
Tecplot GUI
Builder
User’s Manual
Version 3.0
For Tecplot 10

Amtec Engineering, Inc.
Bellevue, Washington

December, 2003

ii
Copyright © 1988-2003 Amtec Engineering, Inc. All rights reserved worldwide. This manual may not be reproduced,
transmitted, transcribed, stored in a retrieval system, or translated in any form, in whole or in part, without the express
written permission of Amtec Engineering, Inc., 13920 Southeast Eastgate Way, Suite 220, Bellevue, Washington,
98005, U.S.A.

This software and documentation are furnished under license for utilization and duplication only according to the
license terms. Documentation is provided for information only. It is subject to change without notice. It should not be
interpreted as a commitment by Amtec Engineering, Inc. Amtec assumes no liability or responsibility for documenta-
tion errors or innacuracies.

SOFTWARE COPYRIGHTS

Tecplot © 1988-2003 Amtec Engineering, Inc. All rights reserved worldwide.

ENCSA Hierarchical Data Format (HDF) Software Library and Utilities © 1988-1998 The Board of Trustees of the
University of Illinois. All rights reserved. Contributors include National Center for Supercomputing Applications
(NCSA) at the University of Illinois, Fortner Software (Windows and Mac), Unidata Program Center (netCDF), The
Independent JPEG Group (JPEG), Jean-loup Gailly and Mark Adler (gzip). Bmptopnm, Netpbm © 1992 David W.
Sanderson. Dlcompat © 2002 Jorge Acereda, additions and modifications by Peter O’Gorman. Ppmtopict © 1990 Ken
Yap.

TRADEMARKS

Tecplot, Preplot, Framer and Amtec are registered trademarks or trademarks of Amtec Engineering, Inc.

Encapsulated PostScript, FrameMaker, PageMaker, PostScript, Premier—Adobe Systems, Incorporated. Ghost-
script—Aladdin Enterprises. Linotronic, Helvetica, Times—Allied Corporation. LaserWriter, Mac OS X—Apple
Computers, Incorporated. AutoCAD, DXF—Autodesk, Incorporated. Alpha, DEC, Digital—Compaq Computer Cor-
poration. Élan License Manager is a trademark of Élan Computer Group, Incorporated. LaserJet, HP-GL, HP-GL/2,
PaintJet—Hewlett-Packard Company. X-Designer—Imperial Software Technology. Builder Xcessory—Integrated
Computer Solutions, Incorporated. IBM, RS6000, PC/DOS—International Business Machines Corporation.
Bookman—ITC Corporation. X Windows—Massachusetts Institute of Technology. MGI VideoWave—MGI Software
Corporation. ActiveX, Excel, MS-DOS, Microsoft, Visual Basic, Visual C++, Visual J++, Visual Studio, Windows,
Windows Metafile—Microsoft Corporation. HDF, NCSA—National Center for Supercomputing Applications. UNIX,
OPEN LOOK—Novell, Incorporated. Motif—Open Software Foundation, Incorporated. Gridgen—Pointwise, Incor-
porated. IRIS, IRIX, OpenGL—Silicon Graphics, Incorporated. Open Windows, Solaris, Sun, Sun Raster—Sun
MicroSystems, Incorporated. All other product names mentioned herein are trademarks or registered trademarks of
their respective owners.

NOTICE TO U.S. GOVERNMENT END-USERS

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraphs (a)
through (d) of the Commercial Computer-Restricted Rights clause at FAR 52.227-19 when applicable, or in subpara-
graph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013, and/or in sim-
ilar or successor clauses in the DOD or NASA FAR Supplement. Contractor/manufacturer is Amtec Engineering, Inc.,
Post Office Box 3633, Bellevue, WA 98009-3633.

Contents
CHAPTER 1 Tecplot GUI Builder 1

New in Tecplot GUI Builder 1
Using Tecplot GUI Builder 2
How TGB Works 2

Step 1: Building and Maintaining the GUI 3
Adding Dialogs 3
Adding Controls to Dialogs 4
Adding Group Boxes and Separators 5
Adding Form Controls 6
Adding Tab Controls 7
The Resize Button 7
New Frame Name Keywords 7
Text Field Spin Controls 8

Step 2: Building the Source Code 8
TGB-Generated Text Files 8

Step 3: Modifying Your Source Code 9
Adding or Removing Controls 9
Special Coding For Option Menus 10
Adding a Menu Bar to a Dialog 11

Step 4: Compiling Your Add-On 12
Step 5: Informing Tecplot of Your New Add-On 13
Step 6: Running Your New Add-On 13

CHAPTER 2 Function Reference 15

Dialog Coordinate System 16
Function Callback Prototypes 17
C Function Syntax 21
FORTRAN Function Syntax 73

Index 81
iii

Contents

iv

1.1. New in Tecplot GUI Builder
CHAPTER 1 Tecplot GUI Builder

The Tecplot GUI Builder (TGB) is a tool for building a graphical user interface for a Tecplot
add-on. It is not necessary to use TGB—you can use other commercial graphical layout tools.
However, using TGB will allow you to quickly generate platform-independent user-interface
code.

The remainder of this document presumes you have already run CreateNewAddOn under
UNIX or Mac OS X, or the Tecplot Add-On Wizard under Windows, to get your add-on devel-
opment started. (See the Tecplot ADK User’s Manual, Chapters 2, for more details on using
these utilities.)

1.1. New in Tecplot GUI Builder

Tabtest, a sample TGB Add-on, demonstrates how to use TGB’s new features. Updated
TGB options include:

• Dynamic option menus: Dynamically add or remove items for option menus with new
application programming interfaces (APIs).

• Form controls: Sets of dialog controls which may be dynamically displayed or hidden are
now supported.

• Tab controls: Create tab pages inside dialogs.

• Spin controls: Add up/down arrows to text fields.

• New dialog APIs: Allow you to remove action area buttons such as OK and Close from
TGB dialogs.
1

Chapter 1. Tecplot GUI Builder

2

1.2. Using Tecplot GUI Builder

TGB is an add-on which generates the C or FORTRAN source code used to create dialogs and
controls (push buttons, text fields, scales, and so on).

Dialogs are laid out by creating frames in Tecplot and adding text and geometries to the
frames. TGB distinguishes among different controls based on the style of the text and on key-
words that appear in the text. TGB’s controls allow you to place new controls in a dialog easily,
without requiring you to remember the particular text style for each type of control.

If you have enabled TGB from your tecplot.add file, it will be accessible via the Tools
menu in Tecplot.

1.3. How TGB Works

Figure 1-1 shows the main steps in building a graphical user interface for your add-on using
TGB. These steps are:

1

2

3

4

5

Tecplot

TGB

Source code
for your addon

Compile and link
Your Addon

Tecplot
Layout

File

Figure 1-1. Building a graphical user interface using TGB.

1.3. How TGB Works
1. Using Tecplot and TGB (accessed via Tecplot’s Tools menu), create or open an existing
layout file that stores all information needed to define dialogs and the controls that go into
the dialogs.

2. On the TGB dialog, select a language and the control buttons you need, then click Go
Build. TGB generates source code (FORTRAN or C) to operates the controls on your GUI.

3. Modify the source code files as desired.

4. Compile and link the source code to create a shared library add-on.

5. Inform Tecplot of your new add-on.

6. Restart Tecplot—your add-on is attached.

You can repeat steps 1 through 6 as needed to make modifications to the graphical user inter-
face for your add-on. The rest of this chapter describes each step above in detail.

1.3.1. Step 1: Building and Maintaining the GUI

If you used the Tecplot Add-on Wizard or CreateNewAddOn shell script to create your add-
on, there will already be a default gui.lay file in your add-on directory, along with a number
of default source code files. You are now ready to modify and/or extend the default GUI.

The following sections describe how to create and add controls to the dialogs. Before you add
dialogs or controls to your GUI you must first start Tecplot and open the layout file that defines
your GUI.

1.3.1.1. Adding Dialogs. This section assumes you are running Tecplot, have loaded the
layout file defining your GUI, and have the Tecplot GUI Builder dialog up on the screen.

Dialogs are added by choosing either the Modeless Dialog or Modal Dialog buttons from the
TGB dialog. This will create a new frame in Tecplot. The frame will have a default size and
position. The frame name contains three important pieces of information that determine char-
acteristics of the dialog to be generated. Different keywords are used in the frame name. These
keywords are listed below along with a description.

Keyword Default Description

ID = n Dynamic (TGB
automatically
generates a
unique number).

The dialog ID is assigned to be n. Do not change this once
you start generating source code. Each dialog must have a
unique dialog ID.
3

Chapter 1. Tecplot GUI Builder

4

In addition, the frame title may also begin with a comment enclosed in square brackets. The
text inside the brackets is ignored by TGB. This is useful if you have a lot of dialogs and want
to quickly identify and pop them using Tecplot’s frame ordering function.

