 56.0, 55.2, 54.0,
53.0, 52.0, 51.6, 51.6, 51.1,
50.4, 50.0, 50.0, 52.0, 54.0,
55.1, 54.5, 52.8, 51.4, 50.8,
51.2, 52.0, 52.8, 53.8, 54.5,
54.9, 54.9, 54.8, 54.4, 53.7,
53.3, 52.8, 52.6, 52.6, 53.0,
54.3, 56.0, 57.0, 58.0, 58.6,
58.5, 58.3, 57.8, 57.3, 57.0};
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CrossCorrelation cc = new CrossCorrelation(x, y, 10);
Console.Out.WriteLine("Mean = " + cc.MeanX);
Console.Out.WriteLine("Mean = " + cc.MeanY);
Console.Out.WriteLine("Xvariance = " + cc.VarianceX);
Console.Out.WriteLine("Yvariance = " + cc.VarianceY);
new PrintMatrix

("CrossCovariances are: ").Print(cc.GetCrossCovariances());
new PrintMatrix

("CrossCorrelations are: ").Print(cc.GetCrossCorrelations());

double[] stdErrors =
cc.GetStandardErrors(CrossCorrelation.StdErr.Bartletts);

new PrintMatrix
("Standard Errors using Bartlett are: ").Print(stdErrors);

stdErrors =
cc.GetStandardErrors(CrossCorrelation.StdErr.BartlettsNoCC);

new PrintMatrix("Standard Errors using Bartlett #2 are: ").Print
(stdErrors);

new PrintMatrix("AutoCovariances of X are: ").Print
(cc.GetAutoCovarianceX());

new PrintMatrix("AutoCovariances of Y are: ").Print
(cc.GetAutoCovarianceY());

new PrintMatrix("AutoCorrelations of X are: ").Print
(cc.GetAutoCorrelationX());

new PrintMatrix("AutoCorrelations of Y are: ").Print
(cc.GetAutoCorrelationY());

}
}

Output

Mean = -0.0568344594594595
Mean = 53.5091216216216
Xvariance = 1.14693790165038
Yvariance = 10.2189370662893
CrossCovariances are:

0
0 -0.404501563294314
1 -0.508490782763824
2 -0.614369467627782
3 -0.705476130258359
4 -0.776166564117932
5 -0.831473609098764
6 -0.891315326970392
7 -0.980605209560792
8 -1.12477059434257
9 -1.34704305203341
10 -1.65852650999817
11 -2.04865124574232
12 -2.48216585776478
13 -2.88541054192018
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14 -3.16536049680239
15 -3.25343758942199
16 -3.13112860301494
17 -2.83919398544463
18 -2.45302186901565
19 -2.05268794195849
20 -1.6946546517713

CrossCorrelations are:
0

0 -0.118153717307789
1 -0.148528662561878
2 -0.179455515102209
3 -0.206067503381416
4 -0.226715971265165
5 -0.242870996488244
6 -0.260350586329711
7 -0.286431898500946
8 -0.3285421835153
9 -0.39346731487308
10 -0.484450717109386
11 -0.598405005361053
12 -0.725033348897091
13 -0.842819935503927
14 -0.924592494205792
15 -0.950319553992448
16 -0.914593458680361
17 -0.829320215245049
18 -0.716520475473708
19 -0.599584112456951
20 -0.495003641096017

Standard Errors using Bartlett are:
0

0 0.158147783754555
1 0.155750271182418
2 0.152735096430409
3 0.149086745416716
4 0.145054998300008
5 0.141300099196058
6 0.138420534019813
7 0.136074039397204
8 0.132158917844376
9 0.123531347020305
10 0.107879045104545
11 0.0873410658167485
12 0.0641407975847026
13 0.0469456102701398
14 0.0440970262220149
15 0.0482335854893665
16 0.0491545707033738
17 0.0475621871011123
18 0.0534780426550682
19 0.0715660938138719
20 0.0939330263600716
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Standard Errors using Bartlett #2 are:
0

0 0.162753654681801
1 0.162469864309526
2 0.162187553298139
3 0.161906708839297
4 0.161627318279375
5 0.161349369117073
6 0.16107284900106
7 0.160797745727675
8 0.160524047238664
9 0.160251741618955
10 0.159980817094486
11 0.160251741618955
12 0.160524047238664
13 0.160797745727675
14 0.16107284900106
15 0.161349369117073
16 0.161627318279375
17 0.161906708839297
18 0.162187553298139
19 0.162469864309526
20 0.162753654681801

AutoCovariances of X are:
0

0 1.14693790165038
1 1.09242958215267
2 0.956651878489968
3 0.782050821478561
4 0.609290776371371
5 0.467379623909361
6 0.36495658921123
7 0.298426970727032
8 0.260942845999682
9 0.244377603086156
10 0.238942463361545

AutoCovariances of Y are:
0

0 10.2189370662893
1 9.92010118439122
2 9.15657243817617
3 8.09900196442277
4 6.94850770962479
5 5.87055032023953
6 4.96076244327211
7 4.25188969596136
8 3.73611877936647
9 3.37615547781905
10 3.13231605775447

AutoCorrelations of X are:
0

0 1
1 0.952474916541448
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2 0.834092130980584
3 0.681859776674248
4 0.531232576318765
5 0.407502117801518
6 0.31820082733867
7 0.26019453215175
8 0.227512619143721
9 0.213069602752258
10 0.208330776250152

AutoCorrelations of Y are:
0

0 1
1 0.970756656983059
2 0.896039615351222
3 0.79254837483442
4 0.67996384208558
5 0.574477588242088
6 0.485447988483746
7 0.416079448222429
8 0.365607377277169
9 0.330382255602345
10 0.306520730819207

CrossCorrelation.StdErr Enumeration

Summary

Standard Error computation method.

public enumeration Imsl.Stat.CrossCorrelation.StdErr

Fields

Bartletts
public Imsl.Stat.CrossCorrelation.StdErr Bartletts

Description

Indicates standard error computation using Bartlett’s formula.

BartlettsNoCC
public Imsl.Stat.CrossCorrelation.StdErr BartlettsNoCC

Description

Indicates standard error computation using Bartlett’s formula with the assumption of no
cross-correlation.
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MultiCrossCorrelation Class

Summary

Computes the multichannel cross-correlation function of two mutually stationary multichannel
time series.

public class Imsl.Stat.MultiCrossCorrelation

Constructor

MultiCrossCorrelation
public MultiCrossCorrelation(double[,] x, double[,] y, int maximumLag)

Description

Constructor to compute the multichannel cross-correlation function of two mutually
stationary mulitchannel time series.

Parameters

x – A two-dimensional double array containing the first multichannel stationary
time series. Each row of x corresponds to an observation of a multivariate time series
and each column of x corresponds to a univariate time series.

y – A two-dimensional double array containing the second multichannel stationary
time series. Each row of y corresponds to an observation of a multivariate time series
and each column of y corresponds to a univariate time series.

maximumLag – A int containing the maximum lag of the cross-covariance and
cross-correlations to be computed. maximumLag must be greater than or equal to 1
and less than the minimum number of observations of x and y.

Methods

GetCrossCorrelation
public double[,,] GetCrossCorrelation()

Description

Returns the cross-correlations between the channels of x and y.

The cross-correlation between channel i of the x series and channel j of the y series at lag
k, where k = -maximumLag, ..., 0, 1, ..., maximumLag, corresponds to output array, CC[k,i,j]
where k= 0, 1, ..., (2*maximumLag), i = 1, ..., x.GetLength(1), and j = 1, ...,
y.GetLength(1).
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Returns

A double array of size 2 * maximumLag +1 by x.GetLength(1) by y.GetLength(1)
containing the cross-correlations between the time series x and y.

Imsl.Stat.NonPosVarianceXYException id is thrown if the problem is ill-conditioned.
The variance is too small to work with.

GetCrossCovariance
public double[,,] GetCrossCovariance()

Description

Returns the cross-covariances between the channels of x and y.

The cross-covariances between channel i of the x series and channel j of the y series at lag
k where k = -maximumLag, ..., 0, 1, ..., maximumLag, corresponds to output array,
CCV[k,i,j] where k= 0, 1, ..., (2*maximumLag), i = 1, ..., x.GetLength(1), and j = 1, ...,
y.GetLength(1).

Returns

A double array of size 2 * maximumLag +1 by x.GetLength(1) by y.GetLength(1)
containing the cross-covariances between the time series x and y.

Imsl.Stat.NonPosVarianceXYException id is thrown if the problem is ill-conditioned.
The variance is too small to work with.

GetMeanX
public double[] GetMeanX()

Description

Returns an estimate of the mean of each channel of x.

Returns

A one-dimensional double containing the estimate of the mean of each channel in time
series x.

GetMeanY
public double[] GetMeanY()

Description

Returns an estimate of the mean of each channel of y.

Returns

A one-dimensional double containing the estimate of the mean of each channel in the
time series y.

GetVarianceX
public double[] GetVarianceX()
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Description

Returns the variances of the channels of x.

Returns

A one-dimensional double containing the variances of each channel in the time series x.

Imsl.Stat.NonPosVarianceXYException id is thrown if the problem is ill-conditioned.
The variance is too small to work with.

GetVarianceY
public double[] GetVarianceY()

Description

Returns the variances of the channels of y.

Returns

A one-dimensional double containing the variances of each channel in the time series y.

Imsl.Stat.NonPosVarianceXYException id is thrown if the problem is ill-conditioned.
The variance is too small to work with.

Description

MultiCrossCorrelation estimates the multichannel cross-correlation function of two mutually
stationary multichannel time series. Define the multichannel time series X by

X = (X1, X2, . . . , Xp)

where
Xj = (X1j , X2j , . . . , Xnj)

T
, j = 1, 2, . . . , p

with n = x.GetLength(0) and p = x.GetLength(1). Similarly, define the multichannel time
series Y by

Y = (Y1, Y2, . . . , Yq)

where
Yj = (Y1j , Y2j , . . . , Ymj)

T
, j = 1, 2, . . . , q

with m = y.GetLength(0) and q = y.GetLength(1). The columns of X and Y correspond to
individual channels of multichannel time series and may be examined from a univariate
perspective. The rows of X and Y correspond to observations of p-variate and q-variate time
series, respectively, and may be examined from a multivariate perspective. Note that an
alternative characterization of a multivariate time series X considers the columns to be
observations of the multivariate time series while the rows contain univariate time series. For
example, see Priestley (1981, page 692) and Fuller (1976, page 14).

Let µ̂X = xmean be the row vector containing the means of the channels of X. In particular,

µ̂X = (µ̂X1 , µ̂X2 , . . . , µ̂Xp
)
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where for j = 1, 2, ..., p

µ̂Xj
=

 µXj for µXj known
1
n

n∑
t=1

Xtj for µXj unknown

Let µ̂Y = ymean be similarly defined. The cross-covariance of lag k between channel i of X and
channel j of Y is estimated by

σ̂XiYj (k) =


1
N

∑
t

(Xti − µ̂Xi
)(Yt+k,j − µ̂Yj

) k = 0, 1, . . . ,K
1
N

∑
t

(Xti − µ̂Xi)(Yt+k,j − µ̂Yj ) k = −1,−2, . . . ,−K

where i = 1, ..., p, j = 1, ..., q, and K = maximumLag. The summation on t extends over all
possible cross-products with N equal to the number of cross-products in the sum.

Let σ̂X(0) = xvar, where xvar is the variance of X, be the row vector consisting of estimated
variances of the channels of X. In particular,

σ̂X(0) = (σ̂X1(0), σ̂X2(0), . . . , σ̂Xp
(0))

where

σ̂Xj
(0) =

1
n

n∑
t=1

(
Xtj − µ̂Xj

)2
, j=0,1,. . . ,p

Let σ̂Y (0) = yvar, where yvar is the variance of Y, be similarly defined. The cross-correlation
of lag k between channel i of X and channel j of Y is estimated by

ρ̂XjYj
(k) =

σ̂XjYj(k)

[σ̂Xi
(0)σ̂Xj

(0)]
1
2

k = 0,±1, . . . ,±K

Example 1: MultiCrossCorrelation

Consider the Wolfer Sunspot Data (Y ) (Box and Jenkins 1976, page 530) along with data on
northern light activity (X1) and earthquake activity (X2) (Robinson 1967, page 204) to be a
three-channel time series. Methods GetCrossCovariance and GetCrossCorrelation are used
to compute the cross-covariances and cross-correlations between X1 and Y and between X2 and
Y with lags from -maximumLag = -10 through lag maximumLag = 10.

using System;
using Imsl.Stat;
using PrintMatrix = Imsl.Math.PrintMatrix;
using Matrix = Imsl.Math.Matrix;

public class MultiCrossCorrelationEx1
{

public static void Main(String[] args)
{
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int i;
double[,] x = {

{155.0, 66.0}, {113.0, 62.0},
{3.0, 66.0}, {10.0, 197.0},
{0.0, 63.0}, {0.0, 0.0},
{12.0, 121.0}, {86.0, 0.0},
{102.0, 113.0}, {20.0, 27.0},
{98.0, 107.0}, {116.0, 50.0},
{87.0, 122.0}, {131.0, 127.0},
{168.0, 152.0}, {173.0, 216.0},
{238.0, 171.0}, {146.0, 70.0},
{0.0, 141.0}, {0.0, 69.0},
{0.0, 160.0}, {0.0, 92.0},
{12.0, 70.0}, {0.0, 46.0},
{37.0, 96.0}, {14.0, 78.0},
{11.0, 110.0}, {28.0, 79.0},
{19.0, 85.0}, {30.0, 113.0},
{11.0, 59.0}, {26.0, 86.0},
{0.0, 199.0}, {29.0, 53.0},
{47.0, 81.0}, {36.0, 81.0},
{35.0, 156.0}, {17.0, 27.0},
{0.0, 81.0}, {3.0, 107.0},
{6.0, 152.0}, {18.0, 99.0},
{15.0, 177.0},{0.0, 48.0},
{3.0, 70.0}, {9.0, 158.0},
{64.0, 22.0}, {126.0, 43.0},
{38.0, 102.0}, {33.0, 111.0},
{71.0, 90.0}, {24.0, 86.0},
{20.0, 119.0}, {22.0, 82.0},
{13.0, 79.0}, {35.0, 111.0},
{84.0, 60.0}, {119.0, 118.0},
{86.0, 206.0}, {71.0, 122.0},
{115.0, 134.0}, {91.0, 131.0},
{43.0, 84.0}, {67.0, 100.0},
{60.0, 99.0}, {49.0, 99.0},
{100.0, 69.0}, {150.0, 67.0},
{178.0, 26.0}, {187.0, 106.0},
{76.0, 108.0}, {75.0, 155.0},
{100.0, 40.0}, {68.0, 75.0},
{93.0, 99.0}, {20.0, 86.0},
{51.0, 127.0}, {72.0, 201.0},
{118.0, 76.0}, {146.0, 64.0},
{101.0, 31.0}, {61.0, 138.0},
{87.0, 163.0}, {53.0, 98.0},
{69.0, 70.0}, {46.0, 155.0},
{47.0, 97.0}, {35.0, 82.0},
{74.0, 90.0}, {104.0, 122.0},
{97.0, 70.0}, {106.0, 96.0},
{113.0, 111.0}, {103.0, 42.0},
{68.0, 97.0}, {67.0, 91.0},
{82.0, 64.0}, {89.0, 81.0},
{102.0, 162.0}, {110.0, 137.0}};

double[,] y = {{101.0}, {82.0},
{66.0}, {35.0},
{31.0}, {7.0},
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{20.0}, {92.0},
{154.0}, {126.0},
{85.0}, {68.0},
{38.0}, {23.0},
{10.0}, {24.0},
{83.0}, {132.0},
{131.0}, {118.0},
{90.0}, {67.0},
{60.0}, {47.0},
{41.0}, {21.0},
{16.0}, {6.0},
{4.0}, {7.0},
{14.0}, {34.0},
{45.0}, {43.0},
{48.0}, {42.0},
{28.0}, {10.0},
{8.0}, {2.0},
{0.0}, {1.0},
{5.0}, {12.0},
{14.0}, {35.0},
{46.0}, {41.0},
{30.0}, {24.0},
{16.0}, {7.0},
{4.0}, {2.0},
{8.0}, {17.0},
{36.0}, {50.0},
{62.0}, {67.0},
{71.0}, {48.0},
{28.0}, {8.0},
{13.0}, {57.0},
{122.0}, {138.0},
{103.0}, {86.0},
{63.0}, {37.0},
{24.0}, {11.0},
{15.0}, {40.0},
{62.0}, {98.0},
{124.0}, {96.0},
{66.0}, {64.0},
{54.0}, {39.0},
{21.0}, {7.0},
{4.0}, {23.0},
{55.0}, {94.0},
{96.0}, {77.0},
{59.0}, {44.0},
{47.0}, {30.0},
{16.0}, {7.0},
{37.0}, {74.0}};

MultiCrossCorrelation mcc =
new MultiCrossCorrelation(x, y, 10);

new PrintMatrix("Mean of X : ").Print(mcc.GetMeanX());
new PrintMatrix("Variance of X : ").Print(mcc.GetVarianceX());
new PrintMatrix("Mean of Y : ").Print(mcc.GetMeanY());
new PrintMatrix("Variance of Y : ").Print(mcc.GetVarianceY());

492 • MultiCrossCorrelation Class IMSL C# Numerical Library



double[,] tmpArr = new double[x.GetLength(1), y.GetLength(1)];
double[,,] ccv = mcc.GetCrossCovariance();
Console.Out.WriteLine

("Multichannel cross-covariance between X and Y");
for (i = 0; i < 21; i++)
{

for (int j=0;j<x.GetLength(1);j++)
for (int k=0;k<y.GetLength(1);k++)

tmpArr[j,k] = ccv[i,j,k];
Console.Out.WriteLine("Lag K = " + (i - 10));
new PrintMatrix("CrossCovariances : ").Print(tmpArr);

}

double[,,] cc = mcc.GetCrossCorrelation();
Console.Out.WriteLine

("Multichannel cross-correlation between X and Y");
for (i = 0; i < 21; i++)
{

for (int j=0;j<x.GetLength(1);j++)
for (int k=0;k<y.GetLength(1);k++)

tmpArr[j,k] = cc[i,j,k];
Console.Out.WriteLine("Lag K = " + (i - 10));
new PrintMatrix("CrossCorrelations : ").Print(tmpArr);

}
}

}

Output

Mean of X :
0

0 63.43
1 97.97

Variance of X :
0

0 2643.6851
1 1978.4291

Mean of Y :
0

0 46.94

Variance of Y :
0

0 1383.7564

Multichannel cross-covariance between X and Y
Lag K = -10
CrossCovariances :

0
0 -20.5123555555557
1 70.7132444444444
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Lag K = -9
CrossCovariances :

0
0 65.0243098901099
1 38.1363054945055

Lag K = -8
CrossCovariances :

0
0 216.637243478261
1 135.57832173913

Lag K = -7
CrossCovariances :

0
0 246.793769892473
1 100.362230107527

Lag K = -6
CrossCovariances :

0
0 142.127923404255
1 44.9678638297872

Lag K = -5
CrossCovariances :

0
0 50.6970421052632
1 -11.8094631578948

Lag K = -4
CrossCovariances :

0
0 72.6846166666667
1 32.6926333333334

Lag K = -3
CrossCovariances :

0
0 217.854096907217
1 -40.1185092783505

Lag K = -2
CrossCovariances :

0
0 355.820628571429
1 -152.649118367347

Lag K = -1
CrossCovariances :

0
0 579.653492929293
1 -212.95022020202

Lag K = 0
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CrossCovariances :
0

0 821.6258
1 -104.7518

Lag K = 1
CrossCovariances :

0
0 810.131371717171
1 55.1601838383839

Lag K = 2
CrossCovariances :

0
0 628.385118367347
1 84.7751673469388

Lag K = 3
CrossCovariances :

0
0 438.271931958763
1 75.9630371134021

Lag K = 4
CrossCovariances :

0
0 238.792741666667
1 200.383466666667

Lag K = 5
CrossCovariances :

0
0 143.621147368421
1 282.986431578947

Lag K = 6
CrossCovariances :

0
0 252.973774468085
1 234.393289361702

Lag K = 7
CrossCovariances :

0
0 479.468286021505
1 223.033735483871

Lag K = 8
CrossCovariances :

0
0 724.912243478261
1 124.456582608696

Lag K = 9
CrossCovariances :

0
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0 924.971232967034
1 -79.5174307692309

Lag K = 10
CrossCovariances :

0
0 922.759311111112
1 -279.286422222222

Multichannel cross-correlation between X and Y
Lag K = -10

CrossCorrelations :
0

0 -0.0107245938219684
1 0.0427376557935899

Lag K = -9
CrossCorrelations :

0
0 0.0339970370656115
1 0.023048812287829

Lag K = -8
CrossCorrelations :

0
0 0.113265706453004
1 0.0819407975561327

Lag K = -7
CrossCorrelations :

0
0 0.129032618058936
1 0.0606569035081169

Lag K = -6
CrossCorrelations :

0
0 0.074309566502109
1 0.0271776680765982

Lag K = -5
CrossCorrelations :

0
0 0.0265062285548632
1 -0.00713740085770933

Lag K = -4
CrossCorrelations :

0
0 0.0380021196855836
1 0.0197587668528454

Lag K = -3
CrossCorrelations :

0
0 0.11390192098873
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1 -0.0242468161934945

Lag K = -2
CrossCorrelations :

0
0 0.186035762912295
1 -0.0922580420292281

Lag K = -1
CrossCorrelations :

0
0 0.303063597562697
1 -0.128702809263875

Lag K = 0
CrossCorrelations :

0
0 0.429575382251174
1 -0.0633098708358119

Lag K = 1
CrossCorrelations :

0
0 0.423565683647071
1 0.0333377002981115

Lag K = 2
CrossCorrelations :

0
0 0.328542235922487
1 0.051236397797642

Lag K = 3
CrossCorrelations :

0
0 0.22914425606054
1 0.0459105243818767

Lag K = 4
CrossCorrelations :

0
0 0.124849394067548
1 0.121107717407232

Lag K = 5
CrossCorrelations :

0
0 0.075090277447643
1 0.171031279954621

Lag K = 6
CrossCorrelations :

0
0 0.132263745693782
1 0.141662566889261
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Lag K = 7
CrossCorrelations :

0
0 0.250683184784367
1 0.134797082107539

Lag K = 8
CrossCorrelations :

0
0 0.37901007257894
1 0.0752190432013873

Lag K = 9
CrossCorrelations :

0
0 0.48360807434863
1 -0.0480587280714567

Lag K = 10
CrossCorrelations :

0
0 0.48245160241607
1 -0.168795069078383

ARMA Class

Summary

Computes least-square estimates of parameters for an ARMA model.

public class Imsl.Stat.ARMA

Properties

BackwardOrigin
public int BackwardOrigin {get; set; }
Description

The maximum backward origin.

BackwardOrigin must be greater than or equal to 0 and less than or equal to z.Length -
Math.max(maxar, maxma), where

maxar = Math.max(ARLags[i]), maxma = Math.max(MALags[j]), and forecasts at
origins z.Length - BackwardOrigin through z.Length are generated. Default:
BackwardOrigin = 0.
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Center
public bool Center {get; set; }
Description

The center option.

If Center is set to false, the time series is not centered about its mean. If Center is set
to true, the time series is centered about its mean. By Default, Center = false.

Confidence
public double Confidence {get; set; }
Description

The confidence percent probability limits of the forecasts.

Typical choices for Confidence are 0.90, 0.95, and 0.99. Confidence must be greater
than 0.0 and less than 1.0. Default: Confidence = 0.95.

Constant
public double Constant {get; }
Description

Returns the constant parameter estimate.

ConvergenceTolerance
public double ConvergenceTolerance {get; set; }
Description

The tolerance level used to determine convergence of the nonlinear least-squares
algorithm.

ConvergenceTolerance represents the minimum relative decrease in sum of squares
between two iterations required to determine convergence. Hence,
ConvergenceTolerance must be greater than or equal to 0. The default value is
max(10−20, eps2/3), where eps = 2.2204460492503131e-16.

MaxIterations
public int MaxIterations {get; set; }
Description

The maximum number of iterations.

Default: MaxIterations = 200.

MeanEstimate
public double MeanEstimate {get; set; }
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Description

An update of the mean of the time series z.

If the time series is not centered about its mean, and least-squares algorithm is used, the
mean is not used in parameter estimation.

Method
public Imsl.Stat.ARMA.ParamEstimation Method {get; set; }
Description

The method used to estimate the autoregressive and moving average parameters
estimates.

If ARMA.ParamEstimation.MethodOfMoments is specified, the autoregressive and moving
average parameters are estimated by a method of moments procedure.

If ARMA.ParamEstimation.LeastSquares is specified, the autoregressive and moving
average parameters are estimated by a least-squares procedure. By default, Method =
ARMA.ParamEstimation.MethodOfMoments.

RelativeError
public double RelativeError {get; set; }
Description

The stopping criterion for use in the nonlinear equation solver.

Default: RelativeError = 100 * 2.2204460492503131e-16.

SSResidual
public double SSResidual {get; }
Description

Returns the sum of squares of the random shock.

This property is only applicable using least-squares algorithm.

Variance
public double Variance {get; }
Description

Returns the variance of the time series z.

Constructor

ARMA
public ARMA(int p, int q, double[] z)
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Description

Constructor for ARMA.

Parameters

p – An int scalar containing the number of autoregressive (AR) parameters.

q – An int scalar containing the number of moving average (MA) parameters.

z – A double array containing the observations.

System.ArgumentException id is thrown if p, q, and z.Length are not consistent

Methods

Compute
public void Compute()

Description

Computes least-square estimates of parameters for an ARMA model.

Imsl.Stat.MatrixSingularException id is thrown if the input matrix is singular

Imsl.Stat.TooManyCallsException id is thrown if the number of calls to the function
has exceeded

Imsl.Stat.IncreaseErrRelException id is thrown if the bound for the relative error is
too small

Imsl.Stat.NewInitialGuessException id is thrown if the iteration has not made good
progress

Imsl.Stat.IllConditionedException id is thrown if the problem is ill-conditioned

Imsl.Stat.TooManyIterationsException id is thrown if the maximum number of
iterations exceeded

Imsl.Stat.TooManyFunctionEvaluationsException id is thrown if the maximum
number of function evaluations exceeded

Imsl.Stat.TooManyJacobianEvalException id is thrown if the maximum number of
Jacobian evaluations exceeded

Forecast
public double[,] Forecast(int nPredict)

Description

Computes forecasts and their associated probability limits for an ARMA model.

Parameter

nPredict – An int scalar containing the maximum lead time for forecasts.
nPredict must be greater than 0.
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Returns

A double matrix of dimensions of nPredict by BackwardOrigin+1 containing the
forecasts. Return null if the least-square estimates of parameters is not computed.

GetAR
public double[] GetAR()

Description

Returns the final autoregressive parameter estimates.

Returns

A double array of length p containing the final autoregressive parameter estimates.

GetAutoCovariance
public double[] GetAutoCovariance()

Description

Returns the autocovariances of the time series z.

Returns

A double array containing the autocovariances of lag k, where k = 1, ..., p + q + 1.

GetDeviations
public double[] GetDeviations()

Description

Returns the deviations from each forecast that give the confidence percent probability
limits.

Returns

A double array of length nPredict containing the deviations from each forecast that give
the confidence percent probability limits.

GetMA
public double[] GetMA()

Description

Returns the final moving average parameter estimates.

Returns

A double array of length q containing the final moving average parameter estimates.

GetParamEstimatesCovariance
public double[,] GetParamEstimatesCovariance()
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Description

Returns the covariances of parameter estimates.

The ordering of variables is mean, AR, and MA.

Returns

A double matrix of np by np dimensions, where np = p + q + 1 if z is centered about
MeanEstimate, and np = p + q if z is not centered, containing the covariances of
parameter estimates.

GetPsiWeights
public double[] GetPsiWeights()

Description

Returns the psi weights of the infinite order moving average form of the model.

Returns

A double array of length nPredict containing the psi weights of the infinite order moving
average form of the model.

GetResidual
public double[] GetResidual()

Description

Returns the residuals at the final parameter estimate.

This method is only applicable using least-squares algorithm.

Returns

A double array of length z.Length - Math.max(arLags[i]) + length containing the
residuals (including backcasts) at the final parameter estimate point in the first z.Length
- Math.max(arLags[i]) + nb, where nb is the number of values backcast.

SetARLags
public void SetARLags(int[] arLags)

Description

The order of the autoregressive parameters.

The elements of arLags must be greater than or equal to 1. Default: arLags = [1, 2, ...,
p]

Parameter

arLags – An int array of length p containing the order of the autoregressive
parameters.

SetBackcasting
public void SetBackcasting(int length, double tolerance)
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Description

Sets backcasting option.

Parameters

length – An int scalar containing the maximum length of backcasting and must be
greater than or equal to 0. Default: length = 10.

tolerance – A double scalar containing the tolerance level used to determine
convergence of the backcast algorithm. Typically, tolerance is set to a fraction of
an estimate of the standard deviation of the time series. Default: tolerance = 0.01
* standard deviation of z.

SetInitialAREstimates
public void SetInitialAREstimates(double[] ar)

Description

Sets preliminary autoregressive estimates.

ar and ma are computed internally if this method is not used. This method is only
applicable using least-squares algorithm.

Parameter

ar – A double array of length p containing preliminary estimates of the
autoregressive parameters.

SetInitialEstimates
public void SetInitialEstimates(double[] ar, double[] ma)

Description

Sets preliminary estimates.

ar and ma are computed internally if this method is not used. This method is only
applicable using least-squares algorithm.

Parameters

ar – A double array of length p containing preliminary estimates of the
autoregressive parameters.

ma – A double array of length q containing preliminary estimates of the moving
average parameters.

SetInitialMAEstimates
public void SetInitialMAEstimates(double[] ma)

Description

Sets preliminary moving average estimates.

ar and ma are computed internally if this method is not used. This method is only
applicable using least-squares algorithm.
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Parameter

ma – A double array of length q containing preliminary estimates of the moving
average parameters.

SetMALags
public void SetMALags(int[] maLags)

Description

Sets the order of the moving average parameters.

The maLags elements must be greater than or equal to 1. Default: maLags = [1, 2, ..., q]

Parameter

maLags – An int array of length q containing the order of the moving average
parameters.

Description

Class ARMA computes estimates of parameters for a nonseasonal ARMA model given a sample of
observations, {Wt}, for t = 1, 2, . . . , n, where n = z.Length. There are two methods, method of
moments and least squares, from which to choose. The default is method of moments.

Two methods of parameter estimation, method of moments and least squares, are provided.
The user can choose a method using the Method property. If the user wishes to use the
least-squares algorithm, the preliminary estimates are the method of moments estimates by
default. Otherwise, the user can input initial estimates by using the SetInitialEstimates
method. The following table lists the appropriate methods and properties for both the method
of moments and least-squares algorithm:

Least Squares Both Method of Moment and Least Squares
Center

ARLags Method
MALags RelativeError
Backcasting MaxIterations
ConvergenceTolerance MeanEstimate
SetInitialEstimates MeanEstimate
Residual AutoCovariance
SSResidual Variance
ParamEstimatesCovariance Constant

AR
MA

Method of Moments Estimation

Suppose the time series {Zt} is generated by an ARMA (p, q) model of the form

φ(B)Zt = θ0 + θ(B)At
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for t ∈ {0,±1,±2, . . .}

Let µ̂ = MeanEstimate be the estimate of the mean µ of the time series {Zt}, where µ̂ equals
the following:

µ̂ =

 µ for µ known
1
n

n∑
t=1

Zt for µ unknown

The autocovariance function is estimated by

σ̂ (k) =
1
n

n−k∑
t=1

(Zt − µ̂) (Zt+k − µ̂)

for k = 0, 1, . . . ,K, where K = p + q. Note that σ̂(0) is an estimate of the sample variance.

Given the sample autocovariances, the function computes the method of moments estimates of
the autoregressive parameters using the extended Yule-Walker equations as follows:

Σ̂φ̂ = σ̂

where

φ̂ =
(
φ̂1, . . . , φ̂p

)T

Σ̂ij = σ̂ (|q + i− j|) , i, j = 1, . . . , p

σ̂i = σ̂ (q + i) , i = 1, . . . , p

The overall constant θ0 is estimated by the following:

θ̂0 =


µ̂ for p = 0

µ̂

(
1−

p∑
i=1

φ̂i

)
for p > 0
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The moving average parameters are estimated based on a system of nonlinear equations given
K = p + q + 1 autocovariances, σ(k) for k = 1, . . . ,K, and p autoregressive parameters φi for
i = 1, . . . , p.

Let Z ′t = φ(B)Zt. The autocovariances of the derived moving average process Z ′t = θ(B)At are
estimated by the following relation:

σ̂′ (k) =


σ̂ (k) for p = 0
p∑

i=0

p∑
j=0

φ̂iφ̂j (σ̂ (|k + i− j|)) for p ≥ 1, φ̂0 ≡ −1

The iterative procedure for determining the moving average parameters is based on the relation

σ (k) =
{ (

1 + θ21 + . . . + θ2q
)
σ2

A for k = 0
(−θk + θ1θk+1 + . . . + θq−kθq)σ2

A for k ≥ 1

where σ(k) denotes the autocovariance function of the original Zt process.

Let τ = (τ0, τ1, . . . , τq)T and f = (f0, f1, . . . , fq)T , where

τj =
{
σA for j = 0
−θj/τ0 for j = 1, . . . , q

and

fj =
q−j∑
i=0

τiτi+j − σ̂′ (j) for j = 0, 1, . . . , q

Then, the value of τ at the (i + 1)-th iteration is determined by the following:

τ i+1 = τ i −
(
T i
)−1

f i

The estimation procedure begins with the initial value

τ0 = (
√
σ̂′ (0) , 0, . . . , 0)T

and terminates at iteration i when either
∥∥f i
∥∥ is less than RelativeError or i equals

MaxIterations. The moving average parameter estimates are obtained from the final estimate
of τ by setting
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θ̂j = −τj/τ0 for j = 1, . . . , q

The random shock variance is estimated by the following:

σ̂2
A =

 σ̂(0)−
p∑

i=1

φ̂iσ̂(i) for q = 0

τ2
0 for q ≥ 0

See Box and Jenkins (1976, pp. 498-500) for a description of a function that performs similar
computations.

Least-squares Estimation

Suppose the time series {Zt} is generated by a nonseasonal ARMA model of the form,

φ(B)(Zt − µ) = θ(B)At for t ∈ {0,±1,±2, . . .}

where B is the backward shift operator, µ is the mean of Zt, and

φ (B) = 1− φ1B
lφ(1) − φ2B

lφ(2) − ... − φpB
lφ(p) for p ≥ 0

θ (B) = 1− θ1Blθ(1) − θ2Blθ(2) − ... − θqB
lθ(q) for q ≥ 0

with p autoregressive and q moving average parameters. Without loss of generality, the
following is assumed:

1 ≤ lφ(1) ≤ lφ(2) ≤ . . . ≤ lφ(p)

1 ≤ lθ(1) ≤ lθ(2) ≤ . . . ≤ lθ(q)

so that the nonseasonal ARMA model is of order (p′, q′), where p′ = lθ(p) and q′ = lθ(q). Note
that the usual hierarchical model assumes the following:

lφ(i) = i, 1 ≤ i ≤ p
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lθ(j) = j, 1 ≤ j ≤ q

Consider the sum-of-squares function

ST (µ, φ, θ) =
n∑

−T+1

[At]
2

where

[At] = E [At |(µ, φ, θ, Z) ]

and T is the backward origin. The random shocks {At} are assumed to be independent and
identically distributed

N
(
0, σ2

A

)
random variables. Hence, the log-likelihood function is given by

l (µ, φ, θ, σA) = f (µ, φ, θ)− n ln (σA)− ST (µ, φ, θ)
2σ2

A

where f(µ, φ, θ) is a function of µ, φ, and θ.

For T = 0, the log-likelihood function is conditional on the past values of both Zt and At

required to initialize the model. The method of selecting these initial values usually introduces
transient bias into the model (Box and Jenkins 1976, pp. 210-211). For T =∞, this
dependency vanishes, and estimation problem concerns maximization of the unconditional
log-likelihood function. Box and Jenkins (1976, p. 213) argue that

S∞ (µ, φ, θ) /
(
2σ2

A

)
dominates

l
(
µ, φ, θ, σ2

A

)
The parameter estimates that minimize the sum-of-squares function are called least-squares
estimates. For large n, the unconditional least-squares estimates are approximately equal to the
maximum likelihood-estimates.
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In practice, a finite value of T will enable sufficient approximation of the unconditional
sum-of-squares function. The values of [AT ] needed to compute the unconditional sum of
squares are computed iteratively with initial values of Zt obtained by back forecasting. The
residuals (including backcasts), estimate of random shock variance, and covariance matrix of
the final parameter estimates also are computed. ARIMA parameters can be computed by
using Difference with ARMA.

Forecasting

The Box-Jenkins forecasts and their associated probability limits for a nonseasonal ARMA
model are computed given a sample of n = z.Length, {Zt} for t = 1, 2, . . . , n.

Suppose the time series Zt is generated by a nonseasonal ARMA model of the form

φ(B)Zt = θ0 + θ(B)At

for t ∈ {0,±1, ±2, . . .}, where B is the backward shift operator, θ0 is the constant, and

φ (B) = 1− φ1B
lφ(1) − φ2B

lφ(2) − . . . − φpB
lφ(p)

θ (B) = 1− θ1Blθ(1) − θ2Blθ(2) − . . . − θqB
lθ(q)

with p autoregressive and q moving average parameters. Without loss of generality, the
following is assumed:

1 ≤ lφ(1) ≤ lφ(2) ≤ . . . lφ(p)

1 ≤ lθ(1) ≤ lθ(2) ≤ . . . ≤ lθ(q)

so that the nonseasonal ARMA model is of order (p′, q′), where p′ = lθ(p) and q′ = lθ(q). Note
that the usual hierarchical model assumes the following:

lφ(i) = i, 1 ≤ i ≤ p

lθ(j) = j, 1 ≤ j ≤ q
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The Box-Jenkins forecast at origin t for lead time l of Zt+1 is defined in terms of the difference
equation

Ẑt (l) = θ0 + φ1

[
Zt+l−lφ(1)

]
+ . . . + φp

[
Zt+l−lφ(p)

]

+ [At+l]− θ1
[
At+l−lθ(1)

]
− ... − [At+l]− θ1

[
At+l−lθ(1)

]
− ...− θq

[
At+l−lθ(q)

]
where the following is true:

[Zt+k] =
{
Zt+k for k = 0, −1, −2, . . .
Ẑt (k) for k = 1, 2, . . .

[At+k] =
{
Zt+k − Ẑt+k−1 (1) for k = 0, −1, −2, ...
0 for k = 1, 2, ...

The 100(1− α) percent probability limits for Zt+l are given by

Ẑt (l)± z1/2

1 +
l−1∑
j=1

ψ2
j


1/2

σA

where z(1−α/2) is the 100(1− α/2) percentile of the standard normal distribution

σ2
A

and

{
ψ2

j

}
are the parameters of the random shock form of the difference equation. Note that the forecasts
are computed for lead times l = 1, 2, . . . , L at origins t = (n− b), (n− b+ 1), . . . , n, where
L = nPredict and b = BackwardOrigin.

The Box-Jenkins forecasts minimize the mean-square error

E
[
Zt+l − Ẑt (l)

]2
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Also, the forecasts can be easily updated according to the following equation:

Ẑt+1 (l) = Ẑt (l + 1) + ψlAt+1

This approach and others are discussed in Chapter 5 of Box and Jenkins (1976).

Example 1: ARMA

Consider the Wolfer Sunspot Data (Anderson 1971, p. 660) consisting of the number of
sunspots observed each year from 1749 through 1924. The data set for this example consists of
the number of sunspots observed from 1770 through 1869. The method of moments estimates

θ̂0, φ̂1, φ̂2, and θ̂1

for the ARMA(2, 1) model

zt = θ0 + φ1zt−1 + φ2zt−2 − θ1At−1 +At

where the errors At are independently normally distributed with mean zero and variance

σ2
A

using System;
using Imsl.Stat;
using PrintMatrix = Imsl.Math.PrintMatrix;

public class ARMAEx1
{

public static void Main(String[] args)
{

double[] z = new double[]{ 100.8, 81.6, 66.5, 34.8, 30.6,
7, 19.8, 92.5, 154.4, 125.9,
84.8, 68.1, 38.5, 22.8, 10.2,
24.1, 82.9, 132, 130.9, 118.1,
89.9, 66.6, 60, 46.9, 41,
21.3, 16, 6.4, 4.1, 6.8,
14.5, 34, 45, 43.1, 47.5,
42.2, 28.1, 10.1, 8.1, 2.5,
0, 1.4, 5, 12.2, 13.9,
35.4, 45.8, 41.1, 30.4, 23.9,
15.7, 6.6, 4, 1.8, 8.5,
16.6, 36.3, 49.7, 62.5, 67,
71, 47.8, 27.5, 8.5, 13.2,
56.9, 121.5, 138.3, 103.2, 85.8,
63.2, 36.8, 24.2, 10.7, 15,
40.1, 61.5, 98.5, 124.3, 95.9,
66.5, 64.5, 54.2, 39, 20.6,
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6.7, 4.3, 22.8, 54.8, 93.8,
95.7, 77.2, 59.1, 44, 47,
30.5, 16.3, 7.3, 37.3, 73.9};

ARMA arma = new ARMA(2, 1, z);
arma.RelativeError = 0.0;
arma.MaxIterations = 0;
arma.Compute();

new PrintMatrix("AR estimates are: ").Print(arma.GetAR());
Console.Out.WriteLine();
new PrintMatrix("MA estimate is: ").Print(arma.GetMA());

}
}

Output

AR estimates are:
0

0 1.24425777984372
1 -0.575149766040151

MA estimate is:
0

0 -0.124089747872598

Example 2: ARMA

The data for this example are the same as that for Example 1. Preliminary method of moments
estimates are computed by default, and the method of least squares is used to find the final
estimates. Note that at the end of the output, a warning message appears. In most cases, this
warning message can be ignored. There are three general reasons this warning can occur:

1. Convergence is declared using the criterion based on tolerance, but the gradient of the
residual sum-of-squares function is nonzero. This occurs in this example. Either the
message can be ignored or ConvergenceTolerance can be reduced to allow more
iterations and a slightly more accurate solution.

2. Convergence is declared based on the fact that a very small step was taken, but the
gradient of the residual sum-of-squares function was nonzero. This message can usually
be ignored. Sometimes, however, the algorithm is making very slow progress and is not
near a minimum.

3. Convergence is not declared after 100 iterations.

Trying a smaller value for ConvergenceTolerance can help determine what caused the error
message.
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using System;
using Imsl.Stat;
using PrintMatrix = Imsl.Math.PrintMatrix;

public class ARMAEx2
{

public static void Main(String[] args)
{

double[] arInit = new double[]{1.24426e0, - 5.75149e-1};
double[] maInit = new double[]{- 1.24094e-1};
double[] z = new double[]{ 100.8, 81.6, 66.5, 34.8, 30.6,

7, 19.8, 92.5, 154.4, 125.9,
84.8, 68.1, 38.5, 22.8, 10.2,
24.1, 82.9, 132, 130.9, 118.1,
89.9, 66.6, 60, 46.9, 41,
21.3, 16, 6.4, 4.1, 6.8,
14.5, 34, 45, 43.1, 47.5,
42.2, 28.1, 10.1, 8.1, 2.5,
0, 1.4, 5, 12.2, 13.9,
35.4, 45.8, 41.1, 30.4, 23.9,
15.7, 6.6, 4, 1.8, 8.5,
16.6, 36.3, 49.7, 62.5, 67,
71, 47.8, 27.5, 8.5, 13.2,
56.9, 121.5, 138.3, 103.2, 85.8,
63.2, 36.8, 24.2, 10.7, 15,
40.1, 61.5, 98.5, 124.3, 95.9,
66.5, 64.5, 54.2, 39, 20.6,
6.7, 4.3, 22.8, 54.8, 93.8,
95.7, 77.2, 59.1, 44, 47,
30.5, 16.3, 7.3, 37.3, 73.9};

ARMA arma = new ARMA(2, 1, z);
arma.Method = Imsl.Stat.ARMA.ParamEstimation.LeastSquares;
arma.SetInitialEstimates(arInit, maInit);
arma.ConvergenceTolerance = 0.125;
arma.MeanEstimate = 46.976;
arma.Compute();

new PrintMatrix("AR estimates are: ").Print(arma.GetAR());
Console.Out.WriteLine();
new PrintMatrix("MA estimate is: ").Print(arma.GetMA());

}
}

Output

AR estimates are:
0

0 1.39325700313638
1 -0.733660553488482

MA estimate is:
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0
0 -0.137145395974998

Imsl.Stat.ARMA: Relative function convergence - Both the scaled actual and
predicted reductions in the function are less than or equal to the relative
function convergence tolerance "convergence_tolerance" = 0.0645856533065147.
Imsl.Stat.ARMA: Least squares estimation of the parameters has failed to
converge. Increase "length" and/or "tolerance" and/or "convergence_tolerance".
The estimates of the parameters at the last iteration may be used as new
starting values.

Example 3: Forecasting

Consider the Wolfer Sunspot Data (Anderson 1971, p. 660) consisting of the number of
sunspots observed each year from 1749 through 1924. The data set for this example consists of
the number of sunspots observed from 1770 through 1869. Method forecast in class ARMA
computes forecasts and 95-percent probability limits for the forecasts for an ARMA(2, 1) model
fit using the method of moments option. With BackwardOrigin = 3, Forecast method
provides forecasts given the data through 1866, 1867, 1868, and 1869, respectively. The
deviations from the forecast for computing probability limits, and the psi weights can be used
to update forecasts when more data is available. For example, the forecast for the 102-nd
observation (year 1871) given the data through the 100-th observation (year 1869) is 77.21; and
95-percent probability limits are given by 77.21± 56.30. After observation 101 ( Z101 for year
1870) is available, the forecast can be updated by using

Ẑt (l)± zα/2

1 +
l−1∑
j=1

ψ2
j


1/2

σA

with the psi weight (ψ1 = 1.37) and the one-step-ahead forecast error for observation
101(Z101 − 83.72) to give the following:

77.21 + 1.37× (Z101 − 83.72)

Since this updated forecast is one step ahead, the 95-percent probability limits are now given
by the forecast ±33.22.

using System;
using Imsl.Stat;
using PrintMatrix = Imsl.Math.PrintMatrix;
using PrintMatrixFormat = Imsl.Math.PrintMatrixFormat;

public class ARMAEx3
{

public static void Main(String[] args)
{

double[] z = new double[]{ 100.8, 81.6, 66.5, 34.8, 30.6,
7, 19.8, 92.5, 154.4, 125.9,
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84.8, 68.1, 38.5, 22.8, 10.2,
24.1, 82.9, 132, 130.9, 118.1,
89.9, 66.6, 60, 46.9, 41,
21.3, 16, 6.4, 4.1, 6.8,
14.5, 34, 45, 43.1, 47.5,
42.2, 28.1, 10.1, 8.1, 2.5,
0, 1.4, 5, 12.2, 13.9,
35.4, 45.8, 41.1, 30.4, 23.9,
15.7, 6.6, 4, 1.8, 8.5,
16.6, 36.3, 49.7, 62.5, 67,
71, 47.8, 27.5, 8.5, 13.2,
56.9, 121.5, 138.3, 103.2, 85.8,
63.2, 36.8, 24.2, 10.7, 15,
40.1, 61.5, 98.5, 124.3, 95.9,
66.5, 64.5, 54.2, 39, 20.6,
6.7, 4.3, 22.8, 54.8, 93.8,
95.7, 77.2, 59.1, 44, 47,
30.5, 16.3, 7.3, 37.3, 73.9};

PrintMatrixFormat pmf = new PrintMatrixFormat();

ARMA arma = new ARMA(2, 1, z);
arma.RelativeError = 0.0;
arma.MaxIterations = 0;
arma.Compute();

Console.Out.WriteLine("Method of Moments initial estimates:");
new PrintMatrix("AR estimates are: ").Print(arma.GetAR());
Console.Out.WriteLine();
new PrintMatrix("MA estimate is: ").Print(arma.GetMA());
arma.BackwardOrigin = 3;

String[] labels = new String[]{"Forecast From 1866",
"Forecast From 1867",
"Forecast From 1868",
"Forecast From 1869"};

pmf.SetColumnLabels(labels);
new PrintMatrix("forecasts: ").Print(pmf, arma.Forecast(12));

String[] devlabel = new String[]{"Dev. for prob. limits"};
pmf.SetColumnLabels(devlabel);
new PrintMatrix().Print(pmf, arma.GetDeviations());

pmf = new PrintMatrixFormat();
String[] psilabel = new String[]{"Psi"};
pmf.SetColumnLabels(psilabel);
new PrintMatrix().Print(pmf, arma.GetPsiWeights());

}
}

Output

Method of Moments initial estimates:
AR estimates are:
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0
0 1.24425777984372
1 -0.575149766040151

MA estimate is:
0

0 -0.124089747872598

forecasts:
Forecast From 1866 Forecast From 1867 Forecast From 1868 Forecast From 1869

0 18.2833158907917 16.6150394496618 55.1894123001951 83.7197534904998
1 28.9181987955671 32.0187807491226 62.7607512897864 77.2093688403491
2 41.0100309169882 45.8274629395489 61.8923574323663 63.460943166991
3 49.9387366920847 54.1495649798482 56.4571977708288 50.0988037706777
4 54.0937339010518 56.5623448569975 50.1939146011939 41.380261680911
5 54.12827846595 54.7780099487504 45.5268065977356 38.2173792044093
6 51.781515136941 51.1701275754685 43.3220470047205 39.2964055194313
7 48.8416683089504 47.707251668767 43.2630438046995 42.4581235229259
8 46.5334814013054 45.4736140841138 44.4576955781352 45.77151401381
9 45.3523540994474 44.6860654096231 45.9780860181243 48.0757645397578
10 45.2102804250337 44.9908279786143 47.1827399634897 49.0371504177457
11 45.7128292416607 45.8229896119653 47.8071878011807 48.9080731249673

Dev. for prob. limits
0 33.2179148279538
1 56.297995631143
2 67.6167546802611
3 70.6432170684592
4 70.7514758474662
5 71.0868521382172
6 71.9073814246285
7 72.5336378185077
8 72.74980142406
9 72.7653184468582
10 72.7779048168612
11 72.8225053997691

Psi
0 1.36834752771631
1 1.12742729085079
2 0.615805417421561
3 0.117781138936572
4 -0.207630243315585
5 -0.326087340079572
6 -0.286318223936733
7 -0.168704620288894
8 -0.0452361767797933
9 0.0407449580004067
10 0.0767148074728605
11 0.0720185429660699
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ARMA.ParamEstimation Enumeration

Summary

Parameter Estimation procedures.

public enumeration Imsl.Stat.ARMA.ParamEstimation

Fields

LeastSquares
public Imsl.Stat.ARMA.ParamEstimation LeastSquares

Description

Indicates autoregressive and moving average parameters are estimated by a least-squares
procedure.

MethodOfMoments
public Imsl.Stat.ARMA.ParamEstimation MethodOfMoments

Description

Indicates autoregressive and moving average parameters are estimated by a method of
moments procedure.

Difference Class

Summary

Differences a seasonal or nonseasonal time series.

public class Imsl.Stat.Difference

Property

ObservationsLost
public int ObservationsLost {get; }
Description

Returns the number of observations lost because of differencing the time series.
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Constructor

Difference
public Difference()

Description

Constructor for Difference.

Methods

Compute
public double[] Compute(double[] z, int[] periods)

Description

Computes a Difference series.

Parameters

z – A double array containing the time series.
periods – A int array containing the periods at which z is to be differenced.

Returns

A double array containing the differenced series.

ExcludeFirst
public void ExcludeFirst(bool exclude)

Description

Excludes observations lost due to differencing.

If set to true, the observations lost due to differencing will be excluded. The differenced
series will be the length of the number of observations minus the number of observations
lost. If set to false, the observations lost due to differencing will be set to NaN (Not a
number) and included in the differenced series. The default is to set the lost observations
to NaN.

Parameter

exclude – A boolean specifying whether or not to exclude lost observations due to
differencing.

SetOrders
public void SetOrders(int[] orders)

Description

Sets the orders for the Difference object.

The elements of orders must be greater than or equal to 0.
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Parameter

orders – An int array of length equal to length of periods, containing the order of
each difference given in periods.

Description

Class Difference performs m = periods.Length successive backward differences of period
si = periods[i− 1] and order di = orders[i− 1] for i = 1, . . . ,m on the n = z.Length
observations {Zt} for t = 1, 2, . . . , n.

Consider the backward shift operator B given by

BkZt = Zt−k

for all k. Then, the backward difference operator with period s is defined by the following:

∆sZt = (1−Bs)Zt = Zt − Zt−s for s ≥ 0

Note that BsZt and ∆sZt are defined only for t = (s+ 1), . . . , n. Repeated differencing with
period s is simply

∆d
sZt = (1−Bs)d

Zt =
d∑

j=0

d!
j! (d− j)!

(−1)j
BsjZt

where d ≥ 0 is the order of differencing. Note that

∆d
sZt

is defined only for t = (sd+ 1), . . . , n.

The general difference formula used in the class Difference is given by

WT =
{

NaN for t = 1, . . . , nL

∆d1
s1

∆d2
s2
. . .∆dm

sm
Zt for t = nL + 1, . . . , n

where nL represents the number of observations ”lost” because of differencing and NaN
represents the missing value code. Note that

nL =
∑

j

sjdj
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A homogeneous, stationary time series can be arrived at by appropriately differencing a
homogeneous, nonstationary time series (Box and Jenkins 1976, p. 85). Preliminary application
of an appropriate transformation followed by differencing of a series can enable model
identification and parameter estimation in the class of homogeneous stationary autoregressive
moving average models.

Example 1: Difference

This example uses the Airline Data (Box and Jenkins 1976, p. 531) consisting of the monthly
total number of international airline passengers from January 1949 through December 1960.
Difference is used to compute ...

Wt = ∆1∆12Zt = (Zt − Zt−12)− (Zt−1 − Zt−13)

for t= 14, 15, ...,24.

using System;
using Imsl.Stat;

public class DifferenceEx1
{

public static void Main(String[] args)
{

int[] periods = new int[]{1, 12};
int nLost;
double[] z = new double[]{112.0, 118.0, 132.0, 129.0, 121.0,

135.0, 148.0, 148.0, 136.0, 119.0,
104.0, 118.0, 115.0, 126.0, 141.0,
135.0, 125.0, 149.0, 170.0, 170.0,
158.00, 133.0, 114.0, 140.0};

Difference diff = new Difference();
double[] output = diff.Compute(z, periods);
nLost = diff.ObservationsLost;

Console.Out.WriteLine("Observations Lost = " + nLost);

for (int i = 0; i < output.Length; i++)
Console.Out.WriteLine(output[i]);

}
}

Output

Observations Lost = 13
NaN
NaN
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NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
5
1
-3
-2
10
8
0
0
-8
-4
12

Example 2: Difference

This example uses the same data as Example 1. The first number of lost observations are
excluded from W due to differencing, and the number of lost observations is also output.

using System;
using Imsl.Stat;

public class DifferenceEx2
{

public static void Main(String[] args)
{

int[] periods = new int[]{1, 12};
int nLost;
double[] z = new double[]{112.0, 118.0, 132.0, 129.0, 121.0,

135.0, 148.0, 148.0, 136.0, 119.0,
104.0, 118.0, 115.0, 126.0, 141.0,
135.0, 125.0, 149.0, 170.0, 170.0,
158.00, 133.0, 114.0, 140.0};

Difference diff = new Difference();
diff.ExcludeFirst(true);
double[] output = diff.Compute(z, periods);
nLost = diff.ObservationsLost;

Console.Out.WriteLine
("The number of observation lost = " + nLost);

for (int i = 0; i < output.Length; i++)
Console.Out.WriteLine(output[i]);

}
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}

Output

The number of observation lost = 13
5
1
-3
-2
10
8
0
0
-8
-4
12

GARCH Class

Summary

Computes estimates of the parameters of a GARCH(p,q) model.

public class Imsl.Stat.GARCH

Properties

Akaike
public double Akaike {get; }
Description

Returns the value of Akaike Information Criterion evaluated at the estimated parameter
array.

LogLikelihood
public double LogLikelihood {get; }
Description

Returns the value of Log-likelihood function evaluated at the estimated parameter array.

MaxSigma
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public double MaxSigma {get; set; }
Description

The value of the upperbound on the first element (sigma) of the array of returned
estimated coefficients.

Default = 10.

Sigma
public double Sigma {get; }
Description

Returns the estimated value of sigma squared.

Constructor

GARCH
public GARCH(int p, int q, double[] y, double[] xguess)

Description

Constructor for GARCH.

Parameters

p – A int scalar containing the number of autoregressive (AR) parameters.

q – A int scalar containing the number of moving average (MA) parameters.

y – A double array containing the observed time series data.

xguess – A double array of length p + q + 1 containing the initial values for the
parameter array.

System.ArgumentException id is thrown if the dimensions of y, and xguess are not
consistent

Methods

Compute
public void Compute()

Description

Computes estimates of the parameters of a GARCH(p,q) model.

Imsl.Stat.ConstrInconsistentException id is thrown if the equality constraints are
inconsistent

Imsl.Stat.EqConstrInconsistentException id is thrown if the equality constraints
and the bounds on the variables are found to be inconsistent
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Imsl.Stat.NoVectorXException id is thrown if no vector X satisfies all of the
constraints

Imsl.Stat.TooManyFunctionEvaluationsException id is thrown if the number of
function evaluations exceeded 1000

Imsl.Stat.VarsDeterminedException id is thrown if the variables are determined by
the equality constraints

GetAR
public double[] GetAR()

Description

Returns the estimated values of autoregressive (AR) parameters.

Returns

A double array of size p containing the estimated values of autoregressive (AR)
parameters.

GetMA
public double[] GetMA()

Description

Returns the estimated values of moving average (MA) parameters.

Returns

A double array of size q containing the estimated values of moving average (MA)
parameters.

GetVarCovarMatrix
public double[,] GetVarCovarMatrix()

Description

Returns the variance-covariance matrix.

Returns

A double matrix of size p + q + 1 by p + q + 1 containing the variance-covariance
matrix.

GetX
public double[] GetX()

Description

Returns the estimated parameter array, x.

Returns

A double array of size p + q + 1 containing the estimated values of sigma squared, the
AR parameters, and the MA parameters.
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Description

The Generalized Autoregressive Conditional Heteroskedastic (GARCH) model is defined as

yt = ztσt

σ2
t = σ2 +

p∑
i=1

βiσ
2
t−i+

q∑
i=1

αiy
2
t−i

where zt’s are independent and identically distributed standard normal random variables,

σ > 0, βi ≥ 0, αi ≥ 0

and

p∑
i=1

βi +
q∑

i=1

αi < 1

The above model is denoted as GARCH(p, q). The p is the autoregressive lag and the q is the
moving average lag. When βi = 0, i = 1, 2, . . . , p, the above model reduces to ARCH(q) which
was proposed by Engle (1982). The nonnegativity conditions on the parameters implied a
nonnegative variance and the condition on the sum of the βi’s and αi’s is required for wide
sense stationarity.

In the empirical analysis of observed data, GARCH(1,1) or GARCH(1,2) models have often
found to appropriately account for conditional heteroskedasticity (Palm 1996). This finding is
similar to linear time series analysis based on ARMA models.

It is important to notice that for the above models positive and negative past values have a
symmetric impact on the conditional variance. In practice, many series may have strong
asymmetric influence on the conditional variance. To take into account this phenomena, Nelson
(1991) put forward Exponential GARCH (EGARCH). Lai (1998) proposed and studied some
properties of a general class of models that extended linear relationship of the conditional
variance in ARCH and GARCH into nonlinear fashion.

The maximum likelihood method is used in estimating the parameters in GARCH(p,q). The
log-likelihood of the model for the observed series {Yt} with length m is

log(L) =
m

2
log(2π)− 1

2

m∑
t=1

y2
t /σ

2
t −

1
2

m∑
t=1

log σ2
t ,
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where σ2
t = σ2 +

p∑
i=1

βiσ
2
t−i +

q∑
i=1

αiy
2
t−i.

In the model, if q = 0, the model GARCH is singular such that the estimated Hessian matrix H
is singular.

The initial values of the parameter array x[ ] entered in array xguess[ ] must satisfy certain
constraints. The first element of xguess refers to sigma and must be greater than zero and less
than MaxSigma. The remaining p+q initial values must each be greater than or equal to zero
but less than one.

To guarantee stationarity in model fitting,

p+q∑
i=1

x(i) < 1,

is checked internally. The initial values should be selected from the values between zero and
one. The value of Akaike Information Criterion is computed by

2× log(L) + 2× (p + q + 1),

where log(L) is the value of the log-likelihood function at the estimated parameters.

In fitting the optimal model, the class Imsl.Math.MinConGenLin (p. 170), is modified to find
the maximal likelihood estimates of the parameters in the model. Statistical inferences can be
performed outside of the class GARCH based on the output of the log-likelihood function
(LogLikelihood property), the Akaike Information Criterion (Akaike property), and the
variance-covariance matrix (GetVarCovarMatrix method).

Example: GARCH

The data for this example are generated to follow a GARCH(p,q) process by using a random
number generation function sgarch. The data set is analyzed and estimates of sigma, the AR
parameters, and the MA parameters are returned. The values of the Log-likelihood function
and the Akaike Information Criterion are returned.

using System;
using Imsl.Stat;
using PrintMatrix = Imsl.Math.PrintMatrix;

public class GARCHEx1
{

static private void sgarch(int p, int q, int m, double[] x,
double[] y, double[] z, double[] y0, double[] sigma)
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{
int i, j, l;
double s1, s2, s3;
Imsl.Stat.Random rand = new Imsl.Stat.Random(182198625);
rand.Multiplier = 16807;

for (i = 0; i < m + 1000; i++)
z[i] = rand.NextNormal();

l = System.Math.Max(p, q);
l = System.Math.Max(l, 1);
for (i = 0; i < l; i++)

y0[i] = z[i] * x[0];

/* COMPUTE THE INITIAL VALUE OF SIGMA */
s3 = 0.0;
if (System.Math.Max(p, q) >= 1)
{

for (i = 1; i < (p + q + 1); i++)
s3 += x[i];

}
for (i = 0; i < l; i++)

sigma[i] = x[0] / (1.0 - s3);
for (i = l; i < (m + 1000); i++)
{

s1 = 0.0;
s2 = 0.0;
if (q >= 1)
{

for (j = 0; j < q; j++)
s1 += x[j + 1] * y0[i - j - 1] * y0[i - j - 1];

}
if (p >= 1)
{

for (j = 0; j < p; j++)
s2 += x[q + 1 + j] * sigma[i - j - 1];

}
sigma[i] = x[0] + s1 + s2;
y0[i] = z[i] * Math.Sqrt(sigma[i]);

}
/*
* DISCARD THE FIRST 1000 SIMULATED OBSERVATIONS
*/

for (i = 0; i < m; i++)
y[i] = y0[1000 + i];

return ;
}

public static void Main(String[] args)
{

int n, p, q, m;
double[] x = new double[]{1.3, 0.2, 0.3, 0.4};
double[] xguess = new double[]{1.0, 0.1, 0.2, 0.3};
double[] y = new double[1000];
double[] wk1 = new double[2000];

528 • GARCH Class IMSL C# Numerical Library



double[] wk2 = new double[2000];
double[] wk3 = new double[2000];

m = 1000;
p = 2;
q = 1;
n = p + q + 1;
sgarch(p, q, m, x, y, wk1, wk2, wk3);

GARCH garch = new GARCH(p, q, y, xguess);
garch.Compute();

Console.Out.WriteLine
("Sigma estimate is " + garch.Sigma.ToString("0.000"));

Console.Out.WriteLine();
new PrintMatrix("AR estimate is ").Print(garch.GetAR());
new PrintMatrix("MR estimate is ").Print(garch.GetMA());
Console.Out.WriteLine("Log-likelihood function value is " +

garch.LogLikelihood.ToString("0.000"));
Console.Out.WriteLine("Akaike Information Criterion value is "

+ garch.Akaike.ToString("0.000"));
}

}

Output

Sigma estimate is 1.692

AR estimate is
0

0 0.244996117092089
1 0.337235176981931

MR estimate is
0

0 0.309586601528879

Log-likelihood function value is -2707.073
Akaike Information Criterion value is 5422.146

KalmanFilter Class

Summary

Performs Kalman filtering and evaluates the likelihood function for the state-space model.

public class Imsl.Stat.KalmanFilter
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Properties

LogDeterminant
public double LogDeterminant {get; }
Description

Returns the natural log of the product of the nonzero eigenvalues of P where P * sigma2

is the variance-covariance matrix of the observations.

In the usual case when P is nonsingular, LogDeterminant is the natural log of the
determinant of P.

Rank
public int Rank {get; }
Description

Returns the rank of the variance-covariance matrix for all the observations.

SumOfSquares
public double SumOfSquares {get; }
Description

Returns the generalized sum of squares.

The estimate of σ2 is given by sumOfSquares / n.

Tolerance
public double Tolerance {get; set; }
Description

The tolerance used in determining linear dependence.

Default: tolerance = 100.0*2.2204460492503131e-16.

Constructor

KalmanFilter
public KalmanFilter(double[] b, double[] covb, int rank, double
sumOfSquaress, double logDeterminant)

Description

Constructor for KalmanFilter.

b is the estimated state vector at time k given the observations through time k-1.
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Parameters

b – A double array containing the estimated state vector.
covb – A double array of size b.Length by b.Length such that covb * σ2 is the
mean squared error matrix for b.
rank – An int scalar containing the rank of the variance-covariance matrix for all
the observations.
sumOfSquaress – A double scalar containing the generalized sum of squares.
logDeterminant – A double scalar containing the natural log of the product of the
nonzero eigenvalues of P where P * σ2 is the variance-covariance matrix of the
observations.

System.ArgumentException id is thrown if the dimensions of b, and covb are not
consistent

Methods

Filter
public void Filter()

Description

Performs Kalman filtering and evaluates the likelihood function for the state-space model.

GetCovB
public double[] GetCovB()

Description

Returns the mean squared error matrix for b divided by sigma squared.
Returns

A double array of size b.Length by b.Length such that covb * σ2 is the mean squared
error matrix for b.

GetCovV
public double[,] GetCovV()

Description

Returns the variance-covariance matrix of v dividied by sigma squared.
Returns

A double matrix containing a y.length by y.Length matrix such that covv * σ2 is the
variance-covariance matrix of v.

GetPredictionError
public double[] GetPredictionError()
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Description

Returns the one-step-ahead prediction error.

Returns

A double array of size y.Length containing the one-step-ahead prediction error.

GetStateVector
public double[] GetStateVector()

Description

Returns the estimated state vector at time k + 1 given the observations through time k.

Returns

A double array containing the estimated state vector at time k + 1 given the
observations through time k.

SetQ
public void SetQ(double[,] q)

Description

Sets the Q matrix.

Default: There is no error term in the state equation.

Parameter

q – A double matrix containing the b.Length by b.Length matrix such that q * σ2

is the variance-covariance matrix of the error vector in the state equation.

SetTransitionMatrix
public void SetTransitionMatrix(double[,] t)

Description

Sets the transition matrix.

Default: t = identity matrix

Parameter

t – A double matrix containing the b.Length by b.Length transition matrix in the
state equation.

Update
public void Update(double[] y, double[,] z, double[,] r)

Description

Performs computation of the update equations.

σ2 is a positive unknown scalar. Only elements in the upper triangle of r are referenced.
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Parameters

y – A double array containing the observations.

z – A double matrix containing the y.Length by b.Length matrix relating the
observations to the state vector in the observation equation.

r – A double matrix containing the y.Length by y.Length matrix such that r * σ2

is the variance-covariance matrix of errors in the observation equation.

Description

Class KalmanFilter is based on a recursive algorithm given by Kalman (1960), which has come
to be known as the KalmanFilter. The underlying model is known as the state-space model.
The model is specified stage by stage where the stages generally correspond to time points at
which the observations become available. KalmanFilter avoids many of the computations and
storage requirements that would be necessary if one were to process all the data at the end of
each stage in order to estimate the state vector. This is accomplished by using previous
computations and retaining in storage only those items essential for processing of future
observations.

The notation used here follows that of Sallas and Harville (1981). Let yk (input in y using
method Update) be the nk × 1 vector of observations that become available at time k. The
subscript k is used here rather than t, which is more customary in time series, to emphasize
that the model is expressed in stages k = 1, 2, . . . and that these stages need not correspond to
equally spaced time points. In fact, they need not correspond to time points of any kind. The
observation equation for the state-space model is

yk = Zkbk + ek k = 1, 2, . . .

Here, Zk (input in z using method update) is an nk × q known matrix and bk is the q × 1 state
vector. The state vector bk is allowed to change with time in accordance with the state equation

bk+1 = Tk+1bk + wk+1 k = 1, 2, . . .

starting with b1 = µ1 + w1.

The change in the state vector from time k to k + 1 is explained in part by the transition matrix
Tk+1 (the identity matrix by default, or optionally using method SetTransitionMatrix),
which is assumed known. It is assumed that the q-dimensional wks(k = 1, 2, . . .) are
independently distributed multivariate normal with mean vector 0 and variance-covariance
matrix σ2Qk, that the nk-dimensional eks(k = 1, 2, . . .) are independently distributed
multivariate normal with mean vector 0 and variance-covariance matrix σ2Rk, and that the
wks and eks are independent of each other. Here, µ1is the mean of b1 and is assumed known,
σ2 is an unknown positive scalar. Qk+1 (input in Q) and Rk (input in R) are assumed known.

Denote the estimator of the realization of the state vector bk given the observations
y1, y2, . . . , yj by
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β̂k|j

By definition, the mean squared error matrix for

β̂k|j

is

σ2Ck|j = E(β̂k|j − bk)(β̂k|j − bk)T

At the time of the k-th invocation, we have

β̂k|k−1

and

Ck|k−1 , which were computed from the k-1-st invocation, input in b and covb, respectively.
During the k-th invocation, KalmanFilter computes the filtered estimate

β̂k|k

along with Ck|k . These quantities are given by the update equations:

β̂k|k = β̂k|k−1 + Ck|k−1Z
T
k H

−1
k vk

Ck|k = Ck|k−1 − Ck|k−1Z
T
k H

−1
k ZkCk|k−1

where

vk = yk − Zkβ̂k|k−1

and where

Hk = Rk + ZkCk|k−1Z
T
k

534 • KalmanFilter Class IMSL C# Numerical Library



Here, vk (stored in v) is the one-step-ahead prediction error, and σ2Hk is the
variance-covariance matrix for vk. Hk is stored in covv. The ”start-up values” needed on the
first invocation of KalmanFilter are

β̂1|0 = µ1

and C1|0 = Q1 input via b and covb, respectively. Computations for the k-th invocation are
completed by KalmanFilter computing the one-step-ahead estimate

β̂k+1|k

along with Ck+1|k given by the prediction equations:

β̂k+1|k = Tk+1β̂k|k

Ck+1|k = Tk+1Ck|kT
T
k+1 +Qk+1

If both the filtered estimates and one-step-ahead estimates are needed by the user at each time
point, KalmanFilter can be used twice for each time point-first without methods
SetTransitionMatrix and SetQ to produce

β̂k|k

and Ck|k , and second without method Update to produce

β̂k+1|k

and Ck+1|k (Without methods SetTransitionMatrix and SetQ, the prediction equations are
skipped. Without method update, the update equations are skipped.).

Often, one desires the estimate of the state vector more than one-step-ahead, i.e., an estimate
of

β̂k|j
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is needed where k > j+1. At time j, KalmanFilter is invoked with method Update to compute

β̂j+1|j

Subsequent invocations of KalmanFilter without method Update can compute

β̂j+2|j , β̂j+3|j , . . . , β̂k|j

Computations for

β̂k|j

and Ck|j assume the variance-covariance matrices of the errors in the observation equation and
state equation are known up to an unknown positive scalar multiplier, σ2. The maximum
likelihood estimate of σ2 based on the observations y1, y2, . . . , ym, is given by

σ̂2 = SS/N

where

N =
∑m

k=1
nk and SS =

∑m

k=1
vT

k H
−1
k vk

N and SS are the input/output arguments n and sumOfSquares.

If σ2 is known, the Rks and Qks can be input as the variance-covariance matrices exactly. The
earlier discussion is then simplified by letting σ2 = 1.

In practice, the matrices Tk, Qk, and Rk are generally not completely known. They may be
known functions of an unknown parameter vector θ. In this case, KalmanFilter can be used in
conjunction with an optimization class (see class MinUnconMultiVar, IMSL C# Library Math
namespace), to obtain a maximum likelihood estimate of θ. The natural logarithm of the
likelihood function for y1, y2, . . . , ym differs by no more than an additive constant from

L(θ, σ2; y1, y2, . . . , ym) = −1
2
N lnσ2 − 1

2

m∑
k=1

ln[det(Hk)]− 1
2
σ−2

m∑
k=1

vT
k H

−1
k vk

(Harvey 1981, page 14, equation 2.21).

Here,
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∑m

k=1
ln[det(Hk)]

(stored in logDeterminant) is the natural logarithm of the determinant of V where σ2V is the
variance-covariance matrix of the observations.

Minimization of −2L(θ, σ2; y1, y2, . . . , ym) over all θ and σ2 produces maximum likelihood
estimates. Equivalently, minimization of −2Lc(θ; y1, y2, . . . , ym) where

Lc(θ; y1, y2, . . . , ym) = −1
2
N ln

(
SS

N

)
− 1

2

m∑
k=1

ln[det(Hk)]

produces maximum likelihood estimates

θ̂ and σ̂2 = SS/N

Minimization of −2Lc(θ; y1, y2, . . . , ym) instead of −2L(θ, σ2; y1, y2, . . . , ym), reduces the
dimension of the minimization problem by one. The two optimization problems are equivalent
since

σ̂2(θ) = SS(θ)/N

minimizes −2L(θ, σ2; y1, y2, . . . , ym) for all θ, consequently,

σ̂
2
(θ)

can be substituted for σ2 in L(θ, σ2; y1, y2, . . . , ym) to give a function that differs by no more
than an additive constant from Lc(θ; y1, y2, . . . , ym).

The earlier discussion assumed Hk to be nonsingular. If Hk is singular, a modification for
singular distributions described by Rao (1973, pages 527-528) is used. The necessary changes in
the preceding discussion are as follows:

1. Replace H−1
k by a generalized inverse.

2. Replace det(Hk) by the product of the nonzero eigenvalues of Hk.

3. Replace N by
∑m

k=1 rank (Hk)

Maximum likelihood estimation of parameters in the Kalman filter is discussed by Sallas and
Harville (1988) and Harvey (1981, pages 111-113).
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Example: Kilman Filter

KalmanFilter is used to compute the filtered estimates and one-step-ahead estimates for a
scalar problem discussed by Harvey (1981, pages 116-117). The observation equation and state
equation are given by

yk = bk + ek

bk+1 = bk + wk+1

k = 1, 2, 3, 4

where the eks are identically and independently distributed normal with mean 0 and variance
σ2, the wks are identically and independently distributed normal with mean 0 and variance
4σ2, and b1 is distributed normal with mean 4 and variance 16σ2. Two KalmanFilter objects
are needed for each time point in order to compute the filtered estimate and the one-step-ahead
estimate. The first object does not use the methods SetTransitionMatrix and SetQ so that
the prediction equations are skipped in the computations. The update equations are skipped in
the computations in the second object.

This example also computes the one-step-ahead prediction errors. Harvey (1981, page 117)
contains a misprint for the value v4 that he gives as 1.197. The correct value of v4 = 1.003 is
computed by KalmanFilter.

using System;
using Imsl.Stat;

public class KalmanFilterEx1
{

private static readonly String format =
"{0}/{1}\t{2:0.000}\t{3:0.000}\t{4}\t{5:0.000}" +
"\t{6:0.000}\t{7:0.000}\t{8:0.000}";

public static void Main(String[] args)
{

int nobs = 4;
int rank = 0;
double logDeterminant = 0.0;
double ss = 0.0;
double[] b = new double[]{4};
double[] covb = new double[]{16};
double[,] q = {{4}};
double[,] r = {{1}};
double[,] t = {{1}};
double[,] z = {{1}};
double[] ydata = new double[]{4.4, 4.0, 3.5, 4.6};

System.Object[] argFormat =
new System.Object[]{"k", "j", "b", "cov(b)", "rank", "ss",

"ln(det)", "v", "cov(v)"};
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Console.Out.WriteLine(String.Format(format, argFormat));

for (int i = 0; i < nobs; i++)
{

double[] y = new double[]{ydata[i]};
KalmanFilter kalman =

new KalmanFilter(b, covb, rank, ss, logDeterminant);
kalman.Update(y, z, r);
kalman.Filter();
b = kalman.GetStateVector();
covb = kalman.GetCovB();
rank = kalman.Rank;
ss = kalman.SumOfSquares;
logDeterminant = kalman.LogDeterminant;
double[] v = kalman.GetPredictionError();
double[,] covv = kalman.GetCovV();
argFormat[0] = i;
argFormat[1] = i;
argFormat[2] = b[0];
argFormat[3] = covb[0];
argFormat[4] = rank;
argFormat[5] = ss;
argFormat[6] = logDeterminant;
argFormat[7] = v[0];
argFormat[8] = covv[0,0];
Console.Out.WriteLine(String.Format(format, argFormat));

kalman =
new KalmanFilter(b, covb, rank, ss, logDeterminant);

kalman.SetTransitionMatrix(t);
kalman.SetQ(q);
kalman.Filter();
b = kalman.GetStateVector();
covb = kalman.GetCovB();
rank = kalman.Rank;
ss = kalman.SumOfSquares;
logDeterminant = kalman.LogDeterminant;
argFormat[0] = i + 1;
argFormat[1] = i;
argFormat[2] = b[0];
argFormat[3] = covb[0];
argFormat[4] = rank;
argFormat[5] = ss;
argFormat[6] = logDeterminant;
argFormat[7] = v[0];
argFormat[8] = covv[0,0];
Console.Out.WriteLine(String.Format(format, argFormat));

}
}

}
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Output

k/j b cov(b) rank ss ln(det) v cov(v)
0/0 4.376 0.941 1 0.009 2.833 0.400 17.000
1/0 4.376 4.941 1 0.009 2.833 0.400 17.000
1/1 4.063 0.832 2 0.033 4.615 -0.376 5.941
2/1 4.063 4.832 2 0.033 4.615 -0.376 5.941
2/2 3.597 0.829 3 0.088 6.378 -0.563 5.832
3/2 3.597 4.829 3 0.088 6.378 -0.563 5.832
3/3 4.428 0.828 4 0.260 8.141 1.003 5.829
4/3 4.428 4.828 4 0.260 8.141 1.003 5.829
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Chapter 19: Multivariate Analysis

Types

class ClusterKMeans. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .543
class Dissimilarities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
class ClusterHierarchical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
class FactorAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564
enumeration FactorAnalysis.MatrixType . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
enumeration FactorAnalysis.Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582
class DiscriminantAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583
enumeration DiscriminantAnalysis.Discrimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606
enumeration DiscriminantAnalysis.CovarianceMatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606
enumeration DiscriminantAnalysis.Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607
enumeration DiscriminantAnalysis.PriorProbabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608

Usage Notes

Cluster Analysis

ClusterKMeans performs a K-means cluster analysis. Basic K-means clustering attempts to
find a clustering that minimizes the within-cluster sums-of-squares. In this method of clustering
the data, matrix X is grouped so that each observation (row in X) is assigned to one of a fixed
number, K, of clusters. The sum of the squared difference of each observation about its assigned
cluster’s mean is used as the criterion for assignment. In the basic algorithm, observations are
transferred from one cluster or another when doing so decreases the within-cluster
sums-of-squared differences. When no transfer occurs in a pass through the entire data set, the
algorithm stops. ClusterKMeans is one implementation of the basic algorithm.

The usual course of events in K-means cluster analysis is to use ClusterKMeans to obtain the
optimal clustering. The clustering is then evaluated by functions described in ”Basic
Statistics”, and/or other chapters in this manual. Often, K-means clustering with more than
one value of K is performed, and the value of K that best fits the data is used.

Clustering can be performed either on observations or variables. The discussion of the function
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ClusterKMeans assumes the clustering is to be performed on the observations, which
correspond to the rows of the input data matrix. If variables, rather than observations, are to
be clustered, the data matrix should first be transposed. In the documentation for
ClusterKMeans, the words ”observation” and ”variable” are interchangeable.

Principal Components

The idea in principal components is to find a small number of linear combinations of the
original variables that maximize the variance accounted for in the original data. This amounts
to an eigensystem analysis of the covariance (or correlation) matrix. In addition to the
eigensystem analysis, when the principal component model is used, FactorAnalysis computes
standard errors for the eigenvalues. Correlations of the original variables with the principal
component scores also are computed.

Factor Analysis

Factor analysis and principal component analysis, while quite different in assumptions, often
serve the same ends. Unlike principal components in which linear combinations yielding the
highest possible variances are obtained, factor analysis generally obtains linear combinations of
the observed variables according to a model relating the observed variable to hypothesized
underlying factors, plus a random error term called the unique error or uniqueness. In factor
analysis, the unique errors associated with each variable are usually assumed to be independent
of the factors. Additionally, in the common factor model, the unique errors are assumed to be
mutually independent. The factor analysis model is expressed in the following equation:

x− µ = Λf + e

where x is the p vector of observed values, µ is the p vector of variable means, Λ is the p× k
matrix of factor loadings, f is the k vector of hypothesized underlying random factors, e is the
p vector of hypothesized unique random errors, p is the number of variables in the observed
variables, and k is the number of factors.

Because much of the computation in factor analysis was originally done by hand or was
expensive on early computers, quick (but dirty) algorithms that made the calculations possible
were developed. One result is the many factor extraction methods available today. Generally
speaking, in the exploratory or model building phase of a factor analysis, a method of factor
extraction that is not computationally intensive (such as principal components, principal factor,
or image analysis) is used. If desired, a computationally intensive method is then used to
obtain the final factors.

Discriminant Analysis

The class DiscriminantAnalysis allows linear or quadratic discrimination and the use of
either reclassification, split sample, or the leaving-out-one methods in order to evaluate the
rule. Moreover, DiscriminantAnalysis can be executed in an online mode, that is, one or
more observations can be added to the rule during each invocation of DiscriminantAnalysis.

The mean vectors for each group of observations and an estimate of the common covariance
matrix for all groups are input to DiscriminantAnalysis. Output from
DiscriminantAnalysis are linear combinations of the observations, which at most separate the
groups. These linear combinations may subsequently be used for discriminating between the
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groups. Their use in graphically displaying differences between the groups is possibly more
important, however.

ClusterKMeans Class

Summary

Perform a K-means (centroid) cluster analysis.

public class Imsl.Stat.ClusterKMeans

Property

MaxIterations
public int MaxIterations {get; set; }
Description

The maximum number of iterations.

Default: MaxIterations = 30.

Constructor

ClusterKMeans
public ClusterKMeans(double[,] x, double[,] cs)

Description

Constructor for ClusterKMeans.

Parameters

x – A double matrix containing the observations to be clustered.
cs – A double matrix containing the cluster seeds, i.e. estimates for the cluster
centers.

System.ArgumentException id is thrown if x.GetLength(0), x.GetLength(1) are equal
0, or cs.GetLength(0) is less than 1

Methods

Compute
public double[,] Compute()
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Description

Computes the cluster means.

Returns

A double matrix containing computed result.

Imsl.Stat.NoConvergenceException id is thrown if convergence did not occur within
the maximum number of iterations

Imsl.Stat.ClusterNoPointsException id is thrown if the cluster seed yields a cluster
with no points

GetClusterCounts
public int[] GetClusterCounts()

Description

Returns the number of observations in each cluster.

Returns

An int array containing the number of observations in each cluster.

GetClusterMembership
public int[] GetClusterMembership()

Description

Returns the cluster membership for each observation.

Cluster membership 1 indicates the observation belongs to cluster 1, cluster membership
2 indicates the observation belongs to cluster 2, etc.

Returns

An int array containing the cluster membership for each observation.

GetClusterSSQ
public double[] GetClusterSSQ()

Description

Returns the within sum of squares for each cluster.

Returns

A double array containing the within sum of squares for each cluster.

SetFrequencies
public void SetFrequencies(double[] frequencies)

Description

The frequency for each observation.

Default: Frequencies[] = 1.
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Parameter

frequencies – A double array of size x.GetLength(0) containing the frequency for
each observation.

SetWeights
public void SetWeights(double[] weights)

Description

Sets the weight for each observation.

Default: Weights[] = 1.

Parameter

weights – A double array of size x.GetLength(0) containing the weight for each
observation.

Description

ClusterKMeans is an implementation of Algorithm AS 136 by Hartigan and Wong (1979). It
computes K-means (centroid) Euclidean metric clusters for an input matrix starting with initial
estimates of the K cluster means. It allows for missing values (coded as NaN, not a number)
and for weights and frequencies.

Let p denote the number of variables to be used in computing the Euclidean distance between
observations. The idea in K-means cluster analysis is to find a clustering (or grouping) of the
observations so as to minimize the total within-cluster sums of squares. In this case, the total
sums of squares within each cluster is computed as the sum of the centered sum of squares over
all nonmissing values of each variable. That is,

φ =
K∑

i=1

p∑
j=1

ni∑
m=1

fνimwνimδνim,j (xνim,j − x̄ij)
2

where νim denotes the row index of the m-th observation in the i-th cluster in the matrix X; ni

is the number of rows of X assigned to group i; f denotes the frequency of the observation; w
denotes its weight; d is zero if the j-th variable on observation νim is missing, otherwise δ is one;
and x̄ij is the average of the nonmissing observations for variable j in group i. This method
sequentially processes each observation and reassigns it to another cluster if doing so results in
a decrease in the total within-cluster sums of squares. See Hartigan and Wong (1979) or
Hartigan (1975) for details.

Example: K-means Cluster Analysis

This example performs K-means cluster analysis on Fisher’s iris data. The initial cluster seed
for each iris type is an observation known to be in the iris type.
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/*
* -------------------------------------------------------------------------
* Copyright (c) 1999 Visual Numerics Inc. All Rights Reserved.
*
* This software is confidential information which is proprietary to
* and a trade secret of Visual Numerics, Inc. Use, duplication or
* disclosure is subject to the terms of an appropriate license
* agreement.
*
* VISUAL NUMERICS MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE
* SUITABILITY OF THE SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. VISUAL
* NUMERICS SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE
* AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE OR
* ITS DERIVATIVES.
*--------------------------------------------------------------------------
*/
using System;
using Imsl.Stat;
using Imsl.Math;

public class ClusterKMeansEx1
{

public static void Main(String[] argv)
{

double[,] x = {{5.100, 3.500, 1.400, 0.200},
{4.900, 3.000, 1.400, 0.200},
{4.700, 3.200, 1.300, 0.200},
{4.600, 3.100, 1.500, 0.200},
{5.000, 3.600, 1.400, 0.200},
{5.400, 3.900, 1.700, 0.400},
{4.600, 3.400, 1.400, 0.300},
{5.000, 3.400, 1.500, 0.200},
{4.400, 2.900, 1.400, 0.200},
{4.900, 3.100, 1.500, 0.100},
{5.400, 3.700, 1.500, 0.200},
{4.800, 3.400, 1.600, 0.200},
{4.800, 3.000, 1.400, 0.100},
{4.300, 3.000, 1.100, 0.100},
{5.800, 4.000, 1.200, 0.200},
{5.700, 4.400, 1.500, 0.400},
{5.400, 3.900, 1.300, 0.400},
{5.100, 3.500, 1.400, 0.300},
{5.700, 3.800, 1.700, 0.300},
{5.100, 3.800, 1.500, 0.300},
{5.400, 3.400, 1.700, 0.200},
{5.100, 3.700, 1.500, 0.400},
{4.600, 3.600, 1.000, 0.200},
{5.100, 3.300, 1.700, 0.500},
{4.800, 3.400, 1.900, 0.200},
{5.000, 3.000, 1.600, 0.200},
{5.000, 3.400, 1.600, 0.400},
{5.200, 3.500, 1.500, 0.200},
{5.200, 3.400, 1.400, 0.200},
{4.700, 3.200, 1.600, 0.200},
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{4.800, 3.100, 1.600, 0.200},
{5.400, 3.400, 1.500, 0.400},
{5.200, 4.100, 1.500, 0.100},
{5.500, 4.200, 1.400, 0.200},
{4.900, 3.100, 1.500, 0.200},
{5.000, 3.200, 1.200, 0.200},
{5.500, 3.500, 1.300, 0.200},
{4.900, 3.600, 1.400, 0.100},
{4.400, 3.000, 1.300, 0.200},
{5.100, 3.400, 1.500, 0.200},
{5.000, 3.500, 1.300, 0.300},
{4.500, 2.300, 1.300, 0.300},
{4.400, 3.200, 1.300, 0.200},
{5.000, 3.500, 1.600, 0.600},
{5.100, 3.800, 1.900, 0.400},
{4.800, 3.000, 1.400, 0.300},
{5.100, 3.800, 1.600, 0.200},
{4.600, 3.200, 1.400, 0.200},
{5.300, 3.700, 1.500, 0.200},
{5.000, 3.300, 1.400, 0.200},
{7.000, 3.200, 4.700, 1.400},
{6.400, 3.200, 4.500, 1.500},
{6.900, 3.100, 4.900, 1.500},
{5.500, 2.300, 4.000, 1.300},
{6.500, 2.800, 4.600, 1.500},
{5.700, 2.800, 4.500, 1.300},
{6.300, 3.300, 4.700, 1.600},
{4.900, 2.400, 3.300, 1.000},
{6.600, 2.900, 4.600, 1.300},
{5.200, 2.700, 3.900, 1.400},
{5.000, 2.000, 3.500, 1.000},
{5.900, 3.000, 4.200, 1.500},
{6.000, 2.200, 4.000, 1.000},
{6.100, 2.900, 4.700, 1.400},
{5.600, 2.900, 3.600, 1.300},
{6.700, 3.100, 4.400, 1.400},
{5.600, 3.000, 4.500, 1.500},
{5.800, 2.700, 4.100, 1.000},
{6.200, 2.200, 4.500, 1.500},
{5.600, 2.500, 3.900, 1.100},
{5.900, 3.200, 4.800, 1.800},
{6.100, 2.800, 4.000, 1.300},
{6.300, 2.500, 4.900, 1.500},
{6.100, 2.800, 4.700, 1.200},
{6.400, 2.900, 4.300, 1.300},
{6.600, 3.000, 4.400, 1.400},
{6.800, 2.800, 4.800, 1.400},
{6.700, 3.000, 5.000, 1.700},
{6.000, 2.900, 4.500, 1.500},
{5.700, 2.600, 3.500, 1.000},
{5.500, 2.400, 3.800, 1.100},
{5.500, 2.400, 3.700, 1.000},
{5.800, 2.700, 3.900, 1.200},
{6.000, 2.700, 5.100, 1.600},
{5.400, 3.000, 4.500, 1.500},
{6.000, 3.400, 4.500, 1.600},
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{6.700, 3.100, 4.700, 1.500},
{6.300, 2.300, 4.400, 1.300},
{5.600, 3.000, 4.100, 1.300},
{5.500, 2.500, 4.000, 1.300},
{5.500, 2.600, 4.400, 1.200},
{6.100, 3.000, 4.600, 1.400},
{5.800, 2.600, 4.000, 1.200},
{5.000, 2.300, 3.300, 1.000},
{5.600, 2.700, 4.200, 1.300},
{5.700, 3.000, 4.200, 1.200},
{5.700, 2.900, 4.200, 1.300},
{6.200, 2.900, 4.300, 1.300},
{5.100, 2.500, 3.000, 1.100},
{5.700, 2.800, 4.100, 1.300},
{6.300, 3.300, 6.000, 2.500},
{5.800, 2.700, 5.100, 1.900},
{7.100, 3.000, 5.900, 2.100},
{6.300, 2.900, 5.600, 1.800},
{6.500, 3.000, 5.800, 2.200},
{7.600, 3.000, 6.600, 2.100},
{4.900, 2.500, 4.500, 1.700},
{7.300, 2.900, 6.300, 1.800},
{6.700, 2.500, 5.800, 1.800},
{7.200, 3.600, 6.100, 2.500},
{6.500, 3.200, 5.100, 2.000},
{6.400, 2.700, 5.300, 1.900},
{6.800, 3.000, 5.500, 2.100},
{5.700, 2.500, 5.000, 2.000},
{5.800, 2.800, 5.100, 2.400},
{6.400, 3.200, 5.300, 2.300},
{6.500, 3.000, 5.500, 1.800},
{7.700, 3.800, 6.700, 2.200},
{7.700, 2.600, 6.900, 2.300},
{6.000, 2.200, 5.000, 1.500},
{6.900, 3.200, 5.700, 2.300},
{5.600, 2.800, 4.900, 2.000},
{7.700, 2.800, 6.700, 2.000},
{6.300, 2.700, 4.900, 1.800},
{6.700, 3.300, 5.700, 2.100},
{7.200, 3.200, 6.000, 1.800},
{6.200, 2.800, 4.800, 1.800},
{6.100, 3.000, 4.900, 1.800},
{6.400, 2.800, 5.600, 2.100},
{7.200, 3.000, 5.800, 1.600},
{7.400, 2.800, 6.100, 1.900},
{7.900, 3.800, 6.400, 2.000},
{6.400, 2.800, 5.600, 2.200},
{6.300, 2.800, 5.100, 1.500},
{6.100, 2.600, 5.600, 1.400},
{7.700, 3.000, 6.100, 2.300},
{6.300, 3.400, 5.600, 2.400},
{6.400, 3.100, 5.500, 1.800},
{6.000, 3.000, 4.800, 1.800},
{6.900, 3.100, 5.400, 2.100},
{6.700, 3.100, 5.600, 2.400},
{6.900, 3.100, 5.100, 2.300},
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{5.800, 2.700, 5.100, 1.900},
{6.800, 3.200, 5.900, 2.300},
{6.700, 3.300, 5.700, 2.500},
{6.700, 3.000, 5.200, 2.300},
{6.300, 2.500, 5.000, 1.900},
{6.500, 3.000, 5.200, 2.000},
{6.200, 3.400, 5.400, 2.300},
{5.900, 3.000, 5.100, 1.800}};

double[,] cs = {{5.100, 3.500, 1.400, 0.200},
{7.000, 3.200, 4.700, 1.400},
{6.300, 3.300, 6.000, 2.500}};

ClusterKMeans kmean = new ClusterKMeans(x, cs);

double[,] cm = kmean.Compute();
double[] wss = kmean.GetClusterSSQ();
int[] ic = kmean.GetClusterMembership();
int[] nc = kmean.GetClusterCounts();

PrintMatrix pm = new PrintMatrix("Cluster Means");

PrintMatrixFormat pmf = new PrintMatrixFormat();
pmf.NumberFormat = "0.0000";
pm.Print(pmf, cm);

new PrintMatrix("Cluster Membership").Print(ic);
new PrintMatrix("Sum of Squares").Print(wss);
new PrintMatrix("Number of observations").Print(nc);

}
}

Output

Cluster Means
0 1 2 3

0 5.0060 3.4280 1.4620 0.2460
1 5.9016 2.7484 4.3935 1.4339
2 6.8500 3.0737 5.7421 2.0711

Cluster Membership
0

0 1
1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1

Multivariate Analysis ClusterKMeans Class • 549



9 1
10 1
11 1
12 1
13 1
14 1
15 1
16 1
17 1
18 1
19 1
20 1
21 1
22 1
23 1
24 1
25 1
26 1
27 1
28 1
29 1
30 1
31 1
32 1
33 1
34 1
35 1
36 1
37 1
38 1
39 1
40 1
41 1
42 1
43 1
44 1
45 1
46 1
47 1
48 1
49 1
50 2
51 2
52 3
53 2
54 2
55 2
56 2
57 2
58 2
59 2
60 2
61 2
62 2
63 2
64 2
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65 2
66 2
67 2
68 2
69 2
70 2
71 2
72 2
73 2
74 2
75 2
76 2
77 3
78 2
79 2
80 2
81 2
82 2
83 2
84 2
85 2
86 2
87 2
88 2
89 2
90 2
91 2
92 2
93 2
94 2
95 2
96 2
97 2
98 2
99 2
100 3
101 2
102 3
103 3
104 3
105 3
106 2
107 3
108 3
109 3
110 3
111 3
112 3
113 2
114 2
115 3
116 3
117 3
118 3
119 2
120 3
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121 2
122 3
123 2
124 3
125 3
126 2
127 2
128 3
129 3
130 3
131 3
132 3
133 2
134 3
135 3
136 3
137 3
138 2
139 3
140 3
141 3
142 2
143 3
144 3
145 3
146 2
147 3
148 3
149 2

Sum of Squares
0

0 15.151
1 39.8209677419355
2 23.8794736842105

Number of observations
0

0 50
1 62
2 38

Dissimilarities Class

Summary

Computes a matrix of dissimilarities (or similarities) between the columns (or rows) of a
matrix.

public class Imsl.Stat.Dissimilarities
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Property

DistanceMatrix
virtual public double[,] DistanceMatrix {get; }

Description

The distance matrix.

Constructors

Dissimilarities
public Dissimilarities(double[,] x, int distanceMethod, int distanceScale,
int iRow)

Description

Constructor for Dissimilarities.

Acceptable values of distanceMethod are 1, 2, ..., 8. See Remarks section of the
Dissimilarities documentation for a description of these methods.

distanceScale Method
0 No scaling is performed.
1 Scale each column (row if iRow=1) by the standard deviation

of the column(row).
2 Scale each column (row if iRow=1) by the range of the column

(row).

If iRow = 1, distances are computed between the rows of x. Otherwise, distances between
the columns of x are computed.

Parameters

x – A double matrix containing the data input matrix.

distanceMethod – An int identifying the method to use in computing the
dissimilarities or similarities.

distanceScale – An int containing the scaling option.

iRow – An int identifying whether distances are computed between rows or columns
of x.

Imsl.Stat.ScaleFactorZeroException id is thrown when computations cannot
continue because a scale factor is zero.

Imsl.Stat.NoPositiveVarianceException id is thrown when no variable has positive
variance

Imsl.Stat.ZeroNormException id is thrown when the Euclidean norm of a column is
equal to zero
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Dissimilarities
public Dissimilarities(double[,] x, int distanceMethod, int distanceScale,
int iRow, int[] indexArray)

Description

Constructor for Dissimilarities.

Acceptable values of distanceMethod are 1, 2, ..., 8. See Remarks section of the
Dissimilarities documentation for a description of these methods.

distanceScale Method
0 No scaling is performed.
1 Scale each column (row if iRow=1) by the standard deviation

of the column(row).
2 Scale each column (row if iRow=1) by the range of the column

(row).

If iRow = 1, distances are computed between the rows of x. Otherwise, distances between
the columns of x are computed.

Parameters

x – A double matrix containing the data input matrix.

distanceMethod – An int identifying the method to use in computing the
dissimilarities or similarities.

distanceScale – An int containing the scaling option.

iRow – An int identifying whether distances are computed between rows or columns
of x.

indexArray – An int array containing the indices of the rows (columns if iRow is 1)
to use in computing the distance measure.

Imsl.Stat.ScaleFactorZeroException id is thrown when computations cannot
continue because a scale factor is zero.

Imsl.Stat.NoPositiveVarianceException id is thrown when no variable has positive
variance

Imsl.Stat.ZeroNormException id is thrown when the Euclidean norm of a column is
equal to zero

Description

Class Dissimilarities computes an upper triangular matrix (excluding the diagonal) of
dissimilarities (or similarities) between the columns or rows of a matrix. Nine different distance
measures can be computed. For the first three measures, three different scaling options can be
employed. The distance matrix computed is generally used as input to clustering or
multidimensional scaling functions.
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The following discussion assumes that the distance measure is being computed between the
columns of the matrix. If distances between the rows of the matrix are desired, set iRow to 1
when calling the Dissimilarities constructor.

For distanceMethod = 0 to 2, each row of x is first scaled according to the value of
distanceScale. The scaling parameters are obtained from the values in the row scaled as either
the standard deviation of the row or the row range; the standard deviation is computed from
the unbiased estimate of the variance. If distanceScale is 0, no scaling is performed, and the
parameters in the following discussion are all 1.0. Once the scaling value (if any) has been
computed, the distance between column i and column j is computed via the difference vector
zk = (xk−yk)

sk
, i = 1, . . . , ndstm, where xk denotes the k-th element in the i-th column, yk

denotes the corresponding element in the j-th column, and ndstm is the number of rows if
differencing columns and the number of columns if differencing rows. For given zi, the metrics 0
to 2 are defined as:

distanceMethod Metric
0 Euclidean distance (L2 norm)
1 Sum of the absolute differences (L1 norm)
2 Maximum difference (L∞ norm)

Distance measures corresponding to distanceMethod = 3 to 8 do not allow for scaling.

distanceMethod Metric
3 Mahalanobis distance
4 Absolute value of the cosine of the angle between the vectors
5 Angle in radians (0, pi) between the lines through the origin defined by the vectors
6 Correlation coefficient
7 Absolute value of the correlation coefficient
8 Number of exact matches, where xi = yi.

For the Mahalanobis distance, any variable used in computing the distance measure that is
(numerically) linearly dependent upon the previous variables in the indexArray vector is
omitted from the distance measure.

Example: Dissimilarities

The following example illustrates the use of Dissimilarities for computing the Euclidean
distance between the rows of a matrix:

using System;
using Imsl.Math;
using Imsl.Stat;

public class DissimilaritiesEx1
{
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public static void Main(String[] args)
{

double[,] x = {{1.0, 1.0}, {1.0, 0.0}, {1.0, - 1.0}, {1.0, 2.0}};
int distanceMethod = 0;
int distanceScale = 0;
int iRow = 1;
Dissimilarities dist = new Dissimilarities(x, distanceMethod, distanceScale, iRow);

new PrintMatrix("Distance Matrix").Print(dist.DistanceMatrix);
}

}

Output

Distance Matrix
0 1 2 3

0 0 1 2 1
1 0 0 1 2
2 0 0 0 3
3 0 0 0 0

ClusterHierarchical Class

Summary

Performs a hierarchical cluster analysis from a distance matrix.

public class Imsl.Stat.ClusterHierarchical

Properties

ClusterLeftSons
virtual public int[] ClusterLeftSons {get; }

Description

The left sons of each merged cluster.

ClusterLevel
virtual public double[] ClusterLevel {get; }

Description

The level at which the clusters are joined.
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Element [k-1] contains the distance (or similarity) level at which cluster npt + k was
formed. If the original data in dist was transformed, the inverse transformation is applied
to the returned values.

ClusterRightSons
virtual public int[] ClusterRightSons {get; }

Description

The right sons of each merged cluster.

Constructor

ClusterHierarchical
public ClusterHierarchical(double[,] dist, int method, int transform)

Description

Constructor for ClusterHierarchical.

On input, only the upper triangular part of dist needs to be present.
ClusterHierarchical saves the upper triangular part in the lower triangle. On return,
the upper triangular part of dist is restored, and the matrix is made symmetric.

method Description
0 Single linkage (minimum distance).
1 Complete linkage (maximum distance).
2 Average distance within (average distance between objects within

he merged cluster).
3 Average distance between (average distance between objects in the

two clusters).
4 Ward’s method (minimize the within-cluster sums of squares). For

Ward’s method, the elements of dist are assumed to be Euclidean
distances.

transform Description
0 No transformation is required. The elements ofdist are distances.
1 Convert similarities to distances by multiplying -1.0.
2 Convert similarities (usually correlations) to distances by taking

the reciprocal of the absolute value.

Parameters

dist – A double symmetric matrix containing the distance (or similarity) matrix.

method – An int identifying the clustering method to use.

transform – An int identifying the type of transformation applied to the measures
in dist.
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Methods

GetClusterMembership
public int[] GetClusterMembership(int nClusters)

Description

Returns the cluster membership of each observation.

Parameter

nClusters – An int which specifies the desired number of clusters.

Returns

An int array containing the cluster membership of each observation.

GetObsPerCluster
public int[] GetObsPerCluster(int nClusters)

Description

Returns the number of observations in each cluster.

Parameter

nClusters – An int which specifies the desired number of clusters.

Returns

An int array containing the number of observations in each cluster.

Description

Class ClusterHierarchical conducts a hierarchical cluster analysis based upon a distance
matrix, or by appropriate use of the argument transform, based upon a similarity matrix. Only
the upper triangular part of the dist matrix is required as input.

Hierarchical clustering in ClusterHierarchical proceeds as follows:

1. Initially, each data point is considered to be a cluster, numbered 1 to n = npt, where npt
is the number of rows in dist.

2. If the data matrix contains similarities, they are converted to distances by the method
specified by the argument transform. Set k = 1.

3. A search is made of the distance matrix to find the two closest clusters. These clusters are
merged to form a new cluster, numbered n + k. The cluster numbers of the two clusters
joined at this stage are saved as Right Sons and Left Sons, and the distance measure
between the two clusters is stored as Cluster Level .

4. Based upon the method of clustering, updating of the distance measure in the row and
column of dist corresponding to the new cluster is performed.
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5. Set k = k + 1. If k is less than n, go to Step 2.

The five methods differ primarily in how the distance matrix is updated after two clusters have
been joined. The argument method specifies how the distance of the cluster just merged with
each of the remaining clusters will be updated. Class ClusterHierarchical allows five
methods for computing the distances. To understand these measures, suppose in the following
discussion that clusters A and B have just been joined to form cluster Z, and interest is in
computing the distance of Z with another cluster called C.

method Description
0 Single linkage (minimum distance). The distance from Z to C is the

minimum of the distances ( A to C, B to C).
1 Complete linkage (maximum distance). The distance from Z to C is

the maximum of the distances ( A to C, B to C).
2 Average-distance-within-clusters method. The distance from Z to C

is the average distance of all objects that would be within the cluster
formed by merging clusters Z and C. This average may be computed
according to formulas given by Anderberg (1973, page 139).

3 Average-distance-between-clusters method. The distance from Z to
C is the average distance of objects within cluster Z to objects within
cluster C. This average may be computed according to methods given
by Anderberg (1973, page 140).

4 Ward’s method: Clusters are formed so as to minimize the increase
in the within-cluster sums of squares. The distance between two
clusters is the increase in these sums of squares if the two clusters
were merged. A method for computing this distance from a squared
Euclidean distance matrix is given by Anderberg (1973, pages 142-
145).
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In general, single linkage will yield long thin clusters while complete linkage will yield clusters
that are more spherical. Average linkage and Ward’s linkage tend to yield clusters that are
similar to those obtained with complete linkage.

Class ClusterHierarchical produces a unique representation of the binary cluster tree via the
following three conventions; the fact that the tree is unique should aid in interpreting the
clusters. First, when two clusters are joined and each cluster contains two or more data points,
the cluster initially formed with the smallest level becomes the left son. Second, when a cluster
containing more than one data point is joined with a cluster containing a single data point, the
cluster with the single data point becomes the right son. Third, when two clusters containing
only one object are joined, the cluster with the smallest cluster number becomes the right son.

Comments

1. The clusters corresponding to the original data points are numbered from 1 to npt, where
npt is the number of rows in dist. The npt - 1 clusters formed by merging clusters are
numbered npt + 1 to npt + (npt - 1).

2. Raw correlations, if used as similarities, should be made positive and transformed to a
distance measure. One such transformation can be performed by setting argument
transform, with transform = 2.

3. The user may cluster either variables or observations with ClusterHierarchical since a
dissimilarity matrix, not the original data, is used. Class Imsl.Stat.Dissimilarities (p. 552)
may be used to compute the matrix dist for either the variables or observations.

Example: ClusterHierarchical

This example illustrates a typical usage of ClusterHierarchical. The Fisher iris data is
clustered. First the distance between irises is computed using the class Dissimilarities. The
resulting distance matrix is then clustered using ClusterHierarchical, and cluster
memberships for 5 clusters are computed.

using System;
using Imsl.Math;
using Imsl.Stat;

public class ClusterHierarchicalEx1
{

public static void Main(String[] args)
{

double[,] irisData = {
{ 5.1, 3.5, 1.4, .2},
{ 4.9, 3.0, 1.4, .2},
{ 4.7, 3.2, 1.3, .2},
{ 4.6, 3.1, 1.5, .2},
{ 5.0, 3.6, 1.4, .2},
{ 5.4, 3.9, 1.7, .4},
{ 4.6, 3.4, 1.4, .3},
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{ 5.0, 3.4, 1.5, .2},
{ 4.4, 2.9, 1.4, .2},
{ 4.9, 3.1, 1.5, .1},
{ 5.4, 3.7, 1.5, .2},
{ 4.8, 3.4, 1.6, .2},
{ 4.8, 3.0, 1.4, .1},
{ 4.3, 3.0, 1.1, .1},
{ 5.8, 4.0, 1.2, .2},
{ 5.7, 4.4, 1.5, .4},
{ 5.4, 3.9, 1.3, .4},
{ 5.1, 3.5, 1.4, .3},
{ 5.7, 3.8, 1.7, .3},
{ 5.1, 3.8, 1.5, .3},
{ 5.4, 3.4, 1.7, .2},
{ 5.1, 3.7, 1.5, .4},
{ 4.6, 3.6, 1.0, .2},
{ 5.1, 3.3, 1.7, .5},
{ 4.8, 3.4, 1.9, .2},
{ 5.0, 3.0, 1.6, .2},
{ 5.0, 3.4, 1.6, .4},
{ 5.2, 3.5, 1.5, .2},
{ 5.2, 3.4, 1.4, .2},
{ 4.7, 3.2, 1.6, .2},
{ 4.8, 3.1, 1.6, .2},
{ 5.4, 3.4, 1.5, .4},
{ 5.2, 4.1, 1.5, .1},
{ 5.5, 4.2, 1.4, .2},
{ 4.9, 3.1, 1.5, .2},
{ 5.0, 3.2, 1.2, .2},
{ 5.5, 3.5, 1.3, .2},
{ 4.9, 3.6, 1.4, .1},
{ 4.4, 3.0, 1.3, .2},
{ 5.1, 3.4, 1.5, .2},
{ 5.0, 3.5, 1.3, .3},
{ 4.5, 2.3, 1.3, .3},
{ 4.4, 3.2, 1.3, .2},
{ 5.0, 3.5, 1.6, .6},
{ 5.1, 3.8, 1.9, .4},
{ 4.8, 3.0, 1.4, .3},
{ 5.1, 3.8, 1.6, .2},
{ 4.6, 3.2, 1.4, .2},
{ 5.3, 3.7, 1.5, .2},
{ 5.0, 3.3, 1.4, .2},
{ 7.0, 3.2, 4.7, 1.4},
{ 6.4, 3.2, 4.5, 1.5},
{ 6.9, 3.1, 4.9, 1.5},
{ 5.5, 2.3, 4.0, 1.3},
{ 6.5, 2.8, 4.6, 1.5},
{ 5.7, 2.8, 4.5, 1.3},
{ 6.3, 3.3, 4.7, 1.6},
{ 4.9, 2.4, 3.3, 1.0},
{ 6.6, 2.9, 4.6, 1.3},
{ 5.2, 2.7, 3.9, 1.4},
{ 5.0, 2.0, 3.5, 1.0},
{ 5.9, 3.0, 4.2, 1.5},
{ 6.0, 2.2, 4.0, 1.0},
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{ 6.1, 2.9, 4.7, 1.4},
{ 5.6, 2.9, 3.6, 1.3},
{ 6.7, 3.1, 4.4, 1.4},
{ 5.6, 3.0, 4.5, 1.5},
{ 5.8, 2.7, 4.1, 1.0},
{ 6.2, 2.2, 4.5, 1.5},
{ 5.6, 2.5, 3.9, 1.1},
{ 5.9, 3.2, 4.8, 1.8},
{ 6.1, 2.8, 4.0, 1.3},
{ 6.3, 2.5, 4.9, 1.5},
{ 6.1, 2.8, 4.7, 1.2},
{ 6.4, 2.9, 4.3, 1.3},
{ 6.6, 3.0, 4.4, 1.4},
{ 6.8, 2.8, 4.8, 1.4},
{ 6.7, 3.0, 5.0, 1.7},
{ 6.0, 2.9, 4.5, 1.5},
{ 5.7, 2.6, 3.5, 1.0},
{ 5.5, 2.4, 3.8, 1.1},
{ 5.5, 2.4, 3.7, 1.0},
{ 5.8, 2.7, 3.9, 1.2},
{ 6.0, 2.7, 5.1, 1.6},
{ 5.4, 3.0, 4.5, 1.5},
{ 6.0, 3.4, 4.5, 1.6},
{ 6.7, 3.1, 4.7, 1.5},
{ 6.3, 2.3, 4.4, 1.3},
{ 5.6, 3.0, 4.1, 1.3},
{ 5.5, 2.5, 4.0, 1.3},
{ 5.5, 2.6, 4.4, 1.2},
{ 6.1, 3.0, 4.6, 1.4},
{ 5.8, 2.6, 4.0, 1.2},
{ 5.0, 2.3, 3.3, 1.0},
{ 5.6, 2.7, 4.2, 1.3},
{ 5.7, 3.0, 4.2, 1.2},
{ 5.7, 2.9, 4.2, 1.3},
{ 6.2, 2.9, 4.3, 1.3},
{ 5.1, 2.5, 3.0, 1.1},
{ 5.7, 2.8, 4.1, 1.3},
{ 6.3, 3.3, 6.0, 2.5},
{ 5.8, 2.7, 5.1, 1.9},
{ 7.1, 3.0, 5.9, 2.1},
{ 6.3, 2.9, 5.6, 1.8},
{ 6.5, 3.0, 5.8, 2.2},
{ 7.6, 3.0, 6.6, 2.1},
{ 4.9, 2.5, 4.5, 1.7},
{ 7.3, 2.9, 6.3, 1.8},
{ 6.7, 2.5, 5.8, 1.8},
{ 7.2, 3.6, 6.1, 2.5},
{ 6.5, 3.2, 5.1, 2.0},
{ 6.4, 2.7, 5.3, 1.9},
{ 6.8, 3.0, 5.5, 2.1},
{ 5.7, 2.5, 5.0, 2.0},
{ 5.8, 2.8, 5.1, 2.4},
{ 6.4, 3.2, 5.3, 2.3},
{ 6.5, 3.0, 5.5, 1.8},
{ 7.7, 3.8, 6.7, 2.2},
{ 7.7, 2.6, 6.9, 2.3},
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{ 6.0, 2.2, 5.0, 1.5},
{ 6.9, 3.2, 5.7, 2.3},
{ 5.6, 2.8, 4.9, 2.0},
{ 7.7, 2.8, 6.7, 2.0},
{ 6.3, 2.7, 4.9, 1.8},
{ 6.7, 3.3, 5.7, 2.1},
{ 7.2, 3.2, 6.0, 1.8},
{ 6.2, 2.8, 4.8, 1.8},
{ 6.1, 3.0, 4.9, 1.8},
{ 6.4, 2.8, 5.6, 2.1},
{ 7.2, 3.0, 5.8, 1.6},
{ 7.4, 2.8, 6.1, 1.9},
{ 7.9, 3.8, 6.4, 2.0},
{ 6.4, 2.8, 5.6, 2.2},
{ 6.3, 2.8, 5.1, 1.5},
{ 6.1, 2.6, 5.6, 1.4},
{ 7.7, 3.0, 6.1, 2.3},
{ 6.3, 3.4, 5.6, 2.4},
{ 6.4, 3.1, 5.5, 1.8},
{ 6.0, 3.0, 4.8, 1.8},
{ 6.9, 3.1, 5.4, 2.1},
{ 6.7, 3.1, 5.6, 2.4},
{ 6.9, 3.1, 5.1, 2.3},
{ 5.8, 2.7, 5.1, 1.9},
{ 6.8, 3.2, 5.9, 2.3},
{ 6.7, 3.3, 5.7, 2.5},
{ 6.7, 3.0, 5.2, 2.3},
{ 6.3, 2.5, 5.0, 1.9},
{ 6.5, 3.0, 5.2, 2.0},
{ 6.2, 3.4, 5.4, 2.3},
{ 5.9, 3.0, 5.1, 1.8}};

Dissimilarities dist = new Dissimilarities(irisData, 0, 1, 1);
ClusterHierarchical clink = new ClusterHierarchical(dist.DistanceMatrix, 2, 0);

int nClusters = 5;
int[] iclus = clink.GetClusterMembership(nClusters);
int[] nclus = clink.GetObsPerCluster(nClusters);
System.Console.Out.WriteLine("Cluster Membership");
for (int i = 0; i < 15; i++)
{

for (int j = 0; j < 10; j++)
Console.Out.Write(iclus[i * 10 + j] + " ");

Console.Out.WriteLine();
}

System.Console.Out.WriteLine("Observations Per Cluster");
for (int i = 0; i < nClusters; i++)

System.Console.Out.Write(nclus[i] + " ");
System.Console.Out.WriteLine();

}
}
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Output

Cluster Membership
5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5
3 3 3 4 3 4 3 4 3 4
4 3 4 3 4 3 4 4 4 4
3 3 3 3 3 3 3 3 3 4
4 4 4 3 4 3 3 4 4 4
4 3 4 4 4 4 4 3 4 4
2 3 2 3 2 1 4 1 3 2
2 3 2 3 3 2 3 2 1 4
2 3 1 3 2 1 3 3 3 1
1 2 3 3 3 1 2 3 3 2
2 2 3 2 2 2 3 3 2 3
Observations Per Cluster
8 19 44 29 50

FactorAnalysis Class

Summary

Performs Principal Component Analysis or Factor Analysis on a covariance or correlation
matrix.

public class Imsl.Stat.FactorAnalysis

Properties

ConvergenceCriterion1
public double ConvergenceCriterion1 {get; set; }
Description

The convergence criterion used to terminate the iterations.

For the least squares and and maximum likelihood methods convergence is assumed when
the relative change in the criterion is less than ConvergenceCriterion1. For alpha factor
analysis, convergence is assumed when the maximum change (relative to the variance) of
a uniqueness is less than ConvergenceCriterion1. ConvergenceCriterion1 is not
referenced for the other estimation methods. By default, ConvergenceCriterion1 is set
to 0.0001.

ConvergenceCriterion2
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public double ConvergenceCriterion2 {get; set; }
Description

The convergence criterion used to switch to exact second derivatives.

When the largest relative change in the unique standard deviation vector is less than
ConvergenceCriterion2, exact second derivative vectors are used. By default,
ConvergenceCriterion2 is set to 0.1. Not referenced for principal component, principal
factor, image factor, or alpha factor methods.

DegreesOfFreedom
public int DegreesOfFreedom {get; set; }
Description

The number of degrees of freedom.

If this property is not set, 100 degrees of freedom are assumed.

FactorLoadingEstimationMethod
public Imsl.Stat.FactorAnalysis.Model FactorLoadingEstimationMethod {get;
set; }
Description

The factor loading estimation method.

For the principal component and principal factor methods, the factor loading estimates
are computed as

Γ̂∆̂−1/2

where Γ and the diagonal matrix ∆ are the eigenvalues and eigenvectors of a matrix. In
the principal component model, the eigensystem analysis is performed on the sample
covariance (correlation) matrix S while in the principal factor model the matrix (S −Ψ)
is used. If the unique error variances Ψ are not known in the principal factor model, then
they are estimated. This is achieved by setting the property VarianceEstimationMethod
to 0. If the principal component model is used, the error variances in the Variances
property are set to 0.0 automatically.

The basic idea in the principal component method is to find factors that maximize the
variance in the original data that is explained by the factors. Because this method allows
the unique errors to be correlated, some factor analysts insist that the principal
component method is not a factor analytic method. Usually however, the estimates
obtained via the principal component model and other models in factor analysis will be
quite similar.

It should be noted that both the principal component and the principal factor methods
give different results when the correlation matrix is used in place of the covariance matrix.
Indeed, any rescaling of the sample covariance matrix can lead to different estimates with
either of these methods. A further difficulty with the principal factor method is the
problem of estimating the unique error variances. Theoretically, these must be known in
advance and set using the the Variances property. In practice, the estimates of these
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parameters produced by setting the property VarianceEstimationMethod to 0 are often
used. In either case, the resulting adjusted covariance (correlation) matrix

(S − Ψ̂)

may not yield the nfactors positive eigenvalues required for nfactors factors to be
obtained. If this occurs, the user must either lower the number of factors to be estimated
or give new unique error variance values.

For the least-squares and maximum likelihood methods an iterative algorithm is used to
obtain the estimates (see joreskog 1977). As with the principal factor model, the user may
either input the initial unique error variances or allow the algorithm to compute initial
estimates. Unlike the principal factor method, the code then optimizes the criterion
function with respect to both Ψ and Γ. (In the principal factor method, Ψ is assumed to
be known. Given Ψ, estimates for Λ may be obtained.)

The major differences between the estimation methods described in this member function
are in the criterion function that is optimized. Let S denote the sample covariance
(correlation) matrix, and let Σ denote the covariance matrix that is to be estimated by
the factor model. In the unweighted least-squares method, also called the iterated
principal factor method or the minres method (see Harman 1976, page 177), the function
minimized is the sum of the squared differences between S and Σ. This is written as
Φul = .5trace((S − Σ)2).

Generalized least-squares and maximum likelihood estimates are asymptotically
equivalent methods. Maximum likelihood estimates maximize the (normal theory)
likelihood {Φml = trace(Σ−1S)− log(|Σ−1S|)}. while generalized least squares optimizes
the function Φgs = trace(ΣS−1 − I)2.
In all three methods, a two-stage optimization procedure is used. This proceeds by first
solving the likelihood equations for Λ in terms of Ψ and substituting the solution into the
likelihood. This gives a criterion Φ(Ψ,Λ(Ψ)), which is optimized with respect to Ψ. In the
second stage, the estimates

Λ̂

are obtained from the estimates for Ψ.

The generalized least-squares and the maximum likelihood methods allow for the
computation of a statistic for testing that nfactors common factors are adequate to fit
the model. This is a chi-squared test that all remaining parameters associated with
additional factors are zero. If the probability of a larger chi-squared is small (see
stat[4]) so that the null hypothesis is rejected, then additional factors are needed
(although these factors may not be of any practical importance). Failure to reject does
not legitimize the model. The statistic stat[2] is a likelihood ratio statistic in maximum
likelihood estimates. As such, it asymptotically follows a chi-squared distribution with
degrees of freedom given in stat[3].

The Tucker and Lewis (1973) reliability coefficient, ρ, is returned in stat[1] when the
maximum likelihood or generalized least-squares methods are used. This coefficient is an
estimate of the ratio of explained to the total variation in the data. It is computed as
follows:

ρ =
mMo −mMk

mMo − 1
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m = d− 2p+ 5
6
− 2k

6

Mo =
−ln(|S|)
p(p− 1)/2

Mk =
Φ

((p− k)2 − p− k)/2
where |S| is the determinant of cov, p is the number of variables, k is the number of
factors, Φ is the optimized criterion, and d is the number of degrees of freedom.

The term ”image analysis” is used here to denote the noniterative image method of
Kaiser (1963). It is not the image factor analysis discussed by Harman (1976, page 226).
The image method (as well as the alpha factor analysis method) begins with the notion
that only a finite number from an infinite number of possible variables have been
measured. The image factor pattern is calculated under the assumption that the ratio of
the number of factors to the number of observed variables is near zero so that a very good
estimate for the unique error variances (for standardized variables) is given as one minus
the squared multiple correlation of the variable under consideration with all variables in
the covariance matrix.

First, the matrix D2 = (diag(S−1))−1 is computed where the operator ”diag” results in a
matrix consisting of the diagonal elements of its argument, and S is the sample covariance
(correlation) matrix. Then, the eigenvalues Λ and eigenvectors Γ of the matrix D−1SD−1

are computed. Finally, the unrotated image factor pattern matrix is computed as
A = DΓ[(Λ− I)2Λ−1]1/2.

The alpha factor analysis method of Kaiser and Caffrey (1965) finds factor-loading
estimates to maximize the correlation between the factors and the complete universe of
variables of interest. The basic idea in this method is as follows: only a finite number of
variables out of a much larger set of possible variables is observed. The population factors
are linearly related to this larger set while the observed factors are linearly related to the
observed variables. Let f denote the factors obtainable from a finite set of observed
random variables, and let ξ denote the factors obtainable from the universe of observable
variables. Then, the alpha method attempts to find factor-loading estimates so as to
maximize the correlation between f and ξ. In order to obtain these estimates, the iterative
algorithm of Kaiser and Caffrey (1965) is used.

MaxIterations
public int MaxIterations {get; set; }
Description

The maximum number of iterations in the iterative procedure.

By default, MaxIterations is set to 60. MaxIterations is not referenced for factor
loading methods PrincipalComponent, PrincipalFactor, or ImageFactorAnalysis.

MaxStep
public int MaxStep {get; set; }
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Description

The maximum number of step halvings allowed during an iteration.

If this property is not set, MaxStep is set to 8. MaxStep is not referenced for
PrincipalComponent, PrincipalFactor, ImageFactorAnalysis, or
AlphaFactorAnalysis methods.

VarianceEstimationMethod
public int VarianceEstimationMethod {get; set; }
Description

The variance estimation method.

By default, VarianceEstimationMethod is set to 1.

init Method
0 Initial estimates are taken as the constant 1-nfactors/(2*nvar)

divided by the diagonal elements of the inverse of input matrix
cov.

1 Initial estimates are input by the user in vector uniq.

Note that when the factor loading estimation method is PrincipalComponent, the initial
estimates in uniq are reset to 0.0.

Constructor

FactorAnalysis
public FactorAnalysis(double[,] cov, Imsl.Stat.FactorAnalysis.MatrixType
matrixType, int nfactors)

Description

Constructor for FactorAnalysis.

FactorAnalysis.matrixType can specify a VarianceCovariance or Correlation
matrix.

If nfactors is not known in advance, several different values of nfactors should be used,
and the most reasonable value kept in the final solution. Since, in practice, the
non-iterative methods often lead to solutions which differ little from the iterative
methods, it is usually suggested that a non-iterative method be used in the initial tages of
the factor analysis, and that the iterative methods be used once issues such as the number
of factors have been resolved.

Parameters

cov – A double matrix containing the covariance or correlation matrix.

matrixType – An int scalar indicating the type of matrix that is input.

nfactors – An int scalar indicating the number of factors in the model.
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System.ArgumentException id is thrown if x.GetLength(0), and x.GetLength(1) are
equal to 0

Methods

GetCorrelations
public double[,] GetCorrelations()

Description

Returns the correlations of the principal components.

If a covariance matrix is input to the constructor, then the correlations are with the
observed variables. Otherwise, the correlations are with the standardized (to a variance of
1.0) variables. Only valid for the Principal Components Model.

Returns

A double matrix containing the correlations of the principal components with the
observed/standardized variables.

Imsl.Stat.RankException id is thrown if the rank of the covariance matrix is less than
the number of factors.

Imsl.Stat.NoDegreesOfFreedomException id is thrown if there are no degrees of
freedom for the significance testing.

