Tecplot

Getting Results

With Tecplot’'s Add-on Developer’s Kit
Version 10 Release 3

Tecplot, Inc.
Bellevue, Washington
June 8, 2004

Copyright © 1988-2004 Tecplot, Inc. All rights reserved worldwide. This manual may not be
reproduced, transmitted, transcribed, stored in aretrieval system, or translated in any form, in
whole or in part, without the express written permission of Tecplot, Inc., 13920 Southeast East-
gate Way, Suite 220, Bellevue, Washington, 98005, U.SA.

This software and documentation are furnished under license for utilization and duplication only
according to the license terms. Documentation is provided for information only. It is subject to
change without notice. It should not be interpreted as a commitment by Tecplot, Inc. Tecplot
assumes no liability or responsibility for documentation errors or inaccuracies.

SOFTWARE COPYRIGHTS

Tecplot © 1988-2004 Tecplot, Inc. All rights reserved worldwide.

ENCSA Hierarchical Data Format (HDF) Software Library and Utilities © 1988-1998 The
Board of Trustees of the University of Illinois. All rights reserved. Contributors include National
Center for Supercomputing Applications (NCSA) at the University of Illinois, Fortner Software
(Windows and Mac), Unidata Program Center (netCDF), The Independent JPEG Group (JPEG),
Jean-loup Gailly and Mark Adler (gzip). Bmptopnm, Netpbm © 1992 David W. Sanderson.
Dlcompat © 2002 Jorge Acereda, additions and modifications by Peter O’ Gorman. Ppntopict ©
1990 Ken Yap.

TRADEMARKS

Tecplot, Preplot, Framer and Antec are registered trademarks or trademarks of Tecplot, Inc.
Encapsulated PostScript, FrameMaker, PageMaker, PostScript, Premier—Adobe Systems, Incor -
porated. Ghostscript—Aladdin Enterprises. Linotronic, Helvetica, Times—Allied Corporation.
LaserWriter, Mac OS X—Apple Computers, Incorporated. AutoCAD, DXF—Autodesk, | ncor po-
rated. Alpha, DEC, Digital—Compag Computer Cor poration. Elan License Manager is a trade-
mark of Elan Computer Group, Incorporated. LaserJet, HP-GL, HP-GL/2, PaintJet—Hewlett-
Packard Company. X-Designer— mperial Software Technology. Builder Xcessory— ntegrated
Computer Solutions, Incorporated. IBM, RS6000, PC/DOS— nternational Business Machines
Corporation. Bookman— TC Corporation. X Windows—Massachusetts | nstitute of Technol ogy.
MGI VideoWave—MGI Software Corporation. ActiveX, Excel, MSDOS, Microsoft, Visual Basic,
Visual C++, Visual J++, Visual Sudio, Windows, Windows Metafile—Microsoft Corporation.
HDF, NCSA—National Center for Supercomputing Applications. UNIX, OPEN LOOK—Novell,
Incorporated. Motif—Open Software Foundation, Incor porated. Gridgen—Pointwise, Incorpo-
rated. IRIS IRIX, OpenGL—Slicon Graphics, Incorporated. Open Windows, Solaris, Sun, Sun
Raster—Sun MicroSystems, Incorporated. All other product names mentioned herein are trade-
marks or registered trademarks of their respective owners.

NOTICE TO U.S. GOVERNMENT END-USERS

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraphs (a) through (d) of the Commercial Computer-Restricted Rights clause at FAR
52.227-19 when applicable, or in subparagraph (c)(1)(ii) of the Rightsin Technical Data and
Computer Software clause at DFARS 252.227-7013, and/or in similar or successor clausesin the
DOD or NASA FAR Supplement. Contractor/manufacturer is Tecplot, Inc., Post Office Box 3633,
Bellevue, WA 98009-3633.

Table of Contents

Table of Contents 1

Chapter 1 About Add-ons 1

Chapter 2 Creating Add-ons under Windows 3
Chapter 3 Creating Add-ons under UNIX 5
Chapter 4 Hello World! 9

Chapter 5 The Equate Add-on 11

Chapter 6 Extending the Equate Add-on 19
Chapter 7 Adding Help 23

Chapter 8 Creating a Data Converter 25
Chapter 9 Creating a Data Loader 35

Ch apter 10 Extending Interactive User Interface Capabilities 57
Chapter 11 Animating 61

Chapter 12 The Polynomial Integer Add-on 73

Chapter 13 The Smple Average Add-on 89

CHAPTER 1 About Add-ons

INTRODUCTION

This manual describes strategies for creating Tecplot add-ons. Add-ons are executable modules that extend
Tecplot's basic functionality. Add-ons are implemented as compiled function libraries, caled variously
“shared objects,” “shared libraries,” or “dynamic-link libraries’ (DLLs). Using the Tecplot application
programming interface you can create add-ons to generate plots, load data from files, manipulate or anayze
data, or perform abroad variety of specialized tasks. Because add-ons are shared objects, you do not need to
link them into Tecplot. You are not limited to using the compilers Tecplot uses, nor do you have to compile,
or recompile, large libraries of Tecplot function calls.

Different operating systems have different ways of creating and using shared libraries. Add-on Developer’s
Kit (ADK) provides utilities that mask most of these differences for related programs. All Windows or
UNIX systems will behave in a similar fashion. ADK tools will resolve the differences for you. All of the
examples of the source code shown in this manual are included in the Tecplot distribution and are found in
theadk/samples sub-directory below the Tecplot Home Directory. To read more about advanced topics,
see the Add-on Developer’s Kit User’s Manual and the Add-on Developer’s Kit On-line Reference. All are
included as Adobe PDF files with your Tecplot distribution or are available at www.tecplot.com/support/
tecplot_documentation.htm.

About Add-ons 1

About Add-ons

CHAPTER 2 Creating Add-ons under Windows

SETTING UP TO BulLD ADD-ONS UNDER WINDOWS

To set up to build add-ons, install Tecplot Version 10. Make sure the Tecplot Add-on Developers Kit option
was selected during installation. To verify that the Add-on Developer’s Kit was installed on your compuiter,
look in your Tecplot Home Directory for the ADK sub-directory. If the ADK sub-directory is not present, you
will need to re-install Tecplot Version 10.

If you plan on using Tecplot GUI Builder (TGB), make surethe following lineisinthe tecplot.addfile
in the Tecplot Home Directory:

$!LoadAddon "guibld"

Tecplot GUI Builder is discussed in detail in Section 2.3, as well as in the Tecplot Add-On Devel opers Kit
Users Manual.

CREATING AN ADD-ON WITH VISUAL C++

Tecplot Add-on Wizard is included in the Tecplot installation and is fully integrated with Visua C++
Version 5.0 or higher. To begin, select New from Visual C++'s File menu, then click on the Projectstab. For
the project type select “Tecplot 10 Add-on Wizard” and follow the prompts. Since Tecplot add-ons are
DLLs, Tecplot Add-on Wizard will automatically create a DLL workspace, set the proper link libraries,
include paths, and generate default source codefiles.

Note: FORTRAN under Windows is only supported if you are using Compaq Visua FORTRAN.

After running Tecplot Add-on Wizard, you must complete the following steps:
1. Select Settings from the Visual C++ Project menu.

2. Click on Debug.

3. Select General.

4. Set Executable for debug session to be tecplot.exe (including thefull path if necessary).
5. Set the working directory to Debug.

6. Set the program argumentsto be projectname . d11. Projectnameisthe base name of your DLL.

Creating Add-onsunder Windows 3

Compiling and debugging your add-on is now a matter of using the Devel oper’s Studio environment as you
would for any other DLL project.

NOTE: If you find that when you try and run your add-on, you instead run a pre-existing add-on with the
same name that existsin your path, try the following settings instead

1. Set the Working directory to empty;

2. Set the Program argumentsto be Debug/projectname.dll

See Chapter 6, “Running Tecplot with Add-ons (UNIX and Windows),” in the ADK User’s Manual for
detailed instructions on loading add-ons.

DIALOG CREATION WITH TECPLOT GUI BUILDER

Tecplot Add-on Developer’s Kit includes a graphical user interface (GUI) builder called Tecplot GUI
Builder (TGB). TGB is provided in the Tecplot distribution. The Tecplot ADK User’s Manual outlines its
use. When you run Tecplot Add-on Wizard from Developer Studio, a default set of TGB files are created.
This default code will display a blank dialog, which may be modal or modeless. These project settings are
made automatically by Tecplot Add-on Wizard. You will edit a TGB dialog layout in Tecplot using TGB
add-on, since TGB diaog layouts are stored as Tecplot layout files. Developer Studio is not involved in
editing or maintaining TGB dialog layouts.

4 Creating Add-onsunder Windows

CHAPTER 3 Creating Add-onsunder UNIX

SETTING UP TO BUILD ADD-ONS

To create Tecplot add-ons under Unix, you must set up a working directory where source code can be
created and edited. This directory will hereafter be called the Add-on Development Root Directory. You
may create any humber of add-onsin the Add-on Development Root Directory.

To set up for building add-ons do the following:

1. Install Tecplot if you have not done so aready. Make sure the Add-on Development Tools option was
selected during the installation process.

2. Create the Add-on Development Root Directory if you have not done so already. This can be anywhere
you choose.

3. Be sure that you have the TEC100HOME environment variable defined and assigned to the directory
where Tecplot wasinstalled.

4. Be sure your PATH environment variable includes the following:
$TEC100HOME /bin: $TEC100HOME/adk/bin

5. Create anew file called tecdev. add in the directory created in step 2 (i.e. your Add-on Development
Root Directory). Edit the file and add the following line:

#!MC 1000

6. (Optional) If you plan on using the Tecplot GUI builder, then add the following lineto the tecdev. add
filein your Add-on Development Root Directory:

$1LoadAddon " |TECHOME|/lib/libguibld"
7. Set the environment variable TECADDONDEVDIR to the path of the directory created in step 2.

8. Set the environment variable TECADDONDEVPLATFORM to one of the following:

hp7xx.11 linuxg23.24 linux.24 macx.101
hp7xx64.65 linuxi64.24 linux64.24 ibmx .43
sgix.65 sgix64.65 sun464.57 sun4 .57

From this point on, when you want to test the add-ons you are developing, use the -develop flag when
running Tecplot. Later when you want to make your add-on accessible to all who run Tecplot, just copy the
shared object library to the 1ib subdirectory below the Tecplot Home Directory and include the command:
$!1LoadAddOn" | TECHOME | /1ib/1ibMyAddOnName" in the tecplot.add file in the Tecplot Home
Directory.

Creating Add-onsunder UNIX 5

CREATING A NEW ADD-ON

1. Go to the Add-on Development Root Directory (i.e., the directory created in step 2 of Section , “ Setting
Up to Build Add-ons.”).

2. Type: CreateNewAddOn

Thiswill ask you a few questions about the add-on to be built, including whether or not you intend to use
the Tecplot GUI Builder. When this is finished, you will have a new sub-directory named
MyAddOnName, where MyAddOnName is the name that you supplied in step 2 while running
CreateNewAddOn. This subdirectory contains a set of file. These files can be compiled to create a
minimal add-on.

1. Edit the tecdev. add file located in the Add-on Development Root directory and add the following
linel $!1LoadAddon " |$TECADDONDEVDIR |/1ibMyAddOnName" where MyAddOnName is the
name you supplied in step 2 while running CreateNewAddOn.

For your add-on to communicate with Tecplot it must do the following:

® Make public an “initialization” function named InitTecAddon. When you run CreateNewAddon
this function is created automatically for you and is located in the filemain.c (or main.cpp). When
Tecplot starts up it scans the tecdev . add file, loads named shared object libraries and makes a call to
the InitTecAddon function. Theinitialization function typically includes acall to add a converter, add
aloader, register a curvefit, or add an item to the Tools menu, so the add-on can be accessed from the
Tecplot interface.

® Make callsto the TecUtil functions available from the ADK viathe 1ibtec shared object library. These
functions allow you to do awider range of tasks than can be done through the Tecplot interface itself.

® |f your add-on does not require a custom built GUI, you will, at this point, have a source file named
main.c, and perhaps a source file named engine.c. The latter file contains callback functions for
data loaders, data convertors, or curve-fits.

CREATING THE GRAPHICAL USER INTERFACE FOR YOUR ADD-ON

The Tecplot Add-on Developers Kit includes asimple GUI builder called Tecplot GUI Builder (TGB). You
are not restricted to this GUI builder. You may use a commercial GUI builder like Builder Xcessory or X-
Designer. Chapter 8 of this document outlines how to use the Tecplot GUI Builder. It is provided on the
Tecplot CD. When you run CreateNewAddon and choose to use the TGB, a starter set of TGB files are
created for you.

COMPILING THE ADD-ON

Using Runmake

If you used CreateNewAddon, compiling the add-on is straightforward. Go to the subdirectory where
your add-on source code is located and type Runmake . You will be prompted for the platform type and the
type of executableto create.

If you know the platform name and the build option ahead of time then you can run Runmake without the
questions. For example, to compile on an SGI machine under IRIX 6.5 and create a debug version use:

Runmake sgix.65 -debug

To make arelease version use: Runmake sgix.65 -release

6 Creating Add-onsunder UNI X

If al goes well with the compile, you will end up with a shared object library located in
. ./1ib/platfornvbuildtype. Running Tecplot with the -develop flag automatically directs it to look
for your library in this directory.

Note: If the Tecplot Home Directory and your Add-on Devel opment Directory are located in directories that
can be remotely mounted by other UNIX computers, then you can log on to those computers and use
Runmake asdescribed earlier. The resulting shared library will be stored in the appropriate subdirectory for
the computer platform.

Editing the CustomM ake File

The Runmake command used to build your add-on actually invokes the UNIX make program with a large
list of flags that customize the make process for your platform. Just prior to calling make, the Runmake
shell script checks to see if alocal file called customMake exists and is executable. If so, it runs the
CustomMake shell script in place and then runs make. This process allows you to add to or completely
replace any assignments made by Runmake.

For example, suppose you want to add an additional flag called -xg to the ce compile command. You
could do so by editing thelocal customMake shell script in the sub-directory of your add-on and adding:
CFLAGS="$CFLAGS -xg"

Thisreplaces CFLAGS (i.e. the flags used with the ce command) with its old contents plus the -xg flag.

The default CustomMake file created in your add-on directory when you run CreateNewAddOn
contains edit instructions including an explanation of the flags available for you to change.

Creating Add-onsunder UNIX 7

Creating Add-onsunder UNI X

CHAPTER 4 HedloWorld!

INTRODUCTION TO THE HELLO WORLD ADD-ON

Hello World, the Tecplot add-on you will create in this chapter, is an example of how an add-on performs
tasks or functions for you. Hello World will appear under Tecplot's Tools menu as “Hello World!”. When
selected, adialog displaying the text “Hello World!” will appear. To create this add-on you should havefirst
read Chapter 2 “Creating Add-ons under Windows,” or Chapter 3 “Creating Add-ons under UNIX ™ All of
the code presented in this chapter is platform independent, allowing you to work in either a UNIX or
Windows environment. All of the example source code shown in this manua is included in the Tecplot
distribution and is found in the adk/samples sub-directory below the Tecplot Home Directory. Hello
World uses source code files created by the CreateNewAddon script (UNIX), or Tecplot Add-on Wizard
(Windows). Our project name will be “hiwrld” and the add-on name will be “Hello World.”

When running CreateNewAddOn or Tecplot Add-on Wizard, answer the questions as follows:

« Project name (base name): hiwrld

* Add-on name: Hello World

« Company name: [Your Company Name]
« Type of Add-on Genera Purpose
 Language: C

* Use TGB to create a platform-independent GUI?: No
« Add amenu callback to the Tecplot "Tools" menu?: Yes
e Menu Text: Hello World!

The question “Use TGB to create a platform-independent GUI” option specifies that you will use Tecplot
GUI Builder in your add-on. After running the CreateNewAddon script or Tecplot Add-on Wizard you
should have the following files: ADDGLBL.h and main.c.You will have other files specific to your
platform, but only those above will be modified. Verify that you can compile your add-on project and load it
into Tecplot. For UNIX this is done by running the Runmake script. In Windows, click Build/Build
hiworld.dll. For detailed information on compiling refer to Chapter 2 “ Creating Add-ons under Windows,”
or Chapter 3 “Creating Add-ons under UNIX.” Once you have compiled Hello World you can run Tecplot
and select “Hello World!” from Tecplot’s Tools menu. Text iswritten to standard out (or the debug window
in Developer Studio) reading Menu function called. When finished, this will read “Hello World!” in a
dialog.

MODIFYING THE MENUCALLBACK() FUNCTION

Most add-ons contain a callback function named MenuCallback (). Thisis caled by Tecplot when the
user selects the add-ons registered menu option from the Tools menu. This callback function is registered by
the TecUtilMenuAddOption () function, whichisin InitTecAddon (). Thesewill be discussed

HelloWorld! 9

in detail later. Because the add-on dialog displays a different message than “Hello World!” it must be edited.
New or modified source code is displayed in the bulleted lines. If you are working along with this tutorial,
add the bulleted lines only. All TecUtil functions are explained in the ADK Reference Manual.

Inmain.c, edit theMenuCallBack () function asfollows:
static void STDCALL MenuCallback (void)

{
TecUtilLockStart (AddOnID) :

e TecUtilDialogMessageBox (“Hello World!”, MessageBox Information) ;
TecUtilLockFinish (AddOnID) ;

}

Hello World is now complete. Recompile and run Tecplot.

& Tecplot M= E ||
File Edt View Ass [ild ¢ Stle Dats Frame Workspace [Help
o]0 [— ek Macro Panel,
Animate 4
+ Create Multiple Frames -
. Advanced Guick Edit Tool L
Tecplot GUI Builder i
+ + —
+ + =
Reg‘r‘aw Fsle + + ?
¥ Auto Redraw - - el
Quick Edit . B
Tooks 3
AR Y + + —
2wl | - |l
BEEE] . .
A RENO |+ 5
23| v O = - -
S| =7 = . . -
i 2
+ +
ObjectDetals,
I Snap to Grid + + 7
I= | Sriap to Pamer . .
+ + g

Information

O

.

Hello World!

CHAPTER 5 TheEquate Add-on

INTRODUCTION TO THE EQUATE ADD-ON

Equate, the Tecplot add-on you will createin this chapter, isan example of how to query and set field datain
an add-on. It will appear on the Tools menu as Equate. This add-on multiplies each data point of the first
variable in the first zone by a value entered in a dialog text field. All of the examples of the source code
shown in this manual are included in the Tecplot distribution and are found in the adk/samples sub-
directory below the Tecplot home directory. Equate uses source code files created by the
CreateNewAddon script (UNIX), or Tecplot Add-on Wizard (Windows). Our project and add-on names

will be Equate.
When running CreateNewAddon or Tecplot Add-on Wizard answer the questions as follows:
 Project name (base name): Equate
* Add-on name; Equate
« Company hame: [Your Company Name]
¢ Typeof Add-on Genera Purpose
¢ Language: C

« Use TGB to create a platform-independent GUI?: Yes

« Add amenu callback to the Tecplot "Tools' menu?: Yes

e Menu Text: Equate

* Menu Callback Option: Launch amodeless dialog

< Diaogtitle: Equate
After running the CreateNewAddon script, or Tecplot Add-on Wizard you should have the following
gllbe;éLBL .h guicb.c guibld.c guidefs.c
GUIDEFS.h main.c gui.lay

You will have other files specific to your platform, but only those above will be modified. Verify that you
can compile your add-on project and load it into Tecplot. For UNIX thisis done by running the Runmake
script. In Windows, click on the Tool button. For detailed information on compiling refer to Chapter 2
Creating Add-ons under Windows or Chapter 3 Creating Add-ons under UNIX.

The Equate Add-on 11

CREATING THE DIALOG

12

Now create your main dialog. This will be displayed when Equate is selected from Tecplot’s Tools menu.
The dialog will be modeless with atext field, label, and button. When a user enters a numeric value in the
text field and clicks the button, Equate will multiply each data point of the first variable in the first zone by
that value. Before beginning, be sure that Tecplot GUI Builder (TGB) is available from Tecplot's Tools
menu. If TGB isnot available, do the following

For Windows:

In the Tecplot Home Directory edit thefile tecplot.add and add theline:
$!1LoadAddOn “guibld”

For UNIX:

Edit thefile tecdev.add inyour Add-on Development Root Directory and add the line:
$!1LoadAddOn “guibld”

To create the main dialog, perform the following steps:

1. Run Tecplot and load the gui.lay file for your project. Select Tecplot GUI Builder (TGB) from the Tecplot
Tools menu.

2. Resize the frame and edit the layout as follows:

Multiply By: | TF:

Compute

You can edit a control by double-clicking on it and editing as you would text.

NOTE: Although the text fields and buttons are referred to as controls (since they exist in a Tecplot lay-
out file), they are represented by Tecplot text field objects.

3. So that TGB will create meaningful variable names for the text field controls, change their propertiesin
Tecplot. Double-click on the text field “TF:,” then select Options.

Note: Do not ater the text string “ TF” Tecplot uses this string to identify this control as a Text
Field.

In the Macro Function text field, set VarName=MulNum. This will be the base name of the “Multiply By”
callback function which will be named MulNum_TF_D1 CB.TGB takes the base name and decorates it
with the dialog number, control type and CB (for callback).

4. Double-click on the Compute button, then select Options. Set VarName=Compute in the “Macro
Function” field. The Compute buttoncallback function will be named Compute BTN D1 CB. Double-
click on the “Multiply By” label, then select Options. Set VarName=MultiplyBy in the “Macro

The Equate Add-on

Function” field.. Callback functions are not generated for labels, but avariable name will be generated and

will be named MultiplyBy LBL_D1.

5. In TGB, thetitle of the dialog is specified in the Edit Current Frame dialog. Double-click on the dialog
frame and verify that the Frame Name has been set to “Equate”:

ID=1 MODE=MODELESS TITLE="Equate” OKCLOSEBUTTON=T HELPBUTTON=T

Multisly By:

x|
Erier T sl S
1F: =
Tt B Teeak e b Liocabion
C RaBe T Fded O Ples o | Hesdes
Lr\elrl'chmcrmlh - - | M
BosciCokor I ik | I~ & | Bestis
Coke BB | ok IO AT
Ford _Heke Marge [45 E
dngia e [

[Adach b Seeeiag i! Lira Sacing |1 E

I Al Fi
|.5|b¢ 1:3-': Shomin Al Liks™ Framaz
Moo Function [Wablaresklulum TygesT eofieid

I:Ip&m.l ||;\g“ Hela
Ooe | Coreel | He |

6. You can now build the source for this layout. From the TGB dialog click Go Build. If you wish to

preview what your dialog will look like when run, click Preview Layout from TGB.