For example, the frame title could be:

 [This is the main dialog] ID=1 TITLE="Main Dialog" MODE=MODAL

The comment shows up first in the frame ordering dialog, so you can quickly see which dialog
this frame represents.

You can edit the frame name by double clicking on a frame in Tecplot and editing the frame
name text field. (Or choose the Edit Current Frame option from the Frame menu.)

1.3.1.2. Adding Controls to Dialogs. This section assumes you are running Tecplot, have
loaded the layout file defining your GUI, and have the Tecplot GUI Builder dialog up on the
screen.

Controls are added to dialogs by choosing any one of the Controls buttons in TGB. The control
is immediately added to the current frame in Tecplot. You can reposition the control and edit
the text of the control.

A unique name must be assigned to controls that are not plain labels, so events generated using
the control can be sent to the appropriate callback function. TGB gives you two ways to name
a control. The simplest way to name a control is to assign its name by using the Macro Func-
tion Command text field assigned to text in Tecplot. Clicking Options on the Text Details
dialog takes you to this feature.

If a name is not assigned as the Macro Function Command, TGB assigns a name by looking at
the text used for the control. Some controls must begin with a keyword identifying the control

TITLE = string Untitled The title at the top of the dialog.

MODE = mode Dynamic (the
mode is set
based on the
type of dialog
selected from
the GUI Builder
dialog).

The mode of the dialog. Choose between MODAL and
MODELESS. If you change the mode of a dialog after gener-
ating source code, you will have to move the corresponding
OK, Cancel, or Close callback functions from the
guicb.tmp file to guicb.c or guicb.F.

Keyword Default Description

1.3. How TGB Works
type. The following table lists the controls, the keyword, and text style that TGB uses to iden-
tify the control type:

For all controls except labels and push buttons, TGB can use the text after the keyword to
determine a name for the control. This is only used if the Macro Function Command field,
mentioned earlier, is not used. In order for TGB to identify the control type correctly, these
keywords must be used at the beginning of the actual text used for the control. TGB does not
look for these keywords in the Macro Function Control field. The keywords will not show up
in the compiled version of the dialog.

For example, if you have a toggle with the text 7 Include Banana, TGB
will name the control “Include Banana.” Note that 7 signifies toggles and
the radio box because it resembles a check box when it is displayed on the screen. For labels,
TGB just uses the label text. TGB limits the length of the name for controls to 31 characters so
that code generated in FORTRAN is valid.

1.3.1.3. Adding Group Boxes and Separators. Group boxes are rectangles that sur-
round groups of controls in a dialog. A group box can be added by simply adding a rectangle

 Control (X Motif) Control (Windows) Keyword Tecplot text style

Label. Static text. None. Plain text (no text box).

Form. Form. FM:Group=NN Filled text box.

Multi-line text field. Multi-line edit. T: Filled text box (multi-
line).

Multi-selection list. Multi-selection list box. MLIST: Filled text box.

Option menu. Combo box (drop-down
menu).

OPT: Filled text box.

Push button. Push button. None. Filled text box.

Radio box. Radio box. 7 Hollow text box.

Read only multi-line
text field.

Multi-line read only. TRO: Filled text box.

Scale. Slider. SC: Filled text box.

Set of tabs. Property sheet. TAB:Group=NN Filled text box.

Single-selection list. Single-selection list. SLIST: Filled text box.

Text field. Edit. TF: Filled text box.

Text field with spin. Text field with spin. TFS: Filled text box.

Toggle. Toggle. 7 Plain text.
5

Chapter 1. Tecplot GUI Builder

6

geometry to a frame in Tecplot. In addition, you can add a label to the group box. This is done
by adding the text for the label into the Macro Function field for the rectangle geometry.

Horizontal and Vertical separators can also be added by creating a simple two point line
segment geometry that is either horizontal or vertical. Note that you can press the “H” or “V”
keys on the keyboard while drawing the line segment and Tecplot will force it to be horizontal
or vertical, respectively.

1.3.1.4. Adding Form Controls. A form control is a rectangular region of a dialog which
can show and hide different sets of controls at different times.

A parent form control is a rectangular region of a dialog. A form page is a set of dialog controls
which can be shown or hidden inside the parent form control. Form pages are shown as sepa-
rate dialogs in TGB. You can add controls to them just as you would a regular TGB dialog. The
difference is that the size of a form page dialog is always exactly the same as the size as its
parent form control. Child form dialogs in TGB have a cyan background in order to distinguish
them from normal dialogs.

To create a new form in a TGB dialog, click Form. This will create a new control on the dialog
with the type FM:Group=NN, where NN is an automatically generated link group number. Do
not edit this text or the group number, since it is needed by TGB to identify the control as a
form and to identify the form pages associated with this control. When you add a new form to
a dialog it is initially empty. In order to create sets of controls, you must add form pages.

To add a form page, click Form Page. The button is active only if you have selected a form con-
trol. This will create a new dialog in TGB which is actually a form page. This new dialog (a
Tecplot frame) will have the same link group number as the Group=NN text in its parent form
control. It will also be exactly the same size as the form control it is linked to. Do not edit or
remove the group linking from this frame, or it will not be recognized by TGB as a form page.
In the frame name will be an additional keyword, FORMPAGE=T, which identifies this dialog
as a form page. See Section 1.3.1.2 for a complete list of keywords for form and tab pages.

You may add any number of form pages to a form control. Controls are added to form pages
exactly like dialogs and they are built by TGB exactly like dialogs.

In your source code, TGB will generate a variable representing each form page using the
parent form. This variable is similar to the DialogNManager variable that TGB creates for
each dialog.

1.3. How TGB Works
To set the controls for a form control to this set, call:

 GUI_FormSetCurrentPage(FormN_GManager)

Where G is the group number associated with the form and N is the form page number.

For a sample TGB Add-on which uses forms, tabs and spin controls, see the source code for
Tabtest.

Note: An add-on can have no more than twenty form or tab controls. This is because forms and
tabs make use of frame-linking, which is limited to twenty distinct linking groups.

1.3.1.5. Adding Tab Controls. Tabs are identical to forms except that tabs have an addi-
tional set of controls above the parent form area. The form is automatically changed for you
when the user clicks a tab. Everything documented about using forms also applies to tab con-
trols. Individual tab pages are added using the Tab, and Tab Page buttons on the TGB dialog.

Tab pages have the additional keyword, POS=NN, in the frame name. This specifies the posi-
tion from left to right. See Section 1.3.1.7 for a complete list of keywords for form and tab
pages.

For a sample TGB Add-on which uses forms, tabs and spin controls, see the source code for
Tabtest.

1.3.1.6. The Resize Button. If you change the size of a parent frame or tab control, you
must click Resize on the TGB dialog. This resizes all of the linked forms or tab pages to reflect
the new size of the parent form or tab. If you do not resize the tab or form pages to match the
new size of the parent control they will not be sized correctly in the final GUI.

1.3.1.7. New Frame Name Keywords. Generally, you will not have to specify the FORM-
PAGE, TABPAGE, and POS keywords yourself. They are automatically generated when the
appropriate TGB buttons are clicked. You should not edit these keywords manually. However,
if you wish to reorder a set of tab pages, you may edit the POS=n value. Note that the ordinal
n’s do not have to be consecutive, since tab pages are sorted by TGB in ascending order before
generating source code. For example:

 POS=1, POS=8, POS=10

is equivalent to

 POS=1,POS=2,POS=3
7

Chapter 1. Tecplot GUI Builder

8

You will want to change the TITLE association with the tab. This is done using the Edit
Current Frame dialog.

Each form and tab page frame must also have a linked group number, allowing TGB to associ-
ate a set of pages with a parent control. This is done automatically if you use Add Form, Add
Tab, Add Form Page, or Add Tab Page buttons. This is strongly recommended.

1.3.1.8. Text Field Spin Controls. In TGB a text field spin control is a text field with two
small arrow buttons anchored at the right end of the text field control. Spin controls are inter-
changeable with text field controls, and may be passed to any GUI_ function requiring a text
field control.

In addition to the text changed callback, spin controls also receive a callback when users click
up or down arrows. It is up to the add-on to manage the text inside the control. This typically
involves incrementing or decrementing a numeric value in the text control then re-displaying
it. However, this is not a requirement. Spin controls may contain any text which may be
changed in any way when up or down arrows are clicked.

1.3.2. Step 2: Building the Source Code

This is an easy step. Choose a Language setting on the TGB dialog, then click Go Build at the
bottom of the dialog. TGB will generate the source code for your GUI and at the same time
update the Tecplot layout file so it reflects the changes you have made. You can now exit
Tecplot and compile your add-on.