Imsl.Stat.NotSemiDefiniteException id is thrown if the Hessian matrix not
semi-definite.

Imsl.Stat.NotPositiveSemiDefiniteException id is thrown if the covariance matrix is
not positive semi-definite.

Imsl.Stat.NotPositiveDefiniteException id is thrown if the covariance matrix is not
positive definite because a variable is linearly releated to other variables.

Imsl.Stat.SingularException id is thrown if the covariance matrix is singular.

Imsl.Stat.BadVarianceException id is thrown if the input variance is not in the
allowed range.

Imsl.Stat.EigenvalueException id is thrown if an error occured in calculating the
eigenvalues of the adjusted (inverse) covariance matrix. Check the input covariance
matrix.

Imsl.Stat.NonPositiveEigenvalueException id is thrown if in alpha factor analysis
an eigenvalue is not positive. As all eigenvalues corresponding to the factors must be
positive, either the number of factors must be reduced, or new initial estimates for
the unique variances must be given.

GetFactorLoadings
public double[,] GetFactorLoadings()
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Description

Returns the unrotated factor loadings.

Returns

A double matrix containing the unrotated factor loadings.

Imsl.Stat.RankException id is thrown if the rank of the covariance matrix is less than
the number of factors.

Imsl.Stat.NoDegreesOfFreedomException id is thrown if there are no degrees of
freedom for the significance testing.

Imsl.Stat.NotSemiDefiniteException id is thrown if the Hessian matrix not
semi-definite.

Imsl.Stat.NotPositiveSemiDefiniteException id is thrown if the covariance matrix is
not positive semi-definite.

Imsl.Stat.NotPositiveDefiniteException id is thrown if the covariance matrix is not
positive definite because a variable is linearly releated to other variables.

Imsl.Stat.SingularException id is thrown if the covariance matrix is singular.

Imsl.Stat.BadVarianceException id is thrown if the input variance is not in the
allowed range.

Imsl.Stat.EigenvalueException id is thrown if an error occured in calculating the
eigenvalues of the adjusted (inverse) covariance matrix. Check the input covariance
matrix.

Imsl.Stat.NonPositiveEigenvalueException id is thrown if in alpha factor analysis
an eigenvalue is not positive. As all eigenvalues corresponding to the factors must be
positive, either the number of factors must be reduced, or new initial estimates for
the unique variances must be given.

GetParameterUpdates
public double[] GetParameterUpdates()

Description

Returns the parameter updates.

The parameter updates are only meaningful for the common factor model. The parameter
updates are set to 0.0 for the principal component model.

Returns

A double array containing the parameter updates when convergence was reached (or the
iterations terminated).

Imsl.Stat.RankException id is thrown if the rank of the covariance matrix is less than
the number of factors.

Imsl.Stat.NoDegreesOfFreedomException id is thrown if there are no degrees of
freedom for the significance testing.
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Imsl.Stat.NotSemiDefiniteException id is thrown if the Hessian matrix not
semi-definite.

Imsl.Stat.NotPositiveSemiDefiniteException id is thrown if the covariance matrix is
not positive semi-definite.

Imsl.Stat.NotPositiveDefiniteException id is thrown if the covariance matrix is not
positive definite because a variable is linearly releated to other variables.

Imsl.Stat.SingularException id is thrown if the covariance matrix is singular.

Imsl.Stat.BadVarianceException id is thrown if the input variance is not in the
allowed range.

Imsl.Stat.EigenvalueException id is thrown if an error occured in calculating the
eigenvalues of the adjusted (inverse) covariance matrix. Check the input covariance
matrix.

Imsl.Stat.NonPositiveEigenvalueException id is thrown if in alpha factor analysis
an eigenvalue is not positive. As all eigenvalues corresponding to the factors must be
positive, either the number of factors must be reduced, or new initial estimates for
the unique variances must be given.

GetPercents
public double[] GetPercents()

Description

Returns the cumulative percent of the total variance explained by each principal
component.

Valid for the principal component model.

Returns

A double array containing the total variance explained by each principal component.

Imsl.Stat.RankException id is thrown if the rank of the covariance matrix is less than
the number of factors.

Imsl.Stat.NoDegreesOfFreedomException id is thrown if there are no degrees of
freedom for the significance testing.

Imsl.Stat.NotSemiDefiniteException id is thrown if the Hessian matrix not
semi-definite.

Imsl.Stat.NotPositiveSemiDefiniteException id is thrown if the covariance matrix is
not positive semi-definite.

Imsl.Stat.NotPositiveDefiniteException id is thrown if the covariance matrix is not
positive definite because a variable is linearly releated to other variables.

Imsl.Stat.SingularException id is thrown if the covariance matrix is singular.

Imsl.Stat.BadVarianceException id is thrown if the input variance is not in the
allowed range.
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Imsl.Stat.EigenvalueException id is thrown if an error occured in calculating the
eigenvalues of the adjusted (inverse) covariance matrix. Check the input covariance
matrix.

Imsl.Stat.NonPositiveEigenvalueException id is thrown if in alpha factor analysis
an eigenvalue is not positive. As all eigenvalues corresponding to the factors must be
positive, either the number of factors must be reduced, or new initial estimates for
the unique variances must be given.

GetStandardErrors
public double[] GetStandardErrors()

Description

Returns the estimated asymptotic standard errors of the eigenvalues.

Returns

A double array containing the estimated asymptotic standard errors of the eigenvalues.

Imsl.Stat.RankException id is thrown if the rank of the covariance matrix is less than
the number of factors.

Imsl.Stat.NoDegreesOfFreedomException id is thrown if there are no degrees of
freedom for the significance testing.

Imsl.Stat.NotSemiDefiniteException id is thrown if the Hessian matrix not
semi-definite.

Imsl.Stat.NotPositiveSemiDefiniteException id is thrown if the covariance matrix is
not positive semi-definite.

Imsl.Stat.NotPositiveDefiniteException id is thrown if the covariance matrix is not
positive definite because a variable is linearly releated to other variables.

Imsl.Stat.SingularException id is thrown if the covariance matrix is singular.

Imsl.Stat.BadVarianceException id is thrown if the input variance is not in the
allowed range.

Imsl.Stat.EigenvalueException id is thrown if an error occured in calculating the
eigenvalues of the adjusted (inverse) covariance matrix. Check the input covariance
matrix.

Imsl.Stat.NonPositiveEigenvalueException id is thrown if in alpha factor analysis
an eigenvalue is not positive. As all eigenvalues corresponding to the factors must be
positive, either the number of factors must be reduced, or new initial estimates for
the unique variances must be given.

GetStatistics
public double[] GetStatistics()
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Description

Returns statistics.
Statistics are not defined and set to NaN when the method used to obtain the estimates is
the principal component method, principal factor method, image factor analysis method,
or alpha analysis method.

i Statistics[i]
0 Value of the function minimum.
1 Tucker reliability coefficient.
2 Chi-squared test statistic for testing that the number of fac-

tors in the model are adequate for the data.
3 Degrees of freedom in chi-squared. This is computed as

((nvar − nfactors)2 − nvar − nfactors)/2 where nvar is the
number of variables and nfactors is the number of factors in
the model.

4 Probability of a greater chi-squared statistic.
5 Number of iterations.

Returns

A double array containing output statistics.

Imsl.Stat.RankException id is thrown if the rank of the covariance matrix is less than
the number of factors.

Imsl.Stat.NoDegreesOfFreedomException id is thrown if there are no degrees of
freedom for the significance testing.

Imsl.Stat.NotSemiDefiniteException id is thrown if the Hessian matrix not
semi-definite.

Imsl.Stat.NotPositiveSemiDefiniteException id is thrown if the covariance matrix is
not positive semi-definite.

Imsl.Stat.NotPositiveDefiniteException id is thrown if the covariance matrix is not
positive definite because a variable is linearly releated to other variables.

Imsl.Stat.SingularException id is thrown if the covariance matrix is singular.
Imsl.Stat.BadVarianceException id is thrown if the input variance is not in the

allowed range.
Imsl.Stat.EigenvalueException id is thrown if an error occured in calculating the

eigenvalues of the adjusted (inverse) covariance matrix. Check the input covariance
matrix.

Imsl.Stat.NonPositiveEigenvalueException id is thrown if in alpha factor analysis
an eigenvalue is not positive. As all eigenvalues corresponding to the factors must be
positive, either the number of factors must be reduced, or new initial estimates for
the unique variances must be given.

GetValues
public double[] GetValues()
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Description

Returns the eigenvalues.

If Alpha Factor analysis is used, then the first nfactors positions of the array contain the
Alpha coefficients. Here, nfactors is the number of factors in the model. If the algorithm
fails to converge for a particular eigenvalue, that eigenvalue is set to NaN. Note that the
eigenvalues are usually not the eigenvalues of the input matrix cov. They are the
eigenvalues of the input matrix cov when the Principal Component method is used.

Returns

A double array containing the eigenvalues of the matrix from which the factors were
extracted ordered from largest to smallest.

Imsl.Stat.RankException id is thrown if the rank of the covariance matrix is less than
the number of factors.

Imsl.Stat.NoDegreesOfFreedomException id is thrown if there are no degrees of
freedom for the significance testing.

Imsl.Stat.NotSemiDefiniteException id is thrown if the Hessian matrix not
semi-definite.

Imsl.Stat.NotPositiveSemiDefiniteException id is thrown if the covariance matrix is
not positive semi-definite.

Imsl.Stat.NotPositiveDefiniteException id is thrown if the covariance matrix is not
positive definite because a variable is linearly releated to other variables.

Imsl.Stat.SingularException id is thrown if the covariance matrix is singular.

Imsl.Stat.BadVarianceException id is thrown if the input variance is not in the
allowed range.

Imsl.Stat.EigenvalueException id is thrown if an error occured in calculating the
eigenvalues of the adjusted (inverse) covariance matrix. Check the input covariance
matrix.

Imsl.Stat.NonPositiveEigenvalueException id is thrown if in alpha factor analysis
an eigenvalue is not positive. As all eigenvalues corresponding to the factors must be
positive, either the number of factors must be reduced, or new initial estimates for
the unique variances must be given.

GetVariances
public double[] GetVariances()

Description

Returns the unique variances.

Returns

A double array containing the unique variances.

Imsl.Stat.RankException id is thrown if the rank of the covariance matrix is less than
the number of factors.
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Imsl.Stat.NoDegreesOfFreedomException id is thrown if there are no degrees of
freedom for the significance testing.

Imsl.Stat.NotSemiDefiniteException id is thrown if the Hessian matrix not
semi-definite.

Imsl.Stat.NotPositiveSemiDefiniteException id is thrown if the covariance matrix is
not positive semi-definite.

Imsl.Stat.NotPositiveDefiniteException id is thrown if the covariance matrix is not
positive definite because a variable is linearly releated to other variables.

Imsl.Stat.SingularException id is thrown if the covariance matrix is singular.

Imsl.Stat.BadVarianceException id is thrown if the input variance is not in the
allowed range.

Imsl.Stat.EigenvalueException id is thrown if an error occured in calculating the
eigenvalues of the adjusted (inverse) covariance matrix. Check the input covariance
matrix.

Imsl.Stat.NonPositiveEigenvalueException id is thrown if in alpha factor analysis
an eigenvalue is not positive. As all eigenvalues corresponding to the factors must be
positive, either the number of factors must be reduced, or new initial estimates for
the unique variances must be given.

GetVectors
public double[,] GetVectors()

Description

Returns the eigenvectors.

The j-th column of the eigenvector matrix corresponds to the j-th eigenvalue. The
eigenvectors are normalized to each have Euclidean length equal to one. Also, the sign of
each vector is set so that the largest component in magnitude (the first of the largest if
there are ties) is made positive. Note that the eigenvectors are usually not the
eigenvectors of the input matrix cov. They are the eigenvectors of the input matrix cov
when the Principal Component method is used.

Returns

A double matrix containing the eigenvectors of the matrix from which the factors were
extracted.

Imsl.Stat.RankException id is thrown if the rank of the covariance matrix is less than
the number of factors.

Imsl.Stat.NoDegreesOfFreedomException id is thrown if there are no degrees of
freedom for the significance testing.

Imsl.Stat.NotSemiDefiniteException id is thrown if the Hessian matrix not
semi-definite.

Imsl.Stat.NotPositiveSemiDefiniteException id is thrown if the covariance matrix is
not positive semi-definite.
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Imsl.Stat.NotPositiveDefiniteException id is thrown if the covariance matrix is not
positive definite because a variable is linearly releated to other variables.

Imsl.Stat.SingularException id is thrown if the covariance matrix is singular.

Imsl.Stat.BadVarianceException id is thrown if the input variance is not in the
allowed range.

Imsl.Stat.EigenvalueException id is thrown if an error occured in calculating the
eigenvalues of the adjusted (inverse) covariance matrix. Check the input covariance
matrix.

Imsl.Stat.NonPositiveEigenvalueException id is thrown if in alpha factor analysis
an eigenvalue is not positive. As all eigenvalues corresponding to the factors must be
positive, either the number of factors must be reduced, or new initial estimates for
the unique variances must be given.

SetVariances
public void SetVariances(double[] uniq)

Description

Sets the unique variances.

If this member function is not called, the elements of uniqare set to 0.0. If the iterative
methods fail for the unique variances used, new initial estimates should be tried. These
may be obtained by use of another factoring method (use the final estimates from the new
method as initial estimates in the old method). Another alternative is to call member
function VarianceEstimationMethod and set the input argument to 0. This will cause
the initial unique variances to be estimated by the code.

Parameter

uniq – A double array of length nvar containing the unique variances.

Description

Class FactorAnalysis computes principal components or initial factor loading estimates for a
variance-covariance or correlation matrix using exploratory factor analysis models.

Models available are the principal component model for factor analysis and the common factor
model with additions to the common factor model in alpha factor analysis and image analysis.
Methods of estimation include principal components, principal factor, image analysis,
unweighted least squares, generalized least squares, and maximum likelihood.

For the principal component model there are methods to compute the characteristic roots,
characteristic vectors, standard errors for the characteristic roots, and the correlations of the
principal component scores with the original variables. Principal components obtained from
correlation matrices are the same as principal components obtained from standardized (to unit
variance) variables.

The principal component scores are the elements of the vector y = ΓTx where Γ is the matrix
whose columns are the characteristic vectors (eigenvectors) of the sample covariance (or
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correlation) matrix and x is the vector of observed (or standardized) random variables. The
variances of the principal component scores are the characteristic roots (eigenvalues) of the
covariance (correlation) matrix.

Asymptotic variances for the characteristic roots were first obtained by Girshick (1939) and are
given more recently by Kendall, Stuart, and Ord (1983, page 331). These variances are
computed either for variance-covariance matrices or for correlation matrices.

The correlations of the principal components with the observed (or standardized) variables are
the same as the unrotated factor loadings obtained for the principal components model for
factor analysis when a correlation matrix is input.

In the factor analysis model used for factor extraction, the basic model is given as
Σ = ΛΛT + Ψ where Σ is the p× p population covariance matrix. Λ is the p× k matrix of
factor loadings relating the factors f to the observed variables x, and Ψ is the p× p matrix of
covariances of the unique errors e. Here, p represents the number of variables and k is the
number of factors. The relationship between the factors, the unique errors, and the observed
variables is given as x = Λf + e where, in addition, it is assumed that the expected values of e,
f, and x are zero. (The sample means can be subtracted from x if the expected value of x is not
zero.) It is also assumed that each factor has unit variance, the factors are independent of each
other, and that the factors and the unique errors are mutually independent. In the common
factor model, the elements of the vector of unique errors e are also assumed to be independent
of one another so that the matrix Ψ is diagonal. This is not the case in the principal
component model in which the errors may be correlated.

Further differences between the various methods concern the criterion that is optimized and the
amount of computer effort required to obtain estimates. Generally speaking, the least-squares
and maximum likelihood methods, which use iterative algorithms, require the most computer
time with the principal factor, principal component, and the image methods requiring much
less time since the algorithms in these methods are not iterative. The algorithm in alpha factor
analysis is also iterative, but the estimates in this method generally require somewhat less
computer effort than the least-squares and maximum likelihood estimates. In all algorithms one
eigensystem analysis is required on each iteration.

Example: Principal Components

This example illustrates the use of the FactorAnalysis class for a nine-variable matrix.
FactorAnalysis.Model.PrincipalComponent and input matrix type
FactorAnalysis.MatrixType.Correlation are selected.

using System;
using Imsl.Stat;
using PrintMatrix = Imsl.Math.PrintMatrix;
using PrintMatrixFormat = Imsl.Math.PrintMatrixFormat;

public class FactorAnalysisEx1
{

public static void Main(String[] args)
{
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double[,] corr = { {1.0, 0.523, 0.395, 0.471,
0.346, 0.426, 0.576, 0.434, 0.639},

{0.523, 1.0, 0.479, 0.506,
0.418, 0.462, 0.547, 0.283, 0.645},

{0.395, 0.479, 1.0, 0.355,
0.27, 0.254, 0.452, 0.219, 0.504},

{0.471, 0.506, 0.355, 1.0,
0.691, 0.791, 0.443, 0.285, 0.505},

{0.346, 0.418, 0.27, 0.691,
1.0, 0.679, 0.383, 0.149, 0.409},

{0.426, 0.462, 0.254, 0.791,
0.679, 1.0, 0.372, 0.314, 0.472},

{0.576, 0.547, 0.452, 0.443,
0.383, 0.372, 1.0, 0.385, 0.68},

{0.434, 0.283, 0.219, 0.285,
0.149, 0.314, 0.385, 1.0, 0.47},

{0.639, 0.645, 0.504, 0.505,
0.409, 0.472, 0.68, 0.47, 1.0}};

FactorAnalysis pc = new FactorAnalysis(corr,
FactorAnalysis.MatrixType.Correlation, 9);

pc.FactorLoadingEstimationMethod =
FactorAnalysis.Model.PrincipalComponent;

pc.DegreesOfFreedom = 100;

PrintMatrixFormat pmf = new PrintMatrixFormat();
pmf.NumberFormat = "0.0000";
new PrintMatrix("Eigenvalues").Print(pmf, pc.GetValues());
new PrintMatrix("Percents").Print(pmf, pc.GetPercents());
new PrintMatrix

("Standard Errors").Print(pmf, pc.GetStandardErrors());
new PrintMatrix("Eigenvectors").Print(pmf, pc.GetVectors());
new PrintMatrix

("Unrotated Factor Loadings").Print(pmf, pc.GetFactorLoadings());
}

}

Output

Eigenvalues
0

0 4.6769
1 1.2640
2 0.8444
3 0.5550
4 0.4471
5 0.4291
6 0.3102
7 0.2770
8 0.1962

Percents
0
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0 0.5197
1 0.6601
2 0.7539
3 0.8156
4 0.8653
5 0.9130
6 0.9474
7 0.9782
8 1.0000

Standard Errors
0

0 0.6498
1 0.1771
2 0.0986
3 0.0879
4 0.0882
5 0.0890
6 0.0944
7 0.0994
8 0.1113

Eigenvectors
0 1 2 3 4 5 6 7 8

0 0.3462 -0.2354 0.1386 -0.3317 -0.1088 0.7974 0.1735 -0.1240 -0.0488
1 0.3526 -0.1108 -0.2795 -0.2161 0.7664 -0.2002 0.1386 -0.3032 -0.0079
2 0.2754 -0.2697 -0.5585 0.6939 -0.1531 0.1511 0.0099 -0.0406 -0.0997
3 0.3664 0.4031 0.0406 0.1196 0.0017 0.1152 -0.4022 -0.1178 0.7060
4 0.3144 0.5022 -0.0733 -0.0207 -0.2804 -0.1796 0.7295 0.0075 0.0046
5 0.3455 0.4553 0.1825 0.1114 0.1202 0.0696 -0.3742 0.0925 -0.6780
6 0.3487 -0.2714 -0.0725 -0.3545 -0.5242 -0.4355 -0.2854 -0.3408 -0.1089
7 0.2407 -0.3159 0.7383 0.4329 0.0861 -0.1969 0.1862 -0.1623 0.0505
8 0.3847 -0.2533 -0.0078 -0.1468 0.0459 -0.1498 -0.0251 0.8521 0.1225

Unrotated Factor Loadings
0 1 2 3 4 5 6 7 8

0 0.7487 -0.2646 0.1274 -0.2471 -0.0728 0.5224 0.0966 -0.0652 -0.0216
1 0.7625 -0.1245 -0.2568 -0.1610 0.5124 -0.1312 0.0772 -0.1596 -0.0035
2 0.5956 -0.3032 -0.5133 0.5170 -0.1024 0.0990 0.0055 -0.0214 -0.0442
3 0.7923 0.4532 0.0373 0.0891 0.0012 0.0755 -0.2240 -0.0620 0.3127
4 0.6799 0.5646 -0.0674 -0.0154 -0.1875 -0.1177 0.4063 0.0039 0.0021
5 0.7472 0.5119 0.1677 0.0830 0.0804 0.0456 -0.2084 0.0487 -0.3003
6 0.7542 -0.3051 -0.0666 -0.2641 -0.3505 -0.2853 -0.1589 -0.1794 -0.0482
7 0.5206 -0.3552 0.6784 0.3225 0.0576 -0.1290 0.1037 -0.0854 0.0224
8 0.8319 -0.2848 -0.0071 -0.1094 0.0307 -0.0981 -0.0140 0.4485 0.0543

Example: Factor Analysis

This example illustrates the use of the FactorAnalysis class. The following data were originally
analyzed by Emmett(1949). There are 211 observations on 9 variables. Following Lawley and
Maxwell (1971), three factors will be obtained by the method of maximum likelihood.
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using System;
using Imsl.Stat;
using PrintMatrix = Imsl.Math.PrintMatrix;
using PrintMatrixFormat = Imsl.Math.PrintMatrixFormat;

public class FactorAnalysisEx2
{

public static void Main(String[] args)
{

double[,] cov = {
{1.0, 0.523, 0.395, 0.471,

0.346, 0.426, 0.576, 0.434, 0.639},
{0.523, 1.0, 0.479, 0.506,

0.418, 0.462, 0.547, 0.283, 0.645},
{0.395, 0.479, 1.0, 0.355,

0.27, 0.254, 0.452, 0.219, 0.504},
{0.471, 0.506, 0.355, 1.0,

0.691, 0.791, 0.443, 0.285, 0.505},
{0.346, 0.418, 0.27, 0.691,

1.0, 0.679, 0.383, 0.149, 0.409},
{0.426, 0.462, 0.254, 0.791,

0.679, 1.0, 0.372, 0.314, 0.472},
{0.576, 0.547, 0.452, 0.443,

0.383, 0.372, 1.0, 0.385, 0.68},
{0.434, 0.283, 0.219, 0.285,

0.149, 0.314, 0.385, 1.0, 0.47},
{0.639, 0.645, 0.504, 0.505,

0.409, 0.472, 0.68, 0.47, 1.0}};
FactorAnalysis fl = new FactorAnalysis(cov,

FactorAnalysis.MatrixType.VarianceCovariance, 3);
fl.ConvergenceCriterion1 = .000001;
fl.ConvergenceCriterion2 = .01;
fl.FactorLoadingEstimationMethod =

FactorAnalysis.Model.MaximumLikelihood;
fl.VarianceEstimationMethod = 0;
fl.MaxStep = 10;
fl.DegreesOfFreedom = 210;

PrintMatrixFormat pmf = new PrintMatrixFormat();
pmf.NumberFormat = "0.0000";
new PrintMatrix

("Unique Error Variances").Print(pmf, fl.GetVariances());
new PrintMatrix

("Unrotated Factor Loadings").Print(pmf, fl.GetFactorLoadings());
new PrintMatrix("Eigenvalues").Print(pmf, fl.GetValues());
new PrintMatrix("Statistics").Print(pmf, fl.GetStatistics());

}
}

Output

Unique Error Variances
0
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0 0.4505
1 0.4271
2 0.6166
3 0.2123
4 0.3805
5 0.1769
6 0.3995
7 0.4615
8 0.2309

Unrotated Factor Loadings
0 1 2

0 0.6642 -0.3209 0.0735
1 0.6888 -0.2471 -0.1933
2 0.4926 -0.3022 -0.2224
3 0.8372 0.2924 -0.0354
4 0.7050 0.3148 -0.1528
5 0.8187 0.3767 0.1045
6 0.6615 -0.3960 -0.0777
7 0.4579 -0.2955 0.4913
8 0.7657 -0.4274 -0.0117

Eigenvalues
0

0 0.0626
1 0.2295
2 0.5413
3 0.8650
4 0.8937
5 0.9736
6 1.0802
7 1.1172
8 1.1401

Statistics
0

0 0.0350
1 1.0000
2 7.1494
3 12.0000
4 0.8476
5 5.0000

FactorAnalysis.MatrixType Enumeration

Summary

Matrix type.

public enumeration Imsl.Stat.FactorAnalysis.MatrixType
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Fields

Correlation
public Imsl.Stat.FactorAnalysis.MatrixType Correlation

Description

Indicates correlation matrix.

VarianceCovariance
public Imsl.Stat.FactorAnalysis.MatrixType VarianceCovariance

Description

Indicates variance-covariance matrix.

FactorAnalysis.Model Enumeration

Summary

Model type.

public enumeration Imsl.Stat.FactorAnalysis.Model

Fields

AlphaFactorAnalysis
public Imsl.Stat.FactorAnalysis.Model AlphaFactorAnalysis

Description

Indicates alpha-factor analysis (common factor model) method used to obtain the
estimates. Degrees of freedom is used for this estimation method.

GeneralizedLeastSquares
public Imsl.Stat.FactorAnalysis.Model GeneralizedLeastSquares

Description

Indicates generalized least-squares (common factor model) method used to obtain the
estimates.

ImageFactorAnalysis
public Imsl.Stat.FactorAnalysis.Model ImageFactorAnalysis
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Description

Indicates Image-factor analysis (common factor model) method used to obtain the
estimates.

MaximumLikelihood
public Imsl.Stat.FactorAnalysis.Model MaximumLikelihood

Description

Indicates maximum likelihood method used to obtain the estimates. Degrees of freedom is
used for this estimation method.

PrincipalComponent
public Imsl.Stat.FactorAnalysis.Model PrincipalComponent

Description

Indicates principal component (principal component model) used to obtain the estimates.

PrincipalFactor
public Imsl.Stat.FactorAnalysis.Model PrincipalFactor

Description

Indicates principal factor (common factor model) will be used to obtain the estimates.

UnweightedLeastSquares
public Imsl.Stat.FactorAnalysis.Model UnweightedLeastSquares

Description

Indicates unweighted least-squares (common factor model) method used to obtain the
estimates. This option is the default.

DiscriminantAnalysis Class

Summary

Performs a linear or a quadratic discriminant function analysis among several known groups
and the use of either reclassification, split sample, or the leaving-out-one methods in order to
evaluate the rule.

public class Imsl.Stat.DiscriminantAnalysis
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Properties

ClassificationMethod
public Imsl.Stat.DiscriminantAnalysis.Classification ClassificationMethod
{get; set; }
Description

The classification method.

Use Classification member Reclassification or LeaveOutOne.

By default, Classification.Reclassification is used.

CovarianceComputation
public Imsl.Stat.DiscriminantAnalysis.CovarianceMatrix
CovarianceComputation {get; set; }
Description

The type of covariance matrices to be computed.

Use CovarianceMatrix class member Pooled or PooledGroup.

By default, CovarianceMatrix.PooledGroup is used.

DiscriminationMethod
public Imsl.Stat.DiscriminantAnalysis.Discrimination DiscriminationMethod
{get; set; }
Description

The discrimination method.

Use Discrimination member Linear or Quadratic.

By default, Discrimination.Linear is used.

NRowsMissing
public int NRowsMissing {get; }
Description

Returns the number of rows of data encountered containing missing values (NaN).

If a row of data contains a missing value (NaN) for any of these variables, that row is
excluded from the computations.

PriorType
public Imsl.Stat.DiscriminantAnalysis.PriorProbabilities PriorType {get;
set; }
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Description

The type of prior probabilities to be computed.

Use PriorProbabilities member PriorEqual or PriorProportional.

By default, PriorProbabilities.PriorEqual is used.

Constructor

DiscriminantAnalysis
public DiscriminantAnalysis(int nVariables, int nGroups)

Description

Constructor for DiscriminantAnalysis.

Parameters

nVariables – An int representing the number of variables to be used in the
discrimination.

nGroups – An int representing the number of groups in the data.

Methods

GetClassMembership
public int[] GetClassMembership()

Description

Returns the group number to which the observation was classified.

If an observation has an invalid group number, frequency, or weight when the
leaving-out-one method has been specified, then the observation is not classified and the
corresponding elements of the array are set to zero.

Returns

An int array containing the group to which the observation was classified.

GetClassTable
public double[,] GetClassTable()

Description

Returns the classification table.

Each observation that is classified and has a group number equal to 1.0, 2.0, ..., nGroups
is entered into the table. The rows of the table correspond to the known group
membership. The columns refer to the group to which the observation was classified.
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Returns

A nGroups × nGroups double array containing the classification table.

GetCoefficients
public double[,] GetCoefficients()

Description

Returns the linear discriminant function coefficients.

The first column of the array contains the constant term, and the remaining columns
contain the variable coefficients. The i-th row of the returned array corresponds to group
i. The coefficients are always computed as linear discriminant function coefficients even
when quadratic discrimination is specified.

Returns

A double array containing the linear discriminant function coefficients.

GetCovariance
public double[,,] GetCovariance()

Description

Returns the array of covariances.

Here, g = nGroups + 1 unless pooled only covariance matrices are computed, in which
case g = 1. When pooled only covariance matrices are computed, the within-group
covariance matrices are not computed. The pooled covariance matrix is always computed
and is returned as the g-th covariance matrix.

Returns

A nVariables×nVariables ×g double array containing the covariances.

GetGroupCounts
public int[] GetGroupCounts()

Description

Returns the group counts.

Returns

An int array of length nGroups containing the number of observations in each group.

GetMahalanobis
public double[,] GetMahalanobis()
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Description

Returns the Mahalanobis distances between the group means.
For linear discrimination, the Mahalanobis distance

D2
ij

between group means i and j is computed using the within covariance matrix for group i
in place of the pooled covariance matrix.
Returns

A nGroups×nGroups double array containing the Mahalanobis distances between the
group means.

GetMeans
public double[,] GetMeans()

Description

Returns the variable means.
The i-th row of the returned array contains the group i variable means.
Returns

A double array containing the variable means.

GetPrior
public double[] GetPrior()

Description

Returns the prior probabilities for each group.
The elements of this vector should sum to 1.0. If this member function is not called, the
elements are set so as to be equal if PriorType is set to
PriorProbabilities.PriorEqual or they are set to be proportional to the sample size in
each group if PriorType is set to PriorProbabilities.PriorProportional.
Returns

A double vector of length nGroups containing the prior probabilities for each group.

GetProbability
public double[,] GetProbability()

Description

Returns the posterior probabilities for each observation.
Returns

A x.GetLength(0)×nGroups double array containing the posterior probabilities for each
observation.

GetStatistics
public double[] GetStatistics()
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Description

Returns statistics.

i Statistics[i]
0 Sum of the degrees of freedom for the within-

covariance matrices.
1 Chi-squared statistic.
2 The degrees of freedom in the chi-squared statistic.
3 Probability of a greater chi-squared, respectively, of a

test of the homogeneity of the within-covariance ma-
trices. (Not computed when the pooled only covari-
ance matrix is computed).

4 thru 4 + nGroups Log of the determinant of each group’s covariance ma-
trix. (Not computed when the pooled only covariance
matrix is computed) and of the pooled covariance ma-
trix.

Last nGroups + 1 el-
ements

Sum of the weights within each group.

Last element Sum of the weights in all groups.

Returns

A double array containing output statistics.

SetPrior
public void SetPrior(double[] prior)

Description

Sets the prior probabilities for each group.
The elements of prior should sum to 1.0. If this member function is not called, the
elements of prior are set so as to be equal if PriorType is set to
PriorProbabilities.PriorEqual or they are set to be proportional to the sample size in
each group if PriorType is set to PriorProbabilities.PriorProportional.
Parameter

prior – A double vector of length nGroups containing the prior probabilities for
each group.

Update
public void Update(double[,] x)

Description

Processes a set of observations and performs a linear or quadratic discriminant function
analysis among the several known groups.
The first nVariables columns correspond to the variables, and the last column (column
nVariables) contains the group numbers. The groups must be numbered 1,2, ...,
nGroups.
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Parameter

x – A double matrix containing the observations.

Imsl.Stat.SumOfWeightsNegException id is thrown if the sum of the weights have
become negative.

Imsl.Stat.EmptyGroupException id is thrown if there are no observations in a group.
Cannot compute statistics.

Imsl.Stat.CovarianceSingularException id is thrown if the variance-Covariance
matrix is singular.

Imsl.Stat.PooledCovarianceSingularException id is thrown if the pooled
variance-Covariance matrix is singular.

Update
public void Update(double[,] x, int groupIndex)

Description

Processes a set of observations and performs a linear or quadratic discriminant function
analysis among the several known groups.

The first nVariables columns correspond to the variables, excluding the groupIndex
column. The groups must be numbered 1,2, ..., nGroups.

Parameters

x – A double matrix containing the observations.
groupIndex – An int containing the column index of x in which the group numbers
are stored.

Imsl.Stat.SumOfWeightsNegException id is thrown if the sum of the weights have
become negative.

Imsl.Stat.EmptyGroupException id is thrown if there are no observations in a group.
Cannot compute statistics.

Imsl.Stat.CovarianceSingularException id is thrown if the variance-Covariance
matrix is singular.

Imsl.Stat.PooledCovarianceSingularException id is thrown if the pooled
variance-Covariance matrix is singular.

Update
public void Update(double[,] x, int[] varIndex)

Description

Processes a set of observations and performs a linear or quadratic discriminant function
analysis among the several known groups.

The columns indicated in varIndex correspond to the variables, and the last column
(column nVariables) contains the group numbers. The groups must be numbered 1,2, ...,
nGroups.
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Parameters

x – A double matrix containing the observations.

varIndex – An int array containing the column indices in x that correspond to the
variables to be used in the analysis.

Imsl.Stat.SumOfWeightsNegException id is thrown if the sum of the weights have
become negative.

Imsl.Stat.EmptyGroupException id is thrown if there are no observations in a group.
Cannot compute statistics.

Imsl.Stat.CovarianceSingularException id is thrown if the variance-Covariance
matrix is singular.

Imsl.Stat.PooledCovarianceSingularException id is thrown if the pooled
variance-Covariance matrix is singular.

Update
public void Update(double[,] x, double[] frequencies, double[] weights)

Description

Processes a set of observations and associated frequencies and weights then performs a
linear or quadratic discriminant function analysis among the several known groups.

The first nVariables columns correspond to the variables, and the last column (column
nVariables) contains the group numbers. The groups must be numbered 1,2, ...,
nGroups.

Parameters

x – A double matrix containing the observations.

frequencies – A double array containing the associated frequencies.

weights – A double array containing the associated weights.

Imsl.Stat.SumOfWeightsNegException id is thrown if the sum of the weights have
become negative.

Imsl.Stat.EmptyGroupException id is thrown if there are no observations in a group.
Cannot compute statistics.

Imsl.Stat.CovarianceSingularException id is thrown if the variance-Covariance
matrix is singular.

Imsl.Stat.PooledCovarianceSingularException id is thrown if the pooled
variance-Covariance matrix is singular.

Update
public void Update(double[,] x, int groupIndex, int[] varIndex)
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Description

Processes a set of observations and performs a linear or quadratic discriminant function
analysis among the several known groups.

The columns indicated in varIndex correspond to the variables, and groupIndex column
contains the group numbers. The groups must be numbered 1,2, ..., nGroups.

Parameters

x – A double matrix containing the observations.

groupIndex – An int containing the column index of x in which the group numbers
are stored.

varIndex – An int array containing the column indices in x that correspond to the
variables to be used in the analysis.

Imsl.Stat.SumOfWeightsNegException id is thrown if the sum of the weights have
become negative.

Imsl.Stat.EmptyGroupException id is thrown if there are no observations in a group.
Cannot compute statistics.

Imsl.Stat.CovarianceSingularException id is thrown if the variance-Covariance
matrix is singular.

Imsl.Stat.PooledCovarianceSingularException id is thrown if the pooled
variance-Covariance matrix is singular.

Update
public void Update(double[,] x, int groupIndex, double[] frequencies,
double[] weights)

Description

Processes a set of observations and associated frequencies and weights then performs a
linear or quadratic discriminant function analysis among the several known groups.

The first nVariables columns correspond to the variables, excluding the groupIndex
column. The groups must be numbered 1,2, ..., nGroups.

Parameters

x – A double matrix containing the observations.

groupIndex – An int containing the column index of x in which the group numbers
are stored.

frequencies – A double array containing the associated frequencies.

weights – A double array containing the associated weights.

Imsl.Stat.SumOfWeightsNegException id is thrown if the sum of the weights have
become negative.

Imsl.Stat.EmptyGroupException id is thrown if there are no observations in a group.
Cannot compute statistics.
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Imsl.Stat.CovarianceSingularException id is thrown if the variance-Covariance
matrix is singular.

Imsl.Stat.PooledCovarianceSingularException id is thrown if the pooled
variance-Covariance matrix is singular.

Update
public void Update(double[,] x, int[] varIndex, double[] frequencies,
double[] weights)

Description

Processes a set of observations and associated frequencies and weights then performs a
linear or quadratic discriminant function analysis among the several known groups.

The columns indicated in varIndex correspond to the variables, and the last column
(column nVariables) contains the group numbers. The groups must be numbered 1,2, ...,
nGroups.

Parameters

x – A double matrix containing the observations.

varIndex – An int array containing the column indices in x that correspond to the
variables to be used in the analysis.

frequencies – A double array containing the associated frequencies.

weights – A double array containing the associated weights.

Imsl.Stat.SumOfWeightsNegException id is thrown if the sum of the weights have
become negative.

Imsl.Stat.EmptyGroupException id is thrown if there are no observations in a group.
Cannot compute statistics.

Imsl.Stat.CovarianceSingularException id is thrown if the variance-Covariance
matrix is singular.

Imsl.Stat.PooledCovarianceSingularException id is thrown if the pooled
variance-Covariance matrix is singular.

Update
public void Update(double[,] x, int groupIndex, int[] varIndex, double[]
frequencies, double[] weights)

Description

Processes a set of observations and associated frequencies and weights then performs a
linear or quadratic discriminant function analysis among the several known groups.

The columns indicated in varIndex correspond to the variables, and groupIndex column
contains the group numbers. The groups must be numbered 1,2, ..., nGroups.
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Parameters

x – A double matrix containing the observations.

groupIndex – An int containing the column index of x in which the group numbers
are stored.

varIndex – An int array containing the column indices in x that correspond to the
variables to be used in the analysis.

frequencies – A double array containing the associated frequencies.

weights – A double array containing the associated weights.

Imsl.Stat.SumOfWeightsNegException id is thrown if the sum of the weights have
become negative.

Imsl.Stat.EmptyGroupException id is thrown if there are no observations in a group.
Cannot compute statistics.

Imsl.Stat.CovarianceSingularException id is thrown if the variance-Covariance
matrix is singular.

Imsl.Stat.PooledCovarianceSingularException id is thrown if the pooled
variance-Covariance matrix is singular.

Description

Class DiscriminantAnalysis performs discriminant function analysis using either linear or
quadratic discrimination. The output from DiscriminantAnalysis includes a measure of
distance between the groups, a table summarizing the classification results, a matrix containing
the posterior probabilities of group membership for each observation, and the within-sample
means and covariance matrices. The linear discriminant function coefficients are also computed.

All observations are input during one call to DiscriminantAnalysis, a method of operation
that has the advantage of simplicity.

All observations in x are used to compute the means. The covariance matrices are factored.
Requested statistics of interest are computed: the linear discriminant functions, the prior
probabilities, the log of the determinant of each of the covariance matrices, a test statistic for
testing that all of the within-group covariance matrices are equal, and a matrix of Mahalanobis
distances between the groups. The matrix of Mahalanobis distances is computed via the pooled
covariance matrix when linear discrimination is specified, the row covariance matrix is used
when the discrimination is quadratic. Covariance matrices are defined as follows. Let Ni denote
the sum of the frequencies of the observations in group i, and let Mi denote the number of
observations in group i. Then, if Si denotes the within-group i covariance matrix,

Si =
1

Ni − 1

Mi∑
j=1

wjfj(xj − x)(xj − x)T

where wj is the weight of the j-th observation in group i, fj is its frequency, xj is the j-th
observation column vector (in group i), and x denotes the mean vector of the observations in
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group i. The mean vectors are computed as

x =
1
Wi

Mi∑
j=1

wjfjxj

where

Wi =
Mi∑
j=1

wjfj

Given the means and the covariance matrices, the linear discriminant function for group i is
computed as:

zi = ln(pi)− 0.5xi
TS−1

p xi + xTS−1
p xi

where ln(pi) is the natural log of the prior probability for the i-th group, x is the observation to
be classified, and Sp denotes the pooled covariance matrix.

Let S denote either the pooled covariance matrix or one of the within-group covariance matrices
Si. (S will be the pooled covariance matrix in linear discrimination, and Si otherwise.) The
Mahalanobis distance between group i and group j is computed as:

D2
ij = (xi − xj)TS−1(xi − xj)

Finally, the asymptotic chi-squared test for the equality of covariance matrices is computed as
follows (Morrison 1976, page 252):

γ = C−1
k∑

i=1

ni{ln(|Sp|)− ln(|Si|)}

where ni is the number of degrees of freedom in the i-th sample covariance matrix, k is the
number of groups, and

C−1 = 1− 2p2 + 3p− 1
6(p+ 1)(k − 1)

(
k∑

i=1

1
ni
− 1

Σjnj

)
where p is the number of variables.

The estimated posterior probability of each observation x belonging to group i is computed
using the prior probabilities and the sample mean vectors and estimated covariance matrices
under a multivariate normal assumption. Under quadratic discrimination, the within-group
covariance matrices are used to compute the estimated posterior probabilities. The estimated
posterior probability of an observation x belonging to group i is

q̂i(x) =
e−

1
2 D2

i (x)∑k
j=1 e

− 1
2 D2

j (x)

where

D2
i (x) =

{
(x− xi)TS−1

i (x− xi) + ln |Si| − 2ln(pi) LINEAR or QUADRATIC
(x− xi)TS−1

p (x− xi)− 2ln(pi) LINEAR POOLED
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For the leaving-out-one method of classification, the sample mean vector and sample covariance
matrices in the formula for

D2
i (x)

are adjusted so as to remove the observation x from their computation. For linear
discrimination, the linear discriminant function coefficients are actually used to compute the
same posterior probabilities.

Using the posterior probabilities, each observations in X is classified into a group; the result is
tabulated in the matrix CLASS and saved in the vector ICLASS. CLASS is not altered at this stage
if X(i, IGRP) contains a group number that is out of range. If the reclassification method is
specified, then all observations with no missing values in the nVariables classification variables
are classified. When the leaving-out-one method is used, observations with invalid group
numbers, weights, frequencies or classification variables are not classified. Regardless of the
frequency, a 1 is added (or subtracted) from CLASS for each row of X that is classified and
contains a valid group number. When the leaving-out-one method is used, adjustment is made
to the posterior probabilities to remove the effect of the observation in the classification rule. In
this adjustment, each observation is presumed to have a weight of X(i, IWT), if IWT > 0 and
a frequency of 1.0. See Lachenbruch (1975, page 36) for the required adjustment.

Finally, upon completion, the covariance matrices are computed from their LU factorizations.

Example: Discriminant Analysis

This example uses linear discrimination with equal prior probabilities on Fisher’s (1936) iris
data. This example illustrates the use of the DiscriminantAnalysis class.

using System;
using Imsl.Stat;
using PrintMatrix = Imsl.Math.PrintMatrix;

public class DiscriminantAnalysisEx1
{

public static void Main(String[] args)
{

double[,] xorig = {
{1.0, 5.1, 3.5, 1.4, .2},
{1.0, 4.9, 3.0, 1.4, .2},
{1.0, 4.7, 3.2, 1.3, .2},
{1.0, 4.6, 3.1, 1.5, .2},
{1.0, 5.0, 3.6, 1.4, .2},
{1.0, 5.4, 3.9, 1.7, .4},
{1.0, 4.6, 3.4, 1.4, .3},
{1.0, 5.0, 3.4, 1.5, .2},
{1.0, 4.4, 2.9, 1.4, .2},
{1.0, 4.9, 3.1, 1.5, .1},
{1.0, 5.4, 3.7, 1.5, .2},
{1.0, 4.8, 3.4, 1.6, .2},
{1.0, 4.8, 3.0, 1.4, .1},
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{1.0, 4.3, 3.0, 1.1, .1},
{1.0, 5.8, 4.0, 1.2, .2},
{1.0, 5.7, 4.4, 1.5, .4},
{1.0, 5.4, 3.9, 1.3, .4},
{1.0, 5.1, 3.5, 1.4, .3},
{1.0, 5.7, 3.8, 1.7, .3},
{1.0, 5.1, 3.8, 1.5, .3},
{1.0, 5.4, 3.4, 1.7, .2},
{1.0, 5.1, 3.7, 1.5, .4},
{1.0, 4.6, 3.6, 1.0, .2},
{1.0, 5.1, 3.3, 1.7, .5},
{1.0, 4.8, 3.4, 1.9, .2},
{1.0, 5.0, 3.0, 1.6, .2},
{1.0, 5.0, 3.4, 1.6, .4},
{1.0, 5.2, 3.5, 1.5, .2},
{1.0, 5.2, 3.4, 1.4, .2},
{1.0, 4.7, 3.2, 1.6, .2},
{1.0, 4.8, 3.1, 1.6, .2},
{1.0, 5.4, 3.4, 1.5, .4},
{1.0, 5.2, 4.1, 1.5, .1},
{1.0, 5.5, 4.2, 1.4, .2},
{1.0, 4.9, 3.1, 1.5, .2},
{1.0, 5.0, 3.2, 1.2, .2},
{1.0, 5.5, 3.5, 1.3, .2},
{1.0, 4.9, 3.6, 1.4, .1},
{1.0, 4.4, 3.0, 1.3, .2},
{1.0, 5.1, 3.4, 1.5, .2},
{1.0, 5.0, 3.5, 1.3, .3},
{1.0, 4.5, 2.3, 1.3, .3},
{1.0, 4.4, 3.2, 1.3, .2},
{1.0, 5.0, 3.5, 1.6, .6},
{1.0, 5.1, 3.8, 1.9, .4},
{1.0, 4.8, 3.0, 1.4, .3},
{1.0, 5.1, 3.8, 1.6, .2},
{1.0, 4.6, 3.2, 1.4, .2},
{1.0, 5.3, 3.7, 1.5, .2},
{1.0, 5.0, 3.3, 1.4, .2},
{2.0, 7.0, 3.2, 4.7, 1.4},
{2.0, 6.4, 3.2, 4.5, 1.5},
{2.0, 6.9, 3.1, 4.9, 1.5},
{2.0, 5.5, 2.3, 4.0, 1.3},
{2.0, 6.5, 2.8, 4.6, 1.5},
{2.0, 5.7, 2.8, 4.5, 1.3},
{2.0, 6.3, 3.3, 4.7, 1.6},
{2.0, 4.9, 2.4, 3.3, 1.0},
{2.0, 6.6, 2.9, 4.6, 1.3},
{2.0, 5.2, 2.7, 3.9, 1.4},
{2.0, 5.0, 2.0, 3.5, 1.0},
{2.0, 5.9, 3.0, 4.2, 1.5},
{2.0, 6.0, 2.2, 4.0, 1.0},
{2.0, 6.1, 2.9, 4.7, 1.4},
{2.0, 5.6, 2.9, 3.6, 1.3},
{2.0, 6.7, 3.1, 4.4, 1.4},
{2.0, 5.6, 3.0, 4.5, 1.5},
{2.0, 5.8, 2.7, 4.1, 1.0},
{2.0, 6.2, 2.2, 4.5, 1.5},
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{2.0, 5.6, 2.5, 3.9, 1.1},
{2.0, 5.9, 3.2, 4.8, 1.8},
{2.0, 6.1, 2.8, 4.0, 1.3},
{2.0, 6.3, 2.5, 4.9, 1.5},
{2.0, 6.1, 2.8, 4.7, 1.2},
{2.0, 6.4, 2.9, 4.3, 1.3},
{2.0, 6.6, 3.0, 4.4, 1.4},
{2.0, 6.8, 2.8, 4.8, 1.4},
{2.0, 6.7, 3.0, 5.0, 1.7},
{2.0, 6.0, 2.9, 4.5, 1.5},
{2.0, 5.7, 2.6, 3.5, 1.0},
{2.0, 5.5, 2.4, 3.8, 1.1},
{2.0, 5.5, 2.4, 3.7, 1.0},
{2.0, 5.8, 2.7, 3.9, 1.2},
{2.0, 6.0, 2.7, 5.1, 1.6},
{2.0, 5.4, 3.0, 4.5, 1.5},
{2.0, 6.0, 3.4, 4.5, 1.6},
{2.0, 6.7, 3.1, 4.7, 1.5},
{2.0, 6.3, 2.3, 4.4, 1.3},
{2.0, 5.6, 3.0, 4.1, 1.3},
{2.0, 5.5, 2.5, 4.0, 1.3},
{2.0, 5.5, 2.6, 4.4, 1.2},
{2.0, 6.1, 3.0, 4.6, 1.4},
{2.0, 5.8, 2.6, 4.0, 1.2},
{2.0, 5.0, 2.3, 3.3, 1.0},
{2.0, 5.6, 2.7, 4.2, 1.3},
{2.0, 5.7, 3.0, 4.2, 1.2},
{2.0, 5.7, 2.9, 4.2, 1.3},
{2.0, 6.2, 2.9, 4.3, 1.3},
{2.0, 5.1, 2.5, 3.0, 1.1},
{2.0, 5.7, 2.8, 4.1, 1.3},
{3.0, 6.3, 3.3, 6.0, 2.5},
{3.0, 5.8, 2.7, 5.1, 1.9},
{3.0, 7.1, 3.0, 5.9, 2.1},
{3.0, 6.3, 2.9, 5.6, 1.8},
{3.0, 6.5, 3.0, 5.8, 2.2},
{3.0, 7.6, 3.0, 6.6, 2.1},
{3.0, 4.9, 2.5, 4.5, 1.7},
{3.0, 7.3, 2.9, 6.3, 1.8},
{3.0, 6.7, 2.5, 5.8, 1.8},
{3.0, 7.2, 3.6, 6.1, 2.5},
{3.0, 6.5, 3.2, 5.1, 2.0},
{3.0, 6.4, 2.7, 5.3, 1.9},
{3.0, 6.8, 3.0, 5.5, 2.1},
{3.0, 5.7, 2.5, 5.0, 2.0},
{3.0, 5.8, 2.8, 5.1, 2.4},
{3.0, 6.4, 3.2, 5.3, 2.3},
{3.0, 6.5, 3.0, 5.5, 1.8},
{3.0, 7.7, 3.8, 6.7, 2.2},
{3.0, 7.7, 2.6, 6.9, 2.3},
{3.0, 6.0, 2.2, 5.0, 1.5},
{3.0, 6.9, 3.2, 5.7, 2.3},
{3.0, 5.6, 2.8, 4.9, 2.0},
{3.0, 7.7, 2.8, 6.7, 2.0},
{3.0, 6.3, 2.7, 4.9, 1.8},
{3.0, 6.7, 3.3, 5.7, 2.1},

Multivariate Analysis DiscriminantAnalysis Class • 597



{3.0, 7.2, 3.2, 6.0, 1.8},
{3.0, 6.2, 2.8, 4.8, 1.8},
{3.0, 6.1, 3.0, 4.9, 1.8},
{3.0, 6.4, 2.8, 5.6, 2.1},
{3.0, 7.2, 3.0, 5.8, 1.6},
{3.0, 7.4, 2.8, 6.1, 1.9},
{3.0, 7.9, 3.8, 6.4, 2.0},
{3.0, 6.4, 2.8, 5.6, 2.2},
{3.0, 6.3, 2.8, 5.1, 1.5},
{3.0, 6.1, 2.6, 5.6, 1.4},
{3.0, 7.7, 3.0, 6.1, 2.3},
{3.0, 6.3, 3.4, 5.6, 2.4},
{3.0, 6.4, 3.1, 5.5, 1.8},
{3.0, 6.0, 3.0, 4.8, 1.8},
{3.0, 6.9, 3.1, 5.4, 2.1},
{3.0, 6.7, 3.1, 5.6, 2.4},
{3.0, 6.9, 3.1, 5.1, 2.3},
{3.0, 5.8, 2.7, 5.1, 1.9},
{3.0, 6.8, 3.2, 5.9, 2.3},
{3.0, 6.7, 3.3, 5.7, 2.5},
{3.0, 6.7, 3.0, 5.2, 2.3},
{3.0, 6.3, 2.5, 5.0, 1.9},
{3.0, 6.5, 3.0, 5.2, 2.0},
{3.0, 6.2, 3.4, 5.4, 2.3},
{3.0, 5.9, 3.0, 5.1, 1.8}

};

int[] ipermu = new int[]{2, 3, 4, 5, 1};

double[,] x = new double[xorig.GetLength(0),xorig.GetLength(1)];

for (int i = 0; i < xorig.GetLength(0); i++)
{

for (int j = 1; j < xorig.GetLength(1); j++)
{

x[i,j - 1] = xorig[i,j];
}

}
for (int i = 0; i < xorig.GetLength(0); i++)
{

x[i,4] = xorig[i,0];
}

int nvar = x.GetLength(1) - 1;

DiscriminantAnalysis da = new DiscriminantAnalysis(nvar, 3);
da.CovarianceComputation =

Imsl.Stat.DiscriminantAnalysis.CovarianceMatrix.Pooled;
da.ClassificationMethod =
Imsl.Stat.DiscriminantAnalysis.Classification.Reclassification;

da.Update(x);
new PrintMatrix("Xmean are: ").SetPageWidth(80).Print(da.GetMeans());
new PrintMatrix("Coef: ").SetPageWidth(80).Print(da.GetCoefficients());
new PrintMatrix("Counts: ").SetPageWidth(80).Print(da.GetGroupCounts());
new PrintMatrix("Stats: ").SetPageWidth(80).Print(da.GetStatistics());
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new PrintMatrix("ClassMembership: ").SetPageWidth(80).Print(da.GetClassMembership());
new PrintMatrix("ClassTable: ").SetPageWidth(80).Print(da.GetClassTable());
double[,,] cov = da.GetCovariance();
double[,] tmpCov = new double[cov.GetLength(1), cov.GetLength(2)];
for (int i = 0; i < cov.GetLength(0); i++)
{

for (int j = 0; j < cov.GetLength(1); j++)
for (int k = 0; k < cov.GetLength(2); k++)

tmpCov[j, k] = cov[i, j, k];
new PrintMatrix

("Covariance Matrix " + i + " : ").SetPageWidth(80).Print(tmpCov);
}
new PrintMatrix("Prior : ").SetPageWidth(80).Print(da.GetPrior());
new PrintMatrix("PROB: ").SetPageWidth(80).Print(da.GetProbability());
new PrintMatrix("MAHALANOBIS: ").SetPageWidth(80).Print(da.GetMahalanobis());
Console.Out.WriteLine("nrmiss = " + da.NRowsMissing);

}
}

Output

Xmean are:
0 1 2 3

0 5.006 3.428 1.462 0.246
1 5.936 2.77 4.26 1.326
2 6.588 2.974 5.552 2.026

Coef:
0 1 2 3

0 -86.308469973674 23.5441667229203 23.5878704955898 -16.4306390229439
1 -72.8526074006422 15.6982090760379 7.07250983729562 5.21145093416415
2 -104.36831998645 12.4458489937766 3.68527961207532 12.7665449735348

4
0 -17.3984107815644
1 6.43422920040657
2 21.0791130134185

Counts:
0

0 50
1 50
2 50

Stats:
0

0 147
1 NaN
2 NaN
3 NaN
4 NaN
5 NaN
6 NaN
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7 -9.95853877004797
8 50
9 50
10 50
11 150

ClassMembership:
0

0 1
1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1

10 1
11 1
12 1
13 1
14 1
15 1
16 1
17 1
18 1
19 1
20 1
21 1
22 1
23 1
24 1
25 1
26 1
27 1
28 1
29 1
30 1
31 1
32 1
33 1
34 1
35 1
36 1
37 1
38 1
39 1
40 1
41 1
42 1
43 1
44 1
45 1
46 1
47 1
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48 1
49 1
50 2
51 2
52 2
53 2
54 2
55 2
56 2
57 2
58 2
59 2
60 2
61 2
62 2
63 2
64 2
65 2
66 2
67 2
68 2
69 2
70 3
71 2
72 2
73 2
74 2
75 2
76 2
77 2
78 2
79 2
80 2
81 2
82 2
83 3
84 2
85 2
86 2
87 2
88 2
89 2
90 2
91 2
92 2
93 2
94 2
95 2
96 2
97 2
98 2
99 2
100 3
101 3
102 3
103 3
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104 3
105 3
106 3
107 3
108 3
109 3
110 3
111 3
112 3
113 3
114 3
115 3
116 3
117 3
118 3
119 3
120 3
121 3
122 3
123 3
124 3
125 3
126 3
127 3
128 3
129 3
130 3
131 3
132 3
133 2
134 3
135 3
136 3
137 3
138 3
139 3
140 3
141 3
142 3
143 3
144 3
145 3
146 3
147 3
148 3
149 3

ClassTable:
0 1 2

0 50 0 0
1 0 48 2
2 0 1 49

Covariance Matrix 0 :
0 1 2

0 0.265008163265306 0.0927210884353742 0.167514285714286
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1 0.0927210884353742 0.115387755102041 0.055243537414966
2 0.167514285714286 0.055243537414966 0.185187755102041
3 0.0384013605442177 0.0327102040816327 0.042665306122449

3
0 0.0384013605442177
1 0.0327102040816327
2 0.042665306122449
3 0.0418816326530612

Prior :
0

0 0.333333333333333
1 0.333333333333333
2 0.333333333333333

PROB:
0 1 2

0 1 3.89635792768677E-22 2.61116827494833E-42
1 1 7.21796991863879E-18 5.04214334588401E-37
2 1 1.46384894952907E-19 4.67593159333071E-39
3 1 1.26853637674403E-16 3.56661049202016E-35
4 1 1.63738744612726E-22 1.08260526717561E-42
5 1 3.88328166174543E-21 4.56654013405467E-40
6 1 1.1134694458599E-18 2.3026084834884E-37
7 1 3.87758637727045E-20 1.07449600387617E-39
8 0.999999999999998 1.90281305967755E-15 9.48293561788352E-34
9 1 1.11180260918759E-18 2.72405964325484E-38

10 1 1.18527748898975E-23 3.23708368191298E-44
11 1 1.62164851137697E-18 1.83320074038366E-37
12 1 1.45922504711622E-18 3.2625064352377E-38
13 1 1.11721885779029E-19 1.31664193135497E-39
14 1 5.4873987251784E-30 1.53126472959902E-52
15 1 1.26150509583788E-27 2.26870462780447E-48
16 1 6.75433806261566E-25 3.86827125184469E-45
17 1 4.22374070046694E-21 1.22431307255763E-40
18 1 1.77491130351548E-22 2.5521532433363E-42
19 1 2.59323737921836E-22 5.79207874344749E-42
20 1 1.27463865682517E-19 4.35777421418678E-39
21 1 1.4659990076799E-20 1.98724138647432E-39
22 1 6.56928044945199E-25 7.76917736630943E-46
23 0.999999999999991 8.91234785423208E-15 9.1786241650176E-32
24 0.999999999999999 1.07070246199648E-15 1.16751587102608E-33
25 1 2.49733903598925E-16 5.71026880713927E-35
26 1 3.96773183597681E-17 4.37862393400249E-35
27 1 1.54816504878351E-21 1.59535976667668E-41
28 1 9.27184652389738E-22 6.29795546615504E-42
29 1 9.66514422364528E-17 2.97797411204608E-35
30 1 2.29993587694263E-16 7.18266552062749E-35
31 1 1.97540361007101E-19 2.78833402097428E-38
32 1 7.10004097342709E-27 2.21640831858024E-48
33 1 1.61029483654946E-28 2.74378339740563E-50
34 1 1.20521934033381E-17 1.2772450797832E-36
35 1 1.59718567904273E-21 9.03377178189315E-42
36 1 1.93986888092869E-24 1.66280764122895E-45
37 1 3.31023376400147E-23 7.00497072116312E-44
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38 1 4.19024193534821E-17 6.99144060854016E-36
39 1 1.76935863474539E-20 3.54169362585279E-40
40 1 1.06301363512176E-21 2.00386616263149E-41
41 0.999999999978258 2.17421702175081E-11 1.21378079456305E-28
42 1 1.54075327236441E-18 1.30571860833262E-37
43 0.999999999999999 8.94058875293973E-16 1.3155106225373E-32
44 1 1.61620622204115E-17 3.2059920592081E-35
45 1 1.71474317216017E-16 7.17243513417258E-35
46 1 2.0830893288107E-22 2.28978349710803E-42
47 1 2.7934821528124E-18 2.62953861900424E-37
48 1 2.59756035567857E-23 9.82081977684015E-44
49 1 2.32225794022775E-20 4.24175670110456E-40
50 1.96973175506613E-18 0.999889412240982 0.000110587759018098
51 1.24287799621613E-19 0.999257470339862 0.000742529660138549
52 2.0882630542231E-22 0.995806947154067 0.00419305284593237
53 2.19889843940163E-22 0.999642349804226 0.000357650195773665
54 4.21367813304238E-23 0.995590345144127 0.00440965485587324
55 8.12728653249083E-23 0.99850201836847 0.00149798163153038
56 3.54989967813166E-22 0.98583457962357 0.0141654203764301
57 5.00706455445538E-14 0.999999888018824 1.11981125915622E-07
58 5.68333389389098E-20 0.999878135052759 0.000121864947241113
59 1.24103857349892E-20 0.999502691481115 0.000497308518885132
60 1.95662763937994E-18 0.99999857915944 1.42084056032926E-06
61 5.96890036424978E-20 0.999229428361292 0.000770571638708534
62 2.71612817142458E-18 0.999998779830561 1.22016943887906E-06
63 1.18444452318768E-23 0.994326714395047 0.00567328560495259
64 5.57493127051318E-14 0.999998350784465 1.64921547935997E-06
65 2.36951149493997E-17 0.999957317877693 4.26821223073998E-05
66 8.42932810347787E-24 0.980647108438011 0.0193528915619887
67 2.50507161487087E-16 0.999999084828366 9.15171633415319E-07
68 1.67035240315192E-27 0.959573472466896 0.0404265275331035
69 1.34150265115522E-17 0.999996703894565 3.29610543460692E-06
70 7.40811758162493E-28 0.253228224738174 0.746771775261826
71 9.39929180687634E-17 0.999990654708731 9.34529126858083E-06
72 7.67467217173111E-29 0.815532827469118 0.184467172530882
73 2.68301817862459E-22 0.999572253144266 0.000427746855734505
74 7.81387455762235E-18 0.999975785420659 2.42145793413337E-05
75 2.07320734549583E-18 0.999917094703006 8.29052969937477E-05
76 6.35753788317195E-23 0.998254064057654 0.00174593594234629
77 5.63947317748202E-27 0.6892131192651 0.3107868807349
78 3.77352772315036E-23 0.992516862421269 0.00748313757873124
79 9.55533837753134E-12 0.999999980884202 1.91062427723588E-08
80 1.02210867392728E-17 0.999996992252333 3.0077476672767E-06
81 9.64807489487809E-16 0.999999673329606 3.26670393036477E-07
82 1.6164048498996E-16 0.9999962215592 3.778440799605E-06
83 4.24195194474068E-32 0.143391908078749 0.856608091921251
84 1.72451373302881E-24 0.963557581487526 0.0364424185124737
85 1.34474562081143E-20 0.994040068728999 0.00595993127100056
86 3.30486831694226E-21 0.998222327554005 0.00177767244599476
87 2.03457104837351E-23 0.99945569039693 0.000544309603069924
88 5.80698628888408E-18 0.999948628991219 5.13710087811031E-05
89 5.98119018015315E-21 0.999818313010677 0.000181686989322851
90 5.87861351190954E-23 0.999385580036369 0.000614419963631344
91 5.39900622927546E-22 0.99809340863166 0.00190659136833998
92 3.55950706996344E-18 0.999988714300912 1.12856990882795E-05
93 2.10414566195034E-14 0.999999886498331 1.13501647389283E-07
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94 4.70087713218134E-21 0.999697977427644 0.000302022572355453
95 1.58432826245531E-17 0.999981736726967 1.8263273032574E-05
96 2.80229312743823E-19 0.999889168510548 0.000110831489452329
97 1.62691766654364E-18 0.999953595115214 4.64048847857305E-05
98 7.63837759915641E-11 0.9999999812503 1.86733161738005E-08
99 4.67930110528286E-19 0.999926941365602 7.30586343982778E-05
100 7.50307535787394E-52 7.12730304524431E-09 0.999999992872697
101 5.21380197778188E-38 0.00107825098684016 0.99892174901316
102 1.23126361178618E-42 2.5928263674499E-05 0.999974071736326
103 1.5374987093819E-38 0.00106813895788396 0.998931861042116
104 6.24250059805309E-46 1.81296336402271E-06 0.999998187036636
105 4.20928142264626E-49 6.65626292581717E-07 0.999999334373707
106 3.79783718920213E-33 0.0486202537563576 0.951379746243642
107 1.35217625957575E-42 0.000139546311732453 0.999860453688268
108 1.32338962875972E-42 0.000223531291267257 0.999776468708733
109 3.45335796991583E-46 1.72727719755284E-07 0.99999982727228
110 5.45266025357921E-32 0.0130535277071713 0.986946472292829
111 1.18256006692676E-37 0.00167387461672592 0.998326125383274
112 5.20432100382649E-39 0.000200635233279198 0.999799364766721
113 1.26995255164363E-40 0.000194867232288328 0.999805132767712
114 1.6853613804622E-45 1.00045460233037E-06 0.999998999545398
115 5.1416398277959E-40 2.60549340476461E-05 0.999973945065952
116 1.90982041288985E-35 0.00608355276834907 0.993916447231651
117 1.20779857988563E-44 1.50379915614154E-06 0.999998496200844
118 3.18126528330457E-59 1.31727867517054E-09 0.999999998682721
119 1.59851089004605E-33 0.220798984305311 0.779201015694688
120 1.11946077288319E-42 6.45186467453254E-06 0.999993548135325
121 3.03817020493178E-37 0.000827267586982933 0.999172732413017
122 6.03287894248635E-50 9.50983817394636E-07 0.999999049016183
123 1.9512605095192E-31 0.0971194197474795 0.90288058025252
124 1.95640815619155E-39 8.83684525244587E-05 0.999911631547476
125 1.10933653717363E-36 0.002679309662425 0.997320690337575
126 7.84199684983311E-30 0.188367543357746 0.811632456642254
127 7.96469039198895E-30 0.134243091251227 0.865756908748773
128 6.19064114103918E-44 1.30368066299741E-05 0.99998696319337
129 1.40644845645161E-32 0.103682284629142 0.896317715370858
130 4.10812925130498E-42 0.000144233750964738 0.999855766249035
131 1.55569699085988E-36 0.000519804735082123 0.999480195264918
132 1.32032958960942E-45 3.01409095623433E-06 0.999996985909044
133 1.28389062432083E-28 0.729388128031784 0.270611871968216
134 1.92656005411401E-35 0.0660225289487927 0.933977471051207
135 1.27108275807441E-45 2.15281844850908E-06 0.999997847181551
136 3.03896326390101E-44 8.88185881285476E-07 0.999999111814119
137 4.60597294289873E-35 0.00616564821325895 0.993834351786741
138 4.53863396078092E-29 0.192526178705555 0.807473821294445
139 2.14023245437832E-36 0.000829089537724701 0.999170910462275
140 6.57090159803634E-45 1.18080976021024E-06 0.99999881919024
141 6.20258777948126E-36 0.000427639823558763 0.999572360176441
142 5.21380197778188E-38 0.00107825098684016 0.99892174901316
143 1.07394549657031E-45 1.02851888652808E-06 0.999998971481114
144 4.04824911953177E-46 2.52498398896306E-07 0.999999747501601
145 4.97006952429139E-39 7.47336051808618E-05 0.999925266394819
146 4.61661069188626E-36 0.00589878415239281 0.994101215847607
147 5.54896239081565E-35 0.00314587355706823 0.996854126442932
148 1.61368724215064E-40 1.25746799233817E-05 0.999987425320077
149 2.85801160733409E-33 0.017542290775785 0.982457709224215
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MAHALANOBIS:
0 1 2

0 0 89.8641855820738 179.384712514278
1 89.8641855820738 0 17.201066428396
2 179.384712514278 17.201066428396 0

nrmiss = 0

DiscriminantAnalysis.Discrimination Enumeration

Summary

Discrimination Methods.

public enumeration Imsl.Stat.DiscriminantAnalysis.Discrimination

Fields

Linear
public Imsl.Stat.DiscriminantAnalysis.Discrimination Linear

Description

Indicates a linear discrimination method.

Quadratic
public Imsl.Stat.DiscriminantAnalysis.Discrimination Quadratic

Description

Indicates a quadratic discrimination method.

DiscriminantAnalysis.CovarianceMatrix Enumeration

Summary

Covariance Matrix type.

public enumeration Imsl.Stat.DiscriminantAnalysis.CovarianceMatrix
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Fields

Pooled
public Imsl.Stat.DiscriminantAnalysis.CovarianceMatrix Pooled

Description

Indicates Pooled covariances computed.

PooledGroup
public Imsl.Stat.DiscriminantAnalysis.CovarianceMatrix PooledGroup

Description

Indicates Pooled, group covariances computed.

DiscriminantAnalysis.Classification Enumeration

Summary

Classification Method.

public enumeration Imsl.Stat.DiscriminantAnalysis.Classification

Fields

LeaveOutOne
public Imsl.Stat.DiscriminantAnalysis.Classification LeaveOutOne

Description

Indicates leave-out-one as the classification method.

Reclassification
public Imsl.Stat.DiscriminantAnalysis.Classification Reclassification

Description

Indicates reclassification as the classification method.
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DiscriminantAnalysis.PriorProbabilities Enumeration

Summary

Prior probabilities type.

public enumeration Imsl.Stat.DiscriminantAnalysis.PriorProbabilities

Fields

PriorEqual
public Imsl.Stat.DiscriminantAnalysis.PriorProbabilities PriorEqual

Description

Indicates prior probability type is to be prior equal.

PriorProportional
public Imsl.Stat.DiscriminantAnalysis.PriorProbabilities PriorProportional

Description

Indicates prior probability type is to be prior proportional.

608 • DiscriminantAnalysis.PriorProbabilities Enumeration IMSL C# Numerical Library



Chapter 20: Probability
Distribution Functions
and Inverses

Types
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class InverseCdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 658

Usage Notes

Definitions and discussions of the terms basic to this chapter can be found in Johnson and Kotz
(1969, 1970a, 1970b). These are also good references for the specific distributions.

In order to keep the calling sequences simple, whenever possible, the methods/classes described
in this chapter are written for standard forms of statistical distributions. Hence, the number of
parameters for any given distribution may be fewer than the number often associated with the
distribution. Also, the methods relating to the normal distribution, Cdf.Normal and
Cdf.InverseNormal, are for a normal distribution with mean equal to zero and variance equal
to one. For other means and variances, it is very easy for the user to standardize the variables
by subtracting the mean and dividing by the square root of the variance.

The distribution function for the (real, single-valued) random variable X is the function F
defined for all real x by

F (x) = Prob(X ≤ x)

where Prob(·) denotes the probability of an event. The distribution function is often called the
cumulative distribution function (CDF).

For distributions with finite ranges, such as the beta distribution, the CDF is 0 for values less
than the left endpoint and 1 for values greater than the right endpoint. The methods in the
Cdf classes described in this chapter return the correct values for the distribution functions
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when values outside of the range of the random variable are input, but warning error conditions
are set in these cases.

Discrete Random Variables

For discrete distributions, the function giving the probability that the random variable takes on
specific values is called the probability function, defined by

p(x) = Prob(X = x)

The CDF for a discrete random variable is

F (x) =
∑
A

p(k)

where A is set such that k ≤ x. Since the distribution function is a step function, its inverse
does not exist uniquely.

Continuous Distributions

For continuous distributions, a probability function, as defined above, would not be useful
because the probability of any given point is 0. For such distributions, the useful analog is the
probability density function (PDF). The integral of the PDF is the probability over the interval,
if the continuous random variable X has PDF f, then

Prob(a ≤ X ≤ b) =
∫ b

a

f(x) dx

The relationship between the CDF and the PDF is

F (x) =
∫ x

−∞
f(t) dt

For (absolutely) continuous distributions, the value of F(x) uniquely determines x within the
support of the distribution. The ”Inverse” methods in the Cdf class compute the inverses of the
distribution functions. That is, given F(x) (called ”prob” for ”probability”), a method such as,
InverseBeta in the Cdf class computes x. The inverses are defined only over the open interval
(0,1).

Additional Comments

Whenever a probability close to 1.0 results from a call to a distribution function or is to be
input to an inverse function, it is often impossible to achieve good accuracy because of the
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nature of the representation of numeric values. In this case, it may be better to work with the
complementary distribution function (one minus the distribution function). If the distribution
is symmetric about some point (as the normal distribution, for example) or is reflective about
some point (as the beta distribution, for example), the complementary distribution function has
a simple relationship with the distribution function. For example, to evaluate the standard
normal distribution at 4.0, using the Normal method in the Cdf class directly, the result to six
places is 0.999968. Only two of those digits are really useful, however. A more useful result may
be 1.000000 minus this value, which can be obtained to six places as 3.16712e-05 by evaluating
Normal at -4.0. For the normal distribution, the two values are related by Φ(x) = 1− Φ(−x),
where Φ(·) is the normal distribution function. Another example is the beta distribution with
parameters 2 and 10. This distribution is skewed to the right, so evaluating Beta at 0.7,
0.999953 is obtained. A more precise result is obtained by evaluating Beta with parameters 10
and 2 at 0.3. This yields 4.72392e-5.

Many of the algorithms used by the classes in this chapter are discussed by Abramowitz and
Stegun (1964). The algorithms make use of various expansions and recursive relationships and
often use different methods in different regions.

Cumulative distribution functions are defined for all real arguments. However, if the input to
one of the distribution functions in this chapter is outside the range of the random variable, an
error is issued.

Cdf Class

Summary

Cumulative probability distribution functions, probability density functions, and their inverses.

public class Imsl.Stat.Cdf

Methods

Beta
static public double Beta(double x, double pin, double qin)

Description

Evaluates the beta cumulative probability distribution function.

Method Beta evaluates the distribution function of a beta random variable with
parameters pin and qin. This function is sometimes called the incomplete beta ratio and,
with p = pin and q = qin, is denoted by Ix(p, q). It is given by

Ix (p, q) =
Γ (p) Γ (q)
Γ (p+ q)

∫ x

0

tp−1 (1− t)q−1
dt
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where Γ(·) is the gamma function. The value of the distribution function Ix(p, q) is the
probability that the random variable takes a value less than or equal to x.

The integral in the expression above is called the incomplete beta function and is denoted
by βx(p, q). The constant in the expression is the reciprocal of the beta function (the
incomplete function evaluated at one) and is denoted by βx(p, q).

Beta uses the method of Bosten and Battiste (1974).

Beta Distribution FunctionBeta Distribution Function
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Parameters

x – A double specifying the argument at which the function is to be evaluated.

pin – A double specifying the first beta distribution parameter.

qin – A double specifying the second beta distribution parameter.

Returns

A double specifying the probability that a beta random variable takes on a value less
than or equal to x.

BetaMean
static public double BetaMean(double pin, double qin)

Description

Evaluates the mean of the beta cumulative probability distribution function

Parameters

pin – A double, the first beta distribution parameter.

qin – A double, the second beta distribution parameter.

Returns

A double, the mean of the beta distribution function.

BetaProb
static public double BetaProb(double x, double pin, double qin)

Description

Evaluates the beta probability density function.

Parameters

x – A double, the argument at which the function is to be evaluated.

pin – A double, the first beta distribution parameter.

qin – A double, the second beta distribution parameter.

Returns

A double, the value of the probability density function at x.

BetaVariance
static public double BetaVariance(double pin, double qin)

Description

Evaluates the variance of the beta cumulative probability distribution function
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Parameters

pin – A double, the first beta distribution parameter.

qin – A double, the second beta distribution parameter.

Returns

A double, the variance of the beta distribution function.

Binomial
static public double Binomial(int k, int n, double p)

Description

Evaluates the binomial cumulative probability distribution function.

Method Binomial evaluates the distribution function of a binomial random variable with
parameters n and p. It does this by summing probabilities of the random variable taking
on the specific values in its range. These probabilities are computed by the recursive
relationship

Pr (X = j) =
(n+ 1− j) p
j (1− p)

Pr (X = j − 1)

To avoid the possibility of underflow, the probabilities are computed forward from 0, if k
is not greater than n times p, and are computed backward from n, otherwise. The
smallest positive machine number, ε, is used as the starting value for summing the
probabilities, which are rescaled by (1− p)nε if forward computation is performed and by
pnε if backward computation is done. For the special case of p = 0, Binomial is set to 1;
and for the case p = 1, Binomial is set to 1 if k = n and to 0 otherwise.

Parameters

k – An int specifying the argument for which the binomial distribution function is
to be evaluated.

n – An int specifying the number of Bernoulli trials.

p – A double specifying the probability of success on each trial.

Returns

A double specifying the probability that a binomial random variable takes a value less
than or equal to k. This value is the probability that k or fewer successes occur in n
independent Bernoulli trials, each of which has a p probability of success.

BinomialProb
static public double BinomialProb(int k, int n, double p)

614 • Cdf Class IMSL C# Numerical Library



Description

Evaluates the binomial probability density function.

Method BinomialProb evaluates the probability that a binomial random variable with
parameters n and p takes on the value k. It does this by computing probabilities of the
random variable taking on the values in its range less than (or the values greater than) k.
These probabilities are computed by the recursive relationship

Pr (X = j) =
(n+ 1− j) p
j (1− p)

Pr (X = j − 1)

To avoid the possibility of underflow, the probabilities are computed forward from 0, if k
is not greater than n× p, and are computed backward from n, otherwise. The smallest
positive machine number, ε, is used as the starting value for computing the probabilities,
which are rescaled by (1− p)nε if forward computation is performed and by pnε if
backward computation is done.

For the special case of p = 0, BinomialProb is set to 0 if k is greater than 0 and to 1
otherwise; and for the case p = 1, BinomialProb is set to 0 if k is less than n and to 1
otherwise.
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Binomial Probablity FunctionBinomial Probablity Function
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Parameters

k – An int specifying the argument for which the binomial distribution function is
to be evaluated.

n – An int specifying the number of Bernoulli trials.

p – A double specifying the probability of success on each trial.
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Returns

A double specifying the probability that a binomial random variable takes a value equal
to k.

BivariateNormal
static public double BivariateNormal(double x, double y, double rho)

Description

Evaluates the bivariate normal cumulative probability distribution function.

Let (X,Y ) be a bivariate normal variable with mean (0, 0) and variance-covariance matrix[
1 ρ
ρ 1

]
This method computes the probability that X ≤ x and Y ≤ y.
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Bivariate Normal Distribution FunctionBivariate Normal Distribution Function
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Parameters

x – is the x-coordinate of the point for which the bivariate normal distribution
function is to be evaluated.

y – is the y-coordinate of the point for which the bivariate normal distribution
function is to be evaluated.

rho – is the correlation coefficient.
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Returns

the probability that a bivariate normal random variable (X,Y ) with correlation rho
satisfies X ≤ x and Y ≤ y.

Chi
static public double Chi(double chsq, double df)

Description

Evaluates the chi-squared cumulative probability distribution function.

Method Chi evaluates the distribution function, F, of a chi-squared random variable with
df degrees of freedom, that is, with v = df, and x = chsq,

F (x) =
1

2ν/2Γ (ν/2)

∫ x

0

e−t/2tν/2−1dt

where Γ(·) is the gamma function. The value of the distribution function at the point x is
the probability that the random variable takes a value less than or equal to x.

For v > 65, Chi uses the Wilson-Hilferty approximation (Abramowitz and Stegun 1964,
equation 26.4.17) to the normal distribution, and method Normal is used to evaluate the
normal distribution function.

For v ≤ 65, Chi uses series expansions to evaluate the distribution function. If
x < max(v/2, 26), Chi uses the series 6.5.29 in Abramowitz and Stegun (1964), otherwise,
it uses the asymptotic expansion 6.5.32 in Abramowitz and Stegun.
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Chi-Squared Distribution FunctionChi-Squared Distribution Function
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Parameters

chsq – A double specifying the argument at which the function is to be evaluated.

df – A double specifying the number of degrees of freedom. This must be at least
0.5.

Returns

A double specifying the probability that a chi-squared random variable takes a values less
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than or equal to chsq.

ChiMean
static public double ChiMean(double df)

Description

Evaluates the mean of the chi-squared cumulative probability distribution function

Parameter

df – A double scalar value representing the number of degrees of freedom. This
must be at least 0.5.

Returns

A double, the mean of the chi-squared distribution function.

ChiProb
static public double ChiProb(double chsq, double df)

Description

Evaluates the chi-squared probability density function

Parameters

chsq – A double scalar value representing the argument at which the function is to
be evaluated.

df – A double scalar value representing the number of degrees of freedom. This
must be at least 0.5.

Returns

A double scalar value, the value of the probability density function at chsq.

ChiVariance
static public double ChiVariance(double df)

Description

Evaluates the variance of the chi-squared cumulative probability distribution function

Parameter

df – Adouble scalar value representing the number of degrees of freedom. This must
be at least 0.5.

Returns

A double, the variance of the chi-squared distribution function.

DiscreteUniform
static public double DiscreteUniform(int x, int n)
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Description

Evaluates the discrete uniform cumulative probability distribution function.

Parameters

x – An int scalar value representing the argument at which the function is to be
evaluated. x should be a value between the lower limit 0 and upper limit n

n – An int scalar value representing the upper limit of the discrete uniform
distribution.

Returns

A double scalar value representing the probability that a discrete uniform random
variable takes a value less than or equal to x.

DiscreteUniformProb
static public double DiscreteUniformProb(int x, int n)

Description

Evaluates the discrete uniform probability density function.

Parameters

x – An int argument for which the discrete uniform probability density function is
to be evaluated. x should be a value between the lower limit 0 and upper limit n

n – An int scalar value representing the upper limit of the discrete uniform
distribution.

Returns

A double scalar value representing the probability that a discrete uniform random
variable takes a value equal to x.

Exponential
static public double Exponential(double x, double scale)

Description

Evaluates the exponential cumulative probability distribution function.

Method Exponential is a special case of the gamma distribution function, which
evaluates the distribution function, F, with scale parameter b and shape parameter a used
in the gamma distribution function, equal to 1.0. That is,

F (x) =
1

Γ (a)

∫ x

0

e−t/bdt

where Γ(·) is the gamma function. (The gamma function is the integral from 0 to ∞ of
the same integrand as above). The value of the distribution function at the point x is the
probability that the random variable takes a value less than or equal to x.
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If x is less than or equal to 1.0, Gamma uses a series expansion. Otherwise, a continued
fraction expansion is used. (See Abramowitz and Stegun, 1964.)

Exponential Distribution FunctionExponential Distribution Function
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Parameters

x – A double scalar value representing the argument at which the function is to be
evaluated.

scale – A double scalar value representing the scale parameter, b.
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Returns

A double scalar value representing the probability that an exponential random variable
takes on a value less than or equal to x.

ExponentialProb
static public double ExponentialProb(double x, double scale)

Description

Evaluates the exponential probability density function

Parameters

x – A double scalar value representing the argument at which the function is to be
evaluated.

scale – A double scalar value representing the scale parameter.

Returns

A double scalar value, the value of the probability density function at x.

ExtremeValue
static public double ExtremeValue(double x, double mu, double beta)

Description

Evaluates the extreme value cumulative probability distribution function.

Method ExtremeValue, also known as the Gumbel minimum distribution, evaluates the
extreme value distribution function, F, of a uniform random variable with location
parameter µ and shape parameter β; that is,

F (x) =
∫ x

0

1− e−e
x−µ

β
dt

The case where µ = 0 and β = 1 is called the standard Gumbel distribution.

Random numbers are generated by evaluating uniform variates ui, equating the
continuous distribution function, and then solving for xi by first computing
xi−µ

β = log(−log(1− ui)).
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Extreme Value Distribution FunctionExtreme Value Distribution Function
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Parameters

x – A double scalar value representing the argument at which the function is to be
evaluated.

mu – A double scalar value representing the location parameter, µ.

beta – A double scalar value representing the scale parameter, β.
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Returns

A double scalar value representing the probability that an extreme value random variable
takes on a value less than or equal to x.

ExtremeValueProb
static public double ExtremeValueProb(double x, double mu, double beta)

Description

Evaluates the extreme value probability density function.

Parameters

x – A double scalar value representing the argument at which the function is to be
evaluated.

mu – A double scalar value representing the location parameter.

beta – A double scalar value representing the scale parameter.

Returns

a double scalar value representing the probability density function at x.

F
static public double F(double x, double dfn, double dfd)

Description

Evaluates the F cumulative probability distribution function.

F evaluates the distribution function of a Snedecor’s F random variable with dfn
numerator degrees of freedom and dfd denominator degrees of freedom. The function is
evaluated by making a transformation to a beta random variable and then using the
function Beta. If X is an F variate with v1 and v2 degrees of freedom and
Y = v1X/(v2 + v1X), then Y is a beta variate with parameters p = v1/2 and q = v2/2. F
also uses a relationship between F random variables that can be expressed as follows:

F(X, dfn, dfd) = 1− F(1/X, dfd , dfn)
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F Distribution FunctionF Distribution Function
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Parameters

x – A double specifying the argument at which the function is to be evaluated.

dfn – A double specifying the numerator degrees of freedom. It must be positive.

dfd – A double specifying the denominator degrees of freedom. It must be positive.

Probability Distribution Functions and Inverses Cdf Class • 627



Returns

A double specifying the probability that an F random variable takes on a value less than
or equal to x.

FProb
static public double FProb(double x, double dfn, double dfd)

Description

Evaluates the F probability density function.

Parameters

x – A double, the argument at which the function is to be evaluated.

dfn – A double, the numerator degrees of freedom. It must be positive.

dfd – A double, the denominator degrees of freedom. It must be positive.

Returns

A double, the value of the probability density function at x.

Gamma
static public double Gamma(double x, double a)

Description

Evaluates the gamma cumulative probability distribution function.

Method Gamma evaluates the distribution function, F, of a gamma random variable with
shape parameter a; that is,

F (x) =
1

Γ (a)

∫ x

0

e−tta−1dt

where Γ(·) is the gamma function. (The gamma function is the integral from 0 to ∞ of
the same integrand as above). The value of the distribution function at the point x is the
probability that the random variable takes a value less than or equal to x.

The gamma distribution is often defined as a two-parameter distribution with a scale
parameter b (which must be positive), or even as a three-parameter distribution in which
the third parameter c is a location parameter. In the most general case, the probability
density function over (c,∞) is

f (t) =
1

baΓ (a)
e−(t−c)/b (x− c)a−1

If T is such a random variable with parameters a, b, and c, the probability that T ≤ t0
can be obtained from Gamma by setting X = (t0 − c)/b.
If X is less than a or if X is less than or equal to 1.0, Gamma uses a series expansion.
Otherwise, a continued fraction expansion is used. (See Abramowitz and Stegun, 1964.)
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Parameters

x – A double specifying the argument at which the function is to be evaluated.
a – A double specifying the shape parameter. This must be positive.

Returns

A double specifying the probability that a gamma random variable takes on a value less
than or equal to x.
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GammaProb
static public double GammaProb(double x, double a, double b)

Description

Evaluates the gamma probability density function.

Parameters

x – A double scalar value representing the argument at which the function is to be
evaluated.

a – A double scalar value representing the shape parameter. This must be positive.

b – A double scalar value representing the scale parameter. This must be positive.

Returns

A double scalar value, the probability density function at x.

Geometric
static public double Geometric(int x, double p)

Description

Evaluates the discrete geometric cumulative probability distribution function.

Parameters

x – An int scalar value representing the argument at which the function is to be
evaluated

p – An double scalar value representing the probability parameter for each
independent trial (the probability of success for each independent trial).

Returns

A double scalar value representing the probability that a geometric random variable
takes a value less than or equal to x. The return value is the probability that up to x
trials would be observed before observing a success.

GeometricProb
static public double GeometricProb(int x, double p)

Description

Evaluates the discrete geometric probability density function.

Method GeometricProb evaluates the geometric distribution for the number of trials
before the first success.

Parameters

x – An int argument for which the geometric probability function is to be evaluated.

p – A double scalar value representing the probability parameter of the geometric
distribution (the probability of success for each independent trial)
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Returns

A double scalar value representing the probability that a geometric random variable
takes a value equal to x.

Hypergeometric
static public double Hypergeometric(int k, int sampleSize, int
defectivesInLot, int lotSize)

Description

Evaluates the hypergeometric cumulative probability distribution function.

Method Hypergeometric evaluates the distribution function of a hypergeometric random
variable with parameters n, l, and m. The hypergeometric random variable X can be
thought of as the number of items of a given type in a random sample of size n that is
drawn without replacement from a population of size l containing m items of this type.
The probability function is

Pr (X = j) =

(
m
j

) (
l−m
n−j

)
(l
n)

for j = i, i+ 1, i+ 2, . . . , min (n,m)

where i = max(0, n− l +m).

If k is greater than or equal to i and less than or equal to min(n,m), Hypergeometric
sums the terms in this expression for j going from i up to k. Otherwise, 0 or 1 is returned,
as appropriate. So, as to avoid rounding in the accumulation, Hypergeometric performs
the summation differently depending on whether or not k is greater than the mode of the
distribution, which is the greatest integer less than or equal to (m+ 1)(n+ 1)/(l + 2).

Parameters

k – An int specifying the argument at which the function is to be evaluated.

sampleSize – An int specifying the sample size, n.

defectivesInLot – An int specifying the number of defectives in the lot, m.

lotSize – An int specifying the lot size, l.

Returns

A double specifying the probability that a hypergeometric random variable takes a value
less than or equal to k.

HypergeometricProb
static public double HypergeometricProb(int k, int sampleSize, int
defectivesInLot, int lotSize)
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Description

Evaluates the hypergeometric probability density function.

Method HypergeometricProb evaluates the probability function of a hypergeometric
random variable with parameters n, l, and m. The hypergeometric random variable X can
be thought of as the number of items of a given type in a random sample of size n that is
drawn without replacement from a population of size l containing m items of this type.
The probability function is:

Pr (X = k) =
(m
k )
(
l−m
n−k

)
(l
n)

for k = i, i+ 1, i+ 2 . . . , min (n,m)

where i = max(0, n - l + m). HypergeometricProb evaluates the expression using log
gamma functions.

Parameters

k – An int specifying the argument at which the function is to be evaluated.

sampleSize – An int specifying the sample size, n.

defectivesInLot – An int specifying the number of defectives in the lot, m.

lotSize – An int specifying the lot size, l.

Returns

A double specifying the probability that a hypergeometric random variable takes a value
equal to k.

InverseBeta
static public double InverseBeta(double p, double pin, double qin)

Description

Evaluates the inverse of the beta cumulative probability distribution function.

Method InverseBeta evaluates the inverse distribution function of a beta random
variable with parameters pin and qin, that is, with P = p, p = pin, and q = qin, it
determines x (equal to InverseBeta (p, pin, qin)), such that

P =
Γ (p) Γ (q)
Γ (p+ q)

∫ x

0

tp−1 (1− t)q−1
dt

where Γ(·) is the gamma function. The probability that the random variable takes a value
less than or equal to x is P.

Parameters

p – A double specifying the probability for which the inverse of the beta CDF is to
be evaluated.

pin – A double specifying the first beta distribution parameter.

qin – A double specifying the second beta distribution parameter.
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Returns

A double specifying the probability that a beta random variable takes a value less than
or equal to this value is p.

InverseChi
static public double InverseChi(double p, double df)

Description

Evaluates the inverse of the chi-squared cumulative probability distribution function.

Method InverseChi evaluates the inverse distribution function of a chi-squared random
variable with df degrees of freedom, that is, with P = p and v = df, it determines x (equal
to InverseChi(p, df)), such that

P =
1

2ν/2Γ (ν/2)

∫ x

0

e−t/2tν/2−1dt

where Γ(·) is the gamma function. The probability that the random variable takes a value
less than or equal to x is P.

For v < 40, InverseChi uses bisection, if v ≥ 2 or P > 0.98, or regula falsi to find the
point at which the chi-squared distribution function is equal to P. The distribution
function is evaluated using Chi.

For 40 ≤ v < 100, a modified Wilson-Hilferty approximation (Abramowitz and Stegun
1964, equation 26.4.18) to the normal distribution is used, and InverseNormal is used to
evaluate the inverse of the normal distribution function. For v ≥ 100, the ordinary
Wilson-Hilferty approximation (Abramowitz and Stegun 1964, equation 26.4.17) is used.

Parameters

p – A double specifying the probability for which the inverse chi-squared function is
to be evaluated.

df – A double specifying the number of degrees of freedom. This must be at least
0.5.

Returns

A double specifying the probability that a chi-squared random variable takes a value less
than or equal to this value is p.

InverseDiscreteUniform
static public int InverseDiscreteUniform(double p, int n)

Description

Returns the inverse of the discrete uniform cumulative probability distribution function.
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Parameters

p – A double scalar value representing the probability for which the inverse discrete
Uniform function is to be evaluated

n – An int scalar value representing the upper limit of the discrete uniform
distribution

Returns

An int scalar value. The probability that a discrete Uniform random variable takes a
value less than or equal to this returned value is p.

InverseExponential
static public double InverseExponential(double p, double scale)

Description

Evaluates the inverse of the exponential cumulative probability distribution function.

Method InverseExponential evaluates the inverse distribution function of a gamma
random variable with scale parameter =b and shape parameter a=1.0, that is, it
determines x = inverseExponential(p, 1.0)), such that

P =
1

Γ (a)

∫ x

o

e−t/bdt

where Γ(·) is the gamma function. The probability that the random variable takes a value
less than or equal to x is P. See the documentation for routine Gamma for further
discussion of the gamma distribution.

InverseExponential uses bisection and modified regula falsi to invert the distribution
function, which is evaluated using method Gamma.

Parameters

p – A double scalar value representing the probability at which the function is to be
evaluated.

scale – A double scalar value representing the scale parameter, b.

Returns

A double scalar value. The probability that an exponential random variable takes a value
less than or equal to this returned value is p.

InverseExtremeValue
static public double InverseExtremeValue(double p, double mu, double beta)

Description

Returns the inverse of the extreme value cumulative probability distribution function.
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Parameters

p – A double scalar value representing the probability for which the inverse extreme
value function is to be evaluated.

mu – A double scalar value representing the location parameter.

beta – A double scalar value representing the scale parameter.

Returns

A double scalar value. The probability that an extreme value random variable takes a
value less than or equal to this returned value is p.

InverseF
static public double InverseF(double p, double dfn, double dfd)

Description

Returns the inverse of the F cumulative probability distribution function.

Method InverseF evaluates the inverse distribution function of a Snedecor’s F random
variable with dfn numerator degrees of freedom and dfd denominator degrees of freedom.
The function is evaluated by making a transformation to a beta random variable and then
using InverseBeta. If X is an F variate with v1 and v2 degrees of freedom and
Y = v1X/(v2 + v1X), then Y is a beta variate with parameters p = v1/2 and q = v2/2. If
P ≤ 0.5, InverseF uses this relationship directly, otherwise, it also uses a relationship
between X random variables that can be expressed as follows, using f, which is the F
cumulative distribution function:

F(X, dfn, dfd) = 1− F(1/X, dfd , dfn)

Parameters

p – A double specifying the probability for which the inverse of the F distribution
function is to be evaluated. Argument p must be in the open interval (0.0, 1.0).

dfn – A double specifying the numerator degrees of freedom. It must be positive.

dfd – A double specifying the denominator degrees of freedom. It must be positive.

Returns

A double specifying the probability that an F random variable takes a value less than or
equal to this value is p.

InverseGamma
static public double InverseGamma(double p, double a)
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Description

Evaluates the inverse of the gamma cumulative probability distribution function.

Method InverseGamma evaluates the inverse distribution function of a gamma random
variable with shape parameter a, that is, it determines x = InverseGamma(p, a), such
that

P =
1

Γ (a)

∫ x

o

e−tta−1dt

where Γ(·) is the gamma function. The probability that the random variable takes a value
less than or equal to x is P. See the documentation for routine Gamma for further
discussion of the gamma distribution.

InverseGamma uses bisection and modified regula falsi to invert the distribution function,
which is evaluated using method Gamma.

Parameters

p – A double specifying the probability at which the function is to be evaluated.

a – A double specifying the shape parameter, a. This must be positive.

Returns

A double specifying the probability that a gamma random variable takes a value less
than or equal to this value is p.

InverseGeometric
static public double InverseGeometric(double r, double p)

Description

Returns the inverse of the discrete geometric cumulative probability distribution function.

Parameters

r – A double scalar value representing the probability for which the inverse
geometric function is to be evaluated.

p – An int scalar value representing the probability parameter for each independent
trial (the probability of success for each independent trial).

Returns

A double scalar value. The probability that a geometric random variable takes a value
less than or equal to this returned value is r.

InverseLogNormal
static public double InverseLogNormal(double p, double mu, double sigma)
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Description

Returns the inverse of the standard lognormal cumulative probability distribution
function.

Parameters

p – A double scalar value representing the probability for which the inverse
lognormal function is to be evaluated.

mu – A double scalar value representing the location parameter.

sigma – A double scalar value representing the shape parameter. sigma must be a
positive.

Returns

A double scalar value. The probability that a standard lognormal random variable takes
a value less than or equal to this returned value is p.

InverseNoncentralchi
static public double InverseNoncentralchi(double p, double df, double alam)

Description

Evaluates the inverse of the noncentral chi-squared cumulative probability distribution
function.

Method InverseNoncentralchi evaluates the inverse distribution function of a
noncentral chi-squared random variable with df degrees of freedom and noncentrality
parameter alam, that is, with P = p, ν = df, and λ = alam, it determines c0 =
InverseNoncentralchi(p, df, alam)), such that

P =
∞∑

i=0

e−λ/2 (λ/2)i

i!

∫ c0

0

x(ν+2i)/2−1e−x/2

2(ν+2i)/2Γ
(

ν+2i
2

)dx
where Γ(·) is the gamma function. The probability that the random variable takes a value
less than or equal to c0 is P .

Method InverseNoncentralchi uses bisection and modified regula falsi to invert the
distribution function, which is evaluated using noncentralchi. See Noncentralchi for
an alternative definition of the noncentral chi-squared random variable in terms of normal
random variables.

Parameters

p – A double scalar value representing the probability for which the inverse
noncentral chi-squared distribution function is to be evaluated. p must be in the
open interval (0.0, 1.0).

df – A double scalar value representing the number of degrees of freedom. This
must be at least 0.5. but less than or equal to 200,000.

alam – A double scalar value representing the noncentrality parameter. This must
be nonnegative, and alam + df must be less than or equal to 200,000.
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Returns

A double scalar value. The probability that a noncentral chi-squared random variable
takes a value less than or equal to this returned value is p.

InverseNoncentralstudentsT
static public double InverseNoncentralstudentsT(double p, int idf, double
delta)

Description

Evaluates the inverse of the noncentral Student’s t cumulative probability distribution
function.

Method InverseNoncentralstudentsT evaluates the inverse distribution function of a
noncentral t random variable with idf degrees of freedom and noncentrality parameter
delta; that is, with P = p, ν = idf , δ = delta, it determines t0 =
InverseNoncentralstudentsT(p, idf, delta), such that

P =
∫ t0

−∞

νν/2e−δ2/2

√
πΓ (ν/2) (ν + x2)(ν+1)/2

∞∑
i=0

Γ ((ν + i+ 1) /2)
(
δi

i!

)(
2x2

ν + x2

)i/2

dx

where Γ(·) is the gamma function. The probability that the random variable takes a value
less than or equal to t0 is P. See NoncentralstudentsT for an alternative definition in
terms of normal and chi-squared random variables. The method
InverseNoncentralstudentsT uses bisection and modified regula falsi to invert the
distribution function, which is evaluated using NoncentralstudentsT.

Parameters

p – A double scalar value representing the probability for which the function is to be
evaluated.
idf – An int scalar value representing the number of degrees of freedom. This must
be positive.
delta – A double scalar value representing the noncentrality parameter.

Returns

A double scalar value. The probability that a noncentral Student’s t random variable
takes a value less than or equal to this returned value is p.

InverseNormal
static public double InverseNormal(double p)

Description

Evaluates the inverse of the normal (Gaussian) cumulative probability distribution
function.

Method InverseNormal evaluates the inverse of the distribution function, Φ, of a
standard normal (Gaussian) random variable, that is, InverseNormal (p) = Φ− 1(p),
where
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Φ (x) =
1√
2π

∫ x

−∞
e−t2/2dt

The value of the distribution function at the point x is the probability that the random
variable takes a value less than or equal to x. The standard normal distribution has a
mean of 0 and a variance of 1.
Parameter

p – A double specifying the probability at which the function is to be evaluated.

Returns

A double specifying the probability that a standard normal random variable takes a
value less than or equal to this value is p.

InverseRayleigh
static public double InverseRayleigh(double p, double alpha)

Description

Returns the inverse of the Rayleigh cumulative probability distribution function.
Parameters

p – A double scalar value representing the probability for which the inverse Rayleigh
function is to be evaluated.
alpha – A double scalar value representing the scale parameter.

Returns

A double scalar value. The probability that a Rayleigh random variable takes a value less
than or equal to this returned value is p.

InverseStudentsT
static public double InverseStudentsT(double p, double df)

Description

Returns the inverse of the Student’s t cumulative probability distribution function.
InverseStudentsT evaluates the inverse distribution function of a Student’s t random
variable with df degrees of freedom. Let v = df. If v equals 1 or 2, the inverse can be
obtained in closed form, if v is between 1 and 2, the relationship of a t to a beta random
variable is exploited and InverseBeta is used to evaluate the inverse; otherwise the
algorithm of Hill (1970) is used. For small values of v greater than 2, Hill’s algorithm
inverts an integrated expansion in 1/(1 + t2/v) of the t density. For larger values, an
asymptotic inverse Cornish-Fisher type expansion about normal deviates is used.
Parameters

p – A double specifying the probability for which the inverse Student’s t function is
to be evaluated.
df – A double specifying the number of degrees of freedom. This must be at least
one.
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Returns

A double specifying the probability that a Student’s t random variable takes a value less
than or equal to this value is p.

InverseUniform
static public double InverseUniform(double p, double aa, double bb)

Description

Returns the inverse of the uniform cumulative probability distribution function.

Parameters

p – A double scalar value representing the probability for which the inverse uniform
function is to be evaluated.

aa – A double scalar value representing the minimum value.

bb – A double scalar value representing the maximum value.

Returns

A double scalar value. The probability that a uniform random variable takes a value less
than or equal to this returned value is p.

InverseWeibull
static public double InverseWeibull(double p, double gamma, double alpha)

Description

Returns the inverse of the Weibull cumulative probability distribution function.

Parameters

p – A double scalar value representing the probability for which the inverse Weibull
function is to be evaluated.

gamma – A double scalar value representing the shape parameter.

alpha – A double scalar value representing the scale parameter.

Returns

A double scalar value. The probability that a Weibull random variable takes a value less
than or equal to this returned value is p.

LogNormal
static public double LogNormal(double x, double mu, double sigma)
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Description

Evaluates the standard lognormal cumulative probability distribution function.

F (x) =
1

xσ
√

2π

∫
1
t
e−

ln t−µ2

2σ2
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Parameters

x – A double scalar value representing the argument at which the function is to be
evaluated.

mu – A double scalar value representing the location parameter.

sigma – A double scalar value representing the shape parameter. sigma must be a
positive.

Returns

A double scalar value representing the probability that a standard lognormal random
variable takes a value less than or equal to x.

LogNormalProb
static public double LogNormalProb(double x, double mu, double sigma)

Description

Evaluates the standard lognormal probability density function.

F (x) =
1

xσ
√

2π
e−

(ln x−µ)2

2σ2

Parameters

x – A double scalar value representing the argument at which the function is to be
evaluated.

mu – A double scalar value representing the location parameter.

sigma – A double scalar value representing the shape parameter. sigma must be a
positive.

Returns

A double scalar value representing the probability density function at x.

Noncentralchi
static public double Noncentralchi(double chsq, double df, double alam)

Description

Evaluates the noncentral chi-squared cumulative probability distribution function.

Method Noncentralchi evaluates the distribution function, F, of a noncentral
chi-squared random variable with df degrees of freedom and noncentrality parameter
alam, that is, with ν = df, λ = alam, and x = chsq,

F (x) =
∞∑

i=0

e−λ/2 (λ/2)i

i!

∫ x

0

t(ν+2i)/2−1e−t/2

2(ν+2i)/2Γ
(

ν+2i
2

)dt

642 • Cdf Class IMSL C# Numerical Library



where Γ(·) is the gamma function. This is a series of central chi-squared distribution
functions with Poisson weights. The value of the distribution function at the point x is
the probability that the random variable takes a value less than or equal to x.

The noncentral chi-squared random variable can be defined by the distribution function
above, or alternatively and equivalently, as the sum of squares of independent normal
random variables. If the Yi have independent normal distributions with means µi and
variances equal to one and

X =
n∑

i=1

Yi
2

then X has a noncentral chi-squared distribution with n degrees of freedom and
noncentrality parameter equal to

n∑
i=1

µi
2

With a noncentrality parameter of zero, the noncentral chi-squared distribution is the
same as the chi-squared distribution.

Noncentralchi determines the point at which the Poisson weight is greatest, and then
sums forward and backward from that point, terminating when the additional terms are
sufficiently small or when a maximum of 1000 terms have been accumulated. The
recurrence relation 26.4.8 of Abramowitz and Stegun (1964) is used to speed the
evaluation of the central chi-squared distribution functions.
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Parameters

chsq – A double scalar value representing the argument at which the function is to
be evaluated.
df – A double scalar value representing the number of degrees of freedom. This
must be at least 0.5.
alam – A double scalar value representing the noncentrality parameter. This must
be nonnegative, and alam + df must be less than or equal to 200,000.
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Returns

A double scalar value representing the probability that a chi-squared random variable
takes a value less than or equal to chsq.

NoncentralstudentsT
static public double NoncentralstudentsT(double t, int idf, double delta)

Description

Evaluates the noncentral Student’s t cumulative probability distribution function.

Method NoncentralstudentsT evaluates the distribution function F of a noncentral t
random variable with idf degrees of freedom and noncentrality parameter delta; that is,
with ν = idf , δ = delta, and t0 = t,

F (t0) =
∫ t0

−∞

νν/2e−δ2/2

√
πΓ (ν/2) (ν + x2)(ν+1)/2

∞∑
i=0

Γ ((ν + i+ 1) /2)
(
δi

i!

)(
2x2

ν + x2

)i/2

dx

where Γ(·) is the gamma function. The value of the distribution function at the point t0 is
the probability that the random variable takes a value less than or equal to t0.

The noncentral t random variable can be defined by the distribution function above, or
alternatively and equivalently, as the ratio of a normal random variable and an
independent chi-squared random variable. If w has a normal distribution with mean δ and
variance equal to one, u has an independent chi-squared distribution with ν degrees of
freedom, and

x = w/
√
u/ν

then x has a noncentral t distribution with ν degrees of freedom and noncentrality
parameter δ.

The distribution function of the noncentral t can also be expressed as a double integral
involving a normal density function (see, for example, Owen 1962, page 108). The method
NoncentralstudentsT uses the method of Owen (1962, 1965), which uses repeated
integration by parts on that alternate expression for the distribution function.

Parameters

t – A double scalar value representing the argument at which the function is to be
evaluated.

idf – An int scalar value representing the number of degrees of freedom. This must
be positive.

delta – A double scalar value representing the noncentrality parameter.
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Returns

A double scalar value representing the probability that a noncentral Student’s t random
variable takes a value less than or equal to t.

Normal
static public double Normal(double x)

Description

Evaluates the normal (Gaussian) cumulative probability distribution function.

Method Normal evaluates the distribution function, Φ, of a standard normal (Gaussian)
random variable, that is,

Φ (x) =
1√
2π

∫ x

−∞
e−t2/2dt

The value of the distribution function at the point x is the probability that the random
variable takes a value less than or equal to x.

The standard normal distribution (for which Normal is the distribution function) has
mean of 0 and variance of 1. The probability that a normal random variable with mean µ
and variance σ2 is less than y s given by Normal evaluated at (y − µ)/σ.

Φ(x) is evaluated by use of the complementary error function, erfc. The relationship is:

Φ(x) = erfc(−x/
√

2.0)/2
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Parameter

x – A double specifying the argument at which the function is to be evaluated.

Returns

A double specifying the probability that a normal variable takes a value less than or
equal to x.
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Poisson
static public double Poisson(int k, double theta)

Description

Evaluates the Poisson cumulative probability distribution function.

Poisson evaluates the distribution function of a Poisson random variable with parameter
theta. theta, which is the mean of the Poisson random variable, must be positive. The
probability function (with θ = theta) is

f(x) = e−θθx/x! for x = 0, 1, 2, . . .

The individual terms are calculated from the tails of the distribution to the mode of the
distribution and summed. Poisson uses the recursive relationship

f (x+ 1) = f (x) (θ/ (x+ 1)), for x = 0, 1, 2, . . . k − 1

with f(0) = e−θ.

Parameters

k – An int specifying the argument for which the Poisson distribution function is to
be evaluated.

theta – A double specifying the mean of the Poisson distribution.

Returns

A double specifying the probability that a Poisson random variable takes a value less
than or equal to k.

PoissonProb
static public double PoissonProb(int k, double theta)

Description

Evaluates the Poisson probability density function.

Method PoissonProb evaluates the probability function of a Poisson random variable
with parameter theta. theta, which is the mean of the Poisson random variable, must be
positive. The probability function (with θ = theta) is

f(x) = e−θ θk/k!, for k = 0, 1, 2, . . .

PoissonProb evaluates this function directly, taking logarithms and using the log gamma
function.
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Parameters

k – An int specifying the argument for which the Poisson probability function is to
be evaluated.

theta – A double specifying the mean of the Poisson distribution.
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Returns

A double specifying the probability that a Poisson random variable takes a value equal to
k.

Rayleigh
static public double Rayleigh(double x, double alpha)

Description

Evaluates the Rayleigh cumulative probability distribution function.

Method Rayleigh is a special case of Weibull distribution function where the shape
parameter gamma is 2.0; that is,

F (x) = 1− e−
x2

2α2

where alpha is the scale parameter.
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Parameters

x – A double scalar value representing the argument at which the function is to be
evaluated. It must be non-negative.
alpha – A double scalar value representing the scale parameter.

Returns

A double scalar value representing the probability that a Rayleigh random variable takes
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a value less than or equal to x.

RayleighProb
static public double RayleighProb(double x, double alpha)

Description

Evaluates the Rayleigh probability density function.

Parameters

x – A double scalar value representing the argument at which the function is to be
evaluated. It must be non-negative.

alpha – A double scalar value representing the scale parameter.

Returns

A double scalar value representing the probability density function at x.

StudentsT
static public double StudentsT(double t, double df)

Description

Evaluates the Student’s t cumulative probability distribution function.

Method StudentsT evaluates the distribution function of a Student’s t random variable
with df degrees of freedom. If the square of t is greater than or equal to df, the
relationship of a t to an f random variable (and subsequently, to a beta random variable)
is exploited, and routine Beta is used. Otherwise, the method described by Hill (1970) is
used. If df is not an integer, if df is greater than 19, or if df is greater than 200, a
Cornish-Fisher expansion is used to evaluate the distribution function. If df is less than
20 and |t| is less than 2.0, a trigonometric series (see Abramowitz and Stegun 1964,
equations 26.7.3 and 26.7.4, with some rearrangement) is used. For the remaining cases, a
series given by Hill (1970) that converges well for large values of t is used.
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Parameters

t – A double specifying the argument at which the function is to be evaluated.
df – A double specifying the number of degrees of freedom. This must be at least
one.

Returns

A double specifying the probability that a Student’s t random variable takes a value less

Probability Distribution Functions and Inverses Cdf Class • 653



than or equal to t.

Uniform
static public double Uniform(double x, double aa, double bb)

Description

Evaluates the uniform cumulative probability distribution function.

Method Uniform evaluates the distribution function, F, of a uniform random variable
with location parameter aa and scale parameter bb; that is,

f(x)=


0, if x < aa
x−aa
bb−aa , if aa ≤ x ≤ bb
1, if x > bb
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Parameters

x – A double scalar value representing the argument at which the function is to be
evaluated.

aa – A double scalar value representing the location parameter.

bb – A double scalar value representing the scale parameter.
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Returns

A double scalar value representing the probability that a Uniform random variable takes
a value less than or equal to x.

Weibull
static public double Weibull(double x, double gamma, double alpha)

Description

Evaluates the Weibull cumulative probability distribution function.

Parameters

x – A double specifying the argument at which the function is to be evaluated. It
must be non-negative.

gamma – A double specifying the shape parameter.

alpha – A double specifying the scale parameter.

Returns

A double specifying the probability that a Weibull random variable takes a value less
than or equal to x.

WeibullProb
static public double WeibullProb(double x, double gamma, double alpha)

Description

Evaluates the Weibull probability density function.

Parameters

x – A double scalar value representing the argument at which the function is to be
evaluated. It must be non-negative.

gamma – A double scalar value representing the shape parameter.

alpha – A double scalar value representing the scale parameter.

Returns

A double scalar value, the probability density function at x.

Example: The Cumulative Distribution Functions

Various cumulative distribution functions are exercised. Their use in this example typifies the
manner in which other functions in the Cdf class would be used.

using System;
using Imsl.Stat;

public class CdfEx1
{
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public static void Main(String[] args)
{

double x, prob, result;
int p, q, k, n;
// Beta
x = .5;
p = 12;
q = 12;
result = Cdf.Beta(x, p, q);
Console.Out.WriteLine("beta(.5, 12, 12) is " + result);

// Inverse Beta
x = .5;
p = 12;
q = 12;
result = Cdf.InverseBeta(x, p, q);
Console.Out.WriteLine("inversebeta(.5, 12, 12) is " + result);

// binomial
k = 3;
n = 5;
prob = .95;
result = Cdf.Binomial(k, n, prob);
Console.Out.WriteLine("binomial(3, 5, .95) is " + result);

// Chi
x = .15;
n = 2;
result = Cdf.Chi(x, n);
Console.Out.WriteLine("chi(.15, 2) is " + result);

// Inverse Chi
prob = .99;
n = 2;
result = Cdf.InverseChi(prob, n);
Console.Out.WriteLine("inverseChi(.99, 2) is " + result);

}
}

Output

beta(.5, 12, 12) is 0.500000000000002
inversebeta(.5, 12, 12) is 0.5
binomial(3, 5, .95) is 0.0225925
chi(.15, 2) is 0.0722565136714471
inverseChi(.99, 2) is 9.21034037197624
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ICdfFunction Interface

Summary

Interface for the user-supplied cumulative distribution function to be used by InverseCdf and
ChiSquaredTest.

public interface Imsl.Stat.ICdfFunction

Method

CdfFunction
abstract public double CdfFunction(double p)

Description

User-supplied cumulative distribution function to be used by InverseCdf.

Parameter

p – A double scalar value representing the point at which the inverse CDF is desired.

Returns

A double scalar value representing the probability that a random variable for this CDF
takes a value less than or equal to this value is p.

InverseCdf Class

Summary

Inverse of user-supplied cumulative distribution function.

public class Imsl.Stat.InverseCdf

Property

Tolerance
public double Tolerance {get; set; }
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Description

The tolerance to be used as the convergence criterion.

When the relative change from one iteration to the next is less than tolerance,
convergence is assumed. The default value for tolerance is 0.0001.

Constructor

InverseCdf
public InverseCdf(Imsl.Stat.ICdfFunction cdf)

Description

Constructor for the inverse of a user-supplied cummulative distribution function.

The cdf function must be continuous and strictly monotone.

Parameter

cdf – A ICdfFunction object that contains the user-supplied function to be inverted.

Method

Eval
public double Eval(double p, double guess)

Description

Evaluates the inverse CDF function.

Cdf(InverseCdf) is ”close” to p.

Parameters

p – A double scalar value representing the point at which the inverse CDF is desired.

guess – A double scalar value representing an initial estimate of the inverse at p.

Returns

A double scalar value representing the inverse of the CDF at the point p.

Imsl.Stat.DidNotConvergeException id is thrown if the interation to find the inverse
of the CDF did not converge.

Description

Class InverseCdf evaluates the inverse of a continuous, strictly monotone function. Its most
obvious use is in evaluating inverses of continuous distribution functions that can be defined by
a user-supplied function, which implements the ICdfFunction interface. The inverse is
computed using regula falsi and/or bisection, possibly with the Illinois modification (see
Dahlquist and Bjorck 1974). A maximum of 100 iterations are performed.
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Example: Inverse of a User-Supplied Cumulative Distribution Function

In this example, InverseCdf is used to compute the point such that the probability is 0.9 that a
standard normal random variable is less than or equal to the computed point.

using System;
using Imsl.Stat;

public class InverseCdfEx1 : ICdfFunction
{

public double CdfFunction(double x)
{

return Cdf.Normal(x);
}

public static void Main(String[] args)
{

double p = 0.9; ;
ICdfFunction normal = new InverseCdfEx1();
InverseCdf inv = new InverseCdf(normal);
inv.Tolerance = 1.0e-10;
double x1 = inv.Eval(p, 0.0);
Console.Out.WriteLine

("The 90th percentile of a standard normal is " + x1);
}

}

Output

The 90th percentile of a standard normal is 1.2815515655446
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Types
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Random Class

Summary

Generate uniform and non-uniform random number distributions.

public class Imsl.Stat.Random : Random

Property

Multiplier
public System.Int64 Multiplier {get; set; }
Description

The multiplier for a linear congruential random number generator.

If not set, the multiplier has the value zero. If a multiplier is set then the linear
congruential generator, defined in the base class System.Random, is replaced by the
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generator

seed = (multiplier*seed) mod (231 − 1)

See Donald Knuth, The Art of Computer Programming, Volume 2, for guidelines in
choosing a multiplier. Some possible values are 16807, 397204094, 950706376.

Constructors

Random
public Random()

Description

Constructor for the Random number generator class.

Random
public Random(int seed)

Description

Constructor for the Random number generator class with supplied seed.

Parameter

seed – A int which represents the random number generator seed.

Random
public Random(Imsl.Stat.Random.BaseGenerator baseGenerator)

Description

Constructor for the Random number generator class with an alternate basic number
genrator.

Parameter

baseGenerator – A BaseGenerator used to override the method next.

Methods

Next
override public int Next(int maxValue)

Description

Returns a nonnegative pseudorandom int.

Parameter

maxValue – An int which specifies the upper bound of the random number to be
generated. maxValue must be greater than or equal to zero.
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Returns

An int greater than or equal to zero and less than maxValue.

Next
override public int Next(int minValue, int maxValue)

Description

Returns a nonnegative pseudorandom int in the specified range.

Parameters

minValue – An int which specifies the lower bound of the random number returned.

maxValue – An int which specifies the upper bound of the random number to be
generated. maxValue must be greater than or equal to zero.

Returns

An int greater than or equal to minValue and less than maxValue; that is, the range of
return values includes minValue but not maxValue. If minValue equals maxValue,
minValue is returned.

NextBeta
virtual public double NextBeta(double p, double q)

Description

Generate a pseudorandom number from a beta distribution.

Method NextBeta generates pseudorandom numbers from a beta distribution with
parameters p and q, both of which must be positive. The probability density function is

f (x) =
Γ (p+ q)
Γ (p) Γ (q)

xp−1 (1− x)q−1
for 0 ≤ x ≤ 1

where Γ(·) is the gamma function.

The algorithm used depends on the values of p and q. Except for the trivial cases of p = 1
or q = 1, in which the inverse CDF method is used, all of the methods use
acceptance/rejection. If p and q are both less than 1, the method of Johnk (1964) is used;
if either p or q is less than 1 and the other is greater than 1, the method of Atkinson
(1979) is used; if both p and q are greater than 1, algorithm BB of Cheng (1978), which
requires very little setup time, is used.

The value returned is less than 1.0 and greater than ε, where ε is the smallest positive
number such that 1.0− ε is less than 1.0.

Parameters

p – A double which specifies the first beta distribution parameter, p > 0.

q – A double which specifies the second beta distribution parameter, q > 0.
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Returns

A double which specifies a pseudorandom number from a beta distribution.

NextBinomial
virtual public int NextBinomial(int n, double p)

Description

Generate a pseudorandom number from a Binomial distribution.

NextBinomial generates pseudorandom numbers from a Binomial distribution with
parameters n and p. n and p must be positive, and p must be less than 1. The probability
function (with n = n and p = p) is

f (x) = (n
x) px (1− p)n−x

for x = 0, 1, 2, . . . , n.

The algorithm used depends on the values of n and p. If np < 10 or if p is less than a
machine epsilon, the inverse CDF technique is used; otherwise, the BTPE algorithm of
Kachitvichyanukul and Schmeiser (see Kachitvichyanukul 1982) is used. This is an
acceptance/rejection method using a composition of four regions. (TPE equals Triangle,
Parallelogram, Exponential, left and right.)

Parameters

n – A int which specifies the number of Bernoulli trials.

p – A double which specifies the probability of success on each trial, 0 < p < 1.

Returns

A int which specifies the pseudorandom number from a Binomial distribution.

NextCauchy
virtual public double NextCauchy()

Description

Generates a pseudorandom number from a Cauchy distribution.

The probability density function is

f (x) =
1

π(1 + x2)

Use of the inverse CDF technique would yield a Cauchy deviate from a uniform (0, 1)
deviate, u, as tan [π (u− .5)]. Rather than evaluating a tangent directly, however,
NextCauchy generates two uniform (-1, 1) deviates, x1 and x2. These values can be
thought of as sine and cosine values. If
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x2
1 + x2

2

is less than or equal to 1, then x1/x2 is delivered as the Cauchy deviate; otherwise, x1

and x2 are rejected and two new uniform (-1, 1) deviates are generated. This method is
also equivalent to taking the ratio of two independent normal deviates.

Deviates from the Cauchy distribution with median t and first quartile t - s, that is, with
density

f (x) =
s

π
[
s2 + (x− t)2

]
can be obtained by scaling the output from NextCauchy. To do this, first scale the output
from NextCauchy by S and then add T to the result.

Returns

A double which specifies a pseudorandom number from a Cauchy distribution.

NextChiSquared
virtual public double NextChiSquared(double df)

Description

Generates a pseudorandom number from a Chi-squared distribution.

NextChiSquared generates pseudorandom numbers from a chi-squared distribution with
df degrees of freedom. If df is an even integer less than 17, the chi-squared deviate r is
generated as

r = −2 ln
(

n

Π
i=1
ui

)

where n = df/2 and the ui are independent random deviates from a uniform (0, 1)
distribution. If df is an odd integer less than 17, the chi-squared deviate is generated in
the same way, except the square of a normal deviate is added to the expression above. If
df is greater than 16 or is not an integer, and if it is not too large to cause overflow in the
gamma random number generator, the chi-squared deviate is generated as a special case
of a gamma deviate, using NextGamma. If overflow would occur in NextGamma, the
chi-squared deviate is generated in the manner described above, using the logarithm of
the product of uniforms, but scaling the quantities to prevent underflow and overflow.

Parameter

df – A double which specifies the number of degrees of freedom. It must be positive.
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Returns

A double which specifies a pseudorandom number from a Chi-squared distribution.

NextDouble
override public double NextDouble()

Description

Generates the next pseudorandom number.

If the multiplier is set then the multiplicative congruential method is used. Otherwise,
super.Next(bits) is used. Where bits is the number of random bits required.

Returns

A double which specifies the next pseudorandom value from this random number
generator’s sequence.

NextExponential
virtual public double NextExponential()

Description

Generates a pseudorandom number from a standard exponential distribution.

The probability density function is f(x) = e−x; for x > 0.

NextExponential uses an antithetic inverse CDF technique; that is, a uniform random
deviate U is generated and the inverse of the exponential cumulative distribution function
is evaluated at 1.0 - U to yield the exponential deviate.

Deviates from the exponential distribution with mean THETA can be generated by using
NextExponential and then multiplying the result by THETA.

Returns

A double which specifies a pseudorandom number from a standard exponential
distribution.

NextExponentialMix
virtual public double NextExponentialMix(double theta1, double theta2,
double p)

Description

Generate a pseudorandom number from a mixture of two exponential distributions.

The probability density function is

f (x) =
p

θ
e−x/θ1 +

1− p
θ2

e−x/θ2 for x > 0

where p = p, θ1 = theta1, and θ2 = theta2.
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In the case of a convex mixture, that is, the case 0 < p < 1, the mixing parameter p is
interpretable as a probability; and NextExponentialMix with probability p generates an
exponential deviate with mean θ1, and with probability 1 - p generates an exponential
with mean θ2. When p is greater than 1, but less than θ1/(θ1 − θ2), then either an
exponential deviate with mean θ2 or the sum of two exponentials with means θ1 and θ2 is
generated. The probabilities are q = p− (p− 1)θ1/θ2 and 1 - q, respectively, for the single
exponential and the sum of the two exponentials.

Parameters

theta1 – A double which specifies the mean of the exponential distribution that has
the larger mean.

theta2 – A double which specifies the mean of the exponential distribution that has
the smaller mean. theta2 must be positive and less than or equal to theta1.

p – A double which specifies the mixing parameter. It must satisfy
0 ≤ p ≤ theta1/(theta1− theta2).

Returns

A double which specifies a pseudorandom number from a mixture of the two exponential
distributions.

NextExtremeValue
virtual public double NextExtremeValue(double mu, double beta)

Description

Generate a pseudorandom number from an extreme value distribution.

Parameters

mu – A double scalar value representing the location parameter.

beta – A double scalar value representing the scale parameter.

Returns

A double pseudorandom number from an extreme value distribution

NextF
virtual public double NextF(double dfn, double dfd)

Description

Generate a pseudorandom number from the F distribution.

Parameters

dfn – A double, the numerator degrees of freedom. It must be positive.

dfd – A double, the denominator degrees of freedom. It must be positive.
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Returns

A double, a pseudorandom number from an F distribution

NextFloat
public float NextFloat()

Description

Generates the next pseudorandom number.
If the multiplier is set then the multiplicative congruential method is used. Otherwise,
super.Next(bits) is used. Where bits is the number of random bits required.
Returns

A float which specifies the next pseudorandom value from this random number
generator’s sequence.