7. Renamethefileguicb. tmp to be guicb. ¢, replacing the origina guicb . ¢ then compile the source

code.

Multiply By:

TF:

Compute

The Equate Add-on

Edit Current Frame E

Frame Dimenzions [Paper Ruler Unitz)
Size and Position
Left Side [4.4 Width [4.731057
Tap Side [0.7 Height [1.576367

V| Shaw Border Thickness [%] 0.1
™ Show Header [Ealan IGreen 'l
¥ Show Backagound Caolor lm

FrameﬂamelDDE=MDDELESS TITLE="Equate"

Cloge Help
I |

13

GUI SouRcke CODE

Now we will examine the source code files generated by TGB.

¢ Files guidefs.c, GUIDEFS.h: Containthevariable namesof al of the controls added to the
dialog. TGB has taken the variable names specified in the Macro Function Command field and
decorated them as follows:

int DialoglManager = BADDIALOGID;
int MulNum TF D1 = BADDIALOGID;
int Compute BTN D1 = BADDIALOGID;
int MultiplyBy LBL D1 = BADDIALOGID;

« TF istext field and Dn is the dialog number. Since there is only one dialog box, nis 1. For example,
the name MulNum_ TF_D1 can be decoded as “ This variable represents the MulNum Text Field
in Diadog 1.” The variables are initialized to BADDIALOGID to ensure that they cannot be passed as
parametersto any TecGUI library function until the dialog has actually been created. At that time they
will be assigned a valid identification.

* Note: Never edit these files directly. TGB will generate them every time you click Go Build.
¢ File guibld.c: Containsthe code used to build the dialogs.

« Note: Never edit thisfile directly. TGB will generate this file every time you click Go Build, so any
changes you make will be overwritten. Also, thisfile is never included directly in the project. Instead,
the text of this source code file isincluded directly in guicb.c with a #include 'guibld.c'
preprocessor statement at the end of guicb. c.

e File guicb.tmp: Contains all of the callbacks for the dialog controls. A callback function is a
function you define which is called by Tecplot when an event occurs for a control. For example, a
button control will have a callback function for the button pressed event.

« Initialy, TGB will generate empty callbacks, but instead of writing them to guicb. c, it will write
them to a file named guicb. tmp. The reason for this is that TGB does not want to overwrite any
code that you may have added to guicb. c. Thus, whenever you add new controls, you must cut-and-
paste the new callback functions in guicb. tmp into guicb.c. Note that in Step 7 we copied
guicb. tmp to guicb.c. Thisis what you want to do when you first start the project since at that
time thereis no custom codein guicb.c.

To see the new diaog:
1. Compile the add-on and run Tecplot.

2. Select Equate from the Tools menu.

SETTING UP STATE VARIABLES AND INITIALIZING THE DIALOG FIELDS

When the dialog is first displayed, we need to be sure that the MulNum text field has a reasonable default
value. To avoid using aglobal variable for MulNum, the value will be read from the text field and passed to
a function called compute (). The text field will then be initialized in the DialoglInit CB()

function.

Notethefollowing linein guicb.c:

/* This is a string because it is put in a dialog text field */
#define DEFAULT MULNUM “2”

14 The Equate Add-on

Find the following segment of code in guicb. ¢ and note the line beginning with TecGUI TextField...

static void DialoglInit CB(void)

{

TecUtilLockStart (AddOnID) ;

/*<<< Add init code (if necessary) here>>>*/
TecGUITextFieldSetString (MulNum TF D1, DEFAULT MULNUM) ;
TecUtilLockFinish (AddOnID) ;

}

We have defined the default value to be a string, since that is what TecGUITextFieldSetString ()

expects. The Compute () function will be called when you click Compute. The function will be prototyped
asfollows. Note the function call to Compute () inguicb. c. Thisfunction will be written below. Before
caling this function, check that adata set isavailable. If thereis, thenitisimplied that at least one zone and
one variable exist.

Edit guicb.c asfollows:
static void Compute BTN D1 CB(void)
{

char *strMulNum = NULL;

TecUtilLockStart (AddOnID) ;
strMulNum = TecGUITextFieldGetString(MulNum TF D1);

if (TecUtilDataSetIsAvailable())
{

Compute (atof (strMulNum)) ;

else
TecUtilDialogErrMsg (“No data set available.”);

TecUtilStringDealloc (&strMulNum) ;

TecUtilLockFinish (AddOnID) ;

No error checking is done on the input string. As an exercise, use TecGUITextFieldGetDouble,
TecGUITextFieldSetDouble, and TecGUITextFieldValidateDouble to do error checking
for you.

WRITING THE COMPUTE() FUNCTION

Thefinal task isto writethe compute () function. Thiswill multiply each data point of the first variablein
the first zone by the input parameter, then send a message to Tecplot that the data set has changed. The
recommended way for an add-on to get and set field datais with FieldData_ pa handles. See the ADK
User’'s Manual for a complete discussion of getting and setting data values within Tecplot. Examine
main.c and note the following function:

void Compute (double MulNum)
{

LgIndex t IMax;

The Equate Add-on 15

LgIndex t JMax;
LgIndex t KMax;
LgIndex t i;
LgIndex t MaxIndex;
FieldData pa FD;
double Value;

Set pa set;

TecUtilLockStart (AddOnID) ;

/* Get the number of data points */
TecUtilZoneGetInfo (1, /* Zone */
&IMax,
&JMax,
&KMax,
NULL, /* XVar */
NULL, /* YVar */
NULL, /* ZVar */
NULL, /* NMap */
NULL, /* UVar */
NULL, /* VVar */
NULL, /* Wvar */
NULL, /* BVar */
NULL, /* CVar */
NULL); /* SVar */

MaxIndex = IMax * JMax * KMax;
FD = TecUtilDataValueGetRef (1,1);
for (i = 1; i <= MaxIndex; i++)

{
/* Get the value */
Value = TecUtilDataValueGetByRef (FD, 1) ;

/* Change it */
Value *= MulNum;

/* And set it back */
TecUtilDataValueSetByRef (FD, i, Value) ;

}

/* Inform Tecplot that we’ve changed the data */
set = TecUtilSetAlloc (FALSE) ;
TecUtilSetAddMember (set,1l,FALSE); /* Zone 1 */
TecUtilStateChanged (StateChange VarsAltered,
(ArbParam t)set);
TecUtilSetDealloc (&set) ;

TecUtilLockFinish (AddOnID) ;

Equate is now complete. Recompile and load it into Tecplot. Note that this example add-on is only valid for
ordered data as we computed MaxIndex by simply multiplying the dimensions together.

16 The Equate Add-on

EXERCISES

1. Currently, there is no error checking done on the value entered in the text field. You could enter
“ABCDEFG” and atof () would convert it into 0.0. This could be fixed by adding error checking to the
button callback. Use TecGUITextFieldValidateDouble and TecGUITextFieldGetDouble
for better error checking.

2. Add amulti-selection list box which allows you to select one or more zones from a set.
3. Add amulti-selection list box to select one or more variables from a set.

4. This add-on assumes variable 1 and Zone 1 are “Enabled,” which may not be the case. Add error
checking to make sure Zone 1 is enabled (TecUtilZoneIsEnabled) and variable 1 is enabled
(TecUtilVarIsEnabled).

The Equate Add-on 17

18

The Equate Add-on

CHAPTER 6 Extending the Equate Add-on

GETTING STARTED

Now we will examine code that allows Equate’'s compute function to be run from a macro command. All of
the examples of the source code shown in this manual are included in the Tecplot distribution. They may be
found in: TECLOOHOME/ADK/Samples

EDITING EQUATE

The first step will be to decide what information is required by the add-on. Equate only requires that the
value is sent to the Compute () function. To write out the macro command, we will use the
TecUtilMacroRecordAddOnCommand () function. All TecUtil functions are defined in the ADK
Reference Manual.

Note the Compute BTN D1 CB () functioninguicb.c

static void Compute BTN D1 CB(void)

{

char *strMulNum = NULL;

TecUtilLockStart (AddOnID) ;
strMulNum = TecGUITextFieldGetString (MulNum TF D1);

if (TecUtilDataSetIsAvailable())
{
Compute (atof (strMulNum)) ;
if (TecUtilMacroIsRecordingActive())
TecUtilMacroRecordAddOnCommand (“equate”, strMulNum) ;

}

else
TecUtilDialogErrMsg (“No data set available.”);

TecUtilStringDealloc (&strMulNum) ;

TecUtilLockFinish (AddOnID) ;

We check to see if a macro is being recorded before we write out the macro command. When
TecUtilMacroRecordAddOnCommand () iscalled, it will add alineto the macro file that will appear
asfollows:

$ | ADDONCOMMAND

ADDONID='equate’

Extending the Equate Add-on 19

COMMAND="2"

ADDONTID tells Tecplot which add-on to send the command to, and COMMAND isthe valuein thetext field of
Equate’s dialog. Now that a macro command is being written out, write a function to decode it. When a
macro isrunning, Tecplot will send the information following COMMAND to the add-on. In this case, the only
item that COMMAND contains is a number. Tecplot sends all the information following COMMAND as a string.

Examine the following functioninmain. c:

Boolean t STDCALL ProcessEquateCommand(char *CommandString,
char **ErrMsg)

Boolean t IsOk;
TecUtilLockStart (AddOnID) ;

IsOk = TecUtilDataSetIsAvailable();
if (IsOk)

{
}

else

{

Compute (atof (CommandString)) ;

*ErrMsg = TecUtilStringAlloc (2000, “Error message”) ;
strcpy (*ErrMsg, “No data set available.”);

}

TecUtilLockFinish (AddOnID) ;

return IsOk;

Functions that process macro commands may have any name you choose, however, they must have the
parameters shown above. This function mirrors, to a certain extent, the Compute BTN D1 _CB()
function in guicb.c. There is no error checking of the value of CommandString. Thisis left as an
exercise. In order to process macros, you must register a callback function. Note that the second parameter
of TecUtilMacroAddCommandCallback () is the same as the name of our macro processing
function.

In main.c note the registration of the ProcessEquateCommand () macro command callback from
within the add-on initialization code:

EXPORTFROMADDON void STDCALL InitTecAddOn (void)

{

TecUtilLockOn () ;

AddOnID = TecUtilAddOnRegister (
100,
ADDON NAME,
“V”ADDON VERSION” (“TecVersionId”) “ADDON DATE,
“Joe Coder”) ;

if (TecUtilGetTecplotVersion() < MinTecplotVersionAllowed)

Extending the Equate Add-on

{

char buffer[256];
sprintf (buffer, “Add-on \”"%s\” requires Tecplot ™
“version %s or greater.”,
ADDON NAME, TecVersionId);
TecUtilDialogErrMsg (buffer) ;

else
{

InitTGB() ;

TecUtilMenuAddOption (“Tools”,

“Equate” ,
AY E I ,
MenuCB) ;
TecUtilMacroAddCommandCallback (“equate”, ProcessEquateCommand) ;
}
TecUtilLockOff () ;

}

Equate is now complete. Compile and run your add-on. Try recording and playing back various macros to
verify that the new functions you have added work properly.

Extending the Equate Add-on 21

22

Extending the Equate Add-on

CHAPTER 7 Adding Help

INTRODUCTION

Once your add-on is complete, you will find that there are many details and instructions you would like to
make available to users. Online Help is an effective way to include necessary details and instructions. It is
the best way to ensure that needed information can be easily accessed from your add-on.

Note: The Help mechanism described in this chapter requires that you have a Web browser available on
your platform.

CREATING HELP

Call TecUtilHelp to launch a help file. Help can be called anywhere within your add-on, although the
typical procedure is to start from a dialog's HelpButton callback. To add help to the Equate add-on,
create asimple HTML document to serve as your help file, naming it equate . html.

Inguicb.c, notethecall to launchthe helpin DialoglHelpButton CB():

static void DialoglHelpButton CB(void)
TecUtilLockStart (AddOnID) ;
TecUtilHelp (“equate.html”, FALSE, 0) ;
TecUtilLockFinish (AddOnID) ;

}

Place equate.html in the help sub-directory below the Tecplot Home Directory, then recompile and
reload your add-on. When you click Help on the Equate dialog, or press F1, equate.html will be
launched in the default browser.

Adding Help 23

24

Adding Help

CHAPTER 8 Creating a Data Converter

CONVERTERS VERSUS L OADERS

Data can be imported into Tecplot using converter or loader add-ons. A converter is used when simple
proprietary data files need to be read into Tecplot and it is not necessary to use complex options to decide
which portions of the data should be loaded. Converters are simple to create but not as versatile as loaders.
A loader displays its own custom dialog for the user to enter the parameters needed to load the data: file
name, skip values, and so forth. With converters, Tecplot controls the user interface used to prompt the user

for the names of the filesto load.

How do Converterswork in Tecplot?

A data converter is a special type of add-on which can read data in a custom file format and import it into
Tecplot. It does this by reading the data and writing out a temporary binary data file. Tecplot loads this
temporary file and then discardsit. Tecplot queries the user for afile name, then passesit to the converter. If
you need to query users for information other than file names, you must use a dataloader. (Dataloaders are
discussed in the following chapter.) Given the file name, the procedure used by a converter to import that
data is similar to creating a Tecplot binary file using the TecI0 functions. (See the Tecplot Reference

Manual for more information on using the Tec 10 library.)

INTRODUCTION TO THE CONVERTER ADD-ON

Converter, the add-on created in this tutorial, is an example of how to load a comma- or space-delimited list
of values into Tecplot. Converter will appear under the Import option of Tecplot's File menu. All of the
examples of the source code shown in this manual are included in the Tecplot distribution and are found in
the adk/samples sub-directory below the Tecplot home directory. Converter uses source code files
created by the CreateNewAddon script (UNIX), or Tecplot Add-on Wizard (Windows). Our project name

will be “Converter” and the add-on name will be “Simple Spreadsheet Converter.”

When running CreateNewAddon or the Tecplot Add-on Wizard answer the questions as follows:

® Project name (base name) Converter

® Add-on name: Simple Spreadsheet Converter
® Company Name: [Your company name]

® Type of add-on: Data Converter

® | anguage: C

® Use TGB to create a platform-independent GUI?: No

® Add amenu callback to the Tecplot?: No

After running CreateNewAddon or Tecplot Add-on Wizard you should have the following files:
engine.c

Creating a Data Converter

25

ENGINE.h
main.c
ADDGLBL.h

There will be other files specific to your platform, however, we will only be dealing with those above.
Verify that the add-on will compile and that it can be loaded into Tecplot. If any problems are encountered,
refer to Chapter 2 Creating Add-ons under Windows or Chapter 3 Creating Add-ons under UNIX.

The file ADDGLBL. h contains information specific to the add-on, such as its name, version number, and
date. ThefilesENGINE.h and engine.c contain the main converter function. engine. c currently has
a short message saying that the converter is under construction. Throughout this tutorial, code will be added
to engine.c so when Tecplot calsthe ConverterCallback () functionit will perform of loading the
file. The file main.c contains a function called InitTecAddon (). This registers the add-on with
Tecplot. Note that within this function there are other function calls which tell Tecplot the name of the add-
on and state that it is a converter. The InitTecAddon () function is called by Tecplot exactly when the
add-on isfirst loaded, and is not called again.

MODIFYING THE CONVERTERCALLBACK () FUNCTION

26

When Converter is loaded by Tecplot, an option called Simple Spreadsheet Converter will appear in the
Import menu of Tecplot's File menu. When Converter is launched, Tecplot will ask for afile to convert.
This is the file name that is passed to the ConverterCallback () function. Tecplot will also create a
unique temporary file name and passthat to ConverterCallback () aswell.

In ConverterCallback () wearerequired to:

® Openthefile DataFName.

® Convert the data and create a Tecplot binary datafile.

® Closethefile DataFName.

® Inform Tecplot if there were any errors.

Note how the ConverterCallback () function satisfies these requirements:
Boolean t STDCALL ConverterCallback(char *DataFName,

char *TempBinFName,
char **MessageString)

Boolean t IsOk = TRUE;
FILE *f;

TecUtilLockStart (AddOnID) ;

/* If there is no error, remember to free MessageString. */
*MessageString = TecUtilStringAlloc (1000, ”MessageString for CNVSS”) ;

/* Try to open the file. */
f = fopen (DataFName,”rb”) ;

/* Make sure the file was opened. */
if (!£f)
{
strcpy (*MessageString, “Cannot open input file.”);
IsOk = FALSE;

}

Creating a Data Converter

/* Do the conversion. */
if (IsOk)
IsOk = DoConversion (f, TempBinFName, MessageString) ;

/* Close the file. */
fclose(f);

/* If there was no errors, deallocate MessageString. */
if (IsOk)
TecUtilStringDealloc (MessageString) ;

TecUtilLockFinish (AddOnID) ;
return IsOk;

This function does the following:

® Creates an error message.* MessageString is allocated here because the DoConversion ()
function (which will be explained later) may alter the error message that is reported.

® Attempts to open the file. If the file cannot be opened, it sets Isok to FALSE, and resets the
*MessageString to reflect the fact that the file could not be opened.

® |f the file was opened, it converts it. The task of conversion is handed off to the DoConversion ()
function.

® Someclean up is performed, such as closing the file, de-allocating *MessageString if there were no
errors, and returning IsOk. If IsOk is FALSE at the end of the function, there was an error. Tecplot will
usethe string in *MessageString to display an error message.

WRITING THE DOCONVERSION() FUNCTION

Now that the file is open, we want to perform the conversion. In ConverterCallback () the job of
performing the conversion is passed to the DoConversion()function. DoConversion() is
responsible for parsing the file to be converted and sending specific information to the TecUtil functions
which teke care of the conversion. A discussion of the TecUtil functions is available in the ADK
Reference Manual. In writing the DoConversion () function we are going to make some assumptions
about the format of the incoming file: that the variables are at the top of the file, contained in quotes, and
separated by commas or spaces; that the data follows the variables and is separated by commas or spaces.

An example of such afile would be:
\\Var 1II \\var 2" \\var 3"
1.23, 4.4, 3.24

2.45, 3.56, 5.2

3.2, 2.15, 7.56

The basic form of aconversion functionis:

® Get variable names from the file into a comma-separated string.

® Cdl TecUtilTecIni () toinitialize the temporary file.

® Cdl TecUtilTecZne () to add azone.

® Get data points into an array.

® Cdl TecUtilTecDat () toadd the data pointsto the temporary file.

Creating a Data Converter 27

® Cal TecUtilTecEnd () toclosethetemporary file.

There are other things that our conversion function will do, however, the steps listed above are the minimum
required. There are two functions used for parsing the income file. These are Getvars() and
get token().GetVars () takestwo parameters: aFILE* and a StringList pa. Be surethat you
understand the StringList pa datatype before continuing. For adiscussion of StringList pa see
the ADK User’s Manual. GetVvars () will parse the text file for the variable names and place them in the
string list. get token () takes a FILE* and will parse a text file for items which are separated by
commas or spaces. There is no checking to make sure that the item isavalid number. get _token () will
update aglobal variable called _token, whichisused in DoConversion ():

static Boolean t DoConversion (FILE *f,
char *TempFName,
char **MessageString)

Boolean t IsOk = TRUE;

StringlList pa VarList = TecUtilStringListAlloc(); /* Variable list. */
int 1i;

int NumValues;

int NumVars;

int IMax;

/* First, we need to read all of the variables. */
GetVars (£, VarList) ;

/* Make sure there is at least one variable. */
if (IsOk && TecUtilStringListGetCount (VarList) < 1)

{

strcpy (*MessageString,”No variables defined.”);
IsOk = FALSE;

}

if (IsOk)

{
/* Debug and VIsDouble are flags used by TecUtilTecIni (). */
int Debug = 0;
int VIsDouble = 1;

/* Set JMax and KMax to 1 because we are creating an. */
/* I-ordered data set. */

int JMax=1,KMax=1;
char VarNames [5000] ;
char *s;

NumValues = 0;

/* VarList was filled by the function GetVars. */
NumVars = TecUtilStringListGetCount (VarList);

/* Count the number of data points. */
while (get token(f))

NumValues++;

}
/*

Creating a Data Converter

* Get token() changed where the file pointer is pointing, so
* we must rewind to the start of the data.

*/

fsetpos (£, & DataStartPos) ;

/* Compute the number of data points. */
IMax = NumValues/NumVars;

/* FillVarNames with the variable names in VarList. */
strcpy (VarNames, ””) ;
for (i=1; i<=NumVars && IsOk; i++)
{

s = TecUtilStringListGetString (VarList,i);

strcat (VarNames, s) ;

if (i<NumVars)

strcat (VarNames,”,”) ;
TecUtilStringDealloc (&s) ;

/*
* Use the TecUtilTecIni() function to initialize the TempFName
* file and fill it with the data set title and the variable name.
*/
if (TecUtilTecIni (“ConvertedDataset”, VarNames,
TempFName, ” .” ,&Debug, &VIsDouble) != 0)

strcpy (*MessageString, ”Could not create data set.”);
IsOk = FALSE;

}
/*

* Use TecUtilTecZne to add the first zone.
* In this case, it is the only zone.

*/

if (IsOk && TecUtilTecZne(“Zone 1”7,
&IMax, &JMax, &KMax,
“POINT” ,NULL) != 0)

{

strcpy (*MessageString, ”Could not add zone.”);
IsOk = FALSE;

}

/* Now add the data. */
if (IsOk)
{
LgIndex t PointIndex = 1;
int Skip = 0;

/* Allocate space to temporarily store the values. */
double *LineValues = (double*) calloc (NumValues,sizeof (double));

/* Get the values into the array LineValues. */
for (i=0; i<NumValues; i++)
{
get token(f);
LineValues[i] = atof(token);

}

Creating a Data Converter

29

/*
* Use the function TecUtilTecDat() to £ill the
* temporary file with the values stored in the LineValues.
*/
if (TecUtilTecDat (&NumValues, (void*)LineValues, &VIsDouble) != 0)

{

strcpy (*MessageString, ”Error loading data.”);
IsOk = FALSE;

}

/* Free LineValues now that we are done using it. */
free (LineValues) ;

}

/* Calling TecUtilTecEnd() closes the temporary file. */
if (TecUtilTecEnd() != 0)

{

IsOk = FALSE;
strcpy (*MessageString, “Error closing temporary file, “
“could not create data set.”);

}

TecUtilStringListDealloc (&VarList) ;
return IsOk;

PARSING THE CODE

A discussion of the parsing of theincoming fileis not in the scope of thistutorial. However the parsing code
has been included for completness in the sections below.