1.3.2.1. TGB-Generated Text Files. When you finish laying out one or more dialogs, save
them as a Tecplot layout file, and click Go Build at the bottom of the TGB dialog, TGB creates
the following files:

C language:

• Guicb.tmp: Template for the callback module.

Keyword Default Description

FORMPAGE=boolean FALSE TRUE if this dialog is a form page.

TABPAGE=boolean FALSE TRUE if this dialog is a tab page.

POS=n None. If this dialog is a form page, the NN is its
position, with NN=1 at the left.

TITLE="string" Page n. Title of the tab page.

1.3. How TGB Works
• Guibld.c: Interface builder module.

• GUIDEFS.h: Include file naming all of the controls plus some other stuff.

• Guidefs.c: Contains definitions of global variables.

FORTRAN language:

• Guicb.tmp: Template for the callback module.

• Guibld.F: Interface builder module.

• GUICB.INC: Include file naming all of the callback functions.

• GUIDEFS.INC: Include file naming all of the controls plus some other items.

The file guicb.tmp is the template for the guicb.c (or guicb.F) module you will be
editing to customize all of the callbacks generated by your interface. A callback is a function
that is called when the user interacts with one of the controls in your dialogs. The first time you
run TGB, just rename guicb.tmp to guicb.c (or guicb.F). Section 1.3.3.1 goes into
detail on what the guicb.c module is and how to modify it.

The files guibld.c and guibld.F are the C and FORTRAN interface build modules. You
should never have to edit these as they simply reflect any changes made to dialogs or controls
in your interface.

Note: You should never edit the file guidefs.c or the include files, GUIDEFS.h (C lan-
guage), GUIDEFS.INC and GUICB.INC (FORTRAN language). If you ever modify any of
these files, be aware that they will be overwritten the next time you run Tecplot GUI Builder.

1.3.3. Step 3: Modifying Your Source Code

The file guicb.c (or guicb.F for FORTRAN) contains the functions called whenever a
control (that is, a button or a text field) in your interface is operated by the end user. For exam-
ple, suppose you have a push button that is labeled “Eject.” TGB will then create code for a
function called Eject_BTN_CB_D1 that is called when the button is pressed. TGB names
the functions according to some base string that you provide (“Eject” in this case, see
Section 1.3.1.2 above) plus some other decoration to uniquely identify the function. Here
BTN_CB means this is a push button callback and D1 means the button resides in dialog
number 1.

1.3.3.1. Adding or Removing Controls. If you later decide to make changes to the inter-
face, and the changes involve more than just the placement of controls or shape of the dialog,
you must make changes to the guicb.c or guicb.F file.
9

Chapter 1. Tecplot GUI Builder

10
For example, if you add a new push button to a dialog you would perform the following steps:

1. Look at the guicb.tmp template file that is generated. It contains a new callback function
for the new button.

2. Cut and paste this new function from guicb.tmp to the existing guicb.c or guicb.F
file. You can then add code to carry out the button press action.

If you remove a control from a dialog, it is not necessary to edit guicb.c or guicb.F. How-
ever, if you do not, you will end up with a callback function that is never called.

If you rename a control, you should look at guicb.tmp and see how TGB has now named
things, then edit guicb.c or guicb.F. Change the name of the callback function to match.

1.3.3.2. Special Coding For Option Menus. Option menus require special callback
coding.

Dynamic Option Menus:

In addition to specifying a static string for the options, you may also call the new dynamic
option menu functions. These dynamically add and remove strings from the option menu at run
time.

The new dynamic option menu APIs are similar to the GUI_List APIs. For example,
GUI_OptionMenuDeleteAllItems() removes all items in an option menu. (See the
API reference for further information.)

Using C:

When generating interface code in C, TGB creates a static string in the guicb.tmp file that is
used to store the options for the option menu. For example, if you have an option menu control
with the name “Fruit” then guicb.tmp will contain the declaration:

static char *Fruit_OPT_D1_List = "Option 1,Option 2,Option 3";

After transferring this to guicb.c you can edit the string and put the items you want to
appear in the option menu in the static string. Separate items with a comma. For example, the
resulting declaration in guicb.c may appear as:

static char *Fruit_OPT_D1_List = "apple,banana,orange";

1.3. How TGB Works
Using FORTRAN:

Option menu coding in FORTRAN is different than C, because TGB does not give you any
hints as to what to add. The procedure is the following:

1. Find the spelling of the character string created to hold the option menu items. It will be
located in the file GUIDEFS.INC. For example, if an option menu to assign colors is
named coloropt and is in the first dialog, then you will find the variable
coloropt_OPT_D1_List in GUIDEFS.INC. It is of type character*100 by
default.

2. Put all assignments for the character strings that define the option menus into the
InitTecAddon function. It is critical that this assignment is made at the very beginning.
If the color choices are “red,” “blue,” and “green,” then the statement to add to the initial-
ization function is as follows:

Subroutine IntTecAddOn()
 .
 .
 .
Call TecUtilLockOn()
coloropt_OPT_D1_List = "Red,Blue,Green"

1.3.3.3. Adding a Menu Bar to a Dialog. Menu Bars currently must be added by hand. A
menu bar is constructed as follows:

1. Call GUI_MenuBarAdd.

2. For each menu option to add to the menu bar call GUI_MenuAdd using the ID of the menu
bar as the parent.

3. For each menu item added to a menu option call GUI_MenuAddItem.

Other GUI_Menu functions are available to add things such as toggled menu items and to
modify the menu structure once it is in place. Also note that GUI_MenuAdd can be used to
create walking menus by using another menu as the parent instead of the menu bar.

The menu creation code must only be executed once and should be done so immediately after
the creation of the dialog. The best place to put the code is just after the call to BuildDia-
log() for the dialog. The example below demonstrates how to do this in a way that guaran-
tees the menu bar code will only be executed once.

Create a menu bar that has the following menu structure:

Main Menu Bar
 +-> File
 +-> New Project ..
11

Chapter 1. Tecplot GUI Builder

12
 +-> Open Project ...
 +-> Save Project ...
 +-> Setup
 +-> Solver Setup ...
 +-> Reference Values ...
 +-> Define Output
 +-> Print ...
 +-> Integeration ...
 +-> History Plot ...
 +-> Solution Plot ...

... in the callback to launch the dialog....

if (Dialog1Manager == BADDIALOGID)
 {
 BuildDialog1(MAINDIALOGID);

 MenuBar = GUI_MenuBarAdd(Dialog1Manager);

 FileMenu = GUI_MenuAdd(MenuBar,"File");
 NewProject_item = GUI_MenuAddItem(FileMenu,"New Project...",
 NewProject_MN1_D1_CB);
 OpenProject_item = GUI_MenuAddItem(FileMenu,"Open Project...",
 OpenProject_MN1_D1_CB);
 SaveProject_item = GUI_MenuAddItem(FileMenu,"Save Project...",
 SaveProject_MN1_D1_CB)

 SetupMenu = GUI_MenuAdd(MenuBar,"Setup");

 SolverSetup_item = GUI_MenuAddItem(SetupMenu,"Solver Setup...",
 SolverSetup_MN2_D1_CB);

 ReferenceVal_item = GUI_MenuAddItem(SetupMenu,"Reference Values...",
 ReferenceVal_MN2_D1_CB);

 DefineOutput_menu = GUI_MenuAdd(SetupMenu,"Define Output");
 PrintOutput_item = GUI_MenuAddItem(DefineOutput_menu,"Print...",
 PrintOutput_MN2_D1_CB);
 IntegrationO_item = GUI_MenuAddItem(DefineOutput_menu,"Integration...",
 IntegrationO_MN2_D1_CB);
 HistoryPlotO_item = GUI_MenuAddItem(DefineOutput_menu,"History Plot...",
 HistoryPlotO_MN2_D1_CB);
 SolutionPlot_item = GUI_MenuAddItem(DefineOutput_menu,"Solution Plot...",
 SolutionPlot_MN2_D1_CB);
 }
...

1.3.4. Step 4: Compiling Your Add-On

UNIX and Mac OS X: Compiling the add-on consists of running the Runmake shell script
provided in the distribution. You can run Runmake with no parameters and you will be
prompted for the options, or you can put the options on the command line. For example, if your
platform is sgix.62, use:

Runmake sgix.62 -debug

1.3. How TGB Works
Note: Always use the -debug flag when developing add-ons. Only when you are ready to
make a release version use the -release flag. Using -debug puts the resulting shared
library in the appropriate location so that Tecplot will know where to get it when using the
-develop flag.

Windows: In Developer Studio, click Build.

1.3.5. Step 5: Informing Tecplot of Your New Add-On

This step is only required if you are developing add-ons under UNIX or Mac OS X.

If you have just created this TGB add-on, then you must inform Tecplot of its existence by
editing the tecdev.add file in the add-on development root directory and adding the entry

$!LoadAddon "|TECADDONDIR|/libmyaddon"

Where myaddon is the base name of your add-on.