NextGamma
virtual public double NextGamma(double a)

Description

Generates a pseudorandom number from a standard gamma distribution.
Method NextGamma generates pseudorandom numbers from a gamma distribution with
shape parameter a. The probability density function is

P =
1

Γ (a)

∫ x

o

e−tta−1dt

Various computational algorithms are used depending on the value of the shape
parameter a. For the special case of a = 0.5, squared and halved normal deviates are
used; and for the special case of a = 1.0, exponential deviates (from method
NextExponential) are used. Otherwise, if a is less than 1.0, an acceptance-rejection
method due to Ahrens, described in Ahrens and Dieter (1974), is used; if a is greater than
1.0, a ten-region rejection procedure developed by Schmeiser and Lal (1980) is used.
The Erlang distribution is a standard gamma distribution with the shape parameter
having a value equal to a positive integer; hence, NextGamma generates pseudorandom
deviates from an Erlang distribution with no modifications required.
Parameter

a – A double which specifies the shape parameter of the gamma distribution. It
must be positive.

Returns

A double which specifies a pseudorandom number from a standard gamma distribution.

NextGeometric
virtual public int NextGeometric(double p)
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Description

Generate a pseudorandom number from a geometric distribution.

NextGeometric generates pseudorandom numbers from a geometric distribution with
parameter p, where P =p is the probability of getting a success on any trial. A geometric
deviate can be interpreted as the number of trials until the first success (including the
trial in which the first success is obtained). The probability function is

f(x) = P (1− P )x−1

for x = 1, 2, . . . and 0 < P < 1 .

The geometric distribution as defined above has mean 1/P.

The i-th geometric deviate is generated as the smallest integer not less than
log(Ui)/log(1− P ), where the Ui are independent uniform (0, 1) random numbers (see
Knuth, 1981).

The geometric distribution is often defined on 0, 1, 2, ..., with mean (1 - P)/P. Such
deviates can be obtained by subtracting 1 from each element returned value.

Parameter

p – A double which specifies the probability of success on each trial, 0 < p ≤ 1.

Returns

A int which specifies a pseudorandom number from a geometric distribution.

NextHypergeometric
virtual public int NextHypergeometric(int n, int m, int l)

Description

Generate a pseudorandom number from a hypergeometric distribution.

Method NextHypergeometric generates pseudorandom numbers from a hypergeometric
distribution with parameters n, m, and l. The hypergeometric random variable x can be
thought of as the number of items of a given type in a random sample of size n that is
drawn without replacement from a population of size l containing m items of this type.
The probability function is

f (x) =
(m
x )
(
l−m
n−x

)
(l
n)

for x = max(0, n− l +m), 1, 2, . . . ,min(n,m).

If the hypergeometric probability function with parameters n, m, and l evaluated at n - l
+ m (or at 0 if this is negative) is greater than the machine epsilon, and less than 1.0
minus the machine epsilon, then NextHypergeometric uses the inverse CDF technique.
The method recursively computes the hypergeometric probabilities, starting at
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x = max(0, n− l+m) and using the ratio f (x = x + 1)/f(x = x) (see Fishman 1978, page
457).

If the hypergeometric probability function is too small or too close to 1.0, then
NextHypergeometric generates integer deviates uniformly in the interval [1, l − i], for
i = 0, 1, . . .; and at the I-th step, if the generated deviate is less than or equal to the
number of special items remaining in the lot, the occurrence of one special item is tallied
and the number of remaining special items is decreased by one. This process continues
until the sample size or the number of special items in the lot is reached, whichever comes
first. This method can be much slower than the inverse CDF technique. The timing
depends on n. If n is more than half of l (which in practical examples is rarely the case),
the user may wish to modify the problem, replacing n by l - n, and to consider the
deviates to be the number of special items not included in the sample.

Parameters

n – A int which specifies the number of items in the sample, n > 0.

m – A int which specifies the number of special items in the population, or lot,
m > 0.

l – A int which specifies the number of items in the lot, l > max(n,m).

Returns

A int which specifies the number of special items in a sample of size n drawn without
replacement from a population of size l that contains m such special items.

NextLogarithmic
virtual public int NextLogarithmic(double a)

Description

Generate a pseudorandom number from a logarithmic distribution.

Method NextLogarithmic generates pseudorandom numbers from a logarithmic
distribution with parameter a. The probability function is

f (x) = − ax

x ln (1− a)

for x = 1, 2, 3, . . ., and 0 < a < 1.

The methods used are described by Kemp (1981) and depend on the value of a. If a is
less than 0.95, Kemp’s algorithm LS, which is a ”chop-down” variant of an inverse CDF
technique, is used. Otherwise, Kemp’s algorithm LK, which gives special treatment to the
highly probable values of 1 and 2, is used.

Parameter

a – A double which specifies the parameter of the logarithmic distribution,
0 < a < 1.
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Returns

A int which specifies a pseudorandom number from a logarithmic distribution.

NextLogNormal
virtual public double NextLogNormal(double mean, double stdev)

Description

Generate a pseudorandom number from a lognormal distribution.

Method NextLogNormal generates pseudorandom numbers from a lognormal distribution
with parameters mean and stdev. The scale parameter in the underlying normal
distribution, stdev, must be positive. The method is to generate normal deviates with
mean mean and standard deviation stdev and then to exponentiate the normal deviates.

With µ = mean and σ = stdev, the probability density function for the lognormal
distribution is

f (x) =
1

σx
√

2π
exp

[
− 1

2σ2
(lnx− µ)2

]
for x > 0

The mean and variance of the lognormal distribution are exp(µ+ σ2/2) and
exp(2µ+ 2σ2)− exp(2µ+ σ2), respectively.

Parameters

mean – A double which specifies the mean of the underlying normal distribution.

stdev – A double which specifies the standard deviation of the underlying normal
distribution. It must be positive.

Returns

A double which specifies a pseudorandom number from a lognormal distribution.

NextMultivariateNormal
virtual public double[] NextMultivariateNormal(int k, Imsl.Math.Cholesky
matrix)

Description

Generate pseudorandom numbers from a multivariate normal distribution.

NextMultivariateNormal generates pseudorandom numbers from a multivariate normal
distribution with mean vector consisting of all zeroes and variance-covariance matrix
whose Cholesky factor (or ”square root”) is matrix; that is, matrix is an upper triangular
matrix such that the transpose of matrix times matrix is the variance-covariance matrix.
First, independent random normal deviates with mean 0 and variance 1 are generated,
and then the matrix containing these deviates is post-multiplied by matrix.

Deviates from a multivariate normal distribution with means other than zero can be
generated by using NextMultivariateNormal and then by adding the means to the
deviates.
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Parameters

k – A int which specifies the length of the multivariate normal vectors.
matrix – The Cholesky factorization of the variance-covariance matrix of order k.

Returns

A double array which contains the pseudorandom numbers from a multivariate normal
distribution.

NextNegativeBinomial
virtual public int NextNegativeBinomial(double rk, double p)

Description

Generate a pseudorandom number from a negative Binomial distribution.

Method NextNegativeBinomial generates pseudorandom numbers from a negative
Binomial distribution with parameters rk and p. rk and p must be positive and p must be
less than 1. The probability function with (r = rk and p = p) is

f (x) =
(
r + x− 1

x

)
(1− p)r

px

for x = 0, 1, 2, . . ..

If r is an integer, the distribution is often called the Pascal distribution and can be
thought of as modeling the length of a sequence of Bernoulli trials until r successes are
obtained, where p is the probability of getting a success on any trial. In this form, the
random variable takes values r, r + 1, r + 2, . . . and can be obtained from the negative
binomial random variable defined above by adding r to the negative binomial variable.
This latter form is also equivalent to the sum of r geometric random variables defined as
taking values 1, 2, 3, . . ..

If rp/(1 - p) is less than 100 and (1− p)r is greater than the machine epsilon,
NextNegativeBinomial uses the inverse CDF technique; otherwise, for each negative
binomial deviate, NextNegativeBinomial generates a gamma (r, p/(1 - p)) deviate y and
then generates a Poisson deviate with parameter y.

Parameters

rk – A double which specifies the negative binomial parameter, rk > 0.
p – A double which specifies the probability of success on each trial. It must be
greater than machine precision and less than one.

Returns

A int which specifies the pseudorandom number from a negative binomial distribution. If
rk is an integer, the deviate can be thought of as the number of failures in a sequence of
Bernoulli trials before rk successes occur.

NextNormal
virtual public double NextNormal()
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Description

Generate a pseudorandom number from a standard normal distribution using an inverse
CDF method.

In this method, a uniform (0,1) random deviate is generated, then the inverse of the
normal distribution function is evaluated at that point using InverseNormal. This
method is slower than the acceptance/rejection technique used in NextNormalAR to
generate standard normal deviates. Deviates from the normal distribution with mean xm

and standard deviation xstd can be obtained by scaling the output from NextNormal. To
do this first scale the output of NextNormal by xstd and then add xm to the result.

Returns

A double which represents a pseudorandom number from a standard normal distribution.

NextNormalAR
virtual public double NextNormalAR()

Description

Generate a pseudorandom number from a standard normal distribution using an
acceptance/rejection method.

NextNormalAR generates pseudorandom numbers from a standard normal (Gaussian)
distribution using an acceptance/rejection technique due to Kinderman and Ramage
(1976). In this method, the normal density is represented as a mixture of densities over
which a variety of acceptance/rejection methods due to Marsaglia (1964), Marsaglia and
Bray (1964), and Marsaglia, MacLaren, and Bray (1964) are applied. This method is
faster than the inverse CDF technique used in NextNormal to generate standard normal
deviates.

Deviates from the normal distribution with mean xm and standard deviation xstd can be
obtained by scaling the output from NextNormalAR. To do this first scale the output of
NextNormalAR by xstd and then add xm to the result.

Returns

A double which represents a pseudorandom number from a standard normal distribution.

NextPoisson
virtual public int NextPoisson(double theta)

Description

Generate a pseudorandom number from a Poisson distribution.

Method NextPoisson generates pseudorandom numbers from a Poisson distribution with
parameter theta. theta, which is the mean of the Poisson random variable, must be
positive. The probability function (with θ = theta) is

f(x) = e−θ θx/x!
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for x = 0, 1, 2, . . .

If theta is less than 15, NextPoisson uses an inverse CDF method; otherwise the PTPE
method of Schmeiser and Kachitvichyanukul (1981) (see also Schmeiser 1983) is used.

The PTPE method uses a composition of four regions, a triangle, a parallelogram, and two
negative exponentials. In each region except the triangle, acceptance/rejection is used.
The execution time of the method is essentially insensitive to the mean of the Poisson.

Parameter

theta – A double which specifies the mean of the Poisson distribution, theta > 0.

Returns

A int which specifies a pseudorandom number from a Poisson distribution.

NextRayleigh
virtual public double NextRayleigh(double alpha)

Description

Generate a pseudorandom number from a Rayleigh distribution.

Method nextRayleigh generates pseudorandom numbers from a Rayleigh distribution
with scale parameter alpha.

Parameter

alpha – A double which specifies the scale parameter of the Rayleigh distribution

Returns

A double, a pseudorandom number from a Rayleigh distribution

NextStudentsT
virtual public double NextStudentsT(double df)

Description

Generate a pseudorandom number from a Student’s t distribution.

NextStudentsT generates pseudo-random numbers from a Student’s t distribution with
df degrees of freedom, using a method suggested by Kinderman, Monahan, and Ramage
(1977). The method (”TMX” in the reference) involves a representation of the t density
as the sum of a triangular density over (-2, 2) and the difference of this and the t density.
The mixing probabilities depend on the degrees of freedom of the t distribution. If the
triangular density is chosen, the variate is generated as the sum of two uniforms;
otherwise, an acceptance/rejection method is used to generate a variate from the
difference density.

For degrees of freedom less than 100, NextStudentsT requires approximately twice the
execution time as NextNormalAR, which generates pseudorandom normal deviates. The
execution time of NextStudentsT increases very slowly as the degrees of freedom increase.
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Since for very large degrees of freedom the normal distribution and the t distribution are
very similar, the user may find that the difference in the normal and the t does not
warrant the additional generation time required to use NextStudentsT instead of
NextNormalAR.

Parameter

df – A double which specifies the number of degrees of freedom. It must be positive.

Returns

A double which specifies a pseudorandom number from a Student’s t distribution.

NextTriangular
virtual public double NextTriangular()

Description

Generate a pseudorandom number from a triangular distribution on the interval (0,1).

The probability density function is f(x) = 4x, for 0 ≤ x ≤ .5, and f(x) = 4(1− x), for
.5 < x ≤ 1. NextTriangular uses an inverse CDF technique.

Returns

A double which specifies a pseudorandom number from a triangular distribution on the
interval (0,1).

NextVonMises
virtual public double NextVonMises(double c)

Description

Generate a pseudorandom number from a von Mises distribution.

Method NextVonMises generates pseudorandom numbers from a von Mises distribution
with parameter c, which must be positive. With c = C, the probability density function is

f (x) =
1

2πI0 (c)
exp [c cos (x)] for − π < x < π

where I0(c) is the modified Bessel function of the first kind of order 0. The probability
density equals 0 outside the interval (−π, π).

The algorithm is an acceptance/rejection method using a wrapped Cauchy distribution as
the majorizing distribution. It is due to Best and Fisher (1979).

Parameter

c – A double which specifies the parameter of the von Mises distribution,
p > 7.4e− 9.
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Returns

A double which specifies a pseudorandom number from a von Mises distribution.

NextWeibull
virtual public double NextWeibull(double a)

Description

Generate a pseudorandom number from a Weibull distribution.

Method NextWeibull generates pseudorandom numbers from a Weibull distribution with
shape parameter a. The probability density function is

f (x) = AxA−1e−xA

for x ≥ 0

NextWeibull uses an antithetic inverse CDF technique to generate a Weibull variate; that
is, a uniform random deviate U is generated and the inverse of the Weibull cumulative
distribution function is evaluated at 1.0 - u to yield the Weibull deviate.

Deviates from the two-parameter Weibull distribution with shape parameter a can be
generated by using NextWeibull and then multiplying the result by b.

The Rayleigh distribution with probability density function,

r (x) =
1
α2
x e(−x2/2α2) for x ≥ 0

is the same as a Weibull distribution with shape parameter a equal to 2 and scale
parameter b equal to

√
2α

hence, NextWeibull and simple multiplication can be used to generate Rayleigh deviates.

Parameter

a – A double which specifies the shape parameter of the Weibull distribution, a > 0.

Returns

A double which specifies a pseudorandom number from a Weibull distribution.

Skip
virtual public void Skip(int n)
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Description

Resets the seed to skip ahead in the base linear congruential generator.

This method can be used only if a linear congruential multiplier is explicitly defined by a
call to Multiplier (p. 661).

The method skips ahead in the deviates returned by the protected method Random.Next.
The public methods use Next(int) as their source of uniform random deviates. Some
methods call it more than once. For instance, each call to NextDouble (p. 666) calls it
twice.

Parameter

n – A int which specifies the number of random deviates to skip.

Description

The non-uniform distributions are generated from a uniform distribution. By default, this class
uses the uniform distribution generated by the base class System.Random. If the multiplier is
set in this class then a multiplicative congruential method is used. The form of the generator is

xi ≡ cxi−1mod(231 − 1)

Each xi is then scaled into the unit interval (0,1). If the multiplier, c, is a primitive root
modulo 231 − 1 (which is a prime), then the generator will have a maximal period of 231 − 2.
There are several other considerations, however. See Knuth (1981) for a good general
discussion. Possible values for c are 16807, 397204094, and 950706376. The selection is made by
the property Multiplier (p. 661). Evidence suggests that the performance of 950706376 is best
among these three choices (Fishman and Moore 1982).

Alternatively, one can select a 32-bit or 64-bit Mersenne Twister generator by first instantiating
Imsl.Stat.MersenneTwister (p. 679) or Imsl.Stat.MersenneTwister64 (p. 683). These generators
have a period of 219937 − 1 and a 623-dimensional equidistribution property. See Matsumoto et
al. 1998 for details.

The generation of uniform (0,1) numbers is done by the method NextFloat (p. 668).

Example: Random Number Generation

In this example, a discrete normal random sample of size 1000 is generated via NextNormal.
After the ChiSquaredTest constructor is called, the random observations are added to the test
one at a time to simulate streaming data. The Chi-squared test is performed using Cdf.Normal
as the cumulative distribution function object to see how well the random numbers fit the
normal distribution.

using System;
using Imsl.Stat;

public class RandomEx1 : ICdfFunction
{

public double CdfFunction(double x)
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{
return Cdf.Normal(x);

}

public static void Main(String[] args)
{

int nObservations = 1000;
Imsl.Stat.Random r = new Imsl.Stat.Random(123457);
ICdfFunction normal = new RandomEx1();
ChiSquaredTest test = new ChiSquaredTest(normal, 10, 0);
for (int k = 0; k < nObservations; k++)
{

test.Update(r.NextNormal(), 1.0);
}

double p = test.P;
Console.Out.WriteLine("The P-value is " + p);

}
}

Output

The P-value is 0.496307043723263

Random.BaseGenerator Interface

Summary

Base pseudorandom number.

public interface Imsl.Stat.Random.BaseGenerator

Methods

Next
abstract public int Next()

Description

Generates the next pseudorandom number.

Returns

The next pseudorandom value from this random number generator’s sequence.

NextDouble
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abstract public double NextDouble()

NextFloat
abstract public float NextFloat()

MersenneTwister Class

Summary

A 32-bit Mersenne Twister generator.

public class Imsl.Stat.MersenneTwister : Imsl.Stat.Random.BaseGenerator,
ICloneable

Constructors

MersenneTwister
public MersenneTwister(int s)

Description

Initializes the 32-bit Mersenne Twister generator using a seed.

Parameter

s – An int which contains the seed that is used to initialize the 32-bit Mersenne
Twister generator.

MersenneTwister
public MersenneTwister(System.UInt32 s)

Description

Initializes the 32-bit Mersenne Twister generator using a seed.

Parameter

s – A uint which contains the seed that is used to initialize the 32-bit Mersenne
Twister generator.

MersenneTwister
public MersenneTwister(int[] key)

Description

Initializes the 32-bit Mersenne Twister generator using an array.
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Parameter

key – An int array used to initialize the 32-bit Mersenne Twister generator.

MersenneTwister
public MersenneTwister(System.UInt32[] key)

Description

Initializes the 32-bit Mersenne Twister generator using an array.

Parameter

key – A uint array used to initialize the 32-bit Mersenne Twister generator.

Methods

Clone
Final public Object Clone()

Description

Returns a clone of this object.

Returns

An Object which is a clone of this MersenneTwister object.

Next
virtual public int Next()

Description

Returns a nonnegative pseudorandom int.

Returns

An int greater than or equal to zero and less than System.Int32.MaxValue.

NextDouble
virtual public double NextDouble()

Description

Returns a random number between 0.0 and 1.0.

Only the first 32 bits of the double are pseudorandom.

Returns

A double greater than or equal to 0.0, and less than 1.0.

NextFloat
virtual public float NextFloat()
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Description

Returns a random number between 0.0 and 1.0.

Returns

A float greater than or equal to 0.0, and less than 1.0.

Description

By default, the class Imsl.Stat.Random (p. 661) uses the uniform distribution generated by the
base class System.Random. Alternatively, one can instantiate Imsl.Stat.MersenneTwister (p.
679) or Imsl.Stat.MersenneTwister64 (p. 683) to generate uniform psuedorandom numbers via
the Mersenne Twister algorithm. These generators have a period of 219937 − 1 and a
623-dimensional equidistribution property. See Matsumoto et al. 1998 for details. The series of
random numbers can be generated using a seed for initialization or by using an array of type
int or This generator can be used to generate non-uniform distributions by creating an
Imsl.Stat.Random (p. 661) object using an instance of this class as an argument to the
constructor. One can also save the state of the generator at initialization to be re-used later.

This C# code was translated from the the following C program.

A C-program for MT19937, with initialization improved 2002/1/26. Coded by Takuji
Nishimura and Makoto Matsumoto.

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura, All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. The names of its contributors may not be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
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Any feedback is very welcome.

http://www.math.sci.hiroshima-u.ac.jp/m̃-mat/MT/emt.html

mailto: m-mat@math.sci.hiroshima-u.ac.jp

Example: Mersenne Twister Random Number Generation

In this example, four simulation streams are generated. The first series is generated with the
seed used for initialization. The second series is generated using an array for initialization. The
third series is obtained by resetting the generator back to the state it had at the beginning of
the second stream. Therefore, the second and third streams are identical. The fourth stream is
obtained by resetting the generator back to its original, uninitialized state, and having it
reinitialize using the seed. The first and fourth streams are therefore the same.

using System;
using System.IO;
using System.Runtime.Serialization;
using System.Runtime.Serialization.Formatters.Binary;
using Imsl.Stat;

public class MersenneTwisterEx1
{

/// <summary>
/// The main entry point for the application.
/// </summary>
[STAThread]
static void Main(string[] args)
{

int nr = 4;
double[] r = new double[nr];
int s = 123457;

/* Initialize MersenneTwister with a seed */
MersenneTwister mt1 = new MersenneTwister(s);
MersenneTwister mt2 = (MersenneTwister) mt1.Clone();

/* Save the state of MersenneTwister */
Stream stm = new FileStream("mt", FileMode.Create);
IFormatter fmt = new BinaryFormatter();
fmt.Serialize(stm,mt1);
stm.Flush();
stm.Close();

Imsl.Stat.Random rndm = new Imsl.Stat.Random(mt1);

/* Get the next five random numbers */
for (int k=0; k < nr; k++)
{

r[k] = rndm.NextDouble();
}

Console.WriteLine(" First Stream Output");
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Console.WriteLine(r[0]+" "+r[1]+" "+r[2]+" "+r[3]);

/* Check the cloned copy against the original */
Imsl.Stat.Random rndm2 = new Imsl.Stat.Random(mt2);
for (int k=0; k < nr; k++)
{

r[k] = rndm2.NextDouble();
}

Console.WriteLine("\n Clone Stream Output");
Console.WriteLine(r[0]+" "+r[1]+" "+r[2]+" "+r[3]);

/* Check the serialized copy against the original */
System.IO.Stream stm2 = new FileStream("mt", FileMode.Open);
IFormatter fmt2 = new BinaryFormatter();
mt2 = (MersenneTwister)fmt2.Deserialize(stm2);
stm2.Close();

Imsl.Stat.Random rndm3 = new Imsl.Stat.Random(mt2);
for (int k=0; k < nr; k++)
{

r[k] = rndm3.NextDouble();
}
Console.WriteLine("\n Serialized Stream Output");
Console.WriteLine(r[0]+" "+r[1]+" "+r[2]+" "+r[3]);

}
}

Output

First Stream Output
0.434745062375441 0.352208853699267 0.0138511140830815 0.20914130914025

Clone Stream Output
0.434745062375441 0.352208853699267 0.0138511140830815 0.20914130914025

Serialized Stream Output
0.434745062375441 0.352208853699267 0.0138511140830815 0.20914130914025

MersenneTwister64 Class

Summary

A 64-bit Mersenne Twister generator.

public class Imsl.Stat.MersenneTwister64 : Imsl.Stat.Random.BaseGenerator,
ICloneable
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Constructors

MersenneTwister64
public MersenneTwister64(int seed)

Description

Initializes the 64-bit Mersenne Twister generator using a seed.

Parameter

seed – An int which contains the seed that is used to initialize the 64-bit Mersenne
Twister generator.

MersenneTwister64
public MersenneTwister64(System.UInt64 seed)

Description

Initializes the 64-bit Mersenne Twister generator using a seed.

Parameter

seed – A ulong which represents the seed used to initialize the 64-bit Mersenne
Twister generator.

MersenneTwister64
public MersenneTwister64(int[] key)

Description

Initializes the 64-bit Mersenne Twister generator with supplied array.

Parameter

key – A int array used to initialize the 64-bit Mersenne Twister generator.

MersenneTwister64
public MersenneTwister64(System.UInt64[] key)

Description

Initializes the 64-bit Mersenne Twister generator with supplied array.

Parameter

key – A ulong array used to initialize the 64-bit Mersenne Twister generator.

Methods

Clone
Final public Object Clone()
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Description

Returns a clone of this object.

Returns

An Object which is a clone of this MersenneTwister64 object.

Next
virtual public int Next()

Description

Returns a nonnegative random number.

Returns

A 32-bit signed integer greater than or equal to zero.

NextDouble
virtual public double NextDouble()

Description

Returns a random number between 0.0 and 1.0.

Returns

A double greater than or equal to 0.0, and less than 1.0.

NextFloat
virtual public float NextFloat()

Description

Returns a random number between 0.0 and 1.0.

Returns

A float greater than or equal to 0.0, and less than 1.0.

NextLong
virtual public System.Int64 NextLong()

Description

Generates the next pseudorandom, uniformly distributed long value from this random
number generator’s sequence.

Returns

A long from this random number generator’s sequence.
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Description

MersenneTwister64 generates uniform pseudorandom 64-bit numbers with a period of
219937 − 1 and a 623-dimensional equidistribution property. See Matsumoto et al. 1998 for
details.

Since 64-bit numbers are generated, all of the bits of both nextFloat and nextDouble are
pseudorandom.

The series of random numbers can be generated using a seed for initialization or by using an
array of type int. One can also save the state of the generator at initialization to be re-used
later.

This C# code was translated from the the following C program.

A C-program for MT19937, with initialization improved 2002/1/26. Coded by Takuji
Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init genrand(seed) or init by array(init key,
key length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura, All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. The names of its contributors may not be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.

http://www.math.sci.hiroshima-u.ac.jp/m̃-mat/MT/emt.html
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email: m-mat@math.sci.hiroshima-u.ac.jp

Example: Mersenne Twister Random Number Generation

In this example, four simulation streams are generated. The first series is generated with the
seed used for initialization. The second series is generated using an array for initialization. The
third series is obtained by resetting the generator back to the state it had at the beginning of
the second stream. Therefore, the second and third streams are identical. The fourth stream is
obtained by resetting the generator back to its original, uninitialized state, and having it
reinitialize using the seed. The first and fourth streams are therefore the same.

using System;
using System.IO;
using System.Runtime.Serialization;
using System.Runtime.Serialization.Formatters.Binary;
using Imsl.Stat;

public class MersenneTwister64Ex1
{

/// <summary>
/// The main entry point for the application.
/// </summary>
[STAThread]
static void Main(string[] args)
{

int nr = 4;
double[] r = new double[nr];
int s = 123457;

/* Initialize MersenneTwister64 with a seed */
MersenneTwister64 mt1 = new MersenneTwister64(s);
MersenneTwister64 mt2 = (MersenneTwister64) mt1.Clone();

/* Save the state of MersenneTwister64 */
Stream stm = new FileStream("mt", FileMode.Create);
IFormatter fmt = new BinaryFormatter();
fmt.Serialize(stm,mt1);
stm.Flush();
stm.Close();

Imsl.Stat.Random rndm = new Imsl.Stat.Random(mt1);

/* Get the next five random numbers */
for (int k=0; k < nr; k++)
{

r[k] = rndm.NextDouble();
}

Console.WriteLine(" First Stream Output");
Console.WriteLine(r[0]+" "+r[1]+" "+r[2]+" "+r[3]);

/* Check the cloned copy against the original */
Imsl.Stat.Random rndm2 = new Imsl.Stat.Random(mt2);
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for (int k=0; k < nr; k++)
{

r[k] = rndm2.NextDouble();
}

Console.WriteLine("\n Clone Stream Output");
Console.WriteLine(r[0]+" "+r[1]+" "+r[2]+" "+r[3]);

/* Check the serialized copy against the original */
System.IO.Stream stm2 = new FileStream("mt", FileMode.Open);
IFormatter fmt2 = new BinaryFormatter();
mt2 = (MersenneTwister64)fmt2.Deserialize(stm2);
stm2.Close();

Imsl.Stat.Random rndm3 = new Imsl.Stat.Random(mt2);
for (int k=0; k < nr; k++)
{

r[k] = rndm3.NextDouble();
}
Console.WriteLine("\n Serialized Stream Output");
Console.WriteLine(r[0]+" "+r[1]+" "+r[2]+" "+r[3]);

}
}

Output

First Stream Output
0.579916541818503 0.940114746325065 0.710159376724905 0.163995293979278

Clone Stream Output
0.579916541818503 0.940114746325065 0.710159376724905 0.163995293979278

Serialized Stream Output
0.579916541818503 0.940114746325065 0.710159376724905 0.163995293979278

FaureSequence Class

Summary

Generates the low-discrepancy Faure sequence.

public class Imsl.Stat.FaureSequence : Imsl.Stat.IRandomSequence
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Properties

Base
public int Base {get; }
Description

The base.

Dimension
Final public int Dimension {get; }

Description

Returns the dimension of the sequence.

Skip
public int Skip {get; }
Description

Returns the number of points skipped at the beginning of the sequence.

Constructors

FaureSequence
public FaureSequence(int dimension)

Description

Creates a Faure sequence with the default base.

The base defaults to the smallest prime equal to or greater than dimension.

Parameter

dimension – An int which specifies the dimension of the sequence.

FaureSequence
public FaureSequence(int dimension, int baseSequence, int nSkip)

Description

Creates a Faure sequence.

If nSkip is negative then basem/2−1, where m is the number of digits needed to represent
the largest Int32 in the base, points are skipped.
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Parameters

dimension – An int which specifies the dimension of the sequence.

baseSequence – A int which specifies the smallest prime number greater than or
equal to dimension.

nSkip – An int which specifies the number of initial points to skip.

Methods

ComputeParameters
void ComputeParameters()

Description

Compute needed parameters.

NextDouble
public double NextDouble()

Description

Returns the first value of the next point in the sequence.

This method is intended for use when dimension is 1.

Returns

A double array which specifies the next sequence value.

NextPoint
Final public double[] NextPoint()

Description

Returns the next point in the sequence.

Returns

A double array which specifies the next point in the sequence.

NextPrime
static public int NextPrime(int n)

Description

Returns the smallest prime greater than or equal to n.

If n is less than or equal to 2 then 2 is returned.

Parameter

n – An int which specifies the first number to try as a prime.
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Returns

An int which specifies a prime greater than or equal to n.

Description

Discrepancy measures the deviation from uniformity of a point set.

The discrepancy of the point set x1, . . . , xn ∈ [0, 1]d, d ≥ 1, is

D(d)
n = sup

E

∣∣∣∣A(E;n)
n

− λ(E)
∣∣∣∣ ,

where the supremum is over all subsets of [0, 1]d of the form

E = [0, t1)× · · · × [0, td) , 0 ≤ tj ≤ 1, 1 ≤ j ≤ d,

λ is the Lebesque measure, and A(E;n) is the number of the xj contained in E.

The sequence x1, x2, . . . of points in [0, 1]d is a low-discrepancy sequence if there exists a
constant c(d), depending only on d, such that

D(d)
n ≤ c(d) (log n)d

n

for all n > 1.

Generalized Faure sequences can be defined for any prime base b ≥ d. The lowest bound for the
discrepancy is obtained for the smallest prime b ≥ d, so the base defaults to the smallest prime
greater than or equal to the dimension.

The generalized Faure sequence x1, x2, . . ., is computed as follows:

Write the positive integer n in its b-ary expansion,

n =
∞∑

i=0

ai(n)bi

where ai(n) are integers, 0 ≤ aj(n) < b.

The j-th coordinate of xn is

x(j)
n =

∞∑
k=0

∞∑
d=0

c
(j)
kd ad(n)b−k−1, 1 ≤ j ≤ d

The generator matrix for the series, c(j)kd , is defined to be

c
(j)
kd = jd−kckd

and ckd is an element of the Pascal matrix,

ckd =
{ d!

c!(d−c)! k ≤ d
0 k > d
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It is faster to compute a shuffled Faure sequence than to compute the Faure sequence itself. It
can be shown that this shuffling preserves the low-discrepancy property.

The shuffling used is the b-ary Gray code. The function G(n) maps the positive integer n into
the integer given by its b-ary expansion. The sequence computed by this function is ~x(G(n)),
where ~x is the generalized Faure sequence.

Example: FaureSequence

In this example, ten points of the Faure sequence are computed. The points are in a
four-dimensional cube.

using System;
using FaureSequence = Imsl.Stat.FaureSequence;
using PrintMatrix = Imsl.Math.PrintMatrix;

public class FaureSequenceEx1
{

public static void Main(String[] args)
{

FaureSequence seq = new FaureSequence(4);
double[][] x = new double[10][];
for (int k = 0; k < 10; k++)
{

x[k] = seq.NextPoint();
}
new PrintMatrix("Faure Sequence").Print(x);

}
}

Output

Faure Sequence
0 1 2 3

0 0.201344 0.274944 0.532544 0.694144
1 0.401344 0.474944 0.732544 0.894144
2 0.601344 0.674944 0.932544 0.094144
3 0.801344 0.874944 0.132544 0.294144
4 0.841344 0.114944 0.572544 0.934144
5 0.041344 0.314944 0.772544 0.134144
6 0.241344 0.514944 0.972544 0.334144
7 0.441344 0.714944 0.172544 0.534144
8 0.641344 0.914944 0.372544 0.734144
9 0.681344 0.154944 0.612544 0.374144
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IRandomSequence Interface

Summary

Interface implemented by generators of random or quasi-random multidimension sequences.

public interface Imsl.Stat.IRandomSequence

Property

Dimension
abstract public int Dimension {get; }

Description

Returns the dimension of the sequence.

Method

NextPoint
abstract public double[] NextPoint()

Description

Returns the next multidimensional point in the sequence.

Returns

A double array of length dimension.
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Chapter 22: Finance

Types

class Finance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696
enumeration Finance.Period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 728
class Bond. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729
enumeration Bond.Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764
class DayCountBasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .765
interface IBasisPart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .768

Usage Notes

Users can perform financial computations by using pre-defined data types. Most of the financial
functions require one or more of the following:

• Date

• Number of payments per year

• A variable to indicate when payments are due

• Day count basis

The Bond.Frequency field indicates the number of payments for each year.

Bond.Frequency Meaning
Bond.Annual One payment per year (Annual payment)
Bond.SemiAnnual Two payments per year (Semi-annual payment)
Bond.Quarterly Four payments per year (Quarterly payment)

The Finance.Period field indicates when payments are due.

Finance.Period Meaning
Finance.At End of Period Payments are due at the end of the period
Finance.AT Beginning of Period Payments are due at the beginning of the period
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The DayCountBasis class provides fields to indicate the type of day count basis. Day count
basis is the method for computing the number of days between two dates.

Class Field Day count basis
DayCountBasis.BasisNASD US (NASD) 30/360
DayCountBasis.BasisActualActual Actual/Actual
DayCountBasis.BasisActual360 Actual/360
DayCountBasis.BasisActual365 Actual/365
DayCountBasis.Basis30e360 European 30/360

Additional Information

In preparing the finance and bond functions we incorporated standards used by SIA Standard
Securities Calculation Methods.

More detailed information on finance and bond functionality can be found in the following
manuals:

• SIA Standard Securities Calculation Methods 1993, vols. 1 and 2, Third Edition

• Microsoft Excel 5, Worksheet Function Reference.

Finance Class

Summary

Collection of finance functions.

public class Imsl.Finance.Finance

Constructor

Finance
public Finance()

Description

Initializes a new instance of the Imsl.Finance.Finance (p. 696) class.

Methods

Cumipmt
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static public double Cumipmt(double rate, int nper, double pv, int
firstPeriod, int lastPeriod, Imsl.Finance.Finance.Period period)

Description

Returns the cumulative interest paid between two periods.

It is computed using the following:

lastPeriod∑
i=firstPeriod

interest i

where interest i is computed from Ipmt for the i-th period.

Parameters

rate – A double which specifies the interest rate.

nper – A int which specifies the total number of payment periods.

pv – A double which specifies the present value.

firstPeriod – A int containing the first period in the caclulation. Periods are
numbered starting with one.

lastPeriod – A int which specifies the last period in the calculation.

period – A int which specifies the time in each period when the payment is made,
either Imsl.Finance.Finance.Period.AtEnd (p. 728) or
Imsl.Finance.Finance.Period.AtBeginning (p. 728)

Returns

A double which specifies the cumulative interest paid between the first period and the
last period.

Cumprinc
static public double Cumprinc(double rate, int nper, double pv, int
firstPeriod, int lastPeriod, Imsl.Finance.Finance.Period time)

Description

Returns the cumulative principal paid between two periods.

It is computed using the following:

lastPeriod∑
i=firstPeriod

principal i

where principal i is computed from Ppmt for the i-th period.
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Parameters

rate – A double which specifies the interest rate.

nper – A int which specifies the total number of payment periods.

pv – A double which specifies the present value.

firstPeriod – A int which specifies the first period in the calculation. Periods are
numbered starting with one.

lastPeriod – A int which specifies the last period in the calculation.

time – The time of a Period when the payment is made (either
Imsl.Finance.Finance.Period.AtEnd (p. 728) or
Imsl.Finance.Finance.Period.AtBeginning (p. 728)).

Returns

A double which specifies the cumulative principal paid between the first period and the
last period.

Db
static public double Db(double cost, double salvage, int life, int period,
int month)

Description

Returns the depreciation of an asset using the fixed-declining balance method.

Method Db varies depending on the specified value for the argument period, see table
below.

If period = 1,

cost× rate× month
12

If period = life,

(cost− total depreciation from periods)× rate× 12−month
12

If period other than 1 or life,

(cost− total depreciation from priorperiods)× rate

where

rate = 1−
(

salvage
cost

)( 1
life )

NOTE: rate is rounded to three decimal places.
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Parameters

cost – A double which specifies the initial cost of the asset.

salvage – A double which specifies the salvage value of the asset.

life – A int which specifies the number of periods over which the asset is being
depreciated.

period – A int which specifies the period for which the depreciation is to be
computed.

month – A int which specifies the number of months in the first year.

Returns

A double which specifies the depreciation of an asset for a specified period using the
fixed-declining balance method.

Ddb
static public double Ddb(double cost, double salvage, int life, int period,
double factor)

Description

Returns the depreciation of an asset using the double-declining balance method.

It is computed using the following:

[cost − salvage (total depreciation from prior periods)]
factor
life

Parameters

cost – A double which specifies the initial cost of the asset.

salvage – A double which specifies the salvage value of the asset.

life – A int which specifies the number of periods over which the asset is being
depreciated.

period – A int which specifies the period.

factor – A double which specifies the rate at which the balance declines.

Returns

A double which specifies the depreciation of an asset for a specified period.

Dollarde
static public double Dollarde(double fractionalDollar, int fraction)
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Description

Converts a fractional price to a decimal price.

It is computed using the following:

idollar + (fractionalDollar − idollar)× 10(ifrac+1)

fraction

where idollar is the integer part of fractionalDollar , and ifrac is the integer part of
log(fraction).

Parameters

fractionalDollar – A double which specifies a fractional number.

fraction – A int which specifies the denominator.

Returns

A double which specifies the dollar price expressed as a decimal number.

Dollarfr
static public double Dollarfr(double decimalDollar, int fraction)

Description

Converts a decimal price to a fractional price.

It is computed using the following:

idollar +
decimalDollar − idollar

10(ifrac+1)/fraction

where idollar is the integer part of the decimalDollar , and ifrac is the integer part of
log(fraction).

Parameters

decimalDollar – A double which specifies a decimal number.

fraction – A int which specifies the denominator.

Returns

A double which specifies a dollar price expressed as a fraction.

Effect
static public double Effect(double nominalRate, int nper)
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Description

Returns the effective annual interest rate.

The nominal interest rate is the periodically-compounded interest rate as stated on the
face of a security. The effective annual interest rate is computed using the following:(

1 +
nominalRate

nper

)nper

− 1

Parameters

nominalRate – A double which specifies the nominal interest rate.

nper – A int which specifies the number of compounding periods per year.

Returns

A double which specifies the effective annual interest rate.

Fv
static public double Fv(double rate, int nper, double pmt, double pv,
Imsl.Finance.Finance.Period period)

Description

Returns the future value of an investment.

The future value is the value, at some time in the future, of a current amount and a
stream of payments. It can be found by solving the following:

If rate = 0,
pv + pmt × nper + fv = 0

If rate 6= 0,

pv(1 + rate)nper + pmt [1 + rate (period)]
(1 + rate)nper − 1

rate
+ fv = 0

Parameters

rate – A double which specifies the interest rate.

nper – A int which specifies the total number of payment periods.

pmt – A double which specifies the payment made in each period.

pv – A double which specifies the present value.

period – A int which specifies the time in each period when the payment is made
(either Imsl.Finance.Finance.Period.AtEnd (p. 728) or
Imsl.Finance.Finance.Period.AtBeginning (p. 728)).
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Returns

A double which specifies the future value of an investment.

Fvschedule
static public double Fvschedule(double principal, double[] schedule)

Description

Returns the future value of an initial principal taking into consideration a schedule of
compound interest rates.

It is computed using the following:

count∑
i=1

(principal × schedulei)

where schedulei = interest rate at the i-th period.

Parameters

principal – A double which specifies the present value.
schedule – A double array of interest rates to apply.

Returns

A double which specifies the future value of an initial principal

Ipmt
static public double Ipmt(double rate, int period, int nper, double pv,
double fv, Imsl.Finance.Finance.Period time)

Description

Returns the interest payment for an investment for a given period.

It is computed using the following:{
pv (1 + rate)nper−1 + pmt (1 + rate × period)

(1 + rate)nper−1

rate

}
rate

Parameters

rate – A double which specifies the interest rate.
period – A int which specifies the payment period.
nper – A int which specifies the total number of periods.
pv – A double which specifies the present value.
fv – A double which specifies the future value.
time – The time of a Period when the payment is made (either
Imsl.Finance.Finance.Period.AtEnd (p. 728) or
Imsl.Finance.Finance.Period.AtBeginning (p. 728)).
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Returns

A double which specifies the interest payment for a given period for an investment.

Irr
static public double Irr(double[] pmt)

Description

Returns the internal rate of return for a schedule of cash flows.

It is found by solving the following:

0 =
count∑
i=1

valuei

(1 + rate)i

where valuei = the ith cash flow, rate is the internal rate of return.

Parameter

pmt – A double array which contains cash flow values which occur at regular
intervals.

Returns

A double which specifies the internal rate of return.

Irr
static public double Irr(double[] pmt, double guess)

Description

Returns the internal rate of return for a schedule of cash flows.

It is found by solving the following:

0 =
count∑
i=1

valuei

(1 + rate)i

where valuei = the ith cash flow, rate is the internal rate of return.

Parameters

pmt – A double array which contains cash flow values which occur at regular
intervals.

guess – A double value which represents an initial guess at the return value from
this function.
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Returns

A double which specifies the internal rate of return.

Mirr
static public double Mirr(double[] cashFlow, double financeRate, double
reinvestRate)

Description

Returns the modified internal rate of return for a schedule of periodic cash flows.

The modified internal rate of return differs from the ordinary internal rate of return in
assuming that the cash flows are reinvested at the cost of capital, not at the internal rate
of return. It also eliminates the multiple rates of return problem. It is computed using
the following:

{
− (pnpv) (1 + reinvestRate)n per

(nnpv) (1 + financeRate)

} 1
nper−1

− 1

where pnpv is calculated from Npv for positive values in values using reinvestRate, and
where nnpv is calculated from Npv for negative values in values using financeRate.

Parameters

cashFlow – A double array of cash flows.
financeRate – A double which specifies the interest you pay on the money you
borrow.
reinvestRate – A double which specifies the interest rate you receive on the cash
flows.

Returns

A double which specifies the modified internal rate of return.

Nominal
static public double Nominal(double effectiveRate, int nper)

Description

Returns the nominal annual interest rate.

The nominal interest rate is the interest rate as stated on the face of a security. It is
computed using the following:[

(1 + effectiveRate)
1

nper − 1
]
× nper

Parameters

effectiveRate – A double which specifies the effective interest rate.
nper – A int which specifies the number of compounding periods per year.
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Returns

A double which specifies the nominal annual interest rate.

Nper
static public double Nper(double rate, double pmt, double pv, double fv,
Imsl.Finance.Finance.Period period)

Description

Returns the number of periods for an investment for which periodic, and constant
payments are made and the interest rate is constant.

It can be found by solving the following:

If rate = 0,
pv + pmt × nper + fv = 0

If rate 6= 0,

pv(1 + rate)nper + pmt [1 + rate (period)]
(1 + rate)nper − 1

rate
+ fv = 0

Parameters

rate – A double which specifies the interest rate.
pmt – A double which specifies the payment.
pv – A double which specifies the present value.
fv – A double which specifies the future value.
period – A int which specifies the time in each period when the payment is made
(either Imsl.Finance.Finance.Period.AtEnd (p. 728) or
Imsl.Finance.Finance.Period.AtBeginning (p. 728)).

Returns

A int which specifies the number of periods for an investment.

Npv
static public double Npv(double rate, double[] eqCashFlow)

Description

Returns the net present value of a stream of equal periodic cash flows, which are subject
to a given discount rate.

It is found by solving the following:

count∑
i=1

valuei

(1 + rate)i

where valuei = the ith cash flow.
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Parameters

rate – A double which specifies the interest rate per period.

eqCashFlow – A double array of equally-spaced cash flows.

Returns

A double which specifies the net present value of the investment.

PeriodicPayment
static public double PeriodicPayment(double rate, int nper, double pv,
double fv, Imsl.Finance.Finance.Period period)

Description

Returns the periodic payment for an investment.

It can be found by solving the following:

If rate = 0,
pv + pmt × nper + fv = 0

If rate 6= 0,

pv(1 + rate)nper + pmt [1 + rate (period)]
(1 + rate)nper − 1

rate
+ fv = 0

Parameters

rate – A double which specifies the interest rate.

nper – A int which specifies the total number of periods.

pv – A double which specifies the present value.

fv – A double which specifies the future value.

period – A int which specifies the time in each period when the payment is made
(either Imsl.Finance.Finance.Period.AtEnd (p. 728) or
Imsl.Finance.Finance.Period.AtBeginning (p. 728)).

Returns

A double which specifies the interest payment for a given period for an investment.

Ppmt
static public double Ppmt(double rate, int period, int nper, double pv,
double fv, Imsl.Finance.Finance.Period time)
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Description

Returns the payment on the principal for a specified period.

It is computed using the following:

payment i − interest i

where payment i is computed from pmt for the i-th period, interest i is calculated from
Ipmt for the i-th period.

Parameters

rate – A double which specifies the interest rate.

period – A int which specifies the payment period.

nper – A int which specifies the total number of periods.

pv – A double which specifies the present value.

fv – A double which specifies the future value.

time – The time of a Period when the payment is made (either
Imsl.Finance.Finance.Period.AtEnd (p. 728) or
Imsl.Finance.Finance.Period.AtBeginning (p. 728)).

Returns

A double which specifies the payment on the principal for a given period.

Pv
static public double Pv(double rate, int nper, double pmt, double fv,
Imsl.Finance.Finance.Period time)

Description

Returns the net present value of a stream of equal periodic cash flows, which are subject
to a given discount rate.

It can be found by solving the following:

If rate = 0,
pv + pmt × nper + fv = 0

If rate 6= 0,

pv(1 + rate)nper + pmt [1 + rate (period)]
(1 + rate)nper − 1

rate
+ fv = 0
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Parameters

rate – A double which specifies the interest rate per period.
nper – A int which specifies the number of periods.
pmt – A double which specifies the payment made each period.
fv – A double which specifies the annuity’s value after the last payment.
time – The time in a Period when the payment is made (either
Imsl.Finance.Finance.Period.AtEnd (p. 728) or
Imsl.Finance.Finance.Period.AtBeginning (p. 728)).

Returns

A double which specifies the present value of the investment.

Rate
static public double Rate(int nper, double pmt, double pv, double fv,
Imsl.Finance.Finance.Period time)

Description

Returns the interest rate per period of an annuity.

Rate is calculated by iteration and can have zero or more solutions. It can be found by
solving the following:

If rate = 0,
pv + pmt × nper + fv = 0

If rate 6= 0,

pv(1 + rate)nper + pmt [1 + rate (period)]
(1 + rate)nper − 1

rate
+ fv = 0

Parameters

nper – A int which specifies the number of periods.
pmt – A double which specifies the payment made each period.
pv – A double which specifies the present value.
fv – A double which specifies the annuity’s value after the last payment.
time – The time in a Period when the payment is made (either
Imsl.Finance.Finance.Period.AtEnd (p. 728) or
Imsl.Finance.Finance.Period.AtBeginning (p. 728)).

Returns

A double which specifies the interest rate per period of an annuity.

Rate
static public double Rate(int nper, double pmt, double pv, double fv,
Imsl.Finance.Finance.Period time, double guess)
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Description

Returns the interest rate per period of an annuity with an initial guess.

Rate is calculated by iteration and can have zero or more solutions. It can be found by
solving the following:

If rate = 0,
pv + pmt × nper + fv = 0

If rate 6= 0,

pv(1 + rate)nper + pmt [1 + rate (period)]
(1 + rate)nper − 1

rate
+ fv = 0

Parameters

nper – A int which specifies the number of periods.

pmt – A double which specifies the payment made each period.

pv – A double which specifies the present value.

fv – A double which specifies the annuity’s value after the last payment.

time – The time in a Period when the payment is made (either
Imsl.Finance.Finance.Period.AtEnd (p. 728) or
Imsl.Finance.Finance.Period.AtBeginning (p. 728)).

guess – A double value which represents an initial guess at the interest rate per
period of an annuity.

Returns

A double which specifies the interest rate per period of an annuity.

Sln
static public double Sln(double cost, double salvage, int life)

Description

Returns the depreciation of an asset using the straight line method.

It is computed using the following:

cost − salvage/life

Parameters

cost – A double which specifies the initial cost of the asset.

salvage – A double which specifies the salvage value of the asset.

life – A int which specifies the number of periods over which the asset is being
depreciated.
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Returns

A double which specifies the straight line depreciation of an asset for one period.

Syd
static public double Syd(double cost, double salvage, int life, int per)

Description

Returns the depreciation of an asset using the sum-of-years digits method.

It is computed using the following:

(cost − salvage)(per)
(life + 1) (life)

2

Parameters

cost – A double which specifies the initial cost of the asset.

salvage – A double which specifies the salvage value of the asset.

life – A int which specifies the number of periods over which the asset is being
depreciated.

per – A int which specifies the period.

Returns

A double which specifies the sum-of-years digits depreciation of an asset.

Vdb
static public double Vdb(double cost, double salvage, int life, int
firstPeriod, int lastPeriod, double factor, bool noSL)

Description

Returns the depreciation of an asset for any given period using the variable-declining
balance method.

It is computed using the following:

If no sl = 0,
lastPeriod∑

i=firstPeriod+1

ddbi

If no sl 6= 0,

A+
lastPeriod∑

i=k

cost −A− salvage
lastPeriod − k + 1

where ddbi is computed from Ddb for the i-th period. k = the first period where straight
line depreciation is greater than the depreciation using the double-declining balance
method.
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A =
k−1∑

i=firstPeriod+1

ddbi

Parameters

cost – A double which specifies the initial cost of the asset.
salvage – A double which specifies the salvage value of the asset.
life – A int which specifies the number of periods over which the asset is being
depreciated.
firstPeriod – A int which specifies the first period for the calculation.
lastPeriod – A int which specifies the last period for the calculation.
factor – A double which specifies the rate at which the balance declines.
noSL – A boolean flag. If true, do not switch to straight-line depreciation even
when the depreciation is greater than the declining balance calculation.

Returns

A double which specifies the depreciation of the asset.

Xirr
static public double Xirr(double[] pmt, System.DateTime[] dates)

Description

Returns the internal rate of return for a schedule of cash flows.

It is not necessary that the cash flows be periodic. It can be found by solving the
following:

0 =
count∑
i=1

valuei

(1 + rate)
di−d1

365

In the equation above, di represents the ith payment date. d1 represents the 1st payment
date. value represents the ith cash flow. rate is the internal rate of return.

Parameters

pmt – A double array which contains cash flow values which correspond to a
schedule of payments in dates.
dates – A DateTime array which contains a schedule of payment dates.

Returns

A double which specifies the internal rate of return.

Xirr
static public double Xirr(double[] pmt, System.DateTime[] dates, double
guess)
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Description

Returns the internal rate of return for a schedule of cash flows with a user supplied initial
guess.

It is not necessary that the cash flows be periodic. It can be found by solving the
following:

0 =
count∑
i=1

valuei

(1 + rate)
di−d1

365

In the equation above, di represents the ith payment date. d1 represents the 1st payment
date. value represents the ith cash flow. rate is the internal rate of return.

Parameters

pmt – A double array which contains cash flow values which correspond to a
schedule of payments in dates.

dates – A DateTime array which contains a schedule of payment dates.

guess – A double value which represents an initial guess at the return value from
this function.

Returns

A double which specifies the internal rate of return.

Xnpv
static public double Xnpv(double rate, double[] cashFlow, System.DateTime[]
dates)

Description

Returns the present value for a schedule of cash flows.

It is not necessary that the cash flows be periodic. It is computed using the following:

count∑
i=1

valuei

(1 + rate)(di−d1)/365

In the equation above, di represents the ith payment date, d1 represents the first payment
date, and valuei represents the ith cash flow.

Parameters

rate – A double which specifies the interest rate.

cashFlow – A double array containing the cash flows.

dates – A DateTime array which contains a schedule of payment dates.

Returns

A double which specifies the present value.
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Example: Cumulative Interest Example

The amount of interest paid in the first year of a 30 year fixed rate mortgage is computed. The
amount financed is $200,000 at an interest rate of 7.25% for 30 years.

using System;
using Imsl.Finance;

public class cumipmtEx1
{

public static void Main(String[] args)
{

double rate = 0.0725 / 12;
int periods = 12 * 30;
double pv = 200000;
int start = 1;
int end = 12;
double total = Finance.Cumipmt(rate, periods, pv, start, end,

Finance.Period.AtEnd);
Console.Out.WriteLine("First year interest = " +

total.ToString("C"));
}

}

Output

First year interest = ($14,436.52)

Example: Cumulative Principal Example

The amount of principal paid in the first year of a 30 year fixed rate mortgage is computed.
The amount financed is $200,000 at an interest rate of 7.25% for 30 years.

using System;
using Imsl.Finance;

public class cumprincEx1
{

public static void Main(String[] args)
{

double rate = 0.0725 / 12;
int periods = 12 * 30;
double pv = 200000;
int start = 1;
int end = 12;
double total = Finance.Cumprinc(rate, periods, pv, start, end,

Finance.Period.AtEnd);
Console.Out.WriteLine("First year principal = " +

total.ToString("C"));
}
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}

Output

First year principal = ($1,935.71)

Example: Depreciation - Fixed Declining Balance Method

The depreciation of an asset with an initial cost of $2500 and a salvage value of $500 over a
period of 3 years is calculated. Here month is 6 since the life of the asset did not begin until the
seventh month of the first year.

using System;
using Imsl.Finance;

public class dbEx1
{

public static void Main(String[] args)
{

double cost = 2500;
double salvage = 500;
int life = 3;
int month = 6;

for (int period = 1; period <= life + 1; period++)
{

double db = Finance.Db(cost, salvage, life, period, month);
Console.Out.WriteLine("For period " + period + " " +

db.ToString("C"));
}

}
}

Output

For period 1 $518.75
For period 2 $822.22
For period 3 $481.00
For period 4 $140.69

Example: Depreciation - Double-Declining Balance Method

The depreciation of an asset with an initial cost of $2500 and a salvage value of $500 over a
period of 2 years is calculated. A factor of 2 is used (the double-declining balance method).
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using System;
using Imsl.Finance;

public class ddbEx1
{

public static void Main(String[] args)
{

double cost = 2500;
double salvage = 500;
double factor = 2;
int life = 24;

for (int period = 1; period <= life; period++)
{

double ddb = Finance.Ddb(cost, salvage, life, period,
factor);

Console.Out.WriteLine("For period " + period +
" ddb = " + ddb.ToString("C"));

}
}

}

Output

For period 1 ddb = $208.33
For period 2 ddb = $190.97
For period 3 ddb = $175.06
For period 4 ddb = $160.47
For period 5 ddb = $147.10
For period 6 ddb = $134.84
For period 7 ddb = $123.60
For period 8 ddb = $113.30
For period 9 ddb = $103.86
For period 10 ddb = $95.21
For period 11 ddb = $87.27
For period 12 ddb = $80.00
For period 13 ddb = $73.33
For period 14 ddb = $67.22
For period 15 ddb = $61.62
For period 16 ddb = $56.48
For period 17 ddb = $51.78
For period 18 ddb = $47.46
For period 19 ddb = $22.09
For period 20 ddb = $0.00
For period 21 ddb = $0.00
For period 22 ddb = $0.00
For period 23 ddb = $0.00
For period 24 ddb = $0.00
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Example: Price Conversion - Fractional Dollars

A fractional dollar price, in this case 1 3/8, is converted to a decimal price.

using System;
using Imsl.Finance;

public class dollardeEx1
{

public static void Main(String[] args)
{

double fractionalDollar = 1.3;
int fraction = 8;

double dollardec = Finance.Dollarde(fractionalDollar,
fraction);

Console.Out.WriteLine("The fractional dollar 1.3 = " +
dollardec.ToString("C"));

}
}

Output

The fractional dollar 1.3 = $1.38

Example: Price Conversion - Decimal Dollars

A decimal dollar price, in this case $1.38, is converted to a fractional price.

using System;
using Imsl.Finance;

public class dollarfrEx1
{

public static void Main(String[] args)
{

double decimalDollar = 1.38;
int fraction = 8;

double dollarfrc = Finance.Dollarfr(decimalDollar, fraction);
Console.Out.WriteLine("The decimal dollar $1.38 as a fractional"

+ " dollar = " +
dollarfrc.ToString("0.00"));

}
}
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Output

The decimal dollar $1.38 as a fractional dollar = 1.30

Example: Effective Rate

In this example the effective interest rate is computed given that the nominal rate is 6.0% and
that the interest will be compounded quarterly.

using System;
using Imsl.Finance;

public class effectEx1
{

public static void Main(String[] args)
{

double nominalRate = .06;
int nper = 4;
double effectiveRate;

effectiveRate = Finance.Effect(nominalRate, nper);
Console.Out.WriteLine("The effective rate of the nominal rate,"

+ " 6.0%, " + "compounded quarterly is "
+ effectiveRate.ToString("P"));

}
}

Output

The effective rate of the nominal rate, 6.0%, compounded quarterly is 6.14 %

Example: Future Value of an Investment

A couple starts setting aside $30,000 a year when they are 45 years old. They expect to earn
5% interest on the money compounded yearly. The future value of the investment is computed
for a 20 year period.

using System;
using Imsl.Finance;

public class fvEx1
{

public static void Main(String[] args)
{

double rate = .05;
int nper = 20;
double payment = - 30000.00;
double pv = - 30000.00;
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double fv = Finance.Fv(rate, nper, payment, pv,
Finance.Period.AtBeginning);

Console.Out.WriteLine("After 20 years, the value of the " +
"investments " + "will be " +
fv.ToString("C"));

}
}

Output

After 20 years, the value of the investments will be $1,121,176.49

Example: Future Value - Adustable Rates

An investment of $10,000 is made. The investment will grow at the rate of 5.1% the first year,
with the rate increasing by .1% each year thereafter for a total of 5 years. The future value of
the investment is computed.

using System;
using Imsl.Finance;

public class fvscheduleEx1
{

public static void Main(String[] args)
{

double principal = 10000.0;
double[] schedule = new double[]{.050, .051, .052, .053, .054};
double fvschedule;

fvschedule = Finance.Fvschedule(principal, schedule);
Console.Out.WriteLine("After 5 years the $10,000 investment " +

"will have " + "grown to " +
fvschedule.ToString("C"));

}
}

Output

After 5 years the $10,000 investment will have grown to $12,884.77

Example: Interest Payments

The interest due the second year on a $100,000 25 year loan is calculated. The loan is at 8%.

using System;
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using Imsl.Finance;

public class ipmtEx1
{

public static void Main(String[] args)
{

double rate = .08;
int per = 2;
int nper = 25;
double pv = 100000.00;
double fv = 0.0;

double ipmt = Finance.Ipmt(rate, per, nper, pv, fv,
Finance.Period.AtEnd);

Console.Out.WriteLine("The interest due the second year on the"
+ " $100,000 loan is " +
ipmt.ToString("C"));

}
}

Output

The interest due the second year on the $100,000 loan is ($7,890.57)

Example: Internal Rate of Return

A farmer buys 10 young cows and a bull for $4500. The first year he does not expect to sell any
calves, he just expects to feed them. Thereafter, he expects to be able to sell calves to offset the
cost of feed. He expects them to be productive for 9 years, after which time he will liquidate
the herd. The internal rate of return is computed after 9 years.

using System;
using Imsl.Finance;

public class irrEx1
{

public static void Main(String[] args)
{

double[] pmt = new double[]
{- 4500.0, - 800.0,

800.0, 800.0,
600.0, 600.0,
800.0, 800.0,
700.0, 3000.0};

double irr = Finance.Irr(pmt);
Console.Out.WriteLine("After 9 years, the internal rate of " +

"return on the cows is " +
irr.ToString("P"));

}
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}

Output

After 9 years, the internal rate of return on the cows is 7.21 %

Example: Modified Internal Rate of Return

A farmer uses a $4500 loan to buy 10 young cows and a bull. The interest rate on the loan is
8%. He expects to reinvest the profits received in any one year in the money market and receive
5.5%. The first year he does not expect to sell any calves, he just expects to feed them.
Thereafter, he expects to be able to sell calves to offset the cost of feed. He expects them to be
productive for 9 years, after which time he will liquidate the herd. The modified internal rate of
return is computed after 9 years.

using System;
using Imsl.Finance;

public class mirrEx1
{

public static void Main(String[] args)
{

double[] x = new double[]{- 4500.0, - 800.0,
800.0, 800.0,
600.0, 600.0,
800.0, 800.0,
700.0, 3000.0};

double financeRate = .08;
double reinvestRate = .055;
double mirr = Finance.Mirr(x, financeRate, reinvestRate);

Console.Out.WriteLine("After 9 years, the modified internal " +
"rate of return \non the cows is " +
mirr.ToString("P"));

}
}

Output

After 9 years, the modified internal rate of return
on the cows is 6.66 %

Example: Nominal Rate

In this example the nominal interest rate is computed given that the effective rate is 6.14% and
that the interest has been compounded quarterly.
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using System;
using Imsl.Finance;

public class nominalEx1
{

public static void Main(String[] args)
{

double effectiveRate = .0614;
int nper = 4;

double nominalRate = Finance.Nominal(effectiveRate, nper);
Console.Out.WriteLine("The nominal rate of the effective rate,"

+ "6.14%, \ncompounded quarterly is " +
nominalRate.ToString("P"));

}
}

Output

The nominal rate of the effective rate,6.14%,
compounded quarterly is 6.00 %

Example: Number of Periods for an Investment

Someone obtains a $20,000 loan at 7.25% to buy a car. They want to make $350 a month
payments. Here, the number of payments necessary to pay off the loan is computed.

using System;
using Imsl.Finance;

public class nperEx1
{

public static void Main(String[] args)
{

double rate = 0.0725 / 12;
double pmt = - 350.0;
double pv = 20000;
double fv = 0.0;
double nperiods;
nperiods = Finance.Nper(rate, pmt, pv, fv,

Finance.Period.AtBeginning);
Console.Out.WriteLine("Number of payment periods = "

+ nperiods);
}

}
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Output

Number of payment periods = 69.7805113662826

Example: Net Present Value of an Investment

A lady wins a $10 million lottery. The money is to be paid out at the end of each year in
$500,000 payments for 20 years. The current treasury bill rate of 6% is used as the discount
rate. Here, the net present value of her prize is computed.

using System;
using Imsl.Finance;

public class npvEx1
{

public static void Main(String[] args)
{

double rate = 0.06;
double[] value_Renamed = new double[20];

for (int i = 0; i < 20; i++)
value_Renamed[i] = 500000.0;

double npv = Finance.Npv(rate, value_Renamed);

Console.Out.WriteLine("The net present value of the $10 " +
"million prize is " + npv.ToString("C"));

}
}

Output

The net present value of the $10 million prize is $5,734,960.61

Example: Periodic Payments

The payment due each year on a 25 year, $100,000 loan is calculated. The loan is at 8%.

using System;
using Imsl.Finance;

public class pmtEx1
{

public static void Main(String[] args)
{

double rate = .08;
int nper = 25;
double pv = 100000.00;
double fv = 0.0;
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double pmt = Finance.PeriodicPayment(rate, nper, pv, fv,
Finance.Period.AtEnd);

Console.Out.WriteLine("The payment due each year on the " +
"$100,000 loan is " + pmt.ToString("C"));

}
}

Output

The payment due each year on the $100,000 loan is ($9,367.88)

Example: Principal Payments

The payment on the principal the first year on a 25 year, $100,000 loan is calculated. The loan
is at 8%.

using System;
using Imsl.Finance;

public class ppmtEx1
{

public static void Main(String[] args)
{

double rate = .08;
int per = 1;
int nper = 25;
double pv = 100000.00;
double fv = 0.0;

double ppmt = Finance.Ppmt(rate, per, nper, pv, fv,
Finance.Period.AtEnd);

Console.Out.WriteLine("The payment on the principal the first "
+ "year \nof the $100,000 loan is " +
ppmt.ToString("C"));

}
}

Output

The payment on the principal the first year
of the $100,000 loan is ($1,367.88)
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Example: Present Value of an Investment

A lady wins a $10 million lottery. The money is to be paid out at the end of each year in
$500,000 payments for 20 years. The current treasury bill rate of 6% is used as the discount
rate. Here, the present value of her prize is computed.

using System;
using Imsl.Finance;

public class pvEx1
{

public static void Main(String[] args)
{

double rate = 0.06;
double pmt = 500000.0;
double fv = 0.0;
int nper = 20;

double pv = Finance.Pv(rate, nper, pmt, fv,
Finance.Period.AtEnd);

Console.Out.WriteLine("The present value of the $10 million " +
"prize is " + pv.ToString("C"));

}
}

Output

The present value of the $10 million prize is ($5,734,960.61)

Example: Interest Rate

Someone obtains a $20,000 loan to buy a car. They make $350 a month payments for 70
months. Here, the interest rate of the loan is computed.

using System;
using Imsl.Finance;

public class rateEx1
{

public static void Main(String[] args)
{

int nper = 70;
double pmt = - 350.0;
double pv = 20000;
double fv = 0.0;

double rate = 12.0 * Finance.Rate(nper, pmt, pv, fv,
Finance.Period.AtBeginning);
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Console.Out.WriteLine("The computed interest rate on the loan "
+ "is " + rate.ToString("P"));

}
}

Output

The computed interest rate on the loan is 7.35 %

Example: Depreciation - Straight Line Method

The straight line depreciation for one period of an asset with a life of 24 months, an initial cost
of $2500 and a salvage value of $500 is computed.

using System;
using Imsl.Finance;

public class slnEx1
{

public static void Main(String[] args)
{

double cost = 2500;
double salvage = 500;
int life = 24;

double sln = Finance.Sln(cost, salvage, life);
Console.Out.WriteLine("The straight line depreciation of the " +

"asset for one period is " +
sln.ToString("C"));

}
}

Output

The straight line depreciation of the asset for one period is $83.33

Example: Depreciation - Sum-of-years’ Digits

The sum-of-years’ digits depreciation for the 14th year of an asset with a life of 15 years, an
initial cost of $25000 and a salvage value of $5000 is computed.

using System;
using Imsl.Finance;

public class sydEx1
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{
public static void Main(String[] args)
{

double cost = 25000;
double salvage = 5000;
int life = 15;
int per = 14;

double syd = Finance.Syd(cost, salvage, life, per);
Console.Out.WriteLine("The depreciation allowance for the 14th"

+" year is " + syd.ToString("C"));
}

}

Output

The depreciation allowance for the 14th year is $333.33

Example: Depreciation - Variable Declining Balance

The depreciation between the 10th and 15th year of an asset with a life of 15 years, an initial
cost of $25000 and a salvage value of $5000 is computed. The variable-declining balance
method is used.

using System;
using Imsl.Finance;

public class vdbEx1
{

public static void Main(String[] args)
{

double cost = 25000;
double salvage = 5000;
int life = 15;
int start = 10;
int end = 15;
double factor = 2.0;
bool no_sl = false;

double vdb = Finance.Vdb(cost, salvage, life, start, end,
factor, no_sl);

Console.Out.WriteLine("The depreciation allowance between the " +
"10th and 15th year is " +
vdb.ToString("C"));

}
}
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Output

The depreciation allowance between the 10th and 15th year is $976.69

Example: Internal Rate of Return - Variable Schedule

A farmer buys 10 young cows and a bull for $4500. The first year he does not expect to sell any
calves, he just expects to feed them. Thereafter, he expects to be able to sell calves to offset the
cost of feed. He expects them to be productive for 9 years, after which time he will liquidate
the herd. The internal rate of return is computed after 9 years.

using System;
using Imsl.Finance;

public class xirrEx1
{

public static void Main(String[] args)
{

double[] pmt = new double[]{- 4500.0, - 800.0,
800.0, 800.0,
600.0, 600.0,
800.0, 800.0,
700.0, 3000.0};

System.DateTime[] dates =
new System.DateTime[]{DateTime.Parse("1/1/98"),

DateTime.Parse("10/1/98"),
DateTime.Parse("5/5/99"),
DateTime.Parse("5/5/00"),
DateTime.Parse("6/1/01"),
DateTime.Parse("7/1/02"),
DateTime.Parse("8/30/03"),
DateTime.Parse("9/15/04"),
DateTime.Parse("10/15/05"),
DateTime.Parse("11/1/06")};

double xirr = Finance.Xirr(pmt, dates);

Console.Out.WriteLine("After approximately 9 years, the " +
"internal rate of return \n" +
"on the cows is " + xirr.ToString("P"));

}
}

Output

After approximately 9 years, the internal rate of return
on the cows is 7.69 %
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Example: Present Value of a Schedule of Cash Flows

In this example, the present value of 3 payments, $1,000, $2,000, and $1,000, with an interest
rate of 5% made on January 3, 1997, January 3, 1999, and January 3, 2000 is computed.

using System;
using Imsl.Finance;

public class xnpvEx1
{

public static void Main(String[] args)
{

double rate = 0.05;
double[] value_Renamed = new double[]{1000.0, 2000.0, 1000.0};
System.DateTime[] dates =

new System.DateTime[]{DateTime.Parse("1/3/1997"),
DateTime.Parse("1/3/1999"),
DateTime.Parse("1/3/2000")};

double pv = Finance.Xnpv(rate, value_Renamed, dates);
Console.Out.WriteLine("The present value of the schedule of " +

"cash flows is " + pv.ToString("C"));
}

}

Output

The present value of the schedule of cash flows is $3,677.90

Finance.Period Enumeration

Summary

Used to indicate that payment is made at the beginning or end of each period.

public enumeration Imsl.Finance.Finance.Period

Fields

AtBeginning
public Imsl.Finance.Finance.Period AtBeginning

Description

Indicates payment is made at the beginning of each period.
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AtEnd
public Imsl.Finance.Finance.Period AtEnd

Description

Indicates payment is made at the end of each period.

Bond Class

Summary

Collection of bond functions.

public class Imsl.Finance.Bond

Methods

Accrint
static public double Accrint(System.DateTime issue, System.DateTime
firstCoupon, System.DateTime settlement, double rate, double par,
Imsl.Finance.Bond.Frequency frequency, Imsl.Finance.DayCountBasis basis)

Description

Returns the interest which has accrued on a security that pays interest periodically.

In the equation below, Ai represents the number of days which have accrued for the ith
quasi-coupon period within the odd Frequency. (The quasi-coupon periods are periods
obtained by extending the series of equal payment periods to before or after the actual
payment periods.) NC represents the number of quasi-coupon periods within the odd
period, rounded to the next highest integer. (The odd period is a period between
payments that differs from the usual equally spaced periods at which payments are
made.) NLi represents the length of the normal ith quasi-coupon period within the odd
Frequency. NLi is expressed in days. Accrint solves the following:

par

(
rate

frequency

NC∑
i=1

Ai

NLi

)

Parameters

issue – The DateTime issue date of the security.

firstCoupon – The DateTime date of the security’s first interest date.

settlement – The DateTime settlement date of the security.

rate – A double which specifies the security’s annual coupon rate.
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par – A double which specifies the security’s par value.

frequency – A int which specifies the number of coupon payments per year (1 for
annual, 2 for semiannual, 4 for quarterly).

basis – A DayCountBasis object which contains the type of day count basis to use.

Returns

A double which specifies the accrued interest.

Accrintm
static public double Accrintm(System.DateTime issue, System.DateTime
maturity, double rate, double par, Imsl.Finance.DayCountBasis basis)

Description

Returns the interest which has accrued on a security that pays interest at maturity.

= par × rate × A

D

In the above equation, A represents the number of days starting at issue date to maturity
date and D represents the annual basis.

Parameters

issue – Ahe DateTime issue date of the security.

maturity – The DateTime date of the security’s maturity.

rate – A double which specifies the security’s annual coupon rate.

par – A double which specifies the security’s par value.

basis – A DayCountBasis object which contains the type of day count basis to use.

Returns

A double which specifies the accrued interest.

Amordegrc
static public double Amordegrc(double cost, System.DateTime issue,
System.DateTime firstPeriod, double salvage, int period, double rate,
Imsl.Finance.DayCountBasis basis)

Description

Returns the depreciation for each accounting Frequency.

This function is similar to Amorlinc. However, in this function a depreciation coefficient
based on the asset life is applied during the evaluation of the function.
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Parameters

cost – A double which specifies the cost of the asset.

issue – The DateTime issue date of the asset.

firstPeriod – The DateTime date of the end of the first period.

salvage – A double which specifies the asset’s salvage value at the end of the life of
the asset.

period – A int which specifies the period.

rate – A double which specifies the rate of depreciation.

basis – A DayCountBasis object which contains the type of day count basis to use.

Returns

A double which specifies the depreciation.

Amorlinc
static public double Amorlinc(double cost, System.DateTime issue,
System.DateTime firstPeriod, double salvage, int period, double rate,
Imsl.Finance.DayCountBasis basis)

Description

Returns the depreciation for each accounting Frequency.

This function is similar to Amordegrc, except that Amordegrc has a depreciation
coefficient that is applied during the evaluation that is based on the asset life.

Parameters

cost – A double which specifies the cost of the asset.

issue – The DateTime issue date of the asset.

firstPeriod – The DateTime date of the end of the first period.

salvage – A double which specifies the asset’s salvage value at the end of the life of
the asset.

period – A int which specifies the period.

rate – A double which specifies the rate of depreciation.

basis – A DayCountBasis object which contains the type of day count basis to use.

Returns

A double which specifies the depreciation.

Convexity
static public double Convexity(System.DateTime settlement, System.DateTime
maturity, double coupon, double yield, Imsl.Finance.Bond.Frequency
frequency, Imsl.Finance.DayCountBasis basis)

Finance Bond Class • 731



Description

Returns the convexity for a security.

Convexity is the sensitivity of the duration of a security to changes in yield. It is
computed using the following:

1
(q×frequency)2

{
n∑

t=1
t (t+ 1)

(
coupon

frequency

)
q−t + n (n+ 1) q−n

}
(

n∑
t=1

(
coupon

frequency

)
q−t + q−n

)

where n is calculated from Coupnum, and q = 1 + yield
frequency .

Parameters

settlement – The DateTime settlement date of the security.

maturity – The DateTime maturity date of the security.

coupon – A double which specifies the security’s annual coupon rate.

yield – A double which specifies the security’s annual yield.

frequency – A int which specifies the number of coupon payments per year (1 for
annual, 2 for semiannual, 4 for quarterly).

basis – A DayCountBasis object which contains the type of day count basis to use.

Returns

A double which specifies the convexity for a security.

Coupdaybs
static public int Coupdaybs(System.DateTime settlement, System.DateTime
maturity, Imsl.Finance.Bond.Frequency frequency, Imsl.Finance.DayCountBasis
basis)

Description

Returns the number of days starting with the beginning of the coupon period and ending
with the settlement date.

For a good discussion on day count basis, see SIA Standard Securities Calculation
Methods 1993, vol. 1, pages 17-35.

Parameters

settlement – The DateTime settlement date of the security.

maturity – The DateTime maturity date of the security.

frequency – A int which specifies the number of coupon payments per year.

basis – A DayCountBasis object which contains the type of day count basis to use.
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Returns

A int which specifies the number of days from the beginning of the coupon period to the
settlement date.

Coupdays
static public double Coupdays(System.DateTime settlement, System.DateTime
maturity, Imsl.Finance.Bond.Frequency frequency, Imsl.Finance.DayCountBasis
basis)

Description

Returns the number of days in the coupon period containing the settlement date.

For a good discussion on day count basis, see SIA Standard Securities Calculation
Methods 1993, vol. 1, pages 17-35.

Parameters

settlement – The DateTime settlement date of the security.

maturity – The DateTime maturity date of the security.

frequency – A int which specifies the number of coupon payments per year.

basis – A DayCountBasis object which contains the type of day count basis to use.

Returns

A int which specifies the number of days in the coupon period that contains the
settlement date.

Coupdaysnc
static public int Coupdaysnc(System.DateTime settlement, System.DateTime
maturity, Imsl.Finance.Bond.Frequency frequency, Imsl.Finance.DayCountBasis
basis)

Description

Returns the number of days starting with the settlement date and ending with the next
coupon date.

For a good discussion on day count basis, see SIA Standard Securities Calculation
Methods 1993, vol. 1, pages 17-35.

Parameters

settlement – The DateTime settlement date of the security.

maturity – The DateTime maturity date of the security.

frequency – A int which specifies the number of coupon payments per year.

basis – A DayCountBasis object which contains the type of day count basis to use.
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Returns

A int which specifies the number of days from the settlement date to the next coupon
date.

Coupncd
static public System.DateTime Coupncd(System.DateTime settlement,
System.DateTime maturity, Imsl.Finance.Bond.Frequency frequency,
Imsl.Finance.DayCountBasis basis)

Description

Returns the first coupon date which follows the settlement date.

For a good discussion on day count basis, see SIA Standard Securities Calculation
Methods 1993, vol. 1, pages 17-35.

Parameters

settlement – The DateTime settlement date of the security.

maturity – The DateTime maturity date of the security.

frequency – A int which specifies the number of coupon payments per year.

basis – A DayCountBasis object which contains the type of day count basis to use.

Returns

A int which specifies the next coupon date after the settlement date.

Coupnum
static public int Coupnum(System.DateTime settlement, System.DateTime
maturity, Imsl.Finance.Bond.Frequency frequency, Imsl.Finance.DayCountBasis
basis)

Description

Returns the number of coupons payable between the settlement date and the maturity
date.

For a good discussion on day count basis, see SIA Standard Securities Calculation
Methods 1993, vol. 1, pages 17-35.

Parameters

settlement – The DateTime settlement date of the security.

maturity – The DateTime maturity date of the security.

frequency – A int which specifies the number of coupon payments per year.

basis – A DayCountBasis object which contains the type of day count basis to use.
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Returns

A int which specifies the number of coupons payable between the settlement date and
maturity date.

Couppcd
static public System.DateTime Couppcd(System.DateTime settlement,
System.DateTime maturity, Imsl.Finance.Bond.Frequency frequency,
Imsl.Finance.DayCountBasis basis)

Description

Returns the coupon date which immediately precedes the settlement date.

For a good discussion on day count basis, see SIA Standard Securities Calculation
Methods 1993, vol. 1, pages 17-35.

Parameters

settlement – The DateTime settlement date of the security.

maturity – The DateTime maturity date of the security.

frequency – A int which specifies the number of coupon payments per year.

basis – A DayCountBasis object which contains the type of day count basis to use.

Returns

A int which specifies the previous coupon date before the settlement date.

Disc
static public double Disc(System.DateTime settlement, System.DateTime
maturity, double price, double redemption, Imsl.Finance.DayCountBasis
basis)

Description

Returns the implied interest rate of a discount bond.

The discount rate is the interest rate implied when a security is sold for less than its value
at maturity in lieu of interest payments. It is computed using the following:

redemption − price
price

× B

DSM

In the equation above, B represents the number of days in a year based on the annual
basis and DSM represents the number of days starting with the settlement date and
ending with the maturity date.
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Parameters

settlement – The DateTime settlement date of the security.

maturity – The DateTime maturity date of the security.

price – A double which specifies the security’s price per $100 face value.

redemption – A double which the security’s redemption value per $100 face value.

basis – A DayCountBasis object which contains the type of day count basis to use.

Returns

A double which specifies the discount rate for a security.

Duration
static public double Duration(System.DateTime settlement, System.DateTime
maturity, double coupon, double yield, Imsl.Finance.Bond.Frequency
frequency, Imsl.Finance.DayCountBasis basis)

Description

Returns the Macauley’s duration of a security where the security has periodic interest
payments.

The Macauley’s duration is the weighted-average time to the payments, where the weights
are the present value of the payments. It is computed using the following:


DSC

E ×100

(1+ yield
freq )(N−1+ DSC

E ) +
N∑

k=1

((
100×coupon

freq×(1+ yield
freq )(k−1+ DSC

E )

)
×
(
k − 1 + DSC

E

))
100

(1+ yield
freq )N−1+ DSC

E
+

N∑
k=1

(
100×coupon

freq×(1+ yield
freq )k−1+ DSC

E

)
× 1

freq

In the equation above, DSC represents the number of days starting with the settlement
date and ending with the next coupon date. E represents the number of days within the
coupon Frequency. N represents the number of coupons payable from the settlement date
to the maturity date. freq represents the frequency of the coupon payments annually.

Parameters

settlement – The DateTime settlement date of the security.

maturity – The DateTime maturity date of the security.

coupon – A double which specifies the security’s annual coupon rate.

yield – A double which specifies the security’s annual yield.

frequency – A int which specifies the number of coupon payments per year (1 for
annual, 2 for semiannual, 4 for quarterly).

basis – A DayCountBasis object which contains the type of day count basis to use.
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Returns

A double which specifies the annual duration of a security with periodic interest
payments.

Intrate
static public double Intrate(System.DateTime settlement, System.DateTime
maturity, double investment, double redemption, Imsl.Finance.DayCountBasis
basis)

Description

Returns the interest rate of a fully invested security.

It is computed using the following:

redemption − investment
investment

× B

DSM

In the equation above, B represents the number of days in a year based on the annual
basis, and DSM represents the number of days in the period starting with the settlement
date and ending with the maturity date.

Parameters

settlement – The DateTime settlement date of the security.

maturity – The DateTime maturity date of the security.

investment – A double which specifies the amount invested.

redemption – A double which specifies the amount to be received at maturity.

basis – A DayCountBasis object which contains the type of day count basis to use.

Returns

A double which specifies the interest rate for a fully invested security.

Mduration
static public double Mduration(System.DateTime settlement, System.DateTime
maturity, double coupon, double yield, Imsl.Finance.Bond.Frequency
frequency, Imsl.Finance.DayCountBasis basis)

Description

Returns the modified Macauley duration for a security with an assumed par value of $100.

It is computed using the following:

duration
1 + yield

frequency

where duration is calculated from Mduration.
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Parameters

settlement – The DateTime settlement date of the security.
maturity – The DateTime maturity date of the security.
coupon – A double which specifies the security’s annual coupon rate.
yield – A double which specifies the security’s annual yield.
frequency – A int which specifies the number of coupon payments per year (1 for
annual, 2 for semiannual, 4 for quarterly).
basis – A DayCountBasis object which contains the type of day count basis to use.

Returns

A double which specifies the modified Macauley duration for a security with an assumed
par value of $100.

Price
static public double Price(System.DateTime settlement, System.DateTime
maturity, double rate, double yield, double redemption,
Imsl.Finance.Bond.Frequency frequency, Imsl.Finance.DayCountBasis basis)

Description

Returns the price, per $100 face value, of a security that pays periodic interest.

It is computed using the following:

redemption(
1 + yield

frequency

)(N−1+DSC
E )

+
N∑

k=1

100× rate
frequency(

1 + yield
frequency

)(k−1+DSC
E )
−
(

100× rate
frequency

× A

E

)

In the above equation, DSC represents the number of days in the period starting with the
settlement date and ending with the next coupon date. E represents the number of days
within the coupon Frequency. N represents the number of coupons payable in the
timeframe from the settlement date to the redemption date. A represents the number of
days in the timeframe starting with the beginning of coupon period and ending with the
settlement date.

Parameters

settlement – The DateTime settlement date of the security.
maturity – The DateTime maturity date of the security.
rate – A double which specifies the security’s annual coupon rate.
yield – A double which specifies the security’s annual yield.
redemption – A double which specifies the security’s redemption value per $100
face value.
frequency – A int which specifies the number of coupon payments per year (1 for
annual, 2 for semiannual, 4 for quarterly).
basis – A DayCountBasis object which contains the type of day count basis to use.
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Returns

A double which specifies the price per $100 face value of a security that pays periodic
interest.

Pricedisc
static public double Pricedisc(System.DateTime settlement, System.DateTime
maturity, double rate, double redemption, Imsl.Finance.DayCountBasis basis)

Description

Returns the price of a discount bond given the discount rate.

It is computed using the following:

redemption − rate × redemption × DSM
B

In the equation above, DSM represents the number of days starting at the settlement
date and ending with the maturity date. B represents the number of days in a year based
on the annual basis.

Parameters

settlement – The DateTime settlement date of the security.

maturity – The DateTime maturity date of the security.

rate – A double which specifies the security’s discount rate.

redemption – A double which specifies the security’s redemption value per $100
face value.

basis – A DayCountBasis object which contains the type of day count basis to use.

Returns

A double which specifies the price per $100 face value of a discounted security.

Pricemat
static public double Pricemat(System.DateTime settlement, System.DateTime
maturity, System.DateTime issue, double rate, double yield,
Imsl.Finance.DayCountBasis basis)

Description

Returns the price, per $100 face value, of a discount bond.

It is computed using the following:

100 +
(
DIM

B × rate× 100
)

1 +
(
DSM

B × yield
) − A

B
× rate × 100
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In the equation above, B represents the number of days in a year based on the annual
basis. DSM represents the number of days in the period starting with the settlement date
and ending with the maturity date. DIM represents the number of days in the period
starting with the issue date and ending with the maturity date. A represents the number
of days in the period starting with the issue date and ending with the settlement date.

Parameters

settlement – The DateTime settlement date of the security.

maturity – The DateTime maturity date of the security.

issue – The DateTime issue date of the security.

rate – A double which specifies the security’s interest rate at issue date.

yield – A double which specifies the security’s annual yield.

basis – A DayCountBasis object which contains the type of day count basis to use.

Returns

A double which specifies the price per $100 face value of a security that pays interest at
maturity.

Priceyield
static public double Priceyield(System.DateTime settlement, System.DateTime
maturity, double yield, double redemption, Imsl.Finance.DayCountBasis
basis)

Description

Returns the price of a discount bond given the yield.

It is computed using the following:

redemption
1 +

(
DSM

B

)
yield

In the equation above, DSM represents the number of days starting at the settlement
date and ending with the maturity date. B represents the number of days in a year based
on the annual basis.

Parameters

settlement – The DateTime settlement date of the security.

maturity – The DateTime maturity date of the security.

yield – A double which specifies the security’s yield.

redemption – A double which specifies the security’s redemption value per $100
face value.

basis – A DayCountBasis object which contains the type of day count basis to use.
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Returns

A double which specifies the price per $100 face value of a discounted security.

Received
static public double Received(System.DateTime settlement, System.DateTime
maturity, double investment, double rate, Imsl.Finance.DayCountBasis basis)

Description

Returns the amount one receives when a fully invested security reaches the maturity date.

It is computed using the following:

investment
1−

(
rate × DIM

B

)
In the equation above, B represents the number of days in a year based on the annual
basis, and DIM represents the number of days in the period starting with the issue date
and ending with the maturity date.

Parameters

settlement – The DateTime settlement date of the security.

maturity – The DateTime maturity date of the security.

investment – A double which specifies the amount invested in the security.

rate – A double which specifies the security’s rate at issue date.

basis – A DayCountBasis object which contains the type of day count basis to use.

Returns

A double which specifies the amount received at maturity for a fully invested security.

Tbilleq
static public double Tbilleq(System.DateTime settlement, System.DateTime
maturity, double rate)

Description

Returns the bond-equivalent yield of a Treasury bill.

It is computed using the following:

If DSM <= 182

365× rate
360− rate ×DSM

otherwise,
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−DSM
365 +

√(
DSM
365

)2 − (2× DSM
365 − 1

)
× rate×DSM

rate×DSM−360

DSM
365 − 0.5

In the above equation, DSM represents the number of days starting at settlement date to
maturity date.

Parameters

settlement – The DateTime settlement date of the Treasury bill.

maturity – The DateTime maturity date of the Treasury bill. The maturity cannot
be more than a year after the settlement.

rate – A double which specifies the Treasury bill’s discount rate at issue date. The
discount rate is an annualized rate of return based on the par value of the bills. The
discount rate is calculated on a 360-day basis (twelve 30-day months).

Returns

A double which specifies the bond-equivalent yield for the Treasury bill. This is an
annualized rate based on the purchase price of the bills and reflects the actual yield to
maturity.

Tbillprice
static public double Tbillprice(System.DateTime settlement, System.DateTime
maturity, double rate)

Description

Returns the price, per $100 face value, of a Treasury bill.

It is computed using the following:

100
(

1− rate ×DSM
360

)

In the equation above, DSM represents the number of days in the period starting with
the settlement date and ending with the maturity date (any maturity date that is more
than one calendar year after the settlement date is excluded).

Parameters

settlement – The DateTime settlement date of the Treasury. bill.

maturity – The DateTime maturity date of the Treasury bill. The maturity cannot
be more than a year after the settlement.

rate – A double which specifies the Treasury bill’s discount rate at issue date. The
discount rate is an annualized rate of return based on the par value of the bills. The
discount rate is calculated on a 360-day basis (twelve 30-day months).
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Returns

A double which specifies the price per $100 face value for the Treasury bill.

Tbillyield
static public double Tbillyield(System.DateTime settlement, System.DateTime
maturity, double price)

Description

Returns the yield of a Treasury bill.

It is computed using the following:

100− price
price

× 360
DSM

In the equation above, DSM represents the number of days in the period starting with
the settlement date and ending with the maturity date (any maturity date that is more
than one calendar year after the settlement date is excluded).

Parameters

settlement – The DateTime settlement date of the Treasury bill.
maturity – The DateTime maturity date of the Treasury bill. The maturity cannot
be more than a year after the settlement.
price – A double which specifies the Treasury bill’s price per $100 face value.

Returns

A double which specifies the yield for the Treasury bill. This is an annualized rate based
on the purchase price of the bills and reflects the actual yield to maturity.

Yearfrac
static public double Yearfrac(System.DateTime startDate, System.DateTime
endDate, Imsl.Finance.DayCountBasis basis)

Description

Returns the fraction of a year represented by the number of whole days between two dates.

It is computed using the following:

A/D

where A equals the number of days from start to end, D equals annual basis.

Parameters

startDate – The DateTime start date of the security.
endDate – The DateTime end date of the security.
basis – A DayCountBasis object which contains the type of day count basis to use.
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Returns

A double which specifies the annual yield of a security that pays interest at maturity.

Yield
static public double Yield(System.DateTime settlement, System.DateTime
maturity, double rate, double price, double redemption,
Imsl.Finance.Bond.Frequency frequency, Imsl.Finance.DayCountBasis basis)

Description

Returns the yield of a security that pays periodic interest.

If there is one coupon period use the following:(
redemption

100 + rate
frequency

)
−
[
price
100 +

(
A
E ×

rate
frequency

)]
price
100 +

(
A
E ×

rate
frequency

) × frequency × E
DSR

In the equation above, DSR represents the number of days in the period starting with the
settlement date and ending with the redemption date. E represents the number of days
within the coupon Frequency. A represents the number of days in the period starting with
the beginning of coupon period and ending with the settlement date.

If there is more than one coupon period use the following:

price − redemption(
1+yield

frequency

)N−1+DSC
E

−

 N∑
k=1

100× rate
frequency(

1+yield
frequency

) k−1+DSC
E

+ 100× rate
frequency

× A

E
= 0

In the equation above, DSC represents the number of days in the period from the
settlement to the next coupon date. E represents the number of days within the coupon
Frequency.N represents the number of coupons payable in the period starting with the
settlement date and ending with the redemption date. A represents the number of days in
the period starting with the beginning of the coupon period and ending with the
settlement date.
Parameters

settlement – The DateTime settlement date of the security.
maturity – The DateTime maturity date of the security.
rate – A double which specifies the security’s annual coupon rate.
price – A double which specifies the security’s price per $100 face value.
redemption – A double which specifies the security’s redemption value per $100
face value.
frequency – A int which specifies the number of coupon payments per year (1 for
annual, 2 for semiannual, 4 for quarterly).
basis – A DayCountBasis object which contains the type of day count basis to use.
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Returns

A double which specifies the yield of a security that pays periodic interest.

Yielddisc
static public double Yielddisc(System.DateTime settlement, System.DateTime
maturity, double price, double redemption, Imsl.Finance.DayCountBasis
basis)

Description

Returns the annual yield of a discount bond.

It is computed using the following:

redemption − price
price

× B

DSM

In the equation above, B represents the number of days in a year based on the annual
basis, and DSM represents the number of days starting with the settlement date and
ending with the maturity date.

Parameters

settlement – The DateTime settlement date of the security.

maturity – The DateTime maturity date of the security.

price – A double which specifies the security’s price per $100 face value.

redemption – A double which specifies the security’s redemption value per $100
face value.

basis – A DayCountBasis object which contains the type of day count basis to use.

Returns

A double which specifies the annual yield for a discounted security.

Yieldmat
static public double Yieldmat(System.DateTime settlement, System.DateTime
maturity, System.DateTime issue, double rate, double price,
Imsl.Finance.DayCountBasis basis)

Description

Returns the annual yield of a security that pays interest at maturity.

It is computed using the following:[
1 +

(
DIM

B × rate
)]
−
[
price
100 +

(
A
B × rate

)]
price
100 +

(
A
B × rate

) × B

DSM
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In the equation above, DIM represents the number of days in the period starting with the
issue date and ending with the maturity date. DSM represents the number of days in the
period starting with the settlement date and ending with the maturity date. A represents
the number of days in the period starting with the issue date and ending with the
settlement date. B represents the number of days in a year based on the annual basis.

Parameters

settlement – The DateTime settlement date of the security.

maturity – The DateTime maturity date of the security.

issue – The DateTime issue date of the security.

rate – A double which specifies the security’s interest rate at date of issue.

price – A double which specifies the security’s price per $100 face value.

basis – A DayCountBasis object which contains the type of day count basis to use.

Returns

A double which specifies the annual yield of a security that pays interest at maturity.

Description

Definitions

rate is an annualized rate of return based on the par value of the bills.

yield is an annualized rate based on the purchase price and reflects the actual yield to maturity.

coupons are interest payments on a bond.

redemption is the amount a bond pays at maturity.

frequency is the number of times a year that a bond makes interest payments.

basis is the method used to calculate dates. For example, sometimes computations are done
assuming 360 days in a year.

issue is the day a bond is first sold.

settlement is the day a purchaser aquires a bond.

maturity is the day a bond’s principal is repaid.

Discount Bonds

Discount bonds, also called zero-coupon bonds, do not pay interest during the life of the
security, instead they sell at a discount to their value at maturity. The discount bond methods
all have settlement, maturity, basis and redemption as arguments. In the following list these
common arguments are ommitted.

• price = Pricedisc(rate) (p. 739)
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• price = Priceyield(yield) (p. 740)

• price = Pricemat(issue, rate, yield) (p. 739)

• rate = Disc(price) (p. 735)

• yield = Yielddisc(price) (p. 745)

A related method is Accrintm (p. 730), which returns the interest that has accumulated on the
discount bond.

Treasury Bills

US Treasury bills are a special case of discount bonds. The basis is fixed for treasury bills and
the redemption value is assumed to be $100. So these functions have only settlement and
maturity as common arguments.

• price = Tbillprice(rate) (p. 742)

• yield = Tbillyield(Price) (p. 743)

• yield = Tbilleq(rate) (p. 741)

Interest Paying Bonds

Most bonds pay interest periodically. The interest paying bond methods all have settlement,
maturity, basis and frequency as arguments. Again supressing the common arguments,

• price = Price(rate, yield, redemption) (p. 738)

• yield = Yield(rate, Price, redemption) (p. 744)

• redemption = Received(Price, rate) (p. 741)

A related method is Accrint (p. 729), which returns the interest that has accumulated at
settlement from the previous coupon date.

Coupon days

In this diagram, the settlement date is shown as a hollow circle and the adjacent coupon dates
are shown as filled circles.
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• Coupppcd (p. 735) is the coupon date immediately prior to the settlement date.

• Coupncd (p. 734) is the coupon date immediately after the settlement date.

• Coupdaybs (p. 732) is the number of days from the immediately prior coupon date to the
settlement date.

• Coupdaysnc (p. 733) is the number of days from the settlement date to the next Coupon
date.

• Coupdays (p. 733) is the number of days between these two coupon dates.

A related method is Coupnum (p. 734), which returns the number of coupons payable between
settlement and maturity.

Another related method is Yearfrac (p. 743), which returns the fraction of the year between
two days.
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Duration

Duration is used to measure the sensitivity of a bond to changes in interest rates. Convexity is
a measure of the sensitivity of duration.

• Duration (p. 736)

• DayCountBasis modified duration (p. 737)

• Convexity (p. 731)

Example: Accrued Interest - Periodic Payments

In this example, the accrued interest is calculated for a bond which pays interest semiannually.
The day count basis used is 30/360.

using System;
using Imsl.Finance;

public class accrintEx1
{

public static void Main(String[] args)
{

DateTime issue = DateTime.Parse("10/1/91");
DateTime firstCoupon = DateTime.Parse("3/31/92");
DateTime settlement = DateTime.Parse("11/3/91");
double rate = .06;
double par = 1000.0;
Bond.Frequency freq = Bond.Frequency.SemiAnnual;
DayCountBasis dcb = DayCountBasis.BasisNASD;
double accrint = Bond.Accrint(issue, firstCoupon, settlement,

rate, par, freq, dcb);
Console.Out.WriteLine("The accrued interest is " + accrint);

}
}

Output

The accrued interest is 5.33333333333333

Example: Accrued Interest - Payment at Maturity

In this example, the accrued interest is calculated for a bond which pays at maturity. The day
count basis used is 30/360.

using System;
using Imsl.Finance;
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public class accrintmEx1
{

public static void Main(String[] args)
{

DateTime issue = DateTime.Parse("10/1/91");
DateTime settlement = DateTime.Parse("11/3/91");
double rate = .06;
double par = 1000.0;
DayCountBasis dcb = DayCountBasis.BasisNASD;
double accrintm = Bond.Accrintm(issue, settlement, rate, par, dcb);
Console.Out.WriteLine("The accrued interest is " + accrintm);

}
}

Output

The accrued interest is 5.33333333333333

Example: Depreciation - French Accounting System

In this example, the depreciation for the second accounting period is calculated for an asset.

using System;
using Imsl.Finance;

public class amordegrcEx1
{

public static void Main(String[] args)
{

double cost = 2400.0;
DateTime issue = DateTime.Parse("11/1/92");
DateTime firstPeriod = DateTime.Parse("11/30/93");
double salvage = 300.0;
int period = 2;
double rate = .15;
DayCountBasis dcb = DayCountBasis.BasisNASD;
double amordegrc = Bond.Amordegrc(cost, issue, firstPeriod,

salvage, period, rate, dcb);
Console.Out.WriteLine("The depreciation for the second accounting "

+ "period is " + amordegrc);
}

}

Output

The depreciation for the second accounting period is 334
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Example: Depreciation - French Accounting System

In this example, the depreciation for the second accounting period is calculated for an asset.

using System;
using Imsl.Finance;

public class amorlincEx1
{

public static void Main(String[] args)
{

double cost = 2400.0;
DateTime issue = DateTime.Parse("11/1/92");
DateTime firstPeriod = DateTime.Parse("11/30/93");
double salvage = 300.0;
int period = 2;
double rate = .15;
DayCountBasis dcb = DayCountBasis.BasisNASD;
double amorlinc = Bond.Amorlinc(cost, issue, firstPeriod,

salvage, period, rate, dcb);
Console.Out.WriteLine("The depreciation for the second accounting "

+ "period is " + amorlinc);
}

}

Output

The depreciation for the second accounting period is 360

Example: Convexity for a Security

The convexity of a 10 year bond which pays interest semiannually is returned in this example.

using System;
using Imsl.Finance;

public class convexityEx1
{

public static void Main(String[] args)
{

DateTime settlement = DateTime.Parse("7/1/90");
DateTime maturity = DateTime.Parse("7/1/00");
double coupon = .075;
double yield = .09;
Bond.Frequency freq = Bond.Frequency.SemiAnnual;
DayCountBasis dcb = DayCountBasis.BasisActual365;
double convexity = Bond.Convexity(settlement, maturity, coupon,

yield, freq, dcb);
Console.Out.WriteLine("The convexity of the bond with semiannual "

+ "interest payments is " + convexity);
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}
}

Output

The convexity of the bond with semiannual interest payments is 59.4049912915856

Example: Days - Beginning of Period to Settlement Date

In this example, the settlement date is 11/11/86. The number of days from the beginning of
the coupon period to the settlement date is returned.

using System;
using Imsl.Finance;

public class coupdaybsEx1
{

public static void Main(String[] args)
{

DateTime settlement = DateTime.Parse("11/11/86");
DateTime maturity = DateTime.Parse("3/1/99");
Bond.Frequency freq = Bond.Frequency.SemiAnnual;
DayCountBasis dcb = DayCountBasis.BasisActual365;
int coupdaybs = Bond.Coupdaybs(settlement, maturity, freq, dcb);
Console.Out.WriteLine("The number of days from the beginning of the"

+ "\ncoupon period to the settlement date is "
+ coupdaybs);

}
}

Output

The number of days from the beginning of the
coupon period to the settlement date is 71

Example: Days in the Settlement Date Period

In this example, the settlement date is 11/11/86. The number of days in the coupon period
containing this date is returned.

using System;
using Imsl.Finance;

public class coupdaysEx1
{

public static void Main(String[] args)
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{
DateTime settlement = DateTime.Parse("11/11/86");
DateTime maturity = DateTime.Parse("3/1/99");
Bond.Frequency freq = Bond.Frequency.SemiAnnual;
DayCountBasis dcb = DayCountBasis.BasisActual365;
double coupdays = Bond.Coupdays(settlement, maturity, freq, dcb);
Console.Out.WriteLine("The number of days in the coupon period that "

+ "contains the settlement date is "
+ coupdays);

}
}

Output

The number of days in the coupon period that contains the settlement date is 182.5

Example: Days - Settlement Date to Next Coupon Date

In this example, the settlement date is 11/11/86. The number of days from this date to the
next coupon date is returned.

using System;
using Imsl.Finance;

public class coupdaysncEx1
{

public static void Main(String[] args)
{

DateTime settlement = DateTime.Parse("11/11/86");
DateTime maturity = DateTime.Parse("3/1/99");
Bond.Frequency freq = Bond.Frequency.SemiAnnual;
DayCountBasis dcb = DayCountBasis.BasisActual365;
int coupdaysnc = Bond.Coupdaysnc(settlement, maturity, freq,

dcb);
Console.Out.WriteLine("The number of days from the settlement date "

+ "to the next coupon date is " + coupdaysnc);
}

}

Output

The number of days from the settlement date to the next coupon date is 110
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Example: Next Coupon Date After the Settlement Date

In this example, the settlement date is 11/11/86. The previous coupon date before this date is
returned.

using System;
using Imsl.Finance;

public class coupncdEx1
{

public static void Main(String[] args)
{

DateTime settlement = DateTime.Parse("11/11/86");
DateTime maturity = DateTime.Parse("3/1/99");
Bond.Frequency freq = Bond.Frequency.SemiAnnual;
DayCountBasis dcb = DayCountBasis.BasisActual365;
DateTime coupncd = Bond.Coupncd(settlement, maturity, freq,

dcb);
Console.Out.WriteLine("The next coupon date after the " +

"settlement date is " + coupncd);
}

}

Output

The next coupon date after the settlement date is 3/1/1987 12:00:00 AM

Example: Number of Payable Coupons

In this example, the settlement date is 11/11/86. The number of payable coupons between this
date and the maturity date is returned.

using System;
using Imsl.Finance;

public class coupnumEx1
{

public static void Main(String[] args)
{

DateTime settlement = DateTime.Parse("11/11/86");
DateTime maturity = DateTime.Parse("3/1/99");
Bond.Frequency freq = Bond.Frequency.SemiAnnual;
DayCountBasis dcb = DayCountBasis.BasisActual365;
int coupnum = Bond.Coupnum(settlement, maturity, freq, dcb);
Console.Out.WriteLine("The number of coupons payable between" +

" the \nsettlement date and the maturity"
+ " date is " + coupnum);

}
}
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Output

The number of coupons payable between the
settlement date and the maturity date is 25

Example: Previous Coupon Date Before the Settlement Date

In this example, the settlement date is 11/11/86. The previous coupon date before this date is
returned.

using System;
using Imsl.Finance;

public class couppcdEx1
{

public static void Main(String[] args)
{

DateTime settlement = DateTime.Parse("11/11/86");
DateTime maturity = DateTime.Parse("3/1/99");
Bond.Frequency freq = Bond.Frequency.SemiAnnual;
DayCountBasis dcb = DayCountBasis.BasisActual365;
DateTime couppcd = Bond.Couppcd(settlement, maturity, freq,

dcb);
Console.Out.WriteLine("The previous coupon date before the " +

"settlement \ndate is " +
couppcd.ToLongDateString());

}
}

Output

The previous coupon date before the settlement
date is Monday, September 01, 1986

Example: Discount Rate for a Security

In this example, the discount rate for a security is returned.

using System;
using Imsl.Finance;

public class discEx1
{

public static void Main(String[] args)
{

DateTime settlement = DateTime.Parse("2/15/92");
DateTime maturity = DateTime.Parse("6/10/92");
double price = 97.975;
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double redemption = 100.0;
DayCountBasis dcb = DayCountBasis.BasisActual365;
double disc = Bond.Disc(settlement, maturity, price,

redemption, dcb);
Console.Out.WriteLine("The discount rate for the security is "

+ disc);
}

}

Output

The discount rate for the security is 0.0637176724137933

Example: Duration of a Security with Periodic Payments

The annual duration of a 10 year bond which pays interest semiannually is returned in this
example.

using System;
using Imsl.Finance;

public class durationEx1
{

public static void Main(String[] args)
{

DateTime settlement = DateTime.Parse("7/1/85");
DateTime maturity = DateTime.Parse("7/1/95");
double coupon = .075;
double yield = .09;
Bond.Frequency freq = Bond.Frequency.SemiAnnual;
DayCountBasis dcb = DayCountBasis.BasisActual365;
double duration = Bond.Duration(settlement, maturity, coupon,

yield, freq, dcb);
Console.Out.WriteLine("The annual duration of the bond with" +

"\nsemiannual interest payments is " +
duration);

}
}

Output

The annual duration of the bond with
semiannual interest payments is 7.04195337797215

Example: Interest Rate of a Fully Invested Security

The discount rate of a 10 year bond is returned in this example.

756 • Bond Class IMSL C# Numerical Library



using System;
using Imsl.Finance;

public class intrateEx1
{

public static void Main(String[] args)
{

DateTime settlement = DateTime.Parse("7/1/85");
DateTime maturity = DateTime.Parse("7/1/95");
double investment = 7000.0;
double redemption = 10000.0;
DayCountBasis dcb = DayCountBasis.BasisActual365;
double intrate = Bond.Intrate(settlement, maturity, investment,

redemption, dcb);
Console.Out.WriteLine("The interest rate of the bond is " +

intrate);
}

}

Output

The interest rate of the bond is 0.0428336723517446

Example: Modified Macauley Duration of a Security with Periodic Pay-
ments

The modified Macauley duration of a 10 year bond which pays interest semiannually is returned
in this example.

using System;
using Imsl.Finance;

public class mdurationEx1
{

public static void Main(String[] args)
{

DateTime settlement = DateTime.Parse("7/1/85");
DateTime maturity = DateTime.Parse("7/1/95");
double coupon = .075;
double yield = .09;
Bond.Frequency freq = Bond.Frequency.SemiAnnual;
DayCountBasis dcb = DayCountBasis.BasisActual365;
double mduration = Bond.Mduration(settlement, maturity, coupon,

yield, freq, dcb);
Console.Out.WriteLine("The modified Macauley duration " +

"of the bond");
Console.Out.WriteLine("with semiannual interest payments is "

+ mduration);
}

}
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Output

The modified Macauley duration of the bond
with semiannual interest payments is 6.73871136648053

Example: Price of a Security

The price per $100 face value of a 10 year bond which pays interest semiannually is returned in
this example.

using System;
using Imsl.Finance;

public class priceEx1
{

public static void Main(String[] args)
{

DateTime settlement = DateTime.Parse("7/1/85");
DateTime maturity = DateTime.Parse("7/1/95");
double rate = .06;
double yield = .07;
double redemption = 105.0;
Bond.Frequency freq = Bond.Frequency.SemiAnnual;
DayCountBasis dcb = DayCountBasis.BasisNASD;
double price = Bond.Price(settlement, maturity, rate, yield,

redemption, freq, dcb);
Console.Out.WriteLine("The price of the bond is " +

price.ToString("C"));
}

}

Output

The price of the bond is $95.41

Example: Price of a Discounted Security

The price per $100 face value of a discounted 1 year bond is returned in this example.

using System;
using Imsl.Finance;

public class pricediscEx1
{

public static void Main(String[] args)
{

DateTime settlement = DateTime.Parse("7/1/85");
DateTime maturity = DateTime.Parse("7/1/86");
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double rate = .05;
double redemption = 100.0;
DayCountBasis dcb = DayCountBasis.BasisNASD;
double pricedisc = Bond.Pricedisc(settlement, maturity, rate,

redemption, dcb);
Console.Out.WriteLine("The price of the discounted bond is " +

pricedisc.ToString("C"));
}

}

Output

The price of the discounted bond is $95.00

Example: Price of a Security that Pays at Maturity

The price per $100 face value of 1 year bond that pays interest at maturity is returned in this
example.

using System;
using Imsl.Finance;

public class pricematEx1
{

public static void Main(String[] args)
{

DateTime settlement = DateTime.Parse("8/1/85");
DateTime maturity = DateTime.Parse("7/1/86");
DateTime issue = DateTime.Parse("7/1/85");
double rate = .05;
double yield = .05;
DayCountBasis dcb = DayCountBasis.BasisNASD;
double pricemat = Bond.Pricemat(settlement, maturity, issue,

rate, yield, dcb);
Console.Out.WriteLine("The price of the bond is " + pricemat);

}
}

Output

The price of the bond is 99.9817397078353

Price of a Discounted Security

The price of a discounted 1 year bond is returned in this example.
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priceyieldEx1

using System;
using Imsl.Finance;

public class priceyieldEx1
{

public static void Main(String[] args)
{

DateTime settlement = DateTime.Parse("7/1/85");
DateTime maturity = DateTime.Parse("7/1/95");
double yield = 0.010055244588347783;
double redemption = 105.0;
DayCountBasis dcb = DayCountBasis.BasisNASD;
double priceyield = Bond.Priceyield(settlement, maturity,

yield, redemption, dcb);
Console.Out.WriteLine("The price of the discounted bond is " +

priceyield);
}

}

Output

The price of the discounted bond is 95.40663

Example: Amount Received at Maturity for a Fully Invested Security

The amount to be received at maturity for a 10 year bond is returned in this example.

using System;
using Imsl.Finance;

public class receivedEx1
{

public static void Main(String[] args)
{

DateTime settlement = DateTime.Parse("7/1/85");
DateTime maturity = DateTime.Parse("7/1/95");
double investment = 7000.0;
double discount = .06;
DayCountBasis dcb = DayCountBasis.BasisActual365;
double received = Bond.Received(settlement, maturity,

investment, discount, dcb);
Console.Out.WriteLine("The amount received at maturity for the"

+ " bond is " + received.ToString("C"));
}

}
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Output

The amount received at maturity for the bond is $17,514.40

Example: Bond-Equivalent Yield

The bond-equivalent yield for a 1 year Treasury bill is returned in this example.

using System;
using Imsl.Finance;

public class tbilleqEx1
{

public static void Main(String[] args)
{

DateTime settlement = DateTime.Parse("7/1/85");
DateTime maturity = DateTime.Parse("7/1/86");
double discount = .05;
double tbilleq = Bond.Tbilleq(settlement, maturity, discount);
Console.Out.WriteLine("The bond-equivalent yield for the " +

"T-bill is " + tbilleq.ToString("P"));
}

}

Output

The bond-equivalent yield for the T-bill is 5.27 %

Example: Treasury Bill Price

The price per $100 face value for a 1 year Treasury bill is returned in this example.

using System;
using Imsl.Finance;

public class tbillpriceEx1
{

public static void Main(String[] args)
{

DateTime settlement = DateTime.Parse("7/1/85");
DateTime maturity = DateTime.Parse("7/1/86");
double discount = .05;
double tbillprice = Bond.Tbillprice(settlement, maturity,

discount);
Console.Out.WriteLine("The price per $100 face value for the " +

"T-bill is " + tbillprice.ToString("C"));
}

}
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Output

The price per $100 face value for the T-bill is $94.93

Example: Treasury Bill Yield

The yield for a 1 year Treasury bill is returned in this example.

using System;
using Imsl.Finance;

public class tbillyieldEx1
{

public static void Main(String[] args)
{

DateTime settlement = DateTime.Parse("7/1/85");
DateTime maturity = DateTime.Parse("7/1/86");
double price = 94.93;
double tbillyield = Bond.Tbillyield(settlement, maturity, price);
Console.Out.WriteLine("The yield for the T-bill is " +

tbillyield.ToString("P"));
}

}

Output

The yield for the T-bill is 5.27 %

Example: Year Fraction

The year fraction of a 30/360 year starting 8/1/85 and ending 7/1/86 is returned in this
example.

using System;
using Imsl.Finance;

public class yearfracEx1
{

public static void Main(String[] args)
{

DateTime start = DateTime.Parse("8/1/85");
DateTime end = DateTime.Parse("7/1/86");
DayCountBasis dcb = DayCountBasis.BasisNASD;
double yearfrac = Bond.Yearfrac(start, end, dcb);
Console.Out.WriteLine("The year fraction of the 30/360 period "

+ "is " + yearfrac);
}

}
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Output

The year fraction of the 30/360 period is 0.916666666666667

Example: Yield on a Security

The yield on a 10 year bond which pays interest semiannually is returned in this example.

using System;
using Imsl.Finance;

public class yieldEx1
{

public static void Main(String[] args)
{

DateTime settlement = DateTime.Parse("7/1/85");
DateTime maturity = DateTime.Parse("7/1/95");
double rate = .06;
double price = 95.40663;
double redemption = 105.0;
Bond.Frequency freq = Bond.Frequency.SemiAnnual;
DayCountBasis dcb = DayCountBasis.BasisNASD;
double yield = Bond.Yield(settlement, maturity, rate, price,

redemption, freq, dcb);
Console.Out.WriteLine("The yield of the bond is " + yield);

}
}

Output

The yield of the bond is 0.0699999968284289

Example: Yield on a Discounted Security

The yield on a discounted 10 year bond is returned in this example.

using System;
using Imsl.Finance;

public class yielddiscEx1
{

public static void Main(String[] args)
{

DateTime settlement = DateTime.Parse("7/1/85");
DateTime maturity = DateTime.Parse("7/1/95");
double price = 95.40663;
double redemption = 105.0;
DayCountBasis dcb = DayCountBasis.BasisNASD;
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double yielddisc = Bond.Yielddisc(settlement, maturity, price,
redemption, dcb);

Console.Out.WriteLine("The yield on the discounted bond is " +
yielddisc);

}
}

Output

The yield on the discounted bond is 0.0100552445883478

Example: Yield on a Security Which Pays at Maturity

The yield on a bond which pays at maturity is returned in this example.

using System;
using Imsl.Finance;

public class yieldmatEx1
{

public static void Main(String[] args)
{

DateTime settlement = DateTime.Parse("8/1/85");
DateTime maturity = DateTime.Parse("7/1/95");
DateTime issue = DateTime.Parse("7/1/85");
double rate = .06;
double price = 95.40663;
DayCountBasis dcb = DayCountBasis.BasisNASD;
double yieldmat = Bond.Yieldmat(settlement, maturity, issue,

rate, price, dcb);
Console.Out.WriteLine("The yield on a bond which pays at " +

"maturity is " + yieldmat);
}

}

Output

The yield on a bond which pays at maturity is 0.0673905127809195

Bond.Frequency Enumeration

Summary

Frequency of the bond’s coupon payments.
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public enumeration Imsl.Finance.Bond.Frequency

Fields

Annual
public Imsl.Finance.Bond.Frequency Annual

Description

Indicates interest is paid once a year.

Quarterly
public Imsl.Finance.Bond.Frequency Quarterly

Description

Indicates interest is paid four times a year.

SemiAnnual
public Imsl.Finance.Bond.Frequency SemiAnnual

Description

Indicates interest is paid twice a year.

DayCountBasis Class

Summary

The Day Count Basis.

public class Imsl.Finance.DayCountBasis

Fields

Basis30e360
public Imsl.Finance.DayCountBasis Basis30e360

Description

Computations based on the assumption of 30 days per month and 360 days per year.
See Also: Imsl.Finance.DayCountBasis.BasisPart30E360 (p. 766)

BasisActual360
public Imsl.Finance.DayCountBasis BasisActual360
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Description

Computations are based on the number of days in a month based on the actual calendar
value and the number of days, but assuming 360 days per year.

See Also: Imsl.Finance.DayCountBasis.BasisPartActual (p. 767),
Imsl.Finance.DayCountBasis.BasisPartNASD (p. 767)

BasisActual365
public Imsl.Finance.DayCountBasis BasisActual365

Description

Computations are based on the number of days in a month based on the actual calendar
value and the number of days, but assuming 365 days per year.

See Also: Imsl.Finance.DayCountBasis.BasisPartActual (p. 767),
Imsl.Finance.DayCountBasis.BasisPart365 (p. 766)

BasisActualActual
public Imsl.Finance.DayCountBasis BasisActualActual

Description

Computations are based on the actual calendar.

See Also: Imsl.Finance.DayCountBasis.BasisPartActual (p. 767)

BasisNASD
public Imsl.Finance.DayCountBasis BasisNASD

Description

Computations based on the assumption of 30 days per month and 360 days per year.

See Also: Imsl.Finance.DayCountBasis.BasisPartNASD (p. 767)

BasisPart30E360
public Imsl.Finance.IBasisPart BasisPart30E360

Description

Computations based on the assumption of 30 days per month and 360 days per year. This
computes the number of days between two dates differently than BasisPartNASD for
months with other than 30 days.

BasisPart365
public Imsl.Finance.IBasisPart BasisPart365
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Description

Computations based on the assumption of 365 days per year.

BasisPartActual
public Imsl.Finance.IBasisPart BasisPartActual

Description

Computations are based on the actual calendar.

BasisPartNASD
public Imsl.Finance.IBasisPart BasisPartNASD

Description

Computations based on the assumption of 30 days per month and 360 days per year.

Properties

MonthBasis
public Imsl.Finance.IBasisPart MonthBasis {get; }
Description

The (days in month) portion of the Day Count Basis.

YearBasis
public Imsl.Finance.IBasisPart YearBasis {get; }
Description

The (days in year) portion of the Day Count Basis.

Constructor

DayCountBasis
public DayCountBasis(Imsl.Finance.IBasisPart monthBasis,
Imsl.Finance.IBasisPart yearBasis)

Description

Creates a new DayCountBasis.

Parameters

monthBasis – A IBasisPart which specifies the month basis.

yearBasis – A IBasisPart which specifies the year basis.
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Description

Rules for computing the number or days between two dates or number of days in a year. For
many securities, computations are based on rules other than on the actual calendar.

IBasisPart Interface

Summary

Component of DayCountBasis.

public interface Imsl.Finance.IBasisPart

Methods

DaysBetween
abstract public int DaysBetween(System.DateTime date1, System.DateTime
date2)

Description

Returns the number of days from date1 to date2.

Parameters

date1 – A DateTime object containing the initial date.

date2 – A DateTime object containing the final date.

Returns

A int which specifies the number of days from date1 to date2.

DaysInPeriod
abstract public double DaysInPeriod(System.DateTime finalDate,
Imsl.Finance.Bond.Frequency frequency)

Description

Returns the number of days in a coupon period.

Parameters

finalDate – A DateTime object containing the final date of the coupon period.

frequency – The Frequency specifying the number of coupon periods per year. This
is typically 1, 2 or 4.
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Returns

A int containing the number of days in the coupon period.

GetDaysInYear
abstract public int GetDaysInYear(System.DateTime settlement,
System.DateTime maturity)

Description

Returns the number of days in the year.

Parameters

settlement – A DateTime object containing the settlement date.

maturity – A DateTime object containing the maturity date.

Returns

A int which specifies the number of days in the year.

Description

The day count basis consists of a month basis and a yearly basis. Each of these components
implements this interface.

See Also

Imsl.Finance.DayCountBasis (p. 765)
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Chapter 23: Chart2D

Types

class AbstractChartNode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772
class ChartNode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786
class Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 806
class Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 810
class ChartTitle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 811
class Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 811
class Legend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 812
class Axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .813
class AxisXY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 815
class Axis1D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .818
class AxisLabel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 821
class AxisLine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 823
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AbstractChartNode Class

Summary

The base class of all of the nodes in 2D chart trees.

public class Imsl.Chart2D.AbstractChartNode

Fields

AUTOSCALE DATA
public int AUTOSCALE DATA

Description

An int that indicates autoscaling is to be done by scanning the data nodes.

772 • AbstractChartNode Class IMSL C# Numerical Library



See Also: Imsl.Chart2D.AbstractChartNode.AutoscaleInput (p. 776)

AUTOSCALE DENSITY
public int AUTOSCALE DENSITY

Description

An int that indicates autoscaling is to adjust the ”Density” attribute.

This applies only to time axes.

See Also: Imsl.Chart2D.AbstractChartNode.AutoscaleOutput (p. 777)

AUTOSCALE NUMBER
public int AUTOSCALE NUMBER

Description

An int that indicates autoscaling is to adjust the ”Number” attribute.

See Also: Imsl.Chart2D.AbstractChartNode.AutoscaleOutput (p. 777)

AUTOSCALE OFF
public int AUTOSCALE OFF

Description

An int that indicates autoscaling is turned off.

See Also: Imsl.Chart2D.AbstractChartNode.AutoscaleInput (p. 776),
Imsl.Chart2D.AbstractChartNode.AutoscaleOutput (p. 777)

AUTOSCALE WINDOW
public int AUTOSCALE WINDOW

Description

An int that indicates autoscaling is to be done by using the ”Window” attribute.

See Also: Imsl.Chart2D.AbstractChartNode.AutoscaleInput (p. 776),
Imsl.Chart2D.AbstractChartNode.AutoscaleOutput (p. 777)

AXIS X
public int AXIS X

Description

An int that indicates the x-axis.

See Also: Type (p. 819)

AXIS Y
public int AXIS Y
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Description

An int that indicates the y-axis.

See Also: Type (p. 819)

DAY
public int DAY

Description

An int which specifies a minimum tick mark interval for an autoscaled time axis where
the time resolution is a day.

HOUR
public int HOUR

Description

An int which specifies a minimum tick mark interval for an autoscaled time axis where
the time resolution is in hours.

LABEL TYPE NONE
public int LABEL TYPE NONE

Description

An int used to indicate the an element is not to be labeled.

See Also: Imsl.Chart2D.AbstractChartNode.LabelType (p. 779)

LABEL TYPE TITLE
public int LABEL TYPE TITLE

Description

An int used to indicate that an element is to be labeled with the value of its title
attribute.

See Also: Imsl.Chart2D.AbstractChartNode.LabelType (p. 779)

LABEL TYPE X
public int LABEL TYPE X

Description

An int used to indicate that an element is to be labeled with the value of its
x-coordinate.

See Also: Imsl.Chart2D.AbstractChartNode.LabelType (p. 779)

LABEL TYPE Y
public int LABEL TYPE Y
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Description

An int used to indicate that an element is to be labeled with the value of its
y-coordinate.

See Also: Imsl.Chart2D.AbstractChartNode.LabelType (p. 779)

MILLISECOND
public int MILLISECOND

Description

An int which specifies a minimum tick mark interval for an autoscaled time axis where
the time resolution is in milliseconds.

MINUTE
public int MINUTE

Description

An int which specifies a minimum tick mark interval for an autoscaled time axis where
the time resolution is in minutes.

MONTH
public int MONTH

Description

An int which specifies a minimum tick mark interval for an autoscaled time axis where
the time resolution is a month.

SECOND
public int SECOND

Description

An int which specifies a minimum tick mark interval for an autoscaled time axis where
the time resolution is in seconds.

TRANSFORM CUSTOM
public int TRANSFORM CUSTOM

Description

An int used to indicate that the axis using a custom transformation.

See Also: Imsl.Chart2D.AbstractChartNode.Transform (p. 781)

TRANSFORM LINEAR
public int TRANSFORM LINEAR
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Description

An int used to indicate that the axis uses linear scaling.

See Also: Imsl.Chart2D.AbstractChartNode.Transform (p. 781)

TRANSFORM LOG
public int TRANSFORM LOG

Description

An int used to indicate that the axis uses logarithmic scaling.

See Also: Imsl.Chart2D.AbstractChartNode.Transform (p. 781)

WEEK
public int WEEK

Description

An int which specifies a minimum tick mark interval for an autoscaled time axis where
the time resolution is a week of the year.

YEAR
public int YEAR

Description

An int which specifies a minimum tick mark interval for an autoscaled time axis where
the time resolution is a year.

Properties

AbstractParent
virtual public Imsl.Chart2D.AbstractChartNode AbstractParent {get; }

Description

Indicates the parent of this AbstractChartNode.

If this is the root node in the chart tree the value is null.

Note that this is not an attribute setting.

Note that there is no SetParent method or property assignment.

AutoscaleInput
virtual public int AutoscaleInput {get; set; }
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Description

Indicates what inputs are used for autoscaling.

Legal values are:

Value Behavior
AUTOSCALE OFF Do not do autoscaling.

AUTOSCALE DATA Use the data values. This is the default.
AUTOSCALE WINDOW Use the ”Window” attribute value.

AutoscaleMinimumTimeInterval
virtual public int AutoscaleMinimumTimeInterval {get; set; }

Description

Specifies the minimum tick mark interval for autoscaled time axes.

Legal values are:
AbstractChartNode.MILLISECONDAbstractChartNode.SECONDAbstractChartNode.MINUTEAbstractChartNode.HOURAbstractChartNode.DAYAbstractChartNode.WEEKAbstractChartNode.MONTHAbstractChartNode.YEAR

AutoscaleOutput
virtual public int AutoscaleOutput {get; set; }

Description

Specifies what attributes to change as a result of autoscaling.

Legal values are bitwise-or combinations of the following:

Value Behavior
AUTOSCALE OFF Do not do autoscaling.

AUTOSCALE WINDOW Change the ”Window” attribute value.
AUTOSCALE NUMBER Change the ”Number” attribute value.
AUTOSCALE DENSITY Change the ”Density” attribute value.