THE GET_TOKEN() FUNCTION

The get_token() parses the file fetching basic tokens. Here is the function from engine.c:

[**
*/
#define MAX TOKEN LEN 5000
static char token[MAX TOKEN LEN]; /* Global buffer for tokens. */

/**
* Get the next token.
*
* @param £
* Open file handle. The file must be open for binary reading.
* @return
* TRUE if more a token was fetched, FALSE otherwise.
*/
static Boolean t get token(FILE *f)

int index = 0;
char c;

30 Creating a Data Converter

Boolean t StopRightQuote;

/* Skip white space. */

while (fread(&c,sizeof(char),1,f
|

(¢ == ¥ || c == ','
{

/* Keep going. */

n
R

R

&

)
c \t’ || e == *\n’ || ¢ == "\r"))

if (!feof (£f))

/* Now we’re sitting on a non-white space character. */
StopRightQuote = (¢ == ‘7’);
if (StopRightQuote)

_token[index++] = c;
fread(&c,sizeof (char),1,f);

do

if (index == MAX TOKEN LEN-1)
break; /* Lines shouldn’t be longer than 5,000 characters. */

if (feof(£f))
break;

if (StopRightQuote)
if (c - \III)

_token[index++] = c;
break;

}
}

else

/* Note that a space or comma may terminate the token. */
if (e== " || e==","]| e=="\t’ || ¢ == "\n’ || ¢ == *\r’)
break;
}

_token[index++] = c;
fread(&c,sizeof (char),1,f);
} while(1);

}
_token[index] = *\0’;

return (strlen(token)) > 0;

}

Creating a Data Converter 31

THE GETVARS() FUNCTION

32

This function reads a line of comma- or space-separated variables from the top of the file to be imported.
The variables may optionally be enclosed in double quotes.

/**
*/
static fpos t DataStartPos;
/**
* Reads a line of comman or space separated variables from the
* top of the file to be imported. The variables may optionally
* be enclosed in double quotes.
*
* @param £
* Open file handle. The file must be open for binary reading.
* @return
* TRUE if more a token was fetched, FALSE otherwise.
*/
static void GetVars (FILE *f,
StringlList pa sl)
char c;

char buffer[5000];
char *Line = buffer;
char Var[100];

int Index = 0;

char Delimiter = ' ‘;

/* Read up to the first new line. */
do
{
if (fread(&c,sizeof (char),1l,f) < 1)
break;

if (¢ != ‘\r’ && c !=
buffer[Index++] = c;
else
break;
} while (1);

‘\n’ && c != ‘\0’)

buffer[Index] = ‘\0’;

/* Now get the variable names. */
while (*Line)

Index = 0;
if (*Line == ‘”’)
/* Skip to next double quote. */
Line++;
while (*Line && *Line != '7’)
Var [Index++] = *Line++;
else
{

Creating a Data Converter

/* Read to the next delimiter. */
while (*Line && *Line != Delimiter)
Var [Index++] = *Line++;

Var [Index] = ‘\0’;

TecUtilStringListAppendString(sl,Var) ;

/* Skip to the next non-delimiter char. */

while (*Line && *Line != Delimiter)
Line++;

fgetpos (£, & DataStartPos);

/* Skip to next non-delimiter char. */

while (*Line && (*Line == Delimiter || *Line == ‘ ‘'))
Line++;

Converter is now complete. Recompile and load it into Tecplot.

Creating a Data Converter

33

34

Creating a Data Converter

CHAPTER 9 Creating a Data L oader

L OADERS VERSUS CONVERTERS

Data can be imported into Tecplot using loader or converter add-ons. A loader must display a dialog for the user to
enter the parameters needed to load the data; file name, skip values, and so forth. A converter is used when simple
proprietary data files need to be read into Tecplot and it is not necessary to use complex options to decide which
portions of the data should be |oaded.

How do add-on loaderswork in Tecplot?

A data loader is a specia type of add-on which can load data into Tecplot in many customized ways. Data can come
from data files, but this is not a requirement. Tecplot provides loaders for several popular file formats, including
PLOT3D and Gridgen. In Tecplot, al data loaders appear under the Import option of the File menu. Data loaders
usually have custom dialogs for collecting loading parameters.

How does an add-on identify itself asa data loader ?

An add-on informs Tecplot that it is a data loader by:

® Registering as adata loader by calling the TecUtilImportAddLoader () function. Thisis called from
the InitTecAddon functioninmain.c.

® Exporting a callback function called by Tecplot when you select the Import option from the File menu. (The
interface callback.) This usually displays adialog to collect loading parameters. After collecting the parame-
ters the add-on will call the loader function to load the data.

® Exporting acallback function which is called by Tecplot to load the data. (The loader callback.)
After its been registered, the loader add-on waits for:

® |t to be selected from the Import option.

® Tecplot to process the $! READDATASET macro command.

When selected, Tecplot cals the registered interface callback. If processing the $!READDATASET command,
Tecplot calls the loader callback. (In this case the add-on will not display adialog.)

INTRODUCTION TO THE LOADTXT ADD-ON

In this chapter you will learn methods for structuring your C add-on source code to improve readability and
maintenance. After completion you will have the skills needed to write a data loader for your own file formats.

LoadTxt will do the following:

® Openatextfile such as“mydata. txt.”

Creating a Data L cader 35

® Read thefirst line of text file for variables. Each variable will be separated by one or more spaces or tabs, as

below:
Time Pressure Temperature
0 34.5 32.0
1 33.4 31.4
2 33.0 31.0
3 31.0 29.4

® Read the subsequent lines. Each will be alist of values for the nth data point, where n is the number of addi-
tional lines. Values must be separated by one or more spaces or tabs.

® Create adataset in Tecplot with the data from the file.

Since LoadTxt is a data loader, we will create a dialog where the user may enter the skip value and the file name.
LoadTxt will collect this information and use it when reading data into Tecplot. The skip value n will be used to read
every nth data point. We will also implement amacro interface for the $ | READDATASET command.

CREATING LOADTXT

LoadTxt, the Tecplot add-on you will build, is a basic data loader. It will appear under the Import option of Tecplot's
File menu as Delimited Text Loader. All of the examples of the source code shown in this manual are included in the
Tecplot distribution and are found in the adk/samples sub-directory below the Tecplot home directory. LoadTxt
uses source code files created by the CreateNewAddon script (UNIX), or Tecplot Add-on Wizard (Windows). Our
project and add-on names will be LoadTxt.

When running CreateNewAddon or Tecplot Add-on Wizard use the following answers:

® Project name (base name) LoadTxt

® Add-on name: LoadTxt

® Company Name: [Your company name]
® Typeof add-on: Data L oader

® Language: C

® Use TGB to create a platform-independent GUI?: No

® Add amenu callback to the Tecplot?: No

® DatalLoader Override: No

After running the CreateNewAddon script or Tecplot Add-on Wizard you should have the following files:
engine.c guibld.c guicb.cguidefs.c
main.c ADDGLBL.h GUIDEFS.hengine.hgui.lay

You will aso have other files specific to your platform, but only those above will be modified. Their purpose will be
explained as we proceed. At this point, verify that you can compile your project and load it into Tecplot. If not, please
see Chapter 2 “ Creating Add-ons under Windows,” or Chapter 3 “Creating Add-ons under UNIX.”

REGISTERING CALLBACKS

Two function prototypes are generated for you in ENGINE. h:

extern Boolean t STDCALL LoaderCallback(StringList pa params) ;
extern void STDCALL LoaderSelectedCallback (void) ;

36 Creating a Data L cader

LoaderCallback () will be caled when the $! READDATASET macro command is processed. The variable
Instructions isastring list which will contain the loading instructions. LoaderSelectedCallback () will
be called only when the Import option is selected from the File menu. Its job will be to display a dialog and collect
loading parameters. If you' re not familiar with string lists, refer to the ADK User's Manual before proceeding. In order
to understand the loader callback function, it isimportant to understand what string lists are and how they work.

The $IREADATASET Interface

Now is a good time to decide what commands can be passed to the loader with the $! READDATASET macro
command. The text loader will use Tecplot standard syntax so that it integrates better with Tecplot’s ability to make
paths relative to alayout file if the $$READDATASET command is part of alayout.

LoadTxt instructions will have three name/value pair commands:

Name Example Value Required Default Value
STANDARDSYNTAX “1.0" Yes N/A
FILENAME_TOLOAD “MyFile.txt” Yes N/A
SKIP “3” No “1"

With the above command set we can use the following command in a Tecplot macro:
$ IREADDATSET '” STANDARDSYNTAX” “1.0” "FILENAME TOLOAD" "MyFile.txt" "SKIP" "3"!'
DATASETREADER = "LoadTxt"

Thistells the loader to read MyFile. txt with askip value of 3. Note the connection between the string list passed
to the LoaderCallback () function and the parameters we use in the macro command: each quoted string in the
macro command is passed as a string in the string list. Tecplot calls the LoaderCallback () function with string
list Instructions. The string list Instructions contains six strings. “STANDARDSYNTAX”, “1.0”,

“FILENAME TOLOAD”, “MyFile.txt”, “SKIP” and “3”. The main task of the callback function will be to
examine each string in the list and determine what the command is. Once the commands are determined, the loader
function will call the DoLoadDelimitedText () function to load the file. We will define this by adding the
following line to ADDGLBL. h:

Boolean t DoLoadDelimitedText (const char *FileName, int Skip);

Two functions are used because we need away to load afile from the dialog interface. The OK button callback in the
dialog interface, displayed when the Import option is selected from the File menu, will cal
DoLoadDelimitedText () along with the FileName and Skip parameters from the dialog. Alternatively, the
OK button callback could call LoaderCallback function directly. In that case you would have to create a
StringList_pa object to pass to the callback function. Before the dialog is shown check to see if a data set currently
exists in Tecplot. If so, then ask the user if they want to overwrite it. If the answer is “No,” skip the process. At this
point we can also stub out the two loader functions and register our loader callbacks.

The LoaderSelectedCallback() isinengine.c aslooksfollows:
void STDCALL LoaderSelectedCallback (void)

{

Boolean t OkToLoad = TRUE;
TecUtilLockStart (AddOnID) ;

if (TecUtilDataSetIsAvailable())

Creating a Data L cader 37

OkToLoad = TecUtilDialogMessageBox(“The current data set will ™
“be replaced. Continue?”,
MessageBox YesNo) ;

if (OkToLoad)

{

BuildDialogl (MAINDIALOGID) ;
TecGUIDialogLaunch (DialoglManager) ;

}

TecUtilLockFinish (AddOnID) ;

}

CREATING THE DIALOG

Now create the dialog which will be displayed when users select the Import option from the File menu.

The dialog will be modal and have two fields, one each for the file name and skip value. We will also add a Browse
button next to the file name field. Since we are using Tecplot GUI Builder (TGB), the dialog template is the Tecplot
layout filegui. lay.

To do this, perform the steps below.

1. Loadgui.lay into Tecplot, select Tecplot GUI Builder from the Tools menu, then modify the layout to look as
follows:

Skip: | TF:

File: | TF:

We have added two labels, two text fields, and a button.

There will be two variables associated with the text fields: Skip and FileName. So that
TGB will create meaningful names for these text fields, we will change the properties of
controls.

Note: Although the text fields and buttons are referred to as controls, they are represented by
Tecplot text objects, since they exist in a Tecplot layout file.

38 Creating a Data L cader

2. Double-click on the Skip text field and select Options. In the Macro Function field, type Skip. Thiswill be the
base name of the skip variable. Do the same for the FileName field.

Text Dptions

Text Anchor Location

~Text Box
l{"ﬂuﬂm & Filed © Plain | ¥ & =
Line Thickness (%1[01 =] e
Box Coloe I Black | I ST o
Fil Color [Cust 2 I Left Crr Right
M argin]45—@

™ Attach bo ZonesMap ; |1

™ Show inAll "Like" Frames

| Midine

Macta Furction I‘.J'arNama-Sk'q:l Types=Te=iField

Close

Help

x|

LreSpocra [T 8] |

3. Sincethe“...” (Browse) button has a callback, change the name of that in TGB to something more meaningful.

Double-click on “...” and select Options. In the Macro Function Field, type Browse. TGB will use this name when

creating the callback function.

Edit Current Frame

Size and Pozition

Left Side |2.1073

Frame Dimenzions [Paper Buler Lnitz)

idth |4.5

Top Side IEI.F"EEEE Height I'I.'EIF"E#

v Show Barder

.................................

V¥ Show Background

Thickness [%) IEI.1

Color I Green

Color [Cust 2

Frarne ﬂameIID=1 MODE=MODAL TITLE="Delimi

Cloze

Help |

Creating a Data L cader

39

4. Now givethedialog atitle. In TGB, thetitle of the dialog is specified in the Edit Current Frame dialog. Double
click on the dialog frame and set Frame Name to:
ID=1 MODE=MODAL TITLE="Delimited Text Loader”

5. You can now build the source for this layout. From the TGB diaog click Go Build.

6. Renamethefileguicb.tmp tobeguicb.c.

SETTING UP STATE VARIABLEY/INITIALIZING DIALOG FIELDS

The loader function requires two parameters. For convenience, the loader will remember the previous skip value and
file name during the same Tecplot session; we will not attempt to remember the values between Tecplot sessions. In
the next step we will set up global variables which will remember those values from one invocation of the loader to
the next during the same Tecplot session.

Normally, global variables should be kept to aminimum. Since having global variables cannot be avoided in this case,
we will create a structure which will contain all of the global variables. Then we will declare exactly one of these
structures and call it Gs. Thus, any place in the code where a globa variable is referenced will be immediately
obvious because the reference will always be scoped with GS.Globalvariable.

1. Notethefollowinglinesin ADDGLBL. h:

#define MAX FILENAME 5000
typedef struct

{

char FileName [MAX FILENAME] ;
int Skip;
} LoadTxtGlobalState s;

2. thelinesinmain.c:

LoadTxtGlobalState s GS;

3. andthelineinguicb.c:

extern LoadTxtGlobalState s GS;

Next initialize the global state. The logical place to do thisisin the InitTecAddon () function, whichis called by
Tecplot only once when the add-on isfirst loaded. Note the following linesin InitTecAddon () found inmain.c:

/*
* Initialize the file name to be empty and the default skip
* parameter to hav a value of 1.

*/
GS.FileName[0] = ‘\0’;
GS.Skip =1;

The values in the dialog are synchronized with the global state in the DialoglInit CB() function found in
guicb.c:

40 Creating a Data L cader

static void DialoglInit CB(void)

{

char StrSkipl[32];
TecUtilLockStart (AddOnID) ;

sprintf (StrSkip, ”%d”,GS.Skip) ;

TecGUITextFieldSetString(Skip TF D1, StrsSkip);
TecGUITextFieldSetString (FileName TF D1,GS.FileName) ;

IMPLEMENTING DIALOG CALLBACKS

In this step we will modify the callbacksin the dialog so that it collects the file name and skip parameters. We will also
verify that those parameters are valid. Finally we will call our unfinished DoLoadDelimitedText () function
from the dialog’s OK callback.

The FileName Text Field Callback

When atext field loses the focus, a callback is received if the text has changed since the text field received the focus.
We could check that the file name is valid at that time, but instead we will check the validity of the file name in the
OK button callback. Thusthe function int FileName TF D1 CB() will remain empty.

The Skip Text Field Callback

When the skip callback is received, we need to check that the skip value entered in the dialog is valid. The skip value
will bevalid if it is an integer greater than or equal to one.

All text field callbacks in TGB return an int value. If datain the text field is valid, the callback should return one,
otherwise it should return zero. This allows TGB to replace the text with the last known valid entry if the entered text
isinvalid. Examinethe following linesin guicb.c:

static int Skip TF D1 CB(const char *S)
{

int IsOk = 1;

int Value;

TecUtilLockStart (AddOnID) ;

/*
* We could be more elaborate here and check for non-numeric
* digits, but for now just check that the string converts to
* an integer >= 1
*/
Value = atoi(S);
if (Value < 1)
{
TecUtilDialogErrMsg (“Skip parameter must be greater than “
“or equal to 1.”);
IsOk = 0;

}

Creating a Data L cader 41

if (IsOk)
GS.Skip = Value; /* Remember for next time */

TecUtilLockFinish (AddOnID) ;

return IsOk;

}

The Browse Button Callback

The browse button will display afile dialog and allow the user to select a file. When you click OK in the browse
dialog, the FileName text field in the main dialog should be filled in with the selected file.

Examinethe Browse_ BTN D1_CB () callback functioninguicb.c:

static void Browse BTN D1 CB(void)

char *SelectedFileName = NULL;
char *Type = “Delimited Text”;
char *Filter = “k_txt”;

TecUtilLockStart (AddOnID) ;

if (TecUtilDialogGetFileName (SelectFileOption ReadSingleFile,
&SelectedFileName, Type,GS.FileName, Filter))
{

strcpy (GS.FileName, SelectedFileName) ;
TecUtilStringDealloc (&SelectedFileName) ;
TecGUITextFieldSetString(FileName TF D1,GS.FileName) ;

}

TecUtilLockFinish (AddOnID) ;

TheTecUtilDialogGetFileName () function will display afile dialog and allow the user to select afile. If you
click OK the function will retun TRUE, otherwise you have clicked Cancel. We pass
TecUtilDialogGetFileName () an address of achar *, which receives the file name. Only if the function

returns TRUE are we required to release the string using TecUtilStringDealloc () . Before releasing the string
itis copied into the global state structure.

The OK Button Callback

Now we must:

® Call the loader function, DoLoadDelimitedText () with the file name and skip parameters collected
from the dialog.

® |f the loader function returns TRUE, save the file name in the global state.

Inguicb.c, the modified DialoglOokButtonCallback () functionlooks asfollows:

static void DialoglOkButton CB(void)

42 Creating a Data L cader

char *FileName;
FileName = TecGUITextFieldGetString(FileName TF D1);

/* check that the filename is valid */

if ((FileName != NULL && strlen(FileName) > 0) &&
DoLoadDelimitedText (FileName, GS.Skip))

{

/* Save the filename for next time */
strcpy (GS.FileName, FileName) ;
TecGUIDialogDrop (DialoglManager) ;
TecUtilLockFinish (AddOnID) ;

}

if (FileName != NULL)
{
TecUtilLockStart (AddOnID) ;
TecUtilStringDealloc (&FileName) ;
TecUtilLockFinish (AddOnID) ;

}

If there are any errors loading the file, then DoLoadDelimitedText () will return FALSE, and we will not drop
the dialog. DoLoadDelimitedText () will display any error message, so we will not do that in the callback. We
have to release the string returned by TecGUITextFieldGetString ().

PREPARING TO WRITE THE LOADER FUNCTION

In this step we will write the DoLoadDelimitedText () function. This will read the text file and load it into
Tecplot, returning TRUE if successful.

File For mat

If we werewriting aloader for aknown file format, such as an Excel spreadsheet file, we could study the specification
for that format and decide how best to code the loader function. In this case, however, there is no previously defined
specification, so we will have to write our own. The more detailed we are in how the file can be formatted, the easier
it will be to write the function. It is useful to impose rules on the specification which make it easier to make
assumptions about the format of the file. These assumptions can then be used to our advantage in the source code.

Thefirst general rule of our text file format will be that blank lines areignored, but any non-blank line must be avalid
part of thefile.

Note the function, IsBlankLine (), which takes a character string representing a line and returns TRUE if the line
isblank. We will define ablank line as zero or more tabs or spaces followed by anew line (\n) and/or carriage return
(\r). Thefollowing linesarein engine.c:

static Boolean t IsBlankLine(const char *Line)

{

Boolean t Result = TRUE;
int Index = 0;

Creating a Data L cader 43

REQUIRE (VALID REF (Line));

/*
* Search through the string for any character that is not:
* " \t\r\n”.

*/
while (Result && Line[Index] != ‘\0’)
{
/* These are the only characters in a blank line */
Result = (Line[Index] == * * ||
Line [Index] == ‘\t’ ||
Line[Index] == ‘\n’ ||
Line[Index] == ‘\r’);
Index++;
}

return Result;

}

Next we will require that al variables appear on the first non-blank line in the file, separated by spaces or tabs. This
rule implies that variable names cannot contain spaces.

TheGetVariableNames () function takesastring list object and a character string containing the line, and fillsin
the string list with all of the variable names. We will make use of the C standard library strtok () function:

static void GetVariableNames (StringList pa VarList,

char *Line)
/* NOTE: We assume Tecplot is locked */
char *Token;

REQUIRE (VALID REF (Line));

/* Be sure that the string list is initially empty */
TecUtilStringListClear (VarList) ;

/* Note that strtok() will write into Line */
Token = strtok(Line,” \t\r\n”);

while (Token)

{

/* Token now points to a variable name, so add it to the list */
TecUtilStringlListAppendString (VarList, Token) ;
Token = strtok (NULL,” \t\r\n”); /* Get the next one */

}

You can see that we are looking for groups of text separated by either tabs, spaces, or the end of the line. Each group
of text (Token) isavariable name, and is added to the string list. We do not have to keep track of the total number of
variadble names because the string list object will do this for us. If needed, we can cdll
TecUtilStringListGetCount () and find out the total number of stringsin the string list.

44 Creating a Data L cader

How should theinput data be interpreted by Tecplot?

With the tools above we are ready to write the loader function. It is useful at this point to think about how Tecplot
should interpret the imported data. Since the input files have a row of variables followed by one or more rows of
values, we will import the text file as an I-ordered data set. Line 1 of the file is the list of variable names. The
following lineswill contain the values of the variables at each data point. For example, suppose the input file has three
lines as follows:

Varl Var2 Var3
1.0 3.4 1.2
5.4 2.3 4.5

In this case our loader reads the first line and finds three variables. Line 2 of the file contains the values of the
variables at data point 1, and so forth.