1.3.6. Step 6: Running Your New Add-On

UNIX or Mac OS X: To run the debug version of your new add-on you must set the environ-
ment variables:

TECADDONDEVDIR=myaddondevdir
TECADDONPLATFORM=myplatform

where myaddondevdir is the path to the directory above your add-on projects. This is the direc-
tory from which you run CreatNewAddOn, to create your add-on in the first place. We rec-
ommend that you add the above environment variable settings to your .cshrc or .profile
files.

myplatform is the same platform name you used with Runmake.

After setting up these environment variables, run Tecplot using:

tecplot -develop

Windows: In Developer Studio, click Go, or press F5.
13

Chapter 1. Tecplot GUI Builder

14

CHAPTER 2 Function Reference

This chapter contains functions available in TGB’s API library, libtgb.a (UNIX, Linux,
and Mac OS X) and wingui.dll (Windows).

TGB generates code that makes use of most of these functions. All functions related to dialog
creation and the addition of controls to dialogs fall into this category. Functions that will be of
most interest to developers are ones that query or set the state of existing controls.

Most functions listed in the next two sections refer to a control ID. The control ID is a unique
number given to each control that is added to a dialog. For example, if a push button is added
to a dialog, it is added using the following function call:

 C:

 Go_BTN_D1 = GUI_AddButton(DialogID,
 29,90,
 126,22,
 "Go",
 GoFunctionCallback);
15

Chapter 2. Function Reference

16
FORTRAN:

 Go_BTN_D1 = GUIF_AddButton(DialogID,
& 29,90,
& 126,22,
& ’Go’//char(0),
& GoFunctionCallback)

The above code (generated automatically by TGB) adds a button to a dialog. The button is
given a position, size, and default text. The function call itself returns a unique number that
thereafter will refer to that button. If you later wanted to desensitize the button (that is, turn it
gray and make the user unable to push it) you would use Go_BTN_D1 as follows:

C:

IsSensitive = FALSE;
GUI_SetSensitivity(Go_BTN_D1,IsSensitive);

FORTRAN:

IsSensitive = 0
IErr = GUIF_SetSensitivity(Go_BTN_D1,IsSensitive)

All C functions start with GUI_ and all FORTRAN functions start with GUIF_. Do not
attempt to call GUIF_ functions from C or GUI_ functions from FORTRAN as this will not
work. GUI_ functions assume call by value and GUIF_ functions assume call by reference.

2.1. Dialog Coordinate System

When you click Go Build on TGB, code is generated to create dialogs and place controls
within the dialogs. In order to make the resulting dialog appearance the same on all platforms
regardless of what resolution monitor you used to develop the interface, TGB uses a
coordinate system based on the height and average width of the text used in the dialogs
themselves.

When you click Go Build, TGB first scans all frames in your Tecplot session and checks to
make sure all non-text field controls are using the same size font. If this is the case, the font
height and an estimate of the average font width are used to size dialogs and controls and to
position the controls themselves. The actual values used in the generated code are really the
font width or font height times 100.

2.2. Function Callback Prototypes
Throughout the rest of this reference section the terms character width units and character
height units refer to the units used in the horizontal and vertical directions in dialogs, where
one character width unit is equal to 1/100th of the average width of the characters used in the
dialog and one character height unit is equal to 1/100th the height of the characters used in the
dialog.

For example, the following code creates a push button 30 character widths from the left edge
of the dialog and 10.4 character heights from the top edge of the dialog, with a button width
of 16 character widths and a height of 1.5 character heights:

PushButton7_BTN_D1 = GUI_ButtonAdd(Dialog1Manager
 3000, /* i.e. 30x100 */
 1040, /* i.e. 10.4x100 */
 1600, /* i.e. 16x100 */
 150, /* i.e. 1.5x100 */
 “Just Do It”,

PushButton7_BTN_D1_CB);

2.2. Function Callback Prototypes

Callback functions are called when events occur in the dialogs you create. TGB generates
default callback functions for you.

GUIIntCallback_pf

Description: Type definition for a callback function with an int * parameter. Many
of the GUI functions require you to provide a function that has this
function prototype.

Syntax: void YourCallbackName(const int *Data);

Return Value: None.

Parameters: Data

Read-only pointer. Depending on the calling function it could reference
a single integer or an entire array of integers, where the end of the list is
17

Chapter 2. Function Reference

18
identified by a zero. The context of the control issuing the call governs
the content. Guaranteed to be non-NULL.

Example 1: A callback function that receives an integer reference to a single value.
Generally this form of callback is used by TGB when a toggle or radio
button is clicked, an option menu selection changes, a scale value
changes, and so forth. See Section 2.3 for specific details.

void MySingleValueIntFunction(const int *Data)
{
 int Selection = *Data;

 /* do something useful with the integer value */
 switch (Selection)
 {
 case 1:
 {
 /* handle selection 1 */
 .
 .
 } break;
 case 2:
 {
 /* handle selection 2 */
 .
 .
 } break;
 .
 .
 default:
 {
 /* handle unexpected selection */
 .
 .
 } break;
 }
}

Example 2: A callback function that receives an integer reference to a zero terminated
array of integer values. Generally this form of callback is used by TGB
when a list changes, etc. See Section 2.3, “C Function Syntax,” for
specific details.

void MyMultiValueIntFunction(const int *Data)
{
 int *Selection = NULL;

 /* Traverse the list and do something useful */

2.2. Function Callback Prototypes
 /* with each integer value. NOTE: The end */
 /* of list marker, 0, identifies there are */
 /* no more items. */
 for (Selection = Data;
 *Selection != 0;
 Selection++)
 {
 switch (*Selection)
 {
 case 1:
 {
 /* Handle selection 1 */
 .
 .
 } break;
 case 2:
 {
 /* Handle selection 2 */
 .
 .
 } break;
 .
 .
 default:
 {
 /* Handle unexpected selection */
 .
 .
 } break;
 }
 }
}

GUITextCallback_pf

Description: Type definition for a callback function with a char* parameter. GUI
functions related to text fields and multi-line text fields require you to
provide a function that has this function prototype.

Syntax: int YourCallbackName(const char *Data);

Return Value: This function should return one if the text is valid, zero otherwise. For
example, if the text field requires the user to enter a number and he or she
enters a letter, you should return zero.
19

Chapter 2. Function Reference

20
Note: It is the responsibility of the add-on to replace the text field value if
the text is invalid.

Parameters: Data

Read-only pointer. Text string sent to the callback function by the
control issuing the call. Guaranteed to be non-NULL.

Example: A callback function that receives a text string. This form of callback is
used by TGB when a text field changes. The callback should check that
the text is a valid entry. See Section 2.3, “C Function Syntax,” for
specific details.

int MyTextFunction(const char *Text)
{
 int IsOk = TRUE; /* Assume no errors */
 TecUtilLockOn();
 /* User should have entered a number */
 /* in this text field */
 if (!isdigit(*Text))
 IsOk = FALSE; /* Needs to be a number */

 if (IsOK)
 {
 /* Do something useful with the string */
 }
 else
 {
 TecUtilDialogErrMsg("Please enter a number");
 }

 TecUtilLockOff();
 return IsOk;
}

GUIVoidCallback_pf

Description: Type definition for a callback function with no parameters. Many of the
GUI functions require you to provide a function that has this function
prototype.

Syntax: void YourCallbackName(void);

2.3. C Function Syntax
Return Value: None.

Parameters: None.

Example: A callback that does not receive any arguments. Generally this form of
callback is used by TGB when a button is clicked, a dialog is initialized, and
so on. See Section 2.3, “C Function Syntax,” for specific details.

void MyVoidFunction(void)
{
 /* check my dialog for correct a */
 /* correctly specified zone */
 if (IsSpecifiedZoneValid())
 {
 /* perform a specific operation */
 .
 .
 }
 else
 {
 TecUtilDialogErrMsg("Missing or incorrectly "
 "specified zone number.");
 }
}

2.3. C Function Syntax

For functions added in the future, refer to the file GUI.h in the include directory below the
Tecplot home directory. This file contains all of the function prototypes, sans explanations. Most
function uses are self-explanatory.

GUI_BlockForModalDialog

Description: Call this function to wait for a modal dialog to close.

Syntax: void GUI_BlockForModalDialog(Boolean_t

*DoneWithModalDialog);

Return Value: None.
21

Chapter 2. Function Reference

22
Parameters: DoneWithModalDialog

Pointer to a boolean variable which the add-on sets to TRUE to stop
blocking. Typically this is done by the add-on in the OK and Cancel
callback functions.

Example: Launch and block a modal dialog.