The default is (AUTOSCALE NUMBER — AUTOSCALE WINDOW —
AUTOSCALE DENSITY).

CultureInfo
virtual public System.Globalization.CultureInfo CultureInfo {get; set; }

Description

Adds support for Windows supported locales.

Default: CurrentCulture (p. ??)

CustomTransform
virtual public Imsl.Chart2D.Transform CustomTransform {get; set; }
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Description

Allows for the specification of a custom transform.

This is used only if the ”Transform” attribute is set to TRANSFORM CUSTOM.

Density
virtual public int Density {get; set; }

Description

Specifies the number of minor tick marks in the interval between major tick marks.

Default: 4

FillColor
virtual public System.Drawing.Color FillColor {get; set; }

Description

Specifies a color that will be used to fill an area.

Default: Color.Black

Font
virtual public System.Drawing.Font Font {get; set; }

Description

Defines a particular format for text, including font name, size, and style attributes.

FontName
virtual public string FontName {get; set; }

Description

Specifies the font to be used by name.

Default: Sanserif

FontSize
virtual public float FontSize {get; set; }

Description

Specifies the font size.

Default: 8.

FontStyle
virtual public System.Drawing.FontStyle FontStyle {get; set; }
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Description

Specifies the font style to be used.
Default: FontStyle.Regular (p. ??).

ImageAttr
virtual public System.Drawing.Image ImageAttr {get; set; }

Description

An image that is to rendered when this ChartNode is displayed.

IsVisible
virtual public bool IsVisible {get; set; }

Description

Specifies if this node and its children will be drawn.
If false, this node and its children are not drawn. Default: true.

LabelType
virtual public int LabelType {get; set; }

Description

Specifies the type of label to display.
This indicates how a data point is to be labeled. The default is to not label data points,
LABEL TYPE NONE.
See Also:
Imsl.Chart2D.AbstractChartNode.LABELTY PENONE(p.774), Imsl.Chart2D.AbstractChartNode.LABELTY PET ITLE(p.774), Imsl.Chart2D.AbstractChartNode.LABELTY PEX(p.774), Imsl.Chart2D.AbstractChartNode.LABELTY PEY (p.774)

LineColor
virtual public System.Drawing.Color LineColor {get; set; }

Description

Specifies the line color for this node.
Default: Color.Black

LineWidth
virtual public double LineWidth {get; set; }

Description

Specifies the line width for this node.
Default: 1.0

MarkerColor
virtual public System.Drawing.Color MarkerColor {get; set; }
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Description

Specifies what color will be used when rendering marker.

Default: Color.Black.

MarkerSize
virtual public double MarkerSize {get; set; }

Description

Specifies the size of markers.

Default: 1.0.

Name
virtual public string Name {get; set; }

Description

Specifies the name of this node.

Number
virtual public int Number {get; set; }

Description

Specifies the number of tick marks along an axis.

Default: 0

SkipWeekends
virtual public bool SkipWeekends {get; set; }

Description

Specifies whether to skip weekends.

Default: false.

See Also: Imsl.Chart2D.AbstractChartNode.AutoscaleMinimumTimeInterval (p. 777)

TextColor
virtual public System.Drawing.Color TextColor {get; set; }

Description

Specifies the text color.

The default value is Color.Black.

TextFormat
virtual public string TextFormat {get; set; }
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Description

Specifies the ”TextFormat” attribute value.

The default is ”0.00” that allows exactly two digits after the decimal.

TextFormatProvider
virtual public System.IFormatProvider TextFormatProvider {get; set; }

Description

Specifies the ”TextFormatProvider” attribute value.

The default is null.

TickLength
virtual public double TickLength {get; set; }

Description

This scales the length of the tick mark lines.

A value of 2.0 makes the tick marks twice as long as normal. A negative value causes the
tick marks to be drawn pointing into the plot area. Default: 1.0.

Transform
virtual public int Transform {get; set; }

Description

Specifies whether the axis is linear, logarithmic or a custom transform.

Legal values are
Imsl.Chart2D.AbstractChartNode.TRANSFORMLINEAR(p.775)(thedefault), Imsl.Chart2D.AbstractChartNode.TRANSFORMLOG(p.776)andImsl.Chart2D.AbstractChartNode.TRANSFORMCUSTOM(p.775).

Constructor

AbstractChartNode
public AbstractChartNode(Imsl.Chart2D.AbstractChartNode parent)

Description

This interface contains members that will be common to chart objects in a variety of
dimentions.

Parameter

parent – A chart node which is the parent node of this object.
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Methods

GetAttribute
virtual public Object GetAttribute(string name)

Description

Gets the value of an attribute.

Parameter

name – A String which specifies attribute that will have its value retrieved.

Returns

An Object which contains the specified attribute value.

GetBooleanAttribute
virtual public bool GetBooleanAttribute(string name, bool defaultValue)

Description

Convenience routine to get a Boolean-valued attribute.

The value of an attribute is returned if it is defined and its value is of type bool.
Otherwise the defaultValue is returned.

Parameters

name – A String which contains the name of the attribute to be assessed.

defaultValue – A bool specifying the default value of the attribute.

Returns

A bool containing the attribute value.

GetColorAttribute
virtual public System.Drawing.Color GetColorAttribute(string name)

Description

Convenience routine to get a Color-valued attribute.

The value of an attribute is returned if it is defined and its value is of type Color.
Otherwise the Color.Black is returned.

Parameter

name – A String which contains the name of the attribute to be assessed.

Returns

A Color containing the attribute value.

GetDoubleAttribute
virtual public double GetDoubleAttribute(string name, double defaultValue)
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Description

Convenience routine to get a Double-valued attribute.

The value of an attribute is returned if it is defined and its value is of type double.
Otherwise the defaultValue is returned.

Parameters

name – A String which contains the name of the attribute to be assessed.

defaultValue – A double specifying the default value of the attribute.

Returns

A double containing the attribute value.

GetIntegerAttribute
virtual public int GetIntegerAttribute(string name, int defaultValue)

Description

Convenience routine to get an Integer-valued attribute.

The value of an attribute is returned if it is defined and its value is of type int.
Otherwise the defaultValue is returned.

Parameters

name – A String which contains the name of the attribute to be assessed.

defaultValue – An int specifying the default value of the attribute.

Returns

An int containing the attribute value.

GetStringAttribute
virtual public string GetStringAttribute(string name)

Description

Convenience routine to get a String-valued attribute.

The attribute value is returned if it is defined and its value is of type String.

Parameter

name – A String which contains the name of the attribute to be assessed.

Returns

The String value of the attribute.

GetX
virtual public double[] GetX()

Description

Returns the ”X” attribute value.
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Returns

A double[] which contains the ”X” attribute value.

GetY
virtual public double[] GetY()

Description

Returns the ”Y” attribute value.

Returns

A double[] which contains the ”Y” attribute value.

IsAncestorOf
virtual public bool IsAncestorOf(Imsl.Chart2D.AbstractChartNode node)

Description

Determines if this node is an ancestor of the argument node.

Parameter

node – An AbstractChartNode object that will have it’s relationship checked.

Returns

A bool, true if this node is an ancestor of the argument, node.

IsAttributeSet
virtual public bool IsAttributeSet(string name)

Description

Determines if an attribute is defined (may have been inherited).

Parameter

name – A String which contains the name of the attribute.

Returns

A bool, true if the attribute is defined for this node. The definition may have been
inherited from its parent node.

IsAttributeSetAtThisNode
virtual public bool IsAttributeSetAtThisNode(string name)

Description

Determines if an attribute is defined in this node (not inherited).

The definition must have been set directly in this node, not just inherited from its parent
node.
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Parameter

name – A String which contains the name of the attribute to be checked.

Returns

A bool, true if the attribute is defined in this node.

IsBitSet
static public bool IsBitSet(int flag, int mask)

Description

Returns true if the bit set in flag is set in mask.
Parameters

flag – An int which contains the bit to be tested against the mask.
mask – A int which is used as the mask.

Returns

A bool, true if the bit set in flag is set in mask.

Remove
public void Remove()

Description

Removes the node from its parents list of children.

SetAttribute
virtual public void SetAttribute(string name, Object value)

Description

Sets an attribute.
Parameters

name – A String which contains the name of the attribute to be set.
value – An Object which contains the attribute value.

SetX
virtual public void SetX(Object x)

Description

Sets the ”X” attribute value.
Parameter

x – An Object that specifies the ”X” attribute value.

SetY
virtual public void SetY(Object y)
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Description

Sets the ”Y” attribute value.

Parameter

y – An Object that specifies the ”Y” attribute value.

ToString
override public string ToString()

Description

Returns the name of this chart node.

Returns

A String, the name of this chart node.

ChartNode Class

Summary

The base class of all of the nodes in the 2D chart tree.

public class Imsl.Chart2D.ChartNode : AbstractChartNode

Fields

AXIS X TOP
public int AXIS X TOP

Description

Flag to indicate x-axis placed on top of the chart.

AXIS Y RIGHT
public int AXIS Y RIGHT

Description

Flag to indicate y-axis placed to the right of the chart.

BAR TYPE HORIZONTAL
public int BAR TYPE HORIZONTAL

786 • ChartNode Class IMSL C# Numerical Library



Description

Flag to indicate a horizontal bar chart.

See Also: Imsl.Chart2D.ChartNode.BarType (p. 794)

BAR TYPE VERTICAL
public int BAR TYPE VERTICAL

Description

Flag to indicate a vertical bar chart.

See Also: Imsl.Chart2D.ChartNode.BarType (p. 794)

DASH PATTERN DASH
public double[] DASH PATTERN DASH

Description

A double[] flag that specifies the rendering of a dashed line.

See Also: Imsl.Chart2D.ChartNode.SetLineDashPattern(System.Double[]) (p. 804)

DASH PATTERN DASH DOT
public double[] DASH PATTERN DASH DOT

Description

A double[] flag that specifies the rendering of a dash-dot patterned line.

See Also: Imsl.Chart2D.ChartNode.SetLineDashPattern(System.Double[]) (p. 804)

DASH PATTERN DOT
public double[] DASH PATTERN DOT

Description

A double[] flag that specifies the rendering of a dotted line.

See Also: Imsl.Chart2D.ChartNode.SetLineDashPattern(System.Double[]) (p. 804)

DASH PATTERN SOLID
public double[] DASH PATTERN SOLID

Description

A double[] flag that specifies the rendering of a solid line.

See Also: Imsl.Chart2D.ChartNode.SetLineDashPattern(System.Double[]) (p. 804)

DATA TYPE FILL
public int DATA TYPE FILL
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Description

An int which when assigned to attribute ”DataType” indicates that the area between the
lines connecting data points and the horizontal reference line (y = attribute ”Reference”)
should be filled.

This is an area chart.

DATA TYPE LINE
public int DATA TYPE LINE

Description

An int which when assigned to attribute ”DataType” indicates that data points should
be connected with line segments.

This is the default setting.

DATA TYPE MARKER
public int DATA TYPE MARKER

Description

An int which when assigned to attribute ”DataType” indicates that a marker should be
drawn at each data point.

DATA TYPE PICTURE
public int DATA TYPE PICTURE

Description

An int which when assigned to attribute ”DataType” indicates that an image (attribute
”Image”) should be drawn at each data point.

This can be used to draw fancy markers.

DENDROGRAM TYPE HORIZONTAL
public int DENDROGRAM TYPE HORIZONTAL

Description

Flag to indicate a horizontal dendrogram.

DENDROGRAM TYPE VERTICAL
public int DENDROGRAM TYPE VERTICAL

Description

Flag to indicate a vertical dendrogram.

FILL TYPE GRADIENT
public int FILL TYPE GRADIENT
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Description

An int which indicates that a region will be drawn in a color gradient as specified by the
attribute ”Gradient”.

This constant may be used with the Imsl.Chart2D.ChartNode.FillType (p. 796) property.

See Also:
Imsl.Chart2D.ChartNode.SetGradient(System.Drawing.Color,System.Drawing.Color,System.Drawing.Color,System.Drawing.Color)
(p. 803), Imsl.Chart2D.ChartNode.GetGradient (p. 800)

FILL TYPE NONE
public int FILL TYPE NONE

Description

An int which indicates that a region is not to be drawn.

When Imsl.Chart2D.ChartNode.FillType (p. 796) and
Imsl.Chart2D.ChartNode.FillOutlineType (p. 796) are set to this value the region will
not be rendered

FILL TYPE PAINT
public int FILL TYPE PAINT

Description

An int which indicates that a region will be drawn using the texture specified by the
”FillPaint” attribute.

See Also: Imsl.Chart2D.ChartNode.SetFillPaint(System.Drawing.Brush) (p. 803),
Imsl.Chart2D.ChartNode.GetFillPaint (p. 800)

FILL TYPE SOLID
public int FILL TYPE SOLID

Description

An int which indicates that a region will be drawn using the solid color specified by
Imsl.Chart2D.ChartNode.FillType (p. 796) and
Imsl.Chart2D.ChartNode.FillOutlineType (p. 796).

LABEL TYPE PERCENT
public int LABEL TYPE PERCENT

Description

An int which indicates that a pie slice is to be labeled with a percentage value.

This flag only applies to pie charts.

See Also: LabelType (p. 779)
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MARKER TYPE ASTERISK
public int MARKER TYPE ASTERISK

Description

An int that indicates an asterisk is to be drawn as the data marker.
See Also: Imsl.Chart2D.ChartNode.MarkerType (p. 797)

MARKER TYPE CIRCLE CIRCLE
public int MARKER TYPE CIRCLE CIRCLE

Description

An int that indicates a circle in a circle is to be drawn as the data marker.
See Also: Imsl.Chart2D.ChartNode.MarkerType (p. 797)

MARKER TYPE CIRCLE PLUS
public int MARKER TYPE CIRCLE PLUS

Description

An int that indicates an plus in a circle is to be drawn as the data marker.
See Also: Imsl.Chart2D.ChartNode.MarkerType (p. 797)

MARKER TYPE CIRCLE X
public int MARKER TYPE CIRCLE X

Description

An int that indicates an x in a circle is to be drawn as the data marker.
See Also: Imsl.Chart2D.ChartNode.MarkerType (p. 797)

MARKER TYPE DIAMOND PLUS
public int MARKER TYPE DIAMOND PLUS

Description

An int that indicates a plus in a diamond is to be drawn as the data marker.
See Also: Imsl.Chart2D.ChartNode.MarkerType (p. 797)

MARKER TYPE FILLED CIRCLE
public int MARKER TYPE FILLED CIRCLE

Description

An int that indicates a filled circle is to be drawn as the data marker.
See Also: Imsl.Chart2D.ChartNode.MarkerType (p. 797)

MARKER TYPE FILLED DIAMOND
public int MARKER TYPE FILLED DIAMOND
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Description

An int that indicates a filled diamond is to be drawn as the data marker.

See Also: Imsl.Chart2D.ChartNode.MarkerType (p. 797)

MARKER TYPE FILLED SQUARE
public int MARKER TYPE FILLED SQUARE

Description

An int that indicates a filled square is to be drawn as the data marker.

See Also: Imsl.Chart2D.ChartNode.MarkerType (p. 797)

MARKER TYPE FILLED TRIANGLE
public int MARKER TYPE FILLED TRIANGLE

Description

An int that indicates a filled triangle is to be drawn as the data marker.

See Also: Imsl.Chart2D.ChartNode.MarkerType (p. 797)

MARKER TYPE HOLLOW CIRCLE
public int MARKER TYPE HOLLOW CIRCLE

Description

An int that indicates a hollow circle is to be drawn as the data marker.

See Also: Imsl.Chart2D.ChartNode.MarkerType (p. 797)

MARKER TYPE HOLLOW DIAMOND
public int MARKER TYPE HOLLOW DIAMOND

Description

An int that indicates a hollow diamond is to be drawn as the data marker.

See Also: Imsl.Chart2D.ChartNode.MarkerType (p. 797)

MARKER TYPE HOLLOW SQUARE
public int MARKER TYPE HOLLOW SQUARE

Description

An int that indicates a hollow square is to be drawn as the data marker.

See Also: Imsl.Chart2D.ChartNode.MarkerType (p. 797)

MARKER TYPE HOLLOW TRIANGLE
public int MARKER TYPE HOLLOW TRIANGLE
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Description

An int that indicates a hollow triangle is to be drawn as the data marker.

See Also: Imsl.Chart2D.ChartNode.MarkerType (p. 797)

MARKER TYPE OCTAGON PLUS
public int MARKER TYPE OCTAGON PLUS

Description

An int that indicates a plus in an octagon is to be drawn as the data marker.

See Also: Imsl.Chart2D.ChartNode.MarkerType (p. 797)

MARKER TYPE OCTAGON X
public int MARKER TYPE OCTAGON X

Description

An int that indicates a x in an octagon is to be drawn as the data marker.

See Also: Imsl.Chart2D.ChartNode.MarkerType (p. 797)

MARKER TYPE PLUS
public int MARKER TYPE PLUS

Description

An int that indicates a plus-shaped data marker is to be drawn.

This is the default value of Imsl.Chart2D.ChartNode.MarkerType (p. 797)

MARKER TYPE SQUARE PLUS
public int MARKER TYPE SQUARE PLUS

Description

An int that indicates a x in a square is to be drawn as the data marker.

See Also: Imsl.Chart2D.ChartNode.MarkerType (p. 797)

MARKER TYPE SQUARE X
public int MARKER TYPE SQUARE X

Description

An int that indicates a x in a diamond is to be drawn as the data marker.

See Also: Imsl.Chart2D.ChartNode.MarkerType (p. 797)

MARKER TYPE X
public int MARKER TYPE X
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Description

An int that indicates a x-shaped data marker is to be drawn.

See Also: Imsl.Chart2D.ChartNode.MarkerType (p. 797)

TEXT X CENTER
public int TEXT X CENTER

Description

An int which indicates that text should be centered.

See Also: Alignment (p. 851)

TEXT X LEFT
public int TEXT X LEFT

Description

An int which indicates that text should be left justified.

See Also: Alignment (p. 851)

TEXT X RIGHT
public int TEXT X RIGHT

Description

An int which indicates that text should be right justified.

See Also: Alignment (p. 851)

TEXT Y BOTTOM
public int TEXT Y BOTTOM

Description

An int which indicates that text should be drawn on the baseline.

See Also: Alignment (p. 851)

TEXT Y CENTER
public int TEXT Y CENTER

Description

An int which indicates that text should be vertically centered.

See Also: Alignment (p. 851)

TEXT Y TOP
public int TEXT Y TOP
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Description

An int which indicates that text should be drawn with the top of the letters touching the
top of the drawing region.

See Also: Alignment (p. 851)

WebCtrl
protected internal bool WebCtrl

Description

A bool indicating if this ChartNode is a WebControl.

Properties

ALT
virtual public string ALT {get; set; }

Description

Used to construct an ”alt” attribute value in client side image maps.

The ”alt” attribute is used when client-side image maps are generated. A client-side
image map has an entry for each node in which the chart attribute HREF is defined. Some
browsers use the alt tag value as tooltip text.

Axis
virtual public Imsl.Chart2D.Axis Axis {get; }

Description

Typically provides a mapping for children from the user coordinate space to the device
(screen) space.

Background
virtual public Imsl.Chart2D.Background Background {get; }

Description

The base graphic layer displayed behind other ChartNode objects in the tree.

BarGap
virtual public double BarGap {get; set; }

Description

Specifies the gap between bars in a group.

A gap of 1.0 means that space between bars is the same as the width of an individual bar
in the group. Default: 0.0
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BarType
virtual public int BarType {get; set; }

Description

Specifies the orientation of the BarChart.

Legal values are
Imsl.Chart2D.ChartNode.BARTY PEV ERTICAL(p.787)orImsl.Chart2D.ChartNode.BARTY PEHORIZONTAL(p.786).

BarWidth
virtual public double BarWidth {get; set; }

Description

The width of all of the groups of bars at each index.

Default: 0.5

Chart
virtual public Imsl.Chart2D.Chart Chart {get; }

Description

This is the root node of the chart tree.

ChartTitle
virtual public Imsl.Chart2D.ChartTitle ChartTitle {get; set; }

Description

Specifies a title for the chart.

This is effective only in the ChartNode, where it replaces the existing ChartTitle node.

ClipData
virtual public bool ClipData {get; set; }

Description

Specifies whether the data elements are to be clipped to the current window.

Default: true

DataType
virtual public int DataType {get; set; }
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Description

Specifies how the data is to be rendered.

This should be some xor-ed combination of
Imsl.Chart2D.ChartNode.DATATY PELINE(p.788), Imsl.Chart2D.ChartNode.DATATY PEMARKER(p.788).Default :
Imsl.Chart2D.ChartNode.DATATY PELINE(p.788)

DoubleBuffering
virtual public bool DoubleBuffering {get; set; }

Description

Specifies whether double is active.

Double buffering reduces flicker when the screen is updated. This attribute only has an
effect if it is set at the root node of the chart tree.

Explode
virtual public double Explode {get; set; }

Description

Specifies how far from the center pie slices are drawn.

The scale is proportional to the pie chart’s radius. Default: 0.0

FillOutlineColor
virtual public System.Drawing.Color FillOutlineColor {get; set; }

Description

Specifies a color that will be used to outline this node.

The default value is Color.Black.

FillOutlineType
virtual public int FillOutlineType {get; set; }

Description

Specifies a fill pattern type for the outline of this node.

Default: Imsl.Chart2D.ChartNode.FILLTY PESOLID(p.789)

FillType
virtual public int FillType {get; set; }

Description

Specifies a fill pattern type for this node.

Default: Imsl.Chart2D.ChartNode.FILLTY PESOLID(p.789)

See Also:
Imsl.Chart2D.ChartNode.FILLTY PENONE(p.789), Imsl.Chart2D.ChartNode.FILLTY PEGRADIENT (p.788), Imsl.Chart2D.ChartNode.FILLTY PEPAINT (p.789)
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HREF
virtual public string HREF {get; set; }

Description

Used to specify an ”activated” object in an image map.

The ”HREF” attribute is used when client-side image maps are generated. A client-side
image map has an entry for each node in which the chart attribute HREF is defined. The
values of HREF attributes are URLs. Such regions treated by the browser as hyperlinks.

ImageAttr
virtual public System.Drawing.Image ImageAttr {get; set; }

Description

An image that is to rendered when this ChartNode is displayed.

IsWebControl
public bool IsWebControl {get; }
Description

Indicates whether this is a web control.

Legend
virtual public Imsl.Chart2D.Legend Legend {get; }

Description

Legend information associated with this ChartNode.

MarkerThickness
virtual public double MarkerThickness {get; set; }

Description

Specifies the line thickness to be used when rendering the markers.

If ”MarkerThickness” is 2.0 then markers are drawn twice as thick as normal. Default:
1.0

MarkerType
virtual public int MarkerType {get; set; }

Description

Specifies the type of data marker to be drawn.

Default: Imsl.Chart2D.ChartNode.MARKERTY PEPLUS(p.792)

See Also:
Imsl.Chart2D.ChartNode.MARKERTY PEASTERISK(p.789), Imsl.Chart2D.ChartNode.MARKERTY PEX(p.792), Imsl.Chart2D.ChartNode.MARKERTY PEHOLLOWSQUARE(p.791), Imsl.Chart2D.ChartNode.MARKERTY PEHOLLOWTRIANGLE(p.791), Imsl.Chart2D.ChartNode.MARKERTY PEHOLLOWDIAMOND(p.791), Imsl.Chart2D.ChartNode.MARKERTY PEDIAMONDPLUS(p.790), Imsl.Chart2D.ChartNode.MARKERTY PESQUAREX(p.792), Imsl.Chart2D.ChartNode.MARKERTY PESQUAREPLUS(p.792), Imsl.Chart2D.ChartNode.MARKERTY PEOCTAGONX(p.792), Imsl.Chart2D.ChartNode.MARKERTY PEOCTAGONPLUS(p.792), Imsl.Chart2D.ChartNode.MARKERTY PEHOLLOWCIRCLE(p.791), Imsl.Chart2D.ChartNode.MARKERTY PECIRCLEX(p.790), Imsl.Chart2D.ChartNode.MARKERTY PECIRCLEPLUS(p.790), Imsl.Chart2D.ChartNode.MARKERTY PECIRCLECIRCLE(p.790), Imsl.Chart2D.ChartNode.MARKERTY PEF ILLEDSQUARE(p.791), Imsl.Chart2D.ChartNode.MARKERTY PEF ILLEDTRIANGLE(p.791), Imsl.Chart2D.ChartNode.MARKERTY PEF ILLEDDIAMOND(p.790), Imsl.Chart2D.ChartNode.MARKERTY PEF ILLEDCIRCLE(p.790)
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Parent
virtual public Imsl.Chart2D.ChartNode Parent {get; }

Description

Indicates the parent of this ChartNode.

This is null in the case of the root node of the chart tree, since that node has no parent.

Note that this is not an attribute setting.

Note that there is no function to set the Parent.

Reference
virtual public double Reference {get; set; }

Description

Indicates the baseline in drawing area charts.

In the case of a pie chart, this specifies the angle (in degrees) of the first slice. Default:
0.0

ScreenAxis
virtual public Imsl.Chart2D.AxisXY ScreenAxis {get; }

Description

Provides a default mapping from the user coordinates [0,1] by [0,1] to the screen.

This is set by the root ChartNode, so there is no set ScreenAxis accessor.

See Also: Imsl.Chart2D.Chart (p. 806)

ScreenSize
virtual public System.Drawing.Size ScreenSize {get; set; }

Description

Indicates the size of this ChartNode.

If this attribute has not been defined the size of the ”Control” attribute is returned. If
neither attribute is defined null is returned.

Size
virtual public System.Drawing.Size Size {get; set; }

Description

Specifies the drawing size.

TextAngle
virtual public int TextAngle {get; set; }
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Description

An angle, in degrees, at which text is to be drawn.

Only multiples of 90 are allowed at this time. Default: 0

ToolTip
virtual public string ToolTip {get; set; }

Description

Text that can be displayed in the case where tool tips are used.

Constructor

ChartNode
public ChartNode(Imsl.Chart2D.ChartNode parent)

Description

Constructs a ChartNode object.

Parameter

parent – The ChartNode which is the parent of this object.

Methods

FirePickListeners
virtual public void FirePickListeners(System.Windows.Forms.MouseEventArgs e)

Description

Invokes the pick delegates defined at this node and at all of its ancestors, if the event
”hits” the node.

Parameter

e – A MouseEventArgs which determines which nodes have been selected.

GetChildren
virtual public Imsl.Chart2D.ChartNode[] GetChildren()

Description

Gets the list of child nodes.

If there are no children, a 0-length array is returned.
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Returns

A ChartNode[] which contains the children of this node.

GetComponent
virtual public System.Windows.Forms.Control GetComponent()

Description

Gets the ”Component” attribute value.

Returns

A Control that contains the ”Component” attribute value.

GetConcatenatedViewport
virtual public double[] GetConcatenatedViewport()

Description

Returns the value of the ”Viewport” attribute concatenated with the ”Viewport”
attributes set in its ancestor nodes.

Default: {0.0, 1.0, 0.0, 1.0}
Returns

A double[4] containing xmin, xmax, ymin and ymax.

GetFillPaint
virtual public System.Drawing.Brush GetFillPaint()

Description

Returns the ”FillPaint” attribute value.

Returns

The value of the ”FillPaint” attribute, if defined. Otherwise, null is returned.

GetGradient
virtual public System.Drawing.Color[] GetGradient()

Description

Returns the value of the ”Gradient” attribute.

The array is of length four, containing {colorLL, colorLR, colorUR, colorUL}. Default:
null

Returns

A Color[4] array which contains the color value of the ”Gradient” attribute.

GetLineDashPattern
virtual public double[] GetLineDashPattern()
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Description

Returns the ”LineDashPattern” attribute value.

Returns null if the attribute has not been defined.

Returns

A double[] that contains the line ”LineDashPattern” attribute value.

GetMarkerDashPattern
virtual public double[] GetMarkerDashPattern()

Description

Returns the ”MarkerDashPattern” attribute value.

Returns null if the attribute has not been defined.

Returns

A double[] that contains the ”MarkerDashPattern” attribute value.

GetScreenViewport
virtual public int[] GetScreenViewport()

Description

Returns the value of the ”Viewport” attribute scaled by the screen size.

The value returned is scaled by the screen size containing the pixel coordinates for xmin,
xmax, ymin and ymax.

Returns

An int[4] containing the ”Viewport” attribute value.

GetTitle
virtual public Imsl.Chart2D.Text GetTitle()

Description

Returns the value of the ”Title” attribute.

Returns

A Text which contains the ”Title” attribute value.

GetViewport
virtual public double[] GetViewport()

Description

Returns the value of the ”Viewport” attribute.

Default: {0.0, 1.0, 0.0, 1.0}
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Returns

A double[4] containing xmin, xmax, ymin and ymax.

GetWebComponent
virtual public System.Web.UI.WebControls.WebControl GetWebComponent()

Description

Gets the ”Component” attribute value.

Returns

A WebControl that contains the ”Component” attribute value.

IsBitSet
static public bool IsBitSet(int flag, int mask)

Description

Determins if the bit set in flag is set in mask.

Parameters

flag – An int which contains the bit to be tested against mask.

mask – An int which is to be used as teh mask.

Returns

A bool whichis true if the bit set in flag is set in mask.

OnPick
void OnPick(Imsl.Chart2D.PickEventArgs eventParam)

Description

Invokes delegates registered with the Pick event.

Parameter

eventParam – A PickEventArgs that specifies the event data.

Paint
abstract public void Paint(Imsl.Chart2D.Draw draw)

Description

Paints this node and all of its children.

Parameter

draw – A Draw which is to be painted.

SetFillPaint
virtual public void SetFillPaint(System.Uri uriImage)
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Description

Sets the ”FillPaint” attribute value.

Parameter

uriImage – A Uri which specifies the location of an image used to set the
”FillPaint” attribute.

SetFillPaint
virtual public void SetFillPaint(System.Drawing.Image imageIcon)

Description

Sets the ”FillPaint” attribute value.

Parameter

imageIcon – A Image that specifies the ”FillPaint” attribute value.

SetFillPaint
virtual public void SetFillPaint(System.Drawing.Brush brush)

Description

Sets the value of the ”FillPaint” attribute.

Parameter

brush – A Brush which specifies the ”FillPaint” attribute value.

SetGradient
virtual public void SetGradient(System.Drawing.Color[] colorGradient)

Description

Sets the value of the ”Gradient” attribute.

Parameter

colorGradient – A Color[4] containing the colors at the lower left, lower right,
upper right and upper left corners of the bounding box of the regions being filled.

SetGradient
virtual public void SetGradient(System.Drawing.Color colorLL,
System.Drawing.Color colorLR, System.Drawing.Color colorUR,
System.Drawing.Color colorUL)
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Description

Sets the value of the ”Gradient” attribute.

This attribute defines a color gradient used to fill regions. Only two of the four colors
given are actually used.

Parameter Values Result
colorLL==colorLR and colorUL==colorUR A vertical gradient is drawn.
colorLL==colorUL and colorLR==colorUR A horizontal gradient is drawn.
colorLR== null and colorUL== null A diagonal gradient is drawn.
colorLL== null and colorUR== null A diagonal gradient is drawn.

Parameters

colorLL – A Color value which specifies the color of the lower left corner.

colorLR – A Color value which specifies the color of the lower right corner.

colorUR – A Color value which specifies the color of the upper right corner.

colorUL – A Color value which specifies the color of the upper left corner.

SetLineDashPattern
virtual public void SetLineDashPattern(double[] lineDashPattern)

Description

Sets the ”LineDashPattern” attribute value.

Parameter

lineDashPattern – A double[] which specifies the line dash patten to be rendered.

SetMarkerDashPattern
virtual public void SetMarkerDashPattern(double[] markerDashPattern)

Description

Sets the ”MarkerDashPattern” attribute value.

Parameter

markerDashPattern – A double[] that specifies the ”MarkerDashPattern”
attribute value.

SetTitle
virtual public void SetTitle(Imsl.Chart2D.Text title)

Description

Sets the value of the ”Title” attribute.
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Parameter

title – A Text which specifies the ”Title” attribute value.

SetTitle
virtual public void SetTitle(string title)

Description

Sets the value of the ”Title” attribute.

Parameter

title – A String which specifies the ”Title” attribute value.

SetViewport
virtual public void SetViewport(double xmin, double xmax, double ymin,
double ymax)

Description

Used to specify the viewport location.

The viewport is the subregion of the drawing surface where the plot is to be drawn.
”Viewport” coordinates are [0,1] by [0,1] with (0,0) in the lower left corner. The
”Viewport” attribute affects only Axis nodes, since they contain the mappings to device
space.

Parameters

xmin – A double specifying the left side of the viewport.

xmax – A double specifying the right side of the viewport.

ymin – A double specifying the bottom of the viewport.

ymax – A double specifying the top of the viewport.

SetViewport
virtual public void SetViewport(double[] viewport)

Description

Used to specify the viewport location.

The viewport is the subregion of the drawing surface where the plot is to be drawn.
”Viewport” coordinates are [0,1] by [0,1] with (0,0) in the lower left corner. The
”Viewport” attribute affects only Axis nodes, since they contain the mappings to device
space. The elements of viewport corrispond to xmin, xmax, ymin and ymax.

Parameter

viewport – A double[4] which specifies the ”Viewport” attribute value.
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Chart Class

Summary

The root node of the chart tree.

public class Imsl.Chart2D.Chart : ChartNode : ICloneable

Constructors

Chart
public Chart()

Description

This is the root of our tree, it has no parent.

This creates the Chart with a null component.

Chart
public Chart(System.Windows.Forms.Control component)

Description

This is the root of our tree, it has no parent.

This creates the Chart with the named Component.

Parameter

component – A Component that contains the chart.

Chart
public Chart(System.Web.UI.WebControls.WebControl component)

Description

This is the root of our tree, it has no parent.

Parameter

component – This creates the Chart with the named WebControl.

Chart
public Chart(System.Drawing.Image image)

Description

This is the root of our tree, it has no parent.

This creates the Chart drawn into the Image.
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Parameter

image – An Image into which the Chart is to be drawn.

Methods

AddLegendItem
virtual public void AddLegendItem(int type, Imsl.Chart2D.ChartNode node)

Description

Adds a Legend to a ChartNode.

The possible legend types are:
DATA TYPE NONEDATA TYPE LINEDATA TYPE MARKERDATA TYPE FILL

Parameters

type – An int which specifies the LegendItem type.

node – A ChartNode to which a Legend is to be added.

Clone
virtual public Object Clone()

Description

Returns a clone of the graphics tree.

Returns

An Object which is a clone of this graphics tree.

Copy
virtual public void Copy()

Description

Copy the chart to the clipboard.

Finalize
override void Finalize()

Description

Finalize disposes the image buffer.

Paint
virtual public void Paint(System.Drawing.Graphics g)
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Description

Paints this node and all of its children.

This is normally called only by the Paint method in this node’s parent.

Parameter

g – A Graphics which is to be painted.

Paint
override public void Paint(Imsl.Chart2D.Draw draw)

Description

Paints this node and all of its children.

This is normally called only by the Paint method in this node’s parent.

Parameter

draw – A Draw which is to be painted.

PaintChart
virtual public void PaintChart(System.Drawing.Graphics graphics)

Description

Draw the chart using the given Graphics object.

Parameter

graphics – The Graphics object.

PaintImage
virtual public System.Drawing.Image PaintImage()

Description

Returns an Image of the chart.

Returns

An Image containing a picture of the chart.

Pick
virtual public void Pick(System.Windows.Forms.MouseEventArgs mouseEvent)

Description

Invoke the pick delegates for the nodes hit by the event.
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Parameter

mouseEvent – A MouseEventArgs whose position determines which nodes have been
selected.

PrintGraphics
public void PrintGraphics(Object sender,
System.Drawing.Printing.PrintPageEventArgs e)

Description

This method prints the chart on a single page.

The output is scaled to fill the page as much as possible while preserving the aspect ratio.

Parameters

sender – A Object that specifies the sender of an event.

e – A PrintPageEventArgs containing data for the PrintPage (p. ??) event.

Repaint
virtual public void Repaint()

Description

Prepares the chart to be repainted by deleting any double buffering image.

SetComponent
virtual public void SetComponent(System.Windows.Forms.Control component)

Description

Sets the ”Component” attribute value.

Parameter

component – A Control that contains a component of the Chart.

Update
virtual public void Update(System.Drawing.Graphics g)

Description

Parameter

–

WritePNG
virtual public void WritePNG(System.IO.Stream os, int width, int height)
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Description

Writes the chart as an PNG file.

Parameters

os – A Stream containing the output stream to which the PNG image is to be
written.

width – An int which specifies the width of the output image.

height – An int which specifies the height of the output image.

Description

This chart node creates the following child nodes: Imsl.Chart2D.Background (p. 810),
Imsl.Chart2D.ChartTitle (p. 811) and Imsl.Chart2D.Legend (p. 812).

Background Class

Summary

The background of a chart.

public class Imsl.Chart2D.Background : AxisXY

Method

Paint
override public void Paint(Imsl.Chart2D.Draw draw)

Description

Paints this node and all of its children.

This is normally called only by the Paint method in this node’s parent.

Parameter

draw – A Draw which is to be painted.

Description

Grid is created by Imsl.Chart2D.Chart (p. 806) as its child. It can be retrieved using the
method Imsl.Chart2D.ChartNode.Background (p. 794).

Fill attributes (specified with FillType (p. 796)) in this node control the drawing of the
background.
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ChartTitle Class

Summary

The main title of a chart.

public class Imsl.Chart2D.ChartTitle : AxisXY

Method

Paint
override public void Paint(Imsl.Chart2D.Draw draw)

Description

Paints this node and all of its children.

This is normally called only by the Paint method in this node’s parent.

Parameter

draw – A Draw which is to be painted.

Description

ChartTitle is created by Chart (p. 806) as its child. It can be retrieved using the method
ChartTitle (p. 811).

The axis title is the ”Title” attribute value at this node. Text attributes (specified with
CultureInfo, NumberFormatInfo.CurrentInfo (p. ??) and DateTimeFormatInfo.CurrentInfo
(p. ??) members) in this node control the drawing of the title.

Grid Class

Summary

Draws the grid lines perpendicular to an axis.

public class Imsl.Chart2D.Grid : ChartNode

Property

Type
virtual public int Type {get; }
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Description

Specifies the type of Axis1D.

The Axis types are:
Imsl.Chart2D.AbstractChartNode.AXISX(p.773)Imsl.Chart2D.AbstractChartNode.AXISY (p.773)Imsl.Chart2D.ChartNode.AXISXTOP (p.786)Imsl.Chart2D.ChartNode.AXISY RIGHT (p.786)

Method

Paint
override public void Paint(Imsl.Chart2D.Draw draw)

Description

Paints this node and all of its children.

This is normally called only by the Paint method in this node’s parent.

Parameter

draw – A Draw which is to be painted.

Description

Grid is created by Imsl.Chart2D.Axis1D (p. 818) as its child. It can be retrieved using the
Imsl.Chart2D.Axis1D.Grid (p. 819) property.

Line attributes (specified with LineColor (p. 779), LineWidth (p. 779) and
SetMarkerDashPattern (p. 804)) in this node control the drawing of the grid lines.

Legend Class

Summary

A Imsl.Chart2D.Chart (p. 806) legend.

public class Imsl.Chart2D.Legend : AxisXY

Method

Paint
override public void Paint(Imsl.Chart2D.Draw draw)

Description

Paints this node and all of its children.

This is normally called only by the Paint method in this node’s parent.
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Parameter

draw – A Draw which is to be painted.

Description

Legend is created by Chart as its child. It can be retrieved using the
Imsl.Chart2D.ChartNode.Legend (p. 797) property.

By default the legend is not drawn. To have it drawn, set chart.IsVisisble = true;

Imsl.Chart2D.Data (p. 836) objects that have their ”Title” attribute defined are automatically
entered into the legend.

The drawing of the background of the legend box is controlled by the Fill attributes (specified
with FillType (p. 796)) in this node. Text attributes (specified with CultureInfo,
NumberFormatInfo.CurrentInfo (p. ??) and DateTimeFormatInfo.CurrentInfo (p. ??)
members) in this node control the drawing of the text strings in the box.

Axis Class

Summary

The Axis node provides the mapping for all of its children from the user coordinate space to
the device (screen) space.

public class Imsl.Chart2D.Axis : ChartNode

Constructor

Axis
Axis(Imsl.Chart2D.Chart chart)

Description

Contructs an Axis node.

The parent must be a Chart node. This node’s ”Axis” attribute has itself as a value, so
that decendent nodes can easily obtain their controlling axis node.

Parameter

chart – A Chart object which is the parent of this node.

Methods

MapDeviceToUser
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abstract public void MapDeviceToUser(int devX, int devY, double[] userXY)

Description

Maps the device coordinates to user coordinates.

Parameters

devX – An int which specifies the device x-coordinate.

devY – An int which specifies the device y-coordinate.

userXY – An int[2] array on input, on output, the user coordinates.

MapUserToDevice
abstract public void MapUserToDevice(double userX, double userY, int[]
devXY)

Description

Maps the user coordinates (userX, userY) to the device coordinates devXY.

Parameters

userX – A double which specifies the user x-coordinate.

userY – A double which specifies the user y-coordinate.

devXY – An int[2] array on input, on output, the device coordinates.

Paint
override public void Paint(Imsl.Chart2D.Draw draw)

Description

Paints this node and all of its children.

This is normally called only by the Paint method in this node’s parent.

Parameter

draw – A Draw object which specifies the chart tree to be rendered on the screen.

SetUpMapping
abstract public void SetUpMapping()

Description

Initializes the mappings between user and coordinate space.

This must be called whenever the screen size, the window or the viewport may have
changed. Generally, it is safest to call this each time the chart is repainted.
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AxisXY Class

Summary

The axes for an x-y chart.

public class Imsl.Chart2D.AxisXY : Axis

Properties

AxisX
virtual public Imsl.Chart2D.Axis1D AxisX {get; }

Description

The X axis associated with this node.

The X axis is a child of this node.

AxisY
virtual public Imsl.Chart2D.Axis1D AxisY {get; }

Description

The Y axis associated with this node.

The Y axis is a child of this node.

Constructor

AxisXY
public AxisXY(Imsl.Chart2D.Chart chart)

Description

Creates an AxisXY.

This also creates two Axis1D nodes as children of this node. They hold the decomposed
mapping. The ”Viewport” attributute for this node is set to [0.2,0.8] by [0.2,0.8].

Parameter

chart – A Chart which is the parent of this node.

Methods

GetCross
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virtual public double[] GetCross()

Description

Returns the ”Cross” attribute value.

The value is the point where the X and Y axes intersect, (xcross,ycross). If ”Cross” is not
defined then null is returned.

Returns

A double[2] containing the ”Cross” attribute value.

MapDeviceToUser
override public void MapDeviceToUser(int devX, int devY, double[] userXY)

Description

Maps the device coordinates to user coordinates.

Parameters

devX – An int which specifies the device x-coordinate.
devY – An int which specifies the device y-coordinate.
userXY – An int[2] array on input, on output, the user coordinates.

MapUserToDevice
override public void MapUserToDevice(double userX, double userY, int[]
devXY)

Description

Maps the user coordinates (userX, userY) to the device coordinates devXY.

Parameters

userX – A double which specifies the user x-coordinate.
userY – A double which specifies the user y-coordinate.
devXY – An int[2] array on input, on output, the device coordinates.

Paint
override public void Paint(Imsl.Chart2D.Draw draw)

Description

Paints this node and all of its children.

This is normally called only by the Paint method in this node’s parent.

Parameter

draw – A Draw which is to be painted.

SetCross
virtual public void SetCross(double[] cross)

816 • AxisXY Class IMSL C# Numerical Library



Description

Sets the ”Cross” attribute value.

This defines the point where the X and Y axes intersect. If ”Cross” is not defined then
the attribute ”Window” is used to determine the crossing point.

Parameter

cross – a double[2] containing the x and y-coordinate where the axes cross.

SetCross
virtual public void SetCross(double xcross, double ycross)

Description

Sets the ”Cross” attribute value.

This defines the point where the X and Y axes intersect. If ”Cross” is not defined then
the attribute ”Window” is used to determine the crossing point.

Parameters

xcross – A double which specifies the x-coordinate where the axes cross.

ycross – A double which specifies the y-coordinate where the axes cross.

SetUpMapping
override public void SetUpMapping()

Description

Initializes the mappings between user and coordinate space.

This must be called whenever the screen size, the window or the viewport may have
changed. Generally, it is safest to call this each time the chart is repainted.

SetWindow
virtual public void SetWindow(double[] window)

Description

Sets the window for an AxisXY.

Parameter

window – A double[2] containing the ”Window” attribute value.

Description

This node is used when the mapping to and from user and device space can be decomposed into
an x and a y mapping. This is when the mapping map(userX,userY) = (deviceX,deviceY) can
be written as map(userX,userY) = (mapX(userX), mapY(userY) = (deviceX,deviceY).
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Axis1D Class

Summary

An x-axis or a y-axis.

public class Imsl.Chart2D.Axis1D : ChartNode

Properties

AxisLabel
virtual public Imsl.Chart2D.AxisLabel AxisLabel {get; }

Description

The label node of this Axis1D.

This is a child of the axis node.

AxisLine
virtual public Imsl.Chart2D.AxisLine AxisLine {get; }

Description

The line node of this Axis1D.

This is a child of the axis node.

AxisTitle
virtual public Imsl.Chart2D.AxisTitle AxisTitle {get; }

Description

The title node of this Axis1D.

This is a child of the axis node.

AxisUnit
virtual public Imsl.Chart2D.AxisUnit AxisUnit {get; }

Description

The unit node of this Axis1D.

This is a child of the axis node.

FirstTick
virtual public double FirstTick {get; set; }
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Description

This indicates the location of the first tick.

Default: GetWindow()[0].

Grid
virtual public Imsl.Chart2D.Grid Grid {get; }

Description

The grid node of this Axis1D.

This is a child of the axis node.

MajorTick
virtual public Imsl.Chart2D.MajorTick MajorTick {get; }

Description

The major tick node of this Axis1D.

This is a child of the axis node.

MinorTick
virtual public Imsl.Chart2D.MinorTick MinorTick {get; }

Description

The minor tick node of this Axis1D.

This is a child of the axis node.

TickInterval
virtual public double TickInterval {get; set; }

Description

The tick interval node of this Axis1D.

Type
virtual public int Type {get; set; }

Description

Specifies the type of this Axis1D.

The node types are:
Imsl.Chart2D.AbstractChartNode.AXISX(p.773)Imsl.Chart2D.AbstractChartNode.AXISY (p.773)Imsl.Chart2D.ChartNode.AXISXTOP (p.786)Imsl.Chart2D.ChartNode.AXISY RIGHT (p.786)

Chart2D Axis1D Class • 819



Methods

GetTicks
virtual public double[] GetTicks()

Description

Returns the ”Ticks” attribute value.

If not set, then computed tick values are returned based on the type of axis (linear, log or
custom), and the attributes ”Number” and ”TickInterval”.

Returns

A double[] containing the ”Ticks” attribute value.

GetWindow
virtual public double[] GetWindow()

Description

Returns the window for an AxisiD.

Returns

A double[2] containing the range of this axis.

Paint
override public void Paint(Imsl.Chart2D.Draw draw)

Description

Paints this node and all of its children.

This is normally called only by the Paint method in this node’s parent.

Parameter

draw – A Draw which is to be painted.

SetTicks
virtual public void SetTicks(double[] ticks)

Description

Sets the ”Ticks” attribute value.

Parameter

ticks – A double[] which contains the location, in user coordinates, of the major
tick marks.

SetWindow
virtual public void SetWindow(double[] window)

820 • Axis1D Class IMSL C# Numerical Library



Description

Sets the window for an Axis1D.

Parameter

window – A double[2]containing the range of this axis.

SetWindow
virtual public void SetWindow(double min, double max)

Description

Sets the window for an Axis1D.

Parameters

min – A double which specifies the value of the left/bottom end of the axis.

max – A double which specifies the value of the right/top end of the axis.

Description

Axis1D is created by Imsl.Chart2D.AxisXY (p. 815) as its child. It can be retrieved using the
method Imsl.Chart2D.AxisXY.AxisX (p. 815) or Imsl.Chart2D.AxisXY.AxisY (p. 815).

It in turn creates the following child nodes: Imsl.Chart2D.Axis1D.AxisLine (p. 818),
Imsl.Chart2D.Axis1D.AxisLabel (p. 818), Imsl.Chart2D.Axis1D.AxisTitle (p. 818),
Imsl.Chart2D.Axis1D.AxisUnit (p. 818), Imsl.Chart2D.Axis1D.MajorTick (p. 819),
Imsl.Chart2D.Axis1D.MinorTick (p. 819) and Imsl.Chart2D.Axis1D.Grid (p. 819).

The number of tick marks (”Number” attribute) is set to 5, but autoscaling can change this
value.

AxisLabel Class

Summary

The labels on an axis.

public class Imsl.Chart2D.AxisLabel : ChartNode

Methods

GetLabels
virtual public Imsl.Chart2D.Text[] GetLabels()
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Description

Returns the ”Labels” attribute.

Default: null

Returns

A Text[] containing the axis labels.

Paint
override public void Paint(Imsl.Chart2D.Draw draw)

Description

Paints this node and all of its children.

This is normally called only by the Paint method in this node’s parent.

Parameter

draw – A Draw containing the object to be painted.

SetLabels
virtual public void SetLabels(string[] value)

Description

Sets the axis label values for this node to be used instead of the default numbers.

The attribute ”Number” is also set to value.Length.

Parameter

value – A String[] specifying the labels for the major tick marks.

Description

AxisLabel is created by Imsl.Chart2D.Axis1D (p. 818) as its child. It can be retrieved using
the method Imsl.Chart2D.Axis1D.AxisLabel (p. 818).

Axis labels are placed at the tick mark locations. The number of tick marks is determined by
the attribute ”Number”. Tick marks are evenly spaced. If the attribute ”Labels” is defined
then it is used to label the tick marks.

If ”Labels” is not defined, the ticks are labeled numerically. The endpoint label values are
obtained from the attribute ”Window”. The numbers are formatted using the attribute
”TextFormat”.

Text attributes (specified with CultureInfo, NumberFormatInfo.CurrentInfo (p. ??) and
DateTimeFormatInfo.CurrentInfo (p. ??) members) in this node control the drawing of the axis
labels.
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AxisLine Class

Summary

The axis line.

public class Imsl.Chart2D.AxisLine : ChartNode

Method

Paint
override public void Paint(Imsl.Chart2D.Draw draw)

Description

Paints this node and all of its children.

This is normally called only by the Paint method in this node’s parent.

Parameter

draw – A Draw with the object to be painted.

Description

AxisLine is created by Imsl.Chart2D.Axis1D (p. 818) as its child. It can be retrieved using the
method Imsl.Chart2D.Axis1D.AxisLine (p. 818).

Line attributes (specified with LineColor (p. 779), LineWidth (p. 779) and
SetMarkerDashPattern (p. 804)) in this node control the drawing of the axis line.

AxisTitle Class

Summary

The title on an axis.

public class Imsl.Chart2D.AxisTitle : ChartNode

Method

Paint
override public void Paint(Imsl.Chart2D.Draw draw)
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Description

Paints this node and all of its children.

This is normally called only by the Paint method in this node’s parent.

Parameter

draw – A Draw which is to be painted.

Description

AxisTitle is created by Imsl.Chart2D.Axis1D (p. 818) as its child. It can be retrieved using
the method Imsl.Chart2D.Axis1D.AxisTitle (p. 818).

The axis title is the ”Title” attribute value at this node. Text attributes (specified with
CultureInfo, NumberFormatInfo.CurrentInfo (p. ??) and DateTimeFormatInfo.CurrentInfo
(p. ??) members) in this node control the drawing of the axis title.

AxisUnit Class

Summary

The unit on an axis.

public class Imsl.Chart2D.AxisUnit : ChartNode

Method

Paint
override public void Paint(Imsl.Chart2D.Draw draw)

Description

Paints this node and all of its children.

This is normally called only by the Paint method in this node’s parent.

Parameter

draw – A Draw which is to be painted.

Description

AxisUnit is created by Imsl.Chart2D.Axis1D (p. 818) as its child. It can be retrieved using the
method Imsl.Chart2D.Axis1D.AxisUnit (p. 818).

The axis title is the ”Title” attribute value at this node. Text attributes (specified with
CultureInfo, NumberFormatInfo.CurrentInfo (p. ??) and DateTimeFormatInfo.CurrentInfo
(p. ??) members) in this node control the drawing of the unit title.
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MajorTick Class

Summary

The major tick marks.

public class Imsl.Chart2D.MajorTick : ChartNode

Method

Paint
override public void Paint(Imsl.Chart2D.Draw draw)

Description

Paints this node and all of its children.

This is normally called only by the Paint method in this node’s parent.

Parameter

draw – A Draw which is to be painted.

Description

MajorTick is created by Imsl.Chart2D.Axis1D (p. 818) as its child. It can be retrieved using
the Imsl.Chart2D.Axis1D.MajorTick (p. 819) property.

Line attributes (specified with LineColor (p. 779), LineWidth (p. 779) and
SetMarkerDashPattern (p. 804)) in this node control the drawing of the major tick marks.

MinorTick Class

Summary

The minor tick marks.

public class Imsl.Chart2D.MinorTick : ChartNode

Method

Paint
override public void Paint(Imsl.Chart2D.Draw draw)
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Description

Paints this node and all of its children.

This is normally called only by the Paint method in this node’s parent.

Parameter

draw – A Draw which is to be painted.

Description

MinorTick is created by Imsl.Chart2D.Axis1D (p. 818) as its child. It can be retrieved using
the Imsl.Chart2D.Axis1D.MinorTick (p. 819) property.

Line attributes (specified with LineColor (p. 779), LineWidth (p. 779) and
SetMarkerDashPattern (p. 804)) in this node control the drawing of the minor tick marks.

Transform Interface

Summary

Defines a custom transformation along an axis.

public interface Imsl.Chart2D.Transform

Methods

MapUnitToUser
abstract public double MapUnitToUser(double unit)

Description

Maps points in the interval [0,1] to user coordinates.

Parameter

unit – A double which contains a location in unit coordinates to be converted to
user coordinates.

MapUserToUnit
abstract public double MapUserToUnit(double user)

Description

Maps user coordinates to the interval [0,1].

The user coordinate interval is specified by the ”Window” attribute for the axis with
which the transform is associated.
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Parameter

user – A double which contains a location in user coordinates to be converted to
unit coordinates.

SetupMapping
abstract public void SetupMapping(Imsl.Chart2D.Axis1D axis1d)

Description

Initializes the mappings between user and coordinate space.

Parameter

axis1d – An Axis1D that specifies the axis to which the transform is to be
associated.

Description

Axis1D has built in support for linear and logarithmic transformations. Additional
transformations can be specified by setting the ”CustomTransform” attribute in an Axis1D to
an Object that implements this interface.

The interface consists of two methods that must be implemented. Each method is the inverse of
the other.

TransformDate Class

Summary

Defines a transformation along an axis that skips weekend dates.

public class Imsl.Chart2D.TransformDate : Imsl.Chart2D.Transform

Constructor

TransformDate
public TransformDate()

Description

Initializes a new instance of the Imsl.Chart2D.TransformDate (p. 827) class.

Methods

IsWeekday
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virtual public bool IsWeekday(System.DateTime dateTime)

Description

Indicates whether the specified date is a weekday.

Returns false if the specified day is a Saturday or Sunday.

Parameter

dateTime – A DateTime indicating the day to be confirmed a day other than
Saturday or Sunday.

Returns

A bool indicating whether this is neither Saturday nor Sunday.

MapUnitToUser
virtual public double MapUnitToUser(double unit)

Description

Maps points in the interval [0,1] to user coordinates.

Parameter

unit – A double which contains a location in unit coordinates to be converted to
user coordinates.

MapUserToUnit
virtual public double MapUserToUnit(double user)

Description

Maps user coordinates to the interval [0,1].

The user coordinate interval is specified by the ”Window” attribute for the axis with
which the transform is associated.

Parameter

user – A double which contains a location in user coordinates to be converted to
unit coordinates.

SetupMapping
virtual public void SetupMapping(Imsl.Chart2D.Axis1D axis1d)

Description

Initializes the mappings between user and coordinate space.

Parameter

axis1d – An Axis1D that specifies the axis to which the transform is to be
associated.
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AxisR Class

Summary

The R-axis in a polar plot.

public class Imsl.Chart2D.AxisR : ChartNode

Properties

AxisRLabel
virtual public Imsl.Chart2D.AxisRLabel AxisRLabel {get; }

Description

A AxisRLabel which specifies the label node associated with this axis.

AxisRLine
virtual public Imsl.Chart2D.AxisRLine AxisRLine {get; }

Description

Specifies the line node associated with this axis.

AxisRMajorTick
virtual public Imsl.Chart2D.AxisRMajorTick AxisRMajorTick {get; }

Description

Specifies the major tick associated with this axis.

This is a child of the axis node.

TickInterval
virtual public double TickInterval {get; set; }

Description

The tick interval node of this AxisR.

Window
virtual public double Window {get; set; }

Description

The radius at which AxisTheta is drawn.

The window has a maximum value of R. The R-axis always starts at 0. Default: 1.0
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Methods

GetTicks
virtual public double[] GetTicks()

Description

Returns the ”Ticks” attribute value.

If not set, then computed tick values are returned based on the type of axis (linear, log or
custom), the attributes ”Number” and ”TickInterval”.

Returns

A double[] containing the ”Ticks” attribute value.

Paint
override public void Paint(Imsl.Chart2D.Draw draw)

Description

Paints this node and all of its children.

Parameter

draw – A Draw which is to be painted.

Description

AxisR is created by Imsl.Chart2D.Polar (p. 958) as its child. It can be retrieved using the
Imsl.Chart2D.Polar.AxisR (p. 958).

It in turn creates the following child nodes: Imsl.Chart2D.AxisR.AxisRLine (p. 829),
Imsl.Chart2D.AxisR.AxisRLabel (p. 829) and Imsl.Chart2D.AxisR.AxisRMajorTick (p. 829).

The number of tick marks (”Number” attribute) is set to 4, but autoscaling can change this
value.

See Also

Imsl.Chart2D.Polar (p. 958)

AxisRLabel Class

Summary

The labels on an axis.

public class Imsl.Chart2D.AxisRLabel : ChartNode
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Methods

GetLabels
virtual public Imsl.Chart2D.Text[] GetLabels()

Description

Returns the ”Labels” attribute.

Default: null

Returns

A Text[] containing the axis labels.

Paint
override public void Paint(Imsl.Chart2D.Draw draw)

Description

Paints this node and all of its children.

This is normally called only by the Paint method in this node’s parent.

Parameter

draw – A Draw which is to be painted.

SetLabels
virtual public void SetLabels(string[] value)

Description

Sets the axis label values for this node to be used instead of the default numbers.

The attribute ”Number” is also set to value.Length.

Parameter

value – A String[] specifying the labels for the major tick marks.

Description

AxisRLabel is created by Imsl.Chart2D.AxisR (p. 829) as its child. It can be retrieved using
the method Imsl.Chart2D.AxisR.AxisRLabel (p. 829).

Axis labels are placed at the tick mark locations. The number of tick marks is determined by
the attribute ”Number”. Tick marks are evenly spaced. If the attribute ”Labels” is defined
then it is used to label the tick marks.

If ”Labels” is not defined, the ticks are labeled numerically. The endpoint label values are
obtained from the attribute ”Window”. The numbers are formatted using the attribute
”TextFormat”.

Text attributes (specified with CultureInfo, NumberFormatInfo.CurrentInfo (p. ??) and
DateTimeFormatInfo.CurrentInfo (p. ??) members) in this node control the drawing of the axis
labels.
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See Also

Imsl.Chart2D.Polar (p. 958), Imsl.Chart2D.AxisR (p. 829)

AxisRLine Class

Summary

The radius axis line in a polar plot.

public class Imsl.Chart2D.AxisRLine : ChartNode

Method

Paint
override public void Paint(Imsl.Chart2D.Draw draw)

Description

Paints this node and all of its children.
This is normally called only by the Paint method in this node’s parent.
Parameter

draw – A Draw which is to be painted.

Description

AxisRLine is created by Imsl.Chart2D.AxisR (p. 829) as its child. It can be retrieved using the
method Imsl.Chart2D.AxisR.AxisRLine (p. 829).

Line attributes (specified with LineColor (p. 779), LineWidth (p. 779) and
SetMarkerDashPattern (p. 804)) in this node control the drawing of the axis line.

See Also

Imsl.Chart2D.Polar (p. 958), Imsl.Chart2D.AxisR (p. 829)

AxisRMajorTick Class

Summary

The major tick marks for the radius axis in a polar plot.
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public class Imsl.Chart2D.AxisRMajorTick : ChartNode

Method

Paint
override public void Paint(Imsl.Chart2D.Draw draw)

Description

Paints this node and all of its children.

This is normally called only by the Paint method in this node’s parent.

Parameter

draw – A Draw which is to be painted.

Description

AxisRMajorTick is created by Imsl.Chart2D.AxisR (p. 829) as its child. It can be retrieved
using the method Imsl.Chart2D.AxisR.AxisRMajorTick (p. 829).

Line attributes (specified with LineColor (p. 779), LineWidth (p. 779) and
SetMarkerDashPattern (p. 804)) in this node control the drawing of the major tick marks.

See Also

Imsl.Chart2D.Polar (p. 958), Imsl.Chart2D.AxisR (p. 829)

AxisTheta Class

Summary

The angular axis in a polar plot.

public class Imsl.Chart2D.AxisTheta : ChartNode

Methods

GetTicks
virtual public double[] GetTicks()

Chart2D AxisTheta Class • 833



Description

Returns the ”Ticks” attribute value.

These are the positions at which the angles are labeled. The ticks are in radians, not
degrees.

Returns

A double[] containing the ”Ticks” attribute value.

GetWindow
virtual public double[] GetWindow()

Description

Returns the window for an AxisTheta.

Returns

A double array of length two containing the angular range of the window.

Paint
override public void Paint(Imsl.Chart2D.Draw draw)

Description

Paints this node and all of its children.

This is normally called only by the Paint method in this node’s parent.

Parameter

draw – A Draw which is to be painted.

SetWindow
virtual public void SetWindow(double[] window)

Description

Sets the window for an AxisTheta.

The default ”Window” is [0,2pi].

Parameter

window – A double array of length two containing the angular range.

SetWindow
virtual public void SetWindow(double min, double max)

Description

Sets the window for an AxisTheta.

The default ”Window” is [0,2pi].
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Parameters

min – A double which specifies the initial angular value, in radians value.

max – A double which specifies the final angular value, in radians.

Description

AxisTheta is created by Imsl.Chart2D.Polar (p. 958) as its child. It can be retrieved using the
method Imsl.Chart2D.Polar.AxisTheta (p. 958).

The angles are labeled using the ”TextFormat” attribute, which is set to "0.##\\u00b0", where
\\u00b0 is the Unicode character for degrees. This labels the angles in degrees. More generally,
”TextFormat” can be set to a NumberFormat object to format the angles in degrees.

”TextFormat” can also be set to a MessageFormat object. In this case, field {0} is the value in
degrees, field {1} is the value in radians and field {2} is the value in radians/π. So, for labels
like 1.5\\u03c0, where \\u03c0 is the Unicode character for π, set ”TextFormat” to new
MessageFormat("{2,number,0.##\\u03c0}").

The number of tick marks (”Number” attribute) is set to 9, but autoscaling can change this
value.

See Also

Imsl.Chart2D.Polar (p. 958)

GridPolar Class

Summary

Draws the grid lines for a polar plot.

public class Imsl.Chart2D.GridPolar : ChartNode

Method

Paint
override public void Paint(Imsl.Chart2D.Draw draw)

Description

Paints this node and all of its children.

This is normally called only by the Paint method in this node’s parent.
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Parameter

draw – A Draw which is to be painted.

Description

GridPolar is created by Imsl.Chart2D.Polar (p. 958) as its child. It can be retrieved using the
Imsl.Chart2D.Polar.GridPolar (p. 958) property.

Line attributes (specified with LineColor (p. 779), LineWidth (p. 779) and
SetMarkerDashPattern (p. 804)) in this node control the drawing of the grid lines.

Data Class

Summary

A data node in the chart tree.

public class Imsl.Chart2D.Data : ChartNode

Constructors

Data
public Data(Imsl.Chart2D.ChartNode parent)

Description

Creates a data node.

Parameter

parent – A ChartNode which specifies the parent of this data node.

Data
public Data(Imsl.Chart2D.ChartNode parent, double[] y)

Description

Creates a Data node with y values.

The x values are set to the double array containing {0,1,...,y.Length-1}.
Parameters

parent – A ChartNode which specifies the parent of this data node.

y – A double array containing the dependant values for this node.
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Data
public Data(Imsl.Chart2D.ChartNode parent, Imsl.Chart2D.ChartFunction cf,
double a, double b)

Description

Creates a Data node with y values.

The x values are set to the double array containing {0,1,...,y.Length-1}.
Parameters

parent – A ChartNode which specifies the parent of this data node.

cf – A ChartFunction that defines the function to be plotted.

a – A double that contains the left endpoint.

b – A double that contains the right endpoint.

Data
public Data(Imsl.Chart2D.ChartNode parent, double[] x, double[] y)

Description

Creates a Data node with x and y values.

Parameters

parent – A ChartNode which specifies the parent of this data node.

x – A double array containing the independant values for this node.

y – A double array containing the dependant values for this node.

Methods

Paint
override public void Paint(Imsl.Chart2D.Draw draw)

Description

Paints this node and all of its children.

This is normally called only by the Paint method in this node’s parent.

Parameter

draw – A Draw which is to be painted.

SetDataRange
virtual public void SetDataRange(double[] range)
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Description

Update the data range.

The entries in range are updated to reflect the extent of the data in this node. range is an
input/output variable. Its value should be updated only if the data in this node is outside
the range already in the array.

Parameter

range – A double[4] which contains the updated range, {xmin,xmax,ymin, ymax}.

Description

Drawing of a Data node is determined by the DataType (p. 795) property. Multiple bits can be
set in ”DataType”.

If the DATA TYPE LINE (p. 788) bit is set, the line attributes are active.

If the DATA TYPE MARKER (p. 788) bit is set, the marker attributes are active.

If the DATA TYPE FILL (p. 787)} bit is set, the fill attributes are active.

If LabelType (p. 779) is set to something other than the default (LABEL TYPE NONE), then the
data points are labeled. The contents of the labels are determined by the value of the
LabelType property.

The drawing of the labels is controlled with CultureInfo, NumberFormatInfo.CurrentInfo (p.
??) and DateTimeFormatInfo.CurrentInfo (p. ??) members) in this node control the drawing
of the title.

Example: Scatter Chart

A scatter plot is constructed in this example. Three data sets are used and a legend is added to
the chart. This class can be used either as an applet or as an application.

using Imsl.Chart2D;
using Imsl.Stat;
using System;
using System.Windows.Forms;

public class ScatterEx1 : FrameChart
{

public ScatterEx1()
{

Chart chart = this.Chart;
AxisXY axis = new AxisXY(chart);

int npoints = 20;
double dx = .5 * System.Math.PI / (npoints - 1);
double[] x = new double[npoints];
double[] y1 = new double[npoints];
double[] y2 = new double[npoints];
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double[] y3 = new double[npoints];

// Generate some data
for (int i = 0; i < npoints; i++)
{

x[i] = i * dx;
y1[i] = System.Math.Sin(x[i]);
y2[i] = System.Math.Cos(x[i]);
y3[i] = System.Math.Atan(x[i]);

}
Data d1 = new Data(axis, x, y1);
Data d2 = new Data(axis, x, y2);
Data d3 = new Data(axis, x, y3);

// Set Data Type to Marker
d1.DataType = Imsl.Chart2D.Data.DATA_TYPE_MARKER;
d2.DataType = Imsl.Chart2D.Data.DATA_TYPE_MARKER;
d3.DataType = Imsl.Chart2D.Data.DATA_TYPE_MARKER;

// Set Marker Types
d1.MarkerType = Data.MARKER_TYPE_CIRCLE_PLUS;
d2.MarkerType = Data.MARKER_TYPE_HOLLOW_SQUARE;
d3.MarkerType = Data.MARKER_TYPE_ASTERISK;

// Set Marker Colors
d1.MarkerColor = System.Drawing.Color.Red;
d2.MarkerColor = System.Drawing.Color.Black;
d3.MarkerColor = System.Drawing.Color.Blue;

// Set Data Labels
d1.SetTitle("Sine");
d2.SetTitle("Cosine");
d3.SetTitle("ArcTangent");

// Add a Legend
Legend legend = chart.Legend;
legend.SetTitle(new Text("Legend"));
chart.AddLegendItem(2, chart);
legend.IsVisible = true;

// Set the Chart Title
chart.ChartTitle.SetTitle("Scatter Plot");

}

public static void Main(string[] argv)
{

System.Windows.Forms.Application.Run(new ScatterEx1());
}

}
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Example: Line Chart

A simple line chart is constructed in this example. Three data sets are used and a legend is
added to the chart. This class can be used either as an applet or as an application.

using Imsl.Chart2D;
using Imsl.Stat;
using System;
using System.Windows.Forms;

public class LineEx1 : FrameChart
{

public LineEx1()
{

Chart chart = this.Chart;

AxisXY axis = new AxisXY(chart);

int npoints = 20;
double dx = .5 * System.Math.PI / (npoints - 1);
double[] x = new double[npoints];
double[] y1 = new double[npoints];
double[] y2 = new double[npoints];
double[] y3 = new double[npoints];

// Generate some data
for (int i = 0; i < npoints; i++)
{

x[i] = i * dx;
y1[i] = System.Math.Sin(x[i]);
y2[i] = System.Math.Cos(x[i]);
y3[i] = System.Math.Atan(x[i]);

}
Data d1 = new Data(axis, x, y1);
Data d2 = new Data(axis, x, y2);
Data d3 = new Data(axis, x, y3);

// Set Data Type to Line
axis.DataType = Imsl.Chart2D.AxisXY.DATA_TYPE_LINE;

// Set Line Colors
d1.LineColor = System.Drawing.Color.Red;
d2.LineColor = System.Drawing.Color.Black;
d3.LineColor = System.Drawing.Color.Blue;

// Set Data Labels
d1.SetTitle("Sine");
d2.SetTitle("Cosine");
d3.SetTitle("ArcTangent");

// Add a Legend
Legend legend = chart.Legend;
legend.SetTitle(new Text("Legend"));
chart.AddLegendItem(1, chart);
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legend.IsVisible = true;

// Set the Chart Title
chart.ChartTitle.SetTitle("Line Plots");

}

public static void Main(string[] argv)
{

System.Windows.Forms.Application.Run(new LineEx1());
}

}
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Example: Picture Chart

A picture plot is constructed in this example. This class can be used either as an applet or as
an application.

using Imsl.Chart2D;
using Imsl.Stat;
using System;
using System.Windows.Forms;
using System.Drawing;

public class PictureEx1 : FrameChart
{

public PictureEx1()
{

string appPath = Application.ExecutablePath;

Chart chart = this.Chart;
AxisXY axis = new AxisXY(chart);

int npoints = 20;
double dx = .5 * System.Math.PI / (npoints - 1);
double[] x = new double[npoints];
double[] y1 = new double[npoints];
double[] y2 = new double[npoints];

// Generate some data
for (int i = 0; i < npoints; i++)
{

x[i] = i * dx;
y1[i] = System.Math.Sin(x[i]);
y2[i] = System.Math.Cos(x[i]);

}
Data d1 = new Data(axis, x, y1);
Data d2 = new Data(axis, x, y2);

// Load Images
d1.DataType = Data.DATA_TYPE_PICTURE;
d1.ImageAttr = new Bitmap(@"IMSL.NET\Example\Chart2D\marker.gif", true);
d2.DataType = Data.DATA_TYPE_PICTURE;
d2.ImageAttr = new Bitmap(@"IMSL.NET\Example\Chart2D\marker2.gif", true);

// Set the Chart Title
chart.ChartTitle.SetTitle("Picture Plot");

}

public static void Main(string[] argv)
{

System.Windows.Forms.Application.Run(new PictureEx1());
}

}
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Example: Area Chart

An area chart is constructed in this example. Three data sets are used and a legend is added to
the chart. This class can be used either as an applet or as an application.

using Imsl.Chart2D;
using Imsl.Stat;
using System;
using System.Windows.Forms;

public class AreaEx1 : FrameChart
{

public AreaEx1()
{

Chart chart = this.Chart;
AxisXY axis = new AxisXY(chart);

int npoints = 20;
double dx = .5 * System.Math.PI / (npoints - 1);
double[] x = new double[npoints];
double[] y1 = new double[npoints];
double[] y2 = new double[npoints];
double[] y3 = new double[npoints];

// Generate some data
for (int i = 0; i < npoints; i++)
{

x[i] = i * dx;
y1[i] = System.Math.Sin(x[i]);
y2[i] = System.Math.Cos(x[i]);
y3[i] = System.Math.Atan(x[i]);

}
Data d1 = new Data(axis, x, y1);
Data d2 = new Data(axis, x, y2);
Data d3 = new Data(axis, x, y3);

// Set Data Type to Fill Area
axis.DataType = Imsl.Chart2D.Data.DATA_TYPE_FILL;

// Set Line Colors
d1.LineColor = System.Drawing.Color.Red;
d2.LineColor = System.Drawing.Color.Black;
d3.LineColor = System.Drawing.Color.Blue;

// Set Fill Colors
d1.FillColor = System.Drawing.Color.Red;
d2.FillColor = System.Drawing.Color.Black;
d3.FillColor = System.Drawing.Color.Blue;

// Set Data Labels
d1.SetTitle("Sine");
d2.SetTitle("Cosine");
d3.SetTitle("ArcTangent");
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// Add a Legend
Legend legend = chart.Legend;
legend.SetTitle(new Text("Legend"));
legend.IsVisible = true;

// Set the Chart Title
chart.ChartTitle.SetTitle("Area Plots");

}

public static void Main(string[] argv)
{

System.Windows.Forms.Application.Run(new AreaEx1());
}

}
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ChartFunction Interface

Summary

An interface that allows a function to be plotted.

public interface Imsl.Chart2D.ChartFunction

Method

F
abstract public double F(double x)

Description

Function to be charted.

Parameter

x – A double[] which specifies the independent data.

Returns

A double[] containing the dependant data.

See Also

Imsl.Chart2D.Data (p. 836)

ChartSpline Class

Summary

Wraps a spline into a ChartFunction to be plotted.

public class Imsl.Chart2D.ChartSpline : Imsl.Chart2D.ChartFunction

Constructors

ChartSpline
public ChartSpline(Imsl.Math.Spline spline)
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Description

Creates a ChartSpline.

Parameter

spline – A Spline used to construct this ChartSpline.

ChartSpline
public ChartSpline(Imsl.Math.Spline spline, int ideriv)

Description

Creates a ChartSpline.

If zero, the function value is plotted.

If one, the first derivative is plotted, etc.

Parameters

spline – A Spline which is to have its derivative plotted.

ideriv – An int that specifies what derivative is to be plotted.

Method

F
virtual public double F(double x)

Description

Function to be charted.

Parameter

x – A double specifying the point at which the function is to be evaluated.

Returns

A double containing the function evaluation.

Text Class

Summary

The value of the attribute ”Title”.

public class Imsl.Chart2D.Text
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Properties

Alignment
virtual public int Alignment {get; set; }

Description

The alignment for this Text object.

The alignment determines the position of the reference point on the horizontally aligned
box containing the drawn text. It is the bitwise combination of the following:

TEXT X LEFT (p. 793)TEXT X CENTER (p. 793) TEXT X RIGHT (p. 793)
TEXT Y BOTTOM (p. 793) TEXT Y CENTER (p. 793) TEXT Y TOP (p. 793)

DefaultAlignment
virtual public int DefaultAlignment {set; }

Description

The default alignment for this Text object.

The alignment determines the position of the reference point on the horizontally aligned
box containing the drawn text. It is the bitwise combination of the following:

TEXT X LEFT (p. 793)TEXT X CENTER (p. 793) TEXT X RIGHT (p. 793)
TEXT Y BOTTOM (p. 793) TEXT Y CENTER (p. 793) TEXT Y TOP (p. 793)

DefaultOffset
virtual public double DefaultOffset {set; }

Description

The default value of the offset.

Offset is in units of the default marker size. Text drawn is offset in the direction of the
alignment.

Offset
virtual public double Offset {get; set; }

Description

The offset for this Text object.

Offset is in units of the default marker size. Text drawn is offset in the direction of the
alignment.

String
virtual public string String {get; set; }

Description

A string representation of this Text object.
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Constructors

Text
public Text(string text)

Description

Constructs a Text object from a string.
Parameter

text – A string that is to be converted to a Text object.

Text
public Text(string text, int alignment)

Description

Constructs a Text object from a string with specified alignment.
The alignment determines the position of the reference point on the horizontally aligned
box containing the drawn text. It is the bitwise combination of the following:

TEXT X LEFT (p. 793)TEXT X CENTER (p. 793) TEXT X RIGHT (p. 793)
TEXT Y BOTTOM (p. 793) TEXT Y CENTER (p. 793) TEXT Y TOP (p. 793)

Parameters

text – The String that is to be converted to a Text object.
alignment – An int which specifies the alignment.

Text
public Text(string format, System.IFormatProvider formatProvider,
System.IFormattable obj)

Description

Constructs a Text object given a format string, an IFormatProvider and the value to
be formatted.
Parameters

format – A string containing the format.
formatProvider – An IFormatProvider like NumberFormat (p. ??) or
DateTimeFormat (p. ??).
obj – A IFormattable that is to be converted into a Text object.

Description

A title is a multi-line string with alignment information.

Line breaks are indicated by the newline character (’“n’) within the string.

Titles are drawn relative to a reference point. Alignment determines the position of the
reference point on the horizontally-aligned box that bounds the text.
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ToolTip Class

Summary

A tool tip for a chart element.

public class Imsl.Chart2D.ToolTip : ChartNode

Constructor

ToolTip
public ToolTip(Imsl.Chart2D.ChartNode parent)

Description

Creates a ToolTip node that enables tool tips on charts.

Do not use the root ChartNode for this argument, because it will normally select only the
Background node.

Parameter

parent – The ChartNode parent of this node.

Methods

MouseMoved
virtual public void MouseMoved(Object sender,
System.Windows.Forms.MouseEventArgs e)

Description

The MouseMoved delegate added to the Chart when a ToolTip is created.

Parameters

sender – A Object that specifies the sender of an event.

e – A MouseEventArgs that provides data for the MouseUp, MouseDown, and
MouseMove events.

Paint
override public void Paint(Imsl.Chart2D.Draw draw)

Description

Paints this node and all of its children.

This is normally called only by the Paint method in this node’s parent.
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Parameter

draw – A Draw which is to be painted.

Description

This class requires that the chart’s component be a subclass of ComponentModel (p. ??). The
ComponentModel class can be subclassed to provide different behaviors for displaying tool tips.

To use, create an instance of ToolTip to activate the ToolTips in a node and in the node’s
descendants. The ToolTip string is the value of a node’s ”ToolTip” attribute or, if it is null,
the node’s ”Title” attribute.

FillPaint Class

Summary

A collection of methods to create Brush objects for fill areas.

public class Imsl.Chart2D.FillPaint

Methods

Checkerboard
static public System.Drawing.Brush Checkerboard(int n, System.Drawing.Color
colorA, System.Drawing.Color colorB)

Description

Returns a checkerboard pattern.

Parameters

n – An int that specifies the pattern size in pixels.

colorA – A Color which specifies the first color in the checkerboard pattern.

colorB – A Color which specifies the second color in the checkerboard pattern.

Returns

A Brush containing the checkerboard pattern.

Crosshatch
static public System.Drawing.Brush Crosshatch(int n, int p,
System.Drawing.Color colorBackground, System.Drawing.Color colorLine)

Description

Returns a crosshatch pattern.
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Parameters

n – An int that specifies the pattern size in pixels.

p – An int which specifies the number of pixels between the crosshatched lines.

colorBackground – A Color which specifies the background color.

colorLine – A Color which specifies the color of the line.

Returns

A Brush containing the pattern.

DefaultReadObject
static public void
DefaultReadObject(System.Runtime.Serialization.SerializationInfo info,
System.Runtime.Serialization.StreamingContext context, Object instance)

Description

Reads the serialized fields written by the DefaultWriteObject method.

Parameters

info – A SerializationInfo parameter from the special deserialization constructor.

context – A StreamingContext parameter from the special deserialization
constructor.

instance – An Object to deserialize.

DefaultWriteObject
static public void
DefaultWriteObject(System.Runtime.Serialization.SerializationInfo info,
System.Runtime.Serialization.StreamingContext context, Object instance)

Description

Writes the serializable fields to the SerializationInfo object, which stores all the data
needed to serialize the specified Object.

Parameters

info – A SerializationInfo parameter from the GetObjectData method.

context – A StreamingContext parameter from the GetObjectData method.

instance – An Object to serialize.

Diagonal
static public System.Drawing.Brush Diagonal(int n, System.Drawing.Color
colorA, System.Drawing.Color colorB)

Description

Returns a diagonal pattern.
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Parameters

n – An int that specifies the pattern size in pixels.

colorA – A Color which specifies the first color in the diagonal pattern.

colorB – A Color which specifies the second color in the diagonal pattern.

Returns

A Brush containing the diagonal pattern.

Diamond
static public System.Drawing.Brush Diamond(int n, int p,
System.Drawing.Color colorBackground, System.Drawing.Color colorLine)

Description

Returns a diamond pattern (a checkerboard rotated 45 degrees).

Parameters

n – An int that specifies the pattern size in pixels.

p – An int which specifies the line thickness.

colorBackground – A Color which specifies the background color.

colorLine – A Color which specifies the color of the line.

Returns

A Brush containing the diamond pattern.

DiamondHatch
static public System.Drawing.Brush DiamondHatch(int n, int p,
System.Drawing.Color colorBackground, System.Drawing.Color colorLine)

Description

Returns a crosshatch pattern on a 45 degree angle.

Parameters

n – An int that specifies the pattern size in pixels.

p – An int which specifies the number of pixels between the crosshatched lines.

colorBackground – A Color which specifies the background color.

colorLine – A Color which specifies the color of the line.

Returns

A Brush containing the pattern.

Dot
static public System.Drawing.Brush Dot(int n, int r, System.Drawing.Color
colorBackground, System.Drawing.Color colorCircle)
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Description

Returns a pattern that is an array of circles.

Parameters

n – An int that specifies the pattern size in pixels.

r – An int which specifies the radius of circles in the pattern in pixels.

colorBackground – A Color which specifies the background color.

colorCircle – A Color which specifies the color of circles in the pattern.

Returns

A Brush containing the pattern.

HorizontalStripe
static public System.Drawing.Brush HorizontalStripe(int n, int p,
System.Drawing.Color colorBackground, System.Drawing.Color colorLine)

Description

Returns a horizontally striped pattern.

Parameters

n – An int that specifies the pattern size in pixels.

p – An int which specifies the number of pixels between horizontally lines.

colorBackground – A Color which specifies the background color.

colorLine – A Color which specifies the color of the line.

Returns

A Brush containing the pattern.

Image
static public System.Drawing.Brush Image(System.Drawing.Image imageIcon)

Description

Returns a tiling of an image.

Parameter

imageIcon – An Image that specifies the image to be tiled.

Returns

A Brush containing the tiling of the image.

VerticalStripe
static public System.Drawing.Brush VerticalStripe(int n, int p,
System.Drawing.Color colorBackground, System.Drawing.Color colorLine)

Chart2D FillPaint Class • 857



Description

Returns a vertically striped pattern.

Parameters

n – An int that specifies the pattern size in pixels.

p – An int which specifies the number of pixels between vertical lines.

colorBackground – A Color which specifies the background color.

colorLine – A Color which specifies the color of the line.

Returns

A Brush containing the pattern.

Description

All of the Brush objects returned by the methods in this class are serializable.

Draw Class

Summary

Renders the chart tree to the screen.

public class Imsl.Chart2D.Draw

Properties

ClipBounds
virtual public System.Drawing.Rectangle ClipBounds {get; set; }

Description

Contains the rectangle to be used for cliping.

DeviceMarkerSize
virtual public float DeviceMarkerSize {get; }

Description

The marker size in device coordinates.

Node
virtual public Imsl.Chart2D.ChartNode Node {set; }
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Description

Specifies a ChartNode as the current node.

This is used to get drawing attributes from the tree.

ScaleFont
virtual public double ScaleFont {get; set; }

Description

The factor by which fonts are to be scaled.

Constructor

Draw
public Draw(System.Drawing.Graphics graphics, System.Drawing.Size bounds)

Description

Contructs a Draw object.

Parameters

graphics – A Graphics object encapsulating a GDI+ drawing surface.

bounds – A Size specifying the width and height of a rectangle.

Methods

CreateGradientBrush
static public System.Drawing.Drawing2D.LinearGradientBrush
CreateGradientBrush(float x1, float y1, System.Drawing.Color color1, float
x2, float y2, System.Drawing.Color color2)

Description

Creates an acyclic GradientBrush.

This gradient is acyclic.

Parameters

x1 – A float containing the x-coordinate of the upper-left corner of drawing area.

y1 – A float containing the y-coordinate of the upper-left corner of drawing area.

color1 – A Color structure that represents the starting color for the gradient.

x2 – A float containing the x-coordinate of the lower-right corner of drawing area.

y2 – A float containing the x-coordinate of the lower-right corner of drawing area.

color2 – A Color structure that represents the ending color for the gradient.
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Returns

A new instance of LinearGradientBrush with the colors and coordinates specified.

DrawArc
virtual public void DrawArc(int x, int y, int width, int height, int
startAngle, int arcAngle)

Description

Draws the outline of a circular or elliptical arc covering the specified rectangle.

The center of the arc is center of this rectangle.

startAngle = 0 is equivalent to the 3-o’clock position.

DrawArc draws the arc from startAngle to startAngle+arcAngle. A positive arcAngle
indicates a counter-clockwise rotation. A negative arcAngle implies a clockwise rotation.

Parameters

x – An int which contains the x-coordinate of the upper-left corner of the rectangle
that defines the ellipse.
y – An int which contains the y-coordinate of the upper-left corner of the rectangle
that defines the ellipse.
width – An int which contains the width of the rectangle that defines the ellipse.
height – An int which contains the height of the rectangle that defines the ellipse.
startAngle – An int which specifies the angle in degrees measured clockwise from
the x-axis to the starting point of the arc.
arcAngle – An int which specifies an angle in degrees measured counter-clockwise
from the startAngle parameter to the ending point of the arc.

DrawErrorBar
virtual public void DrawErrorBar(int x0, int y0, int x1, int y1, int flag)

Description

Draws an error bar.

Legal values: 0=none, 1=bottom, 2=top, 3=both

Parameters

x0 – An int which specifies the x-coordinate of the beginning reference point.
y0 – An int which specifies the y-coordinate of the beginning reference point.
x1 – An int which specifies the x-coordinate of the ending reference point.
y1 – An int which specifies the y-coordinate of the ending reference point.
flag – An int that indicates which caps to draw.

DrawImage
virtual public void DrawImage(System.Drawing.Image image, int x, int y)
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Description

Draws the specified image at the location specified by a coordinate pair.

Parameters

image – The Image object to draw.
x – An int which specifies the x-coordinate of the upper-left corner of the drawn
image.
y – An int which specifies the x-coordinate of the upper-left corner of the drawn
image.

DrawLine
virtual public void DrawLine(int x0, int y0, int x1, int y1)

Description

Draws a line from between two points.

Parameters

x0 – An int which specifies the x-coordinate of the line origin, (x0,y0).
y0 – An int which specifies the y-coordinate of the line origin, (x0,y0).
x1 – An int which specifies the x-coordinate of the line destination, (x1,y1).
y1 – An int which specifies the y-coordinate of the line destination, (x1,y1).

DrawMarker
virtual public void DrawMarker(int x, int y)

Description

Draws a marker.

Parameters

x – An int which specifies the x-coordinate of the marker destination, (x,y).
y – An int which specifies the y-coordinate of the marker destination, (x,y).

DrawText
virtual public System.Drawing.Size DrawText(Imsl.Chart2D.Text text, int x,
int y)

Description

Draws a Text object.

Parameters

text – A Text object to be drawn.
x – An int which specifies the abscissa of the (x,y) point at which to start drawing
the text.
y – An int which specifies the ordinate of the (x,y) point at which to start drawing
the text.
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Returns

A Size containing the bounds of the Text to be drawn.

EndErrorBar
virtual public void EndErrorBar()

Description

Finish drawing an error bar.

EndFill
virtual public void EndFill()

Description

Finish drawing a filled region.

EndImage
virtual public void EndImage()

Description

Finish drawing an image.

EndLine
virtual public void EndLine()

Description

Finish drawing lines.

EndMarker
virtual public void EndMarker()

Description

Finish drawing markers.

EndText
virtual public void EndText()

Description

Finish drawing text.

FillArc
virtual public void FillArc(int x, int y, int width, int height, int
startAngle, int arcAngle)
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Description

Fills a circular or elliptical arc covering the specified rectangle.

The center of the arc is center of this rectangle.

startAngle = 0 is equivalent to the 3-o’clock position.

DrawArc draws the arc from startAngle to startAngle+arcAngle. A positive arcAngle
indicates a counter-clockwise rotation. A negative arcAngle implies a clockwise rotation.

Parameters

x – An int which specifies the x-coordinate of the upper-left corner of the
rectangular region that defines the ellipse from which the arc is drawn.

y – An int which specifies the y-coordinate of the upper-left corner of the
rectangular region that defines the ellipse from which the arc is drawn.

width – An int which specifies the width of the rectangular region that defines the
ellipse from which the arc is drawn.

height – An int which specifies the height of the rectangular region that defines the
ellipse from which the arc is drawn.

startAngle – An int which specifies the starting angle of the arc, measured in
degrees clockwise from the x-axis.

arcAngle – An int which specifies an angle in degrees measured counter-clockwise
from the startAngle parameter to the ending point of the arc.

FillPolygon
virtual public void FillPolygon(int[] xpoints, int[] ypoints, int npoints)

Description

Fills a polygon.

Parameters

xpoints – An int array which contains the abscissae of the points which define the
polygon.

ypoints – An int array which contains the ordinates of the points which define the
polygon.

npoints – An int which specifies the number of pointsto add to the graphics path.

FillPolygon
virtual public void FillPolygon(System.Drawing.Drawing2D.GraphicsPath
polygon)

Description

Fill a polygon defined by a Polygon object.
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Parameter

polygon – A Polygon object which specifies the polygon to be filled.

FillRectangle
virtual public void FillRectangle(int x, int y, int width, int height)

Description

Fill a rectangle.

Parameters

x – An int which specifies the x-coordinate of the upper-left corner of the rectangle.

y – An int which specifies the y-coordinate of the upper-left corner of the rectangle.

width – An int which specifies the width of the rectangle.

height – An int which specifies the height of the rectangle.

GetStringWidth
static public int GetStringWidth(string target, System.Drawing.Font font)

Description

Gets the width of a string.

Parameters

target – A string to measure.

font – A Font object that defines the text format of the string.

Returns

An int that represents the size, in pixels, of the string specified by target as drawn with
font.

Start
virtual public void Start(Imsl.Chart2D.Chart chart)

Description

Called just before a chart is drawn.

Parameter

chart – The Chart object to draw.

StartErrorBar
virtual public void StartErrorBar()
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Description

Start drawing an ErrorBar.

StartFill
virtual public void StartFill()

Description

Start drawing a filled region.

StartImage
virtual public void StartImage()

Description

Start drawing an image.

StartLine
virtual public void StartLine()

Description

Start drawing a line.

StartMarker
virtual public void StartMarker()

Description

Start drawing a marker.

StartText
virtual public void StartText()

Description

Start drawing text.

Stop
virtual public void Stop()

Description

Called when a chart is finished being drawn.

Translate
virtual public void Translate(int x, int y)

Description

Prepends the specified translation to the transformation matrix of this Graphics object.
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Parameters

x – An int which specifies dx, the x component of the translation.

y – An int which specifies dy, the y component of the translation.

FrameChart Class

Summary

FrameChart is a Form that contains a chart.

public class Imsl.Chart2D.FrameChart : Form :
System.ComponentModel.IComponent, System.IDisposable,
System.ComponentModel.ISynchronizeInvoke, System.Windows.Forms.IWin32Window,
System.Windows.Forms.IContainerControl

Properties

Chart
virtual public Imsl.Chart2D.Chart Chart {get; set; }

Description

Specifies the chart to be handled.

Panel
virtual public Imsl.Chart2D.PanelChart Panel {get; }

Description

Specifies a Panel that contains the Chart to be drawn.

Constructors

FrameChart
public FrameChart()

Description

Creates new FrameChart to display a chart.

FrameChart
public FrameChart(Imsl.Chart2D.Chart chart)

866 • FrameChart Class IMSL C# Numerical Library



Description

Creates new FrameChart to display a given chart.

Parameter

chart – A Chart containing the chart to be displayed.

Method

Dispose
override void Dispose(bool disposing)

Description

Clean up any resources being used.

true to release both managed and unmanaged resources; false to release only
unmanaged resources.

Parameter

disposing – A boolindicating whether to release both managed and unmanaged
resources.

PanelChart Class

Summary

A Windows.Forms.Panel that contains a chart.

public class Imsl.Chart2D.PanelChart : Panel :
System.ComponentModel.IComponent, System.IDisposable,
System.ComponentModel.ISynchronizeInvoke, System.Windows.Forms.IWin32Window

Property

Chart
virtual public Imsl.Chart2D.Chart Chart {get; set; }

Description

Specifies the Chart to be rendered for in this panel.
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Constructors

PanelChart
public PanelChart()

Description

Creates a new PanelChart.

This creates a new Chart object.

PanelChart
public PanelChart(Imsl.Chart2D.Chart chart)

Description

Creates new PanelChart using a given Chart object.

Parameter

chart – A Chart to be displayed in this panel.

Methods

OnPaint
override void OnPaint(System.Windows.Forms.PaintEventArgs painteventargs)

Description

Calls the UI delegate’s Paint method, if the UI delegate is non-null.

We pass the delegate a copy of the Graphics object to protect the rest of the Paint code
from irrevocable changes (for example, Graphics.translate).

If you override this in a subclass you should not make permanent changes to the passed in
Graphics. For example, you should not alter the clip Rectangle or modify the transform.
If you need to do these operations you may find it easier to create a new Graphics from
the passed in Graphics and manipulate it.

Further, if you do not invoker super’s implementation you must honor the opaque
property, that is if this component is opaque, you must completely fill in the background
in a non-opaque color. If you do not honor the opaque property you will likely see visual
artifacts.

Parameter

painteventargs – The PaintEventArgs with the Graphics property for painting
the chart.

OnResize
override void OnResize(System.EventArgs eventargs)
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Description

When the PanelChart is resized, Refresh() is called.

Parameter

eventargs – The EventArgs.

Print
virtual public void Print()

Description

Print the Chart centered on a page.

Description

This class causes the contained chart to be redrawn as necessary.

DrawPick Class

Summary

The DrawPick class.

public class Imsl.Chart2D.DrawPick : Draw

Properties

Node
override public Imsl.Chart2D.ChartNode Node {set; }

Description

Specifies the current node of the chart tree.

This is used to get drawing attributes from the tree.

Tolerance
virtual public int Tolerance {get; set; }

Description

The minimum distance that an event can be from a point or a line and still be considered
a hit.
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Constructor

DrawPick
public DrawPick(System.Windows.Forms.MouseEventArgs mouseEventArgs,
System.Drawing.Graphics graphics, System.Drawing.Size bounds)

Description

Contructs a DrawPick object.

Parameters

mouseEventArgs – A MouseEvent that provides data for the MouseUp, MouseDown,
and MouseMove events.
graphics – A Graphics object encapsulating a GDI+ drawing surface.
bounds – A Size specifying the width and height of a rectangle.

Methods

DrawArc
override public void DrawArc(int x, int y, int width, int height, int
startAngle, int arcAngle)

Description

Draws the outline of a circular or elliptical arc covering the specified rectangle.

The center of the arc is center of this rectangle.

startAngle = 0 is equivalent to the 3-o’clock position.

DrawArc draws the arc from startAngle to startAngle+arcAngle. A positive arcAngle
indicates a counter-clockwise rotation. A negative arcAngle implies a clockwise rotation.

Parameters

x – An int which contains the x-coordinate of the upper-left corner of the rectangle
that defines the ellipse.
y – An int which contains the y-coordinate of the upper-left corner of the rectangle
that defines the ellipse.
width – An int which contains the width of the rectangle that defines the ellipse.
height – An int which contains the height of the rectangle that defines the ellipse.
startAngle – An int which specifies the angle in degrees measured clockwise from
the x-axis to the starting point of the arc.
arcAngle – An int which specifies an angle in degrees measured counter-clockwise
from the startAngle parameter to the ending point of the arc.

DrawErrorBar
virtual public void DrawErrorBar(int x0, int y0, int x1, int y1)
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Description

Draws an error bar.

Parameters

x0 – An int which specifies the x-coordinate of the beginning reference point.

y0 – An int which specifies the y-coordinate of the beginning reference point.

x1 – An int which specifies the x-coordinate of the ending reference point.

y1 – An int which specifies the y-coordinate of the ending reference point.

DrawImage
override public void DrawImage(System.Drawing.Image image, int x, int y)

Description

Draws the specified image at the location specified by a coordinate pair.

Parameters

image – The Image object to draw.

x – An int which specifies the x-coordinate of the upper-left corner of the drawn
image.

y – An int which specifies the x-coordinate of the upper-left corner of the drawn
image.

DrawLine
override public void DrawLine(int x0, int y0, int x1, int y1)

Description

Draws a line from between two points.

Parameters

x0 – An int which specifies the x-coordinate of the line origin, (x0,y0).

y0 – An int which specifies the y-coordinate of the line origin, (x0,y0).

x1 – An int which specifies the x-coordinate of the line destination, (x1,y1).

y1 – An int which specifies the y-coordinate of the line destination, (x1,y1).

DrawMarker
override public void DrawMarker(int x, int y)

Description

Draws a marker.
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Parameters

x – An int which specifies the x-coordinate of the marker destination, (x,y).

y – An int which specifies the y-coordinate of the marker destination, (x,y).

DrawText
override public System.Drawing.Size DrawText(Imsl.Chart2D.Text text, int x,
int y)

Description

Draws a Text object.

Parameters

text – A Text object to be drawn.

x – An int which specifies the abscissa of the (x,y) point at which to start drawing
the text.

y – An int which specifies the ordinate of the (x,y) point at which to start drawing
the text.

Returns

A Size containing the bounds of the Text to be drawn.

EndErrorBar
override public void EndErrorBar()

Description

Finsih drawing an error bar.

EndFill
override public void EndFill()

Description

Finish drawing a filled region.

EndImage
override public void EndImage()

Description

Finsih drawing an image.

EndLine
override public void EndLine()
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Description

Finish drawing lines.

EndMarker
override public void EndMarker()

Description

Finish drawing markers.

EndText
override public void EndText()

Description

Finish drawing text.

FillArc
override public void FillArc(int x, int y, int width, int height, int
startAngle, int arcAngle)

Description

Fills a circular or elliptical arc covering the specified rectangle.

The center of the arc is center of this rectangle.

startAngle = 0 is equivalent to the 3-o’clock position.

DrawArc draws the arc from startAngle to startAngle+arcAngle. A positive arcAngle
indicates a counter-clockwise rotation. A negative arcAngle implies a clockwise rotation.

Parameters

x – An int which specifies the x-coordinate of the upper-left corner of the
rectangular region that defines the ellipse from which the arc is drawn.

y – An int which specifies the y-coordinate of the upper-left corner of the
rectangular region that defines the ellipse from which the arc is drawn.

width – An int which specifies the width of the rectangular region that defines the
ellipse from which the arc is drawn.

height – An int which specifies the height of the rectangular region that defines the
ellipse from which the arc is drawn.

startAngle – An int which specifies the starting angle of the arc, measured in
degrees clockwise from the x-axis.

arcAngle – An int which specifies an angle in degrees measured counter-clockwise
from the startAngle parameter to the ending point of the arc.

FillPolygon
override public void FillPolygon(int[] xpoints, int[] ypoints, int npoints)

Chart2D DrawPick Class • 873



Description

Fills a polygon.

Parameters

xpoints – An int array which contains the abscissae of the points which define the
polygon.

ypoints – An int array which contains the ordinates of the points which define the
polygon.

npoints – An int which specifies the number of pointsto add to the graphics path.

FillPolygon
override public void FillPolygon(System.Drawing.Drawing2D.GraphicsPath
polygon)

Description

Fill a polygon defined by a Polygon object.

Parameter

polygon – A Polygon object which specifies the polygon to be filled.

FillRectangle
override public void FillRectangle(int x, int y, int width, int height)

Description

Fill a rectangle.

Parameters

x – An int which specifies the x-coordinate of the upper-left corner of the rectangle.

y – An int which specifies the y-coordinate of the upper-left corner of the rectangle.

width – An int which specifies the width of the rectangle.

height – An int which specifies the height of the rectangle.

Fire
virtual public void Fire()

Description

Invoke the delegates for all of the picked nodes.

StartErrorBar
override public void StartErrorBar()
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Description

Start drawing an error bar.

StartFill
override public void StartFill()

Description

Start drawing a filled region.

StartImage
override public void StartImage()

Description

Start drawing an image.

StartLine
override public void StartLine()

Description

Start drawing lines.

StartMarker
override public void StartMarker()

Description

Start drawing markers.

StartText
override public void StartText()

Description

Start drawing text.

Translate
override public void Translate(int x, int y)

Description

Prepends the specified translation to the transformation matrix of this Graphics object.

Parameters

x – An int which specifies dx, the x component of the translation.

y – An int which specifies dy, the y component of the translation.
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PickEventArgs Class

Summary

An event that indicates that a chart element has been selected.

public class Imsl.Chart2D.PickEventArgs : MouseEventArgs

Property

Node
virtual public Imsl.Chart2D.ChartNode Node {get; set; }

Description

The ChartNode associated with the pick event.

Constructor

PickEventArgs
public PickEventArgs(System.Windows.Forms.MouseEventArgs mouseEvent)

Description

Initializes a new instance of the PickEventArgs class.

Parameter

mouseEvent – A MouseEventArgs that provides data for the MouseUp, MouseDown,
and MouseMove events.

Method

PointToLine
static public double PointToLine(int Px, int Py, int[] devA, int[] devB)

Description

Compute the distance from the point (Px, Py) to the line segment AB.

If the closest point from P to the line AB is not between A and B then the distance to the
closer of A and B is returned.

Parameters

Px – An int which specifies the x coordinate of the point (Px,Py).

Py – An int which specifies the y coordinate of the point (Px,Py).
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devA – An int[] which specifies the point that defines the head of the line segment.

devB – An int[] which specifies the point that defines the tail of the line segment.

Returns

A double which contains the distance from the point (Px,Py) to the line segment AB.

Description

Provides data for the PickPerformed event.

See Also

(p. ??)

WebChart Class

Summary

A WebChart provides a component to use in ASP.NET applications that holds a Chart object.

public class Imsl.Chart2D.WebChart : Panel :
System.ComponentModel.IComponent, System.IDisposable,
System.Web.UI.IParserAccessor, System.Web.UI.IDataBindingsAccessor,
System.Web.UI.IAttributeAccessor

Property

Chart
public Imsl.Chart2D.Chart Chart {get; set; }
Description

The Chart object associated with this WebChart.

Constructor

WebChart
public WebChart()

Description

Default constructor.

Chart2D WebChart Class • 877



Methods

OnInit
override void OnInit(System.EventArgs e)

Description

Initializes the object.

Parameter

e – The EventArgs object that contains the event data.

Render
override void Render(System.Web.UI.HtmlTextWriter output)

Description

Renders the WebChart to the specified HTML writer.

Parameter

output – The HtmlTextWriter that receives the control content.

DrawMap Class

Summary

Creates an HTML client-side imagemap from a chart tree.

public class Imsl.Chart2D.DrawMap : Draw

Properties

Map
virtual public string Map {get; }

Description

Returns the body of the HTML imagemap.

Node
override public Imsl.Chart2D.ChartNode Node {set; }
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Description

Specifies the current node of the chart tree.

This is used to get drawing attributes from the tree.

Tolerance
virtual public int Tolerance {get; set; }

Description

The minimum distance that an event can be from a point or a line and still be considered
a hit.

Constructor

DrawMap
public DrawMap(System.Drawing.Graphics graphics, System.Drawing.Size bounds)

Description

Contructs a DrawMap object.

Parameters

graphics – A Graphics context in which to draw.

bounds – A Size object containing the width and height of the chart to be drawn.

Methods

DrawArc
override public void DrawArc(int x, int y, int width, int height, int
startAngle, int arcAngle)

Description

Draws the outline of a circular or elliptical arc covering the specified rectangle.

The center of the arc is center of this rectangle.

startAngle = 0 is equivalent to the 3-o’clock position.

DrawArc draws the arc from startAngle to startAngle+arcAngle. A positive arcAngle
indicates a counter-clockwise rotation. A negative arcAngle implies a clockwise rotation.

Parameters

x – An int which contains the x-coordinate of the upper-left corner of the rectangle
that defines the ellipse.

y – An int which contains the y-coordinate of the upper-left corner of the rectangle
that defines the ellipse.
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width – An int which contains the width of the rectangle that defines the ellipse.

height – An int which contains the height of the rectangle that defines the ellipse.

startAngle – An int which specifies the angle in degrees measured clockwise from
the x-axis to the starting point of the arc.

arcAngle – An int which specifies an angle in degrees measured counter-clockwise
from the startAngle parameter to the ending point of the arc.

DrawErrorBar
override public void DrawErrorBar(int x0, int y0, int x1, int y1, int flag)

Description

Draws an error bar.

Legal values: 0=none, 1=bottom, 2=top, 3=both

Parameters

x0 – An int which specifies the x-coordinate of the beginning reference point.

y0 – An int which specifies the y-coordinate of the beginning reference point.

x1 – An int which specifies the x-coordinate of the ending reference point.

y1 – An int which specifies the y-coordinate of the ending reference point.

flag – An int that indicates which caps to draw.

DrawImage
override public void DrawImage(System.Drawing.Image image, int x, int y)

Description

Draws the specified image at the location specified by a coordinate pair.

Parameters

image – The Image object to draw.

x – An int which specifies the x-coordinate of the upper-left corner of the drawn
image.

y – An int which specifies the x-coordinate of the upper-left corner of the drawn
image.

DrawLine
override public void DrawLine(int x0, int y0, int x1, int y1)

Description

Draws a line from between two points.
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Parameters

x0 – An int which specifies the x-coordinate of the line origin, (x0,y0).

y0 – An int which specifies the y-coordinate of the line origin, (x0,y0).

x1 – An int which specifies the x-coordinate of the line destination, (x1,y1).

y1 – An int which specifies the y-coordinate of the line destination, (x1,y1).

DrawMarker
override public void DrawMarker(int x, int y)

Description

Draws a marker.

Parameters

x – An int which specifies the x-coordinate of the marker destination, (x,y).

y – An int which specifies the y-coordinate of the marker destination, (x,y).

EndErrorBar
override public void EndErrorBar()

Description

Finish drawing an error bar.

EndFill
override public void EndFill()

Description

Finish drawing a filled region.

EndImage
override public void EndImage()

Description

Finish drawing an image.

EndLine
override public void EndLine()

Description

Finish drawing lines.

EndMarker
override public void EndMarker()

Chart2D DrawMap Class • 881



Description

Finish drawing markers.

EndText
override public void EndText()

Description

Finsih drawing text.

FillArc
override public void FillArc(int x, int y, int width, int height, int
startAngle, int arcAngle)

Description

Fills a circular or elliptical arc covering the specified rectangle.

The center of the arc is center of this rectangle.

startAngle = 0 is equivalent to the 3-o’clock position.

DrawArc draws the arc from startAngle to startAngle+arcAngle. A positive arcAngle
indicates a counter-clockwise rotation. A negative arcAngle implies a clockwise rotation.

Parameters

x – An int which specifies the x-coordinate of the upper-left corner of the
rectangular region that defines the ellipse from which the arc is drawn.

y – An int which specifies the y-coordinate of the upper-left corner of the
rectangular region that defines the ellipse from which the arc is drawn.

width – An int which specifies the width of the rectangular region that defines the
ellipse from which the arc is drawn.

height – An int which specifies the height of the rectangular region that defines the
ellipse from which the arc is drawn.

startAngle – An int which specifies the starting angle of the arc, measured in
degrees clockwise from the x-axis.

arcAngle – An int which specifies an angle in degrees measured counter-clockwise
from the startAngle parameter to the ending point of the arc.

FillPolygon
override public void FillPolygon(int[] xpoints, int[] ypoints, int npoints)

Description

Fills a polygon.
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Parameters

xpoints – An int array which contains the abscissae of the points which define the
polygon.

ypoints – An int array which contains the ordinates of the points which define the
polygon.

npoints – An int which specifies the number of pointsto add to the graphics path.

FillPolygon
override public void FillPolygon(System.Drawing.Drawing2D.GraphicsPath
polygon)

Description

Fill a polygon defined by a Polygon object.

Parameter

polygon – A Polygon object which specifies the polygon to be filled.

FillRectangle
override public void FillRectangle(int x, int y, int width, int height)

Description

Fill a rectangle.

Parameters

x – An int which specifies the x-coordinate of the upper-left corner of the rectangle.

y – An int which specifies the y-coordinate of the upper-left corner of the rectangle.

width – An int which specifies the width of the rectangle.

height – An int which specifies the height of the rectangle.

StartErrorBar
override public void StartErrorBar()

Description

Start drawing an error bar.

StartFill
override public void StartFill()

Description

Start drawing a filled region.

StartImage
override public void StartImage()
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Description

Start drawing an image.

StartLine
override public void StartLine()

Description

Start drawing lines.

StartMarker
override public void StartMarker()

Description

Start drawing markers.

StartText
override public void StartText()

Description

Start drawing text.

Translate
override public void Translate(int x, int y)

Description

Prepends the specified translation to the transformation matrix of this Graphics object.

Parameters

x – An int which specifies dx, the x component of the translation.

y – An int which specifies dy, the y component of the translation.

Description

Entries in the imagemap correspond to nodes that define the HREF attribute.

BoxPlot Class

Summary

Draws a multiple-group Box plot.

public class Imsl.Chart2D.BoxPlot : Data
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Fields

BOXPLOT TYPE HORIZONTAL
public int BOXPLOT TYPE HORIZONTAL

Description

Value for attribute ”BoxPlotType” indicating that this is a horizontal box plot.

Used in connection with BoxPlot nodes.

BOXPLOT TYPE VERTICAL
public int BOXPLOT TYPE VERTICAL

Description

Value for attribute ”BoxPlotType” indicating that this is a horizontal box plot.

Used in connection with BoxPlot nodes.

Properties

Bodies
virtual public Imsl.Chart2D.ChartNode Bodies {get; }

Description

The main body of the BoxPlot elements.

BoxPlotType
virtual public int BoxPlotType {get; set; }

Description

Specifies the orientation of the BoxPlot.

Legal values are
Imsl.Chart2D.BoxPlot.BOXPLOTTY PEV ERTICAL(p.885)orImsl.Chart2D.BoxP lot.BOXPLOTTY PEHORIZONTAL(p.885).

FarMarkers
virtual public Imsl.Chart2D.ChartNode FarMarkers {get; }

Description

The far markers of the BoxPlot elements.

Notch
virtual public bool Notch {get; set; }
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Description

Specifies whether the optional notches, indicating the extent of data falling within the 95
percet confidence range, are displayed.

true indicates that notches are to be displayed. default: false

OutsideMarkers
virtual public Imsl.Chart2D.ChartNode OutsideMarkers {get; }

Description

The outside markers of the BoxPlot elements.

ProportionalWidth
virtual public bool ProportionalWidth {get; set; }

Description

Specifies whether the box widths are to be proportional.

true indicates the box widths are to be proportional to the square root of the number of
observations. If false all of the boxes have the same width. Default: false

Whiskers
virtual public Imsl.Chart2D.ChartNode Whiskers {get; }

Description

The wiskers of the BoxPlot elements drawn to the upper and lower quartile.

Constructors

BoxPlot
public BoxPlot(Imsl.Chart2D.AxisXY axis, double[] x, double[][] obs)

Description

Constructs a box plot chart node with specified x values.

The number of rows in obs must equal the length of x. The length of each row in obs must
be at least 4.

Parameters

axis – An AxisXY which is the parent of this node.
x – A double[] which contains the x values.
obs – A double[] which contains the observations for each x.

BoxPlot
public BoxPlot(Imsl.Chart2D.AxisXY axis, double[] x,
Imsl.Chart2D.BoxPlot.Statistics[] statistics)
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Description

Constructs a box plot chart node with specified x values.

The number of BoxPlot.Statistics[] must equal x.Length.

Parameters

axis – An AxisXY which is the parent of this node.

x – a double[] which contains the x values.

statistics – A BoxPlot.Statistics[] containing the statistics for each element
in x.

BoxPlot
public BoxPlot(Imsl.Chart2D.AxisXY axis, double[][] obs)

Description

Constructs a box plot chart.

The length of each row in obs must be at least 4.

Parameters

axis – An AxisXY which is the parent of this node.

obs – A double[] containing the observations.

Methods

GetStatistics
virtual public Imsl.Chart2D.BoxPlot.Statistics GetStatistics(int iSet)

Description

Returns statistics for a set of observations.

Parameter

iSet – An int which specifies the index of a set whose statistics are to be returned.

Returns

A BoxPlot.Statistics containing the statistics for the iSet set of observations.

GetStatistics
virtual public Imsl.Chart2D.BoxPlot.Statistics[] GetStatistics()

Description

Returns statistics for each set of observations.

Chart2D BoxPlot Class • 887



Returns

A BoxPlot.Statistics[] containing the statistics for each set of observations.

Paint
override public void Paint(Imsl.Chart2D.Draw draw)

Description

Paints this node and all of its children.

This is normally called only by the Paint method in this node’s parent.

Parameter

draw – A Draw which is to be painted.

SetDataRange
override public void SetDataRange(double[] range)

Description

Update the data range.

The entries in range are updated to reflect the extent of the data in this node. range is an
input/output variable. Its value should be updated only if the data in this node is outside
the range already in the array.

Parameter

range – A double[] which contains the updated range, {xmin,xmax,ymin,ymax}.

SetLabels
virtual public void SetLabels(string[] labels, int type)

Description

Sets up an axis with labels.

This turns off the tick marks and sets the ”BoxPlotType” attribute. It also turns off
autoscaling for the axis and sets its ”Window”, ”Number” and ”Ticks” attributes as
appropriate for a labeled Box plot.

The number of labels must equal the number of items.

Legal values for type are
Imsl.Chart2D.BoxPlot.BOXPLOTTY PEV ERTICAL(p.885)orImsl.Chart2D.BoxP lot.BOXPLOTTY PEHORIZONTAL(p.885).Thisdeterminestheaxistobemodified.

Parameters

labels – A String[] containing the axis labels.
type – An int which specifies the ”BoxPlotType” attribute value.

SetLabels
virtual public void SetLabels(string[] labels)
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Description

Sets up an axis with labels.

Sets up an axis with labels. This turns off the tick marks and sets the ”BoxPlotType”
attribute. It also turns off autoscaling for the axis and sets its ”Window” and ”Number”
and ”Ticks” attribute as appropriate for a labeled Box plot. The existing value of the
”BoxPlotType” attribute is used to determine the axis to be modified.

Parameter

labels – A String[] containing the axis labels.

Description

For each group of observations, the box limits represent the lower quartile (25th percentile) and
upper quartile (75th percentile). The median is displayed as a line across the box. Whiskers are
drawn from the upper quartile to the upper adjacent value, and from the lower quartile to the
lower adjacent value.

Optional notches may be displayed to show a 95 percent confidence interval about the median,
at ±1.58 IRQ /

√
n, where IRQ is the interquartile range and n is the number of observations.

Outside and far outside values may be displayed as symbols. Outside values are outside the
inner fence. Far out values are outside the outer fence.

The BoxPlot has several child nodes. Any of these nodes can be disabled by setting their
”IsVisible” attribute to false.

• The ”Bodies” attribute has the main body of the box plot elements. Its fill attributes
determine the drawing of (notched) rectangle. Its line attributes determine the drawing of
the median line. The width of the box is controlled by the ”MarkerSize” attribute.

• The ”Whiskers” attribute draws the lines to the upper and lower quartile. Its drawing is
affected by the marker attributes.

• The ”FarMarkers” attribute hold the far markers. Its drawing is affected by the marker
attributes.

• The ”OutsideMarkers” attribute hold the outside markers. Its drawing is affected by the
marker attributes.

Example: Box Plot Chart

A simple box plot chart is constructed in this example. Display of far and outside values is
turned on.

using Imsl.Chart2D;
using Imsl.Stat;
using System;
using System.Windows.Forms;

Chart2D BoxPlot Class • 889



public class BoxPlotEx1 : FrameChart
{

public BoxPlotEx1()
{

Chart chart = this.Chart;

double[][] obs = {new double[]{66.0, 52.0, 49.0, 64.0, 68.0, 26.0, 86.0, 52.0,
43.0, 75.0, 87.0, 188.0, 118.0, 103.0, 82.0,
71.0, 103.0, 240.0, 31.0, 40.0, 47.0, 51.0, 31.0,
47.0, 14.0, 71.0},

new double[]{61.0, 47.0, 196.0, 131.0, 173.0, 37.0, 47.0,
215.0, 230.0, 69.0, 98.0, 125.0, 94.0, 72.0,
72.0, 125.0, 143.0, 192.0, 122.0, 32.0, 114.0,
32.0, 23.0, 71.0, 38.0, 136.0, 169.0},

new double[]{152.0, 201.0, 134.0, 206.0, 92.0, 101.0, 119.0,
124.0, 133.0, 83.0, 60.0, 124.0, 142.0, 124.0, 64.0,
75.0, 103.0, 46.0, 68.0, 87.0, 27.0,
73.0, 59.0, 119.0, 64.0, 111.0},

new double[]{80.0, 68.0, 24.0, 24.0, 82.0, 100.0, 55.0, 91.0,
87.0, 64.0, 170.0, 86.0, 202.0, 71.0, 85.0, 122.0,
155.0, 80.0, 71.0, 28.0, 212.0, 80.0, 24.0,
80.0, 169.0, 174.0, 141.0, 202.0},

new double[]{113.0, 38.0, 38.0, 28.0, 52.0, 14.0, 38.0, 94.0,
89.0, 99.0, 150.0, 146.0, 113.0, 38.0, 66.0, 38.0,
80.0, 80.0, 99.0, 71.0, 42.0, 52.0, 33.0, 38.0,
24.0, 61.0, 108.0, 38.0, 28.0}};

double[] x = new double[]{1.0, 2.0, 3.0, 4.0, 5.0};
System.String[] xLabels = new System.String[]{"May", "June", "July", "August", "September"};

// Create an instance of a BoxPlot Chart
AxisXY axis = new AxisXY(chart);
BoxPlot boxPlot = new BoxPlot(axis, obs);
boxPlot.SetLabels(xLabels);

// Customize the fill color and the outside and far markers
boxPlot.Bodies.FillColor = System.Drawing.Color.FromName("blue");
boxPlot.OutsideMarkers.MarkerType = Imsl.Chart2D.BoxPlot.MARKER_TYPE_HOLLOW_CIRCLE;
boxPlot.OutsideMarkers.MarkerColor = System.Drawing.Color.FromName("purple");
boxPlot.FarMarkers.MarkerType = Imsl.Chart2D.BoxPlot.MARKER_TYPE_ASTERISK;
boxPlot.FarMarkers.MarkerColor = System.Drawing.Color.FromName("red");

// Set titles
chart.ChartTitle.SetTitle("Ozone Levels in Stanford by Month");
axis.AxisX.AxisTitle.SetTitle("Month");
axis.AxisY.AxisTitle.SetTitle("Ozone Level");

}

public static void Main(string[] argv)
{
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System.Windows.Forms.Application.Run(new BoxPlotEx1());
}

}
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Output
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BoxPlot.Statistics Class

Summary

Computes the statistics for one set of observations in a Boxplot.

public class Imsl.Chart2D.BoxPlot.Statistics

Properties

LowerAdjacentValue
virtual public double LowerAdjacentValue {get; }

Description

A double which contains the lower adjacent value.

LowerQuartile
virtual public double LowerQuartile {get; }

Description

A double which contains the lower quartile value (25th percentile).

MaximumValue
virtual public double MaximumValue {get; }

Description

A double which contains the maximum value of this set.

Median
virtual public double Median {get; }

Description

A double which contains the median value for a set of observations.

MedianLowerConfidenceInterval
virtual public double MedianLowerConfidenceInterval {get; }

Description

A double which contains the lower confidence interval for the median value of this set of
observations.

MedianUpperConfidenceInterval
virtual public double MedianUpperConfidenceInterval {get; }
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Description

A double which contains the upper confidence interval for the median value of this set of
observations.

MinimumValue
virtual public double MinimumValue {get; }

Description

A double which contains the minimum value of this set.

NumberObservations
virtual public int NumberObservations {get; }

Description

An int which contains the number of observations in this set.

UpperAdjacentValue
virtual public double UpperAdjacentValue {get; }

Description

A double which contains the upper adjacent value.

UpperQuartile
virtual public double UpperQuartile {get; }

Description

A double which contains the upper quartile value (75th percentile).

Constructor

Statistics
public Statistics(double[] obs)

Description

Creates a new instance of BoxPlot.Statistics.

There must be at least 4 observations to compute the statistics.

Parameter

obs – A double[] containing the set of observations.

System.ArgumentException id is thrown if there are fewer than 4 observations.
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Methods

GetFarMarkers
virtual public double[] GetFarMarkers()

Description

Returns the far markers.

Returns

A double[] which contains the far markers for this set.

GetOutsideMarkers
virtual public double[] GetOutsideMarkers()

Description

Returns the outside markers.

Returns

A double[] which contains the outside markers for this set.

Contour Class

Summary

A Contour chart shows level curves of a two-dimensional function.

public class Imsl.Chart2D.Contour : Data

Property

ContourLegend
virtual public Imsl.Chart2D.Contour.Legend ContourLegend {get; }

Description

Contains the legend information associated with this Contour.

By default, the legend is not drawn because IsVisible is set to false. To show the
legend set IsVisible = true, i.e., contour.ContourLegend.IsVisible = true;

Constructors

Contour
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public Contour(Imsl.Chart2D.AxisXY axis, double[] xGrid, double[] yGrid,
double[,] zData, double[] cLevel)

Description

Creates a Contour chart from rectangularly gridded data.

The value of the function at (xGrid[i],yGrid[j]) is given by zData[i][j]. The size of
zData must be xGrid.Length by yGrid.Length.

Parameters

axis – An AxisXY containing the parent node of this Contour.

xGrid – A double[] which contains the x-coordinate values of the grid.

yGrid – A double[] which contains the y-coordinate values of the grid.

zData – A double[,] which contains the function values to be contoured.

cLevel – A double[] which contains the values of the contour levels.

Contour
public Contour(Imsl.Chart2D.AxisXY axis, double[] xGrid, double[] yGrid,
double[,] zData)

Description

Creates a Contour chart from rectangularly gridded data with computed contour levels.

The contour levels are chosen to span the data and to be ”nice” values. The value of the
function at (xGrid[i], yGrid[j]) is given by zData[i][j]. The size of zData must be
xGrid.Length by yGrid.Length.

Parameters

axis – An AxisXY containing the parent node of this Contour.

xGrid – A double[] which contains the x-coordinate values of the grid.

yGrid – A double[] which contains the y-coordinate values of the grid.

zData – A double[,] which contains the function values to be contoured.

Contour
public Contour(Imsl.Chart2D.AxisXY axis, double[] x, double[] y, double[] z)

Description

Creates a Contour chart from scattered data with computed contour levels.

The contour chart is created by using a radial basis approximation to estimate the
functions value on a rectangular grid. The contour chart is then computed as for gridded
data.

See Also: Imsl.Math.RadialBasis (p. 68)
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Parameters

axis – An AxisXY containing the parent node of this Contour.

x – A double[] which contains the x-values of the data points.

y – A double[] which contains the y-values of the data points.

z – A double[] which contains the x-values of the data points.

Contour
public Contour(Imsl.Chart2D.AxisXY axis, double[] x, double[] y, double[] z,
double[] cLevel, int nCenters)

Description

Creates a Contour chart from scattered data with computed contour levels.

The contour chart is created by using a radial basis approximation to estimate the
functions value on a rectangular grid. The contour chart is then computed as for gridded
data.

A larger number of centers will provide a closer, but noiser approximation.

See Also: Imsl.Math.RadialBasis (p. 68)

Parameters

axis – An AxisXY containing the parent node of this Contour.

x – A double[] which contains the x-values of the data points.

y – A double[] which contains the y-values of the data points.

z – A double[] which contains the x-values of the data points.

cLevel – A double[] which contains the values of the contour levels.

nCenters – An int specifying the number of centers to use for the radial basis
approximation.

Methods

GetContourLevel
virtual public Imsl.Chart2D.ContourLevel GetContourLevel(int k)

Description

Returns a specified ContourLevel.

The k-th contour level contains the level curve equal to cLevel[k] in the constructor. It
also contains the fill areas for the values in the interval (cLevel[k-1], cLevel[k]).

The first contour level (k=0) contains the fill area for values less than cLevel[0] and the
level curves lines where the function value equals cLevel[0].

The last contour level (k=cLevel.Length) contains the fill area for values greater than
cLevel[cLevel.length-1], but no level curve lines.
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Parameter

k – An int which indicates what ContourLevel to return.

Returns

A ContourLevel that corrisponds to the k-th level (cLevel[k]).

GetContourLevel
virtual public Imsl.Chart2D.ContourLevel[] GetContourLevel()

Description

Returns all of the contour levels.

Returns

A ContourLevel[] containing the ”ContourLevel” attribute value.

Paint
override public void Paint(Imsl.Chart2D.Draw draw)

Description

Paints this node and all of its children.

This is normally called only by the Paint method in this node’s parent.

Parameter

draw – A Draw which is to be painted.

SetDataRange
override public void SetDataRange(double[] range)

Description

Update the data range.

The entries in range are updated to reflect the extent of the data in this node. range is an
input/output variable. Its value should be updated only if the data in this node is outside
the range already in the array.

Parameter

range – A double[4] which contains the updated range, {xmin,xmax,ymin, ymax}.

Description

The function can be defined either as values on a rectangular grid or by scattered data points.

A set of ContourLevel (p. 910) objects are created as children of this node. The number of
ContourLevels is one more than the number of level curves. If the level curve values are
c0, . . . , cn−1 then the k-th ContourLevel child corresponds to ck−1 < z ≤ ck.
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To change the look of the contour chart, change the line attributes (specified with LineColor
(p. 779), LineWidth (p. 779) and SetMarkerDashPattern (p. 804)) and fill attributes
(specified with FillType (p. 796) and FillColor (p. 778))in the ContourLevel nodes.