Before creating a data set in Tecplot, we need to know the |-dimension, which in this case will be a function of the
skip value and the number of non-blank linesin thefile. Thusit will be necessary to make two passes through thefile.

To buffer or not to buffer the data?

There are two ways to process the data.
Data Processing Method 1

During the first pass, allocate memory for the values and read them as we go along. Disk input/output is minimized,
and the second pass is much faster, since the values are aready in memory at that point. We can also do some error
checking after the first pass before we create the data set in Tecplot.

The disadvantage of this method is that for a short time during the second pass there are two complete copies of the
data set in memory at once. Thisis not a problem unless you anticipate that your datafiles will be extremely large (in
the multi-megabyte range).

Data Processing Method 2

During thefirst pass count the number of lines. Combined with the skip value, thiswill determine the | -dimension of
the data set. During the second pass rewind thefile and read the values again, starting at the line after the variables. No
memory is wasted, even temporarily. This method is easier to code, since it is not necessary to decide how the values
will be stored in memory between the passes.

For our purposes there are no significant disadvantages to the second method so we will useit to read the input files.

EXPORT FUNCTIONS

Passl usesthe IsBlankLine () and GetVariableNames () functions.

Notethe following linesin engine.c:

static Boolean t Passl(int *LineCount,
StringlList pa VarNames,
FILE *F)

Boolean t IsOk = TRUE;
char Line[MAX LINE SIZE];

REQUIRE (VALID REF (LineCount));
REQUIRE (VALID REF (VarNames)) ;
REQUIRE (VALID REF (F));

Creating a Data L cader 45

while (fgets(Line,MAX LINE SIZE,F) != NULL)
{
if (!IsBlankLine (Line))
{
/* This must be the line with the variable names */
GetVariableNames (VarNames, Line) ;
break;

}
}
/* Must be at least one variable */
if (TecUtilStringListGetCount (VarNames) == 0)

{

TecUtilDialogErrMsg (“No variables specified”) ;
IsOk = FALSE;

}

if (IsOk)

{

/*
* Now count all the lines.
*/

*LineCount = 0;

while (fgets(Line,MAX LINE SIZE,F) != NULL)
{

if (!IsBlankLine(Line))

{
}

*LineCount += 1;

if (*LineCount == 0)

{

TecUtilDialogErrMsg(“No data specified”);
IsOk = FALSE;

}

return IsOk;

This function's purpose is to count the number of non-blank lines, excluding the variable line. This count is passed
back to the calling function through the LineCount parameter.

The only error condition we check for during pass 1 isthat there be at least one non-blank dataline.

For Pass2 note thefollowing linesin engine.c:

static Boolean t Pass2 (int Skip,

int LineCount,
StringlList pa VarNames,

Creating a Data L cader

FILE *F)

Boolean t IsOk = TRUE;

char Line[MAX LINE SIZE];

EntIndex t i;

EntIndex t VarCount;

EntIndex t PointIndex;

FieldDataType e fd types[MAX VARIABLES];
int CurrentLine;

int IMax;

REQUIRE (Skip >= 1);

REQUIRE (LineCount > 0);

REQUIRE (VALID REF (VarNames) &&
TecUtilStringListGetCount (VarNames) > 0);

REQUIRE (F != NULL);

/*
* At this point we know that there is a least one variable and at lease
* one line of data. So it’s safe to create the dataset.
*
* Note that once we create the dataset, we are committed to adding the
* correct amount of data (otherwise we will leave Tecplot in an invalid
* state), so we must be prepared to default some datapoints to 0 if they
* cannot be read from the file.
*/

VarCount = TecUtilStringListGetCount (VarNames) ;

/*
* The data type for each value we read will be double.
*/

for (i=0;i<VarCount;i++)
fd types[i] = FieldDataType Double;

rewind (F) ;

/*
* Skip to the first non-blank line.
* This is the line with the variables.
*/
while (fgets(Line,MAX LINE SIZE,F))
{
if (!IsBlankLine (Line))
break;

if (LineCount > 1)

IMax = 2 + (div(LineCount-2,Skip)) .quot;
else
IMax = 1;

IsOk = (IsOk &&

Creating a Data L cader 47

48

TecUtilDataSetCreate (“Converted Text Dataset”,
VarNames, TRUE) &&
TecUtilDataSetAddZone (“Zone 1”,IMax,1,1,
ZoneType Ordered, fd types)):;

if (IsOk)
CurrentLine =1;
PointIndex =1;

TecUtilDialogLaunchPercentDone (“Importing...”, TRUE) ;

do
{
/* Get a line */
if (fgets(Line,MAX LINE SIZE,F))
{
/* Is it a blank line */
if (IsBlankLine(Line))
continue; /* Skip this line */

/* Always include the first and last points when skipping */
if ((CurrentLine-1) % Skip == 0 ||
Currentline == 1 ||
CurrentLine == LineCount)
{
AddDataPoints (PointIndex, Line,VarCount) ;
PointIndex += 1;

}
}

else

{

break; /* Done */

}

TecUtilDialogCheckPercentDone (MIN (100,
((int) (100.0*CurrentLine) /
LineCount))) ;
CurrentLine += 1;
} while (TRUE);
TecUtilDialogDropPercentDone () ;
} /* end if */

return IsOk;

Creating a Data L cader

Adding Field Data
The general steps for adding field datato Tecplot are:

1. Cadl TecUtilDataSetCreate(..).

2. Cdl TecUtilDataSetAddZone (..) Oneor moretimes.

3. Cdl TecUtilDataValueSetByRef (..) for each data point in the zone.
4, If thedataisfinite-element use TecUtilDataNodeSetByRef (..).

Each variable will be of type double, so they will first create an array of field data types, one for each variable. The
value of each datatypeis set to the constant FieldDataType Double. The array of field data typesis passed to
TecUtilDataSetAddZone (), and it serves the same function as the DT parameter in Tecplot ASCII data files.
The function then rewinds the file and skips past the line containing the variable names. It will read the field values
beginning on the next line.

Skipping

This function will compute the |-dimension, since this is required when adding a zone. The I-dimension is computed
using the skip value.

The Skip Value

By skip value we mean that for a skip value n, every n-1 data points will be skipped. For example, a skip value of 2
would mean that we read data points 1, 3, 5, ..., and so forth. For a skip value of 3 we would read data points 1, 4, 7,
..., and so forth. A skip value of 1 meansthat no data points are skipped. Also, thefirst and last data points are aways
included irrespective of the skip value.

The | -dimension of the data set is computed using the skip value as follows:

if (LineCount > 1)

IMax = 2 + (div(LineCount-2,Skip)) .quot;
else

IMax = 1;

Notethat LineCount isthe total number of data points. The |-dimension is equal to 2 (first and last points) plus the
quotient of [(LineCount-2) divided by the Skip value]. LineCount-2 is used because we have aready
included the first and last points in the calculation. The only special caseisif thereis only one data point. In that case
the I-dimensionis always 1.

For the one-dimensional data set we are creating, this calculation is relatively straightforward. For two- or three-
dimensional data sets the calculation would be more complex.

Data Set Creation/Adding Field Data to Tecplot

Now we call TecUtilDataSetCreate () and TecUtilDataSetAddZone () to create the data set. Each line
of the file is read, then possibly discarded (if it is blank or should be skipped), and imported into Tecplot. To make
adding the field data to Tecplot easier, we will use a special function, AddDataPoints ():

static void AddDataPoints(LgIndex t PointIndex,

const char *Line,
EntIndex t NumVars)

Creating a Data L cader 49

/* Zone is always 1 */
FieldData pa FD;

EntIndex t i;

char buffer [MAX LINE SIZE];
double Value;

char *strDataPoint;

REQUIRE (PointIndex > 0);
REQUIRE (VALID REF (Line));
REQUIRE (NumVars > 0);

strcpy (buffer, Line) ;

/* must have a space between data points */
strDataPoint = strtok(buffer,” \t\r\n”);

for (i=1;i<=NumVars;i++)
{
FD = TecUtilDataValueGetRef (1l,1i);
if (strDataPoint)
{
Value = atof (strDataPoint);
/* get the next one */
strDataPoint = strtok (NULL,” \t\r\n”);
}
else
{
/* Default: not enough values on this line */
Value = 0.0;

}

TecUtilDataValueSetByRef (FD, PointIndex,Value) ;

Adding field data is straightforward. We utilize an abstract reference to the zone and variable number using
TecUtilDataValueGetRef (), and set the field value using TecUtilDataValueSetByRef (). Since we
have only added one zone, the zone number is always 1. Note that all indices are 1-based.

THE MAIN LOADER FUNCTION

At this point we have written the Pass1 () and Pass2 () functions. Now combine them in the loader function by
adding the following linesto engine. c:

Boolean t DoLoadDelimitedText (const char *FileName,
int Skip)

Boolean t IsOk TRUE;

FILE *F = NULL;
StringlList pa VarNames;
StringlList pa LoaderInstructions;

50 Creating a Data L cader

int LineCount;

REQUIRE (VALID REF(FileName) && strlen(FileName) > 0);
REQUIRE (Skip >= 1);

TecUtilLockStart (AddOnID) ;
VarNames = TecUtilStringListAlloc();

/* Try to open the file */
F = fopen (FileName,”r"”) ;

if (F == NULL)

{

TecUtilDialogErrMsg (“Cannot open file for reading”) ;
IsOk = FALSE;

}

IsOk = (IsOk &&
Passl (&LineCount,VarNames, F) &&
Pass2 (Skip,LineCount,VarNames, F)) ;

if (F)
fclose(F);

if (IsOk)

{

char strSkip[256];

LoaderInstructions = TecUtilStringListAlloc() ;
sprintf (strSkip, ”%d”, Skip) ;

~
*

NOTE:
The string written to the layout file will look like:
‘” STANDARDSYNTAX” “1.0” “FILENAME TOLOAD” “myfile.txt” “SKIP” “3”'

This is the recommended way to encode export parameters in
the instruction string.

* Ok ok F Ok F ¥ F* *

*/
TecUtilStringListAppendString (LoaderInstructions, STANDARDSYNTAX) ;
TecUtilStringListAppendString(LoaderInstructions,”1.0”);
TecUtilStringListAppendString (LoaderInstructions, FILENAME TOLOAD) ;
TecUtilStringListAppendString(LoaderInstructions, FileName) ;
TecUtilStringListAppendString (LoaderInstructions, SKIP) ;
TecUtilStringListAppendString (LoaderInstructions, strSkip) ;

TecUtilImportSetLoaderInstr (ADDON NAME, LoaderInstructions) ;
TecUtilFrameSetPlotType (PlotType XYLine);

Creating a Data L cader 51

TecUtilRedraw (TRUE) ;

TecUtilStringListDealloc (&LoaderInstructions) ;

}

TecUtilStringListDealloc (&VarNames) ;
TecUtilLockFinish (AddonID) ;

return IsOk;

}

If the file isloaded successfully we call TecUtilImportSetLoaderInstructions (). Thisfunctioniswhere
we inform Tecplot of the instructions necessary to read the file. If you save alayout, these instructions will be written
into the file. When the layout is read back in, Tecplot will call the registered loader function with those instructions.

This brings us to the registered loader functionin engine.c:

Boolean t STDCALL LoaderCallback(StringList pa Instructions)
Boolean t IsOk = TRUE;
LgIndex t NumParams;
char *FileName = NULL;
int Skip = 1; /* default */

TecUtilLockStart (AddOnID) ;

NumParams = TecUtilStringListGetCount (Instructions);
if (NumParams != 0)
const char *ParamStrRef = TecUtilStringListGetRawStringPtr (
Instructions, 1);

if (Str ustrcmp (ParamStrRef, STANDARDSYNTAX) == 0)
IsOk = ParseNewSyntax(Instructions, &FileName, &Skip):;
else
IsOk = ParseOldSyntax(Instructions, &FileName, &Skip);
}
if (IsOk)
{

if (FileName != NULL && strlen(FileName) > 0)
DoLoadDelimitedText (FileName, Skip) ;

else
TecUtilDialogErrMsg (“No filename specified”);

if (FileName != NULL)
TecUtilStringDealloc (&FileName) ;
TecUtilLockFinish (AddOnID) ;

/*

* Note that you do not need to dealloc the string list ‘Instructions’ as

52 Creating a Data L cader

* this will be done by Tecplot or the calling function
*/

return IsOk;

}

It is important to understand the difference between this function, which is the registered loader callback, and the
previous function DoLoadDelimitedText (), which does the work of loading the data. The registered loader
callback is the function that Tecplot calls when processing a $! READDATASET macro command. The instruction
string passed to it has all of the information needed to load the file. The calback parses the parameters and passes
them to DoLoadDelimitedText (). The reason for this is that we also want to be able to use
DoLoadDelimitedText () fromthediaog's OK button callback.

Another interesting part of the loader callback is the instruction parsing. The loader callback examines the first name
in the instruction list to determine if the loader is using Tecplot's new standard syntax (see the section “Using
Standard Instruction Syntax” in the Tecplot ADK User’'s Manual for a discussion of using the standard instruction
syntax). This add-on was written before Tecplot standard instruction syntax existed so it must support both the old
syntax and the new. All new add-on’'s can simply use the standard instruction syntax. In short, using the standard
instruction syntax provides an add-on tighter integration with Tecplot’s load data options such as the use of relative
paths and loading of alternate datasets. For completeness the functions that perform the parsing of the new and old
syntax from engine.c are included below:

/**
* Add-on’s using the standard syntax have better integration with Tecplot.
*
* New Syntax:
*
* Name Value Required Default
g
* STANDARDSYNTAX 1.0 Yes N/A
* FILENAME TOLOAD “myfile.txt” Yes N/A
* SKIP 3 No 1
*/
static Boolean t ParseNewSyntax(StringList pa NewInstructions,
char **FjileName,
int *Skip)
{

Boolean t IsOk;

LgIndex t NumParams;

Boolean t FileNameFound = FALSE;
Boolean t SkipFound = FALSE;

REQUIRE (VALID REF (NewInstructioms));
REQUIRE (VALID_REF(FileNa.me) && *FileName == NULL) ;
REQUIRE (VALID_REF(Skip) && *Skip == 1);

NumParams = TecUtilStringListGetCount (NewInstructions) ;
IsOk = (NumParams == || NumParams == 6);
if (IsOk)

LgIndex t i;

/*

Creating a Data L cader 53

54

* The first name value pair is “STANDARDSYNTAX” / “1.0”; start on
* the second name value pair at position 3.
*/
for (i=3;i<=NumParams;i+=2)
const char *ParamStrRef = TecUtilStringListGetRawStringPtr (
NewInstructions,i);
if (Str_ustrcmp (FILENAME TOLOAD, ParamStrRef) == 0)
IsOk = (!FileNameFound) ;
if (IsOk)
*FileName = TecUtilStringListGetString(
NewInstructions,i+l);
FileNameFound = TRUE;

}

else
TecUtilDialogErrMsg (“Cannot specify the FileName ToLoad “
“text loader option twice.”);

}

else if (Str ustrcmp (SKIP, ParamStrRef) == 0)

{
IsOk = (!SkipFound) ;
if (IsOk)
{
const char *SkipStrRef =

TecUtilStringListGetRawStringPtr (NewInstructions,i+l);
*Skip = atoi (SkipStrRef) ;
SkipFound = TRUE;

}

else
TecUtilDialogErrMsg (“Cannot specify the Skip text “
“loader option twice.”);

}

else

{

IsOk = FALSE;
TecUtilDialogErrMsg (“Unknown text loader option.”);

}
}

else
TecUtilDialogErrMsg (“Standard loader syntax expects “
“name/value pairs.”);

return IsOk;

}

[**

The old syntax is here for backward compatability. Now we use the
Tecplot’s new standard syntax. See ParseNewSyntax().

0ld Syntax:

Creating a Data L cader

*
* Flag Value Required Default
||| e m - - - -
* -F “myfile.txt” Yes N/A
* -I 3 No 1
*/
static Boolean t ParseOldSyntax(StringList pa OldInstructions,
char **FjileName,
int *Skip)
{

LgIndex t i;

LgIndex t NumParams;

Boolean t FileNameFound = FALSE;
Boolean t SkipFound = FALSE;

REQUIRE (VALID REF (OldInstructions));
REQUIRE (VALID REF (FileName) && *FileName == NULL) ;
REQUIRE (VALID REF (Skip) && *Skip == 1);

NumParams = TecUtilStringListGetCount (OldInstructions) ;
for (i=1;i<=NumParams;i++)
{
const char *ParamStrRef = TecUtilStringListGetRawStringPtr (
OldInstructions,i);
if (ParamStrRef[0] == ‘-’ &&
strlen (ParamStrRef) >= 2 &&
i < NumParams)

/* Found a parameter */
switch (toupper (ParamStrRef [1]))
case ‘F’:
{
/* Found filename */
if (!FileNameFound)
*FileName = TecUtilStringListGetString(
OldInstructions, ++i) ;
FileNameFound = TRUE;

}

} break; /* ‘F’ */

case ‘I’:
{
if (!SkipFound)
{
const char *SkipStrRef =
TecUtilStringListGetRawStringPtr (
OldInstructions, ++1i);
*Skip = atoi (SkipStrRef) ;
SkipFound = TRUE;

Creating a Data L cader

}

} break; /* ‘I’ */

default:
{
/* ignore unrecognized option */
} break;
}
}
}
return TRUE;

}

LoadTxt is now complete. Recompile and load it into Tecplot.

EXERCISES

1. Modify GetVariableNames () to accept names delimited by commas instead of spaces. Thiswould allow
spaces in variable names, but not commas.

2. Modify GetVariableNames () to accept namesin quotes. Thiswould allow spacesin variable names, but
not double quotes.

3. Modify Passl () tocheck for the correct number of variables on each line, or check that each of these variables
isnumeric (that is, consists only of valid numeric characters). Remember that in addition to digits, valid floating point
charactersinclude E and e, and (.).

4. Modify the loader to alow Tecplot-style comment linesin the input file. Any line starting with an octothorp (#)
would be ignored.

5. Modify the loader to accept C-style commentsin the input file.

6. Instead of using two loader functions, remove DoLoadDelimitedText () and modify the callback function
LoadDelimitedText () toload the data. Inthe OK button dialog callback, create afake instruction string with
the parameters entered in the dialog and call LoadDelimitedText ().

7. Modify the loader to read all of the datainto memory during pass 1, and write the data from memory in pass 2.
Combine this with exercise 2 for additional error checking.

8. Allow datavaluesto be separated by commas.

9. InTecplot ASCII files, any line may contain any number of data values. In our loader, each line of the input file
must have exactly one value for each variable. Modify the loader to accept any number of data points on any line of
theinput file.

10. Modify the loader to remember the last used file name and skip values between Tecplot sessions.

56 Creating a Data L cader

CHAPTER 10 Extending Interactive User Interface
Capabilities

INTRODUCTION TO THE SUMPROBE ADD-ON

SumProbe, the add-on you will create in this chapter, is an example of an add-on which can sum up the
probed values of a selected variable. It will appear in Tecplot’'s Tools menu as Sum Probed Values. When
selected, adialog will appear allowing you to specify which variable you wish to sum.

All of the examples of the source code shown in this manual areincluded inthe Tecplot distribution and
arefound inthe adk/samples sub-directory below the Tecplot home directory.

SumProbe uses source code files created by the CreateNewAddon script (UNIX), or Tecplot Add-on
Wizard (Windows).

When running CreateNewAddon or Tecplot Add-on Wizard answer the questions as follows:

® Project Name SumProbe

® Add-on name: Sum Probe

® Company name: [Your company name]

® Typeof add-on: General Purpose

® Language: C

® Use TGB to create a platform-independent GUI? Yes

® Add amenu callback to the Tecplot “Tools” menu? Yes

® Menu text: Sum Probed Values

® Menu callback option: Launch a modeless dialog
® DiaogueTitle: Sum Probe

We will useaTecUtil function to get the variable name to sum and TGB to create a dialog to display the
total number of summed points.

After running CreateNewAddon or Tecplot Add-on Wizard you have the following files:
guibld.c guicb.c guidefs.c main.c
ADDONGBL. h GUIDEFS.h gui.lay

You will also have other files specific to your platform, but we will only modify those above. The purpose
of each filewill be explained in detail as we proceed.

Verify that you can compile your project add-on and load it into Tecplot. If you cannot, refer to Chapter 2
“Creating Add-ons under Windows,” or Chapter 3 “Creating Add-ons under UNIX.”

Extending I nteractive User Interface Capabilities 57

THE MENUCALLBACK() FUNCTION

Most add-ons contain a callback function named MenuCallback () . Thisis caled by Tecplot each time

the add-on is selected from the Tools menu. MenuCallback () stores the code that performs all functions
of the add-on. This callback function is specified in the TecUt i 1MenuAddOption function, and passes
itto Tecplotin InitTecAddoOn ().

The TecUtilDialogGetVariables function has abuilt-in dialog which allows you to select the vari-
able to be summed. Then the newly-created dialog appears. As points are probed, the summed total is dis-
played on the dialog.

Before adding the code below, create alabel on the dialog which will be set to the total as the plots are
probed. (See the TGB Reference Manual for more information on adding alabel to a TGB dialog.) Set the
variable name of this label to VarName=Totalis00. Set the text string of the label to read “ Thetotal is
0.0

The new or modified source code is displayed in bulleted lines. If you are working along, add or edit bul-
leted lines only. (All TecUtil functions are defined in the ADK Reference Manual.)

Notethe MenuCallback () functioninmain.c:

static void STDCALL MenuCallback (void)

{

TecUtilLockStart (AddOnID) ;

if (TecUtilDataSetIsAvailable())
if (TecUtilFrameGetPlotType() == PlotType Cartesian2D)
{
TecUtilDialogGetVariables (“Pick Variable to Sum”,
NULL,
NULL,
NULL,
&Variable,
NULL,
NULL) ;

BuildDialogl (MAINDIALOGID) ;
TecGUIDialogLaunch (DialoglManager) ;

TecUtilProbeInstallCallback (MyProbeCallback,
“Suming Probed Values”) ;
}

else
TecUtilDialogErrMsg (“Plot type must be 2D cartesian.”);

else
TecUtilDialogErrMsg (“Frame does not contain a dataset ™

“with which to probe.”);

TecUtilLockFinish (AddOnID) ;

58 Extending I nteractive User Interface Ca-

Thisexampleislimited to 2-D plots.