Boolean_t DoneWithModalDialog = FALSE

 {

 BuildDialog1(MAINDIALOGID);
 GUI_DialogLaunch(Dialog1Manager);

 GUI_BlockForModalDialog(&DoneWithModalDialog);
 /* Will not return until DoneWithModalDialog is
TRUE. */

 /* In the OK and Cancel dialog callbacks set
DoneWithModalDialog to TRUE */

 TecUtilDialogMessageBox("Finished
blocking.",MessageBox_Information);
 }

Note: Call to GUI_BlockForModalDialog() cannot be nested if the modal dialog
launches its own modal dialogs. It is only valid for a single modal dialog and will issue an
error if it is called when there is more than one modal dialog being displayed.

GUI_ButtonAdd

Description: Adds a button to a dialog. Note that you must call this function before
calling GUI_DialogLaunch().

Note: TGB automatically generates code that uses this function. Only
under rare circumstances will you need to call this function directly
yourself.

Syntax: int GUI_ButtonAdd(

 int ParentDialogID,

 int X,

2.3. C Function Syntax
 int Y,

 int Width,

 int Height,

 const char *Label,

 GUIVoidCallback_pf ButtonCallback);

Return Value: The identifier of the button.

Parameters: ParentDialogID

ID of the parent dialog. This must be a valid dialog ID.

X

Left coordinate of the button in character width units relative to the
dialog. Must be greater than or equal to zero.

Y

Top coordinate of the button in character height units relative to the
dialog. Must be greater than or equal to zero.

Width

Width of the button in character width units. Must be greater than or
equal to zero.

Height

Height of the button in character height units. Must be greater than or
equal to zero.

Label

Label of the button. Must not be NULL.

ButtonCallback

Function that performs a user-defined operation when clicked. See
GUIVoidCallback_pf for a definition example.

GUI_ButtonSetText

Description: Sets the text of a button control.
23

Chapter 2. Function Reference

24
Syntax: void GUI_ButtonSetText(int ButtonID,

 const char *NewText);

Return value: None.

Parameters: ButtonID

ID of the button.

NewText

New text for the button. This parameter cannot be NULL.

GUI_DialogAddApplyButton

Description: Call this function to add an Apply button to the action area of a TGB
modeless dialog. This function must be called before the dialog is
launched.

Syntax: int GUI_DialogAddApplyButton(int DialogID,

 GUIVoidCallback_pf ApplyButtonCallback);

Return Value: ID of the button

This ID may be passed at any time to GUI_SetSensitivity(),
setting the sensitivity of the Apply button. This function has no effect if
the action area has been disabled.

Note: Do not call this function more than once per dialog.

Parameters: DialogID

ID of the parent dialog. The dialog must be modeless.

ApplyButtonCallback

Called when the Apply button is clicked.

2.3. C Function Syntax
GUI_DialogCreateModal

Description: Creates a modal dialog and returns the ID of the dialog. A modal dialog is
one that restricts the user to acting within the dialog, and locks everything
else on the screen, until the user clicks OK or Cancel. The dialog is not
displayed until you call GUI_DialogLaunch().

Note: TGB automatically generates code that uses this function. Only
under rare circumstances will you need to call this function directly
yourself.

Syntax: int GUI_DialogCreateModal(

 int DialogParentID,

 int Width,

 int Height,

 const char *Title,

 GUIVoidCallback_pf HelpButtonCallback,

 GUIVoidCallback_pf OkButtonCallback,

 GUIVoidCallback_pf CancelButtonCallback,

 GUIVoidCallback_pf InitCallback);

Return Value: Dialog ID.

Parameters: DialogParentID

ID of the parent dialog. You can also pass MAINDIALOGID for this
parameter.

Width

Width in character width units. Must be greater than or equal to zero.

Height

Height in character height units. Must be greater than or equal to zero.

Title

Caption of the dialog. Must not be NULL.

HelpButtonCallback

Function that performs a user-defined operation when Help is clicked.
See GUIVoidCallback_pf for a definition example.
25

Chapter 2. Function Reference

26
OkButtonCallback

Function that performs a user-defined operation when OK is clicked.
See GUIVoidCallback_pf for a definition example.

CancelButtonCallback

Function that performs a user-defined operation when Cancel is
clicked. See GUIVoidCallback_pf for a definition example.

InitCallback

Function that performs a user-defined operation immediately before the
dialog is displayed. See GUIVoidCallback_pf for a definition
example.

Note: The dialog will not be displayed until GUI_DialogLaunch is
called.

GUI_DialogCreateModeless

Description: Creates a modeless dialog and returns the ID of the dialog. A modeless
dialog is one that will allow the user to interact with Tecplot and the
controls within the dialog concurrently. Note that the dialog is not
displayed until you call GUI_DialogLaunch().

Note: TGB automatically generates code that uses this function. Only
under rare circumstances will you need to call this function directly
yourself.

Syntax: int GUI_DialogCreateModeless(

 int DialogParentID,

 int Width,

 int Height,

 const char *Title,

 GUIVoidCallback_pf HelpButtonCallback,

 GUIVoidCallback_pf CloseButtonCallback,

 GUIVoidCallback_pf InitCallback);

Return Value: Dialog ID.

2.3. C Function Syntax
Parameters: DialogParentID

ID of the parent dialog. You can also pass MAINDIALOGID for this
parameter.

Width

Width in character width units. Must be greater than or equal to zero.

Height

Height in character height units. Must be greater than or equal to zero.

Title

Caption of the dialog. Must not be NULL.

HelpButtonCallback

Function that performs a user-defined operation when Help is clicked.
See GUIVoidCallback_pf for a definition example.

CloseButtonCallback

Function that performs a user-defined operation when Close is clicked.
See GUIVoidCallback_pf for a definition example.

InitCallback

Function that performs a user-defined operation immediately before the
dialog is displayed. See GUIVoidCallback_pf for a definition
example.

Note: The dialog will not be displayed until GUI_DialogLaunch is
called.

GUI_DialogDismiss

Description: Closes a dialog. Usually this is called from the OK, Close, or Cancel
button callbacks.

Note: TGB automatically generates code that uses this function. Only
under rare circumstances will you need to call this function directly
yourself.

Syntax: void GUI_DialogDismiss(int DialogID);
27

Chapter 2. Function Reference

28
Return Value: None.

Parameters: DialogID

Dialog ID.

GUI_DialogEnableActionArea

Description: Shows or hides the Close and Help buttons at the bottom of TGB
modeless dialogs. Use the function if you do not need the standard set of
buttons at the bottom of the dialog, or if you wish to use other buttons or
menu options for these functions.

This function must be called before the dialog is launched. It will assert if
called after a dialog is launched. This function does nothing if called with
a modal dialog argument.

Note: Do not call this function more than once with different values for
the ShowActionArea parameter. Once this function has been called with
FALSE, it cannot be called again on the same dialog with TRUE.

Syntax: void GUI_DialogEnableActionArea(int DialogID,

 Boolean_t ShowActionArea);

Return Value: None.

Parameters: DialogID

ID of the parent dialog.

ShowActionArea

Set to TRUE to show buttons at the bottom of the dialog, FALSE
otherwise. Since TRUE is the default, it is unnecessary to call this
function unless you wish to hide buttons.

GUI_DialogIsUp

Description: Returns ���� if a dialog is currently displayed.

2.3. C Function Syntax
Syntax: Boolean_t GUI_DialogIsUp(int DialogID);

Return Value: TRUE if the dialog is currently displayed, FALSE if not.

Parameters: DialogID

ID of the dialog.

GUI_DialogLaunch

Description: Displays a dialog created with GUI_DialogCreatexxx(). After a
dialog is launched, you cannot add any new controls to the dialog.

Syntax: void GUI_DialogLaunch(int DialogID);

Return Value: None.

Parameters: DialogID

ID of the dialog to display.

GUI_DialogSetLaunchPosition

Description: Sets the initial location of the dialog when it is launched. This is not
available in FORTRAN.

Syntax: void GUI_DialogSetLaunchPosition(int DialogID,

AnchorAlignment_e Placement,

int OffsetX,

int OffsetY);

Return Value: None.

Parameters: DialogID

ID of the dialog for which you are setting the launch position.
29

Chapter 2. Function Reference

30
Placement

The location on the dialog that is to be considered the anchor. Possible
values are:

AnchorAlignment_TopLeft

AnchorAlignment_TopCenter

AnchorAlignment_TopRight

AnchorAlignment_MiddleLeft

AnchorAlignment_MiddleCenter

AnchorAlignment_MiddleRight

AnchorAlignment_BottomLeft

AnchorAlignment_BottomCenter

AnchorAlignment_BottomRight

OffsetX

The X-position of the dialog.

OffsetY

The Y-position of the dialog.

GUI_DialogSetTitle

Description: Sets the title text of a dialog.

Syntax: void GUI_DialogSetTitle(int DialogID,

 const char *NewTitle);

Return Value: None.

Parameters: DialogID

ID of the dialog.