A Legend object is also created as a child of this node. It should be used instead of the usual
chart legend. By default, this legend is not shown. To show it, set IsVisible = true.

See Also

Imsl.Chart2D.ContourLevel (p. 910)

Example: Contour Chart from Gridded Data

In the restricted three-body problem, two large objects (masses M1 and M2) a distance a apart,
undergoing mutual gravitational attraction, circle a common center-of-mass. A third small
object (mass m) is assumed to move in the same plane as M1 and M2 and is assumed to be two
small to affect the large bodies. For simplicity, we use a coordinate system that has the center
of mass at the origin. M1 and M2 are on the x-axis at x1 and x2, respectively.

In the center-of-mass coordinate system, the effective potential energy of the system is given by

V =
m(M1 +M2)G

a

[
x2√

(x− x1)2 + y2
− x1√

(x− x2)2 + y2
− 1

2
(
x2 + y2

)]

The universal gravitational constant is G. The following program plots the part of V(x,y) inside
of the square bracket. The factor m(M1+M2)G

a is ignored because it just scales the plot.

using Imsl.Chart2D;
using Imsl.Stat;
using System;
using System.Windows.Forms;

public class ContourEx1 : FrameChart
{

public ContourEx1()
{

Chart chart = this.Chart;

int nx = 80;
int ny = 80;

// Allocate space
double[] xGrid = new double[nx];
double[] yGrid = new double[ny];
double[,] zData = new double[nx,ny];

// Setup the grids points
for (int i = 0; i < nx; i++)
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{
xGrid[i] = - 2 + 4.0 * i / (double) (nx - 1);

}
for (int j = 0; j < ny; j++)
{

yGrid[j] = - 2 + 4.0 * j / (double) (ny - 1);
}

// Evaluate the function at the grid points
for (int i = 0; i < nx; i++)
{

for (int j = 0; j < ny; j++)
{

double x = xGrid[i];
double y = yGrid[j];
double rm = 0.5;
double x1 = rm / (1.0 + rm);
double x2 = x1 - 1.0;
double d1 = System.Math.Sqrt((x - x1) * (x - x1) + y * y);
double d2 = System.Math.Sqrt((x - x2) * (x - x2) + y * y);
zData[i,j] = x2 / d1 - x1 / d2 - 0.5 * (x * x + y * y);

}
}

// Create the contour chart, with user-specified levels and a legend
AxisXY axis = new AxisXY(chart);
double[] cLevel = new double[]{- 7, - 5.4, - 3, - 2.3, - 2.1, - 1.97, - 1.85, - 1.74, - 1.51, - 1.39, - 1};
Contour c = new Contour(axis, xGrid, yGrid, zData, cLevel);
c.ContourLegend.IsVisible = true;

}

public static void Main(string[] argv)
{

System.Windows.Forms.Application.Run(new ContourEx1());
}

}
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Output
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Example: Contour Chart from Scattered Data

In this example, a contour chart is created from 150, randomly choosen, scattered data points.
The function is

√
x2 + y2, so the level curve should be circles.

The input data is shown on top of the contours as small green circles. The chart data nodes are
drawn in the order in which they are added, so the input data marker node has to be added to
the axis after the contour, so that the markers are not hidden.

using Imsl.Chart2D;
using Imsl.Stat;
using System;
using System.Windows.Forms;

public class ContourEx2 : FrameChart
{

public ContourEx2()
{

Chart chart = this.Chart;

int n = 150;

// Allocate space
double[] x = new double[n];
double[] y = new double[n];
double[] z = new double[n];

System.Random random = new System.Random((System.Int32) 123457);

double[] randomValue=new double[150];
randomValue[0]=0.41312962995625035;
randomValue[1]=0.8225528716547005;
randomValue[2]=0.44364905186692527;
randomValue[3]=0.9887088342522812;
randomValue[4]=0.9647868112234352;
randomValue[5]=0.5668831243079411;
randomValue[6]=0.27386697614898103;
randomValue[7]=0.8805853693809824;
randomValue[8]=0.7180829622748057;
randomValue[9]=0.6153607537410654;
randomValue[10]=0.3158193853638753;
randomValue[11]=0.10778543304578747;
randomValue[12]=0.09275375134615693;
randomValue[13]=0.9817642781628322;
randomValue[14]=0.467363186309925;
randomValue[15]=0.9066980293517674;
randomValue[16]=0.31440695305815347;
randomValue[17]=0.9991560762956562;
randomValue[18]=0.785150345014761;
randomValue[19]=0.7930129038729785;
randomValue[20]=0.5695413465811706;
randomValue[21]=0.7625752595574732;
randomValue[22]=0.0482465474704169;
randomValue[23]=0.09904819350827354;
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randomValue[24]=0.7013979421419555;
randomValue[25]=0.8127581377189425;
randomValue[26]=0.2160980302718407;
randomValue[27]=0.2618716012466812;
randomValue[28]=0.966175212476057;
randomValue[29]=0.8929180151759015;
randomValue[30]=0.9253777827882632;
randomValue[31]=0.3192464623158826;
randomValue[32]=0.6191390558809441;
randomValue[33]=0.860615090126798;
randomValue[34]=0.4202423262221493;
randomValue[35]=0.3204335652731257;
randomValue[36]=0.3501592792324697;
randomValue[37]=0.08674811183862785;
randomValue[38]=0.5605305915601296;
randomValue[39]=0.6088802062708134;
randomValue[40]=0.8382035138841133;
randomValue[41]=0.9236987545556213;
randomValue[42]=0.8024356174828979;
randomValue[43]=0.18382779454152387;
randomValue[44]=0.9443198089192774;
randomValue[45]=0.07466011736504485;
randomValue[46]=0.2961809553169247;
randomValue[47]=0.597869137157411;
randomValue[48]=0.3126393883707773;
randomValue[49]=0.9461805842458413;
randomValue[50]=0.4952325691501952;
randomValue[51]=0.0974865497453884;
randomValue[52]=0.39893060081096055;
randomValue[53]=0.31595422264648054;
randomValue[54]=0.9215776190059227;
randomValue[55]=0.963602405500786;
randomValue[56]=0.1962353914644036;
randomValue[57]=0.897888992070645;
randomValue[58]=0.9816014888911522;
randomValue[59]=0.2591728892012697;
randomValue[60]=0.177119526412298;
randomValue[61]=0.6364841570839579;
randomValue[62]=0.9770940229311096;
randomValue[63]=0.44085669522358406;
randomValue[64]=0.22206796609570068;
randomValue[65]=0.8125478558454153;
randomValue[66]=0.7059166517811799;
randomValue[67]=0.5417895331224579;
randomValue[68]=0.5535562377071471;
randomValue[69]=0.2922863750389211;
randomValue[70]=0.2968612011640126;
randomValue[71]=0.882495829596943;
randomValue[72]=0.9453297028667043;
randomValue[73]=0.5017962685731009;
randomValue[74]=0.17323198276725293;
randomValue[75]=0.516968989592425;
randomValue[76]=0.7264211901923515;
randomValue[77]=0.9589904164393783;
randomValue[78]=0.2896822052185578;
randomValue[79]=0.8709512849886136;
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randomValue[80]=0.3494389711171513;
randomValue[81]=0.444989615581906;
randomValue[82]=0.03683604460307233;
randomValue[83]=0.2794447857758138;
randomValue[84]=0.5426558540369049;
randomValue[85]=0.14701055330017276;
randomValue[86]=0.45822765810918564;
randomValue[87]=0.3804843649168811;
randomValue[88]=0.31543075674256227;
randomValue[89]=0.35478179229078655;
randomValue[90]=0.6740882045962612;
randomValue[91]=0.5722042439512296;
randomValue[92]=0.336494210223919;
randomValue[93]=0.5425187147067986;
randomValue[94]=0.6565124760451249;
randomValue[95]=0.9902292520993252;
randomValue[96]=0.4546287589180955;
randomValue[97]=0.9184888233730713;
randomValue[98]=0.7505359876181693;
randomValue[99]=0.7124220647583559;
randomValue[100]=0.3812755838294607;
randomValue[101]=0.7741986381086996;
randomValue[102]=0.5856540334323093;
randomValue[103]=0.1480175568946106;
randomValue[104]=0.8045988425857213;
randomValue[105]=0.21523348843743784;
randomValue[106]=0.2723138761466122;
randomValue[107]=0.8181756787842892;
randomValue[108]=0.45453852386561255;
randomValue[109]=0.10578123947146922;
randomValue[110]=0.027911361401003143;
randomValue[111]=0.9849840119600158;
randomValue[112]=0.8883835561320729;
randomValue[113]=0.30887148321746527;
randomValue[114]=0.6268231326584466;
randomValue[115]=0.8359413755618763;
randomValue[116]=0.01639605006272593;
randomValue[117]=0.5543612693431772;
randomValue[118]=0.3190057747399081;
randomValue[119]=0.18095345468573598;
randomValue[120]=0.6370180793354232;
randomValue[121]=0.5166986319820245;
randomValue[122]=0.11169309885740164;
randomValue[123]=0.8688720220933366;
randomValue[124]=0.5011922442391221;
randomValue[125]=0.9344952771865647;
randomValue[126]=0.5587227111699117;
randomValue[127]=0.3806089260426023;
randomValue[128]=0.6753272961079825;
randomValue[129]=0.8539394715414731;
randomValue[130]=0.4520234874494251;
randomValue[131]=0.3058558270067878;
randomValue[132]=0.2224399403890832;
randomValue[133]=0.3280806679102708;
randomValue[134]=0.05979465629761105;
randomValue[135]=0.660441325427476;
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randomValue[136]=0.4710041931991943;
randomValue[137]=0.15401687157352573;
randomValue[138]=0.8059082103579294;
randomValue[139]=0.25135648562180013;
randomValue[140]=0.3910396401490016;
randomValue[141]=0.48001615607289505;
randomValue[142]=0.5350655938328643;
randomValue[143]=0.5464799882069644;
randomValue[144]=0.8469694582001581;
randomValue[145]=0.3646033096669923;
randomValue[146]=0.7582401994865531;
randomValue[147]=0.7560344451536601;
randomValue[148]=0.7467799442143332;
randomValue[149]=0.619643401693058;

double[] randomValueY=new double[150];
randomValueY[0]=0.15995876895053263;
randomValueY[1]=0.48794367683379836;
randomValueY[2]=0.20896329070872555;
randomValueY[3]=0.4781765623804778;
randomValueY[4]=0.6732389937186418;
randomValueY[5]=0.33081942994459734;
randomValueY[6]=0.10880787186704965;
randomValueY[7]=0.901138442534768;
randomValueY[8]=0.48723656383264413;
randomValueY[9]=0.10153552805288812;
randomValueY[10]=0.9558058275075961;
randomValueY[11]=0.011829287599608884;
randomValueY[12]=0.4859902873228249;
randomValueY[13]=0.5505301300240635;
randomValueY[14]=0.18652444274911184;
randomValueY[15]=0.9272326533193322;
randomValueY[16]=0.4215880116306273;
randomValueY[17]=0.0386317648903991;
randomValueY[18]=0.6451521871931544;
randomValueY[19]=0.819301055474355;
randomValueY[20]=0.039285689951912395;
randomValueY[21]=0.31325564481720314;
randomValueY[22]=0.6272275622766595;
randomValueY[23]=0.8934533907186641;
randomValueY[24]=0.5212913217641422;
randomValueY[25]=0.6237725863035143;
randomValueY[26]=0.3611731793838059;
randomValueY[27]=0.23163547542978535;
randomValueY[28]=0.7999943624102621;
randomValueY[29]=0.5393314259940907;
randomValueY[30]=0.10341603798162413;
randomValueY[31]=0.48822476962455685;
randomValueY[32]=0.5414223626279245;
randomValueY[33]=0.08241640235000847;
randomValueY[34]=0.27287579633296155;
randomValueY[35]=0.6770605504344167;
randomValueY[36]=0.8497059767892107;
randomValueY[37]=0.04142051621448373;
randomValueY[38]=0.30060172837976995;
randomValueY[39]=0.5378809821731352;
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randomValueY[40]=0.9933333184285308;
randomValueY[41]=0.5755163489718148;
randomValueY[42]=0.12033991348116369;
randomValueY[43]=0.22044795260992822;
randomValueY[44]=0.7039752563092764;
randomValueY[45]=0.47510550779825345;
randomValueY[46]=0.47581191139276346;
randomValueY[47]=0.2746412789430772;
randomValueY[48]=0.8486627562667742;
randomValueY[49]=0.6911278265254134;
randomValueY[50]=0.47048601468635676;
randomValueY[51]=0.18480344365963364;
randomValueY[52]=0.5260974820985063;
randomValueY[53]=0.9965118715946334;
randomValueY[54]=0.03562254706322543;
randomValueY[55]=0.9366159496862719;
randomValueY[56]=0.8878769321024975;
randomValueY[57]=0.8930475165444577;
randomValueY[58]=0.24237426250726957;
randomValueY[59]=0.354788700886031;
randomValueY[60]=0.2354154511947073;
randomValueY[61]=0.1269624995880959;
randomValueY[62]=0.6337231423679252;
randomValueY[63]=0.19984371337284335;
randomValueY[64]=0.19334220894181153;
randomValueY[65]=0.42648351165619114;
randomValueY[66]=0.0020349209904862997;
randomValueY[67]=0.26227419862014245;
randomValueY[68]=0.010157565396595736;
randomValueY[69]=0.32466354319724255;
randomValueY[70]=0.2880125699286028;
randomValueY[71]=0.942360375989513;
randomValueY[72]=0.28692884801712293;
randomValueY[73]=0.18075667041036092;
randomValueY[74]=0.526829825487406;
randomValueY[75]=0.05392345053644676;
randomValueY[76]=0.6848072074260566;
randomValueY[77]=0.7634213162987096;
randomValueY[78]=0.017226310006998813;
randomValueY[79]=0.8402985996291047;
randomValueY[80]=0.41214609100356114;
randomValueY[81]=0.00903342798862894;
randomValueY[82]=0.13934521987605275;
randomValueY[83]=0.44080857560050446;
randomValueY[84]=0.5420034416544178;
randomValueY[85]=0.8183907621649894;
randomValueY[86]=0.49709491461841304;
randomValueY[87]=0.2960190585426765;
randomValueY[88]=0.4608082576003252;
randomValueY[89]=0.005089578506740633;
randomValueY[90]=0.3108158643301907;
randomValueY[91]=0.23005689707662969;
randomValueY[92]=0.9989728680293828;
randomValueY[93]=0.7588548659179764;
randomValueY[94]=0.23603371611553747;
randomValueY[95]=0.1982727511862804;
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randomValueY[96]=0.04423243217165507;
randomValueY[97]=0.23710549829602878;
randomValueY[98]=0.03408034658051773;
randomValueY[99]=0.9385290439821878;
randomValueY[100]=0.6884926962578499;
randomValueY[101]=0.14803546698365633;
randomValueY[102]=0.7703636833850115;
randomValueY[103]=0.01439471413150828;
randomValueY[104]=0.2089671359503994;
randomValueY[105]=0.4384925493939328;
randomValueY[106]=0.466067663723164;
randomValueY[107]=0.9885280557996187;
randomValueY[108]=0.4343852116079696;
randomValueY[109]=0.4499354044927121;
randomValueY[110]=0.3790637460316687;
randomValueY[111]=0.7145286684532488;
randomValueY[112]=0.2970523498826292;
randomValueY[113]=0.15575074519991794;
randomValueY[114]=0.33981500752026883;
randomValueY[115]=0.9855399747339232;
randomValueY[116]=0.621543401362443;
randomValueY[117]=0.3432116007462742;
randomValueY[118]=0.8180541618673799;
randomValueY[119]=0.027883366004455068;
randomValueY[120]=0.45081070184878236;
randomValueY[121]=0.8533577155496994;
randomValueY[122]=0.6460168649513455;
randomValueY[123]=0.5780055157336823;
randomValueY[124]=0.46048777917596295;
randomValueY[125]=0.24207983525545718;
randomValueY[126]=0.574011233178295;
randomValueY[127]=0.5310197638599929;
randomValueY[128]=0.2621701535374652;
randomValueY[129]=0.4756887402397726;
randomValueY[130]=0.08410532225672551;
randomValueY[131]=0.3991230601447665;
randomValueY[132]=0.6464545787001537;
randomValueY[133]=0.524250367439074;
randomValueY[134]=0.13771323020945658;
randomValueY[135]=0.06816969003124507;
randomValueY[136]=0.06651758347488423;
randomValueY[137]=0.965968335289986;
randomValueY[138]=0.7828616693306287;
randomValueY[139]=0.5906828761391884;
randomValueY[140]=0.9130151004091689;
randomValueY[141]=0.9658950710812012;
randomValueY[142]=0.7969176634278117;
randomValueY[143]=0.003585724779986199;
randomValueY[144]=0.38108388460809595;
randomValueY[145]=0.24225280334829336;
randomValueY[146]=0.7905591927051523;
randomValueY[147]=0.4089325882708409;
randomValueY[148]=0.9802263978904657;
randomValueY[149]=0.8836456558655017;

for (int k = 0; k < n; k++)
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{
x[k] = randomValue[k];
y[k] = randomValueY[k];
z[k] = System.Math.Sqrt(x[k] * x[k] + y[k] * y[k]);

}

// Setup the contour plot and its legend
AxisXY axis = new AxisXY(chart);
Contour contour = new Contour(axis, x, y, z);
contour.ContourLegend.IsVisible = true;

// Show the input data points as small green circles
Data dataPoints = new Data(axis, x, y);
dataPoints.DataType = Data.DATA_TYPE_MARKER;
dataPoints.MarkerType = Data.MARKER_TYPE_FILLED_CIRCLE;
dataPoints.MarkerColor = System.Drawing.Color.FromArgb(0, 255, 0);
dataPoints.MarkerSize = 0.5;

}

public static void Main(string[] argv)
{

System.Windows.Forms.Application.Run(new ContourEx2());
}

}
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Output
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Contour.Legend Class

Summary

A legend for a contour chart.

public class Imsl.Chart2D.Contour.Legend : AxisXY

Method

Paint
override public void Paint(Imsl.Chart2D.Draw draw)

Description

Paints this node and all of its children.
This is normally called only by the Paint method in this node’s parent.
Parameter

draw – A Draw which is to be painted.

Description

This legend should be used for contour charts, instead of usual chart legend.

ContourLevel Class

Summary

ContourLevel draws a level curve line and the fill area between the level curve and the next
smaller level curve.

public class Imsl.Chart2D.ContourLevel : ChartNode

Method

Paint
override public void Paint(Imsl.Chart2D.Draw draw)

Description

Paints this node and all of its children.
This is normally called only by the Paint method in this node’s parent.
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Parameter

draw – A Draw which is to be painted.

Description

ContourLevel objects are created by Contour as child nodes.

Each ContourLevel defines a filled areas and level curves. The drawing of the filled areas can
be changed using the line attributes (specified with LineColor (p. 779), LineWidth (p. 779)
and SetMarkerDashPattern (p. 804)) and fill attributes (specified with FillType (p. 796) and
FillColor (p. 778))in the ContourLevel nodes.

See Also

Imsl.Chart2D.Contour (p. 895)

ErrorBar Class

Summary

Renders data points with error bars.

public class Imsl.Chart2D.ErrorBar : Data

Fields

DATA TYPE ERROR X
public int DATA TYPE ERROR X

Description

Value for attribute ”DataType” indicating that this is a horizontal error bar.

Used in connection with ErrorBar nodes.

DATA TYPE ERROR Y
public int DATA TYPE ERROR Y

Description

Value for attribute ”DataType” indicating that this is a vertical error bar.

Used in connection with ErrorBar nodes.
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Constructor

ErrorBar
public ErrorBar(Imsl.Chart2D.AxisXY axis, double[] x, double[] y, double[]
low, double[] high)

Description

Creates a set of error bars centered at (x[k],y[k]) and with extents low[k],high[k].

If DataType (p. 795) has the bit
Imsl.Chart2D.ErrorBar.DATATY PEERRORX(p.911)setthenthisisahorizontalerrorbar.IfthebitImsl.Chart2D.ErrorBar.DATATY PEERRORY (p.911)issetthenthisisaverticalerrorbar.Ifneitherbitissetthennoerrorbarisdrawn.

A Data node with the same x and y values can be used to put markers at the center of
each error bar.

Each of the array arguements have an associated attribute. That is, ”X”, ”Y”, ”Low” and
”High”.

Parameters

axis – An Axis containing the parent of this node.

x – A double[] which contains the x-coordinates of the points at which the error
bars will be centered.

y – A double[] which contains the y-coordinates of the points at which the error
bars will be centered.

low – A double[] which contains the values which define the minimum extent of the
error bars.

high – A double[] which contains the values which define the maximum extent of
the error bars.

Methods

GetHigh
virtual public double[] GetHigh()

Description

Returns the maximum extent of the error bars.

Returns

A double[] which contains the values for the maximum extent of the error bars.

GetLow
virtual public double[] GetLow()

Description

Returns the minimum extent of the error bars.
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Returns

A double[] which contains the values for the minimum extent of the error bars.

Paint
override public void Paint(Imsl.Chart2D.Draw draw)

Description

Paints this node and all of its children.

This is normally called only by the Paint method in this node’s parent.

Parameter

draw – A Draw which is to be painted.

SetDataRange
override public void SetDataRange(double[] range)

Description

Update the data range.

The entries in range are updated to reflect the extent of the data in this node. range is an
input/output variable. Its value should be updated only if the data in this node is outside
the range already in the array.

Parameter

range – A double[4] which contains the updated range, {xmin,xmax,ymin, ymax}.

SetHigh
virtual public void SetHigh(double[] high)

Description

Sets the maximum extent of the error bars.

Parameter

high – A double[] which contains the values for the maximum extent of the error
bars.

SetLow
virtual public void SetLow(double[] low)

Description

Sets the minimum extent of the error bars.

Parameter

low – A double[] which contains the values for the minimum extent of the error
bars.
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Example: ErrorBar Chart

An ErrorBar chart is constructed in this example. Three data sets are used and a legend is
added to the chart. This class can be used either as an applet or as an application.

using Imsl.Chart2D;
using Imsl.Stat;
using System;
using System.Windows.Forms;

public class ErrorBarEx1 : FrameChart
{

public ErrorBarEx1()
{

Chart chart = this.Chart;
AxisXY axis = new AxisXY(chart);

int npoints = 20;
double dx = .5 * Math.PI/(npoints - 1);
double[] x = new double[npoints];
double[] y1 = new double[npoints];
double[] y2 = new double[npoints];
double[] y3 = new double[npoints];
double[] low1 = new double[npoints];
double[] low2 = new double[npoints];
double[] low3 = new double[npoints];
double[] hi1 = new double[npoints];
double[] hi2 = new double[npoints];
double[] hi3 = new double[npoints];

// Generate some data
for (int i = 0; i < npoints; i++)
{

x[i] = i * dx;
y1[i] = System.Math.Sin(x[i]);
low1[i] = x[i] - .05;
hi1[i] = x[i] + .05;
y2[i] = System.Math.Cos(x[i]);
low2[i] = y2[i] - .07;
hi2[i] = y2[i] + .03;
y3[i] = System.Math.Atan(x[i]);
low3[i] = y3[i] - .01;
hi3[i] = y3[i] + .04;

}

// Data
Data d1 = new Data(axis, x, y1);
Data d2 = new Data(axis, x, y2);
Data d3 = new Data(axis, x, y3);

// Set Data Type to Marker
d1.DataType = Data.DATA_TYPE_MARKER;
d2.DataType = Data.DATA_TYPE_MARKER;
d3.DataType = Data.DATA_TYPE_MARKER;
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// Set Marker Types
d1.MarkerType = Data.MARKER_TYPE_CIRCLE_PLUS;
d2.MarkerType = Data.MARKER_TYPE_HOLLOW_SQUARE;
d3.MarkerType = Data.MARKER_TYPE_ASTERISK;

// Set Marker Colors
d1.MarkerColor = System.Drawing.Color.Red;
d2.MarkerColor = System.Drawing.Color.Black;
d3.MarkerColor = System.Drawing.Color.Blue;

// Create an instances of ErrorBars
ErrorBar ebar1 = new ErrorBar(axis, x, y1, low1, hi1);
ErrorBar ebar2 = new ErrorBar(axis, x, y2, low2, hi2);
ErrorBar ebar3 = new ErrorBar(axis, x, y3, low3, hi3);

// Set Data Type to Error_X
ebar1.DataType = ErrorBar.DATA_TYPE_ERROR_X;
ebar2.DataType = ErrorBar.DATA_TYPE_ERROR_Y;
ebar3.DataType = ErrorBar.DATA_TYPE_ERROR_Y;

// Set Marker Colors
ebar1.MarkerColor = System.Drawing.Color.Red;
ebar2.MarkerColor = System.Drawing.Color.Black;
ebar3.MarkerColor = System.Drawing.Color.Blue;

// Set Data Labels
d1.SetTitle("Sine");
d2.SetTitle("Cosine");
d3.SetTitle("ArcTangent");

// Add a Legend
Legend legend = chart.Legend;
legend.SetTitle(new Text("Legend"));
legend.IsVisible = true;

// Set the Chart Title
chart.ChartTitle.SetTitle("Error Bar Plot");

}

public static void Main(string[] argv)
{

System.Windows.Forms.Application.Run(new ErrorBarEx1());
}

}
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Output
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HighLowClose Class

Summary

High-low-close plot of stock data.

public class Imsl.Chart2D.HighLowClose : Data

Field

DAY
public double DAY

Description

Ticks per day.

Constructors

HighLowClose
public HighLowClose(Imsl.Chart2D.AxisXY axis, System.DateTime start,
double[] high, double[] low, double[] close)

Description

Constructs a high-low-close chart node beginning with specified start date.

The high, low and close are used to specify the respective attributes. That is, ”high”,
”low” and ”close”.

Parameters

axis – An

Axis

specifying the parent of this node.

start – A DateTime which specifies the first date.

high – A double[] which contains the stock’s high prices.

low – A double[] which contains the stock’s low prices.

close – A double[] which contains the stock’s closing prices.

HighLowClose
public HighLowClose(Imsl.Chart2D.AxisXY axis, System.DateTime start,
double[] high, double[] low, double[] close, double[] open)
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Description

Constructs a high-low-close-open chart node beginning with specified start date.

The high, low, close and open are used to specify the respective attributes. That is,
”high”, ”low”, ”close” and ”open”.

Parameters

axis – An

Axis

specifying the parent of this node.
start – A DateTime which specifies the first date.
high – A double[] which contains the stock’s high prices.
low – A double[] which contains the stock’s low prices.
close – A double[] which contains the stock’s closing prices.
open – A double[] which contains the stock’s opening prices.

HighLowClose
public HighLowClose(Imsl.Chart2D.AxisXY axis, double[] x, double[] high,
double[] low, double[] close)

Description

Constructs a high-low-close chart node beginning with specified start date.

The X, high, low and close are used to specify the respective attributes. That is, ”X”,
”high”, ”low” and ”close”.

Parameters

axis – An

Axis

specifying the parent of this node.
x – A double[] which contains the axis points.
high – A double[] which contains the stock’s high prices.
low – A double[] which contains the stock’s low prices.
close – A double[] which contains the stock’s closing prices.

HighLowClose
public HighLowClose(Imsl.Chart2D.AxisXY axis, double[] x, double[] high,
double[] low, double[] close, double[] open)

Description

Constructs a high-low-close-open chart node beginning with specified start date.

The X, high, low and close and open are used to specify the respective attributes. That is,
”X”, ”high”, ”low”, ”close” and ”open”.
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Parameters

axis – An

Axis

specifying the parent of this node.
x – A

double

array which contains the axis points.
high – A double[] which contains the stock’s high prices.
low – A double[] which contains the stock’s low prices.
close – A double[] which contains the stock’s closing prices.
open – A double[] which contains the stock’s opening prices.

Methods

GetClose
virtual public double[] GetClose()

Description

Returns the stock prices at close.

Returns

A double[] containing the closing stock prices.

GetHigh
virtual public double[] GetHigh()

Description

Returns the high stock prices.

Returns

A double[] containing the high stock prices.

GetLow
virtual public double[] GetLow()

Description

Returns the low stock prices.

Returns

A double[] containing the low stock prices.

GetOpen
virtual public double[] GetOpen()
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Description

Returns the opening stock prices.

Returns

A double[] containing the opening stock prices.

Paint
override public void Paint(Imsl.Chart2D.Draw draw)

Description

Paints this node and all of its children.

This is normally called only by the Paint method in this node’s parent.

Parameter

draw – A Draw which is to be painted.

SetClose
virtual public void SetClose(double[] close)

Description

Sets the closing stock prices.

Parameter

close – A double[] specifying the closing stock prices.

SetDataRange
override public void SetDataRange(double[] range)

Description

Update the data range.

The entries in range are updated to reflect the extent of the data in this node. range is an
input/output variable. Its value should be updated only if the data in this node is outside
the range already in the array.

Parameter

range – A double[4] which contains the updated range, {xmin,xmax,ymin, ymax}.

SetDateAxis
virtual public void SetDateAxis(string labelFormat)
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Description

Sets up the x-axis for high-low-close plot.

This turns off autoscaling on the x-axis and sets the ”Window” attribute depending on
the number of dates being plotted. The Number attribute determines the number of
intervals along the x-axis.

The labelFormat sets TextFormat (p. 780) and TextFormatProvider (p. 781) in the
Imsl.Chart2D.AxisLabel (p. 821) node.

Parameter

labelFormat – A string used to format the date axis labels.

SetHigh
virtual public void SetHigh(double[] high)

Description

Sets the high stock prices.

Parameter

high – A double[] specifying the high stock prices.

SetLow
virtual public void SetLow(double[] low)

Description

Sets the low stock prices.

Parameter

low – A double[] specifying the low stock prices.

SetOpen
virtual public void SetOpen(double[] open)

Description

Sets the opening stock prices.

Parameter

open – A double[] specifying the opening stock prices.

Example: High-Low-Close Chart

A simple high-low-close chart is constructed in this example.

Autoscaling does not properly handle time data, so autoscaling is turned off for the x (time)
axis and the axis limits are set explicitly.
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using Imsl.Chart2D;
using Imsl.Stat;
using System;
using System.Windows.Forms;

public class HiLoEx1 : FrameChart
{

public HiLoEx1()
{

Chart chart = this.Chart;

AxisXY axis = new AxisXY(chart);

// Date is June 27, 1999
System.Globalization.GregorianCalendar temp_calendar;
temp_calendar = new System.Globalization.GregorianCalendar();

System.DateTime date = new DateTime(1999, 6, 27, temp_calendar);

double[] high = new double[]{75.0, 75.25, 75.25, 75.0, 74.125, 74.25};
double[] low = new double[]{74.125, 74.25, 74.0, 74.5, 73.75, 73.50};
double[] close = new double[]{75.0, 74.75, 74.25, 74.75, 74.0, 74.0};

// Create an instance of a HighLowClose Chart
HighLowClose hilo = new HighLowClose(axis, date, high, low, close);
hilo.MarkerColor = System.Drawing.Color.Blue;

// Set the HighLowClose Chart Title
chart.ChartTitle.SetTitle("A Simple HighLowClose Chart");

// Configure the x-axis
hilo.SetDateAxis("d");

}

public static void Main(string[] argv)
{

System.Windows.Forms.Application.Run(new HiLoEx1());
}

}
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Candlestick Class

Summary

Candlestick plot of stock data.

public class Imsl.Chart2D.Candlestick : HighLowClose

Properties

Down
virtual public Imsl.Chart2D.CandlestickItem Down {get; }

Description

The down days of this Candlestick.

Up
virtual public Imsl.Chart2D.CandlestickItem Up {get; }

Description

The up days of this Candlestick.

Constructors

Candlestick
public Candlestick(Imsl.Chart2D.AxisXY axis, System.DateTime start, double[]
high, double[] low, double[] close, double[] open)

Description

Constructs a candlestick chart node beginning with specified start date.

Each of the arguments are use to set the related attribute (e.g. ”High”, ”Low”, ”Close”
and ”Open”).

Parameters

axis – An AxisXY which is the parent of this node.

start – A DateTime that specifies the first date.

high – A double[] which contains the stock’s high prices.

low – A double[] which contains the stock’s low prices.

close – A double[] which contains the stock’s closing prices.

open – A double[] which contains the stock’s opening prices.
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Candlestick
public Candlestick(Imsl.Chart2D.AxisXY axis, double[] x, double[] high,
double[] low, double[] close, double[] open)

Description

Constructs a candlestick chart node beginning with specified axis points.

Each of the arguments are use to set the related attribute (e.g. ”X”, ”High”, ”Low”,
”Close” and ”Open”).

Parameters

axis – An AxisXY which is the parent of this node.

x – A double[] which contains the axis points.

high – A double[] which contains the stock’s high prices.

low – A double[] which contains the stock’s low prices.

close – A double[] which contains the stock’s closing prices.

open – A double[] which contains the stock’s opening prices.

Method

Paint
override public void Paint(Imsl.Chart2D.Draw draw)

Description

Paints this node and all of its children.

This is normally called only by the Paint method in this node’s parent.

Parameter

draw – A Draw which is to be painted.

Description

Two nodes are created as children of this node. One for the up days and one for the down days.

CandlestickItem Class

Summary

A candlestick for the up days or the down days.

public class Imsl.Chart2D.CandlestickItem : Data
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Method

Paint
override public void Paint(Imsl.Chart2D.Draw draw)

Description

Paints this node and all of its children.

This is normally called only by the Paint method in this node’s parent.

Parameter

draw – A Draw which is to be painted.

Description

CandlestickItems are created by Candlestick; one for up days and one for down days.

See Also

Imsl.Chart2D.Candlestick (p. 924)

SplineData Class

Summary

A data set created from a Spline.

public class Imsl.Chart2D.SplineData : Data

Constructor

SplineData
public SplineData(Imsl.Chart2D.ChartNode parent, Imsl.Math.Spline spline)

Description

Creates a data node from Spline values.

Parameters

parent – A ChartNode which specifies the parent of this data node.

spline – A Spline which specifies the data to be plotted.
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See Also

Imsl.Math.Spline (p. 43)

Example: SplineData Chart

This example makes use of the SplineData class as well as the two spline smoothing classes in
the package com.imsl.math. This class can be used either as an applet or as an application.

using System;
using System.Collections;
using System.ComponentModel;
using System.Drawing;
using System.Data;
using System.Windows.Forms;
using Imsl.Math;
using Imsl.Chart2D;
using Random = Imsl.Stat.Random;

public class SplineDataEx1 : FrameChart
{

private const int nData = 21;
private const int nSpline = 100;

public SplineDataEx1()
{

Chart chart = this.Chart;
AxisXY axis = new AxisXY(chart);

chart.ChartTitle.SetTitle(new Text("Smoothed Spline"));

Legend legend = chart.Legend;
legend.SetTitle(new Text("Legend"));
legend.SetViewport(0.7, 0.9, 0.1, 0.3);
legend.IsVisible = true;

// Original data
double[] xData = grid(nData);
double[] yData = new double[nData];
for (int k = 0; k < nData; k++)
{

yData[k] = f(xData[k]);
}

Data data = new Data(axis, xData, yData);
data.DataType = Imsl.Chart2D.Data.DATA_TYPE_MARKER;
data.MarkerType = Data.MARKER_TYPE_HOLLOW_CIRCLE;
data.MarkerColor = System.Drawing.Color.Red;
data.SetTitle("Original Data");

// Noisy data
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Random random = new Random(123457);
double[] yNoisy = new double[nData];
for (int k = 0; k < nData; k++)
{

yNoisy[k] = yData[k] + (2.0 * random.NextDouble() - 1.0);
}
data = new Data(axis, xData, yNoisy);
data.DataType = Imsl.Chart2D.Data.DATA_TYPE_MARKER;
data.MarkerType = Data.MARKER_TYPE_FILLED_SQUARE;
data.MarkerSize = 0.75;
data.MarkerColor = System.Drawing.Color.Blue;
data.SetTitle("Noisy Data");

chartSpline(axis, new CsSmooth(xData, yData), System.Drawing.Color.Red, "CsSmooth");
chartSpline(axis, new CsSmoothC2(xData, yData, nData), System.Drawing.Color.Orange, "CsSmoothC2");

}

static private void chartSpline(AxisXY axis, Imsl.Math.Spline spline, System.Drawing.Color color, System.String title)
{

Data data = new SplineData(axis, spline);
data.DataType = Imsl.Chart2D.Data.DATA_TYPE_LINE;
data.LineColor = color;
data.SetTitle(title);

}

static private double[] grid(int nData)
{

double[] xData = new double[nData];
for (int k = 0; k < nData; k++)
{

xData[k] = 3.0 * k / (double) (nData - 1);
}
return xData;

}

static private double f(double x)
{

return 1.0 / (0.1 + System.Math.Pow(3.0 * (x - 1.0), 4));
}

public static void Main(string[] argv)
{

System.Windows.Forms.Application.Run(new SplineDataEx1());
}

}
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Bar Class

Summary

A bar chart.

public class Imsl.Chart2D.Bar : Data

Constructors

Bar
public Bar(Imsl.Chart2D.AxisXY axis)

Description

Constructs a bar chart.

Parameter

axis – A AxisXY which is the parent of this node.

Bar
public Bar(Imsl.Chart2D.AxisXY axis, double[] y)

Description

Constructs a simple bar chart using supplied y data.

Parameters

axis – A AxisXY which is the parent of this node.
y – A double[] which contains the y data for the simple bar chart

Bar
public Bar(Imsl.Chart2D.AxisXY axis, double[] x, double[] y)

Description

Constructs a simple bar chart using supplied x and y data.

Parameters

axis – A AxisXY which is the parent of this node.
x – A double[] which contains the x data for the simple bar chart.
y – A double[] which contains the y data for the simple bar chart.

Bar
public Bar(Imsl.Chart2D.AxisXY axis, double[][] y)
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Description

Constructs a grouped bar chart using supplied x and y data.

Parameters

axis – A AxisXY which is the parent of this node.

y – A double[] which contains the y data for the grouped bar chart. The first index
refers to the group and the second refers to the x position.

Bar
public Bar(Imsl.Chart2D.AxisXY axis, double[] x, double[][] y)

Description

Constructs a grouped bar chart using supplied x and y data.

Parameters

axis – A AxisXY which is the parent of this node.

x – A double[] which contains the x data for the grouped bar chart.

y – A double[] which contains the y data for the grouped bar chart. The first index
refers to the group and the second refers to the x position.

Bar
public Bar(Imsl.Chart2D.AxisXY axis, double[][][] y)

Description

Constructs a stacked, grouped bar chart using supplied y data.

Parameters

axis – A AxisXY which is the parent of this node.

y – A double[] which contains the y data for the stacked, grouped bar chart. The
first index refers to the stack, the second refers to the group and the third refers to
the x position.

Bar
public Bar(Imsl.Chart2D.AxisXY axis, double[] x, double[][][] y)

Description

Constructs a stacked, grouped bar chart using supplied x and y data.

Parameters

axis – A AxisXY which is teh parent of this node.

x – A double[] which contains the x data for the stacked, grouped bar chart.

y – A double[] which contains the y data for the stacked, grouped bar chart. The
first index refers to the ”stack”, the second refers to the group and the third refers to
the x position.
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Methods

GetBarData
virtual public double[][][] GetBarData()

Description

Returns the ”BarData” attribute value.

The value is an array of object that make up a bar chart. The first index refers to the
”stack”, the second refers to the group and the third refers to the x position.

Returns

A double[][][] that contains the ”BarData” attribute value.

GetBarSet
virtual public Imsl.Chart2D.BarSet GetBarSet(int stack, int group)

Description

Returns the BarSet object.

Parameters

stack – An int which specifies the stack index.

group – An int which specifies the group index.

Returns

A BarSet[][] containing the ”BarSet” attribute value.

GetBarSet
virtual public Imsl.Chart2D.BarSet GetBarSet(int group)

Description

Returns the BarSet object.

The group index is assumed to be zero. This method is most useful for charts with only a
single group.

Parameter

group – An int which specifies the group index.

Returns

A BarSet[][] containing the ”BarSet” attribute value.

GetBarSet
virtual public Imsl.Chart2D.BarSet[][] GetBarSet()

Description

Returns the BarSet object.
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Returns

A BarSet[][] containing the ”BarSet” attribute value.

Paint
override public void Paint(Imsl.Chart2D.Draw draw)

Description

Paints this node and all of its children.

This is normally called only by the Paint method in this node’s parent.

Parameter

draw – A Draw which is to be painted.

SetBarData
virtual public void SetBarData(double[][][] bardata)

Description

Sets the ”BarData” attribute value.

The value is an array of object that make up a bar chart. The first index refers to the
”stack”, the second refers to the group and the third refers to the x position.

Parameter

bardata – A double[][][] that specifies the ”BarData” attribute value.

SetDataRange
override public void SetDataRange(double[] range)

Description

Update the data range.

The entries in range are updated to reflect the extent of the data in this node. range is an
input/output variable. Its value should be updated only if the data in this node is outside
the range already in the array.

Parameter

range – A double[4] which contains the updated range, {xmin,xmax,ymin, ymax}.

SetLabels
virtual public void SetLabels(string[] labels, int type)
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Description

Sets up an axis with bar labels.

This turns off the tick marks and sets the ”BarType” attribute. It also turns off
autoscaling for the axis and sets its ”Window”, ”Number” and ”Ticks” attributes as
appropriate for a labeled bar chart.

The number of labels must equal the number of items.

The bar type determines the axis to be modified. Legal values are:
Imsl.Chart2D.ChartNode.BARTY PEV ERTICAL(p.787)Imsl.Chart2D.ChartNode.BARTY PEHORIZONTAL(p.786)

Parameters

labels – A String[] which specifes axis labels.

type – An int which specifies the ”BarType”.

SetLabels
virtual public void SetLabels(string[] labels)

Description

Sets up an axis with bar labels.

This turns off the tick marks and sets the ”BarType” attribute. It also turns off
autoscaling for the axis and sets its ”Window” and ”Number” and ”Ticks” attribute as
appropriate for a labeled bar chart. The existing value of the ”BarType” attribute is used
to determine the axis to be modified.

The number of labels must equal the number of items.

Parameter

labels – A String[] array with which to label the axis.

Description

The class Bar has children of class Imsl.Chart2D.BarItem (p. 939). The attribute ”BarItem” in
class Bar is set to the BarItem array of children.

See Also

Imsl.Chart2D.BarSet (p. 940), Imsl.Chart2D.BarItem (p. 939)

Example: Stacked Bar Chart

A stacked bar chart is constructed in this example. Bar labels and colors are set and axis labels
are set. This class can be used either as an applet or as an application.
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using Imsl.Chart2D;
using Imsl.Stat;
using System;
using System.Windows.Forms;

public class BarEx1 : FrameChart
{

public BarEx1()
{

Chart chart = this.Chart;
AxisXY axis = new AxisXY(chart);

int nStacks = 2;
int nGroups = 3;
int nItems = 6;

// Generate some random data
Imsl.Stat.Random r = new Imsl.Stat.Random(123457);

double[] dbl = new double[50];
dbl[0]=0.41312962995625035;
dbl[1]=0.15995876895053263;
dbl[2]=0.8225528716547005;
dbl[3]=0.48794367683379836;
dbl[4]=0.44364905186692527;
dbl[5]=0.20896329070872555;
dbl[6]=0.9887088342522812;
dbl[7]=0.4781765623804778;
dbl[8]=0.9647868112234352;
dbl[9]=0.6732389937186418;
dbl[10]=0.5668831243079411;
dbl[11]=0.33081942994459734;
dbl[12]=0.27386697614898103;
dbl[13]=0.10880787186704965;
dbl[14]=0.8805853693809824;
dbl[15]=0.901138442534768;
dbl[16]=0.7180829622748057;
dbl[17]=0.48723656383264413;
dbl[18]=0.6153607537410654;
dbl[19]=0.10153552805288812;
dbl[20]=0.3158193853638753;
dbl[21]=0.9558058275075961;
dbl[22]=0.10778543304578747;
dbl[23]=0.011829287599608884;
dbl[24]=0.09275375134615693;
dbl[25]=0.4859902873228249;
dbl[26]=0.9817642781628322;
dbl[27]=0.5505301300240635;
dbl[28]=0.467363186309925;
dbl[29]=0.18652444274911184;
dbl[30]=0.9066980293517674;
dbl[31]=0.9272326533193322;
dbl[32]=0.31440695305815347;
dbl[33]=0.4215880116306273;
dbl[34]=0.9991560762956562;
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dbl[35]=0.0386317648903991;
dbl[36]=0.785150345014761;
dbl[37]=0.6451521871931544;
dbl[38]=0.7930129038729785;
dbl[39]=0.819301055474355;
dbl[40]=0.5695413465811706;
dbl[41]=0.039285689951912395;
dbl[42]=0.7625752595574732;
dbl[43]=0.31325564481720314;
dbl[44]=0.0482465474704169;
dbl[45]=0.6272275622766595;
dbl[46]=0.09904819350827354;
dbl[47]=0.8934533907186641;
dbl[48]=0.7013979421419555;
dbl[49]=0.5212913217641422;

int z=0;

double[] x = new double[nItems];
double[][][] y = new double[nStacks][][];
for (int i = 0; i < nStacks; i++)
{

y[i] = new double[nGroups][];
for (int i2 = 0; i2 < nGroups; i2++)
{

y[i][i2] = new double[nItems];
}

}
double dx = 0.5 * System.Math.PI / (x.Length - 1);
for (int istack = 0; istack < y.Length; istack++)
{

for (int jgroup = 0; jgroup < y[istack].Length; jgroup++)
{

for (int kitem = 0; kitem < y[istack][jgroup].Length; kitem++)
{

y[istack][jgroup][kitem] = dbl[z];//r.NextDouble();
z++;

}
}

}

// Create an instance of a Bar Chart
Bar bar = new Bar(axis, y);

// Set the Bar Chart Title
chart.ChartTitle.SetTitle("Sales by Region");

// Set the fill outline type;
bar.FillOutlineType = Bar.FILL_TYPE_SOLID;

System.Drawing.Color GREEN = System.Drawing.Color.FromArgb(0, 255, 0);
// Set the Bar Item fill colors
bar.GetBarSet(0, 0).FillColor = System.Drawing.Color.Red;
bar.GetBarSet(0, 1).FillColor = System.Drawing.Color.Yellow;
bar.GetBarSet(0, 2).FillColor = GREEN;
bar.GetBarSet(1, 0).FillColor = System.Drawing.Color.Blue;
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bar.GetBarSet(1, 1).FillColor = System.Drawing.Color.Cyan;
bar.GetBarSet(1, 2).FillColor = System.Drawing.Color.Magenta;

chart.Legend.IsVisible = true;
bar.GetBarSet(0, 0).SetTitle("Red");
bar.GetBarSet(0, 1).SetTitle("Yellow");
bar.GetBarSet(0, 2).SetTitle("Green");
bar.GetBarSet(1, 0).SetTitle("Blue");
bar.GetBarSet(1, 1).SetTitle("Cyan");
bar.GetBarSet(1, 2).SetTitle("Magenta");

// Setup the vertical axis for a labeled bar chart.
System.String[] labels = new System.String[]{"New York", "Texas", "Northern\nCalifornia", "Southern\nCalifornia", "Colorado", "New Jersey"};
bar.SetLabels(labels, Imsl.Chart2D.Bar.BAR_TYPE_VERTICAL);

// Set the text angle
axis.AxisX.AxisLabel.TextAngle = 270;

// Set the Y axis title
axis.AxisY.AxisTitle.SetTitle("Sales ($million)\nby " + "widget color");

}

public static void Main(string[] argv)
{

System.Windows.Forms.Application.Run(new BarEx1());
}

}
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BarItem Class

Summary

A single bar in a bar chart.

public class Imsl.Chart2D.BarItem : Data

Methods

Paint
override public void Paint(Imsl.Chart2D.Draw draw)

Description

Paints this node and all of its children.

This is normally called only by the Paint method in this node’s parent.

Parameter

draw – A Draw which is to be painted.

SetDataRange
override public void SetDataRange(double[] range)

Description

Update the data range.

The entries in range are updated to reflect the extent of the data in this node. range is an
input/output variable. Its value should be updated only if the data in this node is outside
the range already in the array.

Parameter

range – A double[4] which contains the updated range, {xmin,xmax,ymin, ymax}.

See Also

Imsl.Chart2D.Bar (p. 930), Imsl.Chart2D.BarSet (p. 940)
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BarSet Class

Summary

A set of bars in a bar chart.

public class Imsl.Chart2D.BarSet : ChartNode

Methods

GetBarItem
virtual public Imsl.Chart2D.BarItem GetBarItem(int index)

Description

Returns the BarItem given the index.
Parameter

index – An int which specifies the index.

Returns

A BarItem associated with the specified index.

GetBarItem
virtual public Imsl.Chart2D.BarItem[] GetBarItem()

Description

Returns an array of BarItems.
This is the collection of all BarItems contained in this bar group.
Returns

A BarItem[] that contains the BarItem attribute value.

Paint
override public void Paint(Imsl.Chart2D.Draw draw)

Description

Paints this node and all of its children.
This is normally called only by the Paint method in this node’s parent.
Parameter

draw – A Draw which is to be painted.

SetDataRange
virtual public void SetDataRange(double[] range)
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Description

Update the data range.

The entries in range are updated to reflect the extent of the data in this node. range is an
input/output variable. Its value should be updated only if the data in this node is outside
the range already in the array.

Parameter

range – A double[4] which contains the updated range, {xmin,xmax,ymin, ymax}.

Description

A BarSetc¿ is created by Imsl.Chart2D.Bar (p. 930) and contains a collection of
Imsl.Chart2D.BarItem (p. 939). Bar creates a BarSet for each stack-group combination. Each
BarSet contains the BarItems for that combination. Normally all of the BarItems in a BarSet
have the same color, title, etc.

Pie Class

Summary

A pie chart.

public class Imsl.Chart2D.Pie : Axis

Constructors

Pie
public Pie(Imsl.Chart2D.Chart chart)

Description

Constructs a Pie chart object.

The ”Viewport” attribute for this node is set to [0.2,0.8] by [0.2,0.8].

Parameter

chart – A Chart which specifies the parent of this node.

Pie
public Pie(Imsl.Chart2D.Chart chart, double[] y)
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Description

Constructs a Pie chart object with a specified number of slices.

An array of y.length Imsl.Chart2D.PieSlice (p. 946) nodes are created as children of this
node and this array is used to define the attribute ”PieSlice” in this node.

The ”Viewport” attribute for this node is set to [0.2,0.8] by [0.2,0.8].

Parameters

chart – A Chart which specifies the parent of this node.

y – A double[] which contains the values for the pie chart.

Methods

GetPieSlice
virtual public Imsl.Chart2D.PieSlice GetPieSlice(int index)

Description

Returns a specified PieSlice.

The ”PieSlice” attribute is a 0 based index array.

Parameter

index – An int specifying the pie slice to return.

Returns

A PieSlice which contains the specified slice.

GetPieSlice
virtual public Imsl.Chart2D.PieSlice[] GetPieSlice()

Description

Returns the PieSlice objects.

Returns

A PieSlice[] containing the pie slices to be associated with this node.

MapDeviceToUser
override public void MapDeviceToUser(int devX, int devY, double[] userXY)

Description

Maps the device coordinates devXY to user coordinates (userX,userY).
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Parameters

devX – An int which specifies the device x-coordinate.
devY – An int which specifies the device y-coordinate.
userXY – An int[2] in which the the user coordinates are returned.

MapUserToDevice
override public void MapUserToDevice(double userX, double userY, int[]
devXY)

Description

Maps the user coordinates (userX,userY) to the device coordinates devXY.

Parameters

userX – A double which specifies the user x-coordinate.
userY – A double which specifies the user y-coordinate.
devXY – An int[2] in which the device coordinates are returned.

SetData
virtual public Imsl.Chart2D.PieSlice[] SetData(double[] y)

Description

Changes the data in a Pie chart object.

If the number of slices is unchanged then the existing pie slice array, defined by the
attribute ”PieSlice” in this node, is reused. If the number is different, a new array is
allocated, using the existing PieSlice elements to initialize the new array.

Parameter

y – A double[] which contains the values for the pie chart.

Returns

A PieSlice[] array containing the updated PieSlice.

SetUpMapping
override public void SetUpMapping()

Description

Initializes the mappings between user and coordinate space.

This must be called whenever the screen size, the window or the viewport may have
changed. Generally, it is safest to call this each time the chart is repainted.

Description

The angle of the first slice is determined by the attribute ”Reference”.

Pie is derived from Axis, because it defines its own mapping to device space.
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Example: Pie Chart

A simple Pie chart is constructed in this example. Pie slice labels and colors are set and one pie
slice is exploded from the center. This class extends JFrameChart, which manages the window.

using Imsl.Chart2D;
using Imsl.Stat;
using System;
using System.Windows.Forms;

public class PieEx1 : FrameChart
{

public PieEx1()
{

Chart chart = this.Chart;
AxisXY axis = new AxisXY(chart);

// Create an instance of a Pie Chart
double[] y = new double[]{10.0, 20.0, 30.0, 40.0};
Pie pie = new Pie(chart, y);

// Set the Pie Chart Title
chart.ChartTitle.SetTitle("A Simple Pie Chart");

// Set the colors of the Pie Slices
PieSlice[] slice = pie.GetPieSlice();
slice[0].FillColor = System.Drawing.Color.Red;
slice[1].FillColor = System.Drawing.Color.Blue;
slice[2].FillColor = System.Drawing.Color.Black;
slice[3].FillColor = System.Drawing.Color.Yellow;

// Set the Pie Slice Labels
pie.LabelType = Imsl.Chart2D.Pie.LABEL_TYPE_TITLE;
slice[0].SetTitle("Fish");
slice[1].SetTitle("Pork");
slice[2].SetTitle("Poultry");
slice[3].SetTitle("Beef");

// Explode a Pie Slice
slice[0].Explode = 0.2;

}

public static void Main(string[] argv)
{

System.Windows.Forms.Application.Run(new PieEx1());
}

}
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PieSlice Class

Summary

One wedge of a pie chart.

public class Imsl.Chart2D.PieSlice : Data

Methods

Paint
override public void Paint(Imsl.Chart2D.Draw draw)

Description

Paints this node and all of its children.

This is normally called only by the Paint method in this node’s parent.

Parameter

draw – A Draw which is to be painted.

SetAngles
virtual protected internal void SetAngles(double angleA, double angleB)

Description

Sets the angles, in degrees, that determine the extent of this slice.

Parameters

angleA – A double that specifies the angle, in degrees, at which the slice begins.

angleB – A double that specifies the angle, in degrees, at which the slice ends.

Description

Imsl.Chart2D.Pie (p. 941) creates PieSlice objects as its children, one per pie wedge. A
specific slice can be retrieved using the method Imsl.Chart2D.Pie.GetPieSlice(System.Int32) (p.
942). All of the slices can be retrieved using the method Imsl.Chart2D.Pie.GetPieSlice (p. 942).

The drawing of the slice is controlled by the fill attributes (specified with FillType (p. 796)) in
this node.
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Dendrogram Class

Summary

A Dendrogram chart for cluster analysis.

public class Imsl.Chart2D.Dendrogram : Data

Properties

Coordinates
virtual public double[][] Coordinates {get; set; }

Description

The cluster coordinates in the Dendrogram object.

LeftSons
virtual public int[] LeftSons {get; set; }

Description

The left sons of each merged cluster.

Levels
virtual public double[] Levels {get; set; }

Description

Specifies the levels at which the clusters are joined.

Order
virtual public int[] Order {get; set; }

Description

The cluster order in the Dendrogram object.

RightSons
virtual public int[] RightSons {get; set; }

Description

The right sons of each merged cluster.
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Constructors

Dendrogram
public Dendrogram(Imsl.Chart2D.AxisXY axis, Imsl.Stat.ClusterHierarchical
clusterHierarchical)

Description

Constructs a vertical Dendrogram chart using a supplied ClusterHierarchical object.

Parameters

axis – An AxisXY specifying the parent of this node.

clusterHierarchical – A ClusterHierarchical used as a source object for the
Dendrogram.

Dendrogram
public Dendrogram(Imsl.Chart2D.AxisXY axis, double[] clusterLevel, int[]
leftSons, int[] rightSons)

Description

Constructs a vertical Dendrogram chart using supplied data.

Parameters

axis – An AxisXY specifying the parent of this node.

clusterLevel – A double[] which contains the levels at which the clusters are
joined.

leftSons – An int[] which contains the left sons of each merged cluster.

rightSons – An int[] which contains the right sons of each merged cluster.

Dendrogram
public Dendrogram(Imsl.Chart2D.AxisXY axis, Imsl.Stat.ClusterHierarchical
clusterHierarchical, int type)

Description

Constructs a Dendrogram chart using a supplied ClusterHierarchical object.

The types possible types of Dendrograms are DENDROGRAM TYPE VERTICAL (p.
788) and DENDROGRAM TYPE HORIZONTAL (p. 788).

Parameters

axis – An AxisXY specifying the parent of this node.

clusterHierarchical – A ClusterHierarchical object used as a source for the
Dendrogram.

type – An int which specifies the Dendrogram type.
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Dendrogram
public Dendrogram(Imsl.Chart2D.AxisXY axis, double[] clusterLevel, int[]
leftSons, int[] rightSons, int type)

Description

Constructs a Dendrogram chart using supplied data.

The types possible types of Dendrograms are DENDROGRAM TYPE VERTICAL (p.
788) and DENDROGRAM TYPE HORIZONTAL (p. 788).

Parameters

axis – An AxisXY specifying the parent of this node.

clusterLevel – A double[] which contains the levels at which the clusters are
joined.

leftSons – An int[] which contains the left sons of each merged cluster.

rightSons – An int[] which contains the right sons of each merged cluster.

type – An int which specifies the Dendrogram type.

Methods

Paint
override public void Paint(Imsl.Chart2D.Draw draw)

Description

Paints this node and all of its children.

This is normally called only by the Paint method in this node’s parent.

Parameter

draw – A Draw which is to be painted.

SetDataRange
override public void SetDataRange(double[] range)

Description

Update the data range.

Parameter

range – A double[4] which contains the updated range, {xmin,xmax,ymin, ymax}.

SetLabels
virtual public void SetLabels(string[] labels)
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Description

Sets up the axis labels for Dendrogram plot.

The number of labels must equal the number of items.

This method turns off autoscaling on the axis and sets the Window attribute depending
on the number of points being plotted.

Note that user-defined labels will be re-ordered to match the order of the clusters
displayed in the plot.

Parameter

labels – A String[] containing the axis labels.

SetLineColors
virtual public void SetLineColors(System.Drawing.Color[] colors)

Description

Define colors for individual clusters.

The color of the top most level should be set using Dendrogram.LineColor. This
property will color N clusters, where N is the number of elements in colors.

Parameter

colors – A Color[] which contains each color to use for the subclusters.

Example: Dendrogram

A Dendrogram.

using Imsl.Chart2D;
using Imsl.Stat;
using System;
using System.Windows.Forms;
using System.Drawing;

public class DendrogramEx1 : FrameChart
{

public DendrogramEx1()
{

Chart chart = this.Chart;
AxisXY axis = new AxisXY(chart);
double[,] data = {{.38, 626.5, 601.3, 605.3},

{.18, 654.0, 647.1, 641.8},
{.07, 677.2, 676.5, 670.5},
{.09, 639.9, 640.3, 636.0},
{.19, 614.7, 617.3, 606.2},
{.12, 670.2, 666.0, 659.3},
{.20, 651.1, 645.2, 643.4},
{.41, 645.4, 645.8, 644.8},
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{.07, 683.5, 682.9, 674.3},
{.39, 648.6, 647.8, 643.1},
{.21, 650.4, 650.8, 643.9},
{.24, 637.0, 636.9, 626.5},
{.09, 641.1, 628.8, 629.4},
{.12, 638.0, 627.7, 628.6},
{.11, 661.4, 659.0, 651.8},
{.22, 646.4, 646.2, 647.0},
{.33, 634.1, 632.0, 627.8}};

System.String[] lab = new System.String[]{"lau", "ccu", "bhu", "ing", "com", "smm", "bur", "gln", "pvu", "sgu", "abc", "pas", "lan", "plm", "tor", "dor", "lbu"};

Dissimilarities dist = new Dissimilarities(data, 0, 1, 1);
double[,] distanceMatrix = dist.DistanceMatrix;
ClusterHierarchical clink = new ClusterHierarchical(dist.DistanceMatrix, 4, 0);

int nClusters = 4;
int[] iclus = clink.GetClusterMembership(nClusters);
int[] nclus = clink.GetObsPerCluster(nClusters);

// use either method below to create the chart
Dendrogram dc = new Dendrogram(axis, clink, Data.DENDROGRAM_TYPE_HORIZONTAL);

dc.SetLabels(lab);
dc.SetLineColors(new Color[] {Color.Blue, Color.Green, Color.Red, Color.Orange});

}

public static void Main(string[] argv)
{

System.Windows.Forms.Application.Run(new DendrogramEx1());
}

}
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Output

Example: Dendrogram

A Dendrogram.
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using Imsl.Chart2D;
using Imsl.Stat;
using System;
using System.Windows.Forms;
using System.Drawing;

public class DendrogramEx2 : FrameChart
{

public DendrogramEx2()
{

Chart chart = this.Chart;
AxisXY axis = new AxisXY(chart);

double[,] data = {{5.1, 3.5, 1.4, .2},
{4.9, 3.0, 1.4, .2},
{4.7, 3.2, 1.3, .2},
{4.6, 3.1, 1.5, .2},
{5.0, 3.6, 1.4, .2},
{5.4, 3.9, 1.7, .4},
{4.6, 3.4, 1.4, .3},
{5.0, 3.4, 1.5, .2},
{4.4, 2.9, 1.4, .2},
{4.9, 3.1, 1.5, .1},
{5.4, 3.7, 1.5, .2},
{4.8, 3.4, 1.6, .2},
{4.8, 3.0, 1.4, .1},
{4.3, 3.0, 1.1, .1},
{5.8, 4.0, 1.2, .2},
{5.7, 4.4, 1.5, .4},
{5.4, 3.9, 1.3, .4},
{5.1, 3.5, 1.4, .3},
{5.7, 3.8, 1.7, .3},
{5.1, 3.8, 1.5, .3},
{5.4, 3.4, 1.7, .2},
{5.1, 3.7, 1.5, .4},
{4.6, 3.6, 1.0, .2},
{5.1, 3.3, 1.7, .5},
{4.8, 3.4, 1.9, .2},
{5.0, 3.0, 1.6, .2},
{5.0, 3.4, 1.6, .4},
{5.2, 3.5, 1.5, .2},
{5.2, 3.4, 1.4, .2},
{4.7, 3.2, 1.6, .2},
{4.8, 3.1, 1.6, .2},
{5.4, 3.4, 1.5, .4},
{5.2, 4.1, 1.5, .1},
{5.5, 4.2, 1.4, .2},
{4.9, 3.1, 1.5, .2},
{5.0, 3.2, 1.2, .2},
{5.5, 3.5, 1.3, .2},
{4.9, 3.6, 1.4, .1},
{4.4, 3.0, 1.3, .2},
{5.1, 3.4, 1.5, .2},
{5.0, 3.5, 1.3, .3},
{4.5, 2.3, 1.3, .3},
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{4.4, 3.2, 1.3, .2},
{5.0, 3.5, 1.6, .6},
{5.1, 3.8, 1.9, .4},
{4.8, 3.0, 1.4, .3},
{5.1, 3.8, 1.6, .2},
{4.6, 3.2, 1.4, .2},
{5.3, 3.7, 1.5, .2},
{5.0, 3.3, 1.4, .2},
{7.0, 3.2, 4.7, 1.4},
{6.4, 3.2, 4.5, 1.5},
{6.9, 3.1, 4.9, 1.5},
{5.5, 2.3, 4.0, 1.3},
{6.5, 2.8, 4.6, 1.5},
{5.7, 2.8, 4.5, 1.3},
{6.3, 3.3, 4.7, 1.6},
{4.9, 2.4, 3.3, 1.0},
{6.6, 2.9, 4.6, 1.3},
{5.2, 2.7, 3.9, 1.4},
{5.0, 2.0, 3.5, 1.0},
{5.9, 3.0, 4.2, 1.5},
{6.0, 2.2, 4.0, 1.0},
{6.1, 2.9, 4.7, 1.4},
{5.6, 2.9, 3.6, 1.3},
{6.7, 3.1, 4.4, 1.4},
{5.6, 3.0, 4.5, 1.5},
{5.8, 2.7, 4.1, 1.0},
{6.2, 2.2, 4.5, 1.5},
{5.6, 2.5, 3.9, 1.1},
{5.9, 3.2, 4.8, 1.8},
{6.1, 2.8, 4.0, 1.3},
{6.3, 2.5, 4.9, 1.5},
{6.1, 2.8, 4.7, 1.2},
{6.4, 2.9, 4.3, 1.3},
{6.6, 3.0, 4.4, 1.4},
{6.8, 2.8, 4.8, 1.4},
{6.7, 3.0, 5.0, 1.7},
{6.0, 2.9, 4.5, 1.5},
{5.7, 2.6, 3.5, 1.0},
{5.5, 2.4, 3.8, 1.1},
{5.5, 2.4, 3.7, 1.0},
{5.8, 2.7, 3.9, 1.2},
{6.0, 2.7, 5.1, 1.6},
{5.4, 3.0, 4.5, 1.5},
{6.0, 3.4, 4.5, 1.6},
{6.7, 3.1, 4.7, 1.5},
{6.3, 2.3, 4.4, 1.3},
{5.6, 3.0, 4.1, 1.3},
{5.5, 2.5, 4.0, 1.3},
{5.5, 2.6, 4.4, 1.2},
{6.1, 3.0, 4.6, 1.4},
{5.8, 2.6, 4.0, 1.2},
{5.0, 2.3, 3.3, 1.0},
{5.6, 2.7, 4.2, 1.3},
{5.7, 3.0, 4.2, 1.2},
{5.7, 2.9, 4.2, 1.3},
{6.2, 2.9, 4.3, 1.3},
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{5.1, 2.5, 3.0, 1.1},
{5.7, 2.8, 4.1, 1.3},
{6.3, 3.3, 6.0, 2.5},
{5.8, 2.7, 5.1, 1.9},
{7.1, 3.0, 5.9, 2.1},
{6.3, 2.9, 5.6, 1.8},
{6.5, 3.0, 5.8, 2.2},
{7.6, 3.0, 6.6, 2.1},
{4.9, 2.5, 4.5, 1.7},
{7.3, 2.9, 6.3, 1.8},
{6.7, 2.5, 5.8, 1.8},
{7.2, 3.6, 6.1, 2.5},
{6.5, 3.2, 5.1, 2.0},
{6.4, 2.7, 5.3, 1.9},
{6.8, 3.0, 5.5, 2.1},
{5.7, 2.5, 5.0, 2.0},
{5.8, 2.8, 5.1, 2.4},
{6.4, 3.2, 5.3, 2.3},
{6.5, 3.0, 5.5, 1.8},
{7.7, 3.8, 6.7, 2.2},
{7.7, 2.6, 6.9, 2.3},
{6.0, 2.2, 5.0, 1.5},
{6.9, 3.2, 5.7, 2.3},
{5.6, 2.8, 4.9, 2.0},
{7.7, 2.8, 6.7, 2.0},
{6.3, 2.7, 4.9, 1.8},
{6.7, 3.3, 5.7, 2.1},
{7.2, 3.2, 6.0, 1.8},
{6.2, 2.8, 4.8, 1.8},
{6.1, 3.0, 4.9, 1.8},
{6.4, 2.8, 5.6, 2.1},
{7.2, 3.0, 5.8, 1.6},
{7.4, 2.8, 6.1, 1.9},
{7.9, 3.8, 6.4, 2.0},
{6.4, 2.8, 5.6, 2.2},
{6.3, 2.8, 5.1, 1.5},
{6.1, 2.6, 5.6, 1.4},
{7.7, 3.0, 6.1, 2.3},
{6.3, 3.4, 5.6, 2.4},
{6.4, 3.1, 5.5, 1.8},
{6.0, 3.0, 4.8, 1.8},
{6.9, 3.1, 5.4, 2.1},
{6.7, 3.1, 5.6, 2.4},
{6.9, 3.1, 5.1, 2.3},
{5.8, 2.7, 5.1, 1.9},
{6.8, 3.2, 5.9, 2.3},
{6.7, 3.3, 5.7, 2.5},
{6.7, 3.0, 5.2, 2.3},
{6.3, 2.5, 5.0, 1.9},
{6.5, 3.0, 5.2, 2.0},
{6.2, 3.4, 5.4, 2.3},
{5.9, 3.0, 5.1, 1.8}};

Dissimilarities dist = new Dissimilarities(data, 0, 1, 1);
double[,] distanceMatrix = dist.DistanceMatrix;
ClusterHierarchical clink = new ClusterHierarchical(dist.DistanceMatrix, 2, 0);

Miscellaneous Dendrogram Class • 955



int nClusters = 4;
int[] iclus = clink.GetClusterMembership(nClusters);
int[] nclus = clink.GetObsPerCluster(nClusters);

// use either method below to create the chart
// Dendrogram dc = new Dendrogram(axis, clink);

Dendrogram dc = new Dendrogram(axis, clink.ClusterLevel, clink.ClusterLeftSons, clink.ClusterRightSons);

// set colors
dc.SetLineColors(new Color[] {Color.Blue, Color.Green, Color.Red, Color.Orange});

}

public static void Main(string[] argv)
{

System.Windows.Forms.Application.Run(new DendrogramEx2());
}

}
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Polar Class

Summary

This Axis node is used for polar charts.

public class Imsl.Chart2D.Polar : Axis

Properties

AxisR
virtual public Imsl.Chart2D.AxisR AxisR {get; }

Description

Return the radius axis node.

AxisTheta
virtual public Imsl.Chart2D.AxisTheta AxisTheta {get; }

Description

Returns the angular axis node.

GridPolar
virtual public Imsl.Chart2D.GridPolar GridPolar {get; }

Description

A grid for the polar plot.

Constructor

Polar
public Polar(Imsl.Chart2D.Chart chart)

Description

Creates a Polar object.

Parameter

chart – A Chart which specifies the parent of this node.
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Methods

MapDeviceToUser
override public void MapDeviceToUser(int devX, int devY, double[] userRT)

Description

Map the device coordinates to polar coordinates.

Parameters

devX – An int which specifies the device x-coordinate.

devY – An int which specifes the device y-coordinate.

userRT – A double[2] in which the user coordinates, (radius,theta), are returned.

MapUserToDevice
override public void MapUserToDevice(double userRadius, double userTheta,
int[] devXY)

Description

Map the polar coordinates (userRadius,userAngle) to the device coordinates devXY.

Parameters

userRadius – A double which specifies the user radius coordinate.

userTheta – A double which specifies the user angle coordinate.

devXY – An int[2] in which the device coordinates are returned.

Paint
override public void Paint(Imsl.Chart2D.Draw draw)

Description

Paints this node and all of its children.

This is normally called only by the Paint method in this node’s parent.

Parameter

draw – A Draw which is to be painted.

SetUpMapping
override public void SetUpMapping()

Description

Initializes the mappings between user and coordinate space.

This must be called whenever the screen size, the window or the viewport may have
changed.
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Description

In a polar plot, the (x,y) coordinates in Imsl.Chart2D.Data (p. 836) nodes are interpreted as
(r,theta) values.

Heatmap Class

Summary

Heatmap creates a chart from a two-dimensional array of double precision values or Color
values.

public class Imsl.Chart2D.Heatmap : Data

Properties

Colormap
virtual public Imsl.Chart2D.Colormap Colormap {get; set; }

Description

Specifies the value of the ”Colormap” attribute.

This is the Colormap associated with this Heatmap. Default: null

HeatmapLegend
virtual public Imsl.Chart2D.Heatmap.Legend HeatmapLegend {get; }

Description

Specifies the heatmap legend.

By default, the legend is not drawn because the IsVisible (p. 779) property is set to
false. To show the legend set heatmap.HeatmapLegend.IsVisisble = true;

Constructors

Heatmap
public Heatmap(Imsl.Chart2D.AxisXY axis, double xmin, double xmax, double
ymin, double ymax, System.Drawing.Color[,] color)

Description

Creates a Heatmap from an array of Color values.

The value of color[0,0] is the color of the cell whose lower left corner is (xmin, ymin).
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Parameters

axis – An AxisXY which contains the parent of this node.
xmin – A double which specifies the minimum x-value of the color data.
xmax – A double which specifies the maximum x-value of the color data.
ymin – A double which specifies the minimum y-value of the color data.
ymax – A double which specifies the maximum y-value of the color data.
color – A Color[,] which specifies the color values.

Heatmap
public Heatmap(Imsl.Chart2D.AxisXY axis, double xmin, double xmax, double
ymin, double ymax, double zmin, double zmax, double[,] data,
Imsl.Chart2D.Colormap colormap)

Description

Creates a Heatmap from a double[,] and a Colormap.
The x-interval (xmin, xmax) is uniformly divided and mapped into the first index of data.
The y-interval (ymin, ymax) is uniformly divided and mapped into the second index of
data. So, the value of data[0,0] is used to determine the color of the cell whose lower left
corner is (xmin, ymin).
If a cell has a data value equal to t then its color is the value of the colormap at s, where

s =
t− zmin

zmax− zmin
.
Parameters

axis – An AxisXY object which specifes the parent of this node.
xmin – A double which specifies the minimum x-value of the color data.
xmax – A double which specifies the maximum x-value of the color data.
ymin – A double which specifies the minimum y-value of the color data.
ymax – A double which specifies the maximum y-value of the color data.
zmin – A double which specifies the data value that corresponds to the initial (t=0)
value in the Colormap.
zmax – A double which specifies the data value that corresponds to the final (t=1)
value in the Colormap.
data – A double[,] containing the data values.
colormap – Maps the values in data to colors.

Methods

GetHeatmapLabels
virtual public Imsl.Chart2D.Text[,] GetHeatmapLabels()
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Description

Returns the value of the ”HeatmapLabels” attribute.

Default: null

Returns

A Text[,] that contains the values of the ”HeatmapLabels” attribute.

Paint
override public void Paint(Imsl.Chart2D.Draw draw)

Description

Paints this node and all of its children.

This is normally called only by the Paint method in this node’s parent.

Parameter

draw – A Draw which is to be painted.

SetDataRange
override public void SetDataRange(double[] range)

Description

Update the data range.

The entries in range are updated to reflect the extent of the data in this node. range is an
input/output variable. Its value should be updated only if the data in this node is outside
the range already in the array.

Parameter

range – A double[4] which contains the updated range, {xmin,xmax,ymin, ymax}.

SetHeatmapLabels
virtual public void SetHeatmapLabels(Imsl.Chart2D.Text[,] labels)

Description

Sets the value of the ”HeatmapLabels” attribute.

The default alignment for Text is TEXT X CENTER|TEXT Y CENTER.

See Also: Imsl.Chart2D.Text (p. 850), TEXT X CENTER (p. 793),
TEXT Y CENTER (p. 793)

Parameter

labels – A Text[,] that specifies the Heatmap labels.

SetHeatmapLabels
virtual public void SetHeatmapLabels(string[,] labels)
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Description

Sets the value of the ”HeatmapLabels” attribute.

Each Text object is created from the corresponding label value with
TEXT X CENTER|TEXT Y CENTER alignment.

See Also: Imsl.Chart2D.Text (p. 850), TEXT X CENTER (p. 793),
TEXT Y CENTER (p. 793)

Parameter

labels – A string[,] used to create a Text[,] that specifies the Heatmap labels.

Description

Optionally, each cell in the heatmap can be labeled.

If the input is a two-dimensional array of double values then a Colormap object is used to map
the real values to colors.

See Also

Imsl.Chart2D.Heatmap.Colormap (p. 960)

Example: Heatmap from Color array

A 5 by 10 array of Color objects is created by linearly interpolating red along the x-axis, blue
along the y-axis and mixing in a random amount of green. The data range is set to [0,10] by
[0,1].

using Imsl.Chart2D;
using Imsl.Stat;
using System;
using System.Windows.Forms;

public class HeatmapEx1 : FrameChart
{

public HeatmapEx1()
{

Chart chart = this.Chart;

AxisXY axis = new AxisXY(chart);

double xmin = 0.0;
double xmax = 10.0;
double ymin = 0.0;
double ymax = 1.0;

int nxRed = 5;
int nyBlue = 10;
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System.Random random = new System.Random((System.Int32) 123457L);
System.Drawing.Color[,] color = new System.Drawing.Color[nxRed,nyBlue];

int z=0;
int []d=new int[50];
d[0]=34;
d[1]=212;
d[2]=122;
d[3]=86;
d[4]=165;
d[5]=62;
d[6]=195;
d[7]=161;
d[8]=103;
d[9]=155;
d[10]=104;
d[11]=163;
d[12]=217;
d[13]=252;
d[14]=13;
d[15]=97;
d[16]=104;
d[17]=74;
d[18]=65;
d[19]=248;
d[20]=189;
d[21]=195;
d[22]=105;
d[23]=191;
d[24]=237;
d[25]=28;
d[26]=234;
d[27]=67;
d[28]=172;
d[29]=146;
d[30]=129;
d[31]=2;
d[32]=228;
d[33]=162;
d[34]=235;
d[35]=177;
d[36]=109;
d[37]=251;
d[38]=215;
d[39]=243;
d[40]=106;
d[41]=154;
d[42]=22;
d[43]=65;
d[44]=101;
d[45]=192;
d[46]=103;
d[47]=28;
d[48]=32;
d[49]=143;
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for (int i = 0; i < nxRed; i++)
{

for (int j = 0; j < nyBlue; j++)
{

int r = (int) (255.0 * i / nxRed);
//
int g =d[z];
z++;

int b = (int) (255.0 * j / nyBlue);
color[i,j] = System.Drawing.Color.FromArgb(r, g, b);

}
}
Heatmap heatmap = new Heatmap(axis, xmin, xmax, ymin, ymax, color);
axis.AxisX.AxisTitle.SetTitle("Red");
axis.AxisY.AxisTitle.SetTitle("Blue");

}

public static void Main(string[] argv)
{

System.Windows.Forms.Application.Run(new HeatmapEx1());
}

}
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Example: Heatmap from Color array

A 5 by 10 data array is created by linearly interpolating from the lower left corner to the upper
right corner and adding in a uniform random variable. A red temperature color map is used.
This maps the minimum data value to light green and the maximum data value to dark green.

The legend is enabled by setting its paint attribute to true.

using Imsl.Chart2D;
using Imsl.Stat;
using System;
using System.Windows.Forms;

public class HeatmapEx2 : FrameChart
{

public HeatmapEx2()
{

Chart chart = this.Chart;

AxisXY axis = new AxisXY(chart);

int nx = 5;
int ny = 10;
double xmin = 0.0;
double xmax = 10.0;
double ymin = - 3.0;
double ymax = 2.0;
double fmin = 0.0;
double fmax = nx + ny - 1;

double[,] data = new double[nx,ny];

System.Random random = new System.Random((System.Int32) 123457L);

double[] dbl = new double[50];
dbl[0]=0.41312962995625035;
dbl[1]=0.15995876895053263;
dbl[2]=0.8225528716547005;
dbl[3]=0.48794367683379836;
dbl[4]=0.44364905186692527;
dbl[5]=0.20896329070872555;
dbl[6]=0.9887088342522812;
dbl[7]=0.4781765623804778;
dbl[8]=0.9647868112234352;
dbl[9]=0.6732389937186418;
dbl[10]=0.5668831243079411;
dbl[11]=0.33081942994459734;
dbl[12]=0.27386697614898103;
dbl[13]=0.10880787186704965;
dbl[14]=0.8805853693809824;
dbl[15]=0.901138442534768;
dbl[16]=0.7180829622748057;
dbl[17]=0.48723656383264413;
dbl[18]=0.6153607537410654;
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dbl[19]=0.10153552805288812;
dbl[20]=0.3158193853638753;
dbl[21]=0.9558058275075961;
dbl[22]=0.10778543304578747;
dbl[23]=0.011829287599608884;
dbl[24]=0.09275375134615693;
dbl[25]=0.4859902873228249;
dbl[26]=0.9817642781628322;
dbl[27]=0.5505301300240635;
dbl[28]=0.467363186309925;
dbl[29]=0.18652444274911184;
dbl[30]=0.9066980293517674;
dbl[31]=0.9272326533193322;
dbl[32]=0.31440695305815347;
dbl[33]=0.4215880116306273;
dbl[34]=0.9991560762956562;
dbl[35]=0.0386317648903991;
dbl[36]=0.785150345014761;
dbl[37]=0.6451521871931544;
dbl[38]=0.7930129038729785;
dbl[39]=0.819301055474355;
dbl[40]=0.5695413465811706;
dbl[41]=0.039285689951912395;
dbl[42]=0.7625752595574732;
dbl[43]=0.31325564481720314;
dbl[44]=0.0482465474704169;
dbl[45]=0.6272275622766595;
dbl[46]=0.09904819350827354;
dbl[47]=0.8934533907186641;
dbl[48]=0.7013979421419555;
dbl[49]=0.5212913217641422;

int z=0;
for (int i = 0; i < nx; i++)
{

for (int j = 0; j < ny; j++)
{

data[i,j] = i + j + dbl[z];
z++;

}
}
Heatmap heatmap = new Heatmap(axis, xmin, xmax, ymin, ymax, 0.0, fmax, data, Imsl.Chart2D.Colormap_Fields.RED_TEMPERATURE);
heatmap.HeatmapLegend.IsVisible = true;
heatmap.HeatmapLegend.SetTitle("Heat");

}

public static void Main(string[] argv)
{

System.Windows.Forms.Application.Run(new HeatmapEx2());
}

}
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Example: Heatmap with Labels

A 5 by 10 array of random data is created and a similarly sized array of strings is also created.
These labels contain spreadsheet-like indices and the random data value expressed as a
percentage.

The legend is enabled by setting its paint attribute to true. The tick marks in the legend are
formatted using the percentage NumberFormat object. A title is also set in the legend.

using Imsl.Chart2D;
using Imsl.Stat;
using System;
using System.Windows.Forms;

public class HeatmapEx3 : FrameChart
{

public HeatmapEx3()
{

Chart chart = this.Chart;

AxisXY axis = new AxisXY(chart);

double xmin = 0.0;
double xmax = 10.0;
double ymin = 0.0;
double ymax = 1.0;

// SupportClass.TextNumberFormat format = SupportClass.TextNumberFormat.GetTextNumberPercentInstance();

int nx = 5;
int ny = 10;
double[,] data = new double[nx,ny];

System.String[,] labels = new System.String[nx,ny];
System.Random random = new System.Random((System.Int32) 123457L);

double[] dbl = new double[50];
dbl[0]=0.41312962995625035;
dbl[1]=0.15995876895053263;
dbl[2]=0.8225528716547005;
dbl[3]=0.48794367683379836;
dbl[4]=0.44364905186692527;
dbl[5]=0.20896329070872555;
dbl[6]=0.9887088342522812;
dbl[7]=0.4781765623804778;
dbl[8]=0.9647868112234352;
dbl[9]=0.6732389937186418;
dbl[10]=0.5668831243079411;
dbl[11]=0.33081942994459734;
dbl[12]=0.27386697614898103;
dbl[13]=0.10880787186704965;
dbl[14]=0.8805853693809824;
dbl[15]=0.901138442534768;
dbl[16]=0.7180829622748057;
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dbl[17]=0.48723656383264413;
dbl[18]=0.6153607537410654;
dbl[19]=0.10153552805288812;
dbl[20]=0.3158193853638753;
dbl[21]=0.9558058275075961;
dbl[22]=0.10778543304578747;
dbl[23]=0.011829287599608884;
dbl[24]=0.09275375134615693;
dbl[25]=0.4859902873228249;
dbl[26]=0.9817642781628322;
dbl[27]=0.5505301300240635;
dbl[28]=0.467363186309925;
dbl[29]=0.18652444274911184;
dbl[30]=0.9066980293517674;
dbl[31]=0.9272326533193322;
dbl[32]=0.31440695305815347;
dbl[33]=0.4215880116306273;
dbl[34]=0.9991560762956562;
dbl[35]=0.0386317648903991;
dbl[36]=0.785150345014761;
dbl[37]=0.6451521871931544;
dbl[38]=0.7930129038729785;
dbl[39]=0.819301055474355;
dbl[40]=0.5695413465811706;
dbl[41]=0.039285689951912395;
dbl[42]=0.7625752595574732;
dbl[43]=0.31325564481720314;
dbl[44]=0.0482465474704169;
dbl[45]=0.6272275622766595;
dbl[46]=0.09904819350827354;
dbl[47]=0.8934533907186641;
dbl[48]=0.7013979421419555;
dbl[49]=0.5212913217641422;

int z=0;
for (int i = 0; i < nx; i++)
{

for (int j = 0; j < ny; j++)
{

data[i,j] = dbl[z];//random.NextDouble();
z++;
labels[i,j] = "ABCDE"[i] + System.Convert.ToString(j) + "\n" + data[i,j].ToString("P0");

}
}
Heatmap heatmap = new Heatmap(axis, xmin, xmax, ymin, ymax, 0.0, 1.0, data, Imsl.Chart2D.Colormap_Fields.BLUE);
heatmap.SetHeatmapLabels(labels);
heatmap.TextColor = System.Drawing.Color.FromName("orange");
heatmap.HeatmapLegend.IsVisible = true;
heatmap.HeatmapLegend.TextFormat = "P0";
heatmap.HeatmapLegend.SetTitle("Percentage");

}

public static void Main(string[] argv)
{

System.Windows.Forms.Application.Run(new HeatmapEx3());
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}
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Heatmap.Legend Class

Summary

A legend for use with a Heatmap.

public class Imsl.Chart2D.Heatmap.Legend : AxisXY

Method

Paint
override public void Paint(Imsl.Chart2D.Draw draw)

Description

Paints this node and all of its children.

This is normally called only by the Paint method in this node’s parent.

Parameter

draw – A Draw which is to be painted.

Description

This Legend should be used with Heatmaps, rather than the usual Chart legend.

Colormap Interface

Summary

public interface Imsl.Chart2D.Colormap

Method

GetColor
abstract public System.Drawing.Color GetColor(double t)

Description

Maps the parameterization interval [0,1] into Colors.

Parameter

t – A double in the interval [0,1] to be mapped.
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Returns

A Color corrisponding to t.

Colormap Fields Structure

Summary

Colormaps are mappings from the unit interval to Colors.

public structure Imsl.Chart2D.Colormap Fields

Fields

BLUE
public Imsl.Chart2D.Colormap BLUE

Description

A linear blue colormap.

BLUE GREEN RED YELLOW
public Imsl.Chart2D.Colormap BLUE GREEN RED YELLOW

Description

A blue, green, red and yellow colormap.

BLUE RED
public Imsl.Chart2D.Colormap BLUE RED

Description

A linear blue and red colormap.

BLUE WHITE
public Imsl.Chart2D.Colormap BLUE WHITE

Description

A linear blue and white colormap.

BW LINEAR
public Imsl.Chart2D.Colormap BW LINEAR
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Description

A linear black and white (grayscale) colormap.

GREEN
public Imsl.Chart2D.Colormap GREEN

Description

A linear green colormap.

GREEN PINK
public Imsl.Chart2D.Colormap GREEN PINK

Description

A linear green and pink colormap.

GREEN RED BLUE WHITE
public Imsl.Chart2D.Colormap GREEN RED BLUE WHITE

Description

A green, red, blue and white colormap.

GREEN WHITE EXPONENTIAL
public Imsl.Chart2D.Colormap GREEN WHITE EXPONENTIAL

Description

An exponential green and white colormap.

GREEN WHITE LINEAR
public Imsl.Chart2D.Colormap GREEN WHITE LINEAR

Description

A linear green and white colormap.

PRISM
public Imsl.Chart2D.Colormap PRISM

Description

A prism colormap.

RED
public Imsl.Chart2D.Colormap RED
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Description

A linear red colormap.

RED PURPLE
public Imsl.Chart2D.Colormap RED PURPLE

Description

A red and purple colormap.

RED TEMPERATURE
public Imsl.Chart2D.Colormap RED TEMPERATURE

Description

A linear red temperature colormap.

SPECTRAL
public Imsl.Chart2D.Colormap SPECTRAL

Description

A spectral colormap.

STANDARD GAMMA
public Imsl.Chart2D.Colormap STANDARD GAMMA

Description

A standard gamma colormap.

WHITE BLUE LINEAR
public Imsl.Chart2D.Colormap WHITE BLUE LINEAR

Description

A linear white and blue colormap.

Description

They are a one-dimensional parameterized path through the color cube.

See Also

Imsl.Chart2D.Heatmap (p. 960)

976 • Colormap Fields Structure IMSL C# Numerical Library



Chapter 24: Neural Nets

Types

class FeedForwardNetwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1004
class Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1018
class InputLayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1019
class HiddenLayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1020
class OutputLayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022
class Node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1024
class InputNode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1025
class Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1026
class OutputPerceptron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1027
class IActivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1027
class Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1029
class ITrainer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1030
class QuasiNewtonTrainer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1031
interface QuasiNewtonTrainer.IError . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1036
class LeastSquaresTrainer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1038
class EpochTrainer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1042
class BinaryClassification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1045
class MultiClassification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1089
class ScaleFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1104
enumeration ScaleFilter.ScalingMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1113
class UnsupervisedNominalFilter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1114
class UnsupervisedOrdinalFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1118
enumeration UnsupervisedOrdinalFilter.TransformMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1123
class TimeSeriesFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1124
class TimeSeriesClassFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1126
class Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1148

977



Usage Notes

Neural Networks - An Overview

Today, neural networks are used to solve a wide variety of problems, some of which have been
solved by existing statistical methods, and some of which have not. These applications fall into
one of the following three categories:

• Forecasting: predicting one or more quantitative outcomes from both quantitative and
categorical input data,

• Classification: classifying input data into one of two or more categories, or

• Statistical pattern recognition: uncovering patterns, typically spatial or temporal, among a
set of variables.

Forecasting, pattern recognition and classification problems are not new. They existed years
before the discovery of neural network solutions in the 1980’s. What is new is that neural
networks provide a single framework for solving so many traditional problems and, in some
cases, extend the range of problems that can be solved.

Traditionally, these problems have been solved using a variety of well known statistical methods:

• linear regression and general least squares,

• logistic regression and discrimination,

• principal component analysis,

• discriminant analysis,

• k-nearest neighbor classification, and

• ARMA and non-linear ARMA time series forecasts.

In many cases, simple neural network configurations yield the same solution as many
traditional statistical applications. For example, a single-layer, feed-forward neural network
with linear activation for its output perceptron is equivalent to a general linear regression fit.
Neural networks can provide more accurate and robust solutions for problems where traditional
methods do not completely apply.

Mandic and Chambers (2001) point out that traditional methods for time series forecasting are
unsuitable when a time series:

• is non-stationary,

• has large amounts of noise, such as a biomedical series, or

• is too short.
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ARIMA and other traditional time series approaches can produce poor forecasts when one or
more of the above conditions exist. The forecasts of ARMA and non-linear ARMA (NARMA)
depend heavily upon key assumptions about the model or underlying relationship between the
output of the series and its patterns.

Neural networks, on the other hand, adapt to changes in a non-stationary series and can
produce reliable forecasts even when the series contains a good deal of noise or when only a
short series is available for training. Neural networks provide a single tool for solving many
problems traditionally solved using a wide variety of statistical tools and for solving problems
when traditional methods fail to provide an acceptable solution.

Although neural network solutions to forecasting, pattern recognition, and classification
problems can be very different, they are always the result of computations that proceed from
the network inputs to the network outputs. The network inputs are referred to as patterns, and
outputs are referred to as classes. Frequently the flow of these computations is in one direction,
from the network input patterns to its outputs. Networks with forward-only flow are referred to
as feed-forward networks.

INPUT LAYER

H1

H2

H3

Z1

Z2

Y1

Y2

HIDDEN LAYER

OUTPUT LAYER
X1

X2

X3

X4

Figure 1. A 2-layer, Feed-Forward Network with 4 Inputs and 2 Outputs

Other networks, such as recurrent neural networks, allow data and information to flow in both
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directions, see Mandic and Chambers (2001).

INPUT LAYER

H1

H3

Z1

Z2

Y1

Y2

HIDDEN LAYER

OUTPUT LAYER
X1

X2

X3

X4

Figure 2. A Recurrent Neural Network with 4 Inputs and 2 Outputs

A neural network is defined not only by its architecture and flow, or interconnections, but also
by computations used to transmit information from one node or input to another node. These
computations are determined by network weights. The process of fitting a network to existing
data to determine these weights is referred to as training the network, and the data used in this
process are referred to as patterns. Individual network inputs are referred to as attributes and
outputs are referred to as classes. Many terms used to describe neural networks are
synonymous to common statistical terminology.

Table 1. Synonyms between Neural Network and Common Statistical Terminology
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Neural Network
Terminology

Traditional
Statistical Ter-
minology

Description

Training Model Fitting Estimating unknown parameters or
coefficients in the analysis.

Patterns Cases or Observa-
tions

A single observation of all input and
output variables.

Attributes Independent vari-
ables

Inputs to the network or model.

Classes Dependent vari-
ables

Outputs from the network or model
calculations.

Neural Networks – History and Terminology

The Threshold Neuron

McCulloch and Pitts (1943) wrote one of the first published works on neural networks. In their
paper, they describe the threshold neuron as a model for how the human brain stores and
processes information.

x1

x2

x3

W
1

W2

W 3

McCulloch &
Pitts  Neuron

Weights

Inputs

Y

Output

Figure 3. The McCulloch and Pitts Threshold Neuron

All inputs to a threshold neuron are combined into a single number, Z, using the following
weighted sum:

Z =
m∑

i=1

wixi − µ
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where wi is the weight associated with the i-th input (attribute) xi. The term µ in this
calculation is referred to as the bias term. In traditional statistical terminology, it might be
referred to as the intercept. The weights and bias terms in this calculation are estimated during
network training.

In McCulloch and Pitt’s description of the threshold neuron, the neuron does not respond to its
inputs unless Z is greater than zero. If Z is greater than zero then the output from this neuron
is set to 1. If Z is less than zero the output is zero:

Y =
{

1 ifZ > 0
0 ifZ ≤ 0

where Y is the neuron’s output.

For years following their 1943 paper, interest in the McCulloch and Pitts neural network was
limited to theoretical discussions, such as those of Hebb (1949), about learning, memory, and
the brain’s structure.

The Perceptron

The McCulloch and Pitts neuron is also referred to as a threshold neuron since it abruptly
changes its output from 0 to 1 when its potential, Z, crosses a threshold. Mathematically, this
behavior can be viewed as a step function that maps the neuron’s potential, Z, to the neuron’s
output, Y.

Rosenblatt (1958) extended the McCulloch and Pitts threshold neuron by replacing this step
function with a continuous function that maps Z to Y. The Rosenblatt neuron is referred to as
the perceptron, and the continuous function mapping Z to Y makes it easier to train a network
of perceptrons than a network of threshold neurons.

Unlike the threshold neuron, the perceptron produces analog output rather than the threshold
neuron’s purely binary output. Carefully selecting the analog function makes Rosenblatt’s
perceptron differentiable, whereas the threshold neuron is not. This simplifies the training
algorithm.

Like the threshold neuron, Rosenblatt’s perceptron starts by calculating a weighted sum of its

inputs, Z =
m∑

i=1

wixi − µ. This is referred to as the perceptron’s potential.

Rosenblatt’s perceptron calculates its analog output from its potential. There are many choices
for this calculation. The function used for this calculation is referred to as the activation
function in Figure 4 below.
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g(Z)

x1
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Inputs

Y = g(Z)

Output

Figure 4. The Perceptron

As shown in Figure 4, perceptrons consist of the following five components:

Component Example
Inputs X1,X2,X3

Input Weights W1,W2,W3

Potential Z =
3∑

i=1

WiXi − µ, where µ is a bias correction.

Activation Function g(Z)
Output g(Z)

Like threshold neurons, perceptron inputs can be either the initial raw data inputs or the
output from another perceptron. The primary purpose of the network training is to estimate
the weights associated with each perceptron’s potential. The activation function maps this
potential to the perceptron’s output.

The Activation Function

Although theoretically any differential function can be used as an activation function, the
identity and sigmoid functions are the two most commonly used.

The identity activation function, also referred to as a linear activation function, is a
flow-through mapping of the perceptron’s potential to its output:

g (Z) = Z

Output perceptrons in a forecasting network often use the identity activation function.
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If the identity activation function is used throughout the network, then it is easily shown that
the network is equivalent to fitting a linear regression model of the form
Yi = β0 + β1x1 + · · ·+ βkxk, where x1, x2, · · · , xk are the k network inputs, Yi is the i-th
network output and β0, β1, · · · , βk are the coefficients in the regression equation. As a result, it
is uncommon to find a neural network with identity activation used in all its perceptrons.

Sigmoid activation functions are differentiable functions that map the perceptron’s potential to
a range of values, such as 0 to 1, i.e., RK → R where K is the number of perceptron inputs.
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Figure 6. A Sigmoid Activation Function

In practice, the most common sigmoid activation function is the logistic function that maps the
potential into the range 0 to 1:

g(Z) =
1

1 + e−Z

Since 0 < g(Z) < 1, the logistic function is very popular for use in networks that output
probabilities.

Other popular sigmoid activation functions include:

1. the hyperbolic-tangent g(Z) = tanh(Z) = eαZ−e−αZ

eαZ+e−αZ

2. the arc-tangent g(Z) = 2
π arctan

(
πZ
2

)
, and

3. the squash activation function (Elliott (1993)) g(Z) = Z
1+|Z|

It is easy to show that the hyperbolic-tangent and logistic activation functions are linearly
related. Consequently, forecasts produced using logistic activation should be close to those
produced using hyperbolic-tangent activation. However, one function may be preferred over the
other when training performance is a concern. Researchers report that the training time using
the hyperbolic-tangent activation function is shorter than using the logistic activation function.

Neural Nets • 985



Network Applications

Forecasting using Neural Networks

There are many good statistical forecasting tools. Most require assumptions about the
relationship between the variables being forecasted and the variables used to produce the
forecast, as well as the distribution of forecast errors. Such statistical tools are referred to as
parametric methods. ARIMA time series models, for example, assume that the time series is
stationary, that the errors in the forecasts follow a particular ARIMA model, and that the
probability distribution for the residual errors is Gaussian, see Box and Jenkins (1970). If these
assumptions are invalid, then ARIMA time series forecasts can be very poor.

Neural networks, on the other hand, require few assumptions. Since neural networks can
approximate highly non-linear functions, they can be applied without an extensive analysis of
underlying assumptions.

Another advantage of neural networks over ARIMA modeling is the number of observations
needed to produce a reliable forecast. ARIMA models generally require 50 or more equally
spaced, sequential observations in time. In many cases, neural networks can also provide
adequate forecasts with fewer observations by incorporating exogenous, or external, variables in
the network’s input.

For example, a company applying ARIMA time series analysis to forecast business expenses
would normally require each of its departments, and each sub-group within each department to
prepare its own forecast. For large corporations this can require fitting hundreds or even
thousands of ARIMA models. With a neural network approach, the department and sub-group
information could be incorporated into the network as exogenous variables. Although this can
significantly increase the network’s training time, the result would be a single model for
predicting expenses within all departments and sub-departments.

Linear least squares models are also popular statistical forecasting tools. These methods range
from simple linear regression for predicting a single quantitative outcome to logistic regression
for estimating probabilities associated with categorical outcomes. It is easy to show that simple
linear least squares forecasts and logistic regression forecasts are equivalent to a feed-forward
network with a single layer. For this reason, single-layer feed-forward networks are rarely used
for forecasting. Instead multilayer networks are used.

Hutchinson (1994) and Masters (1995) describe using multilayer feed-forward neural networks
for forecasting. Multilayer feed-forward networks are characterized by the forward-only flow of
information in the network. The flow of information and computations in a feed-forward
network is always in one direction, mapping an M-dimensional vector of inputs to a
C-dimensional vector of outputs, i.e., RM → RC .

There are many other types of networks without this feed-forward requirement. Information
and computations in a recurrent neural network, for example, flows in both directions. Output
from one level of a recurrent neural network can be fed back, with some delay, as input into the
same network, see Figure 2. Recurrent networks are very useful for time series prediction, see
Mandic and Chambers (2001).
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Pattern Recognition using Neural Networks

Neural networks are also extensively used in statistical pattern recognition. Pattern recognition
applications that make wide use of neural networks include:

• natural language processing: Manning and Schütze (1999)

• speech and text recognition: Lippmann (1989)

• face recognition: Lawrence, et al. (1997)

• playing backgammon, Tesauro (1990)

• classifying financial news, Calvo (2001).

The interest in pattern recognition using neural networks has stimulated the development of
important variations of feed-forward networks. Two of the most popular are:

• Self-Organizing Maps, also called Kohonen Networks, Kohonen (1995),

• and Radial Basis Function Networks, Bishop (1995).

Good mathematical descriptions of the neural network methods underlying these applications
are given by Bishop (1995), Ripley (1996), Mandic and Chambers (2001), and Abe (2001). An
excellent overview of neural networks, from a statistical viewpoint, is also found in Warner and
Misra (1996).

Neural Networks for Classification

Classifying observations using prior concomitant information is possibly the most popular
application of neural networks. Data classification problems abound in business and research.
When decisions based upon data are needed, they can often be treated as a neural network
data classification problem. Decisions to buy, sell, hold or do nothing with a stock, are decisions
involving four choices. Classifying loan applicants as good or bad credit risks, based upon their
application, is a classification problem involving two choices. Neural networks are powerful
tools for making decisions or choices based upon data.

These same tools are ideally suited for automatic selection or decision-making. Incoming email,
for example, can be examined to separate spam from important email using a neural network
trained for this task. A good overview of solving classification problems using multilayer
feed-forward neural networks is found in Abe (2001) and Bishop (1995).

There are two popular methods for solving data classification problems using multilayer
feed-forward neural networks, depending upon the number of choices (classes) in the
classification problem. If the classification problem involves only two choices, then it can be
solved using a neural network with one logistic output. This output estimates the probability
that the input data belong to one of the two choices.
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For example, a multilayer feed-forward network with a single, logistic output can be used to
determine whether a new customer is credit-worthy. The network’s input would consist of
information on the applicants credit application, such as age, income, etc. If the network
output probability is above some threshold value (such as 0.5 or higher) then the applicant’s
credit application is approved.

This is referred to as binary classification using a multilayer feed-forward neural network. If
more than two classes are involved then a different approach is needed. A popular approach is
to assign logistic output perceptrons to each class in the classification problem. The network
assigns each input pattern to the class associated with the output perceptron that has the
highest probability for that input pattern. However, this approach produces invalid
probabilities since the sum of the individual class probabilities for each input is not equal to
one, which is a requirement for any valid multivariate probability distribution.

To avoid this problem, the softmax activation function, see Bridle (1990), applied to the
network outputs ensures that the outputs conform to the mathematical requirements of
multivariate classification probabilities. If the classification problem has C categories, or
classes, then each category is modeled by one of the network outputs. If Zi is the weighted sum
of products between its weights and inputs for the i-th output, i.e., Zi =

∑
j

wjiyji, then

softmaxi =
eZi

C∑
j=1

eZj

The softmax activation function ensures that the outputs all conform to the requirements for
multivariate probabilities. That is,

0 < softmaxi < 1, for all i = 1, 2, . . . , C

and
C∑

i=1

softmaxi = 1

A pattern is assigned to the i-th classification when softmaxi is the largest among all C classes.

However, multilayer feed-forward neural networks are only one of several popular methods for
solving classification problems. Others include:

• Support Vector Machines (SVM Neural Networks), Abe (2001),

• Classification and Regression Trees (CART), Breiman, et al. (1984),

• Quinlan’s classification algorithms C4.5 and C5.0, Quinlan (1993), and

• Quick, Unbiased and Efficient Statistical Trees (QUEST), Loh and Shih (1997).

Support Vector Machines are simple modifications of traditional multilayer feed-forward neural
networks (MLFF) configured for pattern classification.
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Multilayer Feed-Forward Neural Networks

A multilayer feed-forward neural network is an interconnection of perceptrons in which data and
calculations flow in a single direction, from the input data to the outputs. The number of layers
in a neural network is the number of layers of perceptrons. The simplest neural network is one
with a single input layer and an output layer of perceptrons. The network in Figure 7 illustrates
this type of network. Technically this is referred to as a one-layer feed-forward network with
two outputs because the output layer is the only layer with an activation calculation.

INPUT LAYER

Z1

Z2

Y1

Y2

g1(Z1)

g2(Z2)

OUTPUT LAYER

X1

X2

X3

Input
Data

Output
sNeuron

Figure 7. A Single-Layer Feed-Forward Neural Net

In this single-layer feed-forward neural network, the networks inputs are directly connected to
the output layer perceptrons, Z1 and Z2.

The output perceptrons use activation functions, g1 and g2, to produce the outputs Y1 and Y2.

Since

Z1 =
3∑

i=1

W1,iXi − µ1

and

Z2 =
3∑

i=1

W2,iXi − µ2

Y1 = g1(Z1) = g1(
3∑

i=1

W1,iXi − µ1)
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and

Y2 = g2(Z2) = g2(
3∑

i=1

W2,iXi − µ2)

When the activation functions g1 and g2 are identity activation functions, a single-layer neural
net is equivalent to a linear regression model. Similarly, if g1 and g2 are logistic activation
functions, then the single-layer neural net is equivalent to logistic regression. Because of this
correspondence between single-layer neural networks and linear and logistic regression,
single-layer neural networks are rarely used in place of linear and logistic regression.

The next most complicated neural network is one with two layers. This extra layer is referred
to as a hidden layer. In general there is no restriction on the number of hidden layers. However,
it has been shown mathematically that a two-layer neural network, such as shown in Figure 1,
can accurately reproduce any differentiable function, provided the number of perceptrons in the
hidden layer is unlimited.

However, increasing the number of neurons increases the number of weights that must be
estimated in the network, which in turn increases the execution time for this network. Instead
of increasing the number of perceptrons in the hidden layers to improve accuracy, it is
sometimes better to add additional hidden layers, which typically reduces both the total
number of network weights and the computational time. However, in practice, it is uncommon
to see neural networks with more than two or three hidden layers.

Neural Network Error Calculations

Error Calculations for Forecasting

The error calculations used to train a neural network are very important. Researchers have
investigated many error calculations, trying to find a calculation with a short training time that
is appropriate for the network’s application. Typically error calculations are very different
depending primarily on the network’s application.

For forecasting, the most popular error function is the sum-of-squared errors, or one of its
scaled versions. This is analogous to using the minimum least squares optimization criterion in
linear regression. Like least squares, the sum-of-squared errors is calculated by looking at the
squared difference between what the network predicts for each training pattern and the target
value, or observed value, for that pattern. Formally, the equation is the same as one-half the
traditional least squares error:

E = 1
2

N∑
i=1

C∑
j=1

(
tij − t̂ij

)2
where N is the total number of training cases, C is equal to the number of network outputs, tij
is the observed output for the i-th training case and the j-th network output, and t̂ij is the
network’s forecast for that case.

Common practice recommends fitting a different network for each forecast variable. That is,
the recommended practice is to use C=1 when using a multilayer feed-forward neural network
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for forecasting. For classification problems with more than two classes, it is common to
associate one output with each classification category, i.e., C=number of classes.

Notice that in ordinary least squares, the sum-of-squared errors are not multiplied by one-half.
Although this has no impact on the final solution, it significantly reduces the number of
computations required during training.

Also note that as the number of training patterns increases, the sum-of-squared errors
increases. As a result, it is often useful to use the root-mean-square (RMS) error instead of the
unscaled sum-of-squared errors:

ERMS =

N∑
i=1

C∑
j=1

(
tij − t̂ij

)2
N∑

i=1

C∑
j=1

(tij − t̄)2

where t̄ is the average output:

t̄ =

N∑
i=1

C∑
j=1

tij

N · C
Unlike the unscaled sum-of-squared errors, ERMS does not increase as N increases. The smaller
the value of ERMS the closer the network is predicting its targets during training. A value of
ERMS = 0 indicates that the network is able to predict every pattern exactly. A value of
ERMS = 1 indicates that the network is predicting the training cases only as well as using the
mean of the training cases for forecasting.

Notice that the root-mean-squared error is related to the sum-of-squared error by a simple scale
factor:

ERMS =
2
t̄
· E

Another popular error calculation for forecasting from a neural network is the Minkowski-R
error. The sum-of-squared error, E, and the root-mean-squared error, ERMS , are both
theoretically motivated by assuming the noise in the target data is Gaussian. In many cases,
this assumption is invalid. A generalization of the Gaussian distribution to other distributions
gives the following error function, referred to as the Minkowski-R error:

ER =
N∑

i=1

C∑
j=1

∣∣tij − t̂ij∣∣R.
Notice that ER = 2E when R = 2.

A good motivation for using ER instead of E is to reduce the impact of outliers in the training
data. The usual error measures, E and ERMS , emphasize larger differences between the training
data and network forecasts since they square those differences. If outliers are expected, then it
is better to de-emphasize larger differences. This can be done by using the Minkowski-R error
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with R=1. When R=1, the Minkowski-R error simplifies to the sum of absolute differences:

L = E1 =
N∑

i=1

C∑
j=1

∣∣tij − t̂ij∣∣.
L is also referred to as the Laplacian error. Its name is derived from the fact that it can be
theoretically justified by assuming the noise in the training data follows a Laplacian rather than
Gaussian distribution.

Of course, similar to E, L generally increases when the number of training cases increases.
Similar to ERMS , a scaled version of the Laplacian error can be calculated using the following
formula:

LRMS =

N∑
i=1

C∑
j=1

∣∣tij − t̂ij∣∣
N∑

i=1

C∑
j=1

|tij − t̄|

Cross-Entropy Error for Binary Classification

As previously mentioned, multilayer feed-forward neural networks can be used for both
forecasting and classification applications. Training a forecasting network involves finding the
network weights that minimize either the Gaussian or Laplacian distributions, E or L
respectively, or equivalently their scaled versions, ERMS or LRMS . Although these error
calculations can be adapted for use in classification by setting the target classification variable
to zeros and ones, this is not recommended. Use of the sum-of-squared and Laplacian error
calculations is based on the assumption that the target variable is continuous. In classification
applications, the target variable is a discrete random variable with C possible values, where
C=number of classes.

A multilayer feed-forward neural network for classifying patterns into one of only two categories
is referred to as a binary classification network. It has a single output: the estimated
probability that the input pattern belongs to one of the two categories. The probably that it
belongs to the other category is equal to one minus this probability, i.e.,

P (C2) = P (not C1) = 1− P (C1)

Binary classification applications are very common. Any problem requiring yes/no classification
is a binary classification application. For example, deciding to sell or buy a stock is a binary
classification problem. Deciding to approve a loan application is also a binary classification
problem. Deciding whether to approve a new drug or to provide one of two medical treatments
are binary classification problems.

For binary classification problems, only a single output is used, C=1. This output represents
the probability that the training case should be classified as yes. A common choice for the
activation function of the output of a binary classification networks is the logistic activation
function, which always results in an output in the range 0 to 1, regardless of the perceptron’s
potential.
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One choice for training a binary classification network is to use sum-of-squared errors with the
class value of yes patterns coded as a 1 and the no classes coded as a 0, i.e.:

tij =
{

1 if training pattern i=yes
0 if the training pattern i=no

However, using either the sum-of-squared or Laplacian errors for training a network with these
target values assumes that the noise in the training data are Gaussian. In binary classification,
the zeros and ones are not Gaussian. They follow the Bernoulli distribution:

P (ti = t) = pt(1− p)1−t

where p is equal to the probability that a randomly selected case belongs to the yes class.

Modeling the binary classes as Bernoulli observations leads to the cross- entropy error function
described by Hopfield (1987) and Bishop (1995):

EC = −
N∑

i=1

{
ti ln(t̂i) + (1− ti) ln(1− t̂i)

}
where N is the number of training patterns, ti is the target value for the i-th case (either 1 or
0), and t̂i is the network’s output for the i-th case. This is equal to the neural network’s
estimate of the probability that the i-th case should be classified as yes.

For situations in which the target variable is a probability in the range 0 < tij < 1, the value of
the cross-entropy at the networks optimum is equal to:

EC
min = −

N∑
i=1

{ti ln(ti) + (1− ti) ln(1− ti)}

Subtracting this from EC gives an error term bounded below by zero, i.e., ECE ≥ 0 where:

ECE = EC − EC
min = −

N∑
i=1

{
ti ln

[
t̂i
ti

]
+ (1− ti) ln

[
1− t̂i
1− ti

]}
This adjusted cross-entropy is normally reported when training a binary classification network
where 0 < tij < 1. Otherwise EC , the non-adjusted cross-entropy error, is used. Small values,
values near zero, would indicate that the training resulted in a network with a low error rate
and that patterns are being classified correctly most of the time.

Back-Propagation in Multilayer Feed-Forward Neural Network

Sometimes a multilayer feed-forward neural network is referred to incorrectly as a
back-propagation network. The term back-propagation does not refer to the structure or
architecture of a network. Back-propagation refers to the method used during network training.
More specifically, back-propagation refers to a simple method for calculating the gradient of the
network, that is the first derivative of the weights in the network.
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The primary objective of network training is to estimate an appropriate set of network weights
based upon a training dataset. Many ways have been researched for estimating these weights,
but they all involve minimizing some error function. In forecasting, the most commonly used
error function is the sum-of-squared errors:

E = 1
2

N∑
i=1

C∑
j=1

(
tij − t̂ij

)2
Training uses one of several possible optimization methods to minimize this error term. Some
of the more common are: steepest descent, quasi-Newton, conjugant gradient, and many
various modifications of these optimization routines.

Back-propagation is a method for calculating the first derivative, or gradient, of the error
function required by some optimization methods. It is certainly not the only method for
estimating the gradient. However, it is the most efficient. In fact, some will argue that the
development of this method by Werbos (1974), Parket (1985), and Rumelhart, Hinton and
Williams (1986) contributed to the popularity of neural network methods by significantly
reducing the network training time and making it possible to train networks consisting of a
large number of inputs and perceptrons.

Simply stated, back-propagation is a method for calculating the first derivative of the error
function with respect to each network weight. Bishop (1995) derives and describes these
calculations for the two most common forecasting error functions, the sum of squared errors
and Laplacian error functions. Abe (2001) gives the description for the classification error
function, the cross-entropy error function. For all of these error functions, the basic formula for
the first derivative of the network weight wji at the i-th perceptron applied to the output from
the j-th perceptron:

∂E

∂wji
= δjZi,

where Zi = g(ai) is the output from the i-th perceptron after activation, and

∂E

∂wji

is the derivative for a single output and a single training pattern. The overall estimate of the
first derivative of wji is obtained by summing this calculation over all N training patterns and
C network outputs.

The term back-propagation gets its name from the way the term δj in the back-propagation
formula is calculated:

δj = g′(aj) ·
∑

k

wkjδk,

where the summation is over all perceptrons that use the activation from the j-th perceptron,
g(aj).

The derivative of the activation functions, g′(a), varies among these functions, see the following
table:
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Table 2.Activation Functions and Their Derivatives

Activation Function g(a) g′(a)
Linear g(a) = a g′(a) = 1 (where a is a constant)
Logistic g(a) = 1

1+e−a g′(a) = g(a)(1− g(a))
Hyperbolic-tangent g(a) = tanh(a) g′(a) = sech2(a) = 1− tanh2(a)

Squash g(a) = a
1+|a| g′(a) = 1

(1+|a|)2

Creating a Feed Forward Network

The following code fragment creates the feed forward neural network shown in the following
figure:

HIDDEN LAYER 1

2

1

0

1

0

Y1

Y0

HIDDEN LAYER 2

OUTPUT LAYER

x5

x4

x3

3

x2 2

x1 1

x0 0

INPUT
LAYER

Figure 8. A Three-Layer Feed-Forward Neural Net
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Notice that this network is more complex than the typical feed-forward network in which all
nodes from each layer are connected to every node in the next layer. This network has 6 input
nodes, and they are not all connected to every node in the 1st hidden layer.

Note also that the 4 perceptrons in the 1st hidden layer are not connected to every node in the
2nd hidden layer, and the perceptrons in the 2nd hidden layer are not all connected to the two
outputs.

// ***************************************************************
// EXAMPLE CODE FOR CREATING LINKS AMONG NETWORK NODES
// ***************************************************************

FeedForwardNetwork network = new FeedForwardNetwork();
network.InputLayer.CreateInputs(6);
network.CreateHiddenLayer().CreatePerceptrons(4);
network.CreateHiddenLayer().CreatePerceptrons(3);
network.OutputLayer.CreatePerceptrons(2);
HiddenLayers[] hiddenLayer = network.HiddenLayers;
Node[] inputNode = network.InputLayer.Nodes;
Node[] layer1Node = hiddenLayer[0].Nodes;
Node[] layer2Node = hiddenLayer[1].Nodes;
Node[] outputNode = network.OutputLayer.Nodes;

// Create links between input nodes and 1st hidden layer
network.Link(inputNode[0], layer1Node[0]);
network.Link(inputNode[0], layer1Node[1]);
network.Link(inputNode[1], layer1Node[0]);
network.Link(inputNode[1], layer1Node[1]);
network.Link(inputNode[1], layer1Node[3]);
network.Link(inputNode[2], layer1Node[1]);
network.Link(inputNode[2], layer1Node[2]);
network.Link(inputNode[3], layer1Node[3]);
network.Link(inputNode[4], layer1Node[3]);
network.Link(inputNode[5], layer1Node[3]);

// Create links between 1st and 2nd hidden layers
network.Link(layer1Node[0], layer2Node[0]);
network.Link(layer1Node[0], layer2Node[1]);
network.Link(layer1Node[0], layer2Node[2]);
network.Link(layer1Node[1], layer2Node[0]);
network.Link(layer1Node[1], layer2Node[1]);
network.Link(layer1Node[1], layer2Node[2]);
network.Link(layer1Node[2], layer2Node[0]);
network.Link(layer1Node[2], layer2Node[2]);
network.Link(layer1Node[3], layer2Node[1]);
network.Link(layer1Node[3], layer2Node[2]);

// Create links between 2nd hidden layer and output layer
network.Link(layer2Node[0], outputNode[0]);
network.Link(layer2Node[1], outputNode[0]);
network.Link(layer2Node[1], outputNode[1]);
network.Link(layer2Node[2], outputNode[0]);
network.Link(layer2Node[2], outputNode[1]);

// Create link between input node[0] and ouput node[0]
network.Link(inputNode[0], outputNode[0]);

// ***************************************************************

By default, the FeedForwardNetwork constructor creates a feed forward network with an empty
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input layer, no hidden layers and an empty output layer. Input nodes are created by accessing
the empty input layer and creating 6 nodes within it. Two hidden layers are then created within
the network using the FeedForwardNetwork.CreateHiddenLayer().CreatePerceptrons()
method. Four perceptrons are created within the first hidden layer and three within the second.
Output perceptrons are created by accessing the empty output layer and creating the
Perceptrons within it: FeedForwardNetwork.OutputLayer.CreatePerceptrons().

Links among the input nodes and perceptrons can be created using one of several approaches.
If all inputs are connected to every perceptron in the first hidden layer, and if all perceptrons
are connected to every perceptron in the following layer, which is a standard architecture for
feed forward networks, then a call to the FeedForwardNetwork.LinkAll() method can be used
to create these links.

However, this example does not use that standard configuration. Some links are missing. In
this case, the approach used is to construct individual links using the
FeedForwardNetwork.Link() method. This requires one call for every link.

An alternate approach is to first create all links and then to remove those that are not needed.
The following code illustrates this approach:

// ***************************************************************
// EXAMPLE CODE FOR REMOVING LINKS AMONG NETWORK NODES
// ***************************************************************

FeedForwardNetwork network = new FeedForwardNetwork();
InputNode[] inputNode = network.InputLayer.CreateInputs(6);
Perceptron[] hiddenLayer1 =

network.CreateHiddenLayer().CreatePerceptrons(4);
Perceptron[] hiddenLayer2 =

network.CreateHiddenLayer().CreatePerceptrons(3);
Perceptron[] outputLayer = network.OutputLayer.CreatePerceptrons(2);
network.LinkAll(); // Creates standard feed forward configuration

// Remove links between input nodes and 1st hidden layer
network.Remove(network.FindLink(inputNode[0],hiddenLayer1[2]));
network.Remove(network.FindLink(inputNode[0],hiddenLayer1[3]));
network.Remove(network.FindLink(inputNode[1],hiddenLayer1[3]));
network.Remove(network.FindLink(inputNode[2],hiddenLayer1[0]));
network.Remove(network.FindLink(inputNode[2],hiddenLayer1[3]));
network.Remove(network.FindLink(inputNode[3],hiddenLayer1[0]));
network.Remove(network.FindLink(inputNode[3],hiddenLayer1[1]));
network.Remove(network.FindLink(inputNode[3],hiddenLayer1[2]));
network.Remove(network.FindLink(inputNode[4],hiddenLayer1[0]));
network.Remove(network.FindLink(inputNode[4],hiddenLayer1[1]));
network.Remove(network.FindLink(inputNode[4],hiddenLayer1[2]));
network.Remove(network.FindLink(inputNode[5],hiddenLayer1[0]));
network.Remove(network.FindLink(inputNode[5],hiddenLayer1[1]));
network.Remove(network.FindLink(inputNode[5],hiddenLayer1[2]));

// Remove links between 1st and 2nd hidden layers
network.Remove(network.FindLink(hiddenLayer1[2],hiddenLayer2[1]));
network.Remove(network.FindLink(hiddenLayer1[3],hiddenLayer2[0]));

// Remove links between 2nd hidden layer and the output layer
network.Remove(network.FindLink(hiddenLayer2[0],outputLayer[1]));

// Add link from input node[0] to output node[0]
network.Link(inputNode[0], outputNode[0]);
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// ***************************************************************

In the above fragment, all links are created using the FeedForwardNetwork.LinkAll()
method. This creates a total of 6*4+4*3+3*2=42 links, not including the link between the first
input node and the first output node. Links that skip layers are not created by the LinkAll()
method.

Links are then selectively removed starting with the first input node and proceeding to links
between the last hidden layer and the output layers. In this case, there are 6*4=24 possible
links between the input nodes and first hidden layer. Fourteen of them had to be removed.
Between the first hidden layer and second, there are 4*3=12 possible links. Two of them were
removed. Between the second hidden layer and output layer there are 3*2=6 possible links, and
only one needed to be removed. Finally the skip-layer link between the first input node and
first output node is added.

After creating and removing links among layers, the activation function used with each
perceptron can be selected. By default, every perceptron in the hidden layers use the logistic
activation function and every perceptron in the output layers uses the linear activation
function. The following fragment shows how to change the activation function in the hidden
layer perceptrons from logistic to hyperbolic-tangent and the output layer from linear to
logistic. It also creates a connection directly from the first input node to the output node.

// ***************************************************************
// EXAMPLE CODE FOR SETTING NON-DEFAULT ACTIVATION FUNCTIONS
// ***************************************************************

FeedForwardNetwork network = new FeedForwardNetwork();
InputNode[] inputNode = network.InputLayer.CreateInputs(6);
Perceptron[] hiddenLayer1 =

network.CreateHiddenLayer().CreatePerceptrons(4);
Perceptron[] hiddenLayer2 =

network.CreateHiddenLayer().CreatePerceptrons(3);
Perceptron[] outputLayer = network.OutputLayer.CreatePerceptrons(2);

// Get Network Perceptrons for Setting Their Activation Functions
Perceptron[] perceptrons = network.Perceptrons;

for (int k = 0; k < hiddenLayer1.Length -1; k++) {
perceptrons[k].Activation = Imsl.DataMining.Neural.Activation.Tanh;

}
perceptrons[perceptrons.Length - 1].Activation =

Imsl.DataMining.Neural.Activation.Logistic;
.
.
.
// ***************************************************************

Training

Trainers are used to find the network weights that produce network outputs matching a set of
training targets. The training targets together with their associated network inputs are referred
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to as training patterns. Training patterns can be historical data relating network inputs to its
outputs, or they can be developed from expert opinion or theoretical analysis. In the end, each
training pattern relates specific network inputs to its real or desired target outputs.

In IMSL C# Numerical Library all trainers implement the
Imsl.DataMining.Neural.ITrainer interface. The number of training input attributes must
equal the number of input nodes, and the number of training outputs, sometimes called
training targets, must equal the number of output perceptrons created for the network.

Single Stage Trainers

QuasiNewtonTrainer and LeastSquaresTrainer are single stage trainers. They use all
available training patterns and a specific optimization method to find optimum network
weights. The best set of weights is a set that minimizes the error between the network output
and its training targets. The following code fragment illustrates how to use the quasi-Newton
method for single stage network training.

// ***************************************************************
// EXAMPLE CODE FOR ONE-STAGE TRAINER
// ***************************************************************

double xData[,] = ...
double yData[,] = ...
QuasiNewtonTrainer trainer = new QuasiNewtonTrainer();
trainer.GradientTolerance = 1.0e-7;
trainer.Train(network, xData, yData);

.

.

.
// ***************************************************************

In this example, xData and yData are two-dimensional arrays containing the input attributes
and output targets respectively. The number of rows in these arrays is equal to the number of
training patterns. The number of columns in xData is equal to the number of input attributes,
after applying any necessary preprocessing. The number of columns in yData is equal to the
number of network outputs. The GradientTolerance property is one of several optional
settings for tailoring the convergence criteria used with the training optimizer.

LeastSquaresTrainer is another single stage trainer. There are two principal differences
between this trainer and the quasi-Newton trainer. First their optimization algorithms are
different. The least squares trainer uses the Levenberg-Marquardt algorithm to optimize the
network. As the name implies, the quasi-Newton trainer uses a modified Newton algorithm for
optimization. In some applications, depending upon the data and the network architecture, one
method may train the network faster than the other.

Another key difference between these single stage trainers is that the least squares trainer only
uses one error function, the sum of squared errors. The quasi-Newton trainer, by default, uses
the same error function. However, it also has an interface that accepts a user-supplied error
function.

Multistage Trainers

When there are a large number of training patterns, single stage trainers will often take too
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long to complete network training. For these applications, a multistage trainer could be used to
reduce training time. Multistage trainers provide considerably more flexibility in designing an
optimum training scheme. All of these trainers break network training into two stages. Stage II
is optional. That is, a multistage trainer can be requested to only conduct Stage I training, or
it can be requested to conduct both Stage I and II training.

The main difference between Stage I and II training is that Stage I training is conducted
multiple times using randomly selected subsets of all available training patterns. Each training
session is referred to as an epoch. Although each epoch uses a different set of randomly selected
training patterns, the number of patterns is the same for every epoch. Typically, because they
are using different data, the solutions vary among epochs.

Stage II training is conducted following the Stage I training using the best set of weights
obtained during Stage I. This ensures that the weights developed during Stage II training will
always be as good as or better than those determined during Stage I training. The entire set of
original training patterns is used during Stage II training, and only one training session is
completed.

There is no requirement to use the same trainer for both stages, although there is nothing
wrong with that approach. The least squares trainer might be used for Stage I training and the
quasi-Newton trainer might be used for Stage II training. In addition, the optimization settings
for each trainer can be different. The multistage trainer is implemented using the
EpochTrainer class.