THE MYPROBECALLBACK() FUNCTION

The TecUtilProbeInstallCallback(MyProbeCallback, “Summing Probed Values”)
function calls the function MyProbeCallback each timeapoint is probed.

Inmain. c note the function MyProbeCallback () aboveMenuCallback():

static void STDCALL MyProbeCallback(Boolean t IsNearestPoint)

{

TecUtilLockStart (AddOnID) ;

if (IsNearestPoint)

{

double ProbeValue = TecUtilProbeFieldGetValue (Variable) ;
char Msg[100];

Total = Total + ProbeValue;
sprintf (Msg, “The total is: %f”, Total);
CHECK (strlen (Msg) < sizeof (Msg)) ;

TecGUILabelSetText (Thetotalis00 LBL D1, Msg);

}

else
TecUtilDialogErrMsg (“You must hold down the Ctrl key when probing”) ;

TecUtilLockFinish (AddOnID) ;

}

Each time a point is probed the callback checksto seeif it was probed while holding down Ctrl. If it was, it
gets the value of the variable, addsit to the running total, and changes the text displayed on the dialog to
reflect this.

SumProbe is complete. Recompile and load it into Tecplot.

EXERCISES

1. Enhance SumProbeto allow for interpolated values while probing.

2. Add aClear button to the dialog to zero out the summed values.

Extending I nteractive User Interface Capabilities 59

60

Extending I nteractive User Interface Ca-

CHAPTER 11 Animating

INTRODUCTION TO THE ANIMIPLANES ADD-ON

AnimlPlanes, the add-on you will createin this chapter, isan example of an add-on which can animatethe I-
planes of a selected set of zones. It will appear in Tecplot's Tools menu as Animate | Planes. AnimlPlanes
will verify that the datais | JK-ordered, change the Volume mode to I-planes, and cycle through the I-planes.

All of the example source code shown in this manual isincluded in the Tecplot distribution and isfound in
the adk/samples sub-directory below the Tecplot home directory.

AnimlPlanes uses source code files created by the CreateNewAddon script (UNIX), or Tecplot Add-on
Wizard (Windows).

Our project name will be “AnimlPlanes’ and the add-on name will be “Animate | Planes.”

When running CreateNewAddon or Tecplot Add-on Wizard answer the questions as follows:

* Project Name (Base name AnimIPlanes

* Add-on name; Animate | Planes

« Company hame: [Your company name]

* Type of add-on: Genera Purpose

» Language: C

« Use TGB to create a platform-independent GUI? Yes

« Add amenu call back to the Tecplot “Tools” menu? Yes

e Menu text: Animate | Planes

« Menu callback option: Launch amodeless dialog
« Diaogtitle: Animate | Planes

After running the CreateNewAddon script or Tecplot Add-on Wizard you should have the following
files:

guibld.c guicb.cguidefs.cmain.c

ADDGLBL.h GUIDEFS.hgui.lay

You will also have other files specific to your platform, but we will only modify those above. The purpose
of each filewill be explained in detail as we proceed.

Verify that you can compile your project add-on and load it into Tecplot. If you cannot, refer to Chapter 2
“Creating Add-ons under Windows,” or Chapter 3 “Creating Add-ons under UNIX.”

Windows users should select the Debug page in the Project/Settings menu and make the following entries:
Executable for debug session: <pathto Tecplot executable>

Working directory:

Program Arguments: Debug/AnimIPlanes.dll

Animating 61

CREATING THE DIALOG

62

Now create your main dialog. Thiswill be displayed when Animate | Planesis selected from Tecplot's
Tools menu. The dialog will have two labels, one button, one text field, and a multi-selection list. You will
be able to select a specific set of zones to animate from the list, specify askip level in the text field, and
clicking the button will perform the animation.

Before beginning, be sure that Tecplot GUI Builder (TGB) is available from Tecplot’s Tools menu. If TGB
isnot available, do the following

Windows

In the Tecplot Home Directory edit thefile tecplot.add and add the line:
$!LoadAddOn "guibld"

UNIX

Edit thefile tecdev.add inyour Add-on Development Root Directory and add the line:
$!LoadAddOn "guibuild"

Resize the frame and edit the layout as follows:

Zone(s)
MLST:
Skip I 7
Animate | Planes

You can edit a control by clicking on it, then choosing Object Details and editing as you would text.

Note: Although the text fields and buttons are referred to as controls, since they exist in alayout file they
are actually Tecplot text objects.

Double-click on the MLST: multi-selection list and select Options. In the Macro Function field, set Var-
Name=ZoneList. Thiswill be the base name of the callback associated with the multi-selection list. Also

Animating

change the Macro Function for the TF: text field to VarName=Skip, and change the Macro Function for the
Animate | Planes button to VarName=AnimPlanes.

The base names are truncated after 12 characters, so we specify a macro command for the button here.

x|
Erier Tred Sting
iMLsT: 4 Zana(s)
f a
st
T Bren Tepst inchas Logation
" MoBos % Flled © Plain e e | Hess
Lina Thickrae: 1 [07 =) e e s
Bece Do NI Blsck: I = | Baselre
Fil Coie | Cumt 2 | e o 9#*-
Margn [45 &
) ~ k= =
[AnschieZoneMan: |1 Lire Spercinng [1] o
TF:
I Shom ALk Framns i (i
Hueio Furecton [Vt amesZorel i TyposHgili Animate | Planes
Cheze | Help I

Next, The dialog title is specified in the Edit Current Frame dialog. Double-click on the dialog frame and
verify that the frameis:

ID=1 MODE=MODELESS TITLE="Animate I Planes"

Zone(s)
Edit Current Frame x|

Frame Dimenzions ([Paper Ruler Units)
Size and Posilion

Left Sids Ii?Em Widlh [4.5
Top Side ID.E-5221 Height |5.5

[Shaw Bosdar Thickness [%] II'_'L‘]
[ShowHasdes Color - Green |

¥ Show Backgound Color [Cust 2

Frame Mame | ELESS TITLE ="Animate | Planes" 0

Claze Hela
I | I

1
P lanes

You can now build the source for this layout. From the TGB dialog click Go Build.

Renamethefileguicb. tmp to be guicb. c (replacing the existing guicb. ¢ with guicb. tmp).

Animating 63

SETTING UP STATE VARIABLES/INITIALIZING DIALOG FIELDS

64

When the dialog is launched we need to make sure that the Skip and ZoneList text fieldsarefilled in
properly. Toinitialize skip we will define the skip to be areasonable default value, and set it every time
the dialog is launched. Thisinitialization will take placeintheDialoglInit CB () function. Thisfunc-
tion is caled every timethe dialog is launched.

Notethe following linein guicb. ¢, just below the #include Statements:

#define DEFAULT SKIP “1”

and the following code used as the dialog initialization callback:

static void DialoglInit CB(void)

{
TecUtilLockStart (AddOnID) ;
/*<<< Add init code (if necessary) here>>>*/
TecGUITextFieldSetString(Skip TF D1, DEFAULT SKIP);
TecUtilLockFinish (AddOnID) ;

Toinitialize ZoneList we will write a separate function, then call that function from the
DialoglInit CB () function. This function will be called elsewhere in this exercise.

The following code is above the InitTecAddon () function:

void FillZoneList (void)

{

if (TecUtilDataSetIsAvailable())

{

EntIndex t NumZones, i;

TecUtilDataSetGetInfo (NULL, &NumZones, NULL);
TecGUIListDeleteAllItems (ZoneList MLST D1);
for (i = 1; i1 <= NumZones; i++)
{
char *ZoneName;
TecUtilZoneGetName (i, &ZoneName) ;
TecGUIListAppendItem(ZoneList MLST D1, ZoneName) ;
TecUtilStringDealloc (&ZoneName) ;

}

else
TecGUIListDeleteAllItems (ZoneList MLST D1);

Thisfunction will fill the zone list with the zone names of the data set in the current frame. If thereis no data
set, theitemsin thelist are deleted.

Thisfunction is called in the diaog initidization callback in guicb . ¢. The callback should now ook
like:

Animating

static void DialoglInit CB(void)

{

Since the function body of FillZoneList () isinmain.c, add the following line to ADDGLBL. h:

TecUtilLockStart (AddOnID) ;

/*<<< Add init code (if necessary) here>>>*/
TecGUITextFieldSetString(Skip_TF_Dl, DEFAULT_SKIP);
FillZoneList () ;

TecUtilLockFinish (AddOnID) ;

EXTERN void FillZoneList (void);

THE ANIMATE | PLANES BUTTON

When the Animate | Planes button is clicked, we want to animate the I-planes. We will create afunction
called AnimatePlanes (), and add acall to that functioninthe AnimatePlanes BTN D1 CB()

callback function.

BeforecallingtheAnimatePlanes () function we need to collect datafrom the dialog and check to see
that there isadata set available. The AnimatePlanes () function will take two parameters, ZoneSet
and Skip. ZoneSet will contain the zones that were selected in the dialog, and skip will be the skip
value that was entered in the text field:

static void AnimPlanes BTN D1 CB(void)

{

Animating

TecUtilLockStart (AddOnID) ;

/* Make sure there is a dataset */
if (TecUtilDataSetIsAvailable())

{
LgIndex t Count = 0;
LgIndex t *Selection = NULL;
Set pa ZoneSet = TecUtilSetAlloc (TRUE) ;

/* Get the Skip value from the text field */
char *strSkip = TecGUITextFieldGetString(Skip TF D1);

/* Get the selected zones from the ZoneList */

TecGUIListGetSelectedItems (ZoneList MLST D1, &Selection, &Count);

if (Count > 0)

{

LgIndex t i;

/* Put the selected items into ZoneSet */
for (i = 0; i < Count; i++)
TecUtilSetAddMember (ZoneSet, Selection[i], TRUE);

TecUtilArrayDealloc ((void **)&Selection) ;

}

65

/* Make sure a zone has been picked */

if (ZoneSet != NULL) /* ...do the animation */

AnimatePlanes (ZoneSet, atoi (strSkip)):;
else

TecUtilDialogErrMsg (“No zones have been picked.”);

/* Deallocate the ZoneSet and strSkip string when we are done with them

*/
if (ZoneSet != NULL)
TecUtilSetDealloc (&ZoneSet) ;
if (strSkip != NULL)
TecUtilStringDealloc (&strSkip) ;
}
else
TecUtilDialogErrMsg (“No data set available.”)

TecUtilLockFinish (AddOnID) ;

}

.
7

We collect the information from the dialog and then pass that information off to AnimatePlanes () to
carry out the animation. Because ZoneSet isinitialized to NULL, we can tell if there were any selections.
If there were not, we display an error message reading “No zones have been picked.”

WRITING THE ANIMATEPLANES() FUNCTION

66

This function will perform the actual animation. It takes two parameters, ZoneSet and Skip. These
parameters are collected in the AnimatePlanes button callback functioninmain. c:

void AnimatePlanes(Set pa ZoneSet,
int skip)

LgIndex t MaxIndex = 0;

EntIndex t CurZone;

SetIndex t NumberOfZonesInSet;

SetIndex t Index;

Set pa IJKZoneSet = TecUtilSetAlloc (TRUE) ;
char *strMacroCommand;

/* Get the number of zones in ZoneSet */
NumberOfZonesInSet = TecUtilSetGetMemberCount (Z

if (TecUtilMacroIsRecordingActive() &&
(NumberOfZonesInSet >= 1))

strMacroCommand = TecUtilStringAlloc (2000,
strcpy (strMacroCommand, “ZONESET=") ;

}

/*

oneSet) ;

“Macro Command”) ;

Animating

* * * ¥

*/

Create a subset of ZoneSet that includes only

IJK Ordered Zones. Do this by looping through

all the zones in ZoneSet, check to see if the zone
is IJK Ordered. Then add the zone to IJKZoneSet

for (Index = 1; Index <= NumberOfZonesInSet; Index++)

{

/* Get the current zone */

CurZone = (EntIndex t)TecUtilSetGetMember (ZoneSet, Index);

/* Make sure the current zone is enabled */

if (TecUtilZoneIsEnabled (CurZone))
/* Only add the zone if it is IJK ordered */
if (ZoneIsIJKOrdered (CurZone))

{

TecUtilSetAddMember (IJKZoneSet, CurZone, TRUE);

/* Find the greatest IMax of all the valid IJK ordered zones */
MaxIndex = MAX (MaxIndex, GetIMaxFromCurZone (CurZone)) ;

if (TecUtilMacroIsRecordingActive())

{

sprintf (&strMacroCommand [strlen (strMacroCommand)],

CurZone) ;

if (Index != NumberOfZonesInSet)
strcat (strMacroCommand, “,”);

/* Only proceed if there is at least one IJK ordered zone */
if (TecUtilSetGetMemberCount (IJKZoneSet) >= 1)

Animating

{

Boolean t IsOk = TRUE;
/* Setup the zones for animation of I-Planes */

/* Change the cell type to planes */
TecUtilZoneSetIJKMode (SV_CELLTYPE,

NULL,

IJKZoneSet,

(ArbParam t)IJKCellType Planes);

/* Display only the I-Planes */
TecUtilZoneSetIJKMode (SV_PLANES,

NULL,

IJKZoneSet,

(ArbParam t)Planes I);

/* Make sure that the Skip is greater than or equal to

one.

wod” ,

*/

67

68

if (Skip < 1)
Skip = 1;

/* Do the actual animation */
TecUtilDoubleBuffer (DoubleBufferAction On);

for (Index = 1; IsOk && Index <=MaxIndex; Index += Skip)

{
/ *
* Set the range of the I-Planes so that the
* minimum I-Plane to display is the same as
* the maximum displayed. Then increment
* by Skip. This will make the I-Planes “move”
*/
TecUtilZoneSetIJKMode (SV_IRANGE,
SV_MIN,
IJKZoneSet,

(ArbParam t)Index);
TecUtilZoneSetIJKMode (SV_IRANGE,

SV_MAX,

IJKZoneSet,

(ArbParam t)Index);
IsOk = TecUtilRedraw (TRUE) ;
TecUtilDoubleBuffer (DoubleBufferAction Swap) ;

}

TecUtilDoubleBuffer (DoubleBufferAction Off) ;

if (IsOk && TecUtilMacroIsRecordingActive())

{
/* At this point we have all the IJK ordered zones.
* So all we need to add is the skip value. Add a semi-colon
* to the end to signify the end of the IJKZoneSet information.
*/
strcat (strMacroCommand, “; “);
sprintf (&strMacroCommand [strlen (strMacroCommand)], “SKIP=%d",
Skip) ;
strMacroCommand [strlen (strMacroCommand)] = ‘\0’;
/* Record the command */
TecUtilMacroRecordAddOnCommand (“animiplanes”, strMacroCommand) ;
TecUtilStringDealloc (&strMacroCommand) ;
}
}

TecUtilSetDealloc (&IJKZoneSet) ;

}

Note the use of double buffering when we do the animation. If we do not double buffer, there will be asig-
nificant amount of flickering during animation. This is due to the time it takes to draw the other zones.
There are afew functions called above that have not yet been defined; they check to seeif the zone passed

is1JK-ordered.
Note the following functions above the AnimatePlanes () function:

Animating

static Boolean t ZoneIsIJKOrdered(EntIndex t ZoneNum)
Boolean t IsOk;
LgIndex t IMax,JMax,KMax;

TecUtilZoneGetInfo (ZoneNum,
&IMax,
&JMax,
&KMax,
NULL, /* XVar */
NULL, /* YVar */
NULL, /* ZVar */
NULL, /* NMap */
NULL, /* UVar */
NULL, /* VVar */
NULL, /* WVar */
NULL, /* BVar */
NULL, /* CVar */
NULL); /* SVar */
IsOk = (IMax > 1 && JMax > 1 && KMax > 1);
return IsOk;

}

Thisfunction is added for convenience, so asto not clutter AnimatePlanes ().

static LgIndex t GetIMaxFromCurZone (EntIndex t ZoneNum)
{
LgIndex t IMax;
TecUtilZoneGetInfo (ZoneNum,
&IMax,
NULL, /* JMax */
NULL, /* KMax */
NULL, /* XVar */
NULL, /* YVar */
NULL, /* ZVar */
NULL, /* NMap */
NULL, /* UVar */
NULL, /* VVar */
NULL, /* WVar */
NULL, /* BVar */
NULL, /* CVar */
NULL); /* SVar */
return IMax;

}

Compile the add-on and make sure that it runs properly. If you have two frames with different data sets, the
zone list will not be updated when switching between frames.

Animating 69

MONITORING STATE CHANGES

Now we will add functionality to allow the zone list to update properly. To do thiswe will need to listen for
state changes. When something in Tecplot changes, such as a new top frame, Tecplot broadcasts a message
saying that there is a new top frame. We are going to add code to our add-on to allow it to listen for these
messages. Thisis called a State Change Callback function.

During the setup of this add-on we requested to have state change monitoring code included in the initial
build. This code was added to main . c. Now locate the function AnimIPlanesStateChangeCall-
back () inmain.c. Noticethat it already contains a switch statement with all the state changes you can
monitor. The that the add-on is concerned about are grouped together in the state change callback:

case StateChange NewTopFrame
case StateChange ZonesAdded
case StateChange ZonesDeleted :
case StateChange FrameDeleted :
case StateChange ZoneName :
case StateChange DataSetReset :

Andacall to FillZoneList () isperformed when these state changes are detected. The resulting code
should look as follows:

void STDCALL AnimIPlanesStateChangeMonitor (StateChange e StateChange,
ArbParam t CallData)

TecUtilLockStart (AddOnID) ;
switch (StateChange)
{

case StateChange NewTopFrame
case StateChange ZonesAdded
case StateChange ZonesDeleted :
case StateChange FrameDeleted :
case StateChange ZoneName
case StateChange DataSetReset :

/*
* State changes may come in here while the dialog
* is down. We only want to £fill the zone list
* while the dialog is up.
*/

if (TecGUIDialogIsUp (DialoglManager))
FillZoneList () ;

} break;
default: break;

}

TecUtilLockFinish (AddOnID) ;

}

AnimlPlanesis now complete. Recompile and |oad into Tecplot.

70 Animating

EXERCISES

1. Currently thereis nothing to inform users they have entered an invalid number for the skip, such as a negative
number or zero. Add error checking in the text field callback to check for avalid positive integer.

2 Check that the integer in the text field isless than or equal to the maximum I-Max for the selected zones.

3 Allow the animation of J- and K-planes. Adding an option menu to the interface with the types of planes as
options would be a good place to start.

4 Add code to make the add-on remember the last skip value entered, such that when the dialogis closed and
reopened the last skip value is the default in the text field.

5 Allow input of start and end planes. Thiswould allow animation from alarger planeindex to a smaller index, and
allow a specific range of planesto animate.

Animating 71

72

Animating

CHAPTER 12 ThePolynomial Integer Add-on

INTRODUCTION TO THE POLYINT EXTENDED CURVE-FIT

Palyint, the Tecplot add-on you will build in thistutorial, is an example of an extended curve-fit add-on that
does not have any settings which may be configured. This add-on will add an option to the single selection
list that islaunched by the Curve Type/Extended option on the Curves page of the Mapping Style dialog.

This add-on will perform three operations. The only required operation isto calculate the curve-fit of
discrete X Y-data. The second operation isto supply Tecplot with adependent value when the plot is probed.
Thethird is to present astring to the XY Plot Curve Info dialog.

Note: For the purposes of thistutorial, it is assumed that you have aready read the chapters “ Creating Add-
ons Under Windows” and/or “Creating Add-ons Under UNIX” in the ADK User’s Manual, and that you
have successfully created and compiled a set of starter files. All of the code from this point on is platform-
independent, and you can work through the tutorial using either a Windows or UNIX environment.

All of the example of source code shown in this manual isincluded in the Tecpl ot distribution and are found
inthe adk/samples sub-directory below the Tecplot home directory.

GETTING STARTED

Polylnt will use the following source code files. Each one will be automatically created by the
CreateNewAddon script (UNIX) or the Tecplot Add-on Wizard (Windows). The project name and the
add-on name will both be Polyint.

When running CreateNewAddon or the Tecplot 10 Add-on Wizard, answer the questions as follows:

® Project Name (Base name): Polylnt

® Add-on name: Polylint

® Company Name: [Your company name]
® Typeof add-on: Extended Curve-Fit

® Language: C

® Allow Configurable Settings: No

® Create callback function for more accurate probing: Yes

After running the CreateNewAddOn script or the Tecplot 10 Add-on Wizard, you should have the following

files:
engine.c main.c
ADDGLBL.h ENGINE.h

The Polynomial Integer Add-on 73

You will also have other files specific to your platform, but the files above are the only ones we will be
modifying. The purpose of each file will be explained in detail aswe proceed through the tutorial.

At this point, you should verify that you can compile your add-on and load it into Tecplot.

If you are unable to compile or load your add-on, we recommend that you refer to Chapter 2 “ Creating Add-
ons Under UNIX” or Chapter 3, “ Creating Add-ons Under Windows” in the ADK User’s Manual before
proceeding.

SOURCE FILES

Since this add-on has no dialog, we will only be dealing with four files:

main.c, engine.c, ADDGLBL.h and ENGINE.h.

Filemain.c

Thisfile contains the add-on registration routine. If you open the file, you will see acall to
TecUtilCurveRegisterExtCrvFit. Itisthisfunction that registersthe extended curve-fit add-on
with Tecplot. Inmain.c, thecall to TecUtilCurveRegisterExtCrvFit should appear asfollows:

TecUtilCurveRegisterExtCrvFit (ADDON NAME,
XYDataPointsCallback,
ProbeValueCallback,
CurvelInfoStringCallback,
NULL, /* CurveSettingsCallback */
NULL) ; /* AbbreviatedSettingsString-
Callback */

Notice that parameters five and six are NULL. This is because this add-on has no settings which may be
configured.

Since the extended curve-fit feature is unique to Version 9.0 and later, notice that the InitTecAddon ()
function contains version checking. This ensures that previous versions of Tecplot cannot load extended
curve-fit add-ons.

We will define the three registered callbacksin engine. ¢ and prototype them in ENGINE. h.