NewTitle

New title for the dialog. This parameter cannot be NULL.

2.3. C Function Syntax
GUI_DialogSetTopmost

Description: Sets a modal or modeless dialog to be the topmost window.

In Windows, calling this function with MakeTopmost equal to TRUE will
add the WS_EX_TOPMOST style to the dialog, otherwise the style will be
cleared. If set, the dialog will always remain on top of all other windows.

In UNIX, this function does nothing.

Syntax: void GUI_DialogSetTopmost(

 int DialogID,

 int MakeTopmost);

Parameters: DialogID

Dialog ID.

MakeTopmost

Set to one to make the dialog a topmost window, zero to make the
dialog a non-topmost window.

Return Value: None.

GUI_FormAdd

Description: Adds a new form control.

Note: TGB automatically generates code that uses this function. Only
under rare circumstances will you need to call this function directly
yourself.

Syntax: int GUI_FormAdd(int ParentDialogID,

 int X,

 int Y,

 int Width,

 int Height);

Return Value: ID of a form which can be passed to GUI_FormAddPage.
31

Chapter 2. Function Reference

32
Parameters: ParentDialogID

ID of the parent dialog.

X

Left coordinate of the control in character width units relative to the
dialog. Must be greater than or equal to zero.

Y

Top coordinate of the control in character height units relative to the
dialog. Must be greater than or equal to zero.

Width

Width of the control in character width units. Must be greater than or
equal to zero.

Height

Height of the control in character height units. Must be greater than or
equal to zero.

GUI_FormAddPage

Description: Creates a new form page.

Note: TGB automatically generates code that uses this function. Only
under rare circumstances will you need to call this function directly
yourself.

Syntax: int GUI_FormAddPage(int FormID);

Return Value: ID which can be passed to any GUI_*Add() function to add controls to
this form page, such as buttons, text fields, and so forth.

Parameters: FormID

Parent form ID.

2.3. C Function Syntax
GUI_FormSetCurrentPage

Description: Sets a specific form page to be displayed.

Syntax: void GUI_FormSetCurrent(int FormPageID);

Return Value: None.

Parameters: FormPageID

ID of the form page control (the ID returned by GUI_FormAddPage).

GUI_FrameAdd

Description: Add a frame to the specified parent dialog. A frame is a box used to
visually separate one control, or group of controls, from another.

Note: TGB automatically generates code that uses this function. Only
under rare circumstances will you need to call this function directly
yourself.

Syntax: int GUI_FrameAdd(

 int ParentDialogID,

 int X,

 int Y,

 int Width,

 int Height,

 const char *Label);

Return Value: ID of the frame control.

Parameters: ParentDialogID

ID of the parent dialog.

X

Left coordinate of the control in character width units relative to the
dialog. Must be greater than or equal to zero.
33

Chapter 2. Function Reference

34
Y

Top coordinate of the control in character height units relative to the
dialog. Must be greater than or equal to zero.

Width

Width of the control in character width units. Must be greater than or
equal to zero.

Height

Height of the control in character height units. Must be greater than or
equal to zero.

Label

Text of the label added to the upper-left hand corner of the frame. If
NULL, no label is added.

GUI_GetVersion

Description: Gets the version of the GUI API. This is not the version of TGB, but
rather the version of the GUI API function library.

Syntax: int GUI_GetVersion(void);

Return Value: The version of TGB API. The return value will be at least 100 (that is,
version 1.00).

Parameters: None.

GUI_HorzSeparatorAdd

Description: Adds a horizontal separator to a dialog.

Note: TGB automatically generates code that uses this function. Only
under rare circumstances will you need to call this function directly
yourself.

2.3. C Function Syntax
Syntax: int GUI_HorzSeparatorAdd(

 int ParentDialogID,

 int X,

 int Y,

 int Width);

Return Value: The ID of the horizontal separator.

Parameters: ParentDialogID

ID of the parent dialog.

X

Left coordinate of the control in character width units relative to the
dialog. Must be greater than or equal to zero.

Y

Top coordinate of the control in character height units relative to the
dialog. Must be greater than or equal to zero.

Width

Width of the separator in character width units. Must be greater than or
equal to zero.

GUI_LabelAdd

Description: Adds a static text label to a dialog.

Note: TGB automatically generates code that uses this function. Only
under rare circumstances will you need to call this function directly
yourself.

Syntax: int GUI_LabelAdd(

 int ParentDialogID,

 int X,

 int Y,

 const char *Label);

Return Value: The ID of the label.
35

Chapter 2. Function Reference

36
Parameters: ParentDialogID

ID of the parent dialog.

X

Left coordinate of the label in character width units relative to the
dialog. Must be greater than or equal to zero.

Y

Top coordinate of the label in character height units relative to the
dialog. Must be greater than or equal to zero.

Label

Text of the label. Must not be NULL.

GUI_LabelSetText

Description: Sets the text of a static label control.

Syntax: void GUI_LabelSetText(

 int LabelID,

 const char *LabelString);

Return Value: None.

Parameters: LabelID

ID of the label control.

LabelString

New text for the label.

2.3. C Function Syntax
GUI_ListAdd

Description: Adds a single or multi-selection list control to a dialog. After adding the
list control, you can call GUI_ListAppendItem() to add items to the
list control.

Note: TGB automatically generates code that uses this function. Only
under rare circumstances will you need to call this function directly
yourself.

Syntax: int GUI_ListAdd(

 int ParentDialogID,

 int X,

 int Y,

 int Width,

 int Height,

 int IsMultiSelection,

 GUIIntCallback_pf ValueChangedCallback);

Return Value: The ID of the control.

Parameters: ParentDialogID

ID of the parent dialog. Must be a valid ID.

X

Left coordinate of the control in character width units relative to the
dialog box. Must be greater than or equal to zero.

Y

Top coordinate of the control in character height units relative to the
dialog box. Must be greater than or equal to zero.

Width

Width of the control in character width units. Must be greater than or
equal to zero.

Height

Height of the control in character height units. Must be greater than or
equal to zero.
37

Chapter 2. Function Reference

38
IsMultiSelection

Set to TRUE for a multi-selection list box, FALSE for a single-selection
list.

ValueChangedCallback

Function that performs a user-defined operation when the list selection
changes. The data passed to the callback is a zero terminated array of
integers where each integer is the one-based index of a selected item. If
no items are selected then the first item of the array is the zero array
terminator. See GUIIntCallback_pf for a multi-value definition
example.

GUI_ListAppendItem

Description: Appends an item to a list control.

Syntax: void GUI_ListAppendItem(

 int ListID,

 const char* Item);

Return Value: None.

Parameters: ListID

ID of the list control.

Item

New list item. Must not be NULL.

GUI_ListDeallocItemList

Description: Deallocates the memory allocated when calling
GUI_ListGetSelectedItems().

Syntax: void GUI_ListDeallocItemList(int **ItemList);

2.3. C Function Syntax
Return Value: None.

Parameters: ItemList

Address of a pointer to an int. See the example for
GUI_ListGetSelectedItems().

GUI_ListDeleteAllItems

Description: Removes all the items from a list control.

Syntax: void GUI_ListDeleteAllItems(int ListID);

Return Value: None.

Parameters: ListID

ID of the list control.

GUI_ListDeleteItemAtPos

Description: Deletes an item in a list control.

Syntax: void GUI_ListDeleteItemAtPos(

 int ListID,

 int Position);

Return Value: None.

Parameters: ListID

ID of the list control.

Position

One-based index of the item to delete.
39

Chapter 2. Function Reference

40
GUI_ListDeselectAllItems

Description: Deselects all items in a list control.

Syntax: void GUI_ListDeselectAllItems(int ListID);

Return Value: None.

Parameters: ListID

ID of the list control.

GUI_ListGetItemCount

Description: Gets the number of items in a list control.

Syntax: int GUI_ListGetItemCount(int ListID);

Return Value: The number of items in the list control.

Parameters: ListID

ID of the list control.

GUI_ListGetSelectedItems

Description: Gets the indexes of all selected items in a list control. You can use this
function for both single and multi-selected list controls.

Syntax: void GUI_ListGetSelectedItems(

 int ListID,

 int **SelectedItemList,

 int *SelectedItemCount);

Return Value: None.

2.3. C Function Syntax
Parameters: ListID

ID of the list control.

SelectedItemList

Address of a pointer to an int (see the example below). Upon return,
the pointer will contain a NULL-terminated array of integers. Each
element of the array is the 1-based index of the selected item. You must
call GUI_ListDeallocItemList() to free the array.

SelectedItemCount

The number of selected items is returned in this pointer.