The following code fragment illustrates the use of the epoch multistage trainer:

// ***************************************************************
// EXAMPLE CODE FOR MULTISTAGE EPOCH TRAINER
// ***************************************************************

double xData[,] = ...
double yData[,] = ...
QuasiNewtonTrainer stageITrainer = new QuasiNewtonTrainer();
LeastSquaresTrainer stageIITrainer = new LeastSquaresTrainer();
EpochTrainer trainer = new EpochTrainer(stageITrainer, stageIITrainer);
trainer.NumberOfEpochs = 20;
trainer.EpochSize = 3000;

.

.

.
// ***************************************************************

In this example, a quasi-Newton trainer is selected for the Stage I trainer, and the least squares
trainer is used for Stage II. Stage I will consists of 20 training epochs. The training of each
epoch uses 3,000 randomly selected training patterns with the quasi-Newton trainer. The epoch
with the smallest training error supplies the starting values for the Stage II trainer.

Data Preprocessing

Data preprocessing, or filtering, is the term used to describe the process of scaling or
transforming input attributes into numerical values suitable for network training. In general it
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is important to scale all input attributes to a common range, either [0, 1] or [-1, 1]. The
algorithm used for obtaining values for the network weights assumes that the inputs are scaled
to one of these ranges. If some network inputs have values that cover a much broader range,
then the initial weights can be far from optimum causing network training to fail or take an
excessively long time.

Network input data are classified into three general categories: continuous, ordinal and
nominal. IMSL C# Numerical Library provides methods for preprocessing all three data types.
Continuous data are scaled using the ScaleFilter class. In addition, lagged versions of
continuous time series data can be created using the TimeSeriesFilter or
TimeSeriesClassFilter class.

Categorical data, such as color or preference ratings, are either ordinal and nominal data.
UnsupervisedOrdinalFilter and UnsupervisedNominalFilter are provided to preprocess
ordinal and nominal data respectively. UnsupervisedOrdinalFilter transforms ordinal data
into values between 0 and 1, which allows them to be treated as continuous data.

Nominal data, on the other hand, can be transformed using several methods.
UnsupervisedNominalFilter converts a single nominal variable with m classes into m columns
containing the values 0 and 1. This is referred to as binary encoding of nominal classification
information.

The following code fragment illustrates the use of some of these preprocessing methods:

// ***************************************************************
// EXAMPLE CODE FOR PREPROCESSING NOMINAL AND CONTINUOUS DATA
// ***************************************************************

double[,] yData = {....};
int[] nominalVariable={.....};
int nClasses = 3;

// Create a nominal filter for binary encoding of a nominal variable
// that has 3 categorical values

UnsupervisedNominalFilter nominalFilter =
new UnsupervisedNominalFilter(nClasses);

int[,] binaryColumns = nominalFilter.Encode(nominalVariable);

// Create a scale filter for scaling continuous data in a range of [0,1]
ScaleFilter scaleFilter = new ScaleFilter(ScaleFilter.ScalingMethod.Bounded);

// Apply the scale filter to two continuous variables, x1 and x2
scaleFilter.SetBounds(-200,1000,0,1); // Original values [-200, 1000]
scaleFilter.Encode(x1);
scaleFilter.SetBounds(0,5000,0,1); // Original values [0, 5000]
scaleFilter.Encode(x2);

// Load the encoded columns into xData
int n = nominalVariable.Length;
double[,] xData = new double[n, 3+3];
for(int i=0; i < n; i++){

xData[i,0] = x1[i];
xData[i,1] = x2[i];
for(int j=0; j < nClasses; j++) xData[i,j+2] = binaryColumns[i,j];

}
.
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.

.
// ***************************************************************

In the above example, one nominal variable consisting of values representing 3 different classes,
or categories, is encoded into 3 binary columns using UnsupervisedNominalFilter class. Two
continuous variables are scaled using the ScaleFilter class, and these five columns are then
loaded into xData in preparation for network training.

Serialization

Neural network training can require a substantial amount of time, so it is often desirable to
save a trained network for later use in forecasting. Serialization can be used to save the results
of network training.

When an object is serialized, its state is saved. However, the code implementing the class (the
class file) is not saved with the serialized file. Hence when the object is deserialized, the code
that created the serialized object should be in the classpath. Otherwise deserialization will fail.

For an object to be serialized, the class must use the Serializable attribute. The following code
fragment serializes key network and training information into four files. One contains the
network weights, another contains the training statistics, and two additional files contain the
training patterns. This is done using a write(Object,String) method that takes a file name
and writes the serialized object to that file.

// ***************************************************************
// EXAMPLE CODE FOR SAVING TRAINED NETWORK USING SERIALIZATION
// ***************************************************************
using System.Runtime.Serialization;
using System.Runtime.Serialization.Formatters.Binary;
.
.
.
// ***************************************************************
// SAVE A TRAINED NETWORK BY SAVING THE SERIALIZED NETWORK OBJECTS
// ***************************************************************
// Saving network weights and structural information

write(network, "MyNetwork.ser");
// Saving training information available from computeStatistics()

write(trainer, "MyNetworkTrainer.ser");
// Saving xData training targests

write(xData, "MyNetworkxData.ser");
// Saving yData training targets

write(yData, "MyNetworkyData.ser);

// **************************************************************************
// WRITE SERIALIZED NETWORK TO A FILE
// **************************************************************************
static public void write(System.Object obj, System.String filename)
{

System.IO.FileStream fos = new System.IO.FileStream(filename,
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System.IO.FileMode.Create);
IFormatter oos = new BinaryFormatter();
oos.Serialize(fos, obj);
fos.Close();

}

// ***************************************************************

Notice that not only is the network object serialized and saved, the trainer and training
patterns, xData and yData, are also saved. This was only done to allow someone to calculate
the additional network statistics. If these are not needed, then these training patterns need not
be saved. However, for forecasting, it is essential to remember the specific order and nature of
the network inputs used during training. This information is not saved in the network serialized
file.

When an object is deserialized, the object is reconstructed using the saved serialization file.
The following code deserializes the previously saved network information.

// ***************************************************************
// EXAMPLE CODE FOR READING TRAINED NETWORK FROM SERIALIZED FILES
// ***************************************************************
using System.Runtime.Serialization;
using System.Runtime.Serialization.Formatters.Binary;
.
.
.
// ***************************************************************
// READ THE TRAINED NETWORK FROM THE SERIALIZED NETWORK OBJECT

Network network = (Network)read("MyNetwork.ser");
// READ THE SERIALIZED XDATA[,] AND YDATA[,] ARRAYS OF TRAINING
// PATTERNS.

xData = (double[,])read("MyNetworkxData.ser");
yData = (double[,])read("MyNetworkyData.ser");

// READ THE SERIALIZED TRAINER OBJECT
Trainer trainer = (ITrainer)read("MyNetworkTrainer.ser");

// ***************************************************************
// DISPLAY TRAINING STATISTICS
// ***************************************************************

double stats[] = network.computeStatistics(xData, yData);
.
.
.

// ***************************************************************
// READ SERIALIZED NETWORK FROM A FILE
// ***************************************************************
static public System.Object read(System.String filename)
{

System.IO.FileStream fis = new System.IO.FileStream(filename,
System.IO.FileMode.Open, System.IO.FileAccess.Read);

IFormatter ois = new BinaryFormatter();
System.Object obj = (System.Object) ois.Deserialize(fis);
fis.Close();
return obj;
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}
// ***************************************************************

FeedForwardNetwork Class

Summary

A representation of a feed forward neural network.

public class Imsl.DataMining.Neural.FeedForwardNetwork : Network

Properties

HiddenLayers
virtual public Imsl.DataMining.Neural.HiddenLayer[] HiddenLayers {get; }

Description

The HiddenLayers in this Imsl.DataMining.Neural.Network (p. 1148).

InputLayer
override public Imsl.DataMining.Neural.InputLayer InputLayer {get; }

Description

The InputLayer in this Imsl.DataMining.Neural.Network (p. 1148).

Links
override public Imsl.DataMining.Neural.Link[] Links {get; }

Description

All the Links in this Imsl.DataMining.Neural.Network (p. 1148).

NumberOfInputs
override public int NumberOfInputs {get; }

Description

The number of inputs to the Imsl.DataMining.Neural.Network (p. 1148).

NumberOfLinks
override public int NumberOfLinks {get; }
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Description

The number of Links (p. 1007) in the Imsl.DataMining.Neural.Network (p. 1148).

NumberOfOutputs
override public int NumberOfOutputs {get; }

Description

The number of outputs from the Imsl.DataMining.Neural.Network (p. 1148).

NumberOfWeights
override public int NumberOfWeights {get; }

Description

The number of Weights (p. 1029) in the Imsl.DataMining.Neural.Network (p. 1148).

OutputLayer
override public Imsl.DataMining.Neural.OutputLayer OutputLayer {get; }

Description

The neural network OutputLayer.

Perceptrons
override public Imsl.DataMining.Neural.Perceptron[] Perceptrons {get; }

Description

The Perceptrons in this Imsl.DataMining.Neural.Network (p. 1148).

Weights
override public double[] Weights {get; set; }

Description

The Weights (p. 1029) for the Links (p. 1007) in this Imsl.DataMining.Neural.Network
(p. 1148).
The array contains the Weights for each Link followed by the Perceptron
Imsl.DataMining.Neural.Perceptron.Bias (p. 1026) values. The Link Weights are the
order in which the Links were created. The Weight values are first, followed by the Bias
values in the Imsl.DataMining.Neural.HiddenLayer (p. 1020) and then the Bias values in
the Imsl.DataMining.Neural.FeedForwardNetwork.OutputLayer (p. 1005), and then by
the order in which the Perceptrons (p. 1026) were created.

Constructor

FeedForwardNetwork
public FeedForwardNetwork()
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Description

Creates a new instance of FeedForwardNetwork.

Methods

CreateHiddenLayer
override public Imsl.DataMining.Neural.HiddenLayer CreateHiddenLayer()

Description

Creates a HiddenLayer.

Returns

A HiddenLayer object which specifies a neural network hidden layer.

FindLink
virtual public Imsl.DataMining.Neural.Link
FindLink(Imsl.DataMining.Neural.Node from, Imsl.DataMining.Neural.Node to)

Description

Returns the Link between two Nodes.

Parameters

from – The origination Node.

to – The destination Node.

Returns

A Link between the two Nodes, or null if no such Link exists.

FindLinks
virtual public Imsl.DataMining.Neural.Link[]
FindLinks(Imsl.DataMining.Neural.Node to)

Description

Returns all of the Links to a given Node.

Parameter

to – A Node whose Links are to be determined.

Returns

An array of Links containing all of the Links to the given Node.

Forecast
override public double[] Forecast(double[] x)
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Description

Computes a forecast using the Imsl.DataMining.Neural.Network (p. 1148).

Parameter

x – A double array of values to which the Nodes (p. 1024) in the
Imsl.DataMining.Neural.FeedForwardNetwork.InputLayer (p. 1004) are to be set.

Returns

A double array containing the values of the Nodes in the
Imsl.DataMining.Neural.FeedForwardNetwork.OutputLayer (p. 1005).

GetForecastGradient
override public double[,] GetForecastGradient(double[] xData)

Description

Returns the derivatives of the outputs with respect to the Weights (p. 1029).

The value of gradient[i][j] is dyi/dwj , where yi is the i-th output and wj is the j-th
weight.

Parameter

xData – A double array which specifies the input values at which the gradient is to
be evaluated.

Returns

A double array containing the gradient values.

Link
virtual public Imsl.DataMining.Neural.Link Link(Imsl.DataMining.Neural.Node
from, Imsl.DataMining.Neural.Node to, double weight)

Description

Establishes a Link between two Nodes with a specified Weight (p. 1029).

Parameters

from – The origination Node.

to – The destination Node.

weight – A double which specifies the Weight to be given the Link.

Returns

A Link between the two Nodes.

Link
virtual public Imsl.DataMining.Neural.Link Link(Imsl.DataMining.Neural.Node
from, Imsl.DataMining.Neural.Node to)
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Description

Establishes a Link between two Nodes.

Any existing Link between these Nodes is removed.

Parameters

from – The origination Node.

to – The destination Node.

Returns

A Link between the two Nodes.

LinkAll
virtual public void LinkAll()

Description

For each Imsl.DataMining.Neural.Layer (p. 1018) in the Imsl.DataMining.Neural.Network
(p. 1148), link each Imsl.DataMining.Neural.Node (p. 1024) in the Layer to each Node in
the next Layer.

LinkAll
virtual public void LinkAll(Imsl.DataMining.Neural.Layer from,
Imsl.DataMining.Neural.Layer to)

Description

Links all of the Nodes (p. 1024) in one Layer to all of the Nodes in another Layer.

Parameters

from – The origination Layer.

to – The destination Layer.

Remove
virtual public void Remove(Imsl.DataMining.Neural.Link link)

Description

Removes a Link from the Imsl.DataMining.Neural.Network (p. 1148).

Parameter

link – The Link deleted from the Network.

SetEqualWeights
virtual public void SetEqualWeights(double[,] xData)
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Description

Initializes network weights using equal weighting.

The equal weights approach starts by assigning equal values to the inputs of each
perceptron. If a perceptron has 4 inputs, then this method starts by assigning the value
1/4 to each of the perceptron’s input weights. The bias weight is initially assigned a value
of zero.

The weights for the first layer of perceptrons, either the first hidden layer if the number of
layers is greater than 1 or the output layer, are scaled using the training patterns. Scaling
is accomplished by dividing the initial weights for the first layer by the standard
deviation, s, of the potential for that perceptron. The bias weight is set to -avg/s, where
avg is the average potential for that perceptron. This makes the average potential for the
perceptrons in this first layer approximately 0 and its standard deviation equal to 1.

This reduces the possibility of saturation during network training resulting from very
large or small values for the perceptrons potential. During training random noise is added
to these intial values at each training stage. If the epoch trainer is used, noise is added to
these initial values at the start of each epoch.

Parameter

xData – An input double matrix containing training patterns. The number of
columns in xData must equal the number of nodes in the input layer.

SetRandomWeights
virtual public void SetRandomWeights(double[,] xData, System.Random random)

Description

Initializes network weights using random weights.

The random weights algorithm assigns equal weights to all perceptrons, except those in
the first layer connected to the input layer. Like the equal weights algorithm, perceptrons
not in the first layer are assigned weights 1/k, where k is the number of inputs connected
to that perceptron.

For the first layer perceptron weights, they are initially assigned values from the uniform
random distribution on the interval [-0.5, +0.5]. These are then scaled using the training
patterns. The random weights for a perceptron are divided by s, the standard deviation
of the potential for that perceptron calculated using the initial random values. Its bias
weight is set to -avg/s, where avg is the average potential for that perceptron. This makes
the average potential for the perceptrons in this first layer approximately 0 and its
standard deviation equal to 1.

This reduces the possibility of saturation during network training resulting from very
large or small values for the perceptrons potential. During training random noise is added
to these intial values at each training stage. If the epoch trainer is used, noise is added to
these initial values at the start of each epoch.
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Parameters

xData – An input double matrix containing training patterns. The number of
columns in xData must equal the number of nodes in the input layer.

random – A Random object.

ValidateLink
virtual protected internal void ValidateLink(Imsl.DataMining.Neural.Node
from, Imsl.DataMining.Neural.Node to)

Description

Checks that a
Imsl.DataMining.Neural.FeedForwardNetwork.Link(Imsl.DataMining.Neural.Node,Imsl.DataMining.Neural.Node)
(p. 1007) between two Nodes is valid.

In a feed forward network a link must be from a node in one layer to a node in a later
layer. Intermediate layers can be skipped, but a link cannot go backward.

Parameters

from – The origination Node.

to – The destination Node.

System.ArgumentException id is thrown if the Link is not valid

Description

A Network contains an Imsl.DataMining.Neural.FeedForwardNetwork.InputLayer (p. 1004), an
Imsl.DataMining.Neural.FeedForwardNetwork.OutputLayer (p. 1005) and zero or more
HiddenLayers (p. 1020). The null InputLayer and OutputLayer are automatically created by
the Network constructor. The InputNodes (p. 1025) are added using the
FeedForwardNetwork.InputLayer.CreateInputs(nInputs) method. Output Perceptrons (p.
1026) are added using the
FeedForwardNetwork.OutputLayer.CreatePerceptrons(nOutputs), and HiddenLayers can
be created using the
FeedForwardNetwork.CreateHiddenLayer().CreatePerceptrons(nPerceptrons) method.

The InputLayer contains InputNodes. The HiddenLayers and OutputLayers contain
Perceptron nodes. These Nodes (p. 1024) are created using factory methods in the Layers (p.
1018).

The Network also contains Links (p. 1007) between Nodes. Links are created by methods in
this class.

Each Link has a Weight (p. 1029) and Gradient value. Each Perceptron node has a Bias (p.
1026) value. When the Network is trained, the Weight and Bias values are used as initial
guesses. After the Network is trained the Weight, gradient and Bias values are set to the values
computed by the training.

A feed forward network is a network in which links are only allowed from one layer to a
following layer.
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Example: FeedForwardNetwork

This example trains a 2-layer network using 100 training patterns from one nominal and one
continuous input attribute. The nominal attribute has three classifications which are encoded
using binary encoding. This results in three binary network input columns. The continuous
input attribute is scaled to fall in the interval [0,1].

The network training targets were generated using the relationship:

y = 10*X1 + 20*X2 + 30*X3 + 2.0*X4, where

X1-X3 are the three binary columns, corresponding to categories 1-3 of the nominal attribute,
and X4 is the scaled continuous attribute.

The structure of the network consists of four input nodes and two layers, with three perceptrons
in the hidden layer and one in the output layer. The following figure illustrates this structure:

INPUT LAYER

H1

H2

H3

Z1 Y1

g1(H1)

g3(H3)

g2(H2) f1(Z1)

HIDDEN LAYER

OUTPUT LAYER

X1

X2

X3

X4

There are a total of 19 weights in this network. The activations functions are all linear. Since
the target output is a linear function of the input attributes, linear activation functions
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guarantee that the network forecasts will exactly match their targets. Of course, this same
result could have been obtained using linear multiple regression. Training is conducted using
the quasi-newton trainer.

using System;
using Imsl.DataMining.Neural;
using System.Runtime.Serialization;
using System.Runtime.Serialization.Formatters.Binary;

//*****************************************************************************
// Two Layer Feed-Forward Network with 4 inputs: 1 nominal with 3 categories,
// encoded using binary encoding, 1 continuous input attribute, and 1 output
// target (continuous).
// There is a perfect linear relationship between the input and output
// variables:
//
// MODEL: Y = 10*X1+20*X2+30*X3+2*X4
//
// Variables X1-X3 are the binary encoded nominal variable and X4 is the
// continuous variable.
//*****************************************************************************

//[Serializable]
public class FeedForwardNetworkEx1 //: System.Runtime.Serialization.ISerializable
{

// Network Settings
private static int nObs = 100; // number of training patterns
private static int nInputs = 4; // four inputs
private static int nCategorical = 3; // three categorical attributes
private static int nOutputs = 1; // one continuous output
private static int nPerceptrons = 3; // perceptrons in hidden layer
private static IActivation hiddenLayerActivation;
private static IActivation outputLayerActivation;
private static System.String errorMsg = "";
// Error Status Messages for the Least Squares Trainer
private static System.String errorMsg0 =

"--> Least Squares Training Completed Successfully";
private static System.String errorMsg1 =

"--> Scaled step tolerance was satisfied. The current solution \n" +
"may be an approximate local solution, or the algorithm is making\n" +
"slow progress and is not near a solution, or the Step Tolerance\n" +
"is too big";

private static System.String errorMsg2 =
"--> Scaled actual and predicted reductions in the function are\n" +
"less than or equal to the relative function convergence\n" +
"tolerance RelativeTolerance";

private static System.String errorMsg3 =
"--> Iterates appear to be converging to a noncritical point.\n" +
"Incorrect gradient information, a discontinuous function,\n" +
"or stopping tolerances being too tight may be the cause.";

private static System.String errorMsg4 =
"--> Five consecutive steps with the maximum stepsize have\n" +
"been taken. Either the function is unbounded below, or has\n" +
"a finite asymptote in some direction, or the maximum stepsize\n" +
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"is too small.";
private static System.String errorMsg5 =

"--> Too many iterations required";

// categoricalAtt[]: A 2D matrix of values for the categorical training
// attribute. In this example, the single categorical
// attribute has 3 categories that are encoded using
// binary encoding for input into the network.
// {1,0,0} = category 1, {0,1,0} = category 2, and
// {0,0,1} = category 3.
private static double[,] categoricalAtt =

{{1, 0, 0}, {1, 0, 0}, {1, 0, 0}, {1, 0, 0}, {1, 0, 0}, {1, 0, 0},
{1, 0, 0}, {1, 0, 0}, {1, 0, 0}, {1, 0, 0}, {1, 0, 0}, {1, 0, 0},
{1, 0, 0}, {1, 0, 0}, {1, 0, 0}, {1, 0, 0}, {1, 0, 0}, {1, 0, 0},
{1, 0, 0}, {1, 0, 0}, {1, 0, 0}, {1, 0, 0}, {1, 0, 0}, {1, 0, 0},
{1, 0, 0}, {1, 0, 0}, {1, 0, 0}, {1, 0, 0}, {1, 0, 0}, {1, 0, 0},
{1, 0, 0}, {1, 0, 0}, {1, 0, 0}, {1, 0, 0}, {1, 0, 0}, {0, 1, 0},
{0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0},
{0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0},
{0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0},
{0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0},
{0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 0, 1},
{0, 0, 1}, {0, 0, 1}, {0, 0, 1}, {0, 0, 1}, {0, 0, 1}, {0, 0, 1},
{0, 0, 1}, {0, 0, 1}, {0, 0, 1}, {0, 0, 1}, {0, 0, 1}, {0, 0, 1},

{0, 0, 1}, {0, 0, 1}, {0, 0, 1}, {0, 0, 1}, {0, 0, 1}, {0, 0, 1},
{0, 0, 1}, {0, 0, 1}, {0, 0, 1}, {0, 0, 1}, {0, 0, 1}, {0, 0, 1},
{0, 0, 1}, {0, 0, 1}, {0, 0, 1}, {0, 0, 1}, {0, 0, 1}, {0, 0, 1},
{0, 0, 1}, {0, 0, 1}, {0, 0, 1}, {0, 0, 1}};

//
// contAtt[]: A matrix of values for the continuous training attribute
//
private static double[] contAtt = new double[]{4.007054658, 7.10028447,

4.740350984, 5.714553211, 6.205437459, 2.598930065, 8.65089967,
5.705787357, 2.513348184, 2.723795955, 4.1829356, 1.93280416,
0.332941608, 6.745567628, 5.593588463, 7.273544478, 3.162117939,
4.205381208, 0.16414745, 2.883418275, 0.629342241, 1.082223406,
8.180324708, 8.004894314, 7.856215418, 7.797143157, 8.350033996,
3.778254431, 6.964837082, 6.13938006, 0.48610387, 5.686627923,
8.146173848, 5.879852653, 4.587492779, 0.714028533, 7.56324211,
8.406012623, 4.225261454, 6.369220241, 4.432772218, 9.52166984,
7.935791508, 4.557155333, 7.976015058, 4.913538616, 1.473658514,
2.592338905, 1.386872932, 7.046051685, 1.432128376, 1.153580985,
5.6561491, 3.31163251, 4.648324851, 5.042514515, 0.657054195,
7.958308093, 7.557870384, 7.901990083, 5.2363088, 6.95582150,
8.362167045, 4.875903563, 1.729229471, 4.380370223, 8.527875685,
2.489198107, 3.711472959, 4.17692681, 5.844828801, 4.825754155,
5.642267843, 5.339937786, 4.440813223, 1.615143829, 7.542969339,
8.100542684, 0.98625265, 4.744819569, 8.926039258, 8.813441887,
7.749383991, 6.551841576, 8.637046998, 4.560281415, 1.386055087,
0.778869034, 3.883379045, 2.364501589, 9.648737525, 1.21754765,
3.908879368, 4.253313879, 9.31189696, 3.811953836, 5.78471629,
3.414486452, 9.345413015, 1.024053777};

//
// outs[]: A 2D matrix containing the training outputs for this network
// In this case there is an exact linear relationship between these
// outputs and the inputs: outs = 10*X1+20*X2+30*X3+2*X4, where
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// X1-X3 are the categorical variables and X4=contAtt
//
private static double[] outs = new double[]{18.01410932, 24.20056894,

19.48070197, 21.42910642, 22.41087492, 15.19786013, 27.30179934,
21.41157471, 15.02669637, 15.44759191, 18.3658712, 13.86560832,
10.66588322, 23.49113526, 21.18717693, 24.54708896, 16.32423588,
18.41076242, 10.3282949, 15.76683655, 11.25868448, 12.16444681,
26.36064942, 26.00978863, 25.71243084, 25.59428631, 26.70006799,
17.55650886, 23.92967416, 22.27876012, 10.97220774, 21.37325585,
26.2923477, 21.75970531, 19.17498556, 21.42805707, 35.12648422,
36.81202525, 28.45052291, 32.73844048, 28.86554444, 39.04333968,
35.87158302, 29.11431067, 35.95203012, 29.82707723, 22.94731703,
25.18467781, 22.77374586, 34.09210337, 22.86425675, 22.30716197,
31.3122982, 26.62326502, 29.2966497, 30.08502903, 21.31410839,
35.91661619, 35.11574077, 35.80398017, 30.4726176, 33.91164302,
36.72433409, 29.75180713, 23.45845894, 38.76074045, 47.05575137,
34.97839621, 37.42294592, 38.35385362, 41.6896576, 39.65150831,
41.28453569, 40.67987557, 38.88162645, 33.23028766, 45.08593868,
46.20108537, 31.9725053, 39.48963914, 47.85207852, 47.62688377,
45.49876798, 43.10368315, 47.274094, 39.1205628, 32.77211017,
31.55773807, 37.76675809, 34.72900318, 49.29747505, 32.4350953,
37.81775874, 38.50662776, 48.62379392, 37.62390767, 41.56943258,
36.8289729, 48.69082603, 32.04810755};

// **********************************************************************
// MAIN
// **********************************************************************
[STAThread]
public static void Main(System.String[] args)
{

double[] weight; // network weights
double[] gradient; // network gradient after training
double[,] xData; // Input Attributes for Trainer
double[,] yData; // Output Attributes for Trainer
int i, j; // array indicies
int nWeights = 0; // Number of weights obtained from network
System.String networkFileName = "FeedForwardNetworkEx1.ser";
System.String trainerFileName = "FeedForwardTrainerEx1.ser";
System.String xDataFileName = "FeedForwardxDataEx1.ser";
System.String yDataFileName = "FeedForwardyDataEx1.ser";
// **********************************************************************
// PREPROCESS TRAINING PATTERNS
// **********************************************************************
System.Console.Out.WriteLine(

"--> Starting Preprocessing of Training Patterns");
xData = new double[nObs,nInputs];
// for (int i2 = 0; i2 < nObs; i2++)
// {
// xData[i2] = new double[nInputs];
// }
yData = new double[nObs,nOutputs];
// for (int i3 = 0; i3 < nObs; i3++)
// {
// yData[i3] = new double[nOutputs];
// }
for (i = 0; i < nObs; i++)
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{
for (j = 0; j < nCategorical; j++)
{

xData[i,j] = categoricalAtt[i,j];
}
xData[i,nCategorical] = contAtt[i] / 10.0; // Scale continuous input
yData[i,0] = outs[i]; // outputs are unscaled

}
// **********************************************************************
// CREATE FEEDFORWARD NETWORK
// **********************************************************************
System.Console.Out.WriteLine("--> Creating Feed Forward Network Object");
FeedForwardNetwork network = new FeedForwardNetwork();
// setup input layer with number of inputs = nInputs = 4
network.InputLayer.CreateInputs(nInputs);
// create a hidden layer with nPerceptrons=3 perceptrons
network.CreateHiddenLayer().CreatePerceptrons(nPerceptrons);
// create output layer with nOutputs=1 output perceptron
network.OutputLayer.CreatePerceptrons(nOutputs);
// link all inputs and perceptrons to all perceptrons in the next layer
network.LinkAll();
// Get Network Perceptrons for Setting Their Activation Functions
Perceptron[] perceptrons = network.Perceptrons;
// Set all perceptrons to linear activation
for (i = 0; i < perceptrons.Length - 1; i++)
{

perceptrons[i].Activation = hiddenLayerActivation;
}
perceptrons[perceptrons.Length - 1].Activation = outputLayerActivation;
System.Console.Out.WriteLine(

"--> Feed Forward Network Created with 2 Layers");
// **********************************************************************
// TRAIN NETWORK USING QUASI-NEWTON TRAINER
// **********************************************************************
System.Console.Out.WriteLine(

"--> Training Network using Quasi-Newton Trainer");
// Create Trainer
QuasiNewtonTrainer trainer = new QuasiNewtonTrainer();
// Set Training Parameters
trainer.MaximumTrainingIterations = 1000;
// Train Network
trainer.Train(network, xData, yData);
// Check Training Error Status
switch (trainer.ErrorStatus)
{

case 0: errorMsg = errorMsg0;
break;

case 1: errorMsg = errorMsg1;
break;

case 2: errorMsg = errorMsg2;
break;

case 3: errorMsg = errorMsg3;
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break;

case 4: errorMsg = errorMsg4;
break;

case 5: errorMsg = errorMsg5;
break;

default: errorMsg = errorMsg0;
break;

}
System.Console.Out.WriteLine(errorMsg);
// **********************************************************************
// DISPLAY TRAINING STATISTICS
// **********************************************************************
double[] stats = network.ComputeStatistics(xData, yData);
// Display Network Errors
System.Console.Out.WriteLine(

"***********************************************");
System.Console.Out.WriteLine("--> SSE: " +

(float) stats[0]);
System.Console.Out.WriteLine("--> RMS: " +

(float) stats[1]);
System.Console.Out.WriteLine("--> Laplacian Error: " +

(float) stats[2]);
System.Console.Out.WriteLine("--> Scaled Laplacian Error: " +

(float) stats[3]);
System.Console.Out.WriteLine("--> Largest Absolute Residual: " +

(float) stats[4]);
System.Console.Out.WriteLine(

"***********************************************");
System.Console.Out.WriteLine("");
// **********************************************************************
// OBTAIN AND DISPLAY NETWORK WEIGHTS AND GRADIENTS
// **********************************************************************
System.Console.Out.WriteLine("--> Getting Network Weights and Gradients");
// Get weights
weight = network.Weights;
// Get number of weights = number of gradients
nWeights = network.NumberOfWeights;
// Obtain Gradient Vector
gradient = trainer.ErrorGradient;
// Print Network Weights and Gradients
System.Console.Out.WriteLine(" ");
System.Console.Out.WriteLine("--> Network Weights and Gradients:");
System.Console.Out.WriteLine(

"***********************************************");
for (i = 0; i < nWeights; i++)
{

System.Console.Out.WriteLine("w[" + i + "]=" + (float) weight[i] +
" g[" + i + "]=" + (float) gradient[i]);

}
System.Console.Out.WriteLine(

"***********************************************");
// **********************************************************************
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// SAVE THE TRAINED NETWORK BY SAVING THE SERIALIZED NETWORK OBJECT
// **********************************************************************
System.Console.Out.WriteLine("\n--> Saving Trained Network into " +

networkFileName);
write(network, networkFileName);
System.Console.Out.WriteLine("--> Saving xData into " + xDataFileName);
write(xData, xDataFileName);
System.Console.Out.WriteLine("--> Saving yData into " + yDataFileName);
write(yData, yDataFileName);
System.Console.Out.WriteLine("--> Saving Network Trainer into " +

trainerFileName);
write(trainer, trainerFileName);

}
// **************************************************************************
// WRITE SERIALIZED NETWORK TO A FILE
// **************************************************************************
static public void write(System.Object obj, System.String filename)
{

System.IO.FileStream fos = new System.IO.FileStream(filename,
System.IO.FileMode.Create);

IFormatter oos = new BinaryFormatter();
oos.Serialize(fos, obj);
fos.Close();

}
static FeedForwardNetworkEx1()
{

hiddenLayerActivation = Imsl.DataMining.Neural.Activation.Linear;
outputLayerActivation = Imsl.DataMining.Neural.Activation.Linear;

}
}

Output

--> Starting Preprocessing of Training Patterns
--> Creating Feed Forward Network Object
--> Feed Forward Network Created with 2 Layers
--> Training Network using Quasi-Newton Trainer
--> Least Squares Training Completed Successfully
***********************************************
--> SSE: 1.013444E-15
--> RMS: 2.007463E-19
--> Laplacian Error: 3.005804E-07
--> Scaled Laplacian Error: 3.535235E-10
--> Largest Absolute Residual: 2.784275E-08
***********************************************

--> Getting Network Weights and Gradients

--> Network Weights and Gradients:
***********************************************
w[0]=-1.491785 g[0]=-2.611079E-08
w[1]=-1.491785 g[1]=-2.611079E-08
w[2]=-1.491785 g[2]=-2.611079E-08
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w[3]=1.616918 g[3]=6.182035E-08
w[4]=1.616918 g[4]=6.182035E-08
w[5]=1.616918 g[5]=6.182035E-08
w[6]=4.725622 g[6]=-5.273856E-08
w[7]=4.725622 g[7]=-5.273856E-08
w[8]=4.725622 g[8]=-5.273856E-08
w[9]=6.217407 g[9]=-8.733E-10
w[10]=6.217407 g[10]=-8.733E-10
w[11]=6.217407 g[11]=-8.733E-10
w[12]=1.072258 g[12]=-1.690978E-07
w[13]=1.072258 g[13]=-1.690978E-07
w[14]=1.072258 g[14]=-1.690978E-07
w[15]=3.850755 g[15]=-1.7029E-08
w[16]=3.850755 g[16]=-1.7029E-08
w[17]=3.850755 g[17]=-1.7029E-08
w[18]=2.411725 g[18]=-1.588144E-08
***********************************************

--> Saving Trained Network into FeedForwardNetworkEx1.ser
--> Saving xData into FeedForwardxDataEx1.ser
--> Saving yData into FeedForwardyDataEx1.ser
--> Saving Network Trainer into FeedForwardTrainerEx1.ser

Layer Class

Summary

The base class for Layers in a neural network.

public class Imsl.DataMining.Neural.Layer

Properties

Index
virtual public int Index {get; set; }

Description

The Index of this Layer.

Nodes
virtual public Imsl.DataMining.Neural.Node[] Nodes {get; }

Description

A list of the Nodes in this Layer.
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Constructor

Layer
protected internal Layer(Imsl.DataMining.Neural.FeedForwardNetwork network)

Description

Constructs a Layer.

Parameter

network – The FeedForwardNetwork to which this Layer is associated.

Method

AddNode
virtual protected internal void AddNode(Imsl.DataMining.Neural.Node node)

Description

Associates a Imsl.DataMining.Neural.Perceptron (p. 1026) with this Layer.

Parameter

node – A Node to associate with this Layer.

See Also

Imsl.DataMining.Neural.InputLayer (p. 1019), Imsl.DataMining.Neural.HiddenLayer (p. 1020)

InputLayer Class

Summary

Input layer in a neural network.

public class Imsl.DataMining.Neural.InputLayer : Layer

Property

Nodes
override public Imsl.DataMining.Neural.Node[] Nodes {get; }
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Description

The Perceptrons (p. 1026) in the InputLayer.

Methods

CreateInput
virtual public Imsl.DataMining.Neural.InputNode CreateInput()

Description

Creates an InputNode in the InputLayer of the neural network.

CreateInputs
virtual public Imsl.DataMining.Neural.InputNode[] CreateInputs(int n)

Description

Creates a number of InputNodes in this Imsl.DataMining.Neural.Layer (p. 1018) of the
neural network.

Parameter

n – An int which specifies the number of InputNodes to be created in this Layer.

Returns

An InputNodearray containing the created InputNodes.

Description

An InputLayer is automatically created by Network.

See Also

Imsl.DataMining.Neural.Network (p. 1148)

HiddenLayer Class

Summary

Hidden layer in a neural network. This is created by a factory method in
Imsl.DataMining.Neural.Network (p. 1148).

public class Imsl.DataMining.Neural.HiddenLayer : Layer
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Methods

CreatePerceptron
virtual public Imsl.DataMining.Neural.Perceptron CreatePerceptron()

Description

Creates a Perceptron in this Imsl.DataMining.Neural.Layer (p. 1018) of the neural
network.

The created Perceptron uses the logistic activation function and has an initial Bias (p.
1026) value of zero.

CreatePerceptron
virtual public Imsl.DataMining.Neural.Perceptron
CreatePerceptron(Imsl.DataMining.Neural.IActivation activation, double
bias)

Description

Creates a Perceptron in this Imsl.DataMining.Neural.Layer (p. 1018) with a specified
activation function and bias (p. 1026).

Parameters

activation – The IActivation object which specifies the activation function to be
used.
bias – A double which specifies the initial value for the Bias.

CreatePerceptrons
virtual public Imsl.DataMining.Neural.Perceptron[] CreatePerceptrons(int n,
Imsl.DataMining.Neural.IActivation activation, double bias)

Description

Creates a number of Perceptrons in this Imsl.DataMining.Neural.Layer (p. 1018) with
the specified Bias (p. 1026).

Parameters

n – An int which specifies the number of Perceptrons to be created.
activation – The IActivation object which specifies the action function to be
used.
bias – A double containing the initial value to be applied as the Bias values for the
Perceptrons.

Returns

An array containing the created Perceptrons.

CreatePerceptrons
virtual public Imsl.DataMining.Neural.Perceptron[] CreatePerceptrons(int n)
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Description

Creates a number of Perceptrons in this Imsl.DataMining.Neural.Layer (p. 1018) of the
neural network.

The created Perceptrons use the logistic activation function and have an initial Bias (p.
1026) value of zero.

Parameter

n – An int which specifies the number of Perceptrons to be created.

Returns

An array containing the created Perceptrons.

See Also

Imsl.DataMining.Neural.Network.CreateHiddenLayer (p. 1150)

OutputLayer Class

Summary

Output layer in a neural network.

public class Imsl.DataMining.Neural.OutputLayer : Layer

Property

Nodes
override public Imsl.DataMining.Neural.Node[] Nodes {get; }

Description

The Imsl.DataMining.Neural.Perceptron (p. 1026)s in the
Imsl.DataMining.Neural.OutputLayer (p. 1022).

This method overrides the method in Imsl.DataMining.Neural.Layer (p. 1018) to return
the Perceptrons in an OutputPerceptron array.

Methods

CreatePerceptron
virtual public Imsl.DataMining.Neural.Perceptron CreatePerceptron()
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Description

Creates a Perceptron in this Imsl.DataMining.Neural.Layer (p. 1018) of the neural
network. By default, the created Perceptron uses the linear activation function and has
an initial Bias (p. 1026) value of zero.

CreatePerceptron
virtual public Imsl.DataMining.Neural.Perceptron
CreatePerceptron(Imsl.DataMining.Neural.IActivation activation, double
bias)

Description

Creates a Perceptron in this Imsl.DataMining.Neural.Layer (p. 1018) with a specified
Activation and Bias (p. 1026).

Parameters

activation – The Activation object which specifies the action function to be used.

bias – A double which specifies the initial value for the Bias for this Perceptron.

CreatePerceptrons
virtual public Imsl.DataMining.Neural.Perceptron[] CreatePerceptrons(int n,
Imsl.DataMining.Neural.IActivation activation, double bias)

Description

Creates a number of Perceptrons in this Imsl.DataMining.Neural.Layer (p. 1018) with
specified Activation and Bias (p. 1026).

Parameters

n – An int which specifies the number of Perceptrons to be created.

activation – The Activation object which indicates the action function to be used.

bias – A double which specifies the initial Bias for the Perceptrons.

Returns

An array containing the created Perceptrons.

CreatePerceptrons
virtual public Imsl.DataMining.Neural.Perceptron[] CreatePerceptrons(int n)

Description

Creates a number of Perceptrons in this Imsl.DataMining.Neural.Layer (p. 1018) of the
neural network. By default, they will use linear activation and a zero initial Bias (p.
1026).

Parameter

n – An int which specifies the number of Perceptrons to be created in this Layer.
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Returns

An array containing the created Perceptrons.

Description

An empty OutputLayer is automatically created by
Imsl.DataMining.Neural.FeedForwardNetwork (p. 1004).

See Also

Imsl.DataMining.Neural.Network (p. 1148)

Node Class

Summary

A Node in a neural network.

public class Imsl.DataMining.Neural.Node

Property

Layer
virtual public Imsl.DataMining.Neural.Layer Layer {get; }

Description

The Layer in which this Node exists.

Methods

GetValue
virtual public double GetValue()

Description

Returns the value of this Node.

Returns

A double which contains the value of the Node.

SetValue
virtual public void SetValue(double node)
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Description

Sets the value of this Node.

Parameter

node – A double which specifies a value for the Node.

Description

Node is an abstract class that serves as the base class for the concrete classes InputNode and
Perceptron.

See Also

Imsl.DataMining.Neural.InputNode (p. 1025), Imsl.DataMining.Neural.Perceptron (p. 1026)

InputNode Class

Summary

A Node in the Imsl.DataMining.Neural.InputLayer (p. 1019).

public class Imsl.DataMining.Neural.InputNode : Node

Methods

GetValue
override public double GetValue()

Description

Returns the value of this Imsl.DataMining.Neural.Node (p. 1024).

Returns

A double which contains the value of this InputNode.

SetValue
override public void SetValue(double node)

Description

Sets the value of this Imsl.DataMining.Neural.Node (p. 1024).

Parameter

node – A double which specifies the new value of this InputNode.

Neural Nets InputNode Class • 1025



Description

InputNodes are not created directly. Instead factory methods in InputLayer are used to create
InputNodes within the InputLayer. For example,
Imsl.DataMining.Neural.InputLayer.CreateInput (p. 1020) creates a single InputNode.

See Also

Feed Forward Class Example 1

Perceptron Class

Summary

A Perceptron node in a neural network.

public class Imsl.DataMining.Neural.Perceptron : Node

Properties

Activation
virtual public Imsl.DataMining.Neural.IActivation Activation {get; set; }

Description

The activation function.

Bias
virtual public double Bias {get; set; }

Description

The Bias for this perceptron.

The Bias has a default value of 0.

Description

Perceptrons are created by factory methods in a Layer (p. 1018). Each Perceptron has an
Activation (p. 1026) function (g) and a bias (µ) (p. 1026). The value of a Perceptron is given
by g(

∑
i wiXi + µ), where Xis are the values of nodes input to this Perceptron with Weight

(wi) (p. 1029).

Network (p. 1148) training will use existing Bias values for the starting values for the trainer.
Upon completion of Network training, the Bias values are set to the values computed by the
trainer.
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OutputPerceptron Class

Summary

A Perceptron in the output layer.

public class Imsl.DataMining.Neural.OutputPerceptron : Perceptron

Method

GetValue
override public double GetValue()

Description

Returns the value of the output perceptron determined using the current
Imsl.DataMining.Neural.Network (p. 1148) state and inputs.

Returns

A double value of the output perceptron determined using the current Network state and
inputs.

Description

OutputPerceptrons are created by factory methods in Outputlayer.

OutputPerceptrons are not created directly. Instead factory methods in OutputLayer are used
to create OutputPerceptrons within the OutputLayer. For example,
OutputLayer.createPerceptron() creates a single OutputPerceptron.

See Also

Imsl.DataMining.Neural.OutputLayer (p. 1022)

IActivation Interface

Summary

Interface implemented by perceptron activation functions.

public interface Imsl.DataMining.Neural.IActivation
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Methods

Derivative
abstract public double Derivative(double x, double y)

Description

Returns the value of the derivative of the activation function.

y is not mathematically required, but can sometimes be used to more quickly compute the
derivative.

Parameters

x – A double which specifies the point at which the activation function is to be
evaluated.

y – A double which specifies y = g(x), the value of the activation function at x.

Returns

A double containing the value of the derivative of the activation function at x.

G
abstract public double G(double x)

Description

Returns the value of the activation function.

Parameter

x – A double is the point at which the activation function is to be evaluated.

Returns

A double containing the value of the activation function at x.

Description

Standard activation functions are defined as static members of this interface. New activation
functions can be defined by implementing a method, g(double x), returning the value and a
method, derivative(double x, double y), returning the derivative of g evaluated at x where
y = g(x).

See Also

Imsl.DataMining.Neural.Perceptron (p. 1026)
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Link Class

Summary

A link in a neural network.

public class Imsl.DataMining.Neural.Link

Properties

From
virtual public Imsl.DataMining.Neural.Node From {get; }

Description

The origination Node for this Link.

To
virtual public Imsl.DataMining.Neural.Node To {get; }

Description

The destination Node for this Link.

Weight
virtual public double Weight {get; set; }

Description

The weight for this Link.

Description

Link objects are not created directly. Instead, they are created by factory methods in
FeedForwardNetwork.

The most useful method is LinkAll() (p. 1008) which creates Link objects connecting every
Imsl.DataMining.Neural.Node (p. 1024) in each Imsl.DataMining.Neural.Layer (p. 1018) to
every Node in the next Layer.

The method Link(node,node) (p. 1007) creates a Link from a Node to any Node in a later
Layer.

The method FindLink(Node,Node) (p. 1006) returns the Link connecting two Nodes in the
Imsl.DataMining.Neural.Network (p. 1148).

The method Remove(Link) (p. 1008) removes a Link from the Network.

Each Link object contains an Weight (p. 1029). Weights are used in computing Perceptron (p.
1026) values.
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See Also

Imsl.DataMining.Neural.FeedForwardNetwork (p. 1004)

ITrainer Interface

Summary

Interface implemented by classes used to train an Imsl.DataMining.Neural.Network (p. 1148).

public interface Imsl.DataMining.Neural.ITrainer

Properties

ErrorGradient
abstract public double[] ErrorGradient {get; }

Description

The value of the gradient of the error function with respect to the Weights (p. 1029).

Before training, null is returned.

ErrorStatus
abstract public int ErrorStatus {get; }

Description

The error status.

A non-zero return indicates a potential problem with the trainer.

ErrorValue
abstract public double ErrorValue {get; }

Description

The value of the error function minimized by the trainer.

Before training, NaN is returned.

Method

Train
abstract public void Train(Imsl.DataMining.Neural.Network network, double[,]
xData, double[,] yData)
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Description

Trains the neural network using supplied training patterns.

The number of columns in xData must equal the number of nodes in the input layer.
Each row of xData contains a training pattern.

The number of columns in yData must equal the number of perceptrons in the output
layer. Each row of yData contains a training pattern.

Parameters

network – A Network object, which is the Network to be trained.

xData – A double matrix containing the input training patterns.

yData – A double matrix containing the output training patterns.

Description

The method Train is used to adjust the Weights (p. 1029) in a network to best fit a set of
observed data. After a Network is trained, the other methods in this interface can be used to
check the quality of the fit.

QuasiNewtonTrainer Class

Summary

Trains an Imsl.DataMining.Neural.Network (p. 1148) using the quasi-Newton method,
MinUnconMultiVar.

public class Imsl.DataMining.Neural.QuasiNewtonTrainer :
Imsl.DataMining.Neural.ITrainer, ICloneable

Field

SUM OF SQUARES
public Imsl.DataMining.Neural.QuasiNewtonTrainer.IError SUM OF SQUARES

Description

Compute the sum of squares error.

The sum of squares error term is e(y, ŷ) = (y − ŷ)2/2.

This is the default IError object used by QuasiNewtonTrainer.
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Properties

EpochNumber
virtual protected internal int EpochNumber {set; }

Description

The epoch number for the trainer.

Error
virtual public Imsl.DataMining.Neural.QuasiNewtonTrainer.IError Error {get;
set; }
Description

The error function used by the trainer.

ErrorGradient
virtual public double[] ErrorGradient {get; }

Description

The value of the gradient of the error function with respect to the Weights (p. 1029).

Before training, null is returned.

ErrorStatus
virtual public int ErrorStatus {get; }

Description

The error status from the trainer.

Zero indicates that no errors were encountered during training. Any non-zero value
indicates that some error condition arose during training. In many cases the trainer is
able to recover from these conditions and produce a well-trained network.
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Error
Status

Condition

0 No error occurred during training.
1 The last global step failed to locate a lower point than the current

error value. The current solution may be an approximate solution
and no more accuracy is possible, or the step tolerance may be too
large.

2 Relative function convergence; both the actual and predicted relative
reductions in the error function are less than or equal to the relative
function convergence tolerance.

3 Scaled step tolerance satisfied; the current point may be an approx-
imate local solution, or the algorithm is making very slow progress
and is not near a solution, or the step tolerance is too big.

4 Optimizer threw a MinUnconMultiVar.FalseConvergenceException.
5 Optimizer threw a MinUnconMultiVar.MaxIterationsException.
6 Optimizer threw a MinUnconMultiVar.UnboundedBelowException.

See Also: Imsl.Math.FalseConvergenceException (p. 1174),
Imsl.Math.MaxIterationsException (p. 1180), Imsl.Math.UnboundedBelowException (p.
1199)

ErrorValue
virtual public double ErrorValue {get; }

Description

The final value of the error function.

Before training, NaN is returned.

FalseConvergenceTolerance
virtual public double FalseConvergenceTolerance {get; set; }

Description

The false convergence tolerance for the Imsl.DataMining.Neural.ITrainer (p. 1030).

Default: 2.22044604925031308e-14.

See Also: Imsl.Math.MinUnconMultiVar.FalseConvergenceTolerance (p. 128)

GradientTolerance
virtual public double GradientTolerance {get; set; }

Description

The gradient tolerance.

Default: cube root of machine precision.

See Also: Imsl.Math.MinUnconMultiVar.GradientTolerance (p. 128)
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MaximumStepsize
virtual public double MaximumStepsize {get; set; }

Description

The maximum step size.

The value of MaximumStepsize will be equal to -999.0 if the default value is to be used
and the Train (p. 1036) method has not been called.

See Also: (p. 129)

MaximumTrainingIterations
virtual public int MaximumTrainingIterations {get; set; }

Description

The maximum number of iterations to use in a training.

Default: 100.

See Also: (p. 129)

ParallelMode
virtual protected internal System.Collections.ArrayList[] ParallelMode {set;
}
Description

The trainer to be used in multi-threaded EpochTainer.

RelativeTolerance
virtual public double RelativeTolerance {get; set; }

Description

The relative tolerance.

It must be in the interval [0,1]. Its default value is 3.66685e-11.

See Also: Imsl.Math.MinUnconMultiVar.RelativeTolerance (p. 129)

StepTolerance
virtual public double StepTolerance {get; set; }

Description

The scaled step tolerance.

The second stopping criterion for Imsl.Math.MinUnconMultiVar (p. 127), the optimizer
used by this Imsl.DataMining.Neural.ITrainer (p. 1030), is that the scaled distance
between the last two steps be less than the step tolerance.

Default: 3.66685e-11.

See Also: Imsl.Math.MinUnconMultiVar.StepTolerance (p. 129)
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TrainingIterations
virtual public int TrainingIterations {get; }

Description

The number of iterations used during training.

See Also: (p. 128)

UseBackPropagation
virtual public bool UseBackPropagation {get; set; }

Description

Specify the use of the back propagation algorithm for gradient calculations during
network training.

By default, the quasi-newton algorithm optimizes the network using numerical gradients.
This method directs the quasi-newton trainer to use the back propagation algorithm for
gradient calculations during network training. Depending upon the data and network
architecture, one approach is typically faster than the other, or is less sensitive to finding
local network optima.

Constructor

QuasiNewtonTrainer
public QuasiNewtonTrainer()

Description

Constructs a QuasiNewtonTrainer object.

Methods

Clone
virtual public Object Clone()

Description

Clones a copy of the trainer.

GetError
virtual public Imsl.DataMining.Neural.QuasiNewtonTrainer.IError GetError()

Description

Returns the function used to compute the error to be minimized.
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Returns

The IError object containing the function to be minimized.

SetError
virtual public void
SetError(Imsl.DataMining.Neural.QuasiNewtonTrainer.IError error)

Description

Sets the function that computes the network error.
The default is to compute the sum of squares error, SUM OF SQUARES.
Parameter

error – The IError object containing the function to be used to compute the
network error.

Train
virtual public void Train(Imsl.DataMining.Neural.Network network, double[,]
xData, double[,] yData)

Description

Trains the neural network using supplied training patterns.
The number of columns in xData must equal the number of Nodes (p. 1024) in the input
layer.
The number of columns in yData must equal the number of Perceptrons (p. 1026) in the
output layer.
Each row of xData and yData contains a training pattern. The number of rows in these
two arrays must be at least equal to the number of Weights (p. 1029) in the Network.
Parameters

network – The Network to be trained.
xData – An input double matrix containing training patterns.
yData – An output double matrix containing output training patterns.

See Also

Imsl.Math.MinUnconMultiVar (p. 127)

QuasiNewtonTrainer.IError Interface

Summary

Error function to be minimized by trainer.
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public interface Imsl.DataMining.Neural.QuasiNewtonTrainer.IError

Methods

Error
abstract public double Error(double[] computed, double[] expected)

Description

The contribution to the error from a single training output target. This is the function
e(yi, ŷi).

Parameters

computed – A double representing the computed value.

expected – A double representing the expected value.

Returns

A double representing the contribution to the error from a single training output target.

ErrorGradient
abstract public double[] ErrorGradient(double[] computed, double[] expected)

Description

The derivative of the error function with respect to the forecast output.

Parameters

computed – A double representing the computed value.

expected – A double representing the expected value.

Returns

A double representing the derivative of the error function with respect to the forecast
output.

Description

This trainer attempts to solve the problem

min
w

n−1∑
i=0

e(yi, ŷi)

where w are the weights, n is the number of training patterns, yi is a training target output and
ŷi is its forecast value.

This interface defines the function e(y, ŷ) and its derivative with respect to its computed value,
de/dŷ.
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LeastSquaresTrainer Class

Summary

Trains a Imsl.DataMining.Neural.FeedForwardNetwork (p. 1004) using a Levenberg-Marquardt
algorithm for minimizing a sum of squares error.

public class Imsl.DataMining.Neural.LeastSquaresTrainer :
Imsl.DataMining.Neural.ITrainer

Properties

EpochNumber
virtual protected internal int EpochNumber {set; }

Description

The epoch number for the trainer.

ErrorGradient
virtual public double[] ErrorGradient {get; }

Description

The value of the gradient of the error function with respect to the Weights (p. 1029).

Before training, null is returned.

ErrorStatus
virtual public int ErrorStatus {get; }

Description

The error status from the trainer.

Zero indicates that no errors were encountered during training. Any non-zero value
indicates that some error condition arose during training.

In many cases the trainer is able to recover from these conditions and produce a
well-trained network.
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Value Meaning
0 All convergence tests were met.
1 Scaled step tolerance was satisfied. The current point may be an

approximate local solution, or the algorithm is making very slow
progress and is not near a solution, or StepTolerance is too big.

2 Scaled actual and predicted reductions in the function are less
than or equal to the relative function convergence tolerance
RelativeTolerance.

3 Iterates appear to be converging to a noncritical point. Incorrect
gradient information, a discontinuous function, or stopping tolerances
being too tight may be the cause.

4 Five consecutive steps with the maximum stepsize have been taken.
Either the function is unbounded below, or has a finite asymptote in
some direction, or the maximum stepsize is too small.

5 Too many iterations required.

ErrorValue
virtual public double ErrorValue {get; }

Description

The final value of the error function.

Before training, NaN is returned.

FalseConvergenceTolerance
virtual public double FalseConvergenceTolerance {get; set; }

Description

The false convergence tolerance.

Default: 1.0e-14.

See Also: NonlinLeastSquares.FalseConvergenceTolerance (p. 135)

GradientTolerance
virtual public double GradientTolerance {get; set; }

Description

The gradient tolerance.

Default: 2.0e-5.

See Also: NonlinLeastSquares.GradientTolerance (p. 136)

InitialTrustRegion
virtual public double InitialTrustRegion {get; set; }
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Description

The initial trust region.
Default: unlimited trust region.
The value of InitialTrustRegion will be equal to -999.0 if the default value is to be
used and the Train method has not been called.
See Also: NonlinLeastSquares.InitialTrustRegion (p. 136)

MaximumStepsize
virtual public double MaximumStepsize {get; set; }

Description

The maximum step size.
Default: 103||w||2, where w are the values of the Weights (p. 1029) in the network when
training starts.
The value of MaximumStepsize will be equal to -999.0 if the default value is to be used
and the Train method has not been called.
See Also: NonlinLeastSquares.MaximumStepsize (p. 136)

MaximumTrainingIterations
virtual public int MaximumTrainingIterations {get; set; }

Description

The maximum number of iterations used by the nonlinear least squares solver.
Its default value is 1000.
See Also: NonlinLeastSquares.RelativeTolerance (p. 136)

ParallelMode
virtual protected internal System.Collections.ArrayList[] ParallelMode {set;
}
Description

The trainer to be used in multi-threaded EpochTainer.

RelativeTolerance
virtual public double RelativeTolerance {get; set; }

Description

The relative tolerance.
It must be in the interval [0,1]. Its default value is 1.0e-20.
See Also: NonlinLeastSquares.RelativeTolerance (p. 136)

StepTolerance
virtual public double StepTolerance {get; set; }
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Description

The step tolerance used to step between Weights (p. 1029).

Default: 1.0e-5.

See Also: NonlinLeastSquares.StepTolerance (p. 136)

Constructor

LeastSquaresTrainer
public LeastSquaresTrainer()

Description

Creates a LeastSquaresTrainer.

Method

Train
virtual public void Train(Imsl.DataMining.Neural.Network network, double[,]
xData, double[,] yData)

Description

Trains the neural network using supplied training patterns.

Each row of xData and yData contains a training pattern. These number of rows in two
arrays must be equal.

Parameters

network – The Network to be trained.

xData – A double matrix which contains the input training patterns. The number of
columns in xData must equal the number of Nodes (p. 1024) in the
Imsl.DataMining.Neural.InputLayer (p. 1019).

yData – A double matrix which contains the output training patterns. The number
of columns in yData must equal the number of Perceptrons (p. 1026) in the
Imsl.DataMining.Neural.OutputLayer (p. 1022).

See Also

NonlinLeastSquares (p. 134)
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EpochTrainer Class

Summary

Two-stage training using randomly selected training patterns in stage I.

public class Imsl.DataMining.Neural.EpochTrainer :
Imsl.DataMining.Neural.ITrainer

Properties

EpochSize
virtual public int EpochSize {get; set; }

Description

The number of randomly selected training patterns in each stage I epoch.

ErrorGradient
virtual public double[] ErrorGradient {get; }

Description

The value of the gradient of the error function with respect to the weights (p. 1149).

Before training, null is returned.

ErrorStatus
virtual public int ErrorStatus {get; }

Description

The training error status.

If there is no stage II then the number of stage I epochs that returned a non-zero error
status is returned.

ErrorValue
virtual public double ErrorValue {get; }

Description

The value of the error function.

NumberOfEpochs
virtual public int NumberOfEpochs {get; set; }
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Description

The number of epochs used during stage I training.

Random
virtual public Imsl.Stat.Random Random {get; set; }

Description

The random number generator used to perturb the stage I guesses.

Stage1Trainer
virtual protected internal Imsl.DataMining.Neural.ITrainer Stage1Trainer
{get; }
Description

The stage 1 trainer.

Stage2Trainer
virtual protected internal Imsl.DataMining.Neural.ITrainer Stage2Trainer
{get; }
Description

The stage 1 trainer.

Constructors

EpochTrainer
public EpochTrainer(Imsl.DataMining.Neural.ITrainer stage1Trainer)

Description

Creates a single stage EpochTrainer. Stage II training is bypassed.

Parameter

stage1Trainer – The ITrainer used in stage I.

EpochTrainer
public EpochTrainer(Imsl.DataMining.Neural.ITrainer stage1Trainer,
Imsl.DataMining.Neural.ITrainer stage2Trainer)

Description

Creates a two-stage EpochTrainer.

Parameters

stage1Trainer – The stage I ITrainer.

stage2Trainer – The stage II ITrainer, or null if stage II is to be bypassed.
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Methods

SetRandomSamples
virtual public void SetRandomSamples(Imsl.Stat.Random randomA,
Imsl.Stat.Random randomB)

Description

Sets the random number generators used to select random training patterns in stage I.

The two random number generators should be independent.

Parameters

randomA – A Random object which is the first random number generator.

randomB – A Random object which is the second random number generator,
independent of randomA.

Train
virtual public void Train(Imsl.DataMining.Neural.Network network, double[,]
xData, double[,] yData)

Description

Trains the neural network using supplied training patterns.

Each row of xData and yData contains a training pattern. These number of rows in two
arrays must be equal.

Parameters

network – The Network to be trained.

xData – A double matrix specifying the input training patterns. The number of
columns in xData must equal the number of Nodes (p. 1024) in the
Imsl.DataMining.Neural.InputLayer (p. 1019).

yData – A double containing the output training patterns. The number of columns
in yData must equal the number of Perceptrons (p. 1026) in the
Imsl.DataMining.Neural.OutputLayer (p. 1022).

Description

The EpochTrainer, is a meta-trainer that combines two trainers. The first trainer is used on a
series of randomly selected subsets of the training patterns. For each subset, the weights (p.
1149) are initialized to their initial values plus a random offset.

Stage II then refines the result found in stage I. The best result from the stage I trainings is
used as the initial guess with the second trainer operating on the full set of training patterns.
Stage II is optional, if the second trainer is null then the best stage I result is returned as the
EpochTrainer’s result.
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BinaryClassification Class

Summary

Classifies patterns into two classes.

public class Imsl.DataMining.Neural.BinaryClassification

Properties

Error
virtual public Imsl.DataMining.Neural.QuasiNewtonTrainer.IError Error {get; }

Description

Returns the error function for use by QuasiNewtonTrainer for training a binary
classification network.

Network
virtual public Imsl.DataMining.Neural.Network Network {get; }

Description

The network being used for classification.

Constructor

BinaryClassification
public BinaryClassification(Imsl.DataMining.Neural.Network network)

Description

Creates a binary classifier.

Parameter

network – Is the neural network used for classification. Its output perceptron should
use the logistic activation function.

Methods

ComputeStatistics
virtual public double[] ComputeStatistics(double[,] xData, int[] yData)
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Description

Computes the classification error statistics for the supplied network patterns and their
associated classifications.

The first element returned is the binary cross-entropy error; the second is the classification
error rate. The classification error rate is calculated by comparing the estimated
classification probabilities to the target classifications. If the estimated probability for the
target class is less than 0.5, then this is tallied as a classification error.

Parameters

xData – A double matrix specifying the input training patterns. The number of
columns in xData must equal the number of Nodes in the InputLayer.

yData – An int containing the output classification patterns. The number of
columns in yData must equal the number of Perceptrons in the OutputLayer.

Returns

A two-element double array containing the binary cross-entropy error and the
classification error rate.

PredictedClass
virtual public int PredictedClass(double[] x)

Description

Calculates the classification probablities for the input pattern x, and returns either 0 or 1
identifying the class with the highest probability.

This method is used to classify patterns into one of the two target classes based upon the
pattern’s values. The predicted classification is the class with the largest probability, i.e.
greater than 0.5.

Parameter

x – The double array containing the network input patterns to classify. The length
of x should be equal to the number of inputs in the network.

Returns

The classification predicted by the trained network for x. This will be either 0 or 1.

Probabilities
virtual public double[] Probabilities(double[] x)

Description

Returns classification probabilities for the input pattern x.

Calculates the two probabilities for the pattern supplied: P (C1) and P (C2). The
probability that the pattern belongs to the first class, P (C1), is estimated using the
logistic function of the output perceptron’s potential. The probability for the second class
is calculated as P (C2) = 1− P (C1). The predicted classification is the class with the
largest probability, i.e. greater than 0.5.
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Parameter

x – A double array containing the network input pattern to classify. The length of x
must equal the number of nodes in the input layer.

Returns

The probability of x being in class C1, followed by the probability of x being in class C2.

Train
virtual public void Train(Imsl.DataMining.Neural.ITrainer trainer, double[,]
xData, int[] yData)

Description

Trains the classification neural network using supplied trainer and patterns.

Parameters

trainer – A Trainer object, which is used to train the network. The error function
in any QuasiNewton trainer included in trainer should be set to the error function
from this class using the Imsl.DataMining.Neural.BinaryClassification.Error (p.
1045) method provided by this class.

xData – A double matrix containing the input training patterns. The number of
columns in xData must equal the number of nodes in the input layer. Each row of
xData contains a training pattern.

yData – An int array containing the output classification values. These values must
be 0 or 1.

Description

Uses a FeedForwardNetwork to solve binary classification problems. In these problems, the
target output for the network is the probability that the pattern falls into one of two classes.
The first class, P (C1), is usually equal to one and the second class, P (C2) equal to zero. These
probabilities are then used to assign patterns to one of the two classes. Typical applications
include determining whether a credit applicant is a good or bad credit risk, and determining
whether a person should or should not receive a particular treatment based upon their physical,
clinical and laboratory information. This class signals that network training will minimize the
binary cross-entropy error, and that network output is the probability that the pattern belongs
to the first class, P (C1). Which is calculated by applying the logistic activation function to the
potential of the single output. The probability for the second class is calculated by
P (C2) = 1− P (C1).

Example 1: Binary Classification

This example trains a 3-layer network using 48 training patterns from four nominal input
attributes. The first two nominal attributes have two classifications. The third and fourth
nominal attributes have three and four classifications respectively. All four attributes are
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encoded using binary encoding. This results in eleven binary network input columns. The
output class is 1 if the first two nominal attributes sum to 1, and 0 otherwise.

The structure of the network consists of eleven input nodes and three layers, with three
perceptrons in the first hidden layer, two perceptrons in the second hidden layer, and one
perceptron in the output layer.

There are a total of 47 weights in this network, including the six bias weights. The linear
activation function is used for both hidden layers. Since the target output is binary
classification the logistic activation function is used in the output layer. Training is conducted
using the quasi-newton trainer with the binary-entropy error function provided by the
BinaryClassification class.

using System;
using Imsl.DataMining.Neural;
using Random = Imsl.Stat.Random;
using System.Runtime.Serialization;
using System.Runtime.Serialization.Formatters.Binary;
using PrintMatrix = Imsl.Math.PrintMatrix;
using PrintMatrixFormat = Imsl.Math.PrintMatrixFormat;

//*****************************************************************************
// Two Layer Feed-Forward Network with 11 inputs: 4 nominal with 2,2,3,4
// categories, encoded using binary encoding, and 1 output target (class).
//
// new classification training_ex1.c
//*****************************************************************************

[Serializable]
public class BinaryClassificationEx1
{

// Network Settings
private static int nObs = 48; // number of training patterns
private static int nInputs = 11; // four nominal with 2,2,3,4 categories
private static int nCategorical = 11; // three categorical attributes
private static int nOutputs = 1; // one continuous output (nClasses=2)
private static int nPerceptrons1 = 3; // perceptrons in 1st hidden layer
private static int nPerceptrons2 = 2; // perceptrons in 2nd hidden layer

private static IActivation hiddenLayerActivation =
Imsl.DataMining.Neural.Activation.Linear;

private static IActivation outputLayerActivation =
Imsl.DataMining.Neural.Activation.Logistic;

/* 2 classifications */
private static int[] x1 = new int[]{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2};

/* 2 classifications */
private static int[] x2 = new int[]{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2};
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/* 3 classifications */
private static int[] x3 = new int[]{1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 1,

1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 1,
1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3};

/* 4 classifications */
private static int[] x4 = new int[]{1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1,

2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1,
2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4};

// **********************************************************************
// MAIN
// **********************************************************************
[STAThread]
public static void Main(System.String[] args)
{

double[,] xData; // Input Attributes for Trainer
int[] yData; // Output Attributes for Trainer
int i, j; // array indicies

// ******************************************************************
// Binary encode 4 categorical variables.
// Var x1 contains 2 classes
// Var x2 contains 2 classes
// Var x3 contains 3 classes
// Var x4 contains 4 classes
// *******************************************************************
int[,] z1;
int[,] z2;
int[,] z3;
int[,] z4;
UnsupervisedNominalFilter filter = new UnsupervisedNominalFilter(2);
z1 = filter.Encode(x1);
z2 = filter.Encode(x2);
filter = new UnsupervisedNominalFilter(3);
z3 = filter.Encode(x3);
filter = new UnsupervisedNominalFilter(4);
z4 = filter.Encode(x4);

/* Concatenate binary encoded z’s */
xData = new double[nObs,nInputs];
yData = new int[nObs];
for (i = 0; i < (nObs); i++)
{

for (j = 0; j < nCategorical; j++)
{

xData[i,j] = 0;
if (j < 2)

xData[i,j] = (double) z1[i,j];
if (j > 1 && j < 4)

xData[i,j] = (double) z2[i,j - 2];
if (j > 3 && j < 7)

xData[i,j] = (double) z3[i,j - 4];
if (j > 6)

xData[i,j] = (double) z4[i,j - 7];
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}
yData[i] = ((x1[i] + x2[i] == 2)?1:0);

}

// **********************************************************************
// CREATE FEEDFORWARD NETWORK
// **********************************************************************
long t0 = (System.DateTime.Now.Ticks - 621355968000000000) / 10000;

FeedForwardNetwork network = new FeedForwardNetwork();
network.InputLayer.CreateInputs(nInputs);
network.CreateHiddenLayer().CreatePerceptrons(nPerceptrons1);
network.CreateHiddenLayer().CreatePerceptrons(nPerceptrons2);
network.OutputLayer.CreatePerceptrons(nOutputs);

BinaryClassification classification = new BinaryClassification(network);

network.LinkAll();
System.Random r = new System.Random(123457);
network.SetRandomWeights(xData, r);
Perceptron[] perceptrons = network.Perceptrons;
for (i = 0; i < perceptrons.Length - 1; i++)
{

perceptrons[i].Activation = hiddenLayerActivation;
}
perceptrons[perceptrons.Length - 1].Activation = outputLayerActivation;

// **********************************************************************
// TRAIN NETWORK USING QUASI-NEWTON TRAINER
// **********************************************************************
QuasiNewtonTrainer trainer = new QuasiNewtonTrainer();
trainer.Error = classification.Error;
trainer.MaximumTrainingIterations = 1000;
trainer.MaximumStepsize = 3.0;
trainer.GradientTolerance = 1.0e-20;
trainer.FalseConvergenceTolerance = 1.0e-20;
trainer.StepTolerance = 1.0e-20;
trainer.RelativeTolerance = 1.0e-20;

classification.Train(trainer, xData, yData);

// **********************************************************************
// DISPLAY TRAINING STATISTICS
// **********************************************************************
double[] stats = classification.ComputeStatistics(xData, yData);
System.Console.Out.WriteLine(

"***********************************************");
System.Console.Out.WriteLine("--> Cross-entropy error: " +

(float)stats[0]);
System.Console.Out.WriteLine("--> Classification error rate: " +

(float)stats[1]);
System.Console.Out.WriteLine(

"***********************************************");
System.Console.Out.WriteLine("");
// **********************************************************************
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// OBTAIN AND DISPLAY NETWORK WEIGHTS AND GRADIENTS
// **********************************************************************
double[] weight = network.Weights;
double[] gradient = trainer.ErrorGradient;
double[,] wg = new double[weight.Length,2];
for (i = 0; i < weight.Length; i++)
{

wg[i,0] = weight[i];
wg[i,1] = gradient[i];

}
PrintMatrixFormat pmf = new PrintMatrixFormat();
pmf.SetColumnLabels(new System.String[]{"Weights", "Gradients"});
new PrintMatrix().Print(pmf, wg);

// ****************************
// forecast the network
// ****************************
double[,] report = new double[nObs,6];
for (i = 0; i < nObs; i++)
{

report[i,0] = x1[i];
report[i,1] = x2[i];
report[i,2] = x3[i];
report[i,3] = x4[i];
report[i,4] = yData[i];

double[] tmp = new double[xData.GetLength(1)];
for ( j=0; j<xData.GetLength(1); j++)

tmp[j] = xData[i,j];
report[i,5] = classification.PredictedClass(tmp);

}
pmf = new PrintMatrixFormat();
pmf.SetColumnLabels( new System.String[]{"X1", "X2", "X3", "X4",

"Expected", "Predicted"});
new PrintMatrix("Forecast").Print(pmf, report);

// **********************************************************************
// DISPLAY CLASSIFICATION STATISTICS
// **********************************************************************
double[] statsClass = classification.ComputeStatistics(xData, yData);
// Display Network Errors
System.Console.Out.WriteLine(

"***********************************************");
System.Console.Out.WriteLine("--> Cross-Entropy Error: " +

(float)statsClass[0]);
System.Console.Out.WriteLine("--> Classification Error: " +

(float)statsClass[1]);
System.Console.Out.WriteLine(

"***********************************************");
System.Console.Out.WriteLine("");

long t1 = (System.DateTime.Now.Ticks - 621355968000000000) / 10000;
double time = t1 - t0;
time = time / 1000;
System.Console.Out.WriteLine("****************Time: " + time);
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System.Console.Out.WriteLine("trainer.getErrorValue = " +
trainer.ErrorValue);

}
}

Output

***********************************************
--> Cross-entropy error: 4.720552E-10
--> Classification error rate: 0
***********************************************

Weights Gradients
0 1.2162782442665 -1.82357413516679E-12
1 -7.10104582036137 4.00527512119464E-13
2 -4.48633964224305 9.39571675391483E-13
3 -2.60725959847226 4.68033472575564E-09
4 4.29051046747984 -1.02798278799989E-09
5 4.48156618131766 -2.41147856556375E-09
6 2.08243325148918 4.67851115006368E-09
7 -6.8692099513798 -1.02758226014584E-09
8 -4.71797133795929 -2.41053899308624E-09
9 -3.15604455817262 1.55679543763229E-18
10 6.63883077983807 -3.41932577068912E-19
11 4.87196888567521 -8.02117593888885E-19
12 -2.30032598691343 -1.82357569033459E-12
13 -1.68298220558961 4.0052785369455E-13
14 1.57459851986179 9.39572476670461E-13
15 -0.26445116158594 5.9515904744093E-10
16 -0.649412990131875 -1.30719978963237E-10
17 -0.124557044207741 -3.06647573325737E-10
18 0.125744106228649 4.08517567986988E-09
19 -0.550795793591825 -8.97262809378226E-10
20 0.213785518241935 -2.10483099303929E-09
21 -0.256460169761589 1.46860577630575E-15
22 0.719269734080646 -3.22562711613705E-16
23 0.181431096607655 -7.56679074967797E-16
24 0.708887793360319 4.98153020829334E-10
25 -0.137808725484545 -1.09413698209379E-10
26 -0.0714270451579146 -2.56666542563753E-10
27 -1.69080392381497 -1.82357569086926E-12
28 -1.05894442754156 4.00527853811983E-13
29 0.916792419031426 9.3957247694594E-13
30 0.848401861786795 4.18218023787623E-09
31 0.809968676184518 -9.1856876756949E-10
32 -0.621014362841794 -2.15481126712248E-09
33 3.92683360378712 -1.53010895435583E-09
34 3.92683360363108 -1.53010895365419E-09
35 -0.862484756249916 6.2509576909593E-10
36 -0.862484756609361 6.25095768809291E-10
37 -2.02324740009297 -1.05620718601144E-09
38 -2.02324740027673 -1.05620718552711E-09
39 1.26293424026308 -5.17748567971874E-09
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40 1.26293423968395 -5.17748567952834E-09
41 -2.95381709009517 4.67851115162047E-09
42 3.47670654419506 -1.02758226048777E-09
43 -1.14723052699407 -2.41053899388836E-09
44 -3.57249695789483 5.95710389698464E-10
45 -3.57249695784057 5.95710389425299E-10
46 5.5108803426582 4.71687575415149E-10

Forecast
X1 X2 X3 X4 Expected Predicted

0 1 1 1 1 1 1
1 1 1 1 2 1 1
2 1 1 1 3 1 1
3 1 1 1 4 1 1
4 1 1 2 1 1 1
5 1 1 2 2 1 1
6 1 1 2 3 1 1
7 1 1 2 4 1 1
8 1 1 3 1 1 1
9 1 1 3 2 1 1
10 1 1 3 3 1 1
11 1 1 3 4 1 1
12 1 2 1 1 0 0
13 1 2 1 2 0 0
14 1 2 1 3 0 0
15 1 2 1 4 0 0
16 1 2 2 1 0 0
17 1 2 2 2 0 0
18 1 2 2 3 0 0
19 1 2 2 4 0 0
20 1 2 3 1 0 0
21 1 2 3 2 0 0
22 1 2 3 3 0 0
23 1 2 3 4 0 0
24 2 1 1 1 0 0
25 2 1 1 2 0 0
26 2 1 1 3 0 0
27 2 1 1 4 0 0
28 2 1 2 1 0 0
29 2 1 2 2 0 0
30 2 1 2 3 0 0
31 2 1 2 4 0 0
32 2 1 3 1 0 0
33 2 1 3 2 0 0
34 2 1 3 3 0 0
35 2 1 3 4 0 0
36 2 2 1 1 0 0
37 2 2 1 2 0 0
38 2 2 1 3 0 0
39 2 2 1 4 0 0
40 2 2 2 1 0 0
41 2 2 2 2 0 0
42 2 2 2 3 0 0
43 2 2 2 4 0 0
44 2 2 3 1 0 0
45 2 2 3 2 0 0
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46 2 2 3 3 0 0
47 2 2 3 4 0 0

***********************************************
--> Cross-Entropy Error: 4.720552E-10
--> Classification Error: 0
***********************************************

****************Time: 0.047
trainer.getErrorValue = 4.72055172799E-10

Example 2: Binary Classification Network

This example uses a database of a complete set of possible board configurations at the end of
tic-tac-toe games, where ”x” is assumed to have played first. The target concept is ”win for x”
(i.e., true when ”x” has one of 8 possible ways to create a ”three-in-a-row”).

There are nine nominal input attributes for each square on the tic-tac-toe board and are
encoded such that 0=player x has taken, 1=player o has taken, 2=blank.

Input attributes

1. top-left-square: {x,o,b}

2. top-middle-square: {x,o,b}

3. top-right-square: {x,o,b}

4. middle-left-square: {x,o,b}

5. middle-middle-square: {x,o,b}

6. middle-right-square: {x,o,b}

7. bottom-left-square: {x,o,b}

8. bottom-middle-square: {x,o,b}

9. bottom-right-square: {x,o,b}

The predicted atribute is a win or lose at tic-tac-toe. For this example the first 626
observations are a win and the next 332 are loss.

The structure of the network consists of 27 input nodes and three layers, with five perceptrons
in the first hidden layer, three perceptrons in the second hidden layer, and one perceptron in
the output layer.

There are a total of 162 weights in this network. The activations functions are logistic for all
layers. Since the target output is binary classification the logistic activation function must be
used in the output layer. Training is conducted using the quasi-newton trainer using the binary
entropy error function provided by the BinaryClassification class.
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using System;
using Imsl.DataMining.Neural;
using PrintMatrix = Imsl.Math.PrintMatrix;
using PrintMatrixFormat = Imsl.Math.PrintMatrixFormat;
using Random = Imsl.Stat.Random;

//*****************************************************************************
// Three Layer Feed-Forward Network with 4 inputs, all
// continuous, and 2 classification categories.
//
// new classification training_ex4.c
//
// Three Layer Feed-Forward Network with 4 inputs, all
// continuous, and 2 classification categories.
//
// This database encodes the complete set of possible board configurations
// at the end of tic-tac-toe games, where "x" is assumed to have played
// first. The target concept is "win for x" (i.e., true when "x" has one
// of 8 possible ways to create a "three-in-a-row").
//
// Predicted attribute: win or loose at tic-tac-toe
// First 626 obs are positive (win) and the next 332 are negative (loss)
//
// Input Attributes (10 categorical Attributes)
// Attribute Information: (0=player x has taken, 1=player o has taken, 2=blank)
//
// 1. top-left-square: {x,o,b}
// 2. top-middle-square: {x,o,b}
// 3. top-right-square: {x,o,b}
// 4. middle-left-square: {x,o,b}
// 5. middle-middle-square: {x,o,b}
// 6. middle-right-square: {x,o,b}
// 7. bottom-left-square: {x,o,b}
// 8. bottom-middle-square: {x,o,b}
// 9. bottom-right-square: {x,o,b}
// 10. Class: {positive,negative}
//
//*****************************************************************************

[Serializable]
public class BinaryClassificationEx2
{

private static int nObs = 958; // number of training patterns
private static int nInputs = 27; // 9 nominal coded as 0=x, 1=O, 2=blank
private static int nOutputs = 1; // one continuous output (nClasses=2)
private static int nPerceptrons1 = 5; // perceptrons in 1st hidden layer
private static int nPerceptrons2 = 3; // perceptrons in 2nd hidden layer

private static IActivation hiddenLayerActivation =
Imsl.DataMining.Neural.Activation.Logistic;

private static IActivation outputLayerActivation =
Imsl.DataMining.Neural.Activation.Logistic;

private static int[][] data = new int[][]{new int[]{0, 0, 0, 0, 1, 1, 0, 1, 1},
new int[]{0, 0, 0, 0, 1, 1, 1, 0, 1}, new int[]{0, 0, 0, 0, 1, 1, 1, 1, 0},
new int[]{0, 0, 0, 0, 1, 1, 1, 2, 2}, new int[]{0, 0, 0, 0, 1, 1, 2, 1, 2},
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new int[]{0, 0, 0, 0, 1, 1, 2, 2, 1}, new int[]{0, 0, 0, 0, 1, 2, 1, 1, 2},
new int[]{0, 0, 0, 0, 1, 2, 1, 2, 1}, new int[]{0, 0, 0, 0, 1, 2, 2, 1, 1},
new int[]{0, 0, 0, 0, 2, 1, 1, 1, 2}, new int[]{0, 0, 0, 0, 2, 1, 1, 2, 1},
new int[]{0, 0, 0, 0, 2, 1, 2, 1, 1}, new int[]{0, 0, 0, 1, 0, 1, 0, 1, 1},
new int[]{0, 0, 0, 1, 0, 1, 1, 0, 1}, new int[]{0, 0, 0, 1, 0, 1, 1, 1, 0},
new int[]{0, 0, 0, 1, 0, 1, 1, 2, 2}, new int[]{0, 0, 0, 1, 0, 1, 2, 1, 2},
new int[]{0, 0, 0, 1, 0, 1, 2, 2, 1}, new int[]{0, 0, 0, 1, 0, 2, 1, 1, 2},
new int[]{0, 0, 0, 1, 0, 2, 1, 2, 1}, new int[]{0, 0, 0, 1, 0, 2, 2, 1, 1},
new int[]{0, 0, 0, 1, 1, 0, 0, 1, 1}, new int[]{0, 0, 0, 1, 1, 0, 1, 0, 1},
new int[]{0, 0, 0, 1, 1, 0, 1, 1, 0}, new int[]{0, 0, 0, 1, 1, 0, 1, 2, 2},
new int[]{0, 0, 0, 1, 1, 0, 2, 1, 2}, new int[]{0, 0, 0, 1, 1, 0, 2, 2, 1},
new int[]{0, 0, 0, 1, 1, 2, 0, 1, 2}, new int[]{0, 0, 0, 1, 1, 2, 0, 2, 1},
new int[]{0, 0, 0, 1, 1, 2, 1, 0, 2}, new int[]{0, 0, 0, 1, 1, 2, 1, 2, 0},
new int[]{0, 0, 0, 1, 1, 2, 2, 0, 1}, new int[]{0, 0, 0, 1, 1, 2, 2, 1, 0},
new int[]{0, 0, 0, 1, 1, 2, 2, 2, 2}, new int[]{0, 0, 0, 1, 2, 0, 1, 1, 2},
new int[]{0, 0, 0, 1, 2, 0, 1, 2, 1}, new int[]{0, 0, 0, 1, 2, 0, 2, 1, 1},
new int[]{0, 0, 0, 1, 2, 1, 0, 1, 2}, new int[]{0, 0, 0, 1, 2, 1, 0, 2, 1},
new int[]{0, 0, 0, 1, 2, 1, 1, 0, 2}, new int[]{0, 0, 0, 1, 2, 1, 1, 2, 0},
new int[]{0, 0, 0, 1, 2, 1, 2, 0, 1}, new int[]{0, 0, 0, 1, 2, 1, 2, 1, 0},
new int[]{0, 0, 0, 1, 2, 1, 2, 2, 2}, new int[]{0, 0, 0, 1, 2, 2, 0, 1, 1},
new int[]{0, 0, 0, 1, 2, 2, 1, 0, 1}, new int[]{0, 0, 0, 1, 2, 2, 1, 1, 0},
new int[]{0, 0, 0, 1, 2, 2, 1, 2, 2}, new int[]{0, 0, 0, 1, 2, 2, 2, 1, 2},
new int[]{0, 0, 0, 1, 2, 2, 2, 2, 1}, new int[]{0, 0, 0, 2, 0, 1, 1, 1, 2},
new int[]{0, 0, 0, 2, 0, 1, 1, 2, 1}, new int[]{0, 0, 0, 2, 0, 1, 2, 1, 1},
new int[]{0, 0, 0, 2, 1, 0, 1, 1, 2}, new int[]{0, 0, 0, 2, 1, 0, 1, 2, 1},
new int[]{0, 0, 0, 2, 1, 0, 2, 1, 1}, new int[]{0, 0, 0, 2, 1, 1, 0, 1, 2},
new int[]{0, 0, 0, 2, 1, 1, 0, 2, 1}, new int[]{0, 0, 0, 2, 1, 1, 1, 0, 2},
new int[]{0, 0, 0, 2, 1, 1, 1, 2, 0}, new int[]{0, 0, 0, 2, 1, 1, 2, 0, 1},
new int[]{0, 0, 0, 2, 1, 1, 2, 1, 0}, new int[]{0, 0, 0, 2, 1, 1, 2, 2, 2},
new int[]{0, 0, 0, 2, 1, 2, 0, 1, 1}, new int[]{0, 0, 0, 2, 1, 2, 1, 0, 1},
new int[]{0, 0, 0, 2, 1, 2, 1, 1, 0}, new int[]{0, 0, 0, 2, 1, 2, 1, 2, 2},
new int[]{0, 0, 0, 2, 1, 2, 2, 1, 2}, new int[]{0, 0, 0, 2, 1, 2, 2, 2, 1},
new int[]{0, 0, 0, 2, 2, 1, 0, 1, 1}, new int[]{0, 0, 0, 2, 2, 1, 1, 0, 1},
new int[]{0, 0, 0, 2, 2, 1, 1, 1, 0}, new int[]{0, 0, 0, 2, 2, 1, 1, 2, 2},
new int[]{0, 0, 0, 2, 2, 1, 2, 1, 2}, new int[]{0, 0, 0, 2, 2, 1, 2, 2, 1},
new int[]{0, 0, 0, 2, 2, 2, 1, 1, 2}, new int[]{0, 0, 0, 2, 2, 2, 1, 2, 1},
new int[]{0, 0, 0, 2, 2, 2, 2, 1, 1}, new int[]{0, 0, 1, 0, 0, 1, 1, 1, 0},
new int[]{0, 0, 1, 0, 1, 0, 0, 1, 1}, new int[]{0, 0, 1, 0, 1, 1, 0, 1, 0},
new int[]{0, 0, 1, 0, 1, 1, 0, 2, 2}, new int[]{0, 0, 1, 0, 1, 2, 0, 1, 2},
new int[]{0, 0, 1, 0, 1, 2, 0, 2, 1}, new int[]{0, 0, 1, 0, 2, 1, 0, 1, 2},
new int[]{0, 0, 1, 0, 2, 2, 0, 1, 1}, new int[]{0, 0, 1, 1, 0, 0, 1, 0, 1},
new int[]{0, 0, 1, 1, 0, 0, 1, 1, 0}, new int[]{0, 0, 1, 1, 0, 1, 0, 1, 0},
new int[]{0, 0, 1, 1, 0, 1, 1, 0, 0}, new int[]{0, 0, 1, 1, 0, 1, 2, 0, 2},
new int[]{0, 0, 1, 1, 0, 1, 2, 2, 0}, new int[]{0, 0, 1, 1, 0, 2, 1, 0, 2},
new int[]{0, 0, 1, 1, 0, 2, 1, 2, 0}, new int[]{0, 0, 1, 1, 0, 2, 2, 0, 1},
new int[]{0, 0, 1, 1, 0, 2, 2, 1, 0}, new int[]{0, 0, 1, 2, 0, 1, 1, 0, 2},
new int[]{0, 0, 1, 2, 0, 1, 1, 2, 0}, new int[]{0, 0, 1, 2, 0, 1, 2, 1, 0},
new int[]{0, 0, 1, 2, 0, 2, 1, 0, 1}, new int[]{0, 0, 1, 2, 0, 2, 1, 1, 0},
new int[]{0, 0, 2, 0, 1, 1, 0, 1, 2}, new int[]{0, 0, 2, 0, 1, 1, 0, 2, 1},
new int[]{0, 0, 2, 0, 1, 2, 0, 1, 1}, new int[]{0, 0, 2, 0, 2, 1, 0, 1, 1},
new int[]{0, 0, 2, 1, 0, 1, 1, 0, 2}, new int[]{0, 0, 2, 1, 0, 1, 1, 2, 0},
new int[]{0, 0, 2, 1, 0, 1, 2, 0, 1}, new int[]{0, 0, 2, 1, 0, 1, 2, 1, 0},
new int[]{0, 0, 2, 1, 0, 2, 1, 0, 1}, new int[]{0, 0, 2, 1, 0, 2, 1, 1, 0},
new int[]{0, 0, 2, 2, 0, 1, 1, 0, 1}, new int[]{0, 0, 2, 2, 0, 1, 1, 1, 0},
new int[]{0, 1, 0, 0, 0, 1, 0, 1, 1}, new int[]{0, 1, 0, 0, 0, 1, 1, 1, 0},
new int[]{0, 1, 0, 0, 1, 1, 0, 0, 1}, new int[]{0, 1, 0, 0, 1, 1, 0, 2, 2},
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new int[]{0, 1, 0, 0, 1, 2, 0, 2, 1}, new int[]{0, 1, 0, 0, 2, 1, 0, 1, 2},
new int[]{0, 1, 0, 0, 2, 1, 0, 2, 1}, new int[]{0, 1, 0, 0, 2, 2, 0, 1, 1},
new int[]{0, 1, 0, 1, 0, 0, 0, 1, 1}, new int[]{0, 1, 0, 1, 0, 0, 1, 1, 0},
new int[]{0, 1, 0, 1, 0, 1, 0, 0, 1}, new int[]{0, 1, 0, 1, 0, 1, 0, 1, 0},
new int[]{0, 1, 0, 1, 0, 1, 0, 2, 2}, new int[]{0, 1, 0, 1, 0, 1, 1, 0, 0},
new int[]{0, 1, 0, 1, 0, 1, 2, 2, 0}, new int[]{0, 1, 0, 1, 0, 2, 0, 1, 2},
new int[]{0, 1, 0, 1, 0, 2, 0, 2, 1}, new int[]{0, 1, 0, 1, 0, 2, 1, 2, 0},
new int[]{0, 1, 0, 1, 0, 2, 2, 1, 0}, new int[]{0, 1, 0, 1, 1, 0, 1, 0, 0},
new int[]{0, 1, 0, 1, 1, 0, 2, 2, 0}, new int[]{0, 1, 0, 1, 2, 0, 1, 2, 0},
new int[]{0, 1, 0, 1, 2, 0, 2, 1, 0}, new int[]{0, 1, 0, 2, 0, 1, 0, 1, 2},
new int[]{0, 1, 0, 2, 0, 1, 0, 2, 1}, new int[]{0, 1, 0, 2, 0, 1, 1, 2, 0},
new int[]{0, 1, 0, 2, 0, 1, 2, 1, 0}, new int[]{0, 1, 0, 2, 0, 2, 0, 1, 1},
new int[]{0, 1, 0, 2, 0, 2, 1, 1, 0}, new int[]{0, 1, 0, 2, 1, 0, 1, 2, 0},
new int[]{0, 1, 0, 2, 2, 0, 1, 1, 0}, new int[]{0, 1, 1, 0, 0, 0, 0, 1, 1},
new int[]{0, 1, 1, 0, 0, 0, 1, 0, 1}, new int[]{0, 1, 1, 0, 0, 0, 1, 1, 0},
new int[]{0, 1, 1, 0, 0, 0, 1, 2, 2}, new int[]{0, 1, 1, 0, 0, 0, 2, 1, 2},
new int[]{0, 1, 1, 0, 0, 0, 2, 2, 1}, new int[]{0, 1, 1, 0, 0, 1, 0, 1, 0},
new int[]{0, 1, 1, 0, 0, 1, 0, 2, 2}, new int[]{0, 1, 1, 0, 0, 1, 1, 0, 0},
new int[]{0, 1, 1, 0, 0, 1, 2, 2, 0}, new int[]{0, 1, 1, 0, 0, 2, 0, 1, 2},
new int[]{0, 1, 1, 0, 0, 2, 0, 2, 1}, new int[]{0, 1, 1, 0, 0, 2, 1, 2, 0},
new int[]{0, 1, 1, 0, 0, 2, 2, 1, 0}, new int[]{0, 1, 1, 0, 1, 0, 0, 0, 1},
new int[]{0, 1, 1, 0, 1, 0, 0, 2, 2}, new int[]{0, 1, 1, 0, 1, 1, 0, 0, 0},
new int[]{0, 1, 1, 0, 1, 2, 0, 0, 2}, new int[]{0, 1, 1, 0, 1, 2, 0, 2, 0},
new int[]{0, 1, 1, 0, 2, 0, 0, 1, 2}, new int[]{0, 1, 1, 0, 2, 0, 0, 2, 1},
new int[]{0, 1, 1, 0, 2, 1, 0, 0, 2}, new int[]{0, 1, 1, 0, 2, 1, 0, 2, 0},
new int[]{0, 1, 1, 0, 2, 2, 0, 0, 1}, new int[]{0, 1, 1, 0, 2, 2, 0, 1, 0},
new int[]{0, 1, 1, 0, 2, 2, 0, 2, 2}, new int[]{0, 1, 1, 1, 0, 0, 0, 1, 0},
new int[]{0, 1, 1, 1, 0, 0, 1, 0, 0}, new int[]{0, 1, 1, 1, 0, 0, 2, 2, 0},
new int[]{0, 1, 1, 1, 0, 1, 0, 0, 0}, new int[]{0, 1, 1, 1, 0, 2, 0, 2, 0},
new int[]{0, 1, 1, 1, 0, 2, 2, 0, 0}, new int[]{0, 1, 1, 1, 1, 0, 0, 0, 0},
new int[]{0, 1, 1, 1, 2, 2, 0, 0, 0}, new int[]{0, 1, 1, 2, 0, 0, 1, 2, 0},
new int[]{0, 1, 1, 2, 0, 0, 2, 1, 0}, new int[]{0, 1, 1, 2, 0, 1, 0, 2, 0},
new int[]{0, 1, 1, 2, 0, 1, 2, 0, 0}, new int[]{0, 1, 1, 2, 0, 2, 0, 1, 0},
new int[]{0, 1, 1, 2, 0, 2, 1, 0, 0}, new int[]{0, 1, 1, 2, 0, 2, 2, 2, 0},
new int[]{0, 1, 1, 2, 1, 2, 0, 0, 0}, new int[]{0, 1, 1, 2, 2, 1, 0, 0, 0},
new int[]{0, 1, 2, 0, 0, 0, 1, 1, 2}, new int[]{0, 1, 2, 0, 0, 0, 1, 2, 1},
new int[]{0, 1, 2, 0, 0, 0, 2, 1, 1}, new int[]{0, 1, 2, 0, 0, 1, 0, 1, 2},
new int[]{0, 1, 2, 0, 0, 1, 0, 2, 1}, new int[]{0, 1, 2, 0, 0, 1, 1, 2, 0},
new int[]{0, 1, 2, 0, 0, 1, 2, 1, 0}, new int[]{0, 1, 2, 0, 0, 2, 0, 1, 1},
new int[]{0, 1, 2, 0, 0, 2, 1, 1, 0}, new int[]{0, 1, 2, 0, 1, 0, 0, 2, 1},
new int[]{0, 1, 2, 0, 1, 1, 0, 0, 2}, new int[]{0, 1, 2, 0, 1, 1, 0, 2, 0},
new int[]{0, 1, 2, 0, 1, 2, 0, 0, 1}, new int[]{0, 1, 2, 0, 1, 2, 0, 2, 2},
new int[]{0, 1, 2, 0, 2, 0, 0, 1, 1}, new int[]{0, 1, 2, 0, 2, 1, 0, 0, 1},
new int[]{0, 1, 2, 0, 2, 1, 0, 1, 0}, new int[]{0, 1, 2, 0, 2, 1, 0, 2, 2},
new int[]{0, 1, 2, 0, 2, 2, 0, 1, 2}, new int[]{0, 1, 2, 0, 2, 2, 0, 2, 1},
new int[]{0, 1, 2, 1, 0, 0, 1, 2, 0}, new int[]{0, 1, 2, 1, 0, 0, 2, 1, 0},
new int[]{0, 1, 2, 1, 0, 1, 0, 2, 0}, new int[]{0, 1, 2, 1, 0, 1, 2, 0, 0},
new int[]{0, 1, 2, 1, 0, 2, 0, 1, 0}, new int[]{0, 1, 2, 1, 0, 2, 1, 0, 0},
new int[]{0, 1, 2, 1, 0, 2, 2, 2, 0}, new int[]{0, 1, 2, 1, 1, 2, 0, 0, 0},
new int[]{0, 1, 2, 1, 2, 1, 0, 0, 0}, new int[]{0, 1, 2, 2, 0, 0, 1, 1, 0},
new int[]{0, 1, 2, 2, 0, 1, 0, 1, 0}, new int[]{0, 1, 2, 2, 0, 1, 1, 0, 0},
new int[]{0, 1, 2, 2, 0, 1, 2, 2, 0}, new int[]{0, 1, 2, 2, 0, 2, 1, 2, 0},
new int[]{0, 1, 2, 2, 0, 2, 2, 1, 0}, new int[]{0, 1, 2, 2, 1, 1, 0, 0, 0},
new int[]{0, 2, 0, 0, 1, 1, 0, 1, 2}, new int[]{0, 2, 0, 0, 1, 1, 0, 2, 1},
new int[]{0, 2, 0, 0, 1, 2, 0, 1, 1}, new int[]{0, 2, 0, 0, 2, 1, 0, 1, 1},
new int[]{0, 2, 0, 1, 0, 1, 0, 1, 2}, new int[]{0, 2, 0, 1, 0, 1, 0, 2, 1},
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new int[]{0, 2, 0, 1, 0, 1, 1, 2, 0}, new int[]{0, 2, 0, 1, 0, 1, 2, 1, 0},
new int[]{0, 2, 0, 1, 0, 2, 0, 1, 1}, new int[]{0, 2, 0, 1, 0, 2, 1, 1, 0},
new int[]{0, 2, 0, 1, 1, 0, 1, 2, 0}, new int[]{0, 2, 0, 1, 1, 0, 2, 1, 0},
new int[]{0, 2, 0, 1, 2, 0, 1, 1, 0}, new int[]{0, 2, 0, 2, 0, 1, 0, 1, 1},
new int[]{0, 2, 0, 2, 0, 1, 1, 1, 0}, new int[]{0, 2, 0, 2, 1, 0, 1, 1, 0},
new int[]{0, 2, 1, 0, 0, 0, 1, 1, 2}, new int[]{0, 2, 1, 0, 0, 0, 1, 2, 1},
new int[]{0, 2, 1, 0, 0, 0, 2, 1, 1}, new int[]{0, 2, 1, 0, 0, 1, 0, 1, 2},
new int[]{0, 2, 1, 0, 0, 1, 1, 2, 0}, new int[]{0, 2, 1, 0, 0, 1, 2, 1, 0},
new int[]{0, 2, 1, 0, 0, 2, 0, 1, 1}, new int[]{0, 2, 1, 0, 0, 2, 1, 1, 0},
new int[]{0, 2, 1, 0, 1, 0, 0, 1, 2}, new int[]{0, 2, 1, 0, 1, 0, 0, 2, 1},
new int[]{0, 2, 1, 0, 1, 1, 0, 0, 2}, new int[]{0, 2, 1, 0, 1, 1, 0, 2, 0},
new int[]{0, 2, 1, 0, 1, 2, 0, 0, 1}, new int[]{0, 2, 1, 0, 1, 2, 0, 1, 0},
new int[]{0, 2, 1, 0, 1, 2, 0, 2, 2}, new int[]{0, 2, 1, 0, 2, 0, 0, 1, 1},
new int[]{0, 2, 1, 0, 2, 1, 0, 1, 0}, new int[]{0, 2, 1, 0, 2, 1, 0, 2, 2},
new int[]{0, 2, 1, 0, 2, 2, 0, 1, 2}, new int[]{0, 2, 1, 0, 2, 2, 0, 2, 1},
new int[]{0, 2, 1, 1, 0, 0, 1, 2, 0}, new int[]{0, 2, 1, 1, 0, 0, 2, 1, 0},
new int[]{0, 2, 1, 1, 0, 1, 0, 2, 0}, new int[]{0, 2, 1, 1, 0, 1, 2, 0, 0},
new int[]{0, 2, 1, 1, 0, 2, 0, 1, 0}, new int[]{0, 2, 1, 1, 0, 2, 1, 0, 0},
new int[]{0, 2, 1, 1, 0, 2, 2, 2, 0}, new int[]{0, 2, 1, 1, 1, 2, 0, 0, 0},
new int[]{0, 2, 1, 1, 2, 1, 0, 0, 0}, new int[]{0, 2, 1, 2, 0, 0, 1, 1, 0},
new int[]{0, 2, 1, 2, 0, 1, 0, 1, 0}, new int[]{0, 2, 1, 2, 0, 1, 1, 0, 0},
new int[]{0, 2, 1, 2, 0, 1, 2, 2, 0}, new int[]{0, 2, 1, 2, 0, 2, 1, 2, 0},
new int[]{0, 2, 1, 2, 0, 2, 2, 1, 0}, new int[]{0, 2, 1, 2, 1, 1, 0, 0, 0},
new int[]{0, 2, 2, 0, 0, 1, 0, 1, 1}, new int[]{0, 2, 2, 0, 0, 1, 1, 1, 0},
new int[]{0, 2, 2, 0, 1, 0, 0, 1, 1}, new int[]{0, 2, 2, 0, 1, 1, 0, 0, 1},
new int[]{0, 2, 2, 0, 1, 1, 0, 1, 0}, new int[]{0, 2, 2, 0, 1, 1, 0, 2, 2},
new int[]{0, 2, 2, 0, 1, 2, 0, 1, 2}, new int[]{0, 2, 2, 0, 1, 2, 0, 2, 1},
new int[]{0, 2, 2, 0, 2, 1, 0, 1, 2}, new int[]{0, 2, 2, 0, 2, 1, 0, 2, 1},
new int[]{0, 2, 2, 0, 2, 2, 0, 1, 1}, new int[]{0, 2, 2, 1, 0, 0, 1, 1, 0},
new int[]{0, 2, 2, 1, 0, 1, 0, 1, 0}, new int[]{0, 2, 2, 1, 0, 1, 1, 0, 0},
new int[]{0, 2, 2, 1, 0, 1, 2, 2, 0}, new int[]{0, 2, 2, 1, 0, 2, 1, 2, 0},
new int[]{0, 2, 2, 1, 0, 2, 2, 1, 0}, new int[]{0, 2, 2, 2, 0, 1, 1, 2, 0},
new int[]{0, 2, 2, 2, 0, 1, 2, 1, 0}, new int[]{0, 2, 2, 2, 0, 2, 1, 1, 0},
new int[]{1, 0, 0, 0, 0, 1, 0, 1, 1}, new int[]{1, 0, 0, 0, 0, 1, 1, 0, 1},
new int[]{1, 0, 0, 0, 1, 0, 1, 1, 0}, new int[]{1, 0, 0, 1, 0, 0, 0, 1, 1},
new int[]{1, 0, 0, 1, 0, 1, 0, 0, 1}, new int[]{1, 0, 0, 1, 0, 1, 0, 1, 0},
new int[]{1, 0, 0, 1, 0, 1, 0, 2, 2}, new int[]{1, 0, 0, 1, 0, 1, 2, 0, 2},
new int[]{1, 0, 0, 1, 0, 2, 0, 1, 2}, new int[]{1, 0, 0, 1, 0, 2, 0, 2, 1},
new int[]{1, 0, 0, 1, 0, 2, 2, 0, 1}, new int[]{1, 0, 0, 1, 1, 0, 0, 1, 0},
new int[]{1, 0, 0, 1, 1, 0, 2, 2, 0}, new int[]{1, 0, 0, 1, 2, 0, 2, 1, 0},
new int[]{1, 0, 0, 2, 0, 1, 0, 1, 2}, new int[]{1, 0, 0, 2, 0, 1, 0, 2, 1},
new int[]{1, 0, 0, 2, 0, 1, 1, 0, 2}, new int[]{1, 0, 0, 2, 0, 1, 2, 0, 1},
new int[]{1, 0, 0, 2, 0, 2, 0, 1, 1}, new int[]{1, 0, 0, 2, 0, 2, 1, 0, 1},
new int[]{1, 0, 0, 2, 1, 0, 1, 2, 0}, new int[]{1, 0, 0, 2, 1, 0, 2, 1, 0},
new int[]{1, 0, 0, 2, 2, 0, 1, 1, 0}, new int[]{1, 0, 1, 0, 0, 0, 0, 1, 1},
new int[]{1, 0, 1, 0, 0, 0, 1, 0, 1}, new int[]{1, 0, 1, 0, 0, 0, 1, 1, 0},
new int[]{1, 0, 1, 0, 0, 0, 1, 2, 2}, new int[]{1, 0, 1, 0, 0, 0, 2, 1, 2},
new int[]{1, 0, 1, 0, 0, 0, 2, 2, 1}, new int[]{1, 0, 1, 0, 0, 1, 1, 0, 0},
new int[]{1, 0, 1, 0, 0, 1, 2, 0, 2}, new int[]{1, 0, 1, 0, 0, 2, 1, 0, 2},
new int[]{1, 0, 1, 0, 0, 2, 2, 0, 1}, new int[]{1, 0, 1, 0, 1, 1, 0, 0, 0},
new int[]{1, 0, 1, 1, 0, 0, 0, 0, 1}, new int[]{1, 0, 1, 1, 0, 0, 2, 0, 2},
new int[]{1, 0, 1, 1, 0, 1, 0, 0, 0}, new int[]{1, 0, 1, 1, 0, 2, 0, 0, 2},
new int[]{1, 0, 1, 1, 0, 2, 2, 0, 0}, new int[]{1, 0, 1, 1, 1, 0, 0, 0, 0},
new int[]{1, 0, 1, 1, 2, 2, 0, 0, 0}, new int[]{1, 0, 1, 2, 0, 0, 1, 0, 2},
new int[]{1, 0, 1, 2, 0, 0, 2, 0, 1}, new int[]{1, 0, 1, 2, 0, 1, 0, 0, 2},
new int[]{1, 0, 1, 2, 0, 1, 2, 0, 0}, new int[]{1, 0, 1, 2, 0, 2, 0, 0, 1},
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new int[]{1, 0, 1, 2, 0, 2, 1, 0, 0}, new int[]{1, 0, 1, 2, 0, 2, 2, 0, 2},
new int[]{1, 0, 1, 2, 1, 2, 0, 0, 0}, new int[]{1, 0, 1, 2, 2, 1, 0, 0, 0},
new int[]{1, 0, 2, 0, 0, 0, 1, 1, 2}, new int[]{1, 0, 2, 0, 0, 0, 1, 2, 1},
new int[]{1, 0, 2, 0, 0, 0, 2, 1, 1}, new int[]{1, 0, 2, 0, 0, 1, 1, 0, 2},
new int[]{1, 0, 2, 0, 0, 1, 2, 0, 1}, new int[]{1, 0, 2, 0, 0, 2, 1, 0, 1},
new int[]{1, 0, 2, 1, 0, 0, 2, 0, 1}, new int[]{1, 0, 2, 1, 0, 1, 0, 0, 2},
new int[]{1, 0, 2, 1, 0, 1, 2, 0, 0}, new int[]{1, 0, 2, 1, 0, 2, 0, 0, 1},
new int[]{1, 0, 2, 1, 0, 2, 2, 0, 2}, new int[]{1, 0, 2, 1, 1, 2, 0, 0, 0},
new int[]{1, 0, 2, 1, 2, 1, 0, 0, 0}, new int[]{1, 0, 2, 2, 0, 0, 1, 0, 1},
new int[]{1, 0, 2, 2, 0, 1, 0, 0, 1}, new int[]{1, 0, 2, 2, 0, 1, 1, 0, 0},
new int[]{1, 0, 2, 2, 0, 1, 2, 0, 2}, new int[]{1, 0, 2, 2, 0, 2, 1, 0, 2},
new int[]{1, 0, 2, 2, 0, 2, 2, 0, 1}, new int[]{1, 0, 2, 2, 1, 1, 0, 0, 0},
new int[]{1, 1, 0, 0, 0, 0, 0, 1, 1}, new int[]{1, 1, 0, 0, 0, 0, 1, 0, 1},
new int[]{1, 1, 0, 0, 0, 0, 1, 1, 0}, new int[]{1, 1, 0, 0, 0, 0, 1, 2, 2},
new int[]{1, 1, 0, 0, 0, 0, 2, 1, 2}, new int[]{1, 1, 0, 0, 0, 0, 2, 2, 1},
new int[]{1, 1, 0, 0, 0, 1, 0, 0, 1}, new int[]{1, 1, 0, 0, 0, 1, 0, 1, 0},
new int[]{1, 1, 0, 0, 0, 1, 0, 2, 2}, new int[]{1, 1, 0, 0, 0, 2, 0, 1, 2},
new int[]{1, 1, 0, 0, 0, 2, 0, 2, 1}, new int[]{1, 1, 0, 0, 1, 0, 1, 0, 0},
new int[]{1, 1, 0, 0, 1, 0, 2, 2, 0}, new int[]{1, 1, 0, 0, 1, 1, 0, 0, 0},
new int[]{1, 1, 0, 0, 2, 0, 1, 2, 0}, new int[]{1, 1, 0, 0, 2, 0, 2, 1, 0},
new int[]{1, 1, 0, 1, 0, 0, 0, 0, 1}, new int[]{1, 1, 0, 1, 0, 0, 0, 1, 0},
new int[]{1, 1, 0, 1, 0, 0, 0, 2, 2}, new int[]{1, 1, 0, 1, 0, 0, 2, 2, 0},
new int[]{1, 1, 0, 1, 0, 1, 0, 0, 0}, new int[]{1, 1, 0, 1, 0, 2, 0, 0, 2},
new int[]{1, 1, 0, 1, 0, 2, 0, 2, 0}, new int[]{1, 1, 0, 1, 1, 0, 0, 0, 0},
new int[]{1, 1, 0, 1, 2, 0, 0, 2, 0}, new int[]{1, 1, 0, 1, 2, 0, 2, 0, 0},
new int[]{1, 1, 0, 1, 2, 2, 0, 0, 0}, new int[]{1, 1, 0, 2, 0, 0, 0, 1, 2},
new int[]{1, 1, 0, 2, 0, 0, 0, 2, 1}, new int[]{1, 1, 0, 2, 0, 0, 1, 2, 0},
new int[]{1, 1, 0, 2, 0, 0, 2, 1, 0}, new int[]{1, 1, 0, 2, 0, 1, 0, 0, 2},
new int[]{1, 1, 0, 2, 0, 1, 0, 2, 0}, new int[]{1, 1, 0, 2, 0, 2, 0, 0, 1},
new int[]{1, 1, 0, 2, 0, 2, 0, 1, 0}, new int[]{1, 1, 0, 2, 0, 2, 0, 2, 2},
new int[]{1, 1, 0, 2, 1, 0, 0, 2, 0}, new int[]{1, 1, 0, 2, 1, 0, 2, 0, 0},
new int[]{1, 1, 0, 2, 1, 2, 0, 0, 0}, new int[]{1, 1, 0, 2, 2, 0, 0, 1, 0},
new int[]{1, 1, 0, 2, 2, 0, 1, 0, 0}, new int[]{1, 1, 0, 2, 2, 0, 2, 2, 0},
new int[]{1, 1, 0, 2, 2, 1, 0, 0, 0}, new int[]{1, 1, 2, 0, 0, 0, 0, 1, 2},
new int[]{1, 1, 2, 0, 0, 0, 0, 2, 1}, new int[]{1, 1, 2, 0, 0, 0, 1, 0, 2},
new int[]{1, 1, 2, 0, 0, 0, 1, 2, 0}, new int[]{1, 1, 2, 0, 0, 0, 2, 0, 1},
new int[]{1, 1, 2, 0, 0, 0, 2, 1, 0}, new int[]{1, 1, 2, 0, 0, 0, 2, 2, 2},
new int[]{1, 1, 2, 0, 1, 2, 0, 0, 0}, new int[]{1, 1, 2, 0, 2, 1, 0, 0, 0},
new int[]{1, 1, 2, 1, 0, 2, 0, 0, 0}, new int[]{1, 1, 2, 1, 2, 0, 0, 0, 0},
new int[]{1, 1, 2, 2, 0, 1, 0, 0, 0}, new int[]{1, 1, 2, 2, 1, 0, 0, 0, 0},
new int[]{1, 1, 2, 2, 2, 2, 0, 0, 0}, new int[]{1, 2, 0, 0, 0, 0, 1, 1, 2},
new int[]{1, 2, 0, 0, 0, 0, 1, 2, 1}, new int[]{1, 2, 0, 0, 0, 0, 2, 1, 1},
new int[]{1, 2, 0, 0, 0, 1, 0, 1, 2}, new int[]{1, 2, 0, 0, 0, 1, 0, 2, 1},
new int[]{1, 2, 0, 0, 0, 2, 0, 1, 1}, new int[]{1, 2, 0, 0, 1, 0, 1, 2, 0},
new int[]{1, 2, 0, 0, 1, 0, 2, 1, 0}, new int[]{1, 2, 0, 0, 2, 0, 1, 1, 0},
new int[]{1, 2, 0, 1, 0, 0, 0, 1, 2}, new int[]{1, 2, 0, 1, 0, 0, 0, 2, 1},
new int[]{1, 2, 0, 1, 0, 0, 2, 1, 0}, new int[]{1, 2, 0, 1, 0, 1, 0, 0, 2},
new int[]{1, 2, 0, 1, 0, 1, 0, 2, 0}, new int[]{1, 2, 0, 1, 0, 2, 0, 0, 1},
new int[]{1, 2, 0, 1, 0, 2, 0, 1, 0}, new int[]{1, 2, 0, 1, 0, 2, 0, 2, 2},
new int[]{1, 2, 0, 1, 1, 0, 0, 2, 0}, new int[]{1, 2, 0, 1, 1, 0, 2, 0, 0},
new int[]{1, 2, 0, 1, 1, 2, 0, 0, 0}, new int[]{1, 2, 0, 1, 2, 0, 0, 1, 0},
new int[]{1, 2, 0, 1, 2, 0, 2, 2, 0}, new int[]{1, 2, 0, 1, 2, 1, 0, 0, 0},
new int[]{1, 2, 0, 2, 0, 0, 0, 1, 1}, new int[]{1, 2, 0, 2, 0, 0, 1, 1, 0},
new int[]{1, 2, 0, 2, 0, 1, 0, 0, 1}, new int[]{1, 2, 0, 2, 0, 1, 0, 1, 0},
new int[]{1, 2, 0, 2, 0, 1, 0, 2, 2}, new int[]{1, 2, 0, 2, 0, 2, 0, 1, 2},
new int[]{1, 2, 0, 2, 0, 2, 0, 2, 1}, new int[]{1, 2, 0, 2, 1, 0, 0, 1, 0},
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new int[]{1, 2, 0, 2, 1, 0, 1, 0, 0}, new int[]{1, 2, 0, 2, 1, 0, 2, 2, 0},
new int[]{1, 2, 0, 2, 1, 1, 0, 0, 0}, new int[]{1, 2, 0, 2, 2, 0, 1, 2, 0},
new int[]{1, 2, 0, 2, 2, 0, 2, 1, 0}, new int[]{1, 2, 1, 0, 0, 0, 0, 1, 2},
new int[]{1, 2, 1, 0, 0, 0, 0, 2, 1}, new int[]{1, 2, 1, 0, 0, 0, 1, 0, 2},
new int[]{1, 2, 1, 0, 0, 0, 1, 2, 0}, new int[]{1, 2, 1, 0, 0, 0, 2, 0, 1},
new int[]{1, 2, 1, 0, 0, 0, 2, 1, 0}, new int[]{1, 2, 1, 0, 0, 0, 2, 2, 2},
new int[]{1, 2, 1, 0, 1, 2, 0, 0, 0}, new int[]{1, 2, 1, 0, 2, 1, 0, 0, 0},
new int[]{1, 2, 1, 1, 0, 2, 0, 0, 0}, new int[]{1, 2, 1, 1, 2, 0, 0, 0, 0},
new int[]{1, 2, 1, 2, 0, 1, 0, 0, 0}, new int[]{1, 2, 1, 2, 1, 0, 0, 0, 0},
new int[]{1, 2, 1, 2, 2, 2, 0, 0, 0}, new int[]{1, 2, 2, 0, 0, 0, 0, 1, 1},
new int[]{1, 2, 2, 0, 0, 0, 1, 0, 1}, new int[]{1, 2, 2, 0, 0, 0, 1, 1, 0},
new int[]{1, 2, 2, 0, 0, 0, 1, 2, 2}, new int[]{1, 2, 2, 0, 0, 0, 2, 1, 2},
new int[]{1, 2, 2, 0, 0, 0, 2, 2, 1}, new int[]{1, 2, 2, 0, 1, 1, 0, 0, 0},
new int[]{1, 2, 2, 1, 0, 1, 0, 0, 0}, new int[]{1, 2, 2, 1, 1, 0, 0, 0, 0},
new int[]{1, 2, 2, 1, 2, 2, 0, 0, 0}, new int[]{1, 2, 2, 2, 1, 2, 0, 0, 0},
new int[]{1, 2, 2, 2, 2, 1, 0, 0, 0}, new int[]{2, 0, 0, 1, 0, 1, 0, 1, 2},
new int[]{2, 0, 0, 1, 0, 1, 0, 2, 1}, new int[]{2, 0, 0, 1, 0, 1, 1, 0, 2},
new int[]{2, 0, 0, 1, 0, 1, 2, 0, 1}, new int[]{2, 0, 0, 1, 0, 2, 0, 1, 1},
new int[]{2, 0, 0, 1, 0, 2, 1, 0, 1}, new int[]{2, 0, 0, 1, 1, 0, 1, 2, 0},
new int[]{2, 0, 0, 1, 1, 0, 2, 1, 0}, new int[]{2, 0, 0, 1, 2, 0, 1, 1, 0},
new int[]{2, 0, 0, 2, 0, 1, 0, 1, 1}, new int[]{2, 0, 0, 2, 0, 1, 1, 0, 1},
new int[]{2, 0, 0, 2, 1, 0, 1, 1, 0}, new int[]{2, 0, 1, 0, 0, 0, 1, 1, 2},
new int[]{2, 0, 1, 0, 0, 0, 1, 2, 1}, new int[]{2, 0, 1, 0, 0, 0, 2, 1, 1},
new int[]{2, 0, 1, 0, 0, 1, 1, 0, 2}, new int[]{2, 0, 1, 0, 0, 2, 1, 0, 1},
new int[]{2, 0, 1, 1, 0, 0, 1, 0, 2}, new int[]{2, 0, 1, 1, 0, 0, 2, 0, 1},
new int[]{2, 0, 1, 1, 0, 1, 0, 0, 2}, new int[]{2, 0, 1, 1, 0, 1, 2, 0, 0},
new int[]{2, 0, 1, 1, 0, 2, 0, 0, 1}, new int[]{2, 0, 1, 1, 0, 2, 1, 0, 0},
new int[]{2, 0, 1, 1, 0, 2, 2, 0, 2}, new int[]{2, 0, 1, 1, 1, 2, 0, 0, 0},
new int[]{2, 0, 1, 1, 2, 1, 0, 0, 0}, new int[]{2, 0, 1, 2, 0, 0, 1, 0, 1},
new int[]{2, 0, 1, 2, 0, 1, 1, 0, 0}, new int[]{2, 0, 1, 2, 0, 1, 2, 0, 2},
new int[]{2, 0, 1, 2, 0, 2, 1, 0, 2}, new int[]{2, 0, 1, 2, 0, 2, 2, 0, 1},
new int[]{2, 0, 1, 2, 1, 1, 0, 0, 0}, new int[]{2, 0, 2, 0, 0, 1, 1, 0, 1},
new int[]{2, 0, 2, 1, 0, 0, 1, 0, 1}, new int[]{2, 0, 2, 1, 0, 1, 0, 0, 1},
new int[]{2, 0, 2, 1, 0, 1, 1, 0, 0}, new int[]{2, 0, 2, 1, 0, 1, 2, 0, 2},
new int[]{2, 0, 2, 1, 0, 2, 1, 0, 2}, new int[]{2, 0, 2, 1, 0, 2, 2, 0, 1},
new int[]{2, 0, 2, 2, 0, 1, 1, 0, 2}, new int[]{2, 0, 2, 2, 0, 1, 2, 0, 1},
new int[]{2, 0, 2, 2, 0, 2, 1, 0, 1}, new int[]{2, 1, 0, 0, 0, 0, 1, 1, 2},
new int[]{2, 1, 0, 0, 0, 0, 1, 2, 1}, new int[]{2, 1, 0, 0, 0, 0, 2, 1, 1},
new int[]{2, 1, 0, 0, 0, 1, 0, 1, 2}, new int[]{2, 1, 0, 0, 0, 1, 0, 2, 1},
new int[]{2, 1, 0, 0, 0, 2, 0, 1, 1}, new int[]{2, 1, 0, 0, 1, 0, 1, 2, 0},
new int[]{2, 1, 0, 0, 2, 0, 1, 1, 0}, new int[]{2, 1, 0, 1, 0, 0, 0, 1, 2},
new int[]{2, 1, 0, 1, 0, 0, 0, 2, 1}, new int[]{2, 1, 0, 1, 0, 0, 1, 2, 0},
new int[]{2, 1, 0, 1, 0, 0, 2, 1, 0}, new int[]{2, 1, 0, 1, 0, 1, 0, 0, 2},
new int[]{2, 1, 0, 1, 0, 1, 0, 2, 0}, new int[]{2, 1, 0, 1, 0, 2, 0, 0, 1},
new int[]{2, 1, 0, 1, 0, 2, 0, 1, 0}, new int[]{2, 1, 0, 1, 0, 2, 0, 2, 2},
new int[]{2, 1, 0, 1, 1, 0, 0, 2, 0}, new int[]{2, 1, 0, 1, 1, 0, 2, 0, 0},
new int[]{2, 1, 0, 1, 1, 2, 0, 0, 0}, new int[]{2, 1, 0, 1, 2, 0, 0, 1, 0},
new int[]{2, 1, 0, 1, 2, 0, 1, 0, 0}, new int[]{2, 1, 0, 1, 2, 0, 2, 2, 0},
new int[]{2, 1, 0, 1, 2, 1, 0, 0, 0}, new int[]{2, 1, 0, 2, 0, 0, 0, 1, 1},
new int[]{2, 1, 0, 2, 0, 0, 1, 1, 0}, new int[]{2, 1, 0, 2, 0, 1, 0, 0, 1},
new int[]{2, 1, 0, 2, 0, 1, 0, 1, 0}, new int[]{2, 1, 0, 2, 0, 1, 0, 2, 2},
new int[]{2, 1, 0, 2, 0, 2, 0, 1, 2}, new int[]{2, 1, 0, 2, 0, 2, 0, 2, 1},
new int[]{2, 1, 0, 2, 1, 0, 1, 0, 0}, new int[]{2, 1, 0, 2, 1, 0, 2, 2, 0},
new int[]{2, 1, 0, 2, 1, 1, 0, 0, 0}, new int[]{2, 1, 0, 2, 2, 0, 1, 2, 0},
new int[]{2, 1, 0, 2, 2, 0, 2, 1, 0}, new int[]{2, 1, 1, 0, 0, 0, 0, 1, 2},
new int[]{2, 1, 1, 0, 0, 0, 0, 2, 1}, new int[]{2, 1, 1, 0, 0, 0, 1, 0, 2},
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new int[]{2, 1, 1, 0, 0, 0, 1, 2, 0}, new int[]{2, 1, 1, 0, 0, 0, 2, 0, 1},
new int[]{2, 1, 1, 0, 0, 0, 2, 1, 0}, new int[]{2, 1, 1, 0, 0, 0, 2, 2, 2},
new int[]{2, 1, 1, 0, 1, 2, 0, 0, 0}, new int[]{2, 1, 1, 0, 2, 1, 0, 0, 0},
new int[]{2, 1, 1, 1, 0, 2, 0, 0, 0}, new int[]{2, 1, 1, 1, 2, 0, 0, 0, 0},
new int[]{2, 1, 1, 2, 0, 1, 0, 0, 0}, new int[]{2, 1, 1, 2, 1, 0, 0, 0, 0},
new int[]{2, 1, 1, 2, 2, 2, 0, 0, 0}, new int[]{2, 1, 2, 0, 0, 0, 0, 1, 1},
new int[]{2, 1, 2, 0, 0, 0, 1, 0, 1}, new int[]{2, 1, 2, 0, 0, 0, 1, 1, 0},
new int[]{2, 1, 2, 0, 0, 0, 1, 2, 2}, new int[]{2, 1, 2, 0, 0, 0, 2, 1, 2},
new int[]{2, 1, 2, 0, 0, 0, 2, 2, 1}, new int[]{2, 1, 2, 0, 1, 1, 0, 0, 0},
new int[]{2, 1, 2, 1, 0, 1, 0, 0, 0}, new int[]{2, 1, 2, 1, 1, 0, 0, 0, 0},
new int[]{2, 1, 2, 1, 2, 2, 0, 0, 0}, new int[]{2, 1, 2, 2, 1, 2, 0, 0, 0},
new int[]{2, 1, 2, 2, 2, 1, 0, 0, 0}, new int[]{2, 2, 0, 0, 0, 1, 0, 1, 1},
new int[]{2, 2, 0, 0, 1, 0, 1, 1, 0}, new int[]{2, 2, 0, 1, 0, 0, 0, 1, 1},
new int[]{2, 2, 0, 1, 0, 0, 1, 1, 0}, new int[]{2, 2, 0, 1, 0, 1, 0, 0, 1},
new int[]{2, 2, 0, 1, 0, 1, 0, 1, 0}, new int[]{2, 2, 0, 1, 0, 1, 0, 2, 2},
new int[]{2, 2, 0, 1, 0, 2, 0, 1, 2}, new int[]{2, 2, 0, 1, 0, 2, 0, 2, 1},
new int[]{2, 2, 0, 1, 1, 0, 0, 1, 0}, new int[]{2, 2, 0, 1, 1, 0, 1, 0, 0},
new int[]{2, 2, 0, 1, 1, 0, 2, 2, 0}, new int[]{2, 2, 0, 1, 2, 0, 1, 2, 0},
new int[]{2, 2, 0, 1, 2, 0, 2, 1, 0}, new int[]{2, 2, 0, 2, 0, 1, 0, 1, 2},
new int[]{2, 2, 0, 2, 0, 1, 0, 2, 1}, new int[]{2, 2, 0, 2, 0, 2, 0, 1, 1},
new int[]{2, 2, 0, 2, 1, 0, 1, 2, 0}, new int[]{2, 2, 0, 2, 1, 0, 2, 1, 0},
new int[]{2, 2, 0, 2, 2, 0, 1, 1, 0}, new int[]{2, 2, 1, 0, 0, 0, 0, 1, 1},
new int[]{2, 2, 1, 0, 0, 0, 1, 0, 1}, new int[]{2, 2, 1, 0, 0, 0, 1, 1, 0},
new int[]{2, 2, 1, 0, 0, 0, 1, 2, 2}, new int[]{2, 2, 1, 0, 0, 0, 2, 1, 2},
new int[]{2, 2, 1, 0, 0, 0, 2, 2, 1}, new int[]{2, 2, 1, 0, 1, 1, 0, 0, 0},
new int[]{2, 2, 1, 1, 0, 1, 0, 0, 0}, new int[]{2, 2, 1, 1, 1, 0, 0, 0, 0},
new int[]{2, 2, 1, 1, 2, 2, 0, 0, 0}, new int[]{2, 2, 1, 2, 1, 2, 0, 0, 0},
new int[]{2, 2, 1, 2, 2, 1, 0, 0, 0}, new int[]{2, 2, 2, 0, 0, 0, 1, 1, 2},
new int[]{2, 2, 2, 0, 0, 0, 1, 2, 1}, new int[]{2, 2, 2, 0, 0, 0, 2, 1, 1},
new int[]{2, 2, 2, 1, 1, 2, 0, 0, 0}, new int[]{2, 2, 2, 1, 2, 1, 0, 0, 0},
new int[]{2, 2, 2, 2, 1, 1, 0, 0, 0}, new int[]{0, 0, 1, 0, 0, 1, 1, 2, 1},
new int[]{0, 0, 1, 0, 0, 1, 2, 1, 1}, new int[]{0, 0, 1, 0, 0, 2, 1, 1, 1},
new int[]{0, 0, 1, 0, 1, 0, 1, 1, 2}, new int[]{0, 0, 1, 0, 1, 0, 1, 2, 1},
new int[]{0, 0, 1, 0, 1, 1, 1, 0, 2}, new int[]{0, 0, 1, 0, 1, 1, 1, 2, 0},
new int[]{0, 0, 1, 0, 1, 1, 2, 0, 1}, new int[]{0, 0, 1, 0, 1, 2, 1, 0, 1},
new int[]{0, 0, 1, 0, 1, 2, 1, 1, 0}, new int[]{0, 0, 1, 0, 1, 2, 1, 2, 2},
new int[]{0, 0, 1, 0, 2, 0, 1, 1, 1}, new int[]{0, 0, 1, 0, 2, 1, 1, 0, 1},
new int[]{0, 0, 1, 0, 2, 1, 2, 2, 1}, new int[]{0, 0, 1, 1, 0, 1, 0, 2, 1},
new int[]{0, 0, 1, 1, 1, 0, 1, 0, 2}, new int[]{0, 0, 1, 1, 1, 0, 1, 2, 0},
new int[]{0, 0, 1, 1, 1, 1, 0, 0, 2}, new int[]{0, 0, 1, 1, 1, 1, 0, 2, 0},
new int[]{0, 0, 1, 1, 1, 1, 2, 0, 0}, new int[]{0, 0, 1, 1, 1, 2, 1, 0, 0},
new int[]{0, 0, 1, 1, 2, 1, 0, 0, 1}, new int[]{0, 0, 1, 2, 0, 0, 1, 1, 1},
new int[]{0, 0, 1, 2, 0, 1, 0, 1, 1}, new int[]{0, 0, 1, 2, 0, 1, 2, 2, 1},
new int[]{0, 0, 1, 2, 1, 0, 1, 0, 1}, new int[]{0, 0, 1, 2, 1, 0, 1, 1, 0},
new int[]{0, 0, 1, 2, 1, 0, 1, 2, 2}, new int[]{0, 0, 1, 2, 1, 1, 0, 0, 1},
new int[]{0, 0, 1, 2, 1, 1, 1, 0, 0}, new int[]{0, 0, 1, 2, 1, 2, 1, 0, 2},
new int[]{0, 0, 1, 2, 1, 2, 1, 2, 0}, new int[]{0, 0, 1, 2, 2, 1, 0, 2, 1},
new int[]{0, 0, 1, 2, 2, 1, 2, 0, 1}, new int[]{0, 0, 2, 0, 0, 1, 1, 1, 1},
new int[]{0, 0, 2, 0, 1, 0, 1, 1, 1}, new int[]{0, 0, 2, 0, 2, 2, 1, 1, 1},
new int[]{0, 0, 2, 1, 0, 0, 1, 1, 1}, new int[]{0, 0, 2, 1, 1, 1, 0, 0, 1},
new int[]{0, 0, 2, 1, 1, 1, 0, 1, 0}, new int[]{0, 0, 2, 1, 1, 1, 0, 2, 2},
new int[]{0, 0, 2, 1, 1, 1, 1, 0, 0}, new int[]{0, 0, 2, 1, 1, 1, 2, 0, 2},
new int[]{0, 0, 2, 1, 1, 1, 2, 2, 0}, new int[]{0, 0, 2, 2, 0, 2, 1, 1, 1},
new int[]{0, 0, 2, 2, 2, 0, 1, 1, 1}, new int[]{0, 1, 0, 0, 0, 2, 1, 1, 1},
new int[]{0, 1, 0, 0, 1, 0, 1, 1, 2}, new int[]{0, 1, 0, 0, 1, 0, 2, 1, 1},
new int[]{0, 1, 0, 0, 1, 1, 2, 1, 0}, new int[]{0, 1, 0, 0, 1, 2, 1, 1, 0},
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new int[]{0, 1, 0, 0, 1, 2, 2, 1, 2}, new int[]{0, 1, 0, 0, 2, 0, 1, 1, 1},
new int[]{0, 1, 0, 1, 1, 0, 0, 1, 2}, new int[]{0, 1, 0, 1, 1, 1, 0, 0, 2},
new int[]{0, 1, 0, 1, 1, 1, 0, 2, 0}, new int[]{0, 1, 0, 1, 1, 1, 2, 0, 0},
new int[]{0, 1, 0, 1, 1, 2, 0, 1, 0}, new int[]{0, 1, 0, 2, 0, 0, 1, 1, 1},
new int[]{0, 1, 0, 2, 1, 0, 0, 1, 1}, new int[]{0, 1, 0, 2, 1, 0, 2, 1, 2},
new int[]{0, 1, 0, 2, 1, 1, 0, 1, 0}, new int[]{0, 1, 0, 2, 1, 2, 0, 1, 2},
new int[]{0, 1, 0, 2, 1, 2, 2, 1, 0}, new int[]{0, 1, 1, 0, 0, 1, 2, 0, 1},
new int[]{0, 1, 1, 0, 1, 0, 1, 0, 2}, new int[]{0, 1, 1, 0, 1, 0, 1, 2, 0},
new int[]{0, 1, 1, 0, 1, 0, 2, 1, 0}, new int[]{0, 1, 1, 0, 1, 2, 1, 0, 0},
new int[]{0, 1, 1, 2, 0, 1, 0, 0, 1}, new int[]{0, 1, 1, 2, 1, 0, 0, 1, 0},
new int[]{0, 1, 1, 2, 1, 0, 1, 0, 0}, new int[]{0, 1, 2, 0, 1, 0, 1, 1, 0},
new int[]{0, 1, 2, 0, 1, 0, 2, 1, 2}, new int[]{0, 1, 2, 0, 1, 2, 2, 1, 0},
new int[]{0, 1, 2, 1, 1, 0, 0, 1, 0}, new int[]{0, 1, 2, 2, 1, 0, 0, 1, 2},
new int[]{0, 1, 2, 2, 1, 0, 2, 1, 0}, new int[]{0, 1, 2, 2, 1, 2, 0, 1, 0},
new int[]{0, 2, 0, 0, 0, 1, 1, 1, 1}, new int[]{0, 2, 0, 0, 1, 0, 1, 1, 1},
new int[]{0, 2, 0, 0, 2, 2, 1, 1, 1}, new int[]{0, 2, 0, 1, 0, 0, 1, 1, 1},
new int[]{0, 2, 0, 1, 1, 1, 0, 0, 1}, new int[]{0, 2, 0, 1, 1, 1, 0, 1, 0},
new int[]{0, 2, 0, 1, 1, 1, 0, 2, 2}, new int[]{0, 2, 0, 1, 1, 1, 1, 0, 0},
new int[]{0, 2, 0, 1, 1, 1, 2, 0, 2}, new int[]{0, 2, 0, 1, 1, 1, 2, 2, 0},
new int[]{0, 2, 0, 2, 0, 2, 1, 1, 1}, new int[]{0, 2, 0, 2, 2, 0, 1, 1, 1},
new int[]{0, 2, 1, 0, 0, 1, 1, 0, 1}, new int[]{0, 2, 1, 0, 0, 1, 2, 2, 1},
new int[]{0, 2, 1, 0, 1, 0, 1, 0, 1}, new int[]{0, 2, 1, 0, 1, 0, 1, 1, 0},
new int[]{0, 2, 1, 0, 1, 0, 1, 2, 2}, new int[]{0, 2, 1, 0, 1, 1, 1, 0, 0},
new int[]{0, 2, 1, 0, 1, 2, 1, 0, 2}, new int[]{0, 2, 1, 0, 1, 2, 1, 2, 0},
new int[]{0, 2, 1, 0, 2, 1, 2, 0, 1}, new int[]{0, 2, 1, 1, 0, 1, 0, 0, 1},
new int[]{0, 2, 1, 1, 1, 0, 1, 0, 0}, new int[]{0, 2, 1, 2, 0, 1, 0, 2, 1},
new int[]{0, 2, 1, 2, 0, 1, 2, 0, 1}, new int[]{0, 2, 1, 2, 1, 0, 1, 0, 2},
new int[]{0, 2, 1, 2, 1, 0, 1, 2, 0}, new int[]{0, 2, 1, 2, 1, 2, 1, 0, 0},
new int[]{0, 2, 1, 2, 2, 1, 0, 0, 1}, new int[]{0, 2, 2, 0, 0, 2, 1, 1, 1},
new int[]{0, 2, 2, 0, 2, 0, 1, 1, 1}, new int[]{0, 2, 2, 1, 1, 1, 0, 0, 2},
new int[]{0, 2, 2, 1, 1, 1, 0, 2, 0}, new int[]{0, 2, 2, 1, 1, 1, 2, 0, 0},
new int[]{0, 2, 2, 2, 0, 0, 1, 1, 1}, new int[]{1, 0, 0, 0, 0, 2, 1, 1, 1},
new int[]{1, 0, 0, 0, 1, 0, 1, 2, 1}, new int[]{1, 0, 0, 0, 1, 0, 2, 1, 1},
new int[]{1, 0, 0, 0, 1, 1, 0, 2, 1}, new int[]{1, 0, 0, 0, 1, 1, 2, 0, 1},
new int[]{1, 0, 0, 0, 1, 2, 0, 1, 1}, new int[]{1, 0, 0, 0, 1, 2, 1, 0, 1},
new int[]{1, 0, 0, 0, 1, 2, 2, 2, 1}, new int[]{1, 0, 0, 0, 2, 0, 1, 1, 1},
new int[]{1, 0, 0, 1, 0, 0, 1, 1, 2}, new int[]{1, 0, 0, 1, 0, 0, 1, 2, 1},
new int[]{1, 0, 0, 1, 0, 1, 1, 2, 0}, new int[]{1, 0, 0, 1, 0, 2, 1, 1, 0},
new int[]{1, 0, 0, 1, 0, 2, 1, 2, 2}, new int[]{1, 0, 0, 1, 1, 0, 0, 2, 1},
new int[]{1, 0, 0, 1, 1, 0, 1, 0, 2}, new int[]{1, 0, 0, 1, 1, 0, 2, 0, 1},
new int[]{1, 0, 0, 1, 1, 1, 0, 0, 2}, new int[]{1, 0, 0, 1, 1, 1, 0, 2, 0},
new int[]{1, 0, 0, 1, 1, 1, 2, 0, 0}, new int[]{1, 0, 0, 1, 1, 2, 0, 0, 1},
new int[]{1, 0, 0, 1, 1, 2, 1, 0, 0}, new int[]{1, 0, 0, 1, 2, 0, 1, 0, 1},
new int[]{1, 0, 0, 1, 2, 0, 1, 2, 2}, new int[]{1, 0, 0, 1, 2, 1, 1, 0, 0},
new int[]{1, 0, 0, 1, 2, 2, 1, 0, 2}, new int[]{1, 0, 0, 1, 2, 2, 1, 2, 0},
new int[]{1, 0, 0, 2, 0, 0, 1, 1, 1}, new int[]{1, 0, 0, 2, 1, 0, 0, 1, 1},
new int[]{1, 0, 0, 2, 1, 0, 1, 0, 1}, new int[]{1, 0, 0, 2, 1, 0, 2, 2, 1},
new int[]{1, 0, 0, 2, 1, 1, 0, 0, 1}, new int[]{1, 0, 0, 2, 1, 2, 0, 2, 1},
new int[]{1, 0, 0, 2, 1, 2, 2, 0, 1}, new int[]{1, 0, 1, 0, 0, 1, 0, 2, 1},
new int[]{1, 0, 1, 0, 1, 0, 0, 2, 1}, new int[]{1, 0, 1, 0, 1, 0, 1, 0, 2},
new int[]{1, 0, 1, 0, 1, 0, 1, 2, 0}, new int[]{1, 0, 1, 0, 1, 0, 2, 0, 1},
new int[]{1, 0, 1, 0, 1, 2, 0, 0, 1}, new int[]{1, 0, 1, 0, 1, 2, 1, 0, 0},
new int[]{1, 0, 1, 0, 2, 1, 0, 0, 1}, new int[]{1, 0, 1, 1, 0, 0, 1, 2, 0},
new int[]{1, 0, 1, 1, 2, 0, 1, 0, 0}, new int[]{1, 0, 1, 2, 1, 0, 0, 0, 1},
new int[]{1, 0, 1, 2, 1, 0, 1, 0, 0}, new int[]{1, 0, 2, 0, 1, 0, 0, 1, 1},
new int[]{1, 0, 2, 0, 1, 0, 1, 0, 1}, new int[]{1, 0, 2, 0, 1, 0, 2, 2, 1},
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new int[]{1, 0, 2, 0, 1, 1, 0, 0, 1}, new int[]{1, 0, 2, 0, 1, 2, 0, 2, 1},
new int[]{1, 0, 2, 0, 1, 2, 2, 0, 1}, new int[]{1, 0, 2, 1, 0, 0, 1, 1, 0},
new int[]{1, 0, 2, 1, 0, 0, 1, 2, 2}, new int[]{1, 0, 2, 1, 0, 2, 1, 2, 0},
new int[]{1, 0, 2, 1, 1, 0, 0, 0, 1}, new int[]{1, 0, 2, 1, 1, 0, 1, 0, 0},
new int[]{1, 0, 2, 1, 2, 0, 1, 0, 2}, new int[]{1, 0, 2, 1, 2, 0, 1, 2, 0},
new int[]{1, 0, 2, 1, 2, 2, 1, 0, 0}, new int[]{1, 0, 2, 2, 1, 0, 0, 2, 1},
new int[]{1, 0, 2, 2, 1, 0, 2, 0, 1}, new int[]{1, 0, 2, 2, 1, 2, 0, 0, 1},
new int[]{1, 1, 0, 0, 1, 0, 0, 1, 2}, new int[]{1, 1, 0, 0, 1, 0, 0, 2, 1},
new int[]{1, 1, 0, 0, 1, 0, 2, 0, 1}, new int[]{1, 1, 0, 0, 1, 2, 0, 0, 1},
new int[]{1, 1, 0, 0, 1, 2, 0, 1, 0}, new int[]{1, 1, 0, 1, 0, 0, 1, 0, 2},
new int[]{1, 1, 0, 1, 0, 2, 1, 0, 0}, new int[]{1, 1, 0, 2, 1, 0, 0, 0, 1},
new int[]{1, 1, 1, 0, 0, 1, 0, 0, 2}, new int[]{1, 1, 1, 0, 0, 1, 0, 2, 0},
new int[]{1, 1, 1, 0, 0, 1, 2, 0, 0}, new int[]{1, 1, 1, 0, 0, 2, 0, 0, 1},
new int[]{1, 1, 1, 0, 0, 2, 0, 1, 0}, new int[]{1, 1, 1, 0, 0, 2, 0, 2, 2},
new int[]{1, 1, 1, 0, 0, 2, 1, 0, 0}, new int[]{1, 1, 1, 0, 0, 2, 2, 0, 2},
new int[]{1, 1, 1, 0, 0, 2, 2, 2, 0}, new int[]{1, 1, 1, 0, 1, 0, 0, 0, 2},
new int[]{1, 1, 1, 0, 1, 0, 0, 2, 0}, new int[]{1, 1, 1, 0, 1, 0, 2, 0, 0},
new int[]{1, 1, 1, 0, 2, 0, 0, 0, 1}, new int[]{1, 1, 1, 0, 2, 0, 0, 1, 0},
new int[]{1, 1, 1, 0, 2, 0, 0, 2, 2}, new int[]{1, 1, 1, 0, 2, 0, 1, 0, 0},
new int[]{1, 1, 1, 0, 2, 0, 2, 0, 2}, new int[]{1, 1, 1, 0, 2, 0, 2, 2, 0},
new int[]{1, 1, 1, 0, 2, 2, 0, 0, 2}, new int[]{1, 1, 1, 0, 2, 2, 0, 2, 0},
new int[]{1, 1, 1, 0, 2, 2, 2, 0, 0}, new int[]{1, 1, 1, 1, 0, 0, 0, 0, 2},
new int[]{1, 1, 1, 1, 0, 0, 0, 2, 0}, new int[]{1, 1, 1, 1, 0, 0, 2, 0, 0},
new int[]{1, 1, 1, 2, 0, 0, 0, 0, 1}, new int[]{1, 1, 1, 2, 0, 0, 0, 1, 0},
new int[]{1, 1, 1, 2, 0, 0, 0, 2, 2}, new int[]{1, 1, 1, 2, 0, 0, 1, 0, 0},
new int[]{1, 1, 1, 2, 0, 0, 2, 0, 2}, new int[]{1, 1, 1, 2, 0, 0, 2, 2, 0},
new int[]{1, 1, 1, 2, 0, 2, 0, 0, 2}, new int[]{1, 1, 1, 2, 0, 2, 0, 2, 0},
new int[]{1, 1, 1, 2, 0, 2, 2, 0, 0}, new int[]{1, 1, 1, 2, 2, 0, 0, 0, 2},
new int[]{1, 1, 1, 2, 2, 0, 0, 2, 0}, new int[]{1, 1, 1, 2, 2, 0, 2, 0, 0},
new int[]{1, 1, 2, 0, 1, 0, 0, 0, 1}, new int[]{1, 1, 2, 0, 1, 0, 0, 1, 0},
new int[]{1, 1, 2, 1, 0, 0, 1, 0, 0}, new int[]{1, 2, 0, 0, 1, 0, 0, 1, 1},
new int[]{1, 2, 0, 0, 1, 0, 1, 0, 1}, new int[]{1, 2, 0, 0, 1, 0, 2, 2, 1},
new int[]{1, 2, 0, 0, 1, 1, 0, 0, 1}, new int[]{1, 2, 0, 0, 1, 2, 0, 2, 1},
new int[]{1, 2, 0, 0, 1, 2, 2, 0, 1}, new int[]{1, 2, 0, 1, 0, 0, 1, 0, 1},
new int[]{1, 2, 0, 1, 0, 0, 1, 2, 2}, new int[]{1, 2, 0, 1, 0, 1, 1, 0, 0},
new int[]{1, 2, 0, 1, 0, 2, 1, 0, 2}, new int[]{1, 2, 0, 1, 0, 2, 1, 2, 0},
new int[]{1, 2, 0, 1, 1, 0, 0, 0, 1}, new int[]{1, 2, 0, 1, 2, 0, 1, 0, 2},
new int[]{1, 2, 0, 1, 2, 2, 1, 0, 0}, new int[]{1, 2, 0, 2, 1, 0, 0, 2, 1},
new int[]{1, 2, 0, 2, 1, 0, 2, 0, 1}, new int[]{1, 2, 0, 2, 1, 2, 0, 0, 1},
new int[]{1, 2, 1, 0, 0, 1, 0, 0, 1}, new int[]{1, 2, 1, 0, 1, 0, 0, 0, 1},
new int[]{1, 2, 1, 0, 1, 0, 1, 0, 0}, new int[]{1, 2, 1, 1, 0, 0, 1, 0, 0},
new int[]{1, 2, 2, 0, 1, 0, 0, 2, 1}, new int[]{1, 2, 2, 0, 1, 0, 2, 0, 1},
new int[]{1, 2, 2, 0, 1, 2, 0, 0, 1}, new int[]{1, 2, 2, 1, 0, 0, 1, 0, 2},
new int[]{1, 2, 2, 1, 0, 0, 1, 2, 0}, new int[]{1, 2, 2, 1, 0, 2, 1, 0, 0},
new int[]{1, 2, 2, 1, 2, 0, 1, 0, 0}, new int[]{1, 2, 2, 2, 1, 0, 0, 0, 1},
new int[]{2, 0, 0, 0, 0, 1, 1, 1, 1}, new int[]{2, 0, 0, 0, 1, 0, 1, 1, 1},
new int[]{2, 0, 0, 0, 2, 2, 1, 1, 1}, new int[]{2, 0, 0, 1, 0, 0, 1, 1, 1},
new int[]{2, 0, 0, 1, 1, 1, 0, 0, 1}, new int[]{2, 0, 0, 1, 1, 1, 0, 1, 0},
new int[]{2, 0, 0, 1, 1, 1, 0, 2, 2}, new int[]{2, 0, 0, 1, 1, 1, 1, 0, 0},
new int[]{2, 0, 0, 1, 1, 1, 2, 0, 2}, new int[]{2, 0, 0, 1, 1, 1, 2, 2, 0},
new int[]{2, 0, 0, 2, 0, 2, 1, 1, 1}, new int[]{2, 0, 0, 2, 2, 0, 1, 1, 1},
new int[]{2, 0, 1, 0, 0, 1, 0, 1, 1}, new int[]{2, 0, 1, 0, 0, 1, 2, 2, 1},
new int[]{2, 0, 1, 0, 1, 0, 1, 0, 1}, new int[]{2, 0, 1, 0, 1, 0, 1, 1, 0},
new int[]{2, 0, 1, 0, 1, 0, 1, 2, 2}, new int[]{2, 0, 1, 0, 1, 1, 0, 0, 1},
new int[]{2, 0, 1, 0, 1, 1, 1, 0, 0}, new int[]{2, 0, 1, 0, 1, 2, 1, 0, 2},
new int[]{2, 0, 1, 0, 1, 2, 1, 2, 0}, new int[]{2, 0, 1, 0, 2, 1, 0, 2, 1},
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new int[]{2, 0, 1, 0, 2, 1, 2, 0, 1}, new int[]{2, 0, 1, 1, 1, 0, 1, 0, 0},
new int[]{2, 0, 1, 2, 0, 1, 0, 2, 1}, new int[]{2, 0, 1, 2, 1, 0, 1, 0, 2},
new int[]{2, 0, 1, 2, 1, 0, 1, 2, 0}, new int[]{2, 0, 1, 2, 1, 2, 1, 0, 0},
new int[]{2, 0, 1, 2, 2, 1, 0, 0, 1}, new int[]{2, 0, 2, 0, 0, 2, 1, 1, 1},
new int[]{2, 0, 2, 0, 2, 0, 1, 1, 1}, new int[]{2, 0, 2, 1, 1, 1, 0, 0, 2},
new int[]{2, 0, 2, 1, 1, 1, 0, 2, 0}, new int[]{2, 0, 2, 1, 1, 1, 2, 0, 0},
new int[]{2, 0, 2, 2, 0, 0, 1, 1, 1}, new int[]{2, 1, 0, 0, 1, 0, 0, 1, 1},
new int[]{2, 1, 0, 0, 1, 0, 2, 1, 2}, new int[]{2, 1, 0, 0, 1, 1, 0, 1, 0},
new int[]{2, 1, 0, 0, 1, 2, 0, 1, 2}, new int[]{2, 1, 0, 0, 1, 2, 2, 1, 0},
new int[]{2, 1, 0, 2, 1, 0, 0, 1, 2}, new int[]{2, 1, 0, 2, 1, 2, 0, 1, 0},
new int[]{2, 1, 1, 0, 0, 1, 0, 0, 1}, new int[]{2, 1, 1, 0, 1, 0, 0, 1, 0},
new int[]{2, 1, 1, 0, 1, 0, 1, 0, 0}, new int[]{2, 1, 2, 0, 1, 0, 0, 1, 2},
new int[]{2, 1, 2, 0, 1, 0, 2, 1, 0}, new int[]{2, 1, 2, 0, 1, 2, 0, 1, 0},
new int[]{2, 1, 2, 2, 1, 0, 0, 1, 0}, new int[]{2, 2, 0, 0, 0, 2, 1, 1, 1},
new int[]{2, 2, 0, 0, 2, 0, 1, 1, 1}, new int[]{2, 2, 0, 1, 1, 1, 0, 0, 2},
new int[]{2, 2, 0, 1, 1, 1, 0, 2, 0}, new int[]{2, 2, 0, 1, 1, 1, 2, 0, 0},
new int[]{2, 2, 0, 2, 0, 0, 1, 1, 1}, new int[]{2, 2, 1, 0, 0, 1, 0, 2, 1},
new int[]{2, 2, 1, 0, 0, 1, 2, 0, 1}, new int[]{2, 2, 1, 0, 1, 0, 1, 0, 2},
new int[]{2, 2, 1, 0, 1, 0, 1, 2, 0}, new int[]{2, 2, 1, 0, 1, 2, 1, 0, 0},
new int[]{2, 2, 1, 0, 2, 1, 0, 0, 1}, new int[]{2, 2, 1, 2, 0, 1, 0, 0, 1},
new int[]{2, 2, 1, 2, 1, 0, 1, 0, 0}, new int[]{0, 0, 1, 1, 0, 0, 0, 1, 1},
new int[]{0, 0, 1, 1, 1, 0, 0, 0, 1}, new int[]{0, 0, 1, 1, 1, 0, 0, 1, 0},
new int[]{0, 1, 0, 0, 0, 1, 1, 0, 1}, new int[]{0, 1, 0, 0, 1, 0, 1, 0, 1},
new int[]{0, 1, 0, 0, 1, 1, 1, 0, 0}, new int[]{0, 1, 0, 1, 0, 0, 1, 0, 1},
new int[]{0, 1, 0, 1, 1, 0, 0, 0, 1}, new int[]{0, 1, 1, 1, 0, 0, 0, 0, 1},
new int[]{1, 0, 0, 0, 0, 1, 1, 1, 0}, new int[]{1, 0, 0, 0, 1, 1, 0, 1, 0},
new int[]{1, 0, 0, 0, 1, 1, 1, 0, 0}, new int[]{1, 0, 1, 0, 0, 1, 0, 1, 0},
new int[]{1, 0, 1, 0, 1, 0, 0, 1, 0}, new int[]{1, 0, 1, 1, 0, 0, 0, 1, 0},
new int[]{1, 1, 0, 0, 0, 1, 1, 0, 0}};