File ENGINE.h

Open ENGINE. h and verify that the following lines exist:

extern Boolean t STDCALL XYDataPointsCallback(FieldData pa RawIndV,
FieldData pa RawDepV,

CoordScale e IndVCoordScale,

CoordScale e DepVCoordScale,

LgIndex t NumRawPts,
LgIndex t NumCurvePts,

EntIndex t XYMapNum,
char *CurveSettings,
double *IndCurveValues,
double *DepCurveValues) ;

extern Boolean t STDCALL CurvelInfoStringCallback(FieldData pa RawIndV,

74 The Polynomial Integer Add-on

FieldData pa RawDepV,
Coordscale e

IndVCoordScale,
CoordsScale e
DepVCoordScale,
LgIndex t NumRawPts,
EntIndex t XYMapNum,
char *CurveSettings,
char **Curveln-

foString) ;

extern Boolean t STDCALL ProbeValueCallback (FieldData pa RawIndV,
FieldData pa RawDepV,
CoordScale e IndVCoordScale,
CoordScale e DepVCoordScale,

LgIndex t NumRawPts,
LgIndex t NumCurvePts,
EntIndex t XYMapNum,

char *CurveSettings,
double ProbeIndValue,
double *ProbeDepValue) ;

Each of these functionswill be defined in engine.c.

engine.c

When the source files are created, they are filled with code that will compute a simple average of the depen-
dent values. This codeis not needed for this add-on and should be deleted. Deletethe SimpleAverage ()
function and al of the code in the callback functions (do not delete the function declarations themselves).

In engine.c we will define the three callbacks that are prototyped above. First we will deal with the
function that actually performs the curve-fit. The function is called PolyInt () . It is based on amethod
given in the Stineman article from Creative Computing (July, 1980). Much of thistutoria will focus on
manipulating the datainto aform that the PolyInt () function can use. The agorithm used here will not
be explained since it is beyond the scope of this tutorial.

ThePolyInt () function takesan array that we call Data and some information about the contents of the
array. The Data array is separated into four separate blocks.

® Block 1: Raw independent data values.

® Block 2: Raw dependent data val ues.

® Block 3: Calculated independent values (based on the number of points on the calculated curve).
® Block 4: Calculated dependent values (to befilled in by PolyInt () function).

We will aso pass the indices of the start of each block, the number of raw data points, and the number of
points on the calculated curve to the PolyInt () function.

Note the following code in engine.c just below the last #include statement:

*

/
Interpolate y=f(x) using the method given in Stineman article from
Creative Computing (July 1980). At least 3 points required for
interpolation, if fewer then use linear interpolation...

* *F * * *

The Polynomial Integer Add-on 75

* Data is treated as a 1 based array, while 1lx,ly,1lxn,lyn are treated as
base.

@param npts

number of original data points
@param 1x

location of x data points
@param ly

location of y data points
@param nptn

number of points on the fitted curve
@param lxn

location of fitted x points
@param lyn

location of fitted y points
@param data

working array

* %k ok Ok k kO Ok Ok ¥ ¥ * * ¥ ¥

*

*/
void PolyInt (int npts,
int 1x,
int ly,
int nptn,
int 1xn,
int lyn,

double *data)

int j,31,1i,1ix,jx,kx,1ixx, jxx;
double xv,yv,dydx,dydxl,s,y0,dyj,dyjl;

j =1;
jl1 = j+1;

/* Isolate the data(lx+j) and the data(lx+j+1l) that bracket xv... */
for (i=1; i<=nptn; i++)
{
xv = datal[lxn+i];
while (xv > datallx+jl])

{
J++;
1 = j+1;

}

if (npts == 1)
yv = datally+jl;

if (npts == 2)
yv = datal[ly+2]-(datal[lx+jl] -xv)*(datally+jl]l-datally+3jl)/
(datallx+jl] -datallx+3jl);

if (npts >= 3)

{

The Polynomial Integer Add-on

thru

/*
* Calculate the slope at the jth point (from fitting a circle

* 3 points and getting slope of circle).

*/
ix = 1;
ix = 2;
kx = 3;
if (3 !'= 1)
{
ix = j-1;
jx = 3;
kx = j+1;
}

dydx = (((datal[ly+jx]-datal[ly+ix])*
(pow(data[lx+kx] -data[1x+jx],2) +
pow(data[ly+kx] -datally+jx],2)) +
(datal[ly+kx] -datal[ly+jx]) *
(pow (data[lx+jx] -datallx+ix],2) +
pow(data[ly+jx] -data[ly+ix],2)))/

((datal[lx+jx] -data[lx+ix]) *

(pow(data[lx+kx] -data[1x+jx],2)+
pow(data[ly+kx] -datally+jx],2)) +
(data[lx+kx] -data[lx+jx]) *
(pow (data[lx+jx] -datallx+ix],2) +
pow(data[ly+jx] -datally+ix],2))));

if (§j == 1)
{
ixx = ix;
jxx = jx;

s = (datally+jxx]-datally+ixx])/(datal[lx+jxx]-

data[lx+ixx]);

if (s != 0.0)

{
if (! ((s >= 0.0 && s > dydx) || (s <= 0.0 && s < dydx)))
dydx = s+ (fabs(s)*(s-dydx))/ (fabs(s) +fabs (s-dydx)) ;
else
dydx = 2.0*s-dydx;
}

/* Calculate the slope at j+1 point. */
ix = nptn-2;
jx = nptn-1;

kx = nptn;
if (j1 != nptn)
{
ix = jl-1;
jx = j1;

The Polynomial Integer Add-on 77

78

dydx1)) ;

kx = jl+1;
}
dydxl = (((datally+jx]-datally+ix])*
(pow (data[lx+kx] -data[lx+jx],2.)+
pow(data[ly+kx] -data[ly+jx],2.))+
(datally+kx] -datal[ly+jx]) *
(pow (data[lx+jx] -datal[lx+ix],2.)+
pow(datally+jx] -datally+ix],2.)))/
((data[lx+jx] -data[lx+ix]) *
(pow (data[lx+kx] -data[lx+jx],2.)+
pow(data[ly+kx] -data[ly+jx],2.))+
(datallx+kx] -data[lx+jx]) *
(pow (data[lx+jx] -datal[lx+ix],2.)+
pow(datal[ly+jx] -datally+ix],2.))));

if (j1 == nptn)
{
ixx = jx;
jxx = kx;

s = (datally+jxx]-datally+ixx])/
(datal[lx+jxx] -data[lx+ixx]) ;
if (s != 0.0)
{
if (! ((s >= 0.0 && s > dydx1l) ||
(s <= 0.0 && s < dydxl)))
dydxl = s+ (fabs(s)*(s-dydxl))/(fabs(s)+£fabs(s-

else
dydxl = 2.0*s-dydxl;
}
}

/*

* Calculate s=slope between j and j+1 points

* y0 = y-value if linear interp used

* dyj = delta-y at the j-th point

* dyjl = delta-y at the j+l1 point

*/
s = (datal[ly+jl] -datally+jl)/(datallx+jl]-datal[lx+j]l);
yO0 = datal[ly+jl+s* (xv-datallx+3j]);
dyj = datally+jl+dydx* (xv-datal[lx+jl)-y0;
dyjl = datally+jl] +dydxl* (xv-datallx+j1l]) -yO0;
/* Calculate y... */
if (dyj*dyjl == 0.0)

yv = y0;

if (dyj*dyjl > 0.0)
yv = y0+ (dyj*dyjl) / (dyj+dyjl);
if (dyj*dyjl < 0.0)
yv = y0+ ((dyj*dyjl* (xv-datal[lx+j]l+xv-data[lx+j1l]))/
((dyj-dyjl) * (datallx+jl] -datallx+3l)));

The Polynomial Integer Add-on

}

data[lyn+i] = yv;

}

THE XYDATAPOINTSCALLBACK() FUNCTION

Knowing that the PolyInt () function usesasingle array containing all the raw and calculated indepen-
dent values, we must prepare this array in the XYDataPointsCallback function and passit on to the

PolyInt () function. Oncethe array ispassed onto PolyInt (), it will be returned with the calcul ated
pointsfilled in, at which time we must extract those points from the working array and place them into the
array that Tecplot passed to the XYDataPointsCallback () function.

See TecUtilCurveRegisterExtCrvFit () inthe ADK Reference Manual for an explanation of the
parameters of this function.

TheXYDataPointsCallback () hasthefollowing structure:
1. Allocate and initialize the working array, caled Data.

2. Fill theworking array, Data, with the raw data and the calculated independent values.

3. Passtheworking array, Data, to the PolyInt () function. Thiswill fill in the calculated dependent
values.

4. Extract the data from the working array, Data, and place into the arrays that Tecplot passed in.
5. Freethe working array.
The code for the XY DataPointsCallback() is below:

Boolean t STDCALL XYDataPointsCallback(FieldData pa RawIndV,
FieldData pa RawDepV,
CoordsScale e IndVCoordScale,
CoordScale e DepVCoordScale,

LgIndex t NumRawPts,
LgIndex t NumCurvePts,
EntIndex t XYMapNum,
char *CurveSettings,
double *IndCurveValues,
double *DepCurveValues)
{

Boolean t IsOk = TRUE;

int ii;

double *Data = NULL;

int TotalNumDataPts;

TecUtilLockStart (AddOnID) ;

/*
* Data will contain all the data points and is 1 base:
* RawIndpts
* RawDepPts
* IndCurveValues

The Polynomial Integer Add-on 79

80

* DepCurveValues

* Therefore, the array must be large enough to
* contain all these points: 2* (NumRawPts+NumCurvePts) .

*/

TotalNumDataPts = 2* (NumRawPts+NumCurvePts) ;
Data = malloc((TotalNumDataPts+1l) *sizeof (double));

if (Data != NULL)

{

/* Initialize Data to contain all zero. */
for (ii = 0; ii < TotalNumDataPts+1l; ii++)

Datal[ii] = 0;
else
IsOk = FALSE;

if (IsOk)
{
int 1x;
int ly;
int 1xn;
int lyn;

/* Setup the working array, Data.
PrepareWorkingArray (RawIndV,
RawDepV,
NumRawPts,
NumCurvePts,
&lx,
&ly,
&lxn,
&lyn,
Data) ;
/* Perform the curve fit. */
PolyInt (NumRawPts,
1x,
ly,
NumCurvePts,
1lxn,
lyn,
Data) ;

*/

/* Extract the values from Data that were placed there by the curve

fit. */

ExtractCurveValuesFromWorkingArray (NumCurvePts,

free (Data) ;

}

TecUtilLockFinish (AddOnID) ;

1xn,
lyn,
Data,
IndCurveValues,
DepCurveValues) ;

The Polynomial Integer Add-on

return IsOk;

}

Notice that in this function, the CurveSettings and XY MapNum variables are never referenced. Thisis
because there are no settings which may be configured for this curve-fit. The only information in this

function that is required by Tecplot isthe return value (TRUE or FALSE), and that the IndCurveValues and
DepCurveValues arrays arefilled. Tecplot will plot whatever values are placed in these arrays. If the values
do not make sense, the resulting plot will not make sense. The burden is on the add-on writer to make sure

that the values placed in these arrays are correct.

Also, notice that there are two functions we have referenced that must still be written. These functions take
care of steps 2 and 4 as outlined in the function structure above.

THE PREPAREWORKINGARRAY () FUNCTION

This function will fill the working array, Data, with the raw data and the cal culated independent curve

points. It will also return the indices within the Data array to the different blocks of data. As stated above:

® |x: Start of the raw Independent data.

® |y: Start of the raw Dependent data.
® |xn: Start of the calculated independent data.
® |yn: Start of the calculated dependent data.

Note the following function above the XYDataPointsCallback () function.

static void PrepareWorkingArray (FieldData pa RawIndV,

double FirstValidPoint;
double LastValidPoint;
double StepSize;

int ii;
/*
*
*
* 1x -
* ly -
* 1xn -
* lyn -
*
*
* indices,
*/

The Polynomial Integer Add-on

Start
Start
Start
Start

of
of
of
of

the
the
the
the

The PolyInt function

FieldData pa RawDepV,

LgIndex t NumRawPts,
LgIndex t NumCurvePts,
int *1x,

int *ly,

int *1xn,

int *1lyn,

double *Data)

The followint are indices to start points of
the data blocks in the 1 based arrray, Data

raw Independent data.
raw Dependent data.
calculated independent data.
calculated dependent data.

treats 1lx,ly,1lxn,lyn as 0 base

but treats Data as a 1 base array.

81

*1x = 0;

*ly = NumRawPts;

*1xn = 2*NumRawPts;

*lyn = 2*NumRawPts+NumCurvePts;

/* Fill the first blocks of the Data array with the Raw Data Values. */
for (ii = 1; ii <= NumRawPts; ii++)

Data[*1lx+ii] = TecUtilDataValueGetByRef (RawIndV, ii);

Data[*ly+iil] TecUtilDataValueGetByRef (RawDepV, ii);

}
/*

* Calculate the size of steps to take while stepping
* along the independent variable range.
*/
TecUtilDataValueGetMinMaxByRef (RawIndvV,
&FirstvValidPoint,
&LastValidPoint) ;
StepSize = (LastValidPoint-FirstValidPoint)/(NumCurvePts-1) ;

/*
* Fill the third block of the Data array with the
* calculated independent values.
*/
for (ii = 1; ii <= NumCurvePts; ii++)
{
double IndV = FirstValidPoint + (ii-1)*StepSize;
if (IndvV > LastValidPoint)
IndV = LastValidPoint;
Data[*1xn+ii] = IndV;

THE EXTRACTCURVEVALUESFROMWORKINGARRAY () FUNCTION

82

This function will extract the calculated data from the working array, Data, and place it in the arrays that
were passed to the XYDataPointsCallback () function by Tecplot. Tecplot will then use these values
to plot the curve.

Note the following function above the XYDataPointsCallback () function.

static void ExtractCurveValuesFromWorkingArray (LgIndex t NumCurvePts,

int 1xn,
int lyn,
double *Data,
double *IndCurveValues,
double *DepCurveValues)
int ii;
for (ii = 1; ii <= NumCurvePts; ii++)

The Polynomial Integer Add-on

{

IndCurveValues[ii-1l] = Datallxn+iil;
DepCurveValues [ii-1] Datallyn+iil;

}

At this point you should compile the add-on and load it into Tecplot. The curve-fit add-on is complete at this
point, however there is other functionality that may be added. In the following sections we will add the
probe value callback, and the curve information callback.

THE PROBEVALUECALLBACK() FUNCTION

The ProbeValueCallback () functionisnot required since Tecplot will perform alinear interpolation
on the pointsthat your curve-fit returns. However, if you have very few pointsin your curve, the value
returned by Tecplot’s built-in Probe function will return avalue that is not on the actual curve, but on the
approximated curve.

To avoid this problem, we will writethe ProbeValueCallback. Thiscallback will return avaluethat is
actually calculated by your curve-fit. The method we use for this particular curve-fit is outlined below:

The ProbeValueCallback hasthe following structure:
1. Check that the probed independent value is within the bounds of the raw data.

2. If the number of curve points approximating the curve is small, reassign the number of points approxi-
mating the curve to be larger.

3. Allocate and initialize the working array, called Data.
4. Fill the working array with the raw data and the cal culated independent values.

5. Insert the probed independent value into the working array, so a curve-fit is done at the actual probed
independent value. Save the relative location of this value within the working array.

6. Passtheworking array to the PolyInt () function. Thiswill fill in the cal culated dependent values.
7. Extract the probed dependent value from the working array, using the relative location saved in step 5.
8. Freetheworking array.

Note the following codein engine.c:

/* *

*/
#define NUMPTSFORPROBING 3000

/**
* This functions follows a similar process as the XYDataPointsCallback,
* except it manually inserts ProbeIndValue in the list of the indepen-

dent
* curve points. It stores the index in the Data array for that wvalue
and
* uses that relative location to find the calculated ProbeDepValue.
*/

Boolean t STDCALL ProbeValueCallback(FieldData pa RawIndV,
FieldData pa RawDepV,
CoordScale e IndVCoordScale,

The Polynomial Integer Add-on 83

CoordScale e DepVCoordScale,

LgIndex t NumRawPts,
LgIndex t NumCurvePts,
EntIndex t XYMapNum,

char *CurveSettings,
double ProbeIndValue,
double *ProbeDepValue)

Boolean t IsOk = TRUE;

int ii;

double FirstValidPoint;
double LastValidPoint;
double *Data = NULL;
int TotalNumDataPts;

TecUtilLockStart (AddOnID) ;

/* Make sure the probe is within the bounds of the data. */
TecUtilDataValueGetMinMaxByRef (RawIndV,
&FirstvValidPoint,
&LastValidPoint) ;
IsOk = (ProbeIndValue >= FirstValidPoint &&
ProbeIndValue <= LastValidPoint);

if (IsOk)
{ .
* If the Curve has too few points, crank the number of points
* on the curve up, so we get a good approximation of the curve.
*/
NumCurvePts = MAX (NUMPTSFORPROBING, NumCurvePts);

TotalNumDataPts = 2* (NumRawPts+NumCurvePts) ;
Data = malloc((TotalNumDataPts+1l) *sizeof (double)) ;
if (Data != NULL)
{
/* Initialize Data to contain all zero. */
for (ii = 0; ii < TotalNumDataPts+1l; ii++)
Datal[ii] = 0;
}
else
IsOk = FALSE;

if (IsOk)

{
int 1lx,ly,1xn,lyn;
int ProbeValueIndex = -1;

PrepareWorkingArray (RawIndV,

RawDepV,
NumRawPts,

The Polynomial Integer Add-on

NumCurvePts,

&lx,
&ly,
&lxn,
&lyn,
Data) ;

IsOk = InsertProbeValueInWorkingArray (ProbeIndValue,
NumCurvePts,
1xn,
&ProbeValueIndex,
Data) ;

if (IsOk && ProbeValueIndex != -1)

{

/* Perform the curve fit. */
PolyInt (NumRawPts,
1x,
ly,
NumCurvePts,
1xn,
lyn,
Data) ;
/* The dependent value is in the same relative location. */
/* as the probed independent value. */
*ProbeDepValue = Data[lyn+ProbeValueIndex];
}
}
if (Data != NULL)
free (Data) ;
TecUtilLockFinish (AddOnID) ;
return IsOk;

}

THE INSERTPROBEVALUEINWORKINGARRAY () FUNCTION

This function inserts the probed independent value into the working array so that the curve-fit will be per-
formed exactly at the probed value. Thisis done by marching through the calculated independent values,
and when two values that surround the probed value are found, the probed value replaces the lesser of the
two surrounding valuesin the working array. Also, the relative location of the probed valueis saved, so that
the calculated dependent value can be extracted from the working array.

Note the following code above the ProbeValueCallback () inengine.c:

static Boolean t InsertProbeValueInWorkingArray (double ProbeInd-
Value,
LgIndex t NumCurvePts,
int 1xn,
int *ProbeValueIndex,
double *Data)
{
Boolean t Found = FALSE;
int ii;

The Polynomial Integer Add-on 85

for (ii = 1; ii < NumCurvePts; ii++)
{
/* If the probed value is between the data points record its loca-
tion. */
if (ProbeIndValue >= Datal[lxn+ii] &&
ProbeIndValue <= Datal[lxn+ii+1])

*ProbeValueIndex = ii;
Datal[lxn+ii] = ProbeIndValue;
Found = TRUE;
break;

return Found;

}

Compile and load the add-on into Tecplot. Now, you should be able to probe and have area curve value be
returned rather than the linear interpolation computed by Tecplot.

THE CURVEINFOSTRINGCALLBACK () FUNCTION

TheCurveInfoStringCallback () function will passastring tothe XY-Plot Curve Info dialog. This
string can be any information you wish to present to the dialog. Typical information in this dialogs are the
curve coefficients. Sinceit is beyond the scope of thistutorial to calculate the coefficients of the curve, we
will simply present a string to the dialog.

Examinethe following codein engine.c:

Boolean t STDCALL CurveInfoStringCallback(FieldData pa RawIndV,
FieldData pa RawDepV,
CoordScale e IndVCoordScale,
CoordScale e DepVCoordScale,

LgIndex t NumRawPts,
EntIndex t XYMapNum,

char *CurveSettings,
char **CurveInfoString)

Boolean t IsOk = TRUE;

*CurveInfoString = TecUtilStringAlloc (1000, “CurveInfoString”);
strepy (*CurveInfoString, “Information about the curve goes here.\n”);
strcat (*CurveInfoString, “Such as curve coefficients.”);

return IsOk;

Again, compile and load the add-on into Tecplot. Upon running Tecplot, load rainfall.plt and change the
curve type to Extended/Polylnt. Now, call up the XY-Plot Curve Info dialog. Notice that the string we added
isnow in the dialog.

86 The Polynomial Integer Add-on

Asan exercise, add error messages to the XYDataPointsCallback () and the
ProbeValueCallback () functionsif they end up returning FALSE. Thiswill inform the user that there
was an error.

The Polynomial Integer Add-on 87

88

The Polynomial Integer Add-on

CHAPTER 13 The Simple Average Add-on

INTRODUCTION TO THE SSIMPAVG EXTENDED CURVE-FIT

SmpAvg, the Tecplot add-on you will build in thistutorial, is an example of an extended curve-fit add-on
that has settings which may be configured. The setting that we will be configuring in this add-on is the
independent variable range. This curve-fit add-on will compute the average of the data within the specified
independent variable range.

Note: For the purposes of thistutorial, it is assumed that you have aready read the chapters “ Creating Add-
ons Under Windows” and/or “Creating Add-ons Under UNIX” in the ADK User’s Manual, and that you
have successfully created and compiled a set of starter files. All of the code from this point on is platform-
independent, and you can work through the tutorial using either a Windows or UNIX environment.

It is also assumed that you have created an add-on that has a dialog. If you have not done so, see Chapter 5,
“The Equate Add-on.”

GETTING STARTED

SmpAvg will use the following source code files. Each one will be automatically created by the Create-
NewAddon script (UNIX) or the Tecplot Add-on Wizard (Windows). The project and add-on names will

both be SimpAvg.

When running CreateNewAddon or the Tecplot Add-on Wizard, answer the questions as follows:
® Project Name (Base name): SimpAvg

® Add-on Name: SimpAvg

® Company Name: [Your company name]

® Typeof Add-on: Extended Curve-Fit

® Language: C

® Allow Configurable Settings: Yes

® Create Callback Function for More Accurate Probing: No
After running the CreateNewAddon script or Tecplot Add-on Wizard, you should have the following

files:
engine.c main.c guibld.c guicb.c
guidefs.c ADDGLBL.h ENGINE.h GUIDEFS.h

You will also have other files specific to your platform, but the files above are the only ones we will be
dealing with. The purpose of each file will be explained in detail as we proceed through the tutorial.