Example: int ListId; /* Returned from GUI_ListAdd() */
int count;
int *sel;
int i;
GUI_ListGetSelectedItems(ListId,&sel,&count);
for (i=0;i<count;i++)
 {
 /* Do something useful with sel[] */
 }
GUI_ListDeallocItemList(&sel); /* Clean up when done.
*/

GUI_ListGetString

Description: Gets the text of an item in a list box.

Syntax: char *GUI_ListGetString(

 int ListID,

 int Position);

Return Value: The text of the item at the specified position in the list control. Note that
the position is a 1-based index. You must call
TecUtilStringDealloc() to free this pointer.

Parameters: ListID

ID of the list control.
41

Chapter 2. Function Reference

42
Position

The one-based index of the item.

GUI_ListReplaceItem

Description: Replaces the text of an item in a list control.

Syntax: void GUI_ListReplaceItem(

 int List,

 const char *Item,

 int Position);

Return Value: None.

Parameters: List

ID of the list control.

Item

New text of the item. Must not be NULL.

Position

One-based index of the item to change.

GUI_ListSelectAllItems

Description: Selects all items in a list control (if multi-selection).

Syntax: void GUI_ListSelectAllItems(int ListID);

Return Value: None.

Parameters: ListID

ID of the multi-selection list control. If called for a single selection list
control it will ASSERT with an error message.

2.3. C Function Syntax
GUI_ListSetSelectedItem

Description: Selects an item in a list control.

Syntax: void GUI_ListSetSelectedItem(

 int ListID,

 int Position);

Return Value: None.

Parameters: ListID

ID of the list control.

Position

One-based position index of the item to select.

GUI_ListSetSelectedItems

Description: Selects one or more (if the list is multi-selection) items in a list control.

Syntax: void GUI_ListSetSelectedItems(

 int ListID,

 int *SelectedItemList,

 int SelectedItemCount);

Return Value: None.

Parameters: ListID

ID of the list control.

SelectedItemList

Array of one-based indices. Each element of the array is the index of an
item to select in the List control.

SelectedItemCount

Number of elements in the array.
43

Chapter 2. Function Reference

44
GUI_MenuAdd

Description: Add a menu to a menu bar or a walking menu to a menu list.

Syntax: int GUI_MenuAdd(

 int ParentMenuID,

 const char *Label);

Return Value: Returns the ID of the menu.

Parameters: ParentMenuID

ID of the menu bar or menu list that this menu is to be added.

Label

Text to place on the menu. Use an ampersand (&) to mark the
mnemonic. The character immediately following & will be the
mnemonic and the & is removed from the final text.

Example: Add a menu item to Menu Bar called Options with t as the mnemonic.

{
 int OptionMenu;
 OptionMenu = GUI_MenuAddItem(MenuBar,Op&tions);
}

In the Options menu of the menu bar, the ampersand (&) will not show, but t will be
underlined. The Options menu may be selected by pressing T on your keyboard.

GUI_MenuAddItem

Description: Add a menu item to a menu list.

Syntax: int GUI_MenuAddItem(

 int ParentMenuID,

 const char *Label,

 GUIVoidCallback_pf Callback);

Return Value: Returns the ID of the menu item.

2.3. C Function Syntax
Parameters: ParentMenuID

ID of the parent menu.

Label

Text to put on the menu item.

Callback

Name of the function to call when this menu item is selected. See
Section 2.2, “Function Callback Prototypes.”

GUI_MenuAddSeparator

Description: Add a separator to a menu list.

Syntax: void GUI_MenuAddSeparator(

 int ParentMenuID);

Return Value: None.

Parameters: ParentMenuID

ID of the menu list.

GUI_MenuAddToggle

Description: Add a menu item with a toggle to a menu list.

Syntax: int GUI_MenuAddToggle(

 int ParentMenuID,

 const char *Label,

 GUIIntCallback_pf Callback);

Return Value: ID of the menu toggle.

Parameters: ParentMenuID

ID of the parent menu list.
45

Chapter 2. Function Reference

46
Label

Text to place on the menu item. Use an ampersand (&) to mark the
mnemonic. The character immediately following & will be the
mnemonic and the & is removed from the final text. See
GUI_MenuAdd for an example of using a mnemonic.

Callback

Name of the function called when the menu item toggle is selected. See
Section 2.2, “Function Callback Prototypes.”

GUI_MenuBarAdd

Description: Add a menu bar to an existing dialog.

Syntax: int GUI_MenuBarAdd(

 int ParentDialogID);

Return Value: ID of the menu bar added.

Parameters: ParentDialogID

ID of the parent dialog.

GUI_MenuDeleteItem

Description: Delete a menu item from a menu list.

Syntax: void GUI_MenuDeleteItem(

 int MenuItemID);

Return Value: None.

Parameters: MenuItemID

ID of the menu item to delete.

2.3. C Function Syntax
GUI_MenuItemSetText

Description: Set the text for a menu item.

Syntax: void GUI_MenuItemSetText(

 int MenuItemID,

 const char *NewText);

Return Value: None.

Parameters: MenuItemID

ID of the menu item.

NewText

Text to assign to the menu item.

GUI_MenuSetToggle

Description: Set the state of a menu item toggle.

Syntax: void GUI_MenuSetToggle(

 int MenuItemID,

 int SetOn);

Return Value: None.

Parameters: MenuItemID

ID of the menu item.

SetOn

Value to assign to the toggle. One = On, zero = Off.
47

Chapter 2. Function Reference

48
GUI_OptionMenuAdd

Description: Adds an option menu control to a dialog.

Note: TGB automatically generates code that uses this function. Only
under rare circumstances will you need to call this function directly
yourself.

Syntax: int GUI_OptionMenuAdd(

 int ParentDialogID,

 int X,

 int Y,

 int Width,

 int Height,

 const char* OptionList,

 GUIIntCallback_pf ValueChangedCallback);

Return Value: ID of the control.

Parameters: ParentDialogID

ID of the parent dialog. Must be a valid dialog ID.

X

Left coordinate of the control in character width units relative to the
dialog. Must be greater than or equal to zero.

Y

Top coordinate of the control in character height units relative to the
dialog. Must be greater than or equal to zero.

Width

Width of the control in character width units. Must be greater than or
equal to zero.

Height

Height of the control in character height units. Must be greater than or
equal to zero.

2.3. C Function Syntax
OptionList

Options in the control. Separate each option with a comma. For
example, "Bart, Lisa, Homer, Marge." Options are not sorted; you can
assume the order of the items will not change. Must not be NULL.

ValueChangedCallback

Function that performs a user-defined operation when the option menu
selection changes. The data passed to the callback is a reference to the
one-based index of the selected item. See GUIIntCallback_pf for
a single-value definition example.

GUI_OptionMenuAppendItem

Description: Appends an item to an option menu control.

Syntax: void GUI_OptionMenuAppendItem(int OptionMenuID,

 const char *Item);

Return Value: None.

Parameters: OptionMenuID

 ID of the option menu control.

Item

New option menu item. Must be a valid string with length greater than
zero.

GUI_OptionMenuDeleteAllItems

Description: Remove all items from an option menu.

 Syntax: void GUI_OptionMenuDeleteAllItems(int OptionMenuID)

 Return Value: None.
49

Chapter 2. Function Reference

50
Parameters: OptionMenuID

 ID of the option menu control.

GUI_OptionMenuDeleteItemAtPos

Description: Delete an item in an option menu control.

Syntax: void GUI_OptionMenuDeleteItemAtPos(

 int OptionMenuID,

 int Position);

Return Value: None.

Parameters: OptionMenuID

 ID of the option menu.

Position

 One-based index of the item to delete.

GUI_OptionMenuGet

Description: Get the current selection in an option menu.

Syntax: int GUI_OptionMenuGet(int OptionMenuID)

Return Value: Number of the currently selected option. Options are numbered
starting at one. This function will ASSERT if there are no items in the
option menu.

Parameters: OptionMenuID

 ID of the option menu control.

2.3. C Function Syntax
GUI_OptionMenuGetItemCount

Description: Get the number of items in an option menu.

Syntax: int GUI_OptionMenuGetItemCount(int OptionMenuID)

Return Value: Number of items in the option menu.

Parameters: OptionMenuID

 ID of the option menu control.

GUI_OptionMenuGetString

Description: Get the text of an item in an option menu.

Syntax: char *GUI_OptionMenuGetString(int OptionMenuID,

 int Position);

Return Value: The text of the item at the specified position in the option menu
control. The position is a one-based index. You must call
TecUtilStringDealloc() to free this string.

Parameters: OptionMenuID

 ID of the option menu.

Position

 The one-based index of the item.

GUI_OptionMenuReplaceItem

Description: Replace the text of an item in an option menu control.

Syntax: void GUI_OptionMenuReplaceItem(

 int OptionMenuID,

 const char *NewText,
51

Chapter 2. Function Reference

52
 int Position);

Return Value: None.

Parameters: OptionMenuID

 ID of the option menu.