private static double[] weights = new double[]{-0.00000000000000063401,
0.00000000000000055700, 0.00000000000000012769, -0.52573653474162341000,
0.43427498705107342000, 0.09146154769055023200, 0.00000000000000138130,
-0.00000000000000118053, -0.00000000000000050631, 0.52573653474162607000,
-0.43427498705107603000, -0.09146154769055094000, -0.00000000000000057743,
0.00000000000000037314, -0.00000000000000023441, 0.52573653474162907000,
-0.43427498705107787000, -0.09146154769055155100, -0.00000000000000405476,
0.00000000000000339568, 0.00000000000000053496, -0.52573653474162763000,
0.43427498705107587000, 0.09146154769055155100, -0.00000000000000116499,
0.00000000000000111960, 0.00000000000000004464, 0.59181480684449950000,
-0.48617039139374285000, -0.10564441545075645000, 0.33659693927260309000,
-0.28023189914604213000, -0.05636504012656110000, -0.00000000000000339401,
0.00000000000000312093, 0.00000000000000057542, 0.33659693927260292000,
-0.28023189914604213000, -0.05636504012656087800, 0.00000000000000099480,
-0.00000000000000067295, -0.00000000000000003901, -0.33659693927260537000,
0.28023189914604435000, 0.05636504012656118300, -0.00000000000000284785,
0.00000000000000269180, 0.00000000000000026089, -0.33659693927260426000,
0.28023189914604330000, 0.05636504012656121800, -0.59181480684449039000,
0.48617039139373414000, 0.10564441545075609000, 0.00000000000000098567,
-0.00000000000000095474, -0.00000000000000021207, -0.33659693927260698000,
0.28023189914604579000, 0.05636504012656142600, -0.59181480684449372000,
0.48617039139373774000, 0.10564441545075645000, 0.33659693927260514000,
-0.28023189914604435000, -0.05636504012656100300, -0.00000000000000010012,
0.00000000000000001702, 0.00000000000000012437, -0.33659693927260204000,
0.28023189914604152000, 0.05636504012656010100, 0.59181480684449428000,
-0.48617039139373813000, -0.10564441545075638000, 0.33659693927260081000,
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-0.28023189914603991000, -0.05636504012656074600, 0.00000000000000216976,
-0.00000000000000195478, -0.00000000000000023527, 0.39961448116107012000,
-0.35734834346184241000, -0.04226613769922773400, -0.33634249144114892000,
0.28239332896420155000, 0.05394916247694748300, 0.39961448116106396000,
-0.35734834346183769000, -0.04226613769922723400, -0.33634249144114703000,
0.28239332896420027000, 0.05394916247694724100, -0.21667948075941171000,
0.12935693076722185000, 0.08732254999219028800, -0.33634249144114398000,
0.28239332896419722000, 0.05394916247694688700, 0.39961448116106157000,
-0.35734834346183453000, -0.04226613769922710200, -0.33634249144114919000,
0.28239332896420105000, 0.05394916247694810100, 0.39961448116107307000,
-0.35734834346184485000, -0.04226613769922824700, -0.54188833749531484000,
0.49456532031183192000, 0.04732301718348254400, 0.00000000000000042643,
-0.00000000000000052416, -0.00000000000000028161, 0.54188833749532672000,
-0.49456532031184147000, -0.04732301718348516700, 0.00000000000000208148,
-0.00000000000000170526, -0.00000000000000039120, -0.00000000000001165642,
0.00000000000000998830, 0.00000000000000133016, -0.00000000000000389738,
0.00000000000000286692, 0.00000000000000081238, 0.54188833749532805000,
-0.49456532031184208000, -0.04732301718348581200, -0.00000000000000308117,
0.00000000000000212213, 0.00000000000000117840, -0.54188833749532439000,
0.49456532031183975000, 0.04732301718348420900, 0.20000000000000001000,
0.20000000000000001000, 0.20000000000000001000, 0.20000000000000001000,
0.20000000000000001000, 0.20000000000000001000, 0.20000000000000001000,
0.20000000000000001000, 0.20000000000000001000, 0.20000000000000001000,
0.20000000000000001000, 0.20000000000000001000, 0.20000000000000001000,
0.20000000000000001000, 0.20000000000000001000, 0.33333333333333331000,
0.33333333333333331000, 0.33333333333333331000, 0.00000000000000093850,
-0.00000000000000054323, -0.00000000000000011761, -0.03290466729806285100,
0.00000000000000063771, 0.00000000000000000000, 0.00000000000000000000,
0.00000000000000000000, 0.00000000000000000000};

// **********************************************************************
// MAIN
// **********************************************************************
[STAThread]
public static void Main(System.String[] args)
{

double[,] xData; // Input Attributes for Trainer
int[] yData; // Output Attributes for Trainer
int i, j; // array indicies
int[,] z;

// **********************************************************************
// PREPROCESS TRAINING PATTERNS
// **********************************************************************
long t0 = (System.DateTime.Now.Ticks - 621355968000000000) / 10000;

xData = new double[nObs,nInputs];
yData = new int[nObs];

/* Perform Binary Filtering. */
for (i = 0; i < data.Length; i++)
{

for (j = 0; j < data[0].Length; j++)
{

data[i][j]++;
}
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}
int[] xx = new int[nObs];
UnsupervisedNominalFilter filter = new UnsupervisedNominalFilter(3);
for (i = 0; i < 9; i++)
{

// Copy each variable to a temp var
for (j = 0; j < nObs; j++)
{

xx[j] = data[j][i];
}
// Perform binary filter on temp var
z = filter.Encode(xx);
// Copy binary encoded var to xData
for (j = 0; j < nObs; j++)
{

for (int k = 0; k < 3; k++)
{

xData[j,k + (i * 3)] = (double) z[j,k];
}

}
}

for (i = 0; i < nObs; i++)
{

yData[i] = (i >= 626?0:1);
}

// **********************************************************************
// CREATE FEEDFORWARD NETWORK
// **********************************************************************
FeedForwardNetwork network = new FeedForwardNetwork();
network.InputLayer.CreateInputs(nInputs);
network.CreateHiddenLayer().CreatePerceptrons(nPerceptrons1);
network.CreateHiddenLayer().CreatePerceptrons(nPerceptrons2);
network.OutputLayer.CreatePerceptrons(nOutputs);
network.LinkAll();
network.Weights = weights;
Perceptron[] perceptrons = network.Perceptrons;
for (i = 0; i < perceptrons.Length - 1; i++)
{

perceptrons[i].Activation = hiddenLayerActivation;
}
// **********************************************************************
// SET OUTPUT LAYER ACTIVATION FUNCTION TO LOGISTIC FOR BINARY CLASSIFICATION
// **********************************************************************
perceptrons[perceptrons.Length - 1].Activation = outputLayerActivation;

BinaryClassification classification = new BinaryClassification(network);

QuasiNewtonTrainer stageITrainer = new QuasiNewtonTrainer();
QuasiNewtonTrainer stageIITrainer = new QuasiNewtonTrainer();
stageITrainer.SetError(classification.Error);
stageIITrainer.SetError(classification.Error);
stageITrainer.MaximumTrainingIterations = 8000;
stageITrainer.MaximumStepsize = 10.0;
stageIITrainer.MaximumStepsize = 10.0;
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stageITrainer.RelativeTolerance = 10e-20;
stageIITrainer.RelativeTolerance = 10e-20;
stageIITrainer.MaximumTrainingIterations = 8000;
EpochTrainer trainer = new EpochTrainer(stageITrainer, stageIITrainer);

// Set Training Parameters
trainer.NumberOfEpochs = 20;
trainer.EpochSize = nObs;

// Set random number seeds to produce repeatable output
trainer.Random = new Random(5555);
trainer.SetRandomSamples(new Random(5555), new Random(5555));
classification.Train(trainer, xData, yData);
System.Console.Out.WriteLine("trainer.getErrorValue = " +

trainer.ErrorValue);
System.Console.Out.WriteLine("StageITrainer.getErrorValue = " +

stageITrainer.ErrorValue);
System.Console.Out.WriteLine("StageIITrainer.getErrorValue = " +

stageIITrainer.ErrorValue);

// **********************************************************************
// DISPLAY TRAINING STATISTICS
// **********************************************************************
double[] stats = classification.ComputeStatistics(xData, yData);
System.Console.Out.WriteLine(

"***********************************************");
System.Console.Out.WriteLine("--> Cross-entropy error: " +

(float)stats[0]);
System.Console.Out.WriteLine("--> Classification error rate: " +
(float)stats[1]);
System.Console.Out.WriteLine(

"***********************************************");
System.Console.Out.WriteLine("");

// **********************************************************************
// OBTAIN AND DISPLAY NETWORK WEIGHTS AND GRADIENTS
// **********************************************************************
double[] weight = network.Weights;
double[] gradient = trainer.ErrorGradient;
double[][] wg = new double[weight.Length][];
for (int i3 = 0; i3 < weight.Length; i3++)
{

wg[i3] = new double[2];
}
for (i = 0; i < weight.Length; i++)
{

wg[i][0] = weight[i];
wg[i][1] = gradient[i];

}
PrintMatrixFormat pmf = new PrintMatrixFormat();
pmf.SetColumnLabels(new System.String[]{"Weights", "Gradients"});
new PrintMatrix().Print(pmf, wg);

// **********************************************************************
// forecast the network
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// **********************************************************************
double[][] report = new double[nObs][];
for (int i4 = 0; i4 < nObs; i4++)
{

report[i4] = new double[2];
}
for (i = 0; i < 50; i++)
{

report[i][0] = yData[i];
double[] tmp = new double[xData.GetLength(1)];
for (j=0; j<xData.GetLength(1); j++)

tmp[j] = xData[i,j];
report[i][1] = classification.PredictedClass(tmp);

}

pmf = new PrintMatrixFormat();
pmf.SetColumnLabels( new System.String[]{"Expected", "Predicted"});
new PrintMatrix("Forecast").Print(pmf, report);

long t1 = (System.DateTime.Now.Ticks - 621355968000000000) / 10000;
double time = t1 - t0; //Math.max(small, (double)(t1-t0)/(double)iters);
time = time / 1000;
System.Console.Out.WriteLine("****************Time: " + time);
System.Console.Out.WriteLine("trainer.getErrorValue = " +

trainer.ErrorValue);
System.Console.Out.WriteLine("StageITrainer.getErrorValue = " +

stageITrainer.ErrorValue);
System.Console.Out.WriteLine("StageIITrainer.getErrorValue = " +

stageIITrainer.ErrorValue);
}

}

Output

trainer.getErrorValue = 2.70336729506627
StageITrainer.getErrorValue = 341.896192465939
StageIITrainer.getErrorValue = 2.70336729506627
***********************************************
--> Cross-entropy error: 2.703367
--> Classification error rate: 0.001043841
***********************************************

Weights Gradients
0 -23.3898268764697 -1.68029704681242E-07
1 55.9787793904324 -1.08507148869191E-08
2 -24.8145508610809 9.8061928454764E-08
3 0.614823127009218 3.50998965231112E-12
4 17.1865318394712 2.10565444376703E-08
5 26.0755599867853 5.06729853419313E-07
6 -79.662169064793 6.25628057736701E-08
7 31.9503564401075 6.44400775283152E-08
8 -6.64353849087844 -1.10674419505296E-07
9 4.04220907102592 3.58640760846773E-08

1068 • BinaryClassification Class IMSL C# Numerical Library



10 1.0527872483246 -3.67933513653383E-13
11 13.0870400255061 2.45188464096435E-12
12 -6.44563962176012 -8.91487913117069E-14
13 4.73560655651027 -4.35023770427128E-14
14 -24.9264785301127 6.20214116363857E-08
15 -23.6427881573418 -1.14477885305923E-07
16 36.1142420440452 6.99220259813404E-08
17 -29.9902559401382 1.4414069123191E-08
18 4.15060933344903 -1.10674419501773E-07
19 16.437715509481 6.08188216513216E-08
20 27.4813508997559 4.53177666110481E-07
21 -53.6879791476782 -1.82074832099484E-08
22 39.3419246815713 1.48087847711172E-07
23 -1.32095116065861 3.46648520684838E-12
24 -4.97262689480514 5.81232105074117E-08
25 1.14481243145803 -1.05839587128489E-21
26 7.15863775328666 1.04188938242176E-27
27 -6.50772644821445 -7.53622640287779E-20
28 -2.92357651222831 -1.45472001674375E-18
29 -16.1560422854638 2.39290821022935E-30
30 -23.4993100767818 5.79605993203358E-07
31 52.0343349139142 7.45016076734971E-08
32 -28.2488122880172 6.57361274940986E-08
33 10.290370958881 3.50959701082581E-12
34 -14.1841875743948 5.69151888883751E-08
35 26.5429154715926 -2.40906212406617E-07
36 -63.5315861748381 -2.27895167867453E-08
37 27.100860517307 9.67657893402628E-08
38 -11.4310325669034 -1.10674419114656E-07
39 4.74216035114659 5.4316339724485E-12
40 0.641561677302889 7.8151944735487E-18
41 2.22041564722028 2.45188464018683E-12
42 3.14740658020421 -7.3583066857398E-20
43 1.60525904596141 -4.35003753468099E-14
44 4.19441207505956 6.20214116363857E-08
45 -24.8603049259788 2.51683117079402E-07
46 48.5005588749859 -3.11319283726811E-08
47 -24.542863895475 1.09800516755541E-07
48 -18.3502082374005 -1.10670953396668E-07
49 29.5808529397307 9.78854869310201E-08
50 27.0178339397479 8.70166637251589E-08
51 -63.5245890293031 8.2846471144073E-08
52 31.8186019735075 5.27014000787473E-08
53 2.42002770353186 3.78644428187296E-16
54 -9.56099146066506 2.10565452277132E-08
55 1.94510648915742 -3.83094161077916E-21
56 5.22881170331311 2.00481046276046E-23
57 -6.02717816056349 -3.61963925006449E-22
58 17.0022173292331 2.60785016867033E-21
59 -24.6479339050803 5.75069913163228E-24
60 -15.5725169324771 4.63876063739422E-07
61 44.0374583067424 -4.69442836408846E-08
62 -41.1769305924502 1.48404176921322E-07
63 25.7233629013922 -1.10670909893662E-07
64 -41.2586564362978 5.43017535695804E-12
65 31.6706303703039 -1.23445417101149E-07
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66 -68.6519628747457 9.86588264122765E-08
67 43.6571564988015 1.44141584994042E-08
68 -10.5229586851025 -4.31243584579288E-14
69 18.0830989294685 1.189366019836E-07
70 -12.8256099315956 -1.73086583371581E-09
71 14.2751176420669 2.82904280520231E-26
72 0.611612996756902 -3.16418586438729E-10
73 -14.5866509581701 9.97653170130876E-23
74 18.3504579166293 -2.2387178617835E-19
75 -23.3888491998405 -1.23539736925098E-07
76 52.2277746589779 1.07001235079262E-07
77 -26.1442463831178 1.52827861992725E-08
78 -12.0817712463414 3.78108725218232E-16
79 -16.732006840824 6.08145629733916E-08
80 27.2862196328307 4.6223951772184E-07
81 -60.2711282018116 -5.52891441925098E-08
82 30.6956745853904 1.47219130635017E-07
83 3.66731027306885 -1.106709098943E-07
84 3.53129758498572 -3.89394245104408E-09
85 0.600371582483001 7.81479027111874E-18
86 -1.8657171315698 2.4518846401873E-12
87 -2.60420501014975 -2.04744229740536E-21
88 8.27516103748487 -4.3501828950192E-14
89 8.23539794931856 6.20214116363857E-08
90 -23.1541029813632 5.31093839398311E-08
91 70.6668233987974 1.44581007663968E-07
92 -17.539510220755 5.15328591142091E-08
93 1.95410802312735 -1.10674462625394E-07
94 3.06783205444343 5.81286424613412E-08
95 27.7056768559965 2.87321262698441E-07
96 -59.9447333420135 -9.28664648925763E-08
97 35.1178032203679 1.11285476332644E-07
98 -18.7545966339525 3.50960791885221E-12
99 -3.09065236278368 6.0813389697616E-08
100 -1.35361646970208 -1.73086583371581E-09
101 -20.63501003417 1.47945976887397E-34
102 -15.2390999588768 -3.16418612564994E-10
103 17.2768473527366 -5.45484469543474E-19
104 -4.20098762033162 -2.23866242943624E-19
105 -24.9467968472952 2.47563888504666E-07
106 32.4810122215473 -1.82099350933995E-08
107 -20.9181167195218 1.48087751691707E-07
108 -5.34209226786082 3.50998612937016E-12
109 -9.4479410160346 1.71571720581279E-08
110 27.3556997100585 9.11358922998901E-08
111 -52.6175860338615 6.99244778647915E-08
112 24.5933226669344 1.44141651425814E-08
113 -4.74888992948916 -1.10674463004154E-07
114 -4.74447523527827 1.01784860100605E-07
115 1.3068899966691 3.38131779070714E-24
116 9.84279576559971 2.93298503589978E-26
117 -2.65752552540913 -7.47305201166442E-23
118 9.77370532097723 3.71315199958786E-21
119 10.1683911508445 1.55853874772282E-25
120 -22.9734431714424 5.07169516120168E-07
121 63.2201329935377 -3.03012043165043E-08
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122 -25.9684891770425 1.61822205642615E-07
123 1.72757810305429 -1.10674462618761E-07
124 -22.9539941930863 9.7885487944738E-08
125 26.0467643486586 -1.6673923742323E-07
126 -70.3904826524733 8.20157470878963E-08
127 38.3501514185098 9.96040681647748E-10
128 -7.89538750972399 3.50960128669369E-12
129 8.61060695952724 2.10565442142192E-08
130 0.334837626579686 -1.73049789238167E-09
131 -3.00049387697595 3.09824433715878E-24
132 -11.83638121782 -3.16329489975111E-10
133 6.99299819439263 -5.4590838025404E-19
134 9.24272160689922 -2.23860613161707E-19
135 -130.359444244494 -1.82459707733754E-08
136 -28.4061185197319 -2.86376914471931E-09
137 -5.68499307904826 2.43550052478779E-08
138 16.0406331984156 -1.80938585140171E-09
139 64.167895394211 1.4852818776177E-09
140 -60.12501945685 -2.9636372270146E-09
141 -10.1852707596995 1.1409812574327E-08
142 -82.7498540101702 9.97082548032286E-09
143 105.503273325536 -2.44596919012615E-09
144 36.6129197770311 -2.28569807296338E-08
145 38.4606669887555 -5.22871278391192E-09
146 151.846032339171 -7.48974152293252E-10
147 -66.0526100545884 3.48565829108654E-08
148 30.1143870019644 -5.6524446126533E-09
149 -74.5243364539271 -1.91528201142895E-09
150 142.594614534703 -7.05098701787417E-08
151 93.6715421122173 1.00751410014421E-09
152 -104.702722956492 -6.79330110522797E-08
153 3.81041225574935 3.38699780804557E-07
154 -9.54448888867617 5.17145427713919E-08
155 1.82018284630767 1.62501916834288E-07
156 0.359750818534005 -1.10670953018021E-07
157 -5.30067023962807 1.18942032158733E-07
158 78.9569244147036 7.53075424823755E-09
159 57.9483835349265 9.5192378081288E-09
160 3.61286655852224 3.24256332562239E-08
161 -36.2824537467563 -6.92558401759917E-08

Forecast
Expected Predicted

0 1 1
1 1 1
2 1 1
3 1 1
4 1 1
5 1 1
6 1 1
7 1 1
8 1 1
9 1 1

10 1 1
11 1 1
12 1 1
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13 1 1
14 1 1
15 1 1
16 1 1
17 1 1
18 1 1
19 1 1
20 1 1
21 1 1
22 1 1
23 1 1
24 1 1
25 1 1
26 1 1
27 1 1
28 1 1
29 1 1
30 1 1
31 1 1
32 1 1
33 1 1
34 1 1
35 1 1
36 1 1
37 1 1
38 1 1
39 1 1
40 1 1
41 1 1
42 1 1
43 1 1
44 1 1
45 1 1
46 1 1
47 1 1
48 1 1
49 1 1
50 0 0
51 0 0
52 0 0
53 0 0
54 0 0
55 0 0
56 0 0
57 0 0
58 0 0
59 0 0
60 0 0
61 0 0
62 0 0
63 0 0
64 0 0
65 0 0
66 0 0
67 0 0
68 0 0
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69 0 0
70 0 0
71 0 0
72 0 0
73 0 0
74 0 0
75 0 0
76 0 0
77 0 0
78 0 0
79 0 0
80 0 0
81 0 0
82 0 0
83 0 0
84 0 0
85 0 0
86 0 0
87 0 0
88 0 0
89 0 0
90 0 0
91 0 0
92 0 0
93 0 0
94 0 0
95 0 0
96 0 0
97 0 0
98 0 0
99 0 0
100 0 0
101 0 0
102 0 0
103 0 0
104 0 0
105 0 0
106 0 0
107 0 0
108 0 0
109 0 0
110 0 0
111 0 0
112 0 0
113 0 0
114 0 0
115 0 0
116 0 0
117 0 0
118 0 0
119 0 0
120 0 0
121 0 0
122 0 0
123 0 0
124 0 0
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125 0 0
126 0 0
127 0 0
128 0 0
129 0 0
130 0 0
131 0 0
132 0 0
133 0 0
134 0 0
135 0 0
136 0 0
137 0 0
138 0 0
139 0 0
140 0 0
141 0 0
142 0 0
143 0 0
144 0 0
145 0 0
146 0 0
147 0 0
148 0 0
149 0 0
150 0 0
151 0 0
152 0 0
153 0 0
154 0 0
155 0 0
156 0 0
157 0 0
158 0 0
159 0 0
160 0 0
161 0 0
162 0 0
163 0 0
164 0 0
165 0 0
166 0 0
167 0 0
168 0 0
169 0 0
170 0 0
171 0 0
172 0 0
173 0 0
174 0 0
175 0 0
176 0 0
177 0 0
178 0 0
179 0 0
180 0 0

1074 • BinaryClassification Class IMSL C# Numerical Library



181 0 0
182 0 0
183 0 0
184 0 0
185 0 0
186 0 0
187 0 0
188 0 0
189 0 0
190 0 0
191 0 0
192 0 0
193 0 0
194 0 0
195 0 0
196 0 0
197 0 0
198 0 0
199 0 0
200 0 0
201 0 0
202 0 0
203 0 0
204 0 0
205 0 0
206 0 0
207 0 0
208 0 0
209 0 0
210 0 0
211 0 0
212 0 0
213 0 0
214 0 0
215 0 0
216 0 0
217 0 0
218 0 0
219 0 0
220 0 0
221 0 0
222 0 0
223 0 0
224 0 0
225 0 0
226 0 0
227 0 0
228 0 0
229 0 0
230 0 0
231 0 0
232 0 0
233 0 0
234 0 0
235 0 0
236 0 0
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237 0 0
238 0 0
239 0 0
240 0 0
241 0 0
242 0 0
243 0 0
244 0 0
245 0 0
246 0 0
247 0 0
248 0 0
249 0 0
250 0 0
251 0 0
252 0 0
253 0 0
254 0 0
255 0 0
256 0 0
257 0 0
258 0 0
259 0 0
260 0 0
261 0 0
262 0 0
263 0 0
264 0 0
265 0 0
266 0 0
267 0 0
268 0 0
269 0 0
270 0 0
271 0 0
272 0 0
273 0 0
274 0 0
275 0 0
276 0 0
277 0 0
278 0 0
279 0 0
280 0 0
281 0 0
282 0 0
283 0 0
284 0 0
285 0 0
286 0 0
287 0 0
288 0 0
289 0 0
290 0 0
291 0 0
292 0 0
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293 0 0
294 0 0
295 0 0
296 0 0
297 0 0
298 0 0
299 0 0
300 0 0
301 0 0
302 0 0
303 0 0
304 0 0
305 0 0
306 0 0
307 0 0
308 0 0
309 0 0
310 0 0
311 0 0
312 0 0
313 0 0
314 0 0
315 0 0
316 0 0
317 0 0
318 0 0
319 0 0
320 0 0
321 0 0
322 0 0
323 0 0
324 0 0
325 0 0
326 0 0
327 0 0
328 0 0
329 0 0
330 0 0
331 0 0
332 0 0
333 0 0
334 0 0
335 0 0
336 0 0
337 0 0
338 0 0
339 0 0
340 0 0
341 0 0
342 0 0
343 0 0
344 0 0
345 0 0
346 0 0
347 0 0
348 0 0
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349 0 0
350 0 0
351 0 0
352 0 0
353 0 0
354 0 0
355 0 0
356 0 0
357 0 0
358 0 0
359 0 0
360 0 0
361 0 0
362 0 0
363 0 0
364 0 0
365 0 0
366 0 0
367 0 0
368 0 0
369 0 0
370 0 0
371 0 0
372 0 0
373 0 0
374 0 0
375 0 0
376 0 0
377 0 0
378 0 0
379 0 0
380 0 0
381 0 0
382 0 0
383 0 0
384 0 0
385 0 0
386 0 0
387 0 0
388 0 0
389 0 0
390 0 0
391 0 0
392 0 0
393 0 0
394 0 0
395 0 0
396 0 0
397 0 0
398 0 0
399 0 0
400 0 0
401 0 0
402 0 0
403 0 0
404 0 0
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405 0 0
406 0 0
407 0 0
408 0 0
409 0 0
410 0 0
411 0 0
412 0 0
413 0 0
414 0 0
415 0 0
416 0 0
417 0 0
418 0 0
419 0 0
420 0 0
421 0 0
422 0 0
423 0 0
424 0 0
425 0 0
426 0 0
427 0 0
428 0 0
429 0 0
430 0 0
431 0 0
432 0 0
433 0 0
434 0 0
435 0 0
436 0 0
437 0 0
438 0 0
439 0 0
440 0 0
441 0 0
442 0 0
443 0 0
444 0 0
445 0 0
446 0 0
447 0 0
448 0 0
449 0 0
450 0 0
451 0 0
452 0 0
453 0 0
454 0 0
455 0 0
456 0 0
457 0 0
458 0 0
459 0 0
460 0 0
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461 0 0
462 0 0
463 0 0
464 0 0
465 0 0
466 0 0
467 0 0
468 0 0
469 0 0
470 0 0
471 0 0
472 0 0
473 0 0
474 0 0
475 0 0
476 0 0
477 0 0
478 0 0
479 0 0
480 0 0
481 0 0
482 0 0
483 0 0
484 0 0
485 0 0
486 0 0
487 0 0
488 0 0
489 0 0
490 0 0
491 0 0
492 0 0
493 0 0
494 0 0
495 0 0
496 0 0
497 0 0
498 0 0
499 0 0
500 0 0
501 0 0
502 0 0
503 0 0
504 0 0
505 0 0
506 0 0
507 0 0
508 0 0
509 0 0
510 0 0
511 0 0
512 0 0
513 0 0
514 0 0
515 0 0
516 0 0
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517 0 0
518 0 0
519 0 0
520 0 0
521 0 0
522 0 0
523 0 0
524 0 0
525 0 0
526 0 0
527 0 0
528 0 0
529 0 0
530 0 0
531 0 0
532 0 0
533 0 0
534 0 0
535 0 0
536 0 0
537 0 0
538 0 0
539 0 0
540 0 0
541 0 0
542 0 0
543 0 0
544 0 0
545 0 0
546 0 0
547 0 0
548 0 0
549 0 0
550 0 0
551 0 0
552 0 0
553 0 0
554 0 0
555 0 0
556 0 0
557 0 0
558 0 0
559 0 0
560 0 0
561 0 0
562 0 0
563 0 0
564 0 0
565 0 0
566 0 0
567 0 0
568 0 0
569 0 0
570 0 0
571 0 0
572 0 0
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573 0 0
574 0 0
575 0 0
576 0 0
577 0 0
578 0 0
579 0 0
580 0 0
581 0 0
582 0 0
583 0 0
584 0 0
585 0 0
586 0 0
587 0 0
588 0 0
589 0 0
590 0 0
591 0 0
592 0 0
593 0 0
594 0 0
595 0 0
596 0 0
597 0 0
598 0 0
599 0 0
600 0 0
601 0 0
602 0 0
603 0 0
604 0 0
605 0 0
606 0 0
607 0 0
608 0 0
609 0 0
610 0 0
611 0 0
612 0 0
613 0 0
614 0 0
615 0 0
616 0 0
617 0 0
618 0 0
619 0 0
620 0 0
621 0 0
622 0 0
623 0 0
624 0 0
625 0 0
626 0 0
627 0 0
628 0 0
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629 0 0
630 0 0
631 0 0
632 0 0
633 0 0
634 0 0
635 0 0
636 0 0
637 0 0
638 0 0
639 0 0
640 0 0
641 0 0
642 0 0
643 0 0
644 0 0
645 0 0
646 0 0
647 0 0
648 0 0
649 0 0
650 0 0
651 0 0
652 0 0
653 0 0
654 0 0
655 0 0
656 0 0
657 0 0
658 0 0
659 0 0
660 0 0
661 0 0
662 0 0
663 0 0
664 0 0
665 0 0
666 0 0
667 0 0
668 0 0
669 0 0
670 0 0
671 0 0
672 0 0
673 0 0
674 0 0
675 0 0
676 0 0
677 0 0
678 0 0
679 0 0
680 0 0
681 0 0
682 0 0
683 0 0
684 0 0
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685 0 0
686 0 0
687 0 0
688 0 0
689 0 0
690 0 0
691 0 0
692 0 0
693 0 0
694 0 0
695 0 0
696 0 0
697 0 0
698 0 0
699 0 0
700 0 0
701 0 0
702 0 0
703 0 0
704 0 0
705 0 0
706 0 0
707 0 0
708 0 0
709 0 0
710 0 0
711 0 0
712 0 0
713 0 0
714 0 0
715 0 0
716 0 0
717 0 0
718 0 0
719 0 0
720 0 0
721 0 0
722 0 0
723 0 0
724 0 0
725 0 0
726 0 0
727 0 0
728 0 0
729 0 0
730 0 0
731 0 0
732 0 0
733 0 0
734 0 0
735 0 0
736 0 0
737 0 0
738 0 0
739 0 0
740 0 0
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741 0 0
742 0 0
743 0 0
744 0 0
745 0 0
746 0 0
747 0 0
748 0 0
749 0 0
750 0 0
751 0 0
752 0 0
753 0 0
754 0 0
755 0 0
756 0 0
757 0 0
758 0 0
759 0 0
760 0 0
761 0 0
762 0 0
763 0 0
764 0 0
765 0 0
766 0 0
767 0 0
768 0 0
769 0 0
770 0 0
771 0 0
772 0 0
773 0 0
774 0 0
775 0 0
776 0 0
777 0 0
778 0 0
779 0 0
780 0 0
781 0 0
782 0 0
783 0 0
784 0 0
785 0 0
786 0 0
787 0 0
788 0 0
789 0 0
790 0 0
791 0 0
792 0 0
793 0 0
794 0 0
795 0 0
796 0 0

Neural Nets BinaryClassification Class • 1085



797 0 0
798 0 0
799 0 0
800 0 0
801 0 0
802 0 0
803 0 0
804 0 0
805 0 0
806 0 0
807 0 0
808 0 0
809 0 0
810 0 0
811 0 0
812 0 0
813 0 0
814 0 0
815 0 0
816 0 0
817 0 0
818 0 0
819 0 0
820 0 0
821 0 0
822 0 0
823 0 0
824 0 0
825 0 0
826 0 0
827 0 0
828 0 0
829 0 0
830 0 0
831 0 0
832 0 0
833 0 0
834 0 0
835 0 0
836 0 0
837 0 0
838 0 0
839 0 0
840 0 0
841 0 0
842 0 0
843 0 0
844 0 0
845 0 0
846 0 0
847 0 0
848 0 0
849 0 0
850 0 0
851 0 0
852 0 0
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853 0 0
854 0 0
855 0 0
856 0 0
857 0 0
858 0 0
859 0 0
860 0 0
861 0 0
862 0 0
863 0 0
864 0 0
865 0 0
866 0 0
867 0 0
868 0 0
869 0 0
870 0 0
871 0 0
872 0 0
873 0 0
874 0 0
875 0 0
876 0 0
877 0 0
878 0 0
879 0 0
880 0 0
881 0 0
882 0 0
883 0 0
884 0 0
885 0 0
886 0 0
887 0 0
888 0 0
889 0 0
890 0 0
891 0 0
892 0 0
893 0 0
894 0 0
895 0 0
896 0 0
897 0 0
898 0 0
899 0 0
900 0 0
901 0 0
902 0 0
903 0 0
904 0 0
905 0 0
906 0 0
907 0 0
908 0 0
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909 0 0
910 0 0
911 0 0
912 0 0
913 0 0
914 0 0
915 0 0
916 0 0
917 0 0
918 0 0
919 0 0
920 0 0
921 0 0
922 0 0
923 0 0
924 0 0
925 0 0
926 0 0
927 0 0
928 0 0
929 0 0
930 0 0
931 0 0
932 0 0
933 0 0
934 0 0
935 0 0
936 0 0
937 0 0
938 0 0
939 0 0
940 0 0
941 0 0
942 0 0
943 0 0
944 0 0
945 0 0
946 0 0
947 0 0
948 0 0
949 0 0
950 0 0
951 0 0
952 0 0
953 0 0
954 0 0
955 0 0
956 0 0
957 0 0

****************Time: 22.859
trainer.getErrorValue = 2.70336729506627
StageITrainer.getErrorValue = 341.896192465939
StageIITrainer.getErrorValue = 2.70336729506627
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MultiClassification Class

Summary

Classifies patterns into three or more classes.

public class Imsl.DataMining.Neural.MultiClassification

Properties

Error
virtual public Imsl.DataMining.Neural.QuasiNewtonTrainer.IError Error {get; }

Description

The error function for use by QuasiNewtonTrainer for training a classification network.
This error function combines the softmax activation function and the cross-entropy error
function.

Network
virtual public Imsl.DataMining.Neural.Network Network {get; }

Description

Returns the network being used for classification.

Constructor

MultiClassification
public MultiClassification(Imsl.DataMining.Neural.Network network)

Description

Creates a classifier.
Parameter

network – Is the neural network used for classification. Its output perceptrons
should use linear activation functions. The number of output perceptrons should
equal the number of classes.

Methods

ComputeStatistics
virtual public double[] ComputeStatistics(double[,] xData, int[] yData)
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Description

Computes classification statistics for the supplied network patterns and their associated
classifications.

Method ComputeStatistics returns a two element array where the first element returned
is the cross-entropy error; the second is the classification error rate. The classification
error rate is calculated by comparing the estimated classification probabilities to the
target classifications. If the estimated probability for the target class is not the largest
among the target classes, then the pattern is tallied as a classification error.

Parameters

xData – A double matrix specifying the input training patterns. The number of
columns in xData must equal the number of Nodes in the InputLayer.

yData – An int[] containing the output classification patterns. The number of
columns in yData must equal the number of Perceptrons in the OutputLayer.

Returns

A double[] containing the cross-entropy error and the classification error rate.

PredictedClass
virtual public int PredictedClass(double[] x)

Description

Calculates the classification probablities for the input pattern x, and returns the class
with the highest probability.

This method classifies patterns into one of the target classes based upon the patterns
values.

Parameter

x – The double array containing the network input patterns to classify. The length
of x should equal the number of inputs in the network.

Returns

The classification predicted by the trained network for x. This will be one of the integers
1,2,...,nClasses, where nClasses is equal to nOuptuts. nOuptuts is the number of outputs
in the network representing the number of classes.

Probabilities
virtual public double[] Probabilities(double[] x)

Description

Returns classification probabilities for the input pattern x.

The number of probabilities is equal to the number of target classes, which is the number
of outputs in the FeedForwardNetwork. Each are calculated using the softmax activation
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for each of the output perceptrons. The softmax function transforms the outputs
potential z to the probability y by

yi = softmaxi =
eZi

C∑
j=1

eZj

Parameter

x – A double array containing the input patterns to classify. The length of x must
be equal to the number of input nodes.

Returns

A double containing the scaled probabilities.

Train
virtual public void Train(Imsl.DataMining.Neural.ITrainer trainer, double[,]
xData, int[] yData)

Description

Trains the classification neural network using supplied training patterns.

Parameters

trainer – A Trainer object, which is used to train the network. The error function
in any QuasiNewton trainer included in trainer should be set to the error function
from this class using the Imsl.DataMining.Neural.MultiClassification.Error (p. 1089)
method.

xData – A double matrix containing the input training patterns. The number of
columns in xData must equal the number of nodes in the input layer. Each row of
xData contains a training pattern.

yData – An int array containing the output classification values. These values must
be in the range of one to the number of output perceptrons in the network.

Description

Extends neural network analysis to solving multi-classification problems. In these problems, the
target output for the network is the probability that the pattern falls into each of several classes,
where the number of classes is 3 or greater. These probabilities are then used to assign patterns
to one of the target classes. Typical applications include determining the credit classification for
a business (excellent, good, fair or poor), and determining which of three or more treatments a
patient should receive based upon their physical, clinical and laboratory information. This class
signals that network training will minimize the multi-classification cross-entropy error, and that
network outputs are the probabilities that the pattern belongs to each of the target classes.
These probabilities are scaled to sum to 1.0 using softmax activation.
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Example 1: MultiClassification

This example trains a 3-layer network using Fisher’s Iris data with four continuous input
attributes and three output classifications. This is perhaps the best known database to be
found in the pattern recognition literature. Fisher’s paper is a classic in the field. The data set
contains 3 classes of 50 instances each, where each class refers to a type of iris plant.

The structure of the network consists of four input nodes and three layers, with four
perceptrons in the first hidden layer, three perceptrons in the second hidden layer and three in
the output layer.

The four input attributes represent

1. Sepal length

2. Sepal width

3. Petal length

4. Petal width

The output attribute represents the class of the iris plant and are encoded using binary
encoding.

1. Iris Setosa

2. Iris Versicolour

3. Iris Virginica

There are a total of 46 weights in this network, including the bias weights. All hidden layers use
the logistic activation function. Since the target output is multi-classification the softmax
activation function is used in the output layer and the MultiClassification error function
class is used by the trainer. The error class MultiClassification combines the cross-entropy
error calculations and the softmax function.

using System;
using Imsl.DataMining.Neural;
using PrintMatrix = Imsl.Math.PrintMatrix;
using PrintMatrixFormat = Imsl.Math.PrintMatrixFormat;

//*****************************************************************************
// Three Layer Feed-Forward Network with 4 inputs, all
// continuous, and 3 classification categories.
//
// new classification training_ex5.c
//
// This is perhaps the best known database to be found in the pattern
// recognition literature. Fisher’s paper is a classic in the field.
// The data set contains 3 classes of 50 instances each,
// where each class refers to a type of iris plant. One class is
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// linearly separable from the other 2; the latter are NOT linearly
// separable from each other.
//
// Predicted attribute: class of iris plant.
// 1=Iris Setosa, 2=Iris Versicolour, and 3=Iris Virginica
//
// Input Attributes (4 Continuous Attributes)
// X1: Sepal length, X2: Sepal width, X3: Petal length, and X4: Petal width
//*****************************************************************************

[Serializable]
public class MultiClassificationEx1
{

private static int nObs = 150; // number of training patterns
private static int nInputs = 4; // 9 nominal coded as 0=x, 1=o, 2=blank
private static int nOutputs = 3; // one continuous output (nClasses=2)

// irisData[]: The raw data matrix. This is a 2-D matrix with 150 rows and
// 5 columns. The first 4 columns are the continuous input
// attributes and the 5th column is the classification category
// (1-3). These data contain no categorical input attributes.

private static double[][] irisData = new double[][]{
new double[]{5.1, 3.5, 1.4, 0.2, 1}, new double[]{4.9, 3.0, 1.4, 0.2, 1},
new double[]{4.7, 3.2, 1.3, 0.2, 1}, new double[]{4.6, 3.1, 1.5, 0.2, 1},
new double[]{5.0, 3.6, 1.4, 0.2, 1}, new double[]{5.4, 3.9, 1.7, 0.4, 1},
new double[]{4.6, 3.4, 1.4, 0.3, 1}, new double[]{5.0, 3.4, 1.5, 0.2, 1},
new double[]{4.4, 2.9, 1.4, 0.2, 1}, new double[]{4.9, 3.1, 1.5, 0.1, 1},
new double[]{5.4, 3.7, 1.5, 0.2, 1}, new double[]{4.8, 3.4, 1.6, 0.2, 1},
new double[]{4.8, 3.0, 1.4, 0.1, 1}, new double[]{4.3, 3.0, 1.1, 0.1, 1},
new double[]{5.8, 4.0, 1.2, 0.2, 1}, new double[]{5.7, 4.4, 1.5, 0.4, 1},
new double[]{5.4, 3.9, 1.3, 0.4, 1}, new double[]{5.1, 3.5, 1.4, 0.3, 1},
new double[]{5.7, 3.8, 1.7, 0.3, 1}, new double[]{5.1, 3.8, 1.5, 0.3, 1},
new double[]{5.4, 3.4, 1.7, 0.2, 1}, new double[]{5.1, 3.7, 1.5, 0.4, 1},
new double[]{4.6, 3.6, 1.0, 0.2, 1}, new double[]{5.1, 3.3, 1.7, 0.5, 1},
new double[]{4.8, 3.4, 1.9, 0.2, 1}, new double[]{5.0, 3.0, 1.6, 0.2, 1},
new double[]{5.0, 3.4, 1.6, 0.4, 1}, new double[]{5.2, 3.5, 1.5, 0.2, 1},
new double[]{5.2, 3.4, 1.4, 0.2, 1}, new double[]{4.7, 3.2, 1.6, 0.2, 1},
new double[]{4.8, 3.1, 1.6, 0.2, 1}, new double[]{5.4, 3.4, 1.5, 0.4, 1},
new double[]{5.2, 4.1, 1.5, 0.1, 1}, new double[]{5.5, 4.2, 1.4, 0.2, 1},
new double[]{4.9, 3.1, 1.5, 0.1, 1}, new double[]{5.0, 3.2, 1.2, 0.2, 1},
new double[]{5.5, 3.5, 1.3, 0.2, 1}, new double[]{4.9, 3.1, 1.5, 0.1, 1},
new double[]{4.4, 3.0, 1.3, 0.2, 1}, new double[]{5.1, 3.4, 1.5, 0.2, 1},
new double[]{5.0, 3.5, 1.3, 0.3, 1}, new double[]{4.5, 2.3, 1.3, 0.3, 1},
new double[]{4.4, 3.2, 1.3, 0.2, 1}, new double[]{5.0, 3.5, 1.6, 0.6, 1},
new double[]{5.1, 3.8, 1.9, 0.4, 1}, new double[]{4.8, 3.0, 1.4, 0.3, 1},
new double[]{5.1, 3.8, 1.6, 0.2, 1}, new double[]{4.6, 3.2, 1.4, 0.2, 1},
new double[]{5.3, 3.7, 1.5, 0.2, 1}, new double[]{5.0, 3.3, 1.4, 0.2, 1},
new double[]{7.0, 3.2, 4.7, 1.4, 2}, new double[]{6.4, 3.2, 4.5, 1.5, 2},
new double[]{6.9, 3.1, 4.9, 1.5, 2}, new double[]{5.5, 2.3, 4.0, 1.3, 2},
new double[]{6.5, 2.8, 4.6, 1.5, 2}, new double[]{5.7, 2.8, 4.5, 1.3, 2},
new double[]{6.3, 3.3, 4.7, 1.6, 2}, new double[]{4.9, 2.4, 3.3, 1.0, 2},
new double[]{6.6, 2.9, 4.6, 1.3, 2}, new double[]{5.2, 2.7, 3.9, 1.4, 2},
new double[]{5.0, 2.0, 3.5, 1.0, 2}, new double[]{5.9, 3.0, 4.2, 1.5, 2},
new double[]{6.0, 2.2, 4.0, 1.0, 2}, new double[]{6.1, 2.9, 4.7, 1.4, 2},
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new double[]{5.6, 2.9, 3.6, 1.3, 2}, new double[]{6.7, 3.1, 4.4, 1.4, 2},
new double[]{5.6, 3.0, 4.5, 1.5, 2}, new double[]{5.8, 2.7, 4.1, 1.0, 2},
new double[]{6.2, 2.2, 4.5, 1.5, 2}, new double[]{5.6, 2.5, 3.9, 1.1, 2},
new double[]{5.9, 3.2, 4.8, 1.8, 2}, new double[]{6.1, 2.8, 4.0, 1.3, 2},
new double[]{6.3, 2.5, 4.9, 1.5, 2}, new double[]{6.1, 2.8, 4.7, 1.2, 2},
new double[]{6.4, 2.9, 4.3, 1.3, 2}, new double[]{6.6, 3.0, 4.4, 1.4, 2},
new double[]{6.8, 2.8, 4.8, 1.4, 2}, new double[]{6.7, 3.0, 5.0, 1.7, 2},
new double[]{6.0, 2.9, 4.5, 1.5, 2}, new double[]{5.7, 2.6, 3.5, 1.0, 2},
new double[]{5.5, 2.4, 3.8, 1.1, 2}, new double[]{5.5, 2.4, 3.7, 1.0, 2},
new double[]{5.8, 2.7, 3.9, 1.2, 2}, new double[]{6.0, 2.7, 5.1, 1.6, 2},
new double[]{5.4, 3.0, 4.5, 1.5, 2}, new double[]{6.0, 3.4, 4.5, 1.6, 2},
new double[]{6.7, 3.1, 4.7, 1.5, 2}, new double[]{6.3, 2.3, 4.4, 1.3, 2},
new double[]{5.6, 3.0, 4.1, 1.3, 2}, new double[]{5.5, 2.5, 4.0, 1.3, 2},
new double[]{5.5, 2.6, 4.4, 1.2, 2}, new double[]{6.1, 3.0, 4.6, 1.4, 2},
new double[]{5.8, 2.6, 4.0, 1.2, 2}, new double[]{5.0, 2.3, 3.3, 1.0, 2},
new double[]{5.6, 2.7, 4.2, 1.3, 2}, new double[]{5.7, 3.0, 4.2, 1.2, 2},
new double[]{5.7, 2.9, 4.2, 1.3, 2}, new double[]{6.2, 2.9, 4.3, 1.3, 2},
new double[]{5.1, 2.5, 3.0, 1.1, 2}, new double[]{5.7, 2.8, 4.1, 1.3, 2},
new double[]{6.3, 3.3, 6.0, 2.5, 3}, new double[]{5.8, 2.7, 5.1, 1.9, 3},
new double[]{7.1, 3.0, 5.9, 2.1, 3}, new double[]{6.3, 2.9, 5.6, 1.8, 3},
new double[]{6.5, 3.0, 5.8, 2.2, 3}, new double[]{7.6, 3.0, 6.6, 2.1, 3},
new double[]{4.9, 2.5, 4.5, 1.7, 3}, new double[]{7.3, 2.9, 6.3, 1.8, 3},
new double[]{6.7, 2.5, 5.8, 1.8, 3}, new double[]{7.2, 3.6, 6.1, 2.5, 3},
new double[]{6.5, 3.2, 5.1, 2.0, 3}, new double[]{6.4, 2.7, 5.3, 1.9, 3},
new double[]{6.8, 3.0, 5.5, 2.1, 3}, new double[]{5.7, 2.5, 5.0, 2.0, 3},
new double[]{5.8, 2.8, 5.1, 2.4, 3}, new double[]{6.4, 3.2, 5.3, 2.3, 3},
new double[]{6.5, 3.0, 5.5, 1.8, 3}, new double[]{7.7, 3.8, 6.7, 2.2, 3},
new double[]{7.7, 2.6, 6.9, 2.3, 3}, new double[]{6.0, 2.2, 5.0, 1.5, 3},
new double[]{6.9, 3.2, 5.7, 2.3, 3}, new double[]{5.6, 2.8, 4.9, 2.0, 3},
new double[]{7.7, 2.8, 6.7, 2.0, 3}, new double[]{6.3, 2.7, 4.9, 1.8, 3},
new double[]{6.7, 3.3, 5.7, 2.1, 3}, new double[]{7.2, 3.2, 6.0, 1.8, 3},
new double[]{6.2, 2.8, 4.8, 1.8, 3}, new double[]{6.1, 3.0, 4.9, 1.8, 3},
new double[]{6.4, 2.8, 5.6, 2.1, 3}, new double[]{7.2, 3.0, 5.8, 1.6, 3},
new double[]{7.4, 2.8, 6.1, 1.9, 3}, new double[]{7.9, 3.8, 6.4, 2.0, 3},
new double[]{6.4, 2.8, 5.6, 2.2, 3}, new double[]{6.3, 2.8, 5.1, 1.5, 3},
new double[]{6.1, 2.6, 5.6, 1.4, 3}, new double[]{7.7, 3.0, 6.1, 2.3, 3},
new double[]{6.3, 3.4, 5.6, 2.4, 3}, new double[]{6.4, 3.1, 5.5, 1.8, 3},
new double[]{6.0, 3.0, 4.8, 1.8, 3}, new double[]{6.9, 3.1, 5.4, 2.1, 3},
new double[]{6.7, 3.1, 5.6, 2.4, 3}, new double[]{6.9, 3.1, 5.1, 2.3, 3},
new double[]{5.8, 2.7, 5.1, 1.9, 3}, new double[]{6.8, 3.2, 5.9, 2.3, 3},
new double[]{6.7, 3.3, 5.7, 2.5, 3}, new double[]{6.7, 3.0, 5.2, 2.3, 3},
new double[]{6.3, 2.5, 5.0, 1.9, 3}, new double[]{6.5, 3.0, 5.2, 2.0, 3},
new double[]{6.2, 3.4, 5.4, 2.3, 3}, new double[]{5.9, 3.0, 5.1, 1.8, 3}};

[STAThread]
public static void Main(System.String[] args)
{

double[,] xData = new double[nObs,nInputs];

int[] yData = new int[nObs];

for (int i = 0; i < nObs; i++)
{

for (int j = 0; j < nInputs; j++)
{

xData[i,j] = irisData[i][j];
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}
yData[i] = (int) irisData[i][4];

}

// Create network
FeedForwardNetwork network = new FeedForwardNetwork();
network.InputLayer.CreateInputs(nInputs);
network.CreateHiddenLayer().CreatePerceptrons(4,

Imsl.DataMining.Neural.Activation.Logistic, 0.0);
network.CreateHiddenLayer().CreatePerceptrons(3,

Imsl.DataMining.Neural.Activation.Logistic, 0.0);
network.OutputLayer.CreatePerceptrons(nOutputs,

Imsl.DataMining.Neural.Activation.Softmax, 0.0);
network.LinkAll();

MultiClassification classification = new MultiClassification(network);

// Create trainer
QuasiNewtonTrainer trainer = new QuasiNewtonTrainer();
trainer.SetError(classification.Error);
trainer.MaximumTrainingIterations = 1000;

// Train Network
long t0 = (System.DateTime.Now.Ticks - 621355968000000000) / 10000;
classification.Train(trainer, xData, yData);

// Display Network Errors
double[] stats = classification.ComputeStatistics(xData, yData);
System.Console.Out.WriteLine(

"***********************************************");
System.Console.Out.WriteLine(

"--> Cross-entropy error: " + (float) stats[0]);
System.Console.Out.WriteLine(

"--> Classification error rate: " + (float) stats[1]);
System.Console.Out.WriteLine(

"***********************************************");
System.Console.Out.WriteLine("");

double[] weight = network.Weights;
double[] gradient = trainer.ErrorGradient;
double[][] wg = new double[weight.Length][];
for (int i2 = 0; i2 < weight.Length; i2++)
{

wg[i2] = new double[2];
}
for (int i = 0; i < weight.Length; i++)
{

wg[i][0] = weight[i];
wg[i][1] = gradient[i];

}
PrintMatrixFormat pmf = new PrintMatrixFormat();
pmf.SetColumnLabels(new System.String[]{"Weights", "Gradients"});
new PrintMatrix().Print(pmf, wg);

double[][] report = new double[nObs][];
for (int i3 = 0; i3 < nObs; i3++)
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{
report[i3] = new double[nInputs + 2];

}
for (int i = 0; i < nObs; i++)
{

for (int j = 0; j < nInputs; j++)
{

report[i][j] = xData[i,j];
}
report[i][nInputs] = irisData[i][4];

double[] xTmp = new double[xData.GetLength(1)];
for (int j=0; j<xData.GetLength(1); j++)

xTmp[j] = xData[i,j];
report[i][nInputs + 1] = classification.PredictedClass(xTmp);

}
pmf = new PrintMatrixFormat();
pmf.SetColumnLabels( new System.String[]{"Sepal Length", "Sepal Width",

"Petal Length", "Petal Width", "Expected", "Predicted"});
new PrintMatrix("Forecast").Print(pmf, report);

// **********************************************************************
// DISPLAY CLASSIFICATION STATISTICS
// **********************************************************************
double[] statsClass = classification.ComputeStatistics(xData, yData);
// Display Network Errors
System.Console.Out.WriteLine(

"***********************************************");
System.Console.Out.WriteLine("--> Cross-Entropy Error: " +

(float)statsClass[0]);
System.Console.Out.WriteLine("--> Classification Error: " +

(float)statsClass[1]);
System.Console.Out.WriteLine(

"***********************************************");
System.Console.Out.WriteLine("");
long t1 = (System.DateTime.Now.Ticks - 621355968000000000) / 10000;
double time = t1 - t0;
time = time / 1000;
System.Console.Out.WriteLine("****************Time: " + time);

System.Console.Out.WriteLine("Cross-Entropy Error Value = " +
trainer.ErrorValue);

}
}

Output

***********************************************
--> Cross-entropy error: 2.119975E-10
--> Classification error rate: 0
***********************************************

Weights Gradients
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0 -28.6781319150959 7.87590264437711E-113
1 -1.04608488867643 -5.76760919985582E-12
2 -86.2597201959254 -6.79823502891189E-181
3 -80.8768794497344 1.91947652160099E-08
4 4.7922023557326 5.51313185106398E-113
5 41.7757062372833 -2.60180626610986E-12
6 -89.1920834776831 -3.52964111087987E-181
7 -169.665870083246 1.04107297570942E-08
8 26.2104571153094 2.52028884620068E-113
9 89.2824428920942 -4.59704885126527E-12
10 4.78968378602374 -5.09809934877317E-181
11 3.69580856206968 1.56160846865524E-08
12 199.180907855982 9.45108317325254E-114
13 -81.462945734365 -1.43284780406862E-12
14 234.395038164347 -1.82996826335742E-181
15 523.701133894724 5.85603331200232E-09
16 3.75750825503756 -7.63631139063138E-11
17 1.55131869241627 -8.20696721896107E-08
18 -0.478073600231926 -1.83171284540763E-09
19 82.4910685116272 -2.58054098695318E-16
20 2.49879733323649 -3.60921285939333E-13
21 -0.114220454165923 -7.89173652189626E-15
22 -29.1499708696859 -9.79535645888544E-186
23 12.7239135762807 -1.0637578300168E-182
24 -18.4461484012531 -2.33659980816857E-184
25 -8.04900610619496 4.22051830796542E-14
26 41.9059823374628 8.05687997104916E-11
27 6.21226036008435 6.32025904169135E-13
28 -2095.35972014252 2.05965389206269E-10
29 557.990634349718 -2.11962286858389E-10
30 1538.36908579337 5.99730606961734E-12
31 -2034.36189491703 4.73007517080961E-11
32 276.908671633113 -5.08319254134931E-11
33 1758.45322328515 3.53127914432977E-12
34 -2095.02402775956 2.05287816017904E-10
35 529.488332076977 -2.11269543435035E-10
36 1566.53569568216 5.9821345130617E-12
37 -35.2271614745031 1.57518052887542E-113
38 -437.337384643647 -9.19418243757285E-13
39 -56.3739506402764 -1.3075596591524E-181
40 56.4556518262469 3.25335045818341E-09
41 5.10317144510891 -7.63631139063138E-11
42 -2.76178014091664 -8.20696721896107E-08
43 6.14951997983717 -1.83171284540763E-09
44 4819.53497802506 2.05994598070357E-10
45 -953.548516064939 -2.11992645660075E-10
46 -3865.98646195991 5.99845606447974E-12

Forecast
Sepal Length Sepal Width Petal Length Petal Width Expected Predicted

0 5.1 3.5 1.4 0.2 1 1
1 4.9 3 1.4 0.2 1 1
2 4.7 3.2 1.3 0.2 1 1
3 4.6 3.1 1.5 0.2 1 1
4 5 3.6 1.4 0.2 1 1
5 5.4 3.9 1.7 0.4 1 1
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6 4.6 3.4 1.4 0.3 1 1
7 5 3.4 1.5 0.2 1 1
8 4.4 2.9 1.4 0.2 1 1
9 4.9 3.1 1.5 0.1 1 1

10 5.4 3.7 1.5 0.2 1 1
11 4.8 3.4 1.6 0.2 1 1
12 4.8 3 1.4 0.1 1 1
13 4.3 3 1.1 0.1 1 1
14 5.8 4 1.2 0.2 1 1
15 5.7 4.4 1.5 0.4 1 1
16 5.4 3.9 1.3 0.4 1 1
17 5.1 3.5 1.4 0.3 1 1
18 5.7 3.8 1.7 0.3 1 1
19 5.1 3.8 1.5 0.3 1 1
20 5.4 3.4 1.7 0.2 1 1
21 5.1 3.7 1.5 0.4 1 1
22 4.6 3.6 1 0.2 1 1
23 5.1 3.3 1.7 0.5 1 1
24 4.8 3.4 1.9 0.2 1 1
25 5 3 1.6 0.2 1 1
26 5 3.4 1.6 0.4 1 1
27 5.2 3.5 1.5 0.2 1 1
28 5.2 3.4 1.4 0.2 1 1
29 4.7 3.2 1.6 0.2 1 1
30 4.8 3.1 1.6 0.2 1 1
31 5.4 3.4 1.5 0.4 1 1
32 5.2 4.1 1.5 0.1 1 1
33 5.5 4.2 1.4 0.2 1 1
34 4.9 3.1 1.5 0.1 1 1
35 5 3.2 1.2 0.2 1 1
36 5.5 3.5 1.3 0.2 1 1
37 4.9 3.1 1.5 0.1 1 1
38 4.4 3 1.3 0.2 1 1
39 5.1 3.4 1.5 0.2 1 1
40 5 3.5 1.3 0.3 1 1
41 4.5 2.3 1.3 0.3 1 1
42 4.4 3.2 1.3 0.2 1 1
43 5 3.5 1.6 0.6 1 1
44 5.1 3.8 1.9 0.4 1 1
45 4.8 3 1.4 0.3 1 1
46 5.1 3.8 1.6 0.2 1 1
47 4.6 3.2 1.4 0.2 1 1
48 5.3 3.7 1.5 0.2 1 1
49 5 3.3 1.4 0.2 1 1
50 7 3.2 4.7 1.4 2 2
51 6.4 3.2 4.5 1.5 2 2
52 6.9 3.1 4.9 1.5 2 2
53 5.5 2.3 4 1.3 2 2
54 6.5 2.8 4.6 1.5 2 2
55 5.7 2.8 4.5 1.3 2 2
56 6.3 3.3 4.7 1.6 2 2
57 4.9 2.4 3.3 1 2 2
58 6.6 2.9 4.6 1.3 2 2
59 5.2 2.7 3.9 1.4 2 2
60 5 2 3.5 1 2 2
61 5.9 3 4.2 1.5 2 2
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62 6 2.2 4 1 2 2
63 6.1 2.9 4.7 1.4 2 2
64 5.6 2.9 3.6 1.3 2 2
65 6.7 3.1 4.4 1.4 2 2
66 5.6 3 4.5 1.5 2 2
67 5.8 2.7 4.1 1 2 2
68 6.2 2.2 4.5 1.5 2 2
69 5.6 2.5 3.9 1.1 2 2
70 5.9 3.2 4.8 1.8 2 2
71 6.1 2.8 4 1.3 2 2
72 6.3 2.5 4.9 1.5 2 2
73 6.1 2.8 4.7 1.2 2 2
74 6.4 2.9 4.3 1.3 2 2
75 6.6 3 4.4 1.4 2 2
76 6.8 2.8 4.8 1.4 2 2
77 6.7 3 5 1.7 2 2
78 6 2.9 4.5 1.5 2 2
79 5.7 2.6 3.5 1 2 2
80 5.5 2.4 3.8 1.1 2 2
81 5.5 2.4 3.7 1 2 2
82 5.8 2.7 3.9 1.2 2 2
83 6 2.7 5.1 1.6 2 2
84 5.4 3 4.5 1.5 2 2
85 6 3.4 4.5 1.6 2 2
86 6.7 3.1 4.7 1.5 2 2
87 6.3 2.3 4.4 1.3 2 2
88 5.6 3 4.1 1.3 2 2
89 5.5 2.5 4 1.3 2 2
90 5.5 2.6 4.4 1.2 2 2
91 6.1 3 4.6 1.4 2 2
92 5.8 2.6 4 1.2 2 2
93 5 2.3 3.3 1 2 2
94 5.6 2.7 4.2 1.3 2 2
95 5.7 3 4.2 1.2 2 2
96 5.7 2.9 4.2 1.3 2 2
97 6.2 2.9 4.3 1.3 2 2
98 5.1 2.5 3 1.1 2 2
99 5.7 2.8 4.1 1.3 2 2
100 6.3 3.3 6 2.5 3 3
101 5.8 2.7 5.1 1.9 3 3
102 7.1 3 5.9 2.1 3 3
103 6.3 2.9 5.6 1.8 3 3
104 6.5 3 5.8 2.2 3 3
105 7.6 3 6.6 2.1 3 3
106 4.9 2.5 4.5 1.7 3 3
107 7.3 2.9 6.3 1.8 3 3
108 6.7 2.5 5.8 1.8 3 3
109 7.2 3.6 6.1 2.5 3 3
110 6.5 3.2 5.1 2 3 3
111 6.4 2.7 5.3 1.9 3 3
112 6.8 3 5.5 2.1 3 3
113 5.7 2.5 5 2 3 3
114 5.8 2.8 5.1 2.4 3 3
115 6.4 3.2 5.3 2.3 3 3
116 6.5 3 5.5 1.8 3 3
117 7.7 3.8 6.7 2.2 3 3
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118 7.7 2.6 6.9 2.3 3 3
119 6 2.2 5 1.5 3 3
120 6.9 3.2 5.7 2.3 3 3
121 5.6 2.8 4.9 2 3 3
122 7.7 2.8 6.7 2 3 3
123 6.3 2.7 4.9 1.8 3 3
124 6.7 3.3 5.7 2.1 3 3
125 7.2 3.2 6 1.8 3 3
126 6.2 2.8 4.8 1.8 3 3
127 6.1 3 4.9 1.8 3 3
128 6.4 2.8 5.6 2.1 3 3
129 7.2 3 5.8 1.6 3 3
130 7.4 2.8 6.1 1.9 3 3
131 7.9 3.8 6.4 2 3 3
132 6.4 2.8 5.6 2.2 3 3
133 6.3 2.8 5.1 1.5 3 3
134 6.1 2.6 5.6 1.4 3 3
135 7.7 3 6.1 2.3 3 3
136 6.3 3.4 5.6 2.4 3 3
137 6.4 3.1 5.5 1.8 3 3
138 6 3 4.8 1.8 3 3
139 6.9 3.1 5.4 2.1 3 3
140 6.7 3.1 5.6 2.4 3 3
141 6.9 3.1 5.1 2.3 3 3
142 5.8 2.7 5.1 1.9 3 3
143 6.8 3.2 5.9 2.3 3 3
144 6.7 3.3 5.7 2.5 3 3
145 6.7 3 5.2 2.3 3 3
146 6.3 2.5 5 1.9 3 3
147 6.5 3 5.2 2 3 3
148 6.2 3.4 5.4 2.3 3 3
149 5.9 3 5.1 1.8 3 3

***********************************************
--> Cross-Entropy Error: 2.119975E-10
--> Classification Error: 0
***********************************************

****************Time: 0.391
Cross-Entropy Error Value = 6.3599259192415E-10

Example 2: MultiClassification

This example trains a 2-layer network using three binary inputs (X0, X1, X2) and one
three-level classification (Y). Where

Y = 0 if X1 = 1

Y = 1 if X2 = 1

Y = 2 if X3 = 1

using System;
using Imsl.DataMining.Neural;
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using PrintMatrix = Imsl.Math.PrintMatrix;
using PrintMatrixFormat = Imsl.Math.PrintMatrixFormat;

//*****************************************************************************
// Two-Layer FFN with 3 binary inputs (X0, X1, X2) and one three-level
// classification variable (Y)
// Y = 0 if X1 = 1
// Y = 1 if X2 = 1
// Y = 2 if X3 = 1
// (training_ex6)
//*****************************************************************************

[Serializable]
public class MultiClassificationEx2
{

private static int nObs = 6; // number of training patterns
private static int nInputs = 3; // 3 inputs, all categorical
private static int nOutputs = 3; //
private static double[,] xData = {{1, 0, 0}, {1, 0, 0}, {0, 1, 0}, {0, 1, 0},

{0, 0, 1}, {0, 0, 1}};
private static int[] yData = new int[]{1, 1, 2, 2, 3, 3};

private static double[] weights = new double[]{1.29099444873580580000,
-0.64549722436790280000, -0.64549722436790291000, 0.00000000000000000000,
1.11803398874989490000, -1.11803398874989470000, 0.57735026918962584000,
0.57735026918962584000, 0.57735026918962584000, 0.33333333333333331000,
0.33333333333333331000, 0.33333333333333331000, 0.33333333333333331000,
0.33333333333333331000, 0.33333333333333331000, 0.33333333333333331000,
0.33333333333333331000, 0.33333333333333331000, -0.00000000000000005851,
-0.00000000000000005851, -0.57735026918962573000, 0.00000000000000000000,
0.00000000000000000000, 0.00000000000000000000};

[STAThread]
public static void Main(System.String[] args)
{

FeedForwardNetwork network = new FeedForwardNetwork();
network.InputLayer.CreateInputs(nInputs);
network.CreateHiddenLayer().CreatePerceptrons(3,

Imsl.DataMining.Neural.Activation.Linear, 0.0);
network.OutputLayer.CreatePerceptrons(nOutputs,

Imsl.DataMining.Neural.Activation.Softmax, 0.0);
network.LinkAll();
network.Weights = weights;

MultiClassification classification = new MultiClassification(network);

QuasiNewtonTrainer trainer = new QuasiNewtonTrainer();
trainer.SetError(classification.Error);
trainer.MaximumTrainingIterations = 1000;
trainer.FalseConvergenceTolerance = 1.0e-20;
trainer.GradientTolerance = 1.0e-20;
trainer.RelativeTolerance = 1.0e-20;
trainer.StepTolerance = 1.0e-20;

// Train Network
classification.Train(trainer, xData, yData);
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// Display Network Errors
double[] stats = classification.ComputeStatistics(xData, yData);
System.Console.Out.WriteLine(

"***********************************************");
System.Console.Out.WriteLine(

"--> Cross-Entropy Error: " + (float) stats[0]);
System.Console.Out.WriteLine(

"--> Classification Error: " + (float) stats[1]);
System.Console.Out.WriteLine(

"***********************************************");
System.Console.Out.WriteLine();

double[] weight = network.Weights;
double[] gradient = trainer.ErrorGradient;
double[][] wg = new double[weight.Length][];
for (int i = 0; i < weight.Length; i++)
{

wg[i] = new double[2];
}
for (int i = 0; i < weight.Length; i++)
{

wg[i][0] = weight[i];
wg[i][1] = gradient[i];

}
PrintMatrixFormat pmf = new PrintMatrixFormat();
pmf.SetColumnLabels(new System.String[]{"Weights", "Gradients"});
new PrintMatrix().Print(pmf, wg);

double[][] report = new double[nObs][];
for (int i2 = 0; i2 < nObs; i2++)
{

report[i2] = new double[nInputs + nOutputs + 2];
}
for (int i = 0; i < nObs; i++)
{

for (int j = 0; j < nInputs; j++)
{

report[i][j] = xData[i,j];
}
report[i][nInputs] = yData[i];

double[] xTmp = new double[xData.GetLength(1)];
for (int j=0; j<xData.GetLength(1); j++)

xTmp[j] = xData[i,j];
double[] p = classification.Probabilities(xTmp);
for (int j = 0; j < nOutputs; j++)
{

report[i][nInputs + 1 + j] = p[j];
}
report[i][nInputs + nOutputs + 1] =

classification.PredictedClass(xTmp);
}
pmf = new PrintMatrixFormat();
pmf.SetColumnLabels(new System.String[]{"X1", "X2", "X3", "Y", "P(C1)",

"P(C2)", "P(C3)", "Predicted"});
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new PrintMatrix("Forecast").Print(pmf, report);
System.Console.Out.WriteLine("Cross-Entropy Error Value = " +

trainer.ErrorValue);

// **********************************************************************
// DISPLAY CLASSIFICATION STATISTICS
// **********************************************************************
double[] statsClass = classification.ComputeStatistics(xData, yData);
// Display Network Errors
System.Console.Out.WriteLine(

"***********************************************");
System.Console.Out.WriteLine("--> Cross-Entropy Error: " +

(float)statsClass[0]);
System.Console.Out.WriteLine("--> Classification Error: " +

(float)statsClass[1]);
System.Console.Out.WriteLine(

"***********************************************");
System.Console.Out.WriteLine("");

}
}

Output

***********************************************
--> Cross-Entropy Error: 0
--> Classification Error: 0
***********************************************

Weights Gradients
0 3.22142231426227 -4.5293591783678E-21
1 -3.5155105345287 4.10418218034394E-20
2 -1.32663590270865 1.82727922421337E-19
3 -1.28370297625286 1.79195753880894E-14
4 2.64877322140103 -1.36319533545496E-14
5 -2.83341597107777 9.79393364839217E-14
6 0.758665437713986 2.63470704168269E-40
7 2.23842447927351 -3.41751464346434E-40
8 4.92756335370081 -1.62387424991113E-40
9 4.48657597190413 -1.0629493799265E-17
10 -3.22422759973224 3.06415333213106E-15
11 -0.25310873632921 -3.03621111804672E-15
12 -5.81974214297561 6.01464280711637E-17
13 4.52625109695299 -1.7338349452045E-14
14 2.29349104602264 1.71805857805814E-14
15 -2.76184230566633 -3.10717763898766E-17
16 -6.22757265046598 8.95702927705116E-15
17 10.2111662163555 -8.87555824139815E-15
18 0.77260224274218 1.79195708587302E-14
19 0.243263227911821 -1.36319123127278E-14
20 1.33938361128243 9.79395192118442E-14
21 0.261471250833615 2.07972579617572E-17
22 0.326428754937653 -5.99520433297567E-15
23 -0.587900005771228 5.94069140932869E-15
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Forecast
X1 X2 X3 Y P(C1) P(C2) P(C3) Predicted

0 1 0 0 1 1 8.53314291154036E-29 8.9474561285406E-21 1
1 1 0 0 1 1 8.53314291154036E-29 8.9474561285406E-21 1
2 0 1 0 2 1.03986289808786E-17 0.999999999999997 2.97033675720822E-15 2
3 0 1 0 2 1.03986289808786E-17 0.999999999999997 2.97033675720822E-15 2
4 0 0 1 3 2.93708802897469E-41 1.2199417162444E-44 1 3
5 0 0 1 3 2.93708802897469E-41 1.2199417162444E-44 1 3

Cross-Entropy Error Value = 0
***********************************************
--> Cross-Entropy Error: 0
--> Classification Error: 0
***********************************************

ScaleFilter Class

Summary

Scales or unscales continuous data prior to its use in neural network training, testing, or
forecasting.

public class Imsl.DataMining.Neural.ScaleFilter

Properties

Center
virtual public double Center {get; set; }

Description

The measure of center to be used during z-score scaling.

If this property is not set then the measure of center is computed from the data.

Spread
virtual public double Spread {get; set; }

Description

The measure of spread to be used during z-score scaling.

If this property is not set then the measure of spread is computed from the data.

1104 • ScaleFilter Class IMSL C# Numerical Library



Constructor

ScaleFilter
public ScaleFilter(Imsl.DataMining.Neural.ScaleFilter.ScalingMethod
scalingMethod)

Description

Constructor for ScaleFilter.

scalingMethod is specified by: ScalingMethod.None (p. 1114), ScalingMethod.Bounded (p.
1113), ScalingMethod.UnboundedZScoreMeanStdev (p. 1114),
ScalingMethod.UnboundedZScoreMedianMAD (p. 1114),
ScalingMethod.BoundedZScoreMeanStdev (p. 1113), or
ScalingMethod.BoundedZScoreMedianMAD (p. 1113).

Parameter

scalingMethod – An int specifying the scaling method to be applied.

Methods

Decode
virtual public void Decode(int columnIndex, double[,] z)

Description

Unscales a single column of a two dimensional array of values.

Indexing is zero-based.

Its columnIndex-th column is modified in place.

Parameters

columnIndex – An int specifying the index of the column of z to unscale.

z – A double matrix containing the values to be unscaled.

Decode
virtual public double[] Decode(double[] z)

Description

Unscales an array of values.

Parameter

z – A double array of values to be unscaled.
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Returns

A double array containing the filtered data.

Decode
virtual public double Decode(double z)

Description

Unscales a value.

Parameter

z – A double containing the value to be unscaled.

Returns

A double containing the filtered data.

Encode
virtual public void Encode(int columnIndex, double[,] x)

Description

Scales a single column of a two dimensional array of values.

Indexing is zero-based.

Its columnIndex-th column is modified in place.

Parameters

columnIndex – An int specifying the index of the column of x to scale.

x – A double matrix containing the value to be scaled.

Encode
virtual public double[] Encode(double[] x)

Description

Scales an array of values.

Parameter

x – A double array containing the data to be scaled.

Returns

A double array containing the scaled data.

Encode
virtual public double Encode(double x)

Description

Scales a value.
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Parameter

x – A double containing the value to be scaled.

Returns

A double containing the scaled value.

GetBounds
virtual public double[] GetBounds()

Description

Retrieves bounds used during bounded scaling.

i result[b]
0 realMin. Lowest expected value in the data to be filtered.
1 realMax. Largest expected value in the data to be filtered.
2 targetMin. Lowest allowed value in the filtered data.
3 targetMax. Largest allowed value in the filtered data.

Returns

A double array of length 4 containing the bounds.

SetBounds
virtual public void SetBounds(double realMin, double realMax, double
targetMin, double targetMax)

Description

Sets bounds to be used during bounded scaling and unscaling.

This method is normally called prior to calls to Encode (p. 1106) or Decode (p. 1106).
Otherwise the default bounds are realMin = 0, realMax = 1, targetMin = 0, and
targetMax = 1. These bounds are ignored for unbounded scaling.

Parameters

realMin – A double containing the lowest expected value in the data to be filtered.

realMax – A double containing the largest expected value in the data to be filtered.

targetMin – A double containing the lowest allowed value in the filtered data.

targetMax – A double containing the largest allowed value in the filtered data.

Description

Bounded scaling is used to ensure that the values in the scaled array fall between a lower and
upper bound. The scale limits have the following interpretation:
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Argument Interpretation
realMin The lowest value expected in x.
realMax The largest value expected in x.
targetMin The lower bound for the values in the scaled data.
targetMax The upper bound for the values in the scaled data.

The scale limits are set using the method SetBounds (p. 1107).

The specific scaling used is controlled by the argument scalingMethod used when constructing
the filter object. If scalingMethod is ScalingMethod.None, then no scaling is performed on the
data.

If the input parameter scalingMethod is ScaleMethod.Bounded then the bounded method of
scaling and unscaling is applied to x. The scaling operation is conducted using the scale limits
set in method SetBounds, using the following calculation:

z = r(x− realMin) + targetMin,

where
r =

targetMax− targetMin

realMax− realMin
.

If scalingMethod is one of UnboundedZScoreMeanStdev, UnboundedZScoreMedianMAD,
BoundedZScoreMeanStdev, or BoundedZScoreMedianMAD, then the z-score method of scaling is
used. These calculations are based upon the following scaling calculation:

z =
(x− a)

b
,

where a is a measure of center for x, and b is a measure of the spread of x.

If scalingMethod is UnboundedZScoreMeanStdev, or BoundedZScoreMeanStdev, then a and b
are the arithmetic average and sample standard deviation of the training data.

If scalingMethod is UnboundedZScoreMedianMAD or BoundedZScoreMedianMAD, then a and b are
the median and s̃, where s̃ is a robust estimate of the population standard deviation:

s̃ =
MAD
0.6745

where MAD is the Mean Absolute Deviation

MAD = median{| x−median{x} |}

The Mean Absolute Deviation is a robust measure of spread calculated by finding the median
of the absolute value of differences between each non-missing value for the i-th variable and the
median of those values.
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If the method Decode (p. 1106) is called then an unscaling operation is conducted by inverting
using:

x =
(z − targetMin)

r
+ realMin.

Unbounded z-score Scaling

If scalingMethod is UnboundedZScoreMeanStdev or UnboundedZScoreMedianMAD, then a scaling
operation is conducted using the z-score calculation:

z =
(x− center)
spread

,

If scalingMethod is UnboundedZScoreMeanStdev then Center (p. 1104) is set equal to the
arithmetic average x̄ of x, and Spread (p. 1104) is set equal to the sample standard deviation of
x. If scalingMethod is UnboundedZScoreMedianMAD then Center is set equal to the median m̃ of
x, and Spread is set equal to the Mean Absolute Difference (MAD).

The method Decode can be used to unfilter data using the inverse calculation for the above
equation:

x = spread · z + center.

Bounded z-score Scaling

This method is essentially the same as the z-score calculation described above with additional
scaling or unscaling using the scale limits set in method SetBounds. The scaling operation is
conducted using the well known z-score calculation:

z =
r · (x− center)

spread
− r · realMin+ targetMin.

If scalingMethod is UnboundedZScoreMeanStdev then Center is set equal to the arithmetic
average x̄ of x, and Spread is set equal to the sample standard deviation of x. If scalingMethod
is UnboundedZScoreMedianMAD then Center is set equal to the median m̃ of x, and Spread is
set equal to the Mean Absolute Difference (MAD).

The method Decode can be used to unfilter data using the inverse calculation for the above
equation:

x =
spread · (z − targetMin)

r
+ spread · realMin+ center
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Example: ScaleFilter

In this example three sets of data, X0, X1, and X2 are scaled using the methods described in
the following table:

Variables and Scaling Methods

Variable Method Description
X0 0 No Scaling
X1 4 Bounded Z-score scaling using the mean and standard deviation of X1
X2 5 Bounded Z-score scaling using the median and MAD of X2

The bounds, measuresof center and spreadfor X1 and X2 are:

Scaling Limits and Measures of Center and Spread

Variable Real Limits Target Limits Measure of Center Measure of Spread
X1 (-6, +6) (-3, +3) 3.4 (Mean) 1.7421 (Std. Dev.)
X2 (-3, +3) (-3, +3) 2.4 (Median) 1.3343(MAD/0.6745)

The real and target limits are used for bounded scaling. The measures of center and spread are
used to calculate z-scores. Using these values for x1[0]=3.5 yields the following calculations:

For x1[0] , the scale factor is calculated using the real and target limits in the above table:

r = (3-(-3))/(6-(-6)) = 0.5

The z-score for x1[0] is calculated using the measures of center and spread:

z1[0] = (3.5 - 3.4)/1.7421 = 0.057402

Since method=4 is used for x1, this z-score is bounded (scaled) using the real and target limits:

z1(bounded) = r(z1[0]) - r(realMin) + (targetMin)
= 0.5(0.057402) - 0.5(-6) + (-3) = 0.029

Thecalculations for x2[0] are nearly identical, except that since method=5 for x2, the median
and MAD replace the mean and standard deviation used to calculate z1(bounded):

r = (3-(-3))/(3-(-3)) = 1,

z2[0] = (3.1 - 2.4)/1.3343 = 0.525, and

z2(bounded) = r(z2[0]) - r(realMin) + (targetMin)
= 1(0.525) - 1(-3) + (-3) = 0.525

using System;
using Imsl.Stat;
using Imsl.Math;
using Imsl.DataMining.Neural;

public class ScaleFilterEx1
{
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[STAThread]
public static void Main(System.String[] args)
{

ScaleFilter[] scaleFilter = new ScaleFilter[3];
scaleFilter[0] = new ScaleFilter(ScaleFilter.ScalingMethod.None);
scaleFilter[1] = new ScaleFilter(

ScaleFilter.ScalingMethod.BoundedZScoreMeanStdev);
scaleFilter[1].SetBounds(- 6.0, 6.0, - 3.0, 3.0);
scaleFilter[2] = new ScaleFilter(

ScaleFilter.ScalingMethod.BoundedZScoreMedianMAD);
scaleFilter[2].SetBounds(- 3.0, 3.0, - 3.0, 3.0);
double[] y0, y1, y2;
double[] x0 = new double[]{1.2, 0.0, - 1.4, 1.5, 3.2};
double[] x1 = new double[]{3.5, 2.4, 4.4, 5.6, 1.1};
double[] x2 = new double[]{3.1, 1.5, - 1.5, 2.4, 4.2};

// Perform forward filtering
y0 = scaleFilter[0].Encode(x0);
y1 = scaleFilter[1].Encode(x1);
y2 = scaleFilter[2].Encode(x2);
// Display x0
System.Console.Out.Write("X0 = {");
for (int i = 0; i < 4; i++)

System.Console.Out.Write(x0[i] + ", ");
System.Console.Out.WriteLine(x0[4] + "}");
// Display summary statistics for X1
System.Console.Out.Write("\nX1 = {");
for (int i = 0; i < 4; i++)

System.Console.Out.Write(x1[i] + ", ");
System.Console.Out.WriteLine(x1[4] + "}");
System.Console.Out.WriteLine("X1 Mean: " + scaleFilter[1].Center);
System.Console.Out.WriteLine("X1 Std. Dev.: " + scaleFilter[1].Spread);
// Display summary statistics for X2
System.Console.Out.Write("\nX2 = {");
for (int i = 0; i < 4; i++)

System.Console.Out.Write(x2[i] + ", ");
System.Console.Out.WriteLine(x2[4] + "}");
System.Console.Out.WriteLine("X2 Median: " + scaleFilter[2].Center);
System.Console.Out.WriteLine("X2 MAD/0.6745: " + scaleFilter[2].Spread);
System.Console.Out.WriteLine("");
PrintMatrix pm = new PrintMatrix();
pm.SetTitle("Filtered X0 Using Method=0 (no scaling)");
pm.Print(y0);
pm.SetTitle("Filtered X1 Using Bounded Z-score Scaling\n" +

"with Center=Mean and Spread=Std. Dev.");
pm.Print(y1);
pm.SetTitle("Filtered X2 Using Bounded Z-score Scaling\n" +

"with Center=Median and Spread=MAD/0.6745");
pm.Print(y2);

// Perform inverse filtering
double[] z0, z1, z2;
z0 = scaleFilter[0].Decode(y0);
z1 = scaleFilter[1].Decode(y1);
z2 = scaleFilter[2].Decode(y2);
pm.SetTitle("Decoded Z0");
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pm.Print(z0);
pm.SetTitle("Decoded Z1");
pm.Print(z1);
pm.SetTitle("Decoded Z2");
pm.Print(z2);

}
}

Output

X0 = {1.2, 0, -1.4, 1.5, 3.2}

X1 = {3.5, 2.4, 4.4, 5.6, 1.1}
X1 Mean: 3.4
X1 Std. Dev.: 1.74212513901843

X2 = {3.1, 1.5, -1.5, 2.4, 4.2}
X2 Median: 2.4
X2 MAD/0.6745: 1.33434199665504

Filtered X0 Using Method=0 (no scaling)
0

0 1.2
1 0
2 -1.4
3 1.5
4 3.2

Filtered X1 Using Bounded Z-score Scaling
with Center=Mean and Spread=Std. Dev.

0
0 0.0287005788965145
1 -0.287005788965146
2 0.287005788965146
3 0.631412735723321
4 -0.660113314619835

Filtered X2 Using Bounded Z-score Scaling
with Center=Median and Spread=MAD/0.6745

0
0 0.524603139041397
1 -0.674489750196082
2 -2.92278891751635
3 0
4 1.34897950039216

Decoded Z0
0

0 1.2
1 0
2 -1.4
3 1.5
4 3.2
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Decoded Z1
0

0 3.5
1 2.4
2 4.4
3 5.6
4 1.1

Decoded Z2
0

0 3.1
1 1.5
2 -1.5
3 2.4
4 4.2

ScaleFilter.ScalingMethod Enumeration

Summary

Scaling Method

public enumeration Imsl.DataMining.Neural.ScaleFilter.ScalingMethod

Fields

Bounded
public Imsl.DataMining.Neural.ScaleFilter.ScalingMethod Bounded

Description

Flag to indicate bounded scaling.

BoundedZScoreMeanStdev
public Imsl.DataMining.Neural.ScaleFilter.ScalingMethod
BoundedZScoreMeanStdev

Description

Flag to indicate bounded z-score scaling using the mean and standard deviation.

BoundedZScoreMedianMAD
public Imsl.DataMining.Neural.ScaleFilter.ScalingMethod
BoundedZScoreMedianMAD
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Description

Flag to indicate bounded z-score scaling using the median and mean absolute difference.

None
public Imsl.DataMining.Neural.ScaleFilter.ScalingMethod None

Description

Flag to indicate no scaling.

UnboundedZScoreMeanStdev
public Imsl.DataMining.Neural.ScaleFilter.ScalingMethod
UnboundedZScoreMeanStdev

Description

Flag to indicate unbounded z-score scaling using the mean and standard deviation.

UnboundedZScoreMedianMAD
public Imsl.DataMining.Neural.ScaleFilter.ScalingMethod
UnboundedZScoreMedianMAD

Description

Flag to indicate unbounded z-score scaling using the median and mean absolute
difference.

UnsupervisedNominalFilter Class

Summary

Converts nominal data into a series of binary encoded columns for input to a neural network. It
also reverses the aforementioned encoding, accepting binary encoded data and returns an array
of integers representing the classes for a nominal variable.

public class Imsl.DataMining.Neural.UnsupervisedNominalFilter

Property

NumberOfClasses
virtual public int NumberOfClasses {get; }

Description

The number of classes in the nominal variable.
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Constructor

UnsupervisedNominalFilter
public UnsupervisedNominalFilter(int nClasses)

Description

Constructor for UnsupervisedNominalFilter.

Parameter

nClasses – An int specifying the number of categories in the nominal variable to be
filtered.

Methods

Decode
virtual public int[] Decode(int[,] z)

Description

Decodes a matrix representing the binary encoded columns of the nominal variable.

This is the inverse of the Encode (p. 1116) method.

Parameter

z – An int matrix containing the data to be decoded.

Returns

An int array containing the decoded data.

Decode
virtual public int Decode(int[] z)

Description

Decodes a binary encoded array into its nominal category.

This is the inverse of the Encode (p. 1116) method.

Parameter

z – An int array containing the data to be decoded.

Returns

An int containing the number associated with the category encoded in z.

Encode
virtual public int[] Encode(int x)
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Description

Apply forward encoding to a value.

Class number must be in the range 1 to nClasses.

Parameter

x – An int containing the value to be encoding.

Returns

An int array containing the encoded data.

Encode
virtual public int[,] Encode(int[] x)

Description

Encodes class data prior to its use in neural network training.

Class number must be in the range 1 to nClasses.

Parameter

x – An int array containing the data to be encoded.

Returns

An int matrix containing the encoded data.

Description

Binary Encoding

Method Encode (p. 1116) can be used to apply binary encoding. Referring to the result as z,
binary encoding takes each category in the nominal variable x, and creates a column in z
containing all zeros and ones. A value of zero indicates that this category was not present and a
value of one indicates that it is present.

For example, if x[]={2,1,3,4,2,4} then nClasses=4, and

z =

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0
0 0 0 1

Notice that the number of columns in the result, z, is equal to the number of distinct classes in
x. The number of rows in z is equal to the length of x.
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Binary Decoding

Unfiltering can be performed using the method Decode (p. 1115). In this case, z is the input,
and we refer to x as the output. Binary unfiltering takes binary representation in z, and returns
the appropriate class in x.

For example, if a row in z equals {0, 1, 0, 0}, then the return value from Decode would be 2 for
that row. If a row in z equals {1,0,0,0}, then the return value from Decode would be 1 for that
row. Notice these are the same values as the first two elements of the original x because classes
are numbered sequentially from 1 to nClasses. This ensures that the results of Decode are
associated with the i-th class in x.

Example: UnsupervisedNominalFilter

In this example a data set with 7 observations and 3 classes is filtered.

using System;
using Imsl.Stat;
using Imsl.Math;
using Imsl.DataMining.Neural;

public class UnsupervisedNominalFilterEx1
{

[STAThread]
public static void Main(System.String[] args)
{

int nClasses = 3;
UnsupervisedNominalFilter filter = new UnsupervisedNominalFilter(nClasses);
int nObs = 7;
int[] x = new int[]{3, 3, 1, 2, 2, 1, 2};
int[] xBack = new int[nObs];
int[,] z;

// Perform Binary Filtering.
z = filter.Encode(x);
PrintMatrix pm = new PrintMatrix();
pm.SetTitle("Filtered x");
pm.Print(z);

// Perform Binary Un-filtering.
int[] tmp = new int[z.GetLength(1)];

for (int i = 0; i < nObs; i++)
{

for (int j=0; j< z.GetLength(1); j++)
tmp[j] = z[i,j];

xBack[i] = filter.Decode(tmp);
}
pm.SetTitle("Result of inverse filtering");
pm.Print(xBack);

}
}
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Output

Filtered x
0 1 2

0 0 0 1
1 0 0 1
2 1 0 0
3 0 1 0
4 0 1 0
5 1 0 0
6 0 1 0

Result of inverse filtering
0

0 3
1 3
2 1
3 2
4 2
5 1
6 2

UnsupervisedOrdinalFilter Class

Summary

Encodes ordinal data into percentages for input to a neural network. It also allows decoding,
accepting a percentage and converting it into an ordinal value.

public class Imsl.DataMining.Neural.UnsupervisedOrdinalFilter

Properties

NumberOfClasses
virtual public int NumberOfClasses {get; }

Description

The number of categories associated with this ordinal variable.

Percentages
virtual public double[] Percentages {get; set; }
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Description

The cumulative percentages used during encoding and decoding.

If a transform has been applied to the percentages then the transformed percentages are
returned. Setting untransformed cumulative percentages with this method bypasses
calculating cumulative percentages based on the data being encoded. The percentages
must be nondecreasing in the interval [0, 100], with the last element equal to 100. If this
method is used it must be called prior to any calls to the encoding and decoding methods.

Transform
virtual public int Transform {get; }

Description

The transform flag used for encoding and decoding.

Constructor

UnsupervisedOrdinalFilter
public UnsupervisedOrdinalFilter(int nClasses,
Imsl.DataMining.Neural.UnsupervisedOrdinalFilter.TransformMethod transform)

Description

Constructor for UnsupervisedOrdinalFilter.

Values for Transform (p. 1119) are: TransformMethod.None (p. 1123),
TransformMethod.Sqrt (p. 1123), TransformMethod.AsinSqrt (p. 1123)

Parameters

nClasses – An int specifying the number of classes in the data to be filtered.

transform – An TransformMethod specifying the transform to be applied to the
percentages.

Methods

Decode
virtual public int[] Decode(double[] y)

Description

Decodes an array of encoded ordinal values.

Parameter

y – A double array containing the encoded ordinal data to be decoded.
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Returns

An int array containing the decoded ordinal classifications.

Decode
virtual public int Decode(double y)

Description

Decodes an encoded ordinal variable.

Parameter

y – A double containing the encoded value to be decoded.

Returns

An int containing the ordinal category associated with y.

Encode
virtual public double Encode(int x)

Description

Encodes an ordinal category.

x must be an integer between 1 and nClasses.

Parameter

x – An int containing the ordinal category.

Returns

A double containing the encoded value, a transformed cumulative percentage.

Encode
virtual public double[] Encode(int[] x)

Description

Encodes an array of ordinal categories into an array of transformed percentages.

Categories must be numbered from 1 to nClasses.

Parameter

x – An int array containing the categories for the ordinal variable.

Returns

A double array of the transformed percentages.

Description

Class UnsupervisedOrdinalFilter is designed to either encode or decode ordinal variables.
Encoding consists of transforming the ordinal classes into percentages, with each percentage
being equal to the percentage of the data at or below this class.
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Ordinal Encoding

In this case, x is input to the method Encode (p. 1120) and is filtered by converting each
ordinal class value into a cumulative percentage.

For example, if x[]={2,1,3,4,2,4,1,1,3,3} then nClasses =4, and Encode returns the ordinal
class designation with the cumulative percentages displayed in the following table. Cumulative
percentages are equal to the percent of the data in this class or a lower class.

Ordinal Class Frequency Cumulative Percentage
1 3 30%
2 2 50%
3 3 80%
4 2 100%

Classes in x must be numbered from 1 to nClasses.

The values returned from encoding or decoding depend upon the setting of Transform (p.
1119). In this example, if the filter was constructed with Transform =
TransformMethod.None, then the method Encode will return

z[] = {50, 30, 80, 100, 50, 100, 30, 30, 80, 80}.

If the filter was constructed with Transform = TransformMethod.Sqrt, then the square root
of these values is returned; i.e.,

z[i] =

√
z[i]
100

z[] = {0.71, 0.55, 0.89, 1.0, 0.71, 1.0, 0.55, 0.55, 0.89, 0.89};

If the filter was constructed with Transform = TransformMethod.AsinSqrt, then the arcsin
square root of these values is returned using the following calculation:

z[i] = arcsin

(√
z[i]
100

)

Ordinal Decoding

Ordinal decoding takes a transformed cumulative proportion and converts it into an ordinal
class value.
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Example: UnsupervisedOrdinalFilter

In this example a data set with 10 observations and 4 classes is filtered.

using System;
using Imsl.Stat;
using Imsl.Math;
using Imsl.DataMining.Neural;

public class UnsupervisedOrdinalFilterEx1
{

[STAThread]
public static void Main(System.String[] args)
{

int nClasses = 4;
UnsupervisedOrdinalFilter filter = new UnsupervisedOrdinalFilter(nClasses, UnsupervisedOrdinalFilter.TransformMethod.AsinSqrt);
int[] x = new int[]{2, 1, 3, 4, 2, 4, 1, 1, 3, 3};
int nObs = x.Length;
int[] xBack;
double[] z;
// Ordinal Filtering.
z = filter.Encode(x);
// Print result without row/column labels.
PrintMatrix pm = new PrintMatrix();
PrintMatrixFormat mf;
mf = new PrintMatrixFormat();
mf.SetNoRowLabels();
mf.SetNoColumnLabels();
pm.SetTitle("Filtered data");
pm.Print(mf, z);

// Ordinal Un-filtering.
pm.SetTitle("Un-filtered data");
xBack = filter.Decode(z);

// Print results of Un-filtering.
pm.Print(mf, xBack);

}
}

Output

Filtered data

0.785398163397448
0.579639740363704
1.10714871779409
1.5707963267949
0.785398163397448
1.5707963267949
0.579639740363704
0.579639740363704
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1.10714871779409
1.10714871779409

Un-filtered data

2
1
3
4
2
4
1
1
3
3

UnsupervisedOrdinalFilter.TransformMethod Enumeration

Summary

Transform type

public enumeration
Imsl.DataMining.Neural.UnsupervisedOrdinalFilter.TransformMethod

Fields

AsinSqrt
public Imsl.DataMining.Neural.UnsupervisedOrdinalFilter.TransformMethod
AsinSqrt

Description

Flag to indicate the arcsine square root transform will be applied to the percentages.

None
public Imsl.DataMining.Neural.UnsupervisedOrdinalFilter.TransformMethod None

Description

Flag to indicate no transformation of percentages.

Sqrt
public Imsl.DataMining.Neural.UnsupervisedOrdinalFilter.TransformMethod Sqrt
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Description

Flag to indicate the square root transform will be applied to the percentages.

TimeSeriesFilter Class

Summary

Converts time series data to a lagged format used as input to a neural network.

public class Imsl.DataMining.Neural.TimeSeriesFilter

Constructor

TimeSeriesFilter
public TimeSeriesFilter()

Description

Constructor for TimeSeriesClassFilter.

Method

ComputeLags
virtual public double[,] ComputeLags(int nLags, double[,] x)

Description

Lags time series data to a format used for input to a neural network.

nLags must be greater than 0.

It is assumed that x is sorted in descending chronological order.

Parameters

nLags – An int containing the requested number of lags.

x – A double matrix, nObs by nVar, containing the time series data to be lagged.

Returns

A double matrix with (nObs-nLags) rows and (nVar(nLags+1)) columns. The columns 0
through (nVar-1) contain the columns of x. The next nVar columns contain the first lag
of the columns in x, etc.
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Description

Class TimeSeriesFilter can be used to operate on a data matrix and lags every column to
form a new data matrix. Using the method ComputeLags (p. 1124), each column of the input
matrix, x, is transformed into (nLags+1) columns by creating a column for
lags = 0, 1, . . . nLags.

The output data array, z, can be symbolically represented as:

z = |x[0] : x[1] : x[2] : . . . : x[nLags− 1]|,

where x[i] is a lagged column of the incoming data matrix, x.

Consider, an example in which x has five rows and two columns with all variables continuous
input attributes. Using nObs and nVar to represent the number of rows and columns in x, let

x =


1 6
2 7
3 8
4 9
5 10


If nLags=1, then the number of columns in z[,] is nVar*(nLags+1) = 2*2 = 4, and the number
of rows is (nObs-nLags) = 5-1 = 4:

z =


1 6 2 7
2 7 3 8
3 8 4 9
4 9 5 10


If nLags=2, then the number of rows in z will be (nObs-nLags) = (5-2) = 3 and the number of
columns will be nVar*(nLags+1) = 2*3 = 6:

z =

 1 6 2 7 3 8
2 7 3 8 4 9
3 8 4 9 5 10



Example: TimeSeriesFilter

In this example a matrix with 5 rows and 2 columns is lagged twice. This produces a
two-dimensional matrix with 5 rows, but 2*3=6 columns. The first two columns correspond to
lag=0, which just places the original data into these columns. The 3rd and 4th columns contain
the first lags of the original 2 columns and the 5th and 6th columns contain the second lags.

using System;
using Imsl.Stat;
using Imsl.Math;
using Imsl.DataMining.Neural;
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public class TimeSeriesFilterEx1
{

[STAThread]
public static void Main(System.String[] args)
{

TimeSeriesFilter filter = new TimeSeriesFilter();
int nLag = 2;
double[,] x = {{1, 6}, {2, 7}, {3, 8}, {4, 9}, {5, 10}};
double[,] z = filter.ComputeLags(nLag, x);
// Print result without row/column labels.
PrintMatrix pm = new PrintMatrix();
PrintMatrixFormat mf;
mf = new PrintMatrixFormat();
mf.SetNoRowLabels();
mf.SetNoColumnLabels();
pm.SetTitle("Lagged data");
pm.Print(mf, z);

}
}

Output

Lagged data

1 6 2 7 3 8
2 7 3 8 4 9
3 8 4 9 5 10

TimeSeriesClassFilter Class

Summary

Converts time series data contained within nominal categories to a lagged format for processing
by a neural network. Lagging is done within the nominal categories associated with the time
series.

public class Imsl.DataMining.Neural.TimeSeriesClassFilter

Constructor

TimeSeriesClassFilter
public TimeSeriesClassFilter(int nClasses)
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Description

Constructor for TimeSeriesClassFilter.

Parameter

nClasses – An int specifying the number of nominal categories associated with the
time series.