At this point, you should verify that you can compile your add-on and load it into Tecplot.

The Simple Average Add-on 89

If you are unable to compile or load your add-on, we recommend that you refer to Chapter 2, “Creating
Add-ons Under UNIX,” or Chapter 3, “Creating Add-ons Under Windows,” in the ADK User’s Manual
before proceeding.

DESIGNING THE ADD-ON

Since this curve-fit will have settings which may be configured, we will need to make some decisions
before writing the add-on.
What arethe settings going to be?
® Use an Independent Variable Range.
® What isthe IndvarMin?
® What isthe IndvarMax?

What arethedefault settings?
® UselndvVarRange: FALSE.
® |ndVarMin: - LARGEDOUBLE (-1E+150).
® |ndVarMax: LARGEDOUBLE (1E+150).

What isthe syntax for the CurveSettings string?
® Newline delimited (spaces delimiting the ‘=" are required).

® Example:
UseIndVarRange = TRUE\n
IndVarMin = 2\n
IndVvarMax = 7\n

How to maintain the values of the settings?

® The settings string will be maintained by Tecplot; however, wewill create astruct as followsto hold the
values that are contained in the settings string.

typedef struct

{

Boolean t UseIndVarRange;
double IndVarMin;
double IndVarMax;

} CurveParams s;

® Thisstructure will be placed in ADDGLBL. h.

HANDLING THE CURVESETTINGS STRING

Thefirst thing we will do islay some groundwork for how to handle the CurveSettings string. Since
this string is maintained by Tecplot and is updated by the add-on, our add-on must know how to parse the
string.

20 The Simple Average Add-on

We will start with the function that creates the string. This function will make use of the CurveParams s

structure. If you have not done so aready, add the CurveParams_s structure, as defined above, to
ADDGLBL.h.

Now that the CurveParams_s structureisin place, we will create afunctionin engine. c called
CreateCurveSettingsString. Thisfunction will take one parameter, the CurveParams_s
structure, and return a string based on the values of the structure. The function iswritten asfollows:

Add this prototype to ENGINE. h:
char *CreateCurveSettingsString(CurveParams s CurveParams) ;

Thefollowing codeisin engine.c:

/**

* Creates a CurveSettings string based on the values

* in the CurveParams structure that is passed in.

*/
char *CreateCurveSettingsString(CurveParams s CurveParams)
{

char S[1000];

char *CurveSettings;

if (CurveParams.UseIndVarRange)

strecpy (S, ”UseIndVarRange = TRUE\n”) ;
else

strecpy (S, ”UseIndVarRange = FALSE\n”);

sprintf (&S[strlen(S)], “IndVarMin = %G\n”, CurveParams.IndVarMin) ;
sprintf (&S[strlen(S)], “IndVarMax = %G\n”, CurveParams.IndVarMax) ;

S[strlen(S)] = ‘\0’;

CurveSettings = TecUtilStringAlloc(strlen(S), “CurveSettings”);
strcpy (CurveSettings, S);

return CurveSettings;

Notice that thisfunction calls TecUtilStringAlloc. The calling function is responsible for de-

allocating the string returned by CreateCurveSettingsString. Also noticethat the string isnewline

delimited as discussed above.

Now that we have afunction that createsthe CurveSettings string, create afunction that will parse the
newline delimited string and popul ate the CurveParams_ s structure. The function that we will bewriting
will use several convenience functions that are defined in adkutil . c. This module can befound in ADK/

Samples/StateChg. Copy thefilesadkutil.c and ADKUTIL.h to your add-on development
directory. UNIX users must add these files to the Makefile, Windows users must add these files to the
project. Once these files have been added, make sure you add the line:

#include “ADKUTIL.h”

at thetop of engine.c.

The function that parsesthe CurveSettings string will take three parameters. The first is XYMapNum,
which isthe XY-map that is currently being operated on. The second isthe CurveSettings string. The

third isa pointer to the CurveParams_ s structure. This function will not only parse the
CurveSettings string, but also repair the string if the syntax is incorrect.

The Simple Average Add-on

91

Thefollowing codeisin engine.c:

/**
* This function makes use of functions found in the
* adkutil.c module to parse the CurveSettings string.

*/
void GetValuesFromCurveSettings (EntIndex t XYMapNum,
char *CurveSettings,
CurveParams s *CurveParams)
{
Boolean t IsOk = TRUE;
define MAXCHARS 50
char Command [MAXCHARS+1] ;
char ValueString [MAXCHARS+1] ;
char *CPtr;
char *ErrMsg = NULL;
if (CurveSettings != NULL && strlen(CurveSettings) > 0)
{

CPtr = CurveSettings;
while (IsOk && *CPtr)
{
if (GetArgPair (&CPtr,

Command,
ValueString,
MAXCHARS,
&ErrMsg))

{

if (Str ustrcmp(Command, “USEINDVARRANGE”) == 0)

{

Boolean t UseRange;
IsOk = Macro GetBooleanArg (Command,

ValueString,
&UseRange,
&ErrMsg) ;
if (IsOk)
CurveParams->UseIndVarRange = UseRange;
}
else if (Str ustrcmp (Command, “INDVARMIN”) == 0)
{
double Min;
IsOk = Macro GetDoubleArg (Command,
ValueString,
-LARGEDOUBLE,
LARGEDOUBLE,
&Min,
&ErrMsg) ;
if (IsOk)
CurveParams->IndVarMin = Min;
}
else if (Str ustrcmp (Command, “INDVARMAX”) == 0)
{

The Simple Average Add-on

double Max;
IsOk = Macro GetDoubleArg (Command,

ValueString,
-LARGEDOUBLE,
LARGEDOUBLE,
&Max,
&ErrMsg) ;
if (IsOk)
CurveParams->IndVarMax = Max;
}
else
{

ErrMsg = TecUtilStringAlloc((strlen(Command)+100),
“error message”) ;

sprintf (ErrMsg, “Unknown argument: %s.”, Command) ;
IsOk = FALSE;

) }

else /* GetArgPair Failed. */
IsOk = FALSE;
}

}

else /* CurveSettings is an invalid string. */
IsOk = FALSE;

/* Repair the string. Display the Error Message if needed. */
if (!IsOk)

char *NewCurveSettings = NULL;

InitializeCurveParams (CurveParams) ;

NewCurveSettings = CreateCurveSettingsString (*CurveParams) ;

if (NewCurveSettings != NULL)
{
TecUtilCurveSetExtendedSettings (XYMapNum, NewCurveSettings) ;
TecUtilStringDealloc (&NewCurveSettings) ;
if (ErrMsg != NULL)
{
TecUtilDialogErrMsg (ErrMsg) ;
TecUtilStringDealloc (&ErrMsg) ;

}

Notice at the bottom of this function we repair the CurveSettings string if it wasinvalid. It could be
that the syntax was wrong, or that the string had not yet been initialized. Either way, we call the function
InitializeCurveParams () inwhichwe setup the CurveParams_s structure with default values.
Then, we create anew CurveSettings string, which is constructed with the default values. Finally, we
set the CurveSettings string for the current XY-map, XYMapNum, by calling
TecUtilCurveSetExtendedSettings ().

The Simple Average Add-on 93

THE INITIALIZECURVEPARAMS() FUNCTION

Examine the following codein engine.c:

void InitializeCurveParams (CurveParams s *CurveParams)
CurveParams->UseIndVarRange = FALSE;
CurveParams->IndVarMin -LARGEDOUBLE;
CurveParams->IndVarMax LARGEDOUBLE;

}

Now that we have the laid groundwork for handling the CurveSettings string, we can move on to
creating the rest of the add-on.

REGISTERING THE ADD-ON WITH TECPLOT

Thefirst thing that must happen when the add-on is loaded into Tecplot is that it must be registered. In
main.c thereisafunction:

TecUtilCurveRegisterExtCrvFit (ADDON NAME,
XYDataPointsCallback,
NULL, /* ProbeValueCallback */
CurvelInfoStringCallback,
CurveSettingsCallback,
AbbreviatedSettingsStringCallback) ;

This function will register the curve-fit add-on with Tecplot. Notice that parameter three is NULL. Thisis
because we are not adding the ProbeValueCallback.

Notice the version checking codeinmain. c aswell. Thisisrequired since the extended curve-fit featureis
unigue to Tecplot Versions 9 and later.

At this point verify that the add-on will compile and load into Tecplot.

CREATING THE DIALOG

In this step we will create the dialog that will be displayed when the user clicks Curve Settings on the Map-
ping/Zone Style' Curves page when the Curve Typeis of type SimpAvg. Please note that we highly recom-
mend that the curve-fit dialog be modal.

The dialog will have five controls, one toggle, two text fields, and two |abels.

94 The Simple Average Add-on

1. Load gui.lay into Tecplot, select Tecplot GUI Builder from the Tools menu and edit the layout asfol-
lows:

* Use Independent Variable Range

Min
Max

There will be callbacks associated with each of the text fields, and the toggle button. So that
TGB will create meaningful variable names for these controls, we will change their
properties in Tecplot. Also, notice that the CurveParams s structure has members for
each text field and the toggle.

Note: Although the text fields and buttons are referred to as controls, they are in reality
Tecplot text field objects, sincethey existin alayout file.

2. Double-click on the Use Independent Variable Range toggle and select Options. In the Macro Function
field, type VarName=UseIndVarRange. Thiswill give the calback a meaningful name.

3. Appropriate names for the text fields are IndVarMin and IndVarMax. Although we will not be perform-
ing any operationsin the text field callbacks, giving them meaningful namesis recommended. Set the label-
namesto “VarName=Min" and “VarName=Max".

4. Now, double-click on the dia og frame and verify that the frame nameis as follows:
ID=1 MODE=MODAL TITLE=“Simple Average”

5. Click Go Build on the TGB dialog.

Now that TGB has created new stub files, be sure to copy the toggle and text field callbacks from
guicb. tmp intoguicb.c.

LAUNCHING AND INITIALIZING THE DIALOG

The add-on dialog is launched by the CurveSettingsCallback () functionin engine.c. The
parameter XYMapSet isthe set of XY-maps that were selected in the Plot-Attributes dialog at the time
Curve Settings was clicked. The parameter XYMapSettings isastring list containing the
CurveSettings strings of all the XY-mapsin the set, XYMapSet.

When Curve Settings is clicked, the function CurveSettingsCallback () iscalled by Tecplot. Inthis
function we will save the XYMapSet and XYMapSettings S0 we can usethem later intheguicb.c
module. These variables are needed in guicb. c in order to properly initialize the dialog fields.

In engine.c verify that CurveSettingsCallback () isasfollows:

void STDCALL CurveSettingsCallback (Set pa XYMapSet,
StringList pa XYMapSettings)
TecUtilLockStart (AddOnID) ;
/*

* Save off XYMapSettings and SelectedXYMaps for use
* in the functions in guicb.c

*/

The Simple Average Add-on 95

GlobalCurve.XYMapSet
GlobalCurve.XYMapSettings

XYMapSet;
XYMapSettings;

/* Build and Launch the dialog */
BuildDialogl (MAINDIALOGID) ;
TecGUIDialogLaunch (DialoglManager) ;

TecUtilLockFinish (AddOnID) ;

GlobalCurveis aglobal structure that maintains the curve settings when the dialog is launched. This
structure must be declared in ENGINE.h as follows:

typedef struct
{
StringList pa XYMapSettings;
Set _pa XYMapSet;
} Globalcurve s;

Now declarethe variable GlobalCurve in engine. c. Just below the #include statementsin
engine.c and guicb.c, typethefollowing:
GlobalCurve s GlobalCurve;

Finally, make sure the line:
#include “ENGINE.h”

existsinguicb.c.

Initializing the Dialog

96

Initialization of the dialog istaken care of inguicb.c inthefunctionDialoglInit CB().Whenini-
tializing the dialog, we must place the correct valuesinto each field, and we must al so set the sensitivities of
each field. In the case of this dialog the sensitivities are as follows:

® yUseIndvarRange: Toggle, aways active.

® TIndvarMin: Textfield, active when UseIndvVarRange is checked.

® TIndvarMax: Textfield, active when UseIndVarRange is checked.

® Min: Labd, active when UseIndVarRange is checked.

® Max: Label, active when UseIndVarRange is checked.

To set the sensitivities we create the following function in guicb . ¢. Be sure this function is placed above
theDialoglInit CB() function:

static void UpdateMainDialogSensitivities(void)

{
Boolean t Sensitive = TecGUIToggleGet (UseIndVarRan TOG D1);
TecGUISetSensitivity (IndVarMin TF D1, Sensitive);
TecGUISetSensitivity (IndVarMax TF D1, Sensitive);
TecGUISetSensitivity (Min LBL D1, Sensitive);
TecGUISetSensitivity (Max LBL D1, Sensitive) ;

The Simple Average Add-on

If only one XY-map is selected, the XYMapSettings string list will have only one member, and that
member will bethe curvesSettings for that mapping. However, when there is more than one mapping
selected, and they have different curve settings, how do we decide to initialize the fields on the dialog? Use
the following method:

® |f al mappings have the same values for any particular field, that value will be used.
® |f the selected mappings have different values for any particular field, the default value is used.

To help initialize the fields, we will create a function that will determine the proper value for each variable.
The function will then return the appropriate value: the default value if the maps have different settings for
that value, or the value that is set if al maps have the same setting for that value. The function is defined
below.

The following function functionisin guicb.c:

static void InitializeGUICurveParams (CurveParams s *CurveParamsPtr)
char *CurveSettings = NULL;
CurveParams s OrigCurveParams;
Boolean t UseIndVarRangeIsSame = TRUE;

Boolean t IndVarMinIsSame = TRUE;
Boolean t IndVarMaxIsSame = TRUE;
int ii;

int NumMembers;

/* Get the CurveParams associated with the first mapping. */
CurveSettings = TecUtilStringListGetString(GlobalCurve.XYMapSettings, 1);
GetValuesFromCurveSettings (

(EntIndex t)TecUtilSetGetNextMember (GlobalCurve.XYMapSet, TECUTILSETNOTMEMBER
),
CurveSettings,
&OrigCurveParams) ;
if (CurveSettings != NULL)
TecUtilStringDealloc (&CurveSettings) ;

NumMembers = TecUtilStringListGetCount (GlobalCurve.XYMapSettings) ;

/*
* Compare the value of the first mapping with all the other mappings.
* This loop will not be done if there is only one mapping selected.
*/
for (ii = 2; ii <= NumMembers; ii++)
{
CurveParams s TmpParams;
CurveSettings = TecUtilStringListGetString(GlobalCurve.XYMapSettings,
ii);
GetValuesFromCurveSettings (

(EntIndex t)TecUtilSetGetNextMember (GlobalCurve.XYMapSet, ii),
CurveSettings,
&TmpParams) ;
if (UseIndvVarRangeIsSame)

The Simple Average Add-on 97

98

UseIndVarRangeIsSame = (TmpParams.UseIndVarRange ==
OrigCurveParams.UseIndVarRange) ;

if (IndVarMinIsSame)
IndVarMinIsSame = (TmpParams.IndVarMin == OrigCurveParams.IndVarMin) ;

if (IndvVarMaxIsSame)
IndVarMaxIsSame = (TmpParams.IndVarMax == OrigCurveParams.IndVarMax) ;

if (CurveSettings != NULL)
TecUtilStringDealloc (&CurveSettings) ;

/*
* Initialize the CurveParamsPtr to the default values.
* If all mappings have the same value for a particular parameter,
* use that value instead.
*/

InitializeCurveParams (CurveParamsPtr) ;

if (UseIndVarRangeIsSame)

CurveParamsPtr->UseIndVarRange = OrigCurveParams.UseIndVarRange;
if (IndvarMinIsSame)

CurveParamsPtr->IndVarMin = OrigCurveParams.IndVarMin;
if (IndvarMaxIsSame)
CurveParamsPtr->IndVarMax = OrigCurveParams.IndVarMax;

Finally we will add the following function. This function will initialize the dialog fields and will be called
fromtheDialoglInit CB () function as described below. Thisfunction also calls

InitializeGUI CurveParams() which was previously defined. The TecGUIextFieldSetDouble ()
functions are convenience functions defined in the adkutil.c module.

To use these functions, be sure to add the following line to the top of guicb.c:
#include “ADKUTIL.h”

Thefollowing functionisin guicb. c below theUpdateMainDialogSensitivities () and below
theInitializeGUICurveParams () function:

static void UpdateMainDialog (void)

{
CurveParams s CurveParams;
InitializeGUICurveParams (&CurveParams) ;
TecGUIToggleSet (UseIndVarRan TOG D1, CurveParams.UseIndVarRange) ;
TecGUITextFieldSetDouble (IndVarMin TF D1, CurveParams.IndVarMin, ”%G") ;
TecGUITextFieldSetDouble (IndVarMax TF D1,CurveParams.IndVarMax, ”%G") ;
UpdateMainDialogSensitivities() ;

At this point it is recommended that you compile and run your add-on to make sure that the fields and
sensitivities areinitialized correctly. The dialog should appear with the Use Independent Variable Range

The Simple Average Add-on

toggle off, and the remaining controls should be insensitive. Using the Use Independent Variable Range
toggle will not change the sensitivities of the dialog at this point.

MAKING THE DIALOG OPERATIONAL

To make the dialog fully operational, there are two things that must be done. Thefirst isto update the sensi-
tivities of the text field controls when Use I ndependent Variable Rangetoggleis clicked. The second isto
make the dialog set the values when OK is clicked.

Updating the Sensitivities
To be sure that the text field sensitivities are updated when the toggle button is pressed as follows:

static void UseIndVarRan TOG D1 CB(const int *I)

{

TecUtilLockStart (AddOnID) ;

/* Make sure to update the sensitivities when the toggle button is pressed.
*/

UpdateMainDialogSensitivities() ;

TecUtilLockFinish (AddOnID) ;

}

The process to follow when OK isclicked is:
1. Collect the information from the dialog.

2. Create anew CurveSettings string.

3. Call TecUtilXYMapSetCurve () with the appropriate parameters to set the extended curve settings
for the set of XY-maps.

4. Dropthedidog.

The following function collects the information from the dialog and places it into the CurveParams
structure. The function will usethe TecGUIextFieldGetDouble () function, whichisdefined in the
adkutil.c module.

Thefollowing functionisin guicb.c abovetheDialoglOkButton CB () function:

static void AssignCurveParams (CurveParams s *CurveParams)

CurveParams->UseIndVarRange = TecGUIToggleGet (UseIndVarRan TOG D1) ;
/*
* Note this function returns a boolean alerting user whether or not
* input value is legitimate. Some error checking may be added here.
*/
TecGUITextFieldGetDouble (IndVarMin TF D1, &CurveParams->IndVarMin) ;
TecGUITextFieldGetDouble (IndVarMax TF D1, &CurveParams->IndVarMax) ;

TheDialoglOkButton CB() function tolook asfollows:

static void DialoglOkButton CB(void)

{

The Simple Average Add-on 99

/* Only unlock tecplot here because a modal dialog was launched. */
/* When curve settings change, Tecplot must be informed of the change. */

char *CurveSettings = NULL;
CurveParams s CurveParams;

/* Assign the new curve parameters from the dialog settings. */
AssignCurveParams (&CurveParams) ;

/* Create the Curve Settings string from the new curve parameters. */
CurveSettings = CreateCurveSettingsString(CurveParams) ;
if (CurveSettings != NULL)

EntIndex t Map;

TecUtilSetForEachMember (Map, GlobalCurve.XYMapSet)

{
}

TecUtilStringDealloc (&CurveSettings) ;

}

TecUtilCurveSetExtendedSettings (Map, CurveSettings);

TecGUIDialogDrop (DialoglManager) ;
TecUtilLockFinish (AddOnID) ;

}

At this point, the dialog should be fully functional. The dialog will be initialized with the correct values and
sensitivities. The sensitivities will be updated correctly, and Tecplot will be informed when the
CurveSettings string is changed.

UPDATING THE MAPPING/ZONE STYLE DIALOG

100

To update the Mapping/Zone Style dialog, we move back to the engine . c module. The
CurveSettings field of the Mapping/Zone Style dialog will befilled with the string returned by the
AbbreviatedSettingsStringCallback () function. If thisfunctionis undefined, or returns a
value of NULL, the CurveSettings string that Tecplot storeswill be used in the Mapping/Zone Style
dialog.

To create this string, we will evaluate the CurveSettings string, and create alegible output string. The
string we will produce will look like:

® |f using the Independent Variable Range, IndVarMin = 2 and IndVarMax = 7:
“IndVarRange: Min = 2; Max = 7”

® |f not using the Independent Variable Range:
“No IndVarRange”

void STDCALL AbbreviatedSettingsStringCallback (EntIndex t XYMapNum,
char *CurveSettings,
char **AbbreviatedSettings)

{

CurveParams_ s CurveParams;

The Simple Average Add-on

char *S;

TecUtilLockStart (AddOnID) ;

GetValuesFromCurveSettings (XYMapNum,
CurveSettings,
&CurveParams) ;

S = TecUtilStringAlloc (80, “Abbreviated Settings”);

if (CurveParams.UseIndVarRange)

{

sprintf (S,

“IndVar Range: Min = %G; Max = %G”,

CurveParams.IndVarMin,
CurveParams.IndVarMax) ;
*AbbreviatedSettings = S;

else

{

strcpy (S, “No IndvVarRange”) ;
*AbbreviatedSettings = S;

}

TecUtilLockFinish (AddOnID) ;

At this point, it isrecommended that you compile the add-on and verify that you can change the settings via
your dialog, and that settings are displayed on the Mapping Style dialog.

THE CURVE-FIT

The curve-fit is almost complete given the code created by the CreateNewAddon script or the Tecplot
Add-on Wizard. The curve-fit computes the average of the data. We alter the curve-fit to exclude points that
fall outside the range specified in the dialog.