Method

ComputeLags
virtual public double[,] ComputeLags(int[] lags, int[] iClass, double[] x)

Description

Computes lags of an array sorted first by class designations and then descending
chronological order.

Every lag must be non-negative.

The i-th element of iClass is equal to the class associated with the i-th element of x.
iClass and x must be the same length.

x is assumed to be sorted first by class designations and then descending chronological
order; i.e., most recent observations appear first within a class.

Parameters

lags – An int array containing the requested lags.

iClass – An int array containing class number associated with each element of x,
sorted in ascending order.

x – A double array containing the time series data to be lagged.

Returns

A double matrix containing the lagged data. The i-th column of this array is the lagged
values of x for a lag equal to lags[i]. The number of rows is equal to the length of x.

Description

Class TimeSeriesClassFilter can be used with a data array, x to compute a new data array,
z[,], containing lagged columns of x.

When using the method ComputeLags (p. 1127), the output array, z[,] of lagged columns, can
be symbolically represented as:

z = |x[0] : x[1] : x[2] : . . . : x[nLags− 1]|,

where x[i] is a lagged column of the incoming data array x, and nLags is the number of
computed lags. The lag associated with x[i] is equal to the value in lags[i], and lagging is
done within the nominal categories given in iClass. This requires the time series data in x[] be
sorted in time order within each category iClass.
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Consider an example in which the number of observations in x[] is 10. There are two lags
requested in lags. If

xT = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},

iClassT = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1},

and
lagT = {0, 2}

then, all the time series data fall into a single category, i.e. nClasses = 1, and z would contain 2
columns and 10 rows. The first column reproduces the values in x[] because lags[0] = 0, and
the second column is the 2nd lag because lags[1] = 2.

z =



1 3
2 4
3 5
4 6
5 7
6 8
7 9
8 10
9 NaN
10 NaN


On the other hand, if the data were organized into two classes with

iClassT = {1, 1, 1, 1, 1, 2, 2, 2, 2, 2},

then nClasses is 2, and z is still a 2 by 10 matrix, but with the following values:

z =



1 3
2 4
3 5
4 NaN
5 NaN

6 8
7 9
8 10
9 NaN
10 NaN


The first 5 rows of z are the lagged columns for the first category, and the last five are the
lagged columns for the second category.

Example: TimeSeriesClassFilter

For illustration purposes, the time series in this example consists of the integers 1, 2, ..., 10,
organized into two classes. Of course, it is assumed that these data are sorted in chronologically
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descending order. That is for each class, the first number is the latest value and the last
number in that class is the earliest.

The values 1-4 are in class 1, and the values 5-10 are in class 2. These values represent two
separate time series, one for each class. If you were to list them in chronologically ascending
order, starting with time=T0, the values would be:

Class 1: T0=4, T1=3, T2=2, T3=1
Class 2: T0=10, T1=9, T2=8, T3=7, T4=6, T5=5

This example requests lag calculations for lags 0, 1, 2, 3. For lag=0, no lagging is performed.
For lag=1, the value at time = t replaced with the value at time = t-1, the previous value in
that class. If t− 1 < 0, then a missing value is placed in that position.

For example, the first lag of a time series at time=t are the values at time=t-1. For the time
series values of Class 1 (lag=1), these values are:

Class 1, lag 1: T0=NaN, T1=4, T2=3, T3=2

The second lag for time=t consists of the values at time=t-2:

Class 1, lag 2: T0=NaN, T1=NaN, T2=4, T3=3

Notice that the second lag now has two missing observations. In general, lag=n will have n
missing values. In some cases this can result in all missing values for classes with few
observations. A class will have all missing values in any of its lag columns that have a lag value
larger than or equal to the number of observations in that class.

using System;
using Imsl.Stat;
using Imsl.Math;
using Imsl.DataMining.Neural;

public class TimeSeriesClassFilterEx1
{

private static int nClasses = 2;
private static int nObs = 10;
private static int nLags = 4;
[STAThread]
public static void Main(System.String[] args)
{

double[] x = new double[]{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
double[] time = new double[]{3, 2, 1, 0, 5, 4, 3, 2, 1, 0};
int[] iClass = new int[]{1, 1, 1, 1, 2, 2, 2, 2, 2, 2};
int[] lag = new int[]{0, 1, 2, 3};
System.String[] colLabels = new System.String[]{"Class", "Time", "Lag=0",

"Lag=1", "Lag=2", "Lag=3"};

// Filter Classified Time Series Data
TimeSeriesClassFilter filter = new TimeSeriesClassFilter(nClasses);
double[,] y = filter.ComputeLags(lag, iClass, x);
double[,] z = new double[nObs, (nLags + 2)];
// for (int i = 0; i < nObs; i++)
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// {
// z[i] = new double[nLags + 2];
// }
for (int i = 0; i < nObs; i++)
{

z[i,0] = (double) iClass[i];
z[i,1] = time[i];
for (int j = 0; j < nLags; j++)
{

z[i,j + 2] = y[i,j];
}

}

// Print result without row/column labels.
PrintMatrix pm = new PrintMatrix();
PrintMatrixFormat mf;
mf = new PrintMatrixFormat();
mf.SetNoRowLabels();
mf.SetColumnLabels(colLabels);
pm.SetTitle("Lagged data");

pm.Print(mf, z);
}

}

Output

Lagged data
Class Time Lag=0 Lag=1 Lag=2 Lag=3
1 3 1 2 3 4
1 2 2 3 4 NaN
1 1 3 4 NaN NaN
1 0 4 NaN NaN NaN
2 5 5 6 7 8
2 4 6 7 8 9
2 3 7 8 9 10
2 2 8 9 10 NaN
2 1 9 10 NaN NaN
2 0 10 NaN NaN NaN

Example: Neural Network Application

This application illustrates one common approach to time series prediction using a neural
network. In this case, the output target for this network is a single time series. In general, the
inputs to this network consist of lagged values of the time series together with other
concomitant variables, both continuous and categorical. In this application, however, only the
first three lags of the time series are used as network inputs.

The objective is to train a neural network for forecasting the series Yt, t = 0, 1, 2, . . ., from the
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first three lags of Yt, i.e.
Yt = f(Yt−1, Yt−2, Yt−3)

Since this series consists of data from several company departments, lagging of the series must
be done within departments. This creates many missing values. The original data contains
118,519 training patterns. After lagging, 16,507 are identified as missing and are removed,
leaving a total of 102,012 usable training patterns. Missing values are denoted using a number
not in the training patterns, the value -9,999,999,999.0.

The structure of the network consists of three input nodes and two layers, with three
perceptrons in the hidden layer and one in the output layer. The following figure depicts this
structure:

INPUT LAYER

H1

H2

H3

Z1 Y1

g1(H1)

g3(H3)

g2(H2) f1(Z1)

HIDDEN LAYER

OUTPUT LAYER

X1

X2

X3

Figure 9. An example 2-layer Feed Forward Neural Network

There are a total of 16 weights in this network, including the 4 bias weights. All perceptrons in
the hidden layer use logistic activation, and the output perceptron uses linear activation.
Because of the large number of training patterns, the Activation.LogisticTable activation
funtion is used instead of Activation.Logistic. Activation.LogisticTable uses a table
lookup for calculating the logistic activation function, which significantly reduces training time.
However, these are not completely interchangable. If a network is trained using
Activation.LogisticTable, then it is important to use the same activation function for
forecasting.

All input nodes are linked to every perceptron in the hidden layer, which are in turn linked to
the output perceptron. Then all inputs and the output target are scaled using the ScaleFilter
class to ensure that all input values and outputs are in the range [0, 1]. This requires forecasts
to be unscaled using the Decode() method of the ScaleFilter class.
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Training is conducted using the epoch trainer. This trainer allows users to customize training
into two stages. Typically this is necessary when training using a large number of training
patterns. Stage I training uses randomly selected subsets of training patterns to search for
network solutions. Stage II training is optional, and uses the entire set of training patterns. For
larger sets of training patterns, training could take many hours, or even days. In that case,
Stage II training might be bypassed.

In this example, Stage I training is conducted using the quasi-Newton trainer applied to 20
epochs, each consisting of 5,000 randomly selected observations. Stage II training also uses the
quasi-Newton trainer.

The training patterns are contained in two data files: continuous.txt and output.txt. The
formats of these files are identical. The first line of the file contains the number of columns or
variables in that file. The second contains a line of tab-delimited integer values. These are the
column indices associated with the incoming data. The remaining lines contain tab-delimited,
floating point values, one for each of the incoming variables.

For example, the first four lines of the continuous.txt file consists of the following lines:

3
1 2 3
0 0 0
0 0 0

There are 3 continuous input variables which are numbered, or labeled, as 1, 2, and 3.

Source Code

using System;
using Imsl.DataMining.Neural;
using Imsl.Math;
using System.Runtime.Serialization;
using System.Runtime.Serialization.Formatters.Binary;
//*****************************************************************************
// NeuralNetworkEx1.java *
// Two Layer Feed-Forward Network Complete Example for Simple Time Series *
//*****************************************************************************
// Synopsis: This example illustrates how to use a Feed-Forward Neural *
// Network to forecast time series data. The network target is a *
// time series and the three inputs are the 1st, 2nd, and 3rd lag *
// for the target series. *
// Activation: Logistic_Table in Hidden Layer, Linear in Output Layer *
// Trainer: Epoch Trainer: Stage I - Quasi-Newton, Stage II - Quasi-Newton *
// Inputs: Lags 1-3 of the time series *
// Output: A Time Series sorted chronologically in descending order, *
// i.e., the most recent observations occur before the earliest, *
// within each department *
//*****************************************************************************

//[Serializable]
public class NeuralNetworkEx1 //: System.Runtime.Serialization.ISerializable
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{

private static System.String QuasiNewton = "quasi-newton";
private static System.String LeastSquares = "least-squares";
// *************************************************************************
// Network Architecture *
// *************************************************************************
private static int nObs = 118519; // number of training patterns
private static int nInputs = 3; // four inputs
private static int nContinuous = 3; // one continuous input attribute
private static int nOutputs = 1; // one continuous output
private static int nPerceptrons = 3; // perceptrons in hidden layer
private static int[] perceptrons = new int[]{3}; // # of perceptrons in each
// hidden layer
// PERCEPTRON ACTIVATION
private static IActivation hiddenLayerActivation;
private static IActivation outputLayerActivation;
// *************************************************************************
// Epoch Training Optimization Settings *
// *************************************************************************
private static bool trace = true; //trainer logging *
private static int nEpochs = 20; //number of epochs *
private static int epochSize = 5000; //samples per epoch *
// Stage I Trainer - Quasi-Newton Trainer **********************************
private static int stage1Iterations = 5000; //max. iterations *
private static double stage1StepTolerance = 1e-09; //step tolerance *
private static double stage1RelativeTolerance = 1e-11; //rel. tolerance *
// Stage II Trainer - Quasi-Newton Trainer *********************************
private static int stage2Iterations = 5000; //max. iterations *
private static double stage2StepTolerance = 1e-09; //step tolerance *
private static double stage2RelativeTolerance = 1e-11; //rel. tolerance *
// *************************************************************************
// FILE NAMES AND FILE READER DEFINITIONS *
// *************************************************************************
// READERS
private static System.IO.StreamReader contFileInputStream;
private static System.IO.StreamReader outputFileInputStream;
// OUTPUT FILES
// File Name for Serialized Network
private static System.String networkFileName = "NeuralNetworkEx1.ser";
// File Name for Serialized Trainer
private static System.String trainerFileName = "NeuralNetworkTrainerEx1.ser";
// File Name for Serialized xData File (training input attributes)
private static System.String xDataFileName = "NeuralNetworkxDataEx1.ser";
// File Name for Serialized yData File (training output targets)
private static System.String yDataFileName = "NeuralNetworkyDataEx1.ser";
// INPUT FILES
// Continuous input attributes file. File contains Lags 1-3 of series
private static System.String contFileName = "continuous.txt";
// Continuous network targets file. File contains the original series
private static System.String outputFileName = "output.txt";
// *************************************************************************
// Data Preprocessing Settings *
// *************************************************************************
private static double lowerDataLimit = - 105000; // lower scale limit
private static double upperDataLimit = 25000000; // upper scale limit
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// indicator
// *************************************************************************
// Time Parameters for Tracking Training Time *
// *************************************************************************
private static int startTime;
// *************************************************************************
// Error Message Encoding for Stage II Trainer - Quasi-Newton Trainer *
// *************************************************************************
// Note: For the Epoch Trainer, the error status returned is the status for*
// the Stage II trainer, unless Stage II training is not used. *
// *************************************************************************
private static System.String errorMsg = "";
// Error Status Messages for the Quasi-Newton Trainer
private static System.String errorMsg0 = "--> Network Training";
private static System.String errorMsg1 =

"--> The last global step failed to locate a lower point than the\n" +
"current error value. The current solution may be an approximate\n" +
"solution and no more accuracy is possible, or the step tolerance\n" +
"may be too large.";

private static System.String errorMsg2 =
"--> Relative function convergence; both both the actual and \n" +
"predicted relative reductions in the error function are less than\n" +
"or equal to the relative fu nction convergence tolerance.";

private static System.String errorMsg3 =
"--> Scaled step tolerance satisfied; the current solution may be\n" +
"an approximate local solution, or the algorithm is making very slow\n" +
"progress and is not near a solution, or the step tolerance is too big.";

private static System.String errorMsg4 =
"--> Quasi-Newton Trainer threw a \n" +
"MinUnconMultiVar.FalseConvergenceException.";

private static System.String errorMsg5 =
"--> Quasi-Newton Trainer threw a \n" +
"MinUnconMultiVar.MaxIterationsException.";

private static System.String errorMsg6 =
"--> Quasi-Newton Trainer threw a \n" +

"MinUnconMultiVar.UnboundedBelowException.";
// *************************************************************************
// MAIN *
// *************************************************************************
[STAThread]
public static void Main(System.String[] args)
{

double[] weight; // Network weights
double[] gradient; // Network gradient after training
double[,] xData; // Training Patterns Input Attributes
double[,] yData; // Training Targets Output Attributes
double[,] contAtt; // A 2D matrix for the continuous training attributes
double[,] outs; // A matrix containing the training output tragets
int i, j, m = 0; // Array indicies
int nWeights = 0; // Number of network weights
int nCol = 0; // Number of data columns in input file
int[] ignore; // Array of 0’s and 1’s (0=missing value)
int[] cont_col, outs_col, isMissing = new int[]{0};
//System.String inputLine = "", temp;
//System.String[] dataElement;
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// **********************************************************************
// Initialize timers *
// **********************************************************************
NeuralNetworkEx1.startTime =

DateTime.Now.Hour * 60 * 60 * 1000 +
DateTime.Now.Minute * 60 * 1000 +
DateTime.Now.Second * 1000 +
DateTime.Now.Millisecond;

System.Console.Out.WriteLine("--> Starting Data Preprocessing at: " +
startTime.ToString());

// **********************************************************************
// Read continuous attribute data *
// **********************************************************************
// Initialize ignore[] for identifying missing observations
ignore = new int[nObs];
isMissing = new int[1];
openInputFiles();

nCol = readFirstLine(contFileInputStream);

nContinuous = nCol;
System.Console.Out.WriteLine("--> Number of continuous variables: " +

nContinuous);
// If the number of continuous variables is greater than zero then read
// the remainder of this file (contFile)
if (nContinuous > 0)
{

// contFile contains continuous attribute data
contAtt = new double[nObs, nContinuous];
double[] _contAttRow = new double[nContinuous];
// for (int i2 = 0; i2 < nObs; i2++)
// {
// contAtt[i2] = new double[nContinuous];
// }
cont_col = readColumnLabels(contFileInputStream, nContinuous);
for (i = 0; i < nObs; i++)
{

isMissing[0] = - 1;
_contAttRow = readDataLine(contFileInputStream, nContinuous,

isMissing);
for (int jj=0; jj < nContinuous; jj++)
{

contAtt[i,jj] = _contAttRow[jj];
}
ignore[i] = isMissing[0];
if (isMissing[0] >= 0)

m++;
}

}
else
{

nContinuous = 0;
contAtt = new double[1,1];
// for (int i3 = 0; i3 < 1; i3++)
// {
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// contAtt[i3] = new double[1];
// }
contAtt[0,0] = 0;

}
closeFile(contFileInputStream);
// **********************************************************************
// Read continuous output targets *
// **********************************************************************
nCol = readFirstLine(outputFileInputStream);
nOutputs = nCol;
System.Console.Out.WriteLine("--> Number of output variables: " +

nOutputs);
outs = new double[nObs, nOutputs];
double[] _outsRow = new double[nOutputs];
// for (int i4 = 0; i4 < nObs; i4++)
// {
// outs[i4] = new double[nOutputs];
// }
// Read numeric labels for continuous input attributes
outs_col = readColumnLabels(outputFileInputStream, nOutputs);

m = 0;
for (i = 0; i < nObs; i++)
{

isMissing[0] = ignore[i];
_outsRow = readDataLine(outputFileInputStream, nOutputs, isMissing);
for (int jj =0; jj < nOutputs; jj++)
{

outs[i, jj] = _outsRow[jj];
}
ignore[i] = isMissing[0];
if (isMissing[0] >= 0)

m++;
}
System.Console.Out.WriteLine("--> Number of Missing Observations: "

+ m);
closeFile(outputFileInputStream);
// Remove missing observations using the ignore[] array
m = removeMissingData(nObs, nContinuous, ignore, contAtt);
m = removeMissingData(nObs, nOutputs, ignore, outs);

System.Console.Out.WriteLine("--> Total Number of Training Patterns: "
+ nObs);

nObs = nObs - m;
System.Console.Out.WriteLine("--> Number of Usable Training Patterns: "

+ nObs);

// **********************************************************************
// Setup Method and Bounds for Scale Filter *
// **********************************************************************
ScaleFilter scaleFilter = new ScaleFilter(

ScaleFilter.ScalingMethod.Bounded);
scaleFilter.SetBounds(lowerDataLimit, upperDataLimit, 0, 1);
// **********************************************************************
// PREPROCESS TRAINING PATTERNS *
// **********************************************************************
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System.Console.Out.WriteLine(
"--> Starting Preprocessing of Training Patterns");

xData = new double[nObs, nContinuous];
// for (int i5 = 0; i5 < nObs; i5++)
// {
// xData[i5] = new double[nContinuous];
// }
yData = new double[nObs, nOutputs];
// for (int i6 = 0; i6 < nObs; i6++)
// {
// yData[i6] = new double[nOutputs];
// }
for (i = 0; i < nObs; i++)
{

for (j = 0; j < nContinuous; j++)
{

xData[i,j] = contAtt[i,j];
}
yData[i,0] = outs[i,0];

}
scaleFilter.Encode(0, xData);
scaleFilter.Encode(1, xData);
scaleFilter.Encode(2, xData);
scaleFilter.Encode(0, yData);
// **********************************************************************
// CREATE FEEDFORWARD NETWORK *
// **********************************************************************
System.Console.Out.WriteLine("--> Creating Feed Forward Network Object");
FeedForwardNetwork network = new FeedForwardNetwork();
// setup input layer with number of inputs = nInputs = 3
network.InputLayer.CreateInputs(nInputs);
// create a hidden layer with nPerceptrons=3 perceptrons
network.CreateHiddenLayer().CreatePerceptrons(nPerceptrons);
// create output layer with nOutputs=1 output perceptron
network.OutputLayer.CreatePerceptrons(nOutputs);
// link all inputs and perceptrons to all perceptrons in the next layer
network.LinkAll();
// Get Network Perceptrons for Setting Their Activation Functions
Perceptron[] perceptrons = network.Perceptrons;
// Set all hidden layer perceptrons to logistic_table activation
for (i = 0; i < perceptrons.Length - 1; i++)
{

perceptrons[i].Activation = hiddenLayerActivation;
}
perceptrons[perceptrons.Length - 1].Activation = outputLayerActivation;
System.Console.Out.WriteLine(

"--> Feed Forward Network Created with 2 Layers");
// **********************************************************************
// TRAIN NETWORK USING EPOCH TRAINER *
// **********************************************************************
System.Console.Out.WriteLine("--> Training Network using Epoch Trainer");
ITrainer trainer = createTrainer(QuasiNewton, QuasiNewton);
startTime =

DateTime.Now.Hour * 60 * 60 * 1000 +
DateTime.Now.Minute * 60 * 1000 +
DateTime.Now.Second * 1000 +
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DateTime.Now.Millisecond;
// Train Network
trainer.Train(network, xData, yData);

// Check Training Error Status
switch (trainer.ErrorStatus)
{

case 0: errorMsg = errorMsg0;
break;

case 1: errorMsg = errorMsg1;
break;

case 2: errorMsg = errorMsg2;
break;

case 3: errorMsg = errorMsg3;
break;

case 4: errorMsg = errorMsg4;
break;

case 5: errorMsg = errorMsg5;
break;

case 6: errorMsg = errorMsg6;
break;

default: errorMsg = "--> Unknown Error Status Returned from Trainer";
break;

}
System.Console.Out.WriteLine(errorMsg);
int currentTimeNow =

DateTime.Now.Hour * 60 * 60 * 1000 +
DateTime.Now.Minute * 60 * 1000 +
DateTime.Now.Second * 1000 +
DateTime.Now.Millisecond;

System.Console.Out.WriteLine("--> Network Training Completed at: " +
currentTimeNow.ToString());

double duration = (double) (currentTimeNow - startTime) / 1000.0;
System.Console.Out.WriteLine("--> Training Time: " + duration +

" seconds");

// **********************************************************************
// DISPLAY TRAINING STATISTICS *
// **********************************************************************
double[] stats = network.ComputeStatistics(xData, yData);
// Display Network Errors
System.Console.Out.WriteLine(

"***********************************************");
System.Console.Out.WriteLine("--> SSE: " +

(float)stats[0]);
System.Console.Out.WriteLine("--> RMS: " +

(float)stats[1]);
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System.Console.Out.WriteLine("--> Laplacian Error: " +
(float)stats[2]);

System.Console.Out.WriteLine("--> Scaled Laplacian Error: " +
(float)stats[3]);

System.Console.Out.WriteLine("--> Largest Absolute Residual: " +
(float)stats[4]);

System.Console.Out.WriteLine(
"***********************************************");

System.Console.Out.WriteLine("");
// **********************************************************************
// OBTAIN AND DISPLAY NETWORK WEIGHTS AND GRADIENTS *
// **********************************************************************
System.Console.Out.WriteLine("--> Getting Network Weights and Gradients");
// Get weights
weight = network.Weights;
// Get number of weights = number of gradients
nWeights = network.NumberOfWeights;
// Obtain Gradient Vector
gradient = trainer.ErrorGradient;
// Print Network Weights and Gradients
System.Console.Out.WriteLine(" ");
System.Console.Out.WriteLine("--> Network Weights and Gradients:");
System.Console.Out.WriteLine(

"***********************************************");
double[,] printMatrix = new double[nWeights,2];
// for (int i7 = 0; i7 < nWeights; i7++)
// {
// printMatrix[i7] = new double[2];
// }
for (i = 0; i < nWeights; i++)
{

printMatrix[i,0] = weight[i];
printMatrix[i,1] = gradient[i];

}
// Print result without row/column labels.
System.String[] colLabels = new System.String[]{"Weight", "Gradient"};
PrintMatrix pm = new PrintMatrix();
PrintMatrixFormat mf;
mf = new PrintMatrixFormat();
mf.SetNoRowLabels();
mf.SetColumnLabels(colLabels);
pm.SetTitle("Weights and Gradients");
pm.Print(mf, printMatrix);

System.Console.Out.WriteLine(
"***********************************************");

// **********************************************************************
// SAVE THE TRAINED NETWORK BY SAVING THE SERIALIZED NETWORK OBJECT *
// **********************************************************************
System.Console.Out.WriteLine("\n--> Saving Trained Network into " +

networkFileName);
write(network, networkFileName);
System.Console.Out.WriteLine("--> Saving Network Trainer into " +

trainerFileName);
write(trainer, trainerFileName);
System.Console.Out.WriteLine("--> Saving xData into " + xDataFileName);
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write(xData, xDataFileName);
System.Console.Out.WriteLine("--> Saving yData into " + yDataFileName);
write(yData, yDataFileName);

}
// *************************************************************************
// OPEN DATA FILES *
// *************************************************************************
static public void openInputFiles()
{

try
{

// Continuous Input Attributes
System.IO.Stream contInputStream = new System.IO.FileStream(

contFileName, System.IO.FileMode.Open, System.IO.FileAccess.Read);
contFileInputStream = new System.IO.StreamReader(new

System.IO.StreamReader(contInputStream).BaseStream,
System.Text.Encoding.UTF7);

// Continuous Output Targets
System.IO.Stream outputInputStream = new System.IO.FileStream(

outputFileName, System.IO.FileMode.Open, System.IO.FileAccess.Read);
outputFileInputStream = new System.IO.StreamReader(

new System.IO.StreamReader(outputInputStream).BaseStream,
System.Text.Encoding.UTF7);

}
catch (System.Exception e)
{

System.Console.Out.WriteLine("-->ERROR: " + e);
System.Environment.Exit(0);

}
}
// *************************************************************************
// READ FIRST LINE OF DATA FILE AND RETURN NUMBER OF COLUMNS IN FILE *
// *************************************************************************
static public int readFirstLine(System.IO.StreamReader inputFile)
{

System.String inputLine = "", temp;
int nCol = 0;
try
{

temp = inputFile.ReadLine();
inputLine = temp.Trim();
nCol = System.Int32.Parse(inputLine);

}
catch (System.Exception e)
{

System.Console.Out.WriteLine("--> ERROR READING 1st LINE OF File" + e);
System.Environment.Exit(0);

}
return nCol;

}
// *************************************************************************
// READ COLUMN LABELS (2ND LINE IN FILE) *
// *************************************************************************
static public int[] readColumnLabels(System.IO.StreamReader inputFile,

int nCol)
{
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int[] contCol = new int[nCol];
System.String inputLine = "", temp;
System.String[] dataElement;
// Read numeric labels for continuous input attributes
try
{

temp = inputFile.ReadLine();
inputLine = temp.Trim();

}
catch (System.Exception e)
{

System.Console.Out.WriteLine("--> ERROR READING 2nd LINE OF FILE: "
+ e);

System.Environment.Exit(0);
}
dataElement = inputLine.Split(new Char[] {’ ’});
for (int i = 0; i < nCol; i++)
{

contCol[i] = System.Int32.Parse(dataElement[i]);
}
return contCol;

}
// *************************************************************************
// READ DATA ROW *
// *************************************************************************
static public double[] readDataLine(System.IO.StreamReader inputFile,

int nCol, int[] isMissing)
{

double missingValueIndicator = - 9999999999.0;
double[] dataLine = new double[nCol];
double[] contCol = new double[nCol];
System.String inputLine = "", temp;
System.String[] dataElement;
try
{

temp = inputFile.ReadLine();
inputLine = temp.Trim();

}
catch (System.Exception e)
{

System.Console.Out.WriteLine("-->ERROR READING LINE: " + e);
System.Environment.Exit(0);

}
dataElement = inputLine.Split(new Char[] {’ ’});
for (int j = 0; j < nCol; j++)
{

dataLine[j] = System.Double.Parse(dataElement[j]);
if (dataLine[j] == missingValueIndicator)

isMissing[0] = 1;
}
return dataLine;

}
// *************************************************************************
// CLOSE FILE *
// *************************************************************************
static public void closeFile(System.IO.StreamReader inputFile)
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{
try
{

inputFile.Close();
}
catch (System.Exception e)
{

System.Console.Out.WriteLine("ERROR: Unable to close file: " + e);
System.Environment.Exit(0);

}
}
// *************************************************************************
// REMOVE MISSING DATA *
// *************************************************************************
// Now remove all missing data using the ignore[] array
// and recalculate the number of usable observations, nObs
// This method is inefficient, but it works. It removes one case at a
// time, starting from the bottom. As a case (row) is removed, the cases
// below are pushed up to take it’s place.
// *************************************************************************
static public int removeMissingData(int nObs, int nCol, int[] ignore,

double[,] inputArray)
{

int m = 0;
for (int i = nObs - 1; i >= 0; i--)
{

if (ignore[i] >= 0)
{

// the ith row contains a missing value
// remove the ith row by shifting all rows below the
// ith row up by one position, e.g. row i+1 -> row i
m++;
if (nCol > 0)
{

for (int j = i; j < nObs - m; j++)
{

for (int k = 0; k < nCol; k++)
{

inputArray[j,k] = inputArray[j + 1,k];
}

}
}

}
}
return m;

}
// *************************************************************************
// Create Stage I/Stage II Trainer *
// *************************************************************************
static public ITrainer createTrainer(System.String s1, System.String s2)
{

EpochTrainer epoch = null; // Epoch Trainer (returned by this method)
QuasiNewtonTrainer stage1Trainer; // Stage I Quasi-Newton Trainer
QuasiNewtonTrainer stage2Trainer; // Stage II Quasi-Newton Trainer
LeastSquaresTrainer stage1LS; // Stage I Least Squares Trainer
LeastSquaresTrainer stage2LS; // Stage II Least Squares Trainer
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int currentTimeNow; // Calendar time tracker

// Create Epoch (Stage I/Stage II) trainer from above trainers.
System.Console.Out.WriteLine(" --> Creating Epoch Trainer");
if (s1.Equals(QuasiNewton))
{

// Setup stage I quasi-newton trainer
stage1Trainer = new QuasiNewtonTrainer();
//stage1Trainer.setMaximumStepsize(maxStepSize);
stage1Trainer.MaximumTrainingIterations = stage1Iterations;
stage1Trainer.StepTolerance = stage1StepTolerance;
if (s2.Equals(QuasiNewton))
{

stage2Trainer = new QuasiNewtonTrainer();
//stage2Trainer.setMaximumStepsize(maxStepSize);
stage2Trainer.MaximumTrainingIterations = stage2Iterations;
epoch = new EpochTrainer(stage1Trainer, stage2Trainer);

}
else
{

if (s2.Equals(LeastSquares))
{

stage2LS = new LeastSquaresTrainer();
stage2LS.InitialTrustRegion = 1.0e-3;
//stage2LS.setMaximumStepsize(maxStepSize);
stage2LS.MaximumTrainingIterations = stage2Iterations;
epoch = new EpochTrainer(stage1Trainer, stage2LS);

}
else
{

epoch = new EpochTrainer(stage1Trainer);
}

}
}
else
{

// Setup stage I least squares trainer
stage1LS = new LeastSquaresTrainer();
stage1LS.InitialTrustRegion = 1.0e-3;
stage1LS.MaximumTrainingIterations = stage1Iterations;
//stage1LS.setMaximumStepsize(maxStepSize);
if (s2.Equals(QuasiNewton))
{

stage2Trainer = new QuasiNewtonTrainer();
//stage2Trainer.setMaximumStepsize(maxStepSize);
stage2Trainer.MaximumTrainingIterations = stage2Iterations;
epoch = new EpochTrainer(stage1LS, stage2Trainer);

}
else
{

if (s2.Equals(LeastSquares))
{

stage2LS = new LeastSquaresTrainer();
stage2LS.InitialTrustRegion = 1.0e-3;
//stage2LS.setMaximumStepsize(maxStepSize);
stage2LS.MaximumTrainingIterations = stage2Iterations;
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epoch = new EpochTrainer(stage1LS, stage2LS);
}
else
{

epoch = new EpochTrainer(stage1LS);
}

}
}
epoch.NumberOfEpochs = nEpochs;
epoch.EpochSize = epochSize;
epoch.Random = new Imsl.Stat.Random(1234567);
epoch.SetRandomSamples(new Imsl.Stat.Random(12345),

new Imsl.Stat.Random(67891));
System.Console.Out.WriteLine(" --> Trainer: Stage I - " + s1 +

" Stage II " + s2);
System.Console.Out.WriteLine(" --> Number of Epochs: " + nEpochs);
System.Console.Out.WriteLine(" --> Epoch Size: " + epochSize);
// Describe optimization setup for Stage I training
System.Console.Out.WriteLine(" --> Creating Stage I Trainer");
System.Console.Out.WriteLine(" --> Stage I Iterations: " +

stage1Iterations);
System.Console.Out.WriteLine(" --> Stage I Step Tolerance: " +

stage1StepTolerance);
System.Console.Out.WriteLine(" --> Stage I Relative Tolerance: " +

stage1RelativeTolerance);
System.Console.Out.WriteLine(" --> Stage I Step Size: " +

"DEFAULT");
System.Console.Out.WriteLine(" --> Stage I Trace: " +

trace);
if (s2.Equals(QuasiNewton) || s2.Equals(LeastSquares))
{

// Describe optimization setup for Stage II training
System.Console.Out.WriteLine(" --> Creating Stage II Trainer");
System.Console.Out.WriteLine(" --> Stage II Iterations: " +

stage2Iterations);
System.Console.Out.WriteLine(" --> Stage II Step Tolerance: " +

stage2StepTolerance);
System.Console.Out.WriteLine(" --> Stage II Relative Tolerance: " +

stage2RelativeTolerance);
System.Console.Out.WriteLine(" --> Stage II Step Size: " +

"DEFAULT");
System.Console.Out.WriteLine(" --> Stage II Trace: " +

trace);
}
currentTimeNow =

DateTime.Now.Hour * 60 * 60 * 1000 +
DateTime.Now.Minute * 60 * 1000 +
DateTime.Now.Second * 1000 +
DateTime.Now.Millisecond;

System.Console.Out.WriteLine("--> Starting Network Training at " +
currentTimeNow.ToString());

// Return Stage I/Stage II trainer
return epoch;

}

// *************************************************************************

1144 • TimeSeriesClassFilter Class IMSL C# Numerical Library



// WRITE SERIALIZED OBJECT TO A FILE *
// *************************************************************************
static public void write(System.Object obj, System.String filename)
{

System.IO.FileStream fos = new System.IO.FileStream(filename,
System.IO.FileMode.Create);

IFormatter oos = new BinaryFormatter();
oos.Serialize(fos, obj);
fos.Close();

}
static NeuralNetworkEx1()
{

hiddenLayerActivation = Imsl.DataMining.Neural.Activation.LogisticTable;
outputLayerActivation = Imsl.DataMining.Neural.Activation.Linear;

}
}
// *****************************************************************************

Output

--> Starting Data Preprocessing at: 44821683
--> Number of continuous variables: 3
--> Number of output variables: 1
--> Number of Missing Observations: 16507
--> Total Number of Training Patterns: 118519
--> Number of Usable Training Patterns: 102012
--> Starting Preprocessing of Training Patterns
--> Creating Feed Forward Network Object
--> Feed Forward Network Created with 2 Layers
--> Training Network using Epoch Trainer

--> Creating Epoch Trainer
--> Trainer: Stage I - quasi-newton Stage II quasi-newton
--> Number of Epochs: 20
--> Epoch Size: 5000
--> Creating Stage I Trainer
--> Stage I Iterations: 5000
--> Stage I Step Tolerance: 1E-09
--> Stage I Relative Tolerance: 1E-11
--> Stage I Step Size: DEFAULT
--> Stage I Trace: True
--> Creating Stage II Trainer
--> Stage II Iterations: 5000
--> Stage II Step Tolerance: 1E-09
--> Stage II Relative Tolerance: 1E-11
--> Stage II Step Size: DEFAULT
--> Stage II Trace: True

--> Starting Network Training at 45070408
--> The last global step failed to locate a lower point than the
current error value. The current solution may be an approximate
solution and no more accuracy is possible, or the step tolerance
may be too large.
--> Network Training Completed at: 52311842
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--> Training Time: 7241.434 seconds
***********************************************
--> SSE: 4.49772
--> RMS: 0.1423779
--> Laplacian Error: 103.4631
--> Scaled Laplacian Error: 0.1707173
--> Largest Absolute Residual: 0.4921748
***********************************************

--> Getting Network Weights and Gradients

--> Network Weights and Gradients:
***********************************************

Weights and Gradients
Weight Gradient

-248.425149158357 -9.50818419128144E-05
-4.01301691047852 -9.08459022567118E-07

248.602873209042 -2.84623837579401E-05
258.622104579914 -8.49451049786515E-05

0.125785905718184 -7.51083204612989E-07
-258.811023180973 -2.81816574426092E-05
-394.380943852438 -0.000125916731945308

-0.356726621727131 -5.25467092773031E-07
394.428311058654 -2.70798222353788E-05
422.855858784789 -1.40339989032276E-06
-1.01024906891467 -8.54119524733673E-07

422.854960914701 3.37315953950526E-08
91.0301743864326 -0.000555459860183764
0.672279284955327 -3.11957565142863E-06

-91.0431760187523 -0.000120208750794691
-422.186774012951 -1.36686903761535E-06

***********************************************

--> Saving Trained Network into NeuralNetworkEx1.ser
--> Saving Network Trainer into NeuralNetworkTrainerEx1.ser
--> Saving xData into NeuralNetworkxDataEx1.ser
--> Saving yData into NeuralNetworkyDataEx1.ser

Results

The above output indicates that the network successfully completed its training. The final sum
of squared errors was 3.88, and the RMS (the scaled version of the sum of squared errors) was
0.12. All of the gradients at this solution are nearly zero, which is expected if network training
found a local or global optima. Non-zero gradients usually indicate there was a problem with
network training.

--> Starting Data Preprocessing at: 84904271
--> Number of continuous variables: 3
--> Number of output variables: 1
--> Number of Missing Observations: 16507
--> Total Number of Training Patterns: 118519
--> Number of Usable Training Patterns: 102012

1146 • TimeSeriesClassFilter Class IMSL C# Numerical Library



--> Starting Preprocessing of Training Patterns
--> Creating Feed Forward Network Object
--> Feed Forward Network Created with 2 Layers
--> Training Network using Epoch Trainer

--> Creating Epoch Trainer
--> Trainer: Stage I - quasi-newton Stage II quasi-newton
--> Number of Epochs: 20
--> Epoch Size: 5000
--> Creating Stage I Trainer
--> Stage I Iterations: 5000
--> Stage I Step Tolerance: 1E-09
--> Stage I Relative Tolerance: 1E-11
--> Stage I Step Size: DEFAULT
--> Stage I Trace: True
--> Creating Stage II Trainer
--> Stage II Iterations: 5000
--> Stage II Step Tolerance: 1E-09
--> Stage II Relative Tolerance: 1E-11
--> Stage II Step Size: DEFAULT
--> Stage II Trace: True

--> Starting Network Training at 84925490
--> The last global step failed to locate a lower point than the
current error value. The current solution may be an approximate
solution and no more accuracy is possible, or the step tolerance
may be too large.
--> Network Training Completed at: 86184862
--> Training Time: 1259.372 seconds
***********************************************
--> SSE: 4.49772
--> RMS: 0.1423779
--> Laplacian Error: 103.4631
--> Scaled Laplacian Error: 0.1707173
--> Largest Absolute Residual: 0.4921748
***********************************************

--> Getting Network Weights and Gradients

--> Network Weights and Gradients:
***********************************************

Weights and Gradients
Weight Gradient

-248.425149158357 -9.50818419128144E-05
-4.01301691047852 -9.08459022567118E-07

248.602873209042 -2.84623837579401E-05
258.622104579914 -8.49451049786515E-05

0.125785905718184 -7.51083204612989E-07
-258.811023180973 -2.81816574426092E-05
-394.380943852438 -0.000125916731945308

-0.356726621727131 -5.25467092773031E-07
394.428311058654 -2.70798222353788E-05
422.855858784789 -1.40339989032276E-06
-1.01024906891467 -8.54119524733673E-07

422.854960914701 3.37315953950526E-08
91.0301743864326 -0.000555459860183764
0.672279284955327 -3.11957565142863E-06

-91.0431760187523 -0.000120208750794691
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-422.186774012951 -1.36686903761535E-06

***********************************************

--> Saving Trained Network into NeuralNetworkEx1.ser
--> Saving Network Trainer into NeuralNetworkTrainerEx1.ser
--> Saving xData into NeuralNetworkxDataEx1.ser
--> Saving yData into NeuralNetworkyDataEx1.ser

Links to Input Data Files Used in this Example and the Training Log:

Network Class

Summary

Neural network base class.

public class Imsl.DataMining.Neural.Network

Properties

InputLayer
abstract public Imsl.DataMining.Neural.InputLayer InputLayer {get; }

Description

The InputLayer object.

Links
abstract public Imsl.DataMining.Neural.Link[] Links {get; }

Description

An array containing the Link objects in the Network.

NumberOfInputs
abstract public int NumberOfInputs {get; }
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Description

The number of Network inputs.

NumberOfLinks
abstract public int NumberOfLinks {get; }

Description

The number of Network Links among the nodes.

NumberOfOutputs
abstract public int NumberOfOutputs {get; }

Description

The number of Network output Perceptrons (p. 1026).

NumberOfWeights
abstract public int NumberOfWeights {get; }

Description

The number of Weights (p. 1029) in the Network.

OutputLayer
abstract public Imsl.DataMining.Neural.OutputLayer OutputLayer {get; }

Description

The OutputLayer.

Perceptrons
abstract public Imsl.DataMining.Neural.Perceptron[] Perceptrons {get; }

Description

An array containing the Perceptrons in the Network.

Weights
abstract public double[] Weights {get; set; }

Description

The Weights (p. 1029).

Constructor

Network
public Network()
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Description

Default constructor for Network.
Since this class is abstract, it cannot be instantiated directly; this constructor is used by
constructors in classes derived from Network.

Methods

ComputeStatistics
virtual public double[] ComputeStatistics(double[,] xData, double[,] yData)

Description

Computes error statistics.
This is a static method that can be used to compute the statistics regardless of the
training class used to train the network.
Computes statistics related to the error. In this table, the observed values are yi. The
forecasted values are ŷi. The mean observed value is ȳ =

∑
i yi/NC, where N is the

number of observations and C is the number of classes per observation.

Index Name Formula
0 SSE 1

2

∑
i (yi − ŷi)

2

1 RMS
P

i(yi−ŷi)
2

P
i(yi−ȳi)

2 Laplacian
∑

i |yi − ŷi|
3 Scaled Laplacian

P
i|yi−ŷi|P
i|yi−ȳi|

4 Max residual maxi |yi − ŷi|

Parameters

xData – A double matrix containing the input values.
yData – A double array containing the observed values.

Returns

A double array containing the above described statistics.

CreateHiddenLayer
abstract public Imsl.DataMining.Neural.HiddenLayer CreateHiddenLayer()

Description

Creates the next HiddenLayer in the Network.
Returns

The new HiddenLayer.

Forecast
abstract public double[] Forecast(double[] x)
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Description

Returns a forecast for each of the Network’s outputs computed from the trained Network.

Parameter

x – A double array of values with the same length and order as the training patterns
used to train the Network.

Returns

A double array containing the forecasts for the output Perceptrons (p. 1026). Its length
is equal to the number of output Perceptrons.

GetForecastGradient
abstract public double[,] GetForecastGradient(double[] x)

Description

Returns the derivatives of the outputs with respect to the Weights (p. 1029) evaluated at
x.

Parameter

x – A double array which specifies the input values at which the gradient is to be
evaluated.

Returns

A double array containing the gradient values. The value of gradient[i][j] is dyi/dwj ,
where yi is the i-th output and wj is the j-th weight.

Example: Network

This example uses a network previously trained and serialized into four files to obtain
information about the network and forecasts. Training was done using the code for the
FeedForwardNetwork Example 1.

The network training targets were generated using the relationship:

y = 10*X1 + 20*X2 + 30*X3 + 2.0*X4, where

X1-X3 are the three binary columns, corresponding to categories 1 to 3 of the nominal
attribute, and X4 is the scaled continuous attribute.

The structure of the network consists of four input nodes and two layers, with three perceptrons
in the hidden layer and one in the output layer. The following figure illustrates this structure:
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Figure 10. An example 2-layer Feed Forward Neural Network with 4 Inputs

All perceptrons were trained using a Linear Activation Function. Forecasts are generated for 9
conditions, corresponding to the following conditions:
Nominal Class 1-3 with the Continuous Input Attribute = 0
Nominal Class 1-3 with the Continuous Input Attribute = 5.0
Nominal Class 1-3 with the Continuous Input Attribute = 10.0

Note that the network training statistics retrieved from the serialized network confirm that this
is the same network used in the previous example. Obtaining these statistics requires retrieval
of the training patterns which were serialized and stored into separate files. This information is
not serialized with the network, nor with the trainer.

using System;
using Imsl.DataMining.Neural;
using System.Runtime.Serialization;
using System.Runtime.Serialization.Formatters.Binary;
//*****************************************************************************
// Two Layer Feed-Forward Network with 4 inputs: 1 categorical with 3 classes
// encoded using binary encoding and 1 continuous input, and 1 output
// target (continuous). There is a perfect linear relationship between
// the input and output variables:
//
// MODEL: Y = 10*X1 + 20*X2 + 30*X3 + 2*X4
//
// Variables X1-X3 are the binary encoded nominal variable and X4 is the
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// continuous variable.
//
// This example uses Linear Activation in both the hidden and output layers
// The network uses a 2-layer configuration, one hidden layer and one
// output layer. The hidden layer consists of 3 perceptrons. The output
// layer consists of a single output perceptron.
// The input from the continuous variable is scaled to [0,1] before training
// the network. Training is done using the Quasi-Newton Trainer.
// The network has a total of 19 weights.
// Since the network target is a linear combination of the network inputs, and
// since all perceptrons use linear activation, the network is able to forecast
// the every training target exactly. The largest residual is 2.78E-08.
//*****************************************************************************

[Serializable]
public class NetworkEx1
{

// **********************************************************************
// MAIN
// **********************************************************************
[STAThread]
public static void Main(System.String[] args)
{

double[,] xData; // Input Attributes for Training Patterns
double[,] yData; // Output Attributes for Training Patterns
double[] weight; // network weights
double[] gradient; // network gradient after training
// Input Attributes for Forecasting
double[,] x = {{1, 0, 0, 0.0}, {0, 1, 0, 0.0}, {0, 0, 1, 0.0},

{1, 0, 0, 5.0}, {0, 1, 0, 5.0}, {0, 0, 1, 5.0},
{1, 0, 0, 10.0}, {0, 1, 0, 10.0}, {0, 0, 1, 10.0}};

double[] xTemp, y; // Temporary areas for storing forecasts
int i, j; // loop counters
// Names of Serialized Files
System.String networkFileName = "FeedForwardNetworkEx1.ser"; // the network
System.String trainerFileName = "FeedForwardTrainerEx1.ser"; // the trainer
System.String xDataFileName = "FeedForwardxDataEx1.ser"; // xData
System.String yDataFileName = "FeedForwardyDataEx1.ser"; // yData
// **********************************************************************
// READ THE TRAINED NETWORK FROM THE SERIALIZED NETWORK OBJECT
// **********************************************************************
System.Console.Out.WriteLine("--> Reading Trained Network from " +

networkFileName);
Network network = (Network) read(networkFileName);
// **********************************************************************
// READ THE SERIALIZED XDATA[,] AND YDATA[,] ARRAYS OF TRAINING
// PATTERNS.
// **********************************************************************
System.Console.Out.WriteLine("--> Reading xData from " + xDataFileName);
xData = (double[,]) read(xDataFileName);
System.Console.Out.WriteLine("--> Reading yData from " + yDataFileName);
yData = (double[,]) read(yDataFileName);
// **********************************************************************
// READ THE SERIALIZED TRAINER OBJECT
// **********************************************************************
System.Console.Out.WriteLine("--> Reading Network Trainer from " +
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trainerFileName);
ITrainer trainer = (ITrainer) read(trainerFileName);
// **********************************************************************
// DISPLAY TRAINING STATISTICS
// **********************************************************************
double[] stats = network.ComputeStatistics(xData, yData);
// Display Network Errors
System.Console.Out.WriteLine(

"***********************************************");
System.Console.Out.WriteLine("--> SSE: " +

(float)stats[0]);
System.Console.Out.WriteLine("--> RMS: " +

(float)stats[1]);
System.Console.Out.WriteLine("--> Laplacian Error: " +

(float)stats[2]);
System.Console.Out.WriteLine("--> Scaled Laplacian Error: " +

(float)stats[3]);
System.Console.Out.WriteLine("--> Largest Absolute Residual: " +

(float)stats[4]);
System.Console.Out.WriteLine(

"***********************************************");
System.Console.Out.WriteLine("");
// **********************************************************************
// OBTAIN AND DISPLAY NETWORK WEIGHTS AND GRADIENTS
// **********************************************************************
System.Console.Out.WriteLine("--> Getting Network Information");
// Get weights
weight = network.Weights;
// Get number of weights = number of gradients
int nWeights = network.NumberOfWeights;
// Obtain Gradient Vector
gradient = trainer.ErrorGradient;
// Print Network Weights and Gradients
System.Console.Out.WriteLine(" ");
System.Console.Out.WriteLine("--> Network Weights and Gradients:");
for (i = 0; i < nWeights; i++)
{

System.Console.Out.WriteLine("w[" + i + "]=" + (float) weight[i] +
" g[" + i + "]=" + (float) gradient[i]);

}
// **********************************************************************
// OBTAIN AND DISPLAY FORECASTS FOR THE LAST 10 TRAINING TARGETS
// **********************************************************************
// Get number of network inputs
int nInputs = network.NumberOfInputs;
// Get number of network outputs
int nOutputs = network.NumberOfOutputs;
xTemp = new double[nInputs]; // temporary x space for forecast inputs
y = new double[nOutputs]; // temporary y space for forecast output
System.Console.Out.WriteLine(" ");
// Obtain example forecasts for input attributes = x[]
// X1-X3 are binary encoded for one nominal variable with 3 classes
// X4 is a continuous input attribute ranging from 0-10. During
// training, X4 was scaled to [0,1] by dividing by 10.
for (i = 0; i < 9; i++)
{
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for (j = 0; j < nInputs; j++)
xTemp[j] = x[i,j];

xTemp[nInputs - 1] = xTemp[nInputs - 1] / 10.0;
y = network.Forecast(xTemp);
System.Console.Out.Write("--> X1=" + (int) x[i,0] + " X2=" +

(int) x[i,1] + " X3=" + (int) x[i,2] + " | X4=" + x[i,3]);
System.Console.Out.WriteLine(" | y=" + (float) (10.0 * x[i,0] + 20.0 *

x[i,1] + 30.0 * x[i,2] + 2.0 * x[i,3]) + "| Forecast=" +
(float) y[0]);

}
}
// **************************************************************************
// READ SERIALIZED NETWORK FROM A FILE
// **************************************************************************
static public System.Object read(System.String filename)
{

System.IO.FileStream fis = new System.IO.FileStream(filename,
System.IO.FileMode.Open, System.IO.FileAccess.Read);

IFormatter ois = new BinaryFormatter();
System.Object obj = (System.Object) ois.Deserialize(fis);
fis.Close();
return obj;

}
}

Output

--> Reading Trained Network from FeedForwardNetworkEx1.ser
--> Reading xData from FeedForwardxDataEx1.ser
--> Reading yData from FeedForwardyDataEx1.ser
--> Reading Network Trainer from FeedForwardTrainerEx1.ser
***********************************************
--> SSE: 1.013444E-15
--> RMS: 2.007463E-19
--> Laplacian Error: 3.005804E-07
--> Scaled Laplacian Error: 3.535235E-10
--> Largest Absolute Residual: 2.784275E-08
***********************************************

--> Getting Network Information

--> Network Weights and Gradients:
w[0]=-1.491785 g[0]=-2.611079E-08
w[1]=-1.491785 g[1]=-2.611079E-08
w[2]=-1.491785 g[2]=-2.611079E-08
w[3]=1.616918 g[3]=6.182035E-08
w[4]=1.616918 g[4]=6.182035E-08
w[5]=1.616918 g[5]=6.182035E-08
w[6]=4.725622 g[6]=-5.273856E-08
w[7]=4.725622 g[7]=-5.273856E-08
w[8]=4.725622 g[8]=-5.273856E-08
w[9]=6.217407 g[9]=-8.733E-10
w[10]=6.217407 g[10]=-8.733E-10
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w[11]=6.217407 g[11]=-8.733E-10
w[12]=1.072258 g[12]=-1.690978E-07
w[13]=1.072258 g[13]=-1.690978E-07
w[14]=1.072258 g[14]=-1.690978E-07
w[15]=3.850755 g[15]=-1.7029E-08
w[16]=3.850755 g[16]=-1.7029E-08
w[17]=3.850755 g[17]=-1.7029E-08
w[18]=2.411725 g[18]=-1.588144E-08

--> X1=1 X2=0 X3=0 | X4=0 | y=10| Forecast=10
--> X1=0 X2=1 X3=0 | X4=0 | y=20| Forecast=20
--> X1=0 X2=0 X3=1 | X4=0 | y=30| Forecast=30
--> X1=1 X2=0 X3=0 | X4=5 | y=20| Forecast=20
--> X1=0 X2=1 X3=0 | X4=5 | y=30| Forecast=30
--> X1=0 X2=0 X3=1 | X4=5 | y=40| Forecast=40
--> X1=1 X2=0 X3=0 | X4=10 | y=30| Forecast=30
--> X1=0 X2=1 X3=0 | X4=10 | y=40| Forecast=40
--> X1=0 X2=0 X3=1 | X4=10 | y=50| Forecast=50
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Chapter 25: Miscellaneous

Types

class Warning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1157
class WarningObject. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1158
class IMSLException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1160

Warning Class

Summary

Handles warning messages.

public class Imsl.Warning

Properties

WarningObject
static public Imsl.WarningObject WarningObject {get; set; }

Description

The WarningObject allows warning errors to be handled in a more custom fashion.

WarningObject may be set to null, in which case error messages will be ignored.

Writer
static public System.IO.TextWriter Writer {get; set; }

Description

The stream to which warning messages are to be written.
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The input may be null, in which case warnings are not written.

Constructor

Warning
public Warning()

Description

Initializes a new instance of the Imsl.Warning (p. 1157) class.

Method

Print
static public void Print(Object source, string bundleName, string key,
Object[] arg)

Description

Issues a warning message.

Warning messages are stored as MessageFormat patterns in a ResourceBundle. This
method retrieves the pattern from the bundle, formats the message with the supplied
arguments, and prints the message to the warning stream.

Parameters

source – The Object that is the source of the warning.

bundleName – A String which specifies the base name of the resource. The actual
name is formed by appending ”.ErrorMessages”.

key – A String which specifies the warning message in the resource.

arg – A Object which specifies arguments used to format the message.

Description

This class maintains a single, private, WarningObject that actually displays the warning
messages.

WarningObject Class

Summary

Handles warning messages.

public class Imsl.WarningObject
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Property

Writer
public System.IO.TextWriter Writer {get; set; }
Description

Reassigns the writer.

The new warning writer may be set to null, in which case warnings are not printed.

Constructor

WarningObject
public WarningObject()

Description

Handle warning messages.

Method

Print
virtual public void Print(Object source, string baseName, string key,
Object[] arg)

Description

Issue a warning message.

Warning messages are stored as string format items in a resource. This method retrieves
the format from the resource, formats the message with the supplied arguments, and
prints the message to the warning stream.

Parameters

source – The Object that is the source of the warning.

baseName – A String which specifies the base name of the resource. The actual
name is formed by appending ”.ErrorMessages”.

key – A String which specifies the warning message in the resource.

arg – A Object which specifies arguments used to format the message.
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IMSLException Class

Summary

Signals that a mathematical exception has occurred.

public class Imsl.IMSLException : ApplicationException : ISerializable

Constructors

IMSLException
IMSLException()

Description

Constructs an IMSLException with no detail message.

A detail message is a String that describes this particular exception.

IMSLException
IMSLException(string s)

Description

Constructs an IMSLException with the specified detail message.

A detail message is a String that describes this particular exception.

Parameter

s – A String which specifies the detail message.

IMSLException
IMSLException(string namespaceName, string key, Object[] arguments)

Description

Constructs an IMSLException with the specified detail message.

The error message String is in a resource bundle, ErrorMessages.

Parameters

namespaceName – A String which specifies the namespace containing the
ErrorMessages resource bundle.

key – A String which specifies the key of the error message in the resource bundle.

arguments – An array of Objects containing arguments used within the error
message string.
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IMSLException
IMSLException(string message, System.Exception exception)

Description

Constructs an IMSLException with the specified detail message.

Parameters

message – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

IMSLException
IMSLException(System.Runtime.Serialization.SerializationInfo info,
System.Runtime.Serialization.StreamingContext context)

Description

Constructs an IMSLException with the serialized data.

Parameters

info – The Object that holds the serialized object data.

context – The contextual information about the source or destination.
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Chapter 26: Exceptions

Types

class BadInitialGuessException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1165
class BoundsInconsistentException. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1166
class ConstraintEvaluationException. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1167
class ConstraintsInconsistentException. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1169
class ConstraintsNotSatisfiedException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1170
class DidNotConvergeException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1171
class EqualityConstraintsException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1173
class FalseConvergenceException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1174
class IllConditionedException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1175
class InconsistentSystemException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1177
class LimitingAccuracyException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1178
class LinearlyDependentGradientsException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1179
class MaxIterationsException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1180
class MaxNumberStepsAllowedException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1181
class NoAcceptableStepsizeException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1183
class NotSPDException. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1184
class NumericDifficultyException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1185
class ObjectiveEvaluationException. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1187
class PenaltyFunctionPointInfeasibleException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1188
class ProblemInfeasibleException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1189
class ProblemUnboundedException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1190
class QPInfeasibleException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1191
class SingularException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1193
class SingularMatrixException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1194
class TerminationCriteriaNotSatisfiedException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1195
class ToleranceTooSmallException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1196
class TooManyIterationsException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1198
class UnboundedBelowException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1199
class VarBoundsInconsistentException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1200
class WorkingSetSingularException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1202
class AllDeletedException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1203
class AllMissingException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1204
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class BadVarianceException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1205
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class ClassificationVariableValueException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1209
class ClusterNoPointsException. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1211
class ConstrInconsistentException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1212
class CovarianceSingularException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1213
class CyclingIsOccurringException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1215
class DeleteObservationsException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1216
class DidNotConvergeException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1218
class DiffObsDeletedException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1219
class EigenvalueException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1220
class EmptyGroupException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1221
class EqConstrInconsistentException. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1223
class IllConditionedException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1224
class IncreaseErrRelException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1225
class MatrixSingularException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1226
class MoreObsDelThanEnteredException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1228
class NegativeFreqException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1229
class NegativeWeightException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1231
class NewInitialGuessException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1232
class NoConvergenceException. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1233
class NoDegreesOfFreedomException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1235
class NoVariationInputException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1252
class NoVectorXException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1254
class NonPosVarianceException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1239
class NonPosVarianceXYException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1240
class NonPositiveEigenvalueException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1241
class NoPositiveVarianceException. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1243
class NotCDFException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1244
class NotPositiveDefiniteException. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1246
class NotPositiveSemiDefiniteException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1248
class NotSemiDefiniteException. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1249
class NoVariablesEnteredException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1250
class NoVariablesException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1251
class NoVariationInputException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1252
class NoVectorXException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1254
class PooledCovarianceSingularException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1255
class RankException. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1256
class ScaleFactorZeroException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1257
class SingularException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1259
class SumOfWeightsNegException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1260
class TooManyCallsException. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1261
class TooManyFunctionEvaluationsException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1263
class TooManyIterationsException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1264
class TooManyJacobianEvalException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1265

1164 • IMSL C# Numerical Library



class TooManyObsDeletedException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1267
class VarsDeterminedException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1268
class ZeroNormException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1269

BadInitialGuessException Class

Summary

Penalty function point infeasible for original problem. Try new initial guess.

public class Imsl.Math.BadInitialGuessException : IMSLException :
ISerializable

Constructors

BadInitialGuessException
public BadInitialGuessException()

Description

Penalty function point infeasible for original problem. Try new initial guess.

BadInitialGuessException
public BadInitialGuessException(string message)

Description

Penalty function point infeasible for original problem. Try new initial guess.

Parameter

message – The error message that explains the reason for the exception.

BadInitialGuessException
public BadInitialGuessException(string message, System.Exception exception)

Description

Penalty function point infeasible for original problem. Try new initial guess.

Parameters

message – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.
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BadInitialGuessException
BadInitialGuessException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

Penalty function point infeasible for original problem. Try new initial guess.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

BoundsInconsistentException Class

Summary

The bounds given are inconsistent.

public class Imsl.Math.BoundsInconsistentException : IMSLException :
ISerializable

Constructors

BoundsInconsistentException
public BoundsInconsistentException(string nameVariable, string
nameLowerBound, string nameUpperBound, int index, double lowerBound, double
upperBound)

Description

The bounds given are inconsistent.

Parameters

nameVariable – Name of the variable being bounded.

nameLowerBound – Name of the lower bound.

nameUpperBound – Name of the upper bound.

index – The index of the inconsistent bound.

lowerBound – Value of the lower bound.

upperBound – Value of the upper bound.

BoundsInconsistentException
public BoundsInconsistentException()
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Description

The bounds given are inconsistent.

BoundsInconsistentException
public BoundsInconsistentException(string message)

Description

The bounds given are inconsistent.

Parameter

message – The error message that explains the reason for the exception.

BoundsInconsistentException
public BoundsInconsistentException(string s, System.Exception exception)

Description

The bounds given are inconsistent.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

BoundsInconsistentException
BoundsInconsistentException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

The bounds given are inconsistent.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

ConstraintEvaluationException Class

Summary

Constraint evaluation returns an error with current point.

public class Imsl.Math.ConstraintEvaluationException : IMSLException :
ISerializable
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Constructors

ConstraintEvaluationException
public ConstraintEvaluationException()

Description

Constraint evaluation returns an error with current point.

ConstraintEvaluationException
public ConstraintEvaluationException(string message)

Description

Constraint evaluation returns an error with current point.

Parameter

message – The error message that explains the reason for the exception.

ConstraintEvaluationException
public ConstraintEvaluationException(string s, System.Exception exception)

Description

Constraint evaluation returns an error with current point.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

ConstraintEvaluationException

ConstraintEvaluationException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

Constraint evaluation returns an error with current point.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.
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ConstraintsInconsistentException Class

Summary

The equality constraints are inconsistent.

public class Imsl.Math.ConstraintsInconsistentException : IMSLException :
ISerializable

Constructors

ConstraintsInconsistentException
public ConstraintsInconsistentException()

Description

The equality constraints are inconsistent.

ConstraintsInconsistentException
public ConstraintsInconsistentException(string message)

Description

The equality constraints are inconsistent.

Parameter

message – The error message that explains the reason for the exception.

ConstraintsInconsistentException
public ConstraintsInconsistentException(string s, System.Exception
exception)

Description

The equality constraints are inconsistent.

Parameters

s – The error message that explains the reason for the exception.
exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

ConstraintsInconsistentException

ConstraintsInconsistentException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)
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Description

The equality constraints are inconsistent.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

ConstraintsNotSatisfiedException Class

Summary

No vector x satisfies all of the constraints.

public class Imsl.Math.ConstraintsNotSatisfiedException : IMSLException :
ISerializable

Constructors

ConstraintsNotSatisfiedException
public ConstraintsNotSatisfiedException()

Description

No vector x satisfies all of the constraints.

ConstraintsNotSatisfiedException
public ConstraintsNotSatisfiedException(string message)

Description

No vector x satisfies all of the constraints.

Parameter

message – The error message that explains the reason for the exception.

ConstraintsNotSatisfiedException
public ConstraintsNotSatisfiedException(string s, System.Exception
exception)

Description

No vector x satisfies all of the constraints.
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Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

ConstraintsNotSatisfiedException

ConstraintsNotSatisfiedException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

No vector x satisfies all of the constraints.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

DidNotConvergeException Class

Summary

Maximum number of iterations exceeded.

public class Imsl.Math.DidNotConvergeException : IMSLException :
ISerializable

Constructors

DidNotConvergeException
public DidNotConvergeException()

Description

Maximum number of iterations exceeded.

DidNotConvergeException
public DidNotConvergeException(int maximumNumberOfIterations)

Description

Maximum number of iterations exceeded.
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Parameter

maximumNumberOfIterations – Maximum number of iterations allowed exceeded
argument.

DidNotConvergeException
public DidNotConvergeException(int info, int min)

Description

Maximum number of iterations exceeded.

Parameters

info – First argument for SVD.DidNotConverge string.

min – Second argument for SVD.DidNotConverge string.

DidNotConvergeException
public DidNotConvergeException(string message)

Description

Maximum number of iterations exceeded.

Parameter

message – The error message that explains the reason for the exception.

DidNotConvergeException
public DidNotConvergeException(string message, int
maximumNumberOfIterations)

Description

Maximum number of iterations exceeded.

Parameters

message – The error message that explains the reason for the exception.

maximumNumberOfIterations – Maximum number of iterations allowed.

DidNotConvergeException
public DidNotConvergeException(string s, System.Exception exception)

Description

Maximum number of iterations exceeded.
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Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

DidNotConvergeException
DidNotConvergeException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

Maximum number of iterations exceeded.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

EqualityConstraintsException Class

Summary

The variables are determined by the equality constraints.

public class Imsl.Math.EqualityConstraintsException : IMSLException :
ISerializable

Constructors

EqualityConstraintsException
public EqualityConstraintsException()

Description

The variables are determined by the equality constraints.

EqualityConstraintsException
public EqualityConstraintsException(string message)

Description

The variables are determined by the equality constraints.
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Parameter

message – The error message that explains the reason for the exception.

EqualityConstraintsException
public EqualityConstraintsException(string s, System.Exception exception)

Description

The variables are determined by the equality constraints.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

EqualityConstraintsException
EqualityConstraintsException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

The variables are determined by the equality constraints.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

FalseConvergenceException Class

Summary

False convergence, the iterates appear to be converging to a noncritical point.

public class Imsl.Math.FalseConvergenceException : IMSLException :
ISerializable

Constructors

FalseConvergenceException
public FalseConvergenceException()
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Description

False convergence, the iterates appear to be converging to a noncritical point.

FalseConvergenceException
public FalseConvergenceException(string message)

Description

False convergence, the iterates appear to be converging to a noncritical point.

Parameter

message – The error message that explains the reason for the exception.

FalseConvergenceException
public FalseConvergenceException(string s, System.Exception exception)

Description

False convergence, the iterates appear to be converging to a noncritical point.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

FalseConvergenceException
FalseConvergenceException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

False convergence, the iterates appear to be converging to a noncritical point.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

IllConditionedException Class

Summary

Problem is singular or ill-conditioned.

public class Imsl.Math.IllConditionedException : IMSLException :
ISerializable
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Constructors

IllConditionedException
public IllConditionedException()

Description

Problem is singular or ill-conditioned.

IllConditionedException
public IllConditionedException(string message)

Description

Problem is singular or ill-conditioned.

Parameter

message – The error message that explains the reason for the exception.

IllConditionedException
public IllConditionedException(string s, System.Exception exception)

Description

Problem is singular or ill-conditioned.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

IllConditionedException
IllConditionedException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

Problem is singular or ill-conditioned.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.
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InconsistentSystemException Class

Summary

Inconsistent system.

public class Imsl.Math.InconsistentSystemException : IMSLException :
ISerializable

Constructors

InconsistentSystemException
public InconsistentSystemException()

Description

Inconsistent system.

InconsistentSystemException
public InconsistentSystemException(string message)

Description

Inconsistent system.

Parameter

message – The error message that explains the reason for the exception.

InconsistentSystemException
public InconsistentSystemException(string s, System.Exception exception)

Description

Inconsistent system.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

InconsistentSystemException
InconsistentSystemException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)
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Description

Inconsistent system.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

LimitingAccuracyException Class

Summary

Limiting accuracy reached for a singular problem.

public class Imsl.Math.LimitingAccuracyException : IMSLException :
ISerializable

Constructors

LimitingAccuracyException
public LimitingAccuracyException()

Description

Limiting accuracy reached for a singular problem.

LimitingAccuracyException
public LimitingAccuracyException(string message)

Description

Limiting accuracy reached for a singular problem.

Parameter

message – The error message that explains the reason for the exception.

LimitingAccuracyException
public LimitingAccuracyException(string s, System.Exception exception)

Description

Limiting accuracy reached for a singular problem.
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Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

LimitingAccuracyException
LimitingAccuracyException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

Limiting accuracy reached for a singular problem.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

LinearlyDependentGradientsException Class

Summary

Working set gradients are linearly dependent.

public class Imsl.Math.LinearlyDependentGradientsException : IMSLException :
ISerializable

Constructors

LinearlyDependentGradientsException
public LinearlyDependentGradientsException()

Description

Working set gradients are linearly dependent.

LinearlyDependentGradientsException
public LinearlyDependentGradientsException(string message)

Description

Working set gradients are linearly dependent.
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Parameter

message – The error message that explains the reason for the exception.

LinearlyDependentGradientsException
public LinearlyDependentGradientsException(string s, System.Exception
exception)

Description

Working set gradients are linearly dependent.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

LinearlyDependentGradientsException

LinearlyDependentGradientsException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

Working set gradients are linearly dependent.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

MaxIterationsException Class

Summary

Maximum number of iterations exceeded.

public class Imsl.Math.MaxIterationsException : IMSLException : ISerializable

Constructors

MaxIterationsException
public MaxIterationsException()
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Description

Maximum number of iterations exceeded.

MaxIterationsException
public MaxIterationsException(string message)

Description

Maximum number of iterations exceeded.

Parameter

message – The error message that explains the reason for the exception.

MaxIterationsException
public MaxIterationsException(string s, System.Exception exception)

Description

Maximum number of iterations exceeded.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

MaxIterationsException
MaxIterationsException(System.Runtime.Serialization.SerializationInfo info,
System.Runtime.Serialization.StreamingContext context)

Description

Maximum number of iterations exceeded.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

MaxNumberStepsAllowedException Class

Summary

Maximum number of steps allowed exceeded.

public class Imsl.Math.MaxNumberStepsAllowedException : IMSLException :
ISerializable
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Constructors

MaxNumberStepsAllowedException
public MaxNumberStepsAllowedException()

Description

Maximum number of steps allowed exceeded.

MaxNumberStepsAllowedException
public MaxNumberStepsAllowedException(int maxSteps)

Description

Maximum number of steps allowed exceeded.

Parameter

maxSteps – Maximum number of steps allowed.

MaxNumberStepsAllowedException
public MaxNumberStepsAllowedException(string message)

Description

Maximum number of steps allowed exceeded.

Parameter

message – The error message that explains the reason for the exception.

MaxNumberStepsAllowedException
public MaxNumberStepsAllowedException(string s, System.Exception exception)

Description

Maximum number of steps allowed exceeded.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

MaxNumberStepsAllowedException

MaxNumberStepsAllowedException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)
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Description

Maximum number of steps allowed exceeded.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

NoAcceptableStepsizeException Class

Summary

No acceptable stepsize in [SIGMA,SIGLA].

public class Imsl.Math.NoAcceptableStepsizeException : IMSLException :
ISerializable

Constructors

NoAcceptableStepsizeException
public NoAcceptableStepsizeException(double sigma, double sigla)

Description

No acceptable stepsize in [SIGMA,SIGLA].

Parameters

sigma – A double containing the first messages argument SIGMA.

sigla – A double containing the second messages argument SIGLA.

NoAcceptableStepsizeException
public NoAcceptableStepsizeException()

Description

No acceptable stepsize in [SIGMA,SIGLA].

NoAcceptableStepsizeException
public NoAcceptableStepsizeException(string message)

Description

No acceptable stepsize in [SIGMA,SIGLA].
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Parameter

message – The error message that explains the reason for the exception.

NoAcceptableStepsizeException
public NoAcceptableStepsizeException(string s, System.Exception exception)

Description

No acceptable stepsize in [SIGMA,SIGLA].

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

NoAcceptableStepsizeException

NoAcceptableStepsizeException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

No acceptable stepsize in [SIGMA,SIGLA].

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

NotSPDException Class

Summary

The matrix is not symmetric, positive definite.

public class Imsl.Math.NotSPDException : IMSLException : ISerializable

Constructors

NotSPDException
public NotSPDException()
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Description

The matrix is not symmetric, positive definite.

NotSPDException
public NotSPDException(string message)

Description

The matrix is not symmetric, positive definite.

Parameter

message – The error message that explains the reason for the exception.

NotSPDException
public NotSPDException(string s, System.Exception exception)

Description

The matrix is not symmetric, positive definite.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

NotSPDException
NotSPDException(System.Runtime.Serialization.SerializationInfo info,
System.Runtime.Serialization.StreamingContext context)

Description

The matrix is not symmetric, positive definite.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

NumericDifficultyException Class

Summary

Numerical difficulty occurred.

public class Imsl.Math.NumericDifficultyException : IMSLException :
ISerializable
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Constructors

NumericDifficultyException
public NumericDifficultyException()

Description

Numerical difficulty occurred.

NumericDifficultyException
public NumericDifficultyException(string message)

Description

Numerical difficulty occurred.

Parameter

message – The error message that explains the reason for the exception.

NumericDifficultyException
public NumericDifficultyException(string s, System.Exception exception)

Description

Numerical difficulty occurred.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

NumericDifficultyException
NumericDifficultyException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

Numerical difficulty occurred.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.
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ObjectiveEvaluationException Class

Summary

Objective evaluation returns an error with current point.

public class Imsl.Math.ObjectiveEvaluationException : IMSLException :
ISerializable

Constructors

ObjectiveEvaluationException
public ObjectiveEvaluationException()

Description

Objective evaluation returns an error with current point.

ObjectiveEvaluationException
public ObjectiveEvaluationException(string message)

Description

Objective evaluation returns an error with current point.

Parameter

message – The error message that explains the reason for the exception.

ObjectiveEvaluationException
public ObjectiveEvaluationException(string s, System.Exception exception)

Description

Objective evaluation returns an error with current point.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

ObjectiveEvaluationException
ObjectiveEvaluationException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Exceptions ObjectiveEvaluationException Class • 1187



Description

Objective evaluation returns an error with current point.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

PenaltyFunctionPointInfeasibleException Class

Summary

Penalty function point infeasible.

public class Imsl.Math.PenaltyFunctionPointInfeasibleException : IMSLException
: ISerializable

Constructors

PenaltyFunctionPointInfeasibleException
public PenaltyFunctionPointInfeasibleException()

Description

Penalty function point infeasible.

PenaltyFunctionPointInfeasibleException
public PenaltyFunctionPointInfeasibleException(string message)

Description

Penalty function point infeasible.

Parameter

message – The error message that explains the reason for the exception.

PenaltyFunctionPointInfeasibleException
public PenaltyFunctionPointInfeasibleException(string s, System.Exception
exception)

Description

Penalty function point infeasible.
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Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

PenaltyFunctionPointInfeasibleException

PenaltyFunctionPointInfeasibleException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

Penalty function point infeasible.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

ProblemInfeasibleException Class

Summary

The problem is not feasible. The constraints are inconsistent.

public class Imsl.Math.ProblemInfeasibleException : IMSLException :
ISerializable

Constructors

ProblemInfeasibleException
public ProblemInfeasibleException()

Description

The problem is not feasible. The constraints are inconsistent.

ProblemInfeasibleException
public ProblemInfeasibleException(string message)

Description

The problem is not feasible. The constraints are inconsistent.
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Parameter

message – The error message that explains the reason for the exception.

ProblemInfeasibleException
public ProblemInfeasibleException(string s, System.Exception exception)

Description

The problem is not feasible. The constraints are inconsistent.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

ProblemInfeasibleException
ProblemInfeasibleException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

The problem is not feasible. The constraints are inconsistent.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

ProblemUnboundedException Class

Summary

The problem is unbounded.

public class Imsl.Math.ProblemUnboundedException : IMSLException :
ISerializable

Constructors

ProblemUnboundedException
public ProblemUnboundedException()
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Description

The problem is unbounded.

ProblemUnboundedException
public ProblemUnboundedException(string message)

Description

The problem is unbounded.

Parameter

message – The error message that explains the reason for the exception.

ProblemUnboundedException
public ProblemUnboundedException(string s, System.Exception exception)

Description

The problem is unbounded.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

ProblemUnboundedException
ProblemUnboundedException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

The problem is unbounded.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

QPInfeasibleException Class

Summary

QP problem seemingly infeasible.

public class Imsl.Math.QPInfeasibleException : IMSLException : ISerializable
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Constructors

QPInfeasibleException
public QPInfeasibleException()

Description

QP problem seemingly infeasible.

QPInfeasibleException
public QPInfeasibleException(string message)

Description

QP problem seemingly infeasible.

Parameter

message – The error message that explains the reason for the exception.

QPInfeasibleException
public QPInfeasibleException(string s, System.Exception exception)

Description

QP problem seemingly infeasible.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

QPInfeasibleException
QPInfeasibleException(System.Runtime.Serialization.SerializationInfo info,
System.Runtime.Serialization.StreamingContext context)

Description

QP problem seemingly infeasible.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.
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SingularException Class

Summary

Problem is singular.

public class Imsl.Math.SingularException : IMSLException : ISerializable

Constructors

SingularException
public SingularException()

Description

Problem is singular.

SingularException
public SingularException(string message)

Description

Problem is singular.

Parameter

message – The error message that explains the reason for the exception.

SingularException
public SingularException(string s, System.Exception exception)

Description

Problem is singular.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

SingularException
SingularException(System.Runtime.Serialization.SerializationInfo info,
System.Runtime.Serialization.StreamingContext context)

Description

Problem is singular.
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Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

SingularMatrixException Class

Summary

The matrix is singular.

public class Imsl.Math.SingularMatrixException : IMSLException :
ISerializable

Constructors

SingularMatrixException
public SingularMatrixException()

Description

The matrix is singular.

SingularMatrixException
public SingularMatrixException(string message)

Description

The matrix is singular.

Parameter

message – The error message that explains the reason for the exception.

SingularMatrixException
public SingularMatrixException(string s, System.Exception exception)

Description

The matrix is singular.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.
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SingularMatrixException
SingularMatrixException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

The matrix is singular.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

TerminationCriteriaNotSatisfiedException Class

Summary

Termination criteria are not satisfied.

public class Imsl.Math.TerminationCriteriaNotSatisfiedException :
IMSLException : ISerializable

Constructors

TerminationCriteriaNotSatisfiedException
public TerminationCriteriaNotSatisfiedException(int numsm)

Description

Termination criteria are not satisfied.

Parameter

numsm – An intcontaining the criteria value.

TerminationCriteriaNotSatisfiedException
public TerminationCriteriaNotSatisfiedException()

Description

Termination criteria are not satisfied.

TerminationCriteriaNotSatisfiedException
public TerminationCriteriaNotSatisfiedException(string message)

Description

Termination criteria are not satisfied.
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Parameter

message – The error message that explains the reason for the exception.

TerminationCriteriaNotSatisfiedException
public TerminationCriteriaNotSatisfiedException(string s, System.Exception
exception)

Description

Termination criteria are not satisfied.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

TerminationCriteriaNotSatisfiedException

TerminationCriteriaNotSatisfiedException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

Termination criteria are not satisfied.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

ToleranceTooSmallException Class

Summary

Tolerance is too small.

public class Imsl.Math.ToleranceTooSmallException : IMSLException :
ISerializable

Constructors

ToleranceTooSmallException
public ToleranceTooSmallException()
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Description

Tolerance is too small.

ToleranceTooSmallException
public ToleranceTooSmallException(double tol)

Description

Tolerance is too small.

Parameter

tol – A double containing the tolerance value.

ToleranceTooSmallException
public ToleranceTooSmallException(string message)

Description

Tolerance is too small.

Parameter

message – The error message that explains the reason for the exception.

ToleranceTooSmallException
public ToleranceTooSmallException(string s, System.Exception exception)

Description

Tolerance is too small.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

ToleranceTooSmallException
ToleranceTooSmallException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

Tolerance is too small.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.
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TooManyIterationsException Class

Summary

Maximum number of iterations exceeded.

public class Imsl.Math.TooManyIterationsException : IMSLException :
ISerializable

Constructors

TooManyIterationsException
public TooManyIterationsException(int maximumNumberOfIterations)

Description

Maximum number of iterations exceeded.

Parameter

maximumNumberOfIterations – Maximum number of iterations allowed.

TooManyIterationsException
public TooManyIterationsException()

Description

Maximum number of iterations exceeded.

TooManyIterationsException
public TooManyIterationsException(string message)

Description

Maximum number of iterations exceeded.

Parameter

message – The error message that explains the reason for the exception.

TooManyIterationsException
public TooManyIterationsException(string s, System.Exception exception)

Description

Maximum number of iterations exceeded.
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Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

TooManyIterationsException
TooManyIterationsException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

Maximum number of iterations exceeded.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

UnboundedBelowException Class

Summary

Five consecutive steps of the maximum allowable stepsize have been taken, either the function
is unbounded below, or has a finite asymptote in some directionor the maximum allowable step
size is too small.

public class Imsl.Math.UnboundedBelowException : IMSLException :
ISerializable

Constructors

UnboundedBelowException
public UnboundedBelowException()

Description

Five consecutive steps of the maximum allowable stepsize have been taken, either the
function is unbounded below, or has a finite asymptote in some directionor the maximum
allowable step size is too small.

UnboundedBelowException
public UnboundedBelowException(string message)
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Description

Five consecutive steps of the maximum allowable stepsize have been taken, either the
function is unbounded below, or has a finite asymptote in some directionor the maximum
allowable step size is too small.

Parameter

message – The error message that explains the reason for the exception.

UnboundedBelowException
public UnboundedBelowException(string s, System.Exception exception)

Description

Five consecutive steps of the maximum allowable stepsize have been taken, either the
function is unbounded below, or has a finite asymptote in some directionor the maximum
allowable step size is too small.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

UnboundedBelowException
UnboundedBelowException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

Five consecutive steps of the maximum allowable stepsize have been taken, either the
function is unbounded below, or has a finite asymptote in some directionor the maximum
allowable step size is too small.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

VarBoundsInconsistentException Class

Summary

The equality constraints and the bounds on the variables are found to be inconsistent.

public class Imsl.Math.VarBoundsInconsistentException : IMSLException :
ISerializable
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Constructors

VarBoundsInconsistentException
public VarBoundsInconsistentException()

Description

The equality constraints and the bounds on the variables are found to be inconsistent.

VarBoundsInconsistentException
public VarBoundsInconsistentException(string message)

Description

The equality constraints and the bounds on the variables are found to be inconsistent.

Parameter

message – The error message that explains the reason for the exception.

VarBoundsInconsistentException
public VarBoundsInconsistentException(string s, System.Exception exception)

Description

The equality constraints and the bounds on the variables are found to be inconsistent.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

VarBoundsInconsistentException

VarBoundsInconsistentException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

The equality constraints and the bounds on the variables are found to be inconsistent.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.
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WorkingSetSingularException Class

Summary

Working set is singular in dual extended QP.

public class Imsl.Math.WorkingSetSingularException : IMSLException :
ISerializable

Constructors

WorkingSetSingularException
public WorkingSetSingularException()

Description

Working set is singular in dual extended QP.

WorkingSetSingularException
public WorkingSetSingularException(string message)

Description

Working set is singular in dual extended QP.

Parameter

message – The error message that explains the reason for the exception.

WorkingSetSingularException
public WorkingSetSingularException(string s, System.Exception exception)

Description

Working set is singular in dual extended QP.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

WorkingSetSingularException
WorkingSetSingularException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)
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Description

Working set is singular in dual extended QP.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

AllDeletedException Class

Summary

There are no observations.

public class Imsl.Stat.AllDeletedException : IMSLException : ISerializable

Constructors

AllDeletedException
public AllDeletedException()

Description

There are no observations.

AllDeletedException
public AllDeletedException(string message)

Description

There are no observations.

Parameter

message – The error message that explains the reason for the exception.

AllDeletedException
public AllDeletedException(string s, System.Exception exception)

Description

There are no observations.
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Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

AllDeletedException
AllDeletedException(System.Runtime.Serialization.SerializationInfo info,
System.Runtime.Serialization.StreamingContext context)

Description

There are no observations.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

AllMissingException Class

Summary

There are no observations.

public class Imsl.Stat.AllMissingException : IMSLException : ISerializable

Constructors

AllMissingException
public AllMissingException()

Description

There are no observations.

AllMissingException
public AllMissingException(string message)

Description

There are no observations.
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Parameter

message – The error message that explains the reason for the exception.

AllMissingException
public AllMissingException(string s, System.Exception exception)

Description

There are no observations.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

AllMissingException
AllMissingException(System.Runtime.Serialization.SerializationInfo info,
System.Runtime.Serialization.StreamingContext context)

Description

There are no observations.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

BadVarianceException Class

Summary

The input variance is not in the allowed range.

public class Imsl.Stat.BadVarianceException : IMSLException : ISerializable

Constructors

BadVarianceException
public BadVarianceException(int i, double cov, double uniq)

Description

The input variance is not in the allowed range.
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Parameters

i – A int specifying the index of variable uniq, causing the error.

cov – A double specifying the value of cov[i,i].

uniq – A double specifying the input variance.

BadVarianceException
public BadVarianceException()

Description

Maximum number of iterations exceeded.

BadVarianceException
public BadVarianceException(string message)

Description

Maximum number of iterations exceeded.

Parameter

message – The error message that explains the reason for the exception.

BadVarianceException
public BadVarianceException(string s, System.Exception exception)

Description

Maximum number of iterations exceeded.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

BadVarianceException
BadVarianceException(System.Runtime.Serialization.SerializationInfo info,
System.Runtime.Serialization.StreamingContext context)

Description

Maximum number of iterations exceeded.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.
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ClassificationVariableException Class

Summary

The ClassificationVariable vector has not been initialized.

public class Imsl.Stat.ClassificationVariableException : IMSLException :
ISerializable

Constructors

ClassificationVariableException
public ClassificationVariableException()

Description

The ClassificationVariable vector has not been initialized.

ClassificationVariableException
public ClassificationVariableException(string message)

Description

The ClassificationVariable vector has not been initialized.

Parameter

message – The error message that explains the reason for the exception.

ClassificationVariableException
public ClassificationVariableException(string s, System.Exception exception)

Description

The ClassificationVariable vector has not been initialized.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

ClassificationVariableException

ClassificationVariableException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)
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Description

The ClassificationVariable vector has not been initialized.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

ClassificationVariableLimitException Class

Summary

The Classification Variable limit set by the user through setUpperBound has been exceeded.

public class Imsl.Stat.ClassificationVariableLimitException : IMSLException :
ISerializable

Constructors

ClassificationVariableLimitException
public ClassificationVariableLimitException(int maxcl)

Description

The Classification Variable limit set by the user through setUpperBound has been
exceeded.

Parameter

maxcl – An int which specifies the upper bound.

ClassificationVariableLimitException
public ClassificationVariableLimitException()

Description

The Classification Variable limit set by the user through setUpperBound has been
exceeded.

ClassificationVariableLimitException
public ClassificationVariableLimitException(string message)

Description

The Classification Variable limit set by the user through setUpperBound has been
exceeded.
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Parameter

message – The error message that explains the reason for the exception.

ClassificationVariableLimitException
public ClassificationVariableLimitException(string s, System.Exception
exception)

Description

The Classification Variable limit set by the user through setUpperBound has been
exceeded.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

ClassificationVariableLimitException

ClassificationVariableLimitException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

The Classification Variable limit set by the user through setUpperBound has been
exceeded.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

ClassificationVariableValueException Class

Summary

The number of distinct values for each Classification Variable must be greater than 1.

public class Imsl.Stat.ClassificationVariableValueException : IMSLException :
ISerializable
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Constructors

ClassificationVariableValueException
public ClassificationVariableValueException(int index, int val)

Description

The number of distinct values for each Classification Variable must be greater than 1.

Parameters

index – An int which specifies the index of a classification variable.
val – An int which specifies the number of distinct values that can be taken by this
classification variable.

ClassificationVariableValueException
public ClassificationVariableValueException()

Description

The number of distinct values for each Classification Variable must be greater than 1.

ClassificationVariableValueException
public ClassificationVariableValueException(string message)

Description

The number of distinct values for each Classification Variable must be greater than 1.

Parameter

message – The error message that explains the reason for the exception.

ClassificationVariableValueException
public ClassificationVariableValueException(string s, System.Exception
exception)

Description

The number of distinct values for each Classification Variable must be greater than 1.

Parameters

s – The error message that explains the reason for the exception.
exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

ClassificationVariableValueException

ClassificationVariableValueException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)
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Description

The number of distinct values for each Classification Variable must be greater than 1.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

ClusterNoPointsException Class

Summary

There is a cluster with no points.

public class Imsl.Stat.ClusterNoPointsException : IMSLException :
ISerializable

Constructors

ClusterNoPointsException
public ClusterNoPointsException()

Description

There is a cluster with no points.

ClusterNoPointsException
public ClusterNoPointsException(int clusterNumber)

Description

There is a cluster with no points.

Parameter

clusterNumber – Number of the cluster with no points.

ClusterNoPointsException
public ClusterNoPointsException(string message)

Description

There is a cluster with no points.
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Parameter

message – The error message that explains the reason for the exception.

ClusterNoPointsException
public ClusterNoPointsException(string s, System.Exception exception)

Description

There is a cluster with no points.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

ClusterNoPointsException
ClusterNoPointsException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

There is a cluster with no points.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

ConstrInconsistentException Class

Summary

The equality constraints are inconsistent.

public class Imsl.Stat.ConstrInconsistentException : IMSLException :
ISerializable

Constructors

ConstrInconsistentException
public ConstrInconsistentException()
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Description

The equality constraints are inconsistent.

ConstrInconsistentException
public ConstrInconsistentException(string message)

Description

The equality constraints are inconsistent.

Parameter

message – The error message that explains the reason for the exception.

ConstrInconsistentException
public ConstrInconsistentException(string s, System.Exception exception)

Description

The equality constraints are inconsistent.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

ConstrInconsistentException
ConstrInconsistentException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

The equality constraints are inconsistent.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

CovarianceSingularException Class

Summary

The variance-Covariance matrix is singular.

public class Imsl.Stat.CovarianceSingularException : IMSLException :
ISerializable
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Constructors

CovarianceSingularException
public CovarianceSingularException()

Description

The variance-Covariance matrix is singular.

CovarianceSingularException
public CovarianceSingularException(int l)

Description

The variance-Covariance matrix is singular.

Parameter

l – A int which specifies the population number.

CovarianceSingularException
public CovarianceSingularException(string message)

Description

The variance-Covariance matrix is singular.

Parameter

message – The error message that explains the reason for the exception.

CovarianceSingularException
public CovarianceSingularException(string s, System.Exception exception)

Description

The variance-Covariance matrix is singular.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

CovarianceSingularException
CovarianceSingularException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

The variance-Covariance matrix is singular.
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Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

CyclingIsOccurringException Class

Summary

Cycling is occurring.

public class Imsl.Stat.CyclingIsOccurringException : IMSLException :
ISerializable

Constructors

CyclingIsOccurringException
public CyclingIsOccurringException(int nStep)

Description

Cycling is occurring.

Parameter

nStep – An int which specifies the number of steps taken.

CyclingIsOccurringException
public CyclingIsOccurringException()

Description

Cycling is occurring.

CyclingIsOccurringException
public CyclingIsOccurringException(string message)

Description

Cycling is occurring.

Parameter

message – The error message that explains the reason for the exception.

CyclingIsOccurringException
public CyclingIsOccurringException(string s, System.Exception exception)
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Description

Cycling is occurring.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

CyclingIsOccurringException
CyclingIsOccurringException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

Cycling is occurring.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

DeleteObservationsException Class

Summary

The number of observations to be deleted (set by setObservationMax) has grown too large.

public class Imsl.Stat.DeleteObservationsException : IMSLException :
ISerializable

Constructors

DeleteObservationsException
public DeleteObservationsException(int nmax)

Description

The number of observations to be deleted (set with ObservationMax) has grown too
large.

Parameter

nmax – An int which specifies the maximum number of observations that can be
handled in the linear programming.
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DeleteObservationsException
public DeleteObservationsException()

Description

The number of observations to be deleted (set by setObservationMax) has grown too
large.

DeleteObservationsException
public DeleteObservationsException(string message)

Description

The number of observations to be deleted (set by setObservationMax) has grown too
large.

Parameter

message – The error message that explains the reason for the exception.

DeleteObservationsException
public DeleteObservationsException(string s, System.Exception exception)

Description

The number of observations to be deleted (set by setObservationMax) has grown too
large.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

DeleteObservationsException
DeleteObservationsException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

The number of observations to be deleted (set by setObservationMax) has grown too
large.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.
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DidNotConvergeException Class

Summary

The iteration did not converge.

public class Imsl.Stat.DidNotConvergeException : IMSLException :
ISerializable

Constructors

DidNotConvergeException
public DidNotConvergeException()

Description

The iteration did not converge.

DidNotConvergeException
public DidNotConvergeException(string message)

Description

The iteration did not converge.

Parameter

message – The error message that explains the reason for the exception.

DidNotConvergeException
public DidNotConvergeException(string s, System.Exception exception)

Description

The iteration did not converge.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

DidNotConvergeException
DidNotConvergeException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)
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Description

The iteration did not converge.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

DiffObsDeletedException Class

Summary

Different observations are being deleted from return matrix than were originally entered.

public class Imsl.Stat.DiffObsDeletedException : IMSLException :
ISerializable

Constructors

DiffObsDeletedException
public DiffObsDeletedException()

Description

Different observations are being deleted from return matrix than were originally entered.

DiffObsDeletedException
public DiffObsDeletedException(int i)

Description

Different observations are being deleted from return matrix than were originally entered.

Parameter

i – An int which specifies the index of Variance-Covariance matrix.

DiffObsDeletedException
public DiffObsDeletedException(string message)

Description

Different observations are being deleted from return matrix than were originally entered.
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Parameter

message – The error message that explains the reason for the exception.

DiffObsDeletedException
public DiffObsDeletedException(string s, System.Exception exception)

Description

Different observations are being deleted from return matrix than were originally entered.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

DiffObsDeletedException
DiffObsDeletedException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

Different observations are being deleted from return matrix than were originally entered.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

EigenvalueException Class

Summary

An error occured in calculating the eigenvalues of the adjusted (inverse) covariance matrix.
Check the input covariance matrix.

public class Imsl.Stat.EigenvalueException : IMSLException : ISerializable

Constructors

EigenvalueException
public EigenvalueException()
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Description

Eigenvalue error.

EigenvalueException
public EigenvalueException(string message)

Description

Eigenvalue error.

Parameter

message – The error message that explains the reason for the exception.

EigenvalueException
public EigenvalueException(string s, System.Exception exception)

Description

Eigenvalue error.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

EigenvalueException
EigenvalueException(System.Runtime.Serialization.SerializationInfo info,
System.Runtime.Serialization.StreamingContext context)

Description

Eigenvalue error.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

EmptyGroupException Class

Summary

There are no observations in a group. Cannot compute statistics.

public class Imsl.Stat.EmptyGroupException : IMSLException : ISerializable
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Constructors

EmptyGroupException
public EmptyGroupException(int group)

Description

There are no observations in a group. Cannot compute statistics.

Parameter

group – A int which specifies the index of empty group.

EmptyGroupException
public EmptyGroupException()

Description

There are no observations in a group. Cannot compute statistics.

EmptyGroupException
public EmptyGroupException(string message)

Description

There are no observations in a group. Cannot compute statistics.

Parameter

message – The error message that explains the reason for the exception.

EmptyGroupException
public EmptyGroupException(string s, System.Exception exception)

Description

There are no observations in a group. Cannot compute statistics.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

EmptyGroupException
EmptyGroupException(System.Runtime.Serialization.SerializationInfo info,
System.Runtime.Serialization.StreamingContext context)

Description

There are no observations in a group. Cannot compute statistics.
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Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

EqConstrInconsistentException Class

Summary

The equality constraints and the bounds on the variables are found to be inconsistent.

public class Imsl.Stat.EqConstrInconsistentException : IMSLException :
ISerializable

Constructors

EqConstrInconsistentException
public EqConstrInconsistentException()

Description

The equality constraints and the bounds on the variables are found to be inconsistent.

EqConstrInconsistentException
public EqConstrInconsistentException(string message)

Description

The equality constraints and the bounds on the variables are found to be inconsistent.

Parameter

message – The error message that explains the reason for the exception.

EqConstrInconsistentException
public EqConstrInconsistentException(string s, System.Exception exception)

Description

The equality constraints and the bounds on the variables are found to be inconsistent.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.
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EqConstrInconsistentException

EqConstrInconsistentException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

The equality constraints and the bounds on the variables are found to be inconsistent.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

IllConditionedException Class

Summary

The problem is ill-conditioned.

public class Imsl.Stat.IllConditionedException : IMSLException :
ISerializable

Constructors

IllConditionedException
public IllConditionedException()

Description

The problem is ill-conditioned.

IllConditionedException
public IllConditionedException(string message)

Description

The problem is ill-conditioned.

Parameter

message – The error message that explains the reason for the exception.

IllConditionedException
public IllConditionedException(string s, System.Exception exception)
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Description

The problem is ill-conditioned.

Parameters

s – The error message that explains the reason for the exception.
exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

IllConditionedException
IllConditionedException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

The problem is ill-conditioned.

Parameters

info – The object that holds the serialized object data.
context – The contextual information about the source or destination.

IncreaseErrRelException Class

Summary

The bound for the relative error is too small.

public class Imsl.Stat.IncreaseErrRelException : IMSLException :
ISerializable

Constructors

IncreaseErrRelException
public IncreaseErrRelException(double relativeError)

Description

The bound for the relative error is too small.

Parameter

relativeError – A double which specifies the bound for relative error.

IncreaseErrRelException
public IncreaseErrRelException()
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Description

The bound for the relative error is too small.

IncreaseErrRelException
public IncreaseErrRelException(string message)

Description

The bound for the relative error is too small.

Parameter

message – The error message that explains the reason for the exception.

IncreaseErrRelException
public IncreaseErrRelException(string s, System.Exception exception)

Description

The bound for the relative error is too small.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

IncreaseErrRelException
IncreaseErrRelException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

The bound for the relative error is too small.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

MatrixSingularException Class

Summary

The input matrix is singular.

public class Imsl.Stat.MatrixSingularException : IMSLException :
ISerializable
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Constructors

MatrixSingularException
public MatrixSingularException()

Description

The input matrix is singular.

MatrixSingularException
public MatrixSingularException(string message)

Description

The input matrix is singular.

Parameter

message – The error message that explains the reason for the exception.

MatrixSingularException
public MatrixSingularException(string s, System.Exception exception)

Description

The input matrix is singular.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

MatrixSingularException
MatrixSingularException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

The input matrix is singular.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.
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MoreObsDelThanEnteredException Class

Summary

More observations are being deleted from the output covariance matrix than were originally
entered (the corresponding row, column of the incidence matrix is less than zero).

public class Imsl.Stat.MoreObsDelThanEnteredException : IMSLException :
ISerializable

Constructors

MoreObsDelThanEnteredException
public MoreObsDelThanEnteredException(int j, int k)

Description

More observations are being deleted from the output covariance matrix than were
originally entered (the corresponding row, column of the incidence matrix is less than
zero).

Parameters

j – A int which specifies the row index of Variance-Covariance matrix.

k – A int which specifies the column index of Variance-Covariance matrix.

MoreObsDelThanEnteredException
public MoreObsDelThanEnteredException()

Description

More observations are being deleted from the output covariance matrix than were
originally entered (the corresponding row, column of the incidence matrix is less than
zero).

MoreObsDelThanEnteredException
public MoreObsDelThanEnteredException(string message)

Description

More observations are being deleted from the output covariance matrix than were
originally entered (the corresponding row, column of the incidence matrix is less than
zero).
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Parameter

message – The error message that explains the reason for the exception.

MoreObsDelThanEnteredException
public MoreObsDelThanEnteredException(string s, System.Exception exception)

Description

More observations are being deleted from the output covariance matrix than were
originally entered (the corresponding row, column of the incidence matrix is less than
zero).

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

MoreObsDelThanEnteredException

MoreObsDelThanEnteredException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

More observations are being deleted from the output covariance matrix than were
originally entered (the corresponding row, column of the incidence matrix is less than
zero).

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

NegativeFreqException Class

Summary

A negative frequency was encountered.

public class Imsl.Stat.NegativeFreqException : IMSLException : ISerializable
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Constructors

NegativeFreqException
public NegativeFreqException(int rowIndex, int invocation, double val)

Description

A negative frequency was encountered.
Parameters

rowIndex – An int which specifies the row index of X for which the frequency is
negative.
invocation – An int which specifies the invocation number at which the error
occurred. A 3 would indicate that the error occurred on the third invocation.
val – AAn double which represents the value of the frequency encountered.

NegativeFreqException
public NegativeFreqException()

Description

A negative frequency was encountered.

NegativeFreqException
public NegativeFreqException(string message)

Description

A negative frequency was encountered.
Parameter

message – The error message that explains the reason for the exception.

NegativeFreqException
public NegativeFreqException(string s, System.Exception exception)

Description

A negative frequency was encountered.
Parameters

s – The error message that explains the reason for the exception.
exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

NegativeFreqException
NegativeFreqException(System.Runtime.Serialization.SerializationInfo info,
System.Runtime.Serialization.StreamingContext context)
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Description

A negative frequency was encountered.

Parameters

info – The object that holds the serialized object data.
context – The contextual information about the source or destination.

NegativeWeightException Class

Summary

A negative weight was encountered.

public class Imsl.Stat.NegativeWeightException : IMSLException :
ISerializable

Constructors

NegativeWeightException
public NegativeWeightException(int rowIndex, int invocation, double val)

Description

A negative weight was encountered.

Parameters

rowIndex – An int which specifies the row index of X for which the weight is
negative.
invocation – An int which specifies the invocation number at which the error
occurred. A 3 would indicate that the error occurred on the third invocation.
val – An double which represents the value of the weight encountered.

NegativeWeightException
public NegativeWeightException()

Description

A negative weight was encountered.

NegativeWeightException
public NegativeWeightException(string message)

Description

A negative weight was encountered.
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Parameter

message – The error message that explains the reason for the exception.

NegativeWeightException
public NegativeWeightException(string s, System.Exception exception)

Description

A negative weight was encountered.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

NegativeWeightException
NegativeWeightException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

A negative weight was encountered.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

NewInitialGuessException Class

Summary

The iteration has not made good progress.

public class Imsl.Stat.NewInitialGuessException : IMSLException :
ISerializable

Constructors

NewInitialGuessException
public NewInitialGuessException()
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Description

The iteration has not made good progress.

NewInitialGuessException
public NewInitialGuessException(string message)

Description

The iteration has not made good progress.

Parameter

message – The error message that explains the reason for the exception.

NewInitialGuessException
public NewInitialGuessException(string s, System.Exception exception)

Description

The iteration has not made good progress.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

NewInitialGuessException
NewInitialGuessException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

The iteration has not made good progress.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

NoConvergenceException Class

Summary

Convergence did not occur within the maximum number of iterations.

public class Imsl.Stat.NoConvergenceException : IMSLException : ISerializable
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Constructors

NoConvergenceException
public NoConvergenceException(int maximumIterations)

Description

Convergence did not occur within the maximum number of iterations.

Parameter

maximumIterations – A int which specifies the maximum number of iterations
allowed.

NoConvergenceException
public NoConvergenceException()

Description

Convergence did not occur within the maximum number of iterations.

NoConvergenceException
public NoConvergenceException(string message)

Description

Convergence did not occur within the maximum number of iterations.

Parameter

message – The error message that explains the reason for the exception.

NoConvergenceException
public NoConvergenceException(string s, System.Exception exception)

Description

Convergence did not occur within the maximum number of iterations.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

NoConvergenceException
NoConvergenceException(System.Runtime.Serialization.SerializationInfo info,
System.Runtime.Serialization.StreamingContext context)
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Description

Convergence did not occur within the maximum number of iterations.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

NoDegreesOfFreedomException Class

Summary

No degrees of freedom error.

public class Imsl.Stat.NoDegreesOfFreedomException : IMSLException :
ISerializable

Constructors

NoDegreesOfFreedomException
public NoDegreesOfFreedomException(int nvar, int nf)

Description

No degrees of freedom error.

Parameters

nvar – A int which specifies the number of variables.

nf – A int which specifies the number of factors.

NoDegreesOfFreedomException
public NoDegreesOfFreedomException()

Description

No degrees of freedom error.

NoDegreesOfFreedomException
public NoDegreesOfFreedomException(string message)

Description

No degrees of freedom error.
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Parameter

message – The error message that explains the reason for the exception.

NoDegreesOfFreedomException
public NoDegreesOfFreedomException(string s, System.Exception exception)

Description

No degrees of freedom error.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

NoDegreesOfFreedomException
NoDegreesOfFreedomException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

No degrees of freedom error.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

NoVariationInputException Class

Summary

There is no variation in the input data.

public class Imsl.Stat.NoVariationInputException : IMSLException :
ISerializable

Constructors

NoVariationInputException
public NoVariationInputException()
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Description

There is no variation in the input data.

NoVariationInputException
public NoVariationInputException(string message)

Description

There is no variation in the input data.

Parameter

message – The error message that explains the reason for the exception.

NoVariationInputException
public NoVariationInputException(string s, System.Exception exception)

Description

There is no variation in the input data.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

NoVariationInputException
NoVariationInputException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

There is no variation in the input data.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

NoVectorXException Class

Summary

No vector X satisfies all of the constraints.

public class Imsl.Stat.NoVectorXException : IMSLException : ISerializable
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Constructors

NoVectorXException
public NoVectorXException()

Description

No vector X satisfies all of the constraints.

NoVectorXException
public NoVectorXException(string message)

Description

No vector X satisfies all of the constraints.

Parameter

message – The error message that explains the reason for the exception.

NoVectorXException
public NoVectorXException(string s, System.Exception exception)

Description

No vector X satisfies all of the constraints.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

NoVectorXException
NoVectorXException(System.Runtime.Serialization.SerializationInfo info,
System.Runtime.Serialization.StreamingContext context)

Description

No vector X satisfies all of the constraints.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.
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NonPosVarianceException Class

Summary

The problem is ill-conditioned.

public class Imsl.Stat.NonPosVarianceException : IMSLException :
ISerializable

Constructors

NonPosVarianceException
public NonPosVarianceException(double var)

Description

The problem is ill-conditioned.

Parameter

var – A double which specifies the variance.

NonPosVarianceException
public NonPosVarianceException()

Description

The problem is ill-conditioned.

NonPosVarianceException
public NonPosVarianceException(string message)

Description

The problem is ill-conditioned.

Parameter

message – The error message that explains the reason for the exception.

NonPosVarianceException
public NonPosVarianceException(string s, System.Exception exception)

Description

The problem is ill-conditioned.
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Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

NonPosVarianceException
NonPosVarianceException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

The problem is ill-conditioned.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

NonPosVarianceXYException Class

Summary

The problem is ill-conditioned.

public class Imsl.Stat.NonPosVarianceXYException : IMSLException :
ISerializable

Constructors

NonPosVarianceXYException
public NonPosVarianceXYException(string varName, double var)

Description

The problem is ill-conditioned.

Parameters

varName – A string which specifies either ”X” or ”Y”.

var – A double which specifies the variance.

NonPosVarianceXYException
public NonPosVarianceXYException()
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Description

The problem is ill-conditioned.

NonPosVarianceXYException
public NonPosVarianceXYException(string message)

Description

The problem is ill-conditioned.

Parameter

message – The error message that explains the reason for the exception.

NonPosVarianceXYException
public NonPosVarianceXYException(string s, System.Exception exception)

Description

The problem is ill-conditioned.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

NonPosVarianceXYException
NonPosVarianceXYException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

The problem is ill-conditioned.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

NonPositiveEigenvalueException Class

Summary

Maximum number of iterations exceeded.

public class Imsl.Stat.NonPositiveEigenvalueException : IMSLException :
ISerializable
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Constructors

NonPositiveEigenvalueException
public NonPositiveEigenvalueException(int iter, int i, double eval)

Description

Maximum number of iterations exceeded.

Parameters

iter – A int which specifies the iteration number.
i – A int which specifies the eigenvalue index.
eval – A double which specifies the eigenvalue.

NonPositiveEigenvalueException
public NonPositiveEigenvalueException()

Description

Maximum number of iterations exceeded.

NonPositiveEigenvalueException
public NonPositiveEigenvalueException(string message)

Description

Maximum number of iterations exceeded.

Parameter

message – The error message that explains the reason for the exception.

NonPositiveEigenvalueException
public NonPositiveEigenvalueException(string s, System.Exception exception)

Description

Maximum number of iterations exceeded.

Parameters

s – The error message that explains the reason for the exception.
exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

NonPositiveEigenvalueException

NonPositiveEigenvalueException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)
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Description

Maximum number of iterations exceeded.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

NoPositiveVarianceException Class

Summary

No variable has positive variance. The Mahalanobis distances cannot be computed.

public class Imsl.Stat.NoPositiveVarianceException : IMSLException :
ISerializable

Constructors

NoPositiveVarianceException
public NoPositiveVarianceException()

Description

No variable has positive variance. The Mahalanobis distances cannot be computed.

NoPositiveVarianceException
public NoPositiveVarianceException(string message)

Description

No variable has positive variance. The Mahalanobis distances cannot be computed.

Parameter

message – The error message that explains the reason for the exception.

NoPositiveVarianceException
public NoPositiveVarianceException(string s, System.Exception exception)

Description

No variable has positive variance. The Mahalanobis distances cannot be computed.
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Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

NoPositiveVarianceException
NoPositiveVarianceException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

No variable has positive variance. The Mahalanobis distances cannot be computed.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

NotCDFException Class

Summary

The function is not a Cumulative Distribution Function (CDF).

public class Imsl.Stat.NotCDFException : IMSLException : ISerializable

Constructors

NotCDFException
public NotCDFException(double lowerBound, double upperBound)

Description

The function is not a Cumulative Distribution Function (CDF).

Parameters

lowerBound – A double containing the lower bound to be displayed in message.

upperBound – A double containing the upper bound to be displayed in message.

NotCDFException
public NotCDFException(double range)
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Description

The function is not a Cumulative Distribution Function (CDF).

Parameter

range – A double containing the probability of the range.

NotCDFException
public NotCDFException(double x1, double x2, double f1)

Description

The function is not a Cumulative Distribution Function (CDF).

The CDF function is not monotone, F(x1) = F(x2). No unique inverse exists.

Parameters

x1 – is the first point

x2 – is the second point

f1 – is the common value for F(x1) and F(x2)

NotCDFException
public NotCDFException(double lowerBound, double upperBound, double xx, int
i)

Description

The function is not a Cumulative Distribution Function (CDF).

The cdf function is not a cumulative distribution function because its value at a cutpoint
is out of the expected range, [plower,pupper].

Parameters

lowerBound – A double containing the lower bound for the CDF value.

upperBound – A double containing the upper bound for the CDF value.

xx – A double containing the value at a cutpoint.

i – The index of the cutpoint that is out of range.

NotCDFException
public NotCDFException()

Description

The function is not a Cumulative Distribution Function (CDF).

NotCDFException
public NotCDFException(string message)

Exceptions NotCDFException Class • 1245



Description

The function is not a Cumulative Distribution Function (CDF).

Parameter

message – The error message that explains the reason for the exception.

NotCDFException
public NotCDFException(string s, System.Exception exception)

Description

The function is not a Cumulative Distribution Function (CDF).

Parameters

s – The error message that explains the reason for the exception.
exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

NotCDFException
NotCDFException(System.Runtime.Serialization.SerializationInfo info,
System.Runtime.Serialization.StreamingContext context)

Description

The function is not a Cumulative Distribution Function (CDF).

Parameters

info – The object that holds the serialized object data.
context – The contextual information about the source or destination.

NotPositiveDefiniteException Class

Summary

Covariance matrix is not positive definite.

public class Imsl.Stat.NotPositiveDefiniteException : IMSLException :
ISerializable

Constructors

NotPositiveDefiniteException
public NotPositiveDefiniteException(int i)
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Description

Covariance matrix is not positive definite.

Parameter

i – Variable i is linearly related to the other variables in the factor analysis.

NotPositiveDefiniteException
public NotPositiveDefiniteException()

Description

Covariance matrix is not positive definite.

NotPositiveDefiniteException
public NotPositiveDefiniteException(string message)

Description

Covariance matrix is not positive definite.

Parameter

message – The error message that explains the reason for the exception.

NotPositiveDefiniteException
public NotPositiveDefiniteException(string s, System.Exception exception)

Description

Covariance matrix is not positive definite.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

NotPositiveDefiniteException
NotPositiveDefiniteException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

Covariance matrix is not positive definite.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.
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NotPositiveSemiDefiniteException Class

Summary

Covariance matrix is not positive semi-definite.

public class Imsl.Stat.NotPositiveSemiDefiniteException : IMSLException :
ISerializable

Constructors

NotPositiveSemiDefiniteException
public NotPositiveSemiDefiniteException()

Description

Covariance matrix is not positive semi-definite.

NotPositiveSemiDefiniteException
public NotPositiveSemiDefiniteException(string message)

Description

Covariance matrix is not positive semi-definite.

Parameter

message – The error message that explains the reason for the exception.

NotPositiveSemiDefiniteException
public NotPositiveSemiDefiniteException(string s, System.Exception
exception)

Description

Covariance matrix is not positive semi-definite.

Parameters

s – The error message that explains the reason for the exception.
exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

NotPositiveSemiDefiniteException

NotPositiveSemiDefiniteException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)
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Description

Covariance matrix is not positive semi-definite.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

NotSemiDefiniteException Class

Summary

Hessian matrix is not semi-definite.

public class Imsl.Stat.NotSemiDefiniteException : IMSLException :
ISerializable

Constructors

NotSemiDefiniteException
public NotSemiDefiniteException()

Description

Hessian matrix is not semi-definite.

NotSemiDefiniteException
public NotSemiDefiniteException(string message)

Description

Hessian matrix is not semi-definite.

Parameter

message – The error message that explains the reason for the exception.

NotSemiDefiniteException
public NotSemiDefiniteException(string s, System.Exception exception)

Description

Hessian matrix is not semi-definite.

Exceptions NotSemiDefiniteException Class • 1249



Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

NotSemiDefiniteException
NotSemiDefiniteException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

Hessian matrix is not semi-definite.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

NoVariablesEnteredException Class

Summary

No Variables can enter the model.

public class Imsl.Stat.NoVariablesEnteredException : IMSLException :
ISerializable

Constructors

NoVariablesEnteredException
public NoVariablesEnteredException()

Description

No Variables can enter the model.

NoVariablesEnteredException
public NoVariablesEnteredException(string message)

Description

No Variables can enter the model.
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Parameter

message – The error message that explains the reason for the exception.

NoVariablesEnteredException
public NoVariablesEnteredException(string s, System.Exception exception)

Description

No Variables can enter the model.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

NoVariablesEnteredException
NoVariablesEnteredException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

No Variables can enter the model.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

NoVariablesException Class

Summary

No variables can enter the model.

public class Imsl.Stat.NoVariablesException : IMSLException : ISerializable

Constructors

NoVariablesException
public NoVariablesException()
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Description

No variables can enter the model.

NoVariablesException
public NoVariablesException(string message)

Description

No variables can enter the model.

Parameter

message – The error message that explains the reason for the exception.

NoVariablesException
public NoVariablesException(string s, System.Exception exception)

Description

No variables can enter the model.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

NoVariablesException
NoVariablesException(System.Runtime.Serialization.SerializationInfo info,
System.Runtime.Serialization.StreamingContext context)

Description

No variables can enter the model.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

NoVariationInputException Class

Summary

There is no variation in the input data.

public class Imsl.Stat.NoVariationInputException : IMSLException :
ISerializable
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Constructors

NoVariationInputException
public NoVariationInputException()

Description

There is no variation in the input data.

NoVariationInputException
public NoVariationInputException(string message)

Description

There is no variation in the input data.

Parameter

message – The error message that explains the reason for the exception.

NoVariationInputException
public NoVariationInputException(string s, System.Exception exception)

Description

There is no variation in the input data.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

NoVariationInputException
NoVariationInputException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

There is no variation in the input data.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.
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NoVectorXException Class

Summary

No vector X satisfies all of the constraints.

public class Imsl.Stat.NoVectorXException : IMSLException : ISerializable

Constructors

NoVectorXException
public NoVectorXException()

Description

No vector X satisfies all of the constraints.

NoVectorXException
public NoVectorXException(string message)

Description

No vector X satisfies all of the constraints.

Parameter

message – The error message that explains the reason for the exception.

NoVectorXException
public NoVectorXException(string s, System.Exception exception)

Description

No vector X satisfies all of the constraints.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

NoVectorXException
NoVectorXException(System.Runtime.Serialization.SerializationInfo info,
System.Runtime.Serialization.StreamingContext context)

Description

No vector X satisfies all of the constraints.
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Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

PooledCovarianceSingularException Class

Summary

The pooled variance-Covariance matrix is singular.

public class Imsl.Stat.PooledCovarianceSingularException : IMSLException :
ISerializable

Constructors

PooledCovarianceSingularException
public PooledCovarianceSingularException()

Description

The pooled variance-Covariance matrix is singular.

PooledCovarianceSingularException
public PooledCovarianceSingularException(string message)

Description

The pooled variance-Covariance matrix is singular.

Parameter

message – The error message that explains the reason for the exception.

PooledCovarianceSingularException
public PooledCovarianceSingularException(string s, System.Exception
exception)

Description

The pooled variance-Covariance matrix is singular.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.
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PooledCovarianceSingularException

PooledCovarianceSingularException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

The pooled variance-Covariance matrix is singular.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

RankException Class

Summary

Rank of covariance matrix error.

public class Imsl.Stat.RankException : IMSLException : ISerializable

Constructors

RankException
public RankException(int rank, int nf)

Description

Rank of covariance matrix error.

Parameters

rank – A int which specifies the rank of the covariance matrix.

nf – A int which specifies the number of factors.

RankException
public RankException()

Description

Rank of covariance matrix error.

RankException
public RankException(string message)
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Description

Rank of covariance matrix error.

Parameter

message – The error message that explains the reason for the exception.

RankException
public RankException(string s, System.Exception exception)

Description

Rank of covariance matrix error.

Parameters

s – The error message that explains the reason for the exception.
exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

RankException
RankException(System.Runtime.Serialization.SerializationInfo info,
System.Runtime.Serialization.StreamingContext context)

Description

Rank of covariance matrix error.

Parameters

info – The object that holds the serialized object data.
context – The contextual information about the source or destination.

ScaleFactorZeroException Class

Summary

The computations cannot continue because a scale factor is zero.

public class Imsl.Stat.ScaleFactorZeroException : IMSLException :
ISerializable

Constructors

ScaleFactorZeroException
public ScaleFactorZeroException(int index)
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Description

The computations cannot continue because a scale factor is zero.

Parameter

index – An int which specifies the index of the scale factor array at which scale
factor is zero.

ScaleFactorZeroException
public ScaleFactorZeroException()

Description

The computations cannot continue because a scale factor is zero.

ScaleFactorZeroException
public ScaleFactorZeroException(string message)

Description

The computations cannot continue because a scale factor is zero.

Parameter

message – The error message that explains the reason for the exception.

ScaleFactorZeroException
public ScaleFactorZeroException(string s, System.Exception exception)

Description

The computations cannot continue because a scale factor is zero.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

ScaleFactorZeroException
ScaleFactorZeroException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

The computations cannot continue because a scale factor is zero.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.
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SingularException Class

Summary

Covariance matrix is singular.

public class Imsl.Stat.SingularException : IMSLException : ISerializable

Constructors

SingularException
public SingularException(int i)

Description

Covariance matrix is singular.

Parameter

i – Variable i is linearly related to the other variables.

SingularException
public SingularException()

Description

Covariance matrix is singular.

SingularException
public SingularException(string message)

Description

Covariance matrix is singular.

Parameter

message – The error message that explains the reason for the exception.

SingularException
public SingularException(string s, System.Exception exception)

Description

Covariance matrix is singular.
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Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

SingularException
SingularException(System.Runtime.Serialization.SerializationInfo info,
System.Runtime.Serialization.StreamingContext context)

Description

Covariance matrix is singular.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

SumOfWeightsNegException Class

Summary

The sum of the weights have become negative.

public class Imsl.Stat.SumOfWeightsNegException : IMSLException :
ISerializable

Constructors

SumOfWeightsNegException
public SumOfWeightsNegException(int group)

Description

The sum of the weights have become negative.

Parameter

group – A int which specifies the group for which the sum of the weights have
become negative.

SumOfWeightsNegException
public SumOfWeightsNegException()
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Description

The sum of the weights have become negative.

SumOfWeightsNegException
public SumOfWeightsNegException(string message)

Description

The sum of the weights have become negative.

Parameter

message – The error message that explains the reason for the exception.

SumOfWeightsNegException
public SumOfWeightsNegException(string s, System.Exception exception)

Description

The sum of the weights have become negative.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

SumOfWeightsNegException
SumOfWeightsNegException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

The sum of the weights have become negative.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

TooManyCallsException Class

Summary

The number of calls to the function has exceeded the maximum number of iterations.

public class Imsl.Stat.TooManyCallsException : IMSLException : ISerializable
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Constructors

TooManyCallsException
public TooManyCallsException()

Description

The number of calls to the function has exceeded the maximum number of iterations.

TooManyCallsException
public TooManyCallsException(string message)

Description

The number of calls to the function has exceeded the maximum number of iterations.

Parameter

message – The error message that explains the reason for the exception.

TooManyCallsException
public TooManyCallsException(string s, System.Exception exception)

Description

The number of calls to the function has exceeded the maximum number of iterations.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

TooManyCallsException
TooManyCallsException(System.Runtime.Serialization.SerializationInfo info,
System.Runtime.Serialization.StreamingContext context)

Description

The number of calls to the function has exceeded the maximum number of iterations.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

1262 • TooManyCallsException Class IMSL C# Numerical Library



TooManyFunctionEvaluationsException Class

Summary

Maximum number of function evaluations exceeded.

public class Imsl.Stat.TooManyFunctionEvaluationsException : IMSLException :
ISerializable

Constructors

TooManyFunctionEvaluationsException
public TooManyFunctionEvaluationsException(int maximumNumberOfEvaluations)

Description

Maximum number of function evaluations exceeded.

Parameter

maximumNumberOfEvaluations – A int which specifies the maximum number of
function evaluations allowed.

TooManyFunctionEvaluationsException
public TooManyFunctionEvaluationsException()

Description

Maximum number of function evaluations exceeded.

TooManyFunctionEvaluationsException
public TooManyFunctionEvaluationsException(string message)

Description

Maximum number of function evaluations exceeded.

Parameter

message – The error message that explains the reason for the exception.

TooManyFunctionEvaluationsException
public TooManyFunctionEvaluationsException(string s, System.Exception
exception)

Description

Maximum number of function evaluations exceeded.
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Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

TooManyFunctionEvaluationsException

TooManyFunctionEvaluationsException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

Maximum number of function evaluations exceeded.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

TooManyIterationsException Class

Summary

Maximum number of iterations exceeded.

public class Imsl.Stat.TooManyIterationsException : IMSLException :
ISerializable

Constructors

TooManyIterationsException
public TooManyIterationsException(int maximumNumberOfIterations)

Description

Maximum number of iterations exceeded.

Parameter

maximumNumberOfIterations – A int which specifies the maximum number of
iterations allowed.

TooManyIterationsException
public TooManyIterationsException()
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Description

Maximum number of iterations exceeded.

TooManyIterationsException
public TooManyIterationsException(string message)

Description

Maximum number of iterations exceeded.

Parameter

message – The error message that explains the reason for the exception.

TooManyIterationsException
public TooManyIterationsException(string s, System.Exception exception)

Description

Maximum number of iterations exceeded.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

TooManyIterationsException
TooManyIterationsException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

Maximum number of iterations exceeded.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

TooManyJacobianEvalException Class

Summary

Maximum number of Jacobian evaluations exceeded.

public class Imsl.Stat.TooManyJacobianEvalException : IMSLException :
ISerializable
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Constructors

TooManyJacobianEvalException
public TooManyJacobianEvalException()

Description

Maximum number of Jacobian evaluations exceeded.

TooManyJacobianEvalException
public TooManyJacobianEvalException(string message)

Description

Maximum number of Jacobian evaluations exceeded.

Parameter

message – The error message that explains the reason for the exception.

TooManyJacobianEvalException
public TooManyJacobianEvalException(string s, System.Exception exception)

Description

Maximum number of Jacobian evaluations exceeded.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

TooManyJacobianEvalException
TooManyJacobianEvalException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

Maximum number of Jacobian evaluations exceeded.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.
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TooManyObsDeletedException Class

Summary

More observations have been deleted than were originally entered (the sum of frequencies has
become negative).

public class Imsl.Stat.TooManyObsDeletedException : IMSLException :
ISerializable

Constructors

TooManyObsDeletedException
public TooManyObsDeletedException()

Description

More observations have been deleted than were originally entered (the sum of frequencies
has become negative).

TooManyObsDeletedException
public TooManyObsDeletedException(string message)

Description

More observations have been deleted than were originally entered (the sum of frequencies
has become negative).

Parameter

message – The error message that explains the reason for the exception.

TooManyObsDeletedException
public TooManyObsDeletedException(string s, System.Exception exception)

Description

More observations have been deleted than were originally entered (the sum of frequencies
has become negative).

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.
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TooManyObsDeletedException
TooManyObsDeletedException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

More observations have been deleted than were originally entered (the sum of frequencies
has become negative).

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

VarsDeterminedException Class

Summary

The variables are determined by the equality constraints.

public class Imsl.Stat.VarsDeterminedException : IMSLException :
ISerializable

Constructors

VarsDeterminedException
public VarsDeterminedException()

Description

The variables are determined by the equality constraints.

VarsDeterminedException
public VarsDeterminedException(string message)

Description

The variables are determined by the equality constraints.

Parameter

message – The error message that explains the reason for the exception.

VarsDeterminedException
public VarsDeterminedException(string s, System.Exception exception)
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Description

The variables are determined by the equality constraints.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

VarsDeterminedException
VarsDeterminedException(System.Runtime.Serialization.SerializationInfo
info, System.Runtime.Serialization.StreamingContext context)

Description

The variables are determined by the equality constraints.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.

ZeroNormException Class

Summary

The computations cannot continue because the Euclidean norm of the column is equal to zero.

public class Imsl.Stat.ZeroNormException : IMSLException : ISerializable

Constructors

ZeroNormException
public ZeroNormException(int index)

Description

The computations cannot continue because the Euclidean norm of the column is equal to
zero.

Parameter

index – An int which specifies the column index for which the norm has been found
to be zero.
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ZeroNormException
public ZeroNormException()

Description

The computations cannot continue because the Euclidean norm of the column is equal to
zero.

ZeroNormException
public ZeroNormException(string message)

Description

The computations cannot continue because the Euclidean norm of the column is equal to
zero.

Parameter

message – The error message that explains the reason for the exception.

ZeroNormException
public ZeroNormException(string s, System.Exception exception)

Description

The computations cannot continue because the Euclidean norm of the column is equal to
zero.

Parameters

s – The error message that explains the reason for the exception.

exception – The exception that is the cause of the current exception. If the
innerException parameter is not a null reference, the current exception is raised in a
catch block that handles the inner exception.

ZeroNormException
ZeroNormException(System.Runtime.Serialization.SerializationInfo info,
System.Runtime.Serialization.StreamingContext context)

Description

The computations cannot continue because the Euclidean norm of the column is equal to
zero.

Parameters

info – The object that holds the serialized object data.

context – The contextual information about the source or destination.
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