THE XYDATAPOINTSCALLBACK()

We will need to alter the XYDataPointsCallback () to determine the proper independent variable
range. Thisrangeistherange limited by the extents of the data and the values specified in the Curve-Fit dia-

log. Alter the XYDataPointsCallback () asfollows:

Boolean t STDCALL XYDataPointsCallback(FieldData pa
FieldData pa
Coordscale e
Coordscale e

{

The Simple Average Add-on

EntIndex t

RawIndvV,
RawDepV,
IndVCoordScale,
DepVCoordScale,
NumRawPts,
NumCurvePts,
XYMapNum,
*CurveSettings,
*IndCurveValues,
*DepCurveValues)

101

Boolean t IsOk = TRUE;

int ii;

double Average;

double Delta = 0.0;
double IndvarMin,
IndVarMax;

CurveParams s CurveParams;

TecUtilLockStart (AddOnID) ;

/* Get the min and max values of the independent variable. */
TecUtilDataValueGetMinMaxByRef (RawIndV,

&IndvVarMin,

&IndVarMax) ;

/* Get the curve parameters */

GetValuesFromCurveSettings (XYMapNum,
CurveSettings,
&CurveParams) ;

if (CurveParams.UseIndVarRange)
{ i

* Adjust the independent variable range to fall either within
* the range of data or the range specified by the
* CurveParams structure.
*/
IndVarMin MAX (IndVarMin, CurveParams.IndVarMin) ;
IndvVarMax = MIN(IndVarMax, CurveParams.IndVarMax) ;

Delta = (IndVarMax-IndvVarMin)/ (NumCurvePts-1);

/*
* Find the average value of the raw dependent variable for the
* default curve fir (straight line at average).

*/
Average = SimpleAverage (RawDepV,
RawIndv,
NumRawPts,
IndvVarMin,
IndvVarMax) ;
/*

* Step through all the points along the curve and set the
* DepCurveValues to the Average at each IntCurveValue.

*/
for (ii = 0; ii < NumCurvePts; ii++)

{

IndCurveValues[ii] = ii*Delta + IndVarMin;

102 The Simple Average Add-on

DepCurveValues[ii] = Average;

}

TecUtilLockFinish (AddOnID) ;
return IsOk;

}

Notice that the SimpleAverage () function hasalso been changed. We are now passing more
information to the SimpleAverage () function so it can make the decision about what pointsto include
in the average value calculation. Alter the SimpleAverage () function asfollows:

/**
* Function to compute the average of the raw dependent variable for the
* default fit (straight line at average).
*
* REMOVE THIS FUNCTION FOR OTHER FITS.
*/
double SimpleAverage (FieldData pa RawDepV,
FieldData pa RawIndV,
LgIndex t NumRawPts,
double IndVarMin,
double IndVarMax)

int ii;

int Count 0;
double Sum = 0;

for (ii = 0; ii < NumRawPts; ii++)

{

double IndV = TecUtilDataValueGetByRef (RawIndV, ii+l);

/*
* Only compute the average on values that fall in the
* gpecified range of the independent variable.
*/
if (IndV >= IndVarMin && IndV <= IndVarMax)
{
Sum += TecUtilDataValueGetByRef (RawDepV, ii+l);
Count++;

}
}

return (Sum/Count);

}

The simpleAverage () functionisalso used inthe CurveInfoStringCallback () sowewill
have to alter that function as well. You will notice that the processin CurveInfoStringCallback ()
isvery similar to the process used in XYDataPointsCallback (). The
CurveInfoStringCallback () functionlooks asfollows:

Boolean t STDCALL CurveInfoStringCallback(FieldData pa RawIndV,

The Simple Average Add-on 103

FieldData pa RawDepV,
CoordScale e IndVCoordScale,
CoordScale e DepVCoordScale,
LgIndex t NumRawPts,
EntIndex t XYMapNum,

char *CurveSettings,
char **CurveInfoString)

Boolean t IsOk = TRUE;
CurveParams_ s CurveParams;
double IndVarMin, IndVarMax;
double Average;

TecUtilLockStart (AddOnID) ;

/*

* If this function is not registered with Tecplot, no curve
* information will be displayed in the XY-Curve Info dialog.
*/

*CurveInfoString = TecUtilStringAlloc (30, “CurveInfoString”);

/* Get the curve parameters. */
GetValuesFromCurveSettings (XYMapNum, CurveSettings, &CurveParams) ;

if (CurveParams.UseIndVarRange)
{ i

* Adjust the Independent variable range to fall either within

* the range of the data or the range specified by the

* CurveParams structure.

*/
IndVarMin = CurveParams.IndVarMin; /* initialize these values */
IndVarMax = CurveParams.IndVarMax;
IndVarMin = MAX(IndVarMin, CurveParams.IndVarMin) ;
IndVarMax = MIN(IndVarMax, CurveParams.IndVarMax) ;

Average = SimpleAverage (RawDepV,
RawIndv,
NumRawPts,
IndVarMin,
IndvVarMax) ;

sprintf (*CurveInfoString, “Average is: %G\n”, Average);

TecUtilLockFinish (AddOnID) ;
return IsOk;

The add-on is now complete. You should compile the add-on at this time and verify that it works as
expected.

104 The Simple Average Add-on

Asafurther exercise, add error-checking to the dialog so that the minimum value is greater than the
maximum val ue.

The process described in this manual is the preferred process for creating curve-fit add-ons with

configurable settings. Whenever creating an add-on of thistype, you should refer to this exampleas a
template.

The Simple Average Add-on 105

106 The Simple Average Add-on

INDEX

Symbols

$'READDATASET macro command, 35, 37, 53
_token variable, 28

A

AbbreviatedSettingsStringCallback function, 100
AddDataPoints function, 49
ADDGLBL.h, 11
description, 26
in LoadTxt, 40
in SimpAvg, 91
Add-On Development Root Directory, 5
ADDONGLB.h, 9
Add-ons
adding field data, 49
Animate | Planes button, 65
AnimlPlanes, 61
Browse button, 42
Compute function writing, 15
Converter, 25
create LoadTxt, 36
creating, 6
creating under Windows, 3
curve-fit add-on design, 90
curve-fit creation, 101
data converters, 25
datainterpretation, 45
dataloaders, 35
dialog callbacks, 41
dialog creation with TGB, 4
diaog field initialization, 14, 40
dialog initialization, 95
dialog launch, 95
dialogs, 62
dynamic-link libraries, 1
Equate, 11
Equate dialog creation, 12
exercises, 17, 56, 59, 71, 105
Hello Word, 9
Help, 23
implementation, 1
LoadTxt dialog creation, 38
MenuCallback modification, 9
OK button, 42

online help, 23

PolylInt description, 73

processing data, 45

reference on loading, 4

register in Tecplot, 94

shared libraries, 1

shared objects, 1

SimpAvqg description, 89

skip values, 49

state change callbacks, 70

state changes, 70

state variable set up, 14

state variables, 40

SumProbe, 57

Visual C++ creation, 3

Windows creation, 3
Advanced topics, 1

Equate exercises, 17
Animate | Planes add-on

creating dialogs, 62
AnimatePlanes function, 65, 66, 68, 69
AnimatePlanes BTN_D1 CB function, 65
Animation, 61

double buffering, 68
AnimlPlanes add-on

Animate | Planes button, 65

desciption, 61

exercises, 71

B

Browse button callback
in LoadTxt, 42

C

Code
examples, 1, 9, 11, 25, 36, 57, 61, 73
Compiling
-debug, 6
-release, 6
using Runmake, 6
Compiling the add-on, 6
Compute
writing, 15
Compute function, 14, 15

107

Converter add-on DoConversion function, 27

about, 25 writing, 27
ConverterCallback function, 26 Dol oadDelimitedText
modifying, 26 in LoadTxt, 53
CreateCurveSettingsString function, 91 Dol oadDelimitedText function, 41, 42
CreateNewAddOn, 9, 11 writing, 43
Creating add-ons Double buffering
Add-On Development Root Directory, 5 in animation, 68
creating add-ons under UNIX, 5 DT parameter
creating new add-ons, 6 in LoadTxt, 49
setting up to build add-ons under UNIX, 5 Dynamic-link libraries, 1
Curve-Fit dialog, 101
CurvelnfoStringCallback function, 86, 103 E
CurveParams, 99 Engine.c
CurveParams s, 91, 95 description, 26
description, 91 in Converter, 26, 30
CurveSettings variable, 81 in LoadTxt, 37, 45, 46, 50, 52
in SimpAvg, 90 in Polylnt, 74
CurveSettingsCallback function, 95 engine.c
CustomMake in Polylnt, 75, 83, 86
editing the CustomMake file, 7 in SimpAvg, 91, 95, 100
ENGINE.h
D in LoadTxt, 36
Data converters, 25 Engine.h
Dataloaders in Polylnt, 74
about, 35, 45 in SimpAvg, 92, 94
processing data, 45 Environment variables
DataaFName TECADDONDEVDIR, 5
in Converter, 26 TECADDONDEVPLATFORM, 5
-debug flag, 6 Equate
DepCurveValues array, 81 adding help, 23
Developer Studio creating dialogs, 12
used with TGB, 4 writing Compute function, 15
Dialog10kButton_CB function, 99 Equate add-on, 11
Dialog1HelpButton function, 23 Exercises, 17
Dialoglinit_CB function, 14, 64, 98 equate.ntml, 23
Dialog1OkButtonCallback function, 42 Examples
Dialogs code, 1, 9, 11, 25, 36, 57, 61, 73
callback implementation, 41 creating Equate dialog, 12
creating, 12 Equate add-on, 11
creating with TGB, 4 files, 1, 9, 11, 25, 36, 57, 61, 73
creation, 38, 62 source code, 1, 9, 11, 25, 36, 57, 61, 73
Curve-Fit, 101 Excercises, 17
field initialization, 40 Exercises
fields, 14 AnimlPlanes add-on, 71
in SimpAvg, 99 Equate add-on, 17
Plot Attributes, 94, 100 extending LoadTxt add-on, 56
XY -Plot Curve Info, 73, 86 extending SimpAvg add-on, 105

108

extending SumProbe add-on, 59
ExtractCurveVauesFromWorkingArray
function, 82

F

Field data
adding, 49

FieldData pa
in Equate, 15

FieldDataType Double
in LoadTxt, 49

Filer
about, 28

FileName function, 41

FileName parameter
in LoadTxt, 37

FileName text field
in LoadTxt, 42

Files
examples, 1, 9, 11, 25, 36, 57, 61, 73

FillZoneList function, 65, 70

Functions
AbbreviatedSettingsStringCallback, 100
about Get_Vars, 32
AddDataPoints, 49
AnimatePlanes, 65, 66, 68, 69
AnimatePlanes BTN_D1 CB, 65
Compute, 14, 15
ConverterCallback, 26
CreateCurveSettingsString, 91
CurvelnfoStringCallback, 86, 103
CurveSettingsCallback, 95
Dialog10kButton CB, 99
Dialog1lHelpButton, 23
Dialoglinit_CB, 14, 64, 98
Dialog1OkButtonCallback, 42
DoConversion, 27
DoConversion writing, 27
DoLoadDelimitedText, 41, 42
ExtraCurveVauesFromWorkingArray, 82
FileName, 41
FillZoneList, 65, 70
get_token, 28, 30
GetVariableNames, 45
GetVars, 28
GUI_TextFieldGetDouble, 99
GUI_TextFieldGetString, 43
GUI_TextFieldSetDouble, 98

GUI_TextFieldSetString, 15
InitializeCurveParams, 93
InitTecAddOn, 9, 26, 35, 40, 58, 64, 74
InsertProbeVa uelnWorkingArray, 85
IsBlankLine, 43, 45

LoaderCallback, 37

L oader Sel ectedCallback, 37
MenuCallback, 9, 58

modifying ConverterCallback, 26
modifying GetV ariableNames, 56
modifying LoadDelimitedText, 56
MyProbeCallback, 59

Passl, 50

Pass2, 50

PolyInt, 75, 79, 83
PrepareWorkingArray, 81
ProbeVaueCallback, 83
SimpleAverage, 75, 103
StateChangeCallback, 70

strtok, 44

TeclO, 25

TecUtil, 27, 57, 58
TecUtilCurveRegisterExtCrvFit, 74, 79
TecUtil CurveSetExtendedSettings, 93
TecUtilDataNodeSetByRef, 49
TecUtilDataSetAddZone, 49
TecUtilDataSetCreate, 49
TecUtilDataV alueSetByRef, 49
TecUtilDialogGetFileName, 42
TecUtilDialogGetVariables, 58
TecUtilHelp, 23

TecUtillmportAddL oader, 35
TecUtillmportSetL oaderI nstructions, 52
TecUtiIMenuAddOption, 9, 58
TecUtilProbel nstall Callback, 59
TecUtilStringAlloc, 91
TecUtilStringDealloc, 42
TecUtilStringListGetCount, 44
TecUtilTecDat, 27

TecUtilTecEnd, 28

TecUtil Teclni, 27

TecUtilTecZne, 27
TecUtilVarlsEnabled, 17
TecUtilZonel sEnabled, 17
UpdateMainDialogSensitivities, 98
writing Compute, 15

writing DoL ocadDelimitedText, 43
XY DataPointsCallback, 79, 81, 82, 101

109

Further reading, 1

G

Get_token function, 28, 30
Get Varsfunction

about, 32
GetV ariableNames function, 45

modifying, 56
GetVars function, 28
Graphical User Interface, 6
GS.GlobalVariable

in LoadTxt, 40
GUI builder, 6
GUI Source Code, 14
Gui.lay, 11

in LoadTxt, 38
GUI_TextFieldGetDouble function, 99
GUI_TextFieldGetString function, 43
GUI_TextFieldSetDouble function, 98
GUI_TextFieldSetString function, 15
Guibld.c, 11

description, 14

in Equate, 14
Guicb.c, 11

description, 14

in AnimlPlanes, 63, 64

in Equate, 14, 15

in LoadTxt, 37, 40, 41, 42
guicb.c

in SimpAvg, 95, 97, 98, 99
Guich.tmp

description, 14

in AnimlPlanes, 63
guicb.tmp

in SimpAvg, 95
Guidefs.c, 11

description, 14

in Equate, 14
GUIDEFS.h, 11

description, 14

in Equate, 14

H

Hello World, 9

Help, 23
adding to Equate Add-on, 23
equate.ntml, 23
TecUtilHelp, 23

110

IndCurveVaues array, 81
InitializeCurveParams function, 93
InitializeGUICurveParams, 98
InitTecAddOn function, 9, 26, 35, 58, 64, 74
InitTecAddon function, 40
InsertProbeV a uelnWorkingArray function, 85
Instructions string list, 37

in LoadTxt, 37
IsBlankLine function, 43, 45

L
Libraries
libtec, 6
libtec, 6
LineCount
in LoadTxt, 49
LineCount parameter
in LoadTxt, 46
LoadDelimitedText function
modifying, 56
LoaderCallback function, 37
L oaderSel ectedCallback function, 37
L oading add-ons
further reading, 4
LoadTxt
dialog creation, 38
LoadTxt add-on
about, 35
adding field data, 49
Browse button, 42
creating, 36
datainterpretation, 45
dialog callback implementation, 41
dialog field initialization, 40
exercises, 56
main loader function creation, 50
OK button, 42
processing data, 45
skip values, 49
state variables, 40

M

Macro commands
$'READDATASET, 35, 37, 53
Main.c, 11
about, 26

in AnimlPlanes, 70 curve-fit creation, 101

in Equate, 15 Curve-Fit dialog, 101
in LoadTxt, 40 description, 89
in SumProbe, 58, 59 diaog initialization, 95
main.c, 9 dialog launch, 95
in Polylnt, 74 dialog work, 99
in SimpAvg, 94 register in Tecplot, 94
MenuCallback function, 9, 58 SimpAvgadd-on
MessageString exercises, 105
in Converter, 27 SimpleAverage function, 75, 103
MulNum Skip callback
about, 14 in LoadTxt, 41
MyProbeCallback function, 59 Skip parameter
in AnimlPlanes, 65
O in LoadTxt, 37
OK button Skip text field, 64
in LoadTxt, 42 Skip values, 49
Online Help, 23 Source code
Online help examples, 1, 9, 11, 25, 36, 57, 61, 73
adding to Equate Add-on, 23 GUI source code, 14
equate.ntml, 23 State change callbacks
TecUtilHelp, 23 in add-ons, 70
State changes
P description, 70
Pass1 function, 50 in add-ons, 70
Pass2 function, 50 monitoring, 70
Plot Attributes dialog, 94, 100 State variables, 14
PolylInt add-on in LoadTxt, 40
arrays, 79 StateChangeCallback function, 70
DepCurveValues array, 81 String lists
description, 73 Instructions, 37
IndCurveVauesarray, 81 StringList_pa
Polylnt function, 75, 79, 83 about, 28
Polynomial Integer add-on, 73 strtok function, 44
PrepareWorkingArray function, 81 SumProbe add-on
ProbeV alueCallback function, 83 description, 57
exercises, 59
R
Reference T
loading add-ons, 4 TECADDONDEVDIR, 5
-release flag, 6 TECADDONDEVPLATFORM, 5
Runmake, 6 Tecl O function, 25
Tecplot
S register add-ons, 94
Shared libraries, 1 Tecplot GUI Builder
Shared objects, 1 description, 4
SimpAvg add-on source code, 14
configuration, 90 using, 3

111

Tecplot GUI Builder (TGB), 6
Tecplot.add, 3
TecUTtil function, 57
TecUTtil functions, 27, 58
TecUtilCurveRegisterExtCrvFit function, 74, 79
TecUtil CurveSetExtendedSettings function, 93
TecUtilDataN odeSetByRef function, 49
TecUtilDataSetAddZone function, 49
TecUtilDataSetCreate function, 49
TecUtilDataV alueSetByRef function, 49
TecUtilDia ogGetFileName function, 42
TecUtilDia ogGetV ariables function, 58
TecUtilHelp function, 23
TecUtillmportAddL oader function, 35
TecUtillmportSetlL oader| nstructions function, 52
TecUtilMenuAddOption function, 9, 58
TecUtilProblnstal | Callback function, 59
TecUtilStringAlloc function, 91
TecUtilStringDealloc function, 42
TecUtilStringListGetCount function, 44
TecUtil TecDat function, 27
TecUtil TecEnd function, 28
TecUtil Teclni function, 27
TecUtil TecZne function, 27
TecUtilVarlsEnabled function, 17
TecUtilZonel sEnabled function, 17
TGB

description, 4

used with Developer Studio, 4

112

Token variable name, 44

U
UpdateMainDialogSensitivities function, 98

V

Variables
CurveSettings, 81
XY MapNum, 81

wW

Windows
creating dialogs with TGB, 4
how to build add-ons, 3
setting up to build add-ons, 3

X

XY DataPointsCallback function, 79, 81, 82, 101
XY MapNum parameter, 91

XYMapNum variable, 81

XY-Plot Curve Info dialog, 73, 86

Z

Zonelist text field, 64

initialization, 64
ZoneSet

in AnimlPlanes, 66
ZoneSet parameter

in AnimlPlanes, 65

	Chapter 1 About Add-ons
	Introduction

	Chapter 2 Creating Add-ons under Windows
	Setting Up to Build Add-ons under Windows
	Creating an Add-on with Visual C++
	Dialog Creation with Tecplot GUI Builder

	Chapter 3 Creating Add-ons under UNIX
	Setting Up to Build Add-ons
	Creating a New Add-on
	Creating the Graphical User Interface for Your Add-on
	Compiling the Add-on
	Using Runmake
	Editing the CustomMake File

	Chapter 4 Hello World!
	Introduction to the Hello World Add-on
	Modifying the MenuCallback() Function

	Chapter 5 The Equate Add-on
	Introduction to the Equate Add-on
	Creating the Dialog
	GUI Source Code
	Setting up State Variables and Initializing the Dialog Fields
	Writing the Compute() Function
	Exercises

	Chapter 6 Extending the Equate Add-on
	Getting Started
	Editing Equate

	Chapter 7 Adding Help
	Introduction
	Creating Help

	Chapter 8 Creating a Data Converter
	Converters Versus Loaders
	How do Converters work in Tecplot?

	Introduction to the Converter Add-on
	Modifying the ConverterCallback() Function
	Writing the DoConversion() Function
	Parsing the Code
	The Get_Token() Function
	The GetVars() Function

	Chapter 9 Creating a Data Loader
	Loaders Versus Converters
	How do add-on loaders work in Tecplot?
	How does an add-on identify itself as a data loader?

	Introduction to the LoadTxt Add-on
	Creating LoadTxt
	Registering Callbacks
	The $!READATASET Interface

	Creating the Dialog
	Setting up State Variables/Initializing Dialog Fields
	Implementing Dialog Callbacks
	The FileName Text Field Callback
	The Skip Text Field Callback
	The Browse Button Callback
	The OK Button Callback

	Preparing to write the Loader Function
	File Format
	How should the input data be interpreted by Tecplot?
	To buffer or not to buffer the data?

	Export Functions
	Adding Field Data
	Skipping
	The Skip Value
	Data Set Creation/Adding Field Data to Tecplot

	The Main Loader Function
	Exercises

	Chapter 10 Extending Interactive User Interface Capabilities
	Introduction to the SumProbe Add-on
	The MenuCallback() Function
	The MyProbeCallback() Function
	Exercises

	Chapter 11 Animating
	Introduction to the AnimIPlanes Add-on
	Creating the Dialog
	Windows
	UNIX

	Setting up State Variables/Initializing Dialog Fields
	The Animate I Planes button
	Writing the AnimatePlanes() Function
	Monitoring State Changes
	Exercises

	Chapter 12 The Polynomial Integer Add-on
	Introduction to the PolyInt Extended Curve-Fit
	Getting Started
	Source Files
	File main.c
	File ENGINE.h
	engine.c

	The XYDataPointsCallback() Function
	The PrepareWorkingArray() Function
	The ExtractCurveValuesFromWorkingArray() Function
	The ProbeValueCallback() Function
	The InsertProbeValueInWorkingArray() Function
	The CurveInfoStringCallback() Function

	Chapter 13 The Simple Average Add-on
	Introduction to the SimpAvg Extended Curve-Fit
	Getting Started
	Designing the Add-on
	What are the settings going to be?
	What are the default settings?
	What is the syntax for the CurveSettings string?
	How to maintain the values of the settings?

	Handling the CurveSettings String
	The InitializeCurveParams() Function
	Registering the Add-on with Tecplot
	Creating the Dialog
	Launching and Initializing the Dialog
	Initializing the Dialog

	Making the Dialog Operational
	Updating the Sensitivities

	Updating the Mapping/Zone Style Dialog
	The Curve-Fit
	The XYDataPointsCallback()

	INDEX