NewText

New text of the item. Must be a valid string with a length greater than
zero.

Position

The one-based index of the item.

GUI_OptionMenuSet

Description: Set the current option in an option menu.

Syntax: void GUI_OptionMenuSet(

int OptionMenuID,

int Selection)

Parameters: OptionMenuID

 ID of the option menu control.

 Selection

The number of the option to set as the default. Options are numbered
starting at one.

GUI_RadioBoxAdd

Description: Adds a set of radio box controls to a dialog. You must call this function
before calling GUI_DialogLaunch(). Radio boxes are limited to five
toggles.

2.3. C Function Syntax
Note: TGB automatically generates code that uses this function. Only
under rare circumstances will you need to call this function directly
yourself.

Syntax: int GUI_RadioBoxAdd(

 int ParentDialogID,

 int X,

 int Y,

 int Width,

 int Height,

 const char *Label1,

 const char *Label2,

 const char *Label3,

 const char *Label4,

 const char *Label5,

 GUIIntCallback_pf ValueChangedCallback);

Return Value: The ID of the radio box control.

Parameters: ParentDialogID

ID of the parent dialog.

X

Left coordinate of the control in character width units relative to the
dialog. Must be greater than or equal to zero.

Y

Top coordinate of the control in character height units relative to the
dialog. Must be greater than or equal to zero.

Width

Width of the control in character width units. Must be greater than or
equal to zero.

Height

Height of the control in character height units. Must be greater than or
equal to zero.
53

Chapter 2. Function Reference

54
Label1

Label of the first option button. Must not be NULL.

Label2

Label of the second radio button Must not be NULL.

Label3

Label of the third radio button. Can be NULL if Label4 and Label5 are NULL.

Label4

Label of the fourth radio button. Can be NULL if Label5 is NULL.

Label5

Label of the fifth radio button. Can be NULL.

ValueChangedCallback

Function that performs a user-defined operation when the selected
button within the radio box changes. The data passed to the callback is
a reference to the one-based index of the selected radio button. See
GUIIntCallback_pf for a single-value definition example.

GUI_RadioBoxGetToggle

Description: Get the current radio box selection.

Syntax: int GUI_RadioBoxGetToggle(int RadioBoxID);

Return Value: Number of the radio box control that is active. Toggles are numbered
starting at one.

Parameters: RadioBoxID

ID of the radio box.

2.3. C Function Syntax
GUI_RadioBoxSetToggle

Description: Sets a radio button in radio box control.

Syntax: void GUI_RadioBoxSetToggle(

 int RadioBoxID,

 int ToggleNumber);

Parameters: RadioBoxID

ID of the radio box.

ToggleNumber

One-based index of the radio button to select.

GUI_ScaleAdd

Description: Adds a scale control to a dialog.

Note: TGB automatically generates code that uses this function. Only
under rare circumstances will you need to call this function directly
yourself.

Syntax: int GUI_ScaleAdd(

 int ParentDialogID,

 int X,

 int Y,

 int Width,

 int Height,

 int ScaleMin,

 int ScaleMax,

 int DecimalPrecision,

 GUIIntCallback_pf ValueChangedCallback,

 GUIIntCallback_pf DragValueChangedCallback);

Return Value: The ID of the scale control.
55

Chapter 2. Function Reference

56
Parameters: ParentDialogID

ID of the parent dialog.

X

Left coordinate of the control in character width units relative to the
dialog.

Y

Top coordinate of the control in character height units relative to the
dialog.

Width

Width of the control in character width units.

Height

Height of the control in character height units.

ScaleMin

The minimum position of the scale. Usually zero.

ScaleMax

The maximum position of the scale.

DecimalPrecision

Specifies the number of decimal points to shift the slider value when
displaying it. For example, a slider value of 2,350 and a
DecimalPrecision value of 2 results in a display value of 23.50.

ValueChangedCallback

Function that performs a user-defined operation when the scale’s value
changes (for drag notification use the
DragValueChangedCallback). The data passed to the callback is
a reference to the scale value. See GUIIntCallback_pf for a
single-value definition example.

DragValueChangedCallback

Function that performs a user-defined operation when the scale’s value
changes while dragging the scale slider. The data passed to the callback
is a reference to the current scale value. See GUIIntCallback_pf
for a single-value definition example.

2.3. C Function Syntax
GUI_ScaleGetValue

Description: Sets the current position of a scale control.

Syntax: int GUI_ScaleGetValue(int ScaleID);

Return Value: Current value of the scale.

Parameters: ScaleID

ID of the scale.

GUI_ScaleSetLimits

Description: Set the limits (that is, minimum and maximum values) and decimal
precision of a scale control.

Syntax: void GUI_ScaleSetLimits(

 int ScaleID,

 int ScaleMin,

 int ScaleMax,

 int DecimalPrecision);

Return Value: None.

Parameters: ScaleID

ID of the scale control.

ScaleMin

Minimum value of the scale.

ScaleMax

Maximum value of the scale.

DecimalPrecision

Decimal precision of the scale. See GUI_ScaleAdd() for a
description.
57

Chapter 2. Function Reference

58
GUI_ScaleSetValue

Description: Sets the current position of a scale control.

Syntax: void GUI_ScaleSetValue(

 int ScaleID,

 int NewValue);

Return Value: None.

Parameters: ScaleID

ID of the scale.

NewValue

New value of the scale.

GUI_ScaleShowNumericDisplay

Description: Turns numeric display of a scale on or off. This function may be called at
any time.

Syntax: void GUI_ScaleShowNumericDisplay(int ScaleID,

 int ShowDisplay);

Return Value: None.

Parameters: ScaleID

ID of the scale control.

ShowDisplay

Use TRUE to show the numeric display, FALSE to hide it.

2.3. C Function Syntax
GUI_SetSensitivity

Description: Sets the sensitivity (in Windows, the enabled state) of a control.

Syntax: void GUI_SetSensitivity(

 int ControlID,

 int IsSensitive);

Return Value: None.

Parameters: ControlID

ID of the control.

IsSensitive

TRUE to set the state of the control to sensitive, FALSE otherwise.

GUI_SetVisibility

Description: Sets the visibility of a control.

Syntax: void GUI_SetVisibility(int ControlID,

 int MakeVisible);

Return Value: None.

Parameters: ControlID

ID of the control.

MakeVisible

TRUE to make the control visible, FALSE to make the control invisible.

GUI_SpinTextFieldAdd

Description: Adds a spin text field to a dialog.
59

Chapter 2. Function Reference

60
Note: TGB automatically generates code that uses the function. Only in
rare circumstances will you need to call this function directly yourself.

Syntax: int GUI_SpinTextFieldAdd(int ParentDialogID,

 int X,

 int Y,

 int Width,

 int Height,

 GUITextCallback_pf ValueChangedCallback

 GUIVoidCallback_pf ButtonUpCallback,

 GUIVoidCallback_pf ButtonDownCallback);

Return Value: ID of the control. A spin control is a kind of text field control. Thus, the
ID can be passed to any GUI_* requiring a text field control ID.

Parameters: ParentDialogID

Parent dialog ID.

X

Left coordinate of the control in character width units relative to the
dialog.

Y

Top coordinate of the control in character height units relative to the
dialog.

Width

Width of the control in character width units.

Height

Height of the control in character width units.

ValueChangedCallback

Function that performs a user-defined operation when the text values
changes. The data passed to the callback is the text’s new value. See
GUITextCallback_pf for an example.

2.3. C Function Syntax
ButtonUpCallback

Called when the up button is clicked. Typically you will increment and
redisplay the numeric value in the text control, however, this is not a
requirement.

ButtonDownCallback

Called when the down button is clicked. Typically you will decrement
and redisplay the number value in the text field, however, this is not a
requirement.

GUI_TabAdd

Description: Adds a tab control to a dialog.

Note: TGB automatically generates code that uses the function. Only in
rare circumstances will you need to call this function directly yourself.

Syntax: int GUI_TabAdd(int ParentDialogID,

 int X,

 int Y,

 int Width,

 int Height,

 GUIIntCallback ActivateCallback,

 GUIIntCallback DeactivateCallback);

Return Value: ID of the tab control. This ID is used only to identify the tab control when
adding tab pages to the control. To add controls to a tab page, you must
call GUI_TabAddPage() with the ID returned from this function.

Parameters: ParentDialogID

ID of the parent dialog.

X

Left coordinate of the control in character width units relative to the
dialog.
61

Chapter 2. Function Reference

62
Y

Top coordinate of the control in character height units relative to the
dialog.

Width

Width of the control in character width units.

Height

Height of the control in character width units.

Activate Callback

Called when a tab page is activated. The data passed is the ID of the
activated tab page.

Deactivate Callback

Called when a tab page is deactivated. The data passed is the ID of the
deactivated tab page.

GUI_TabAddPage

Description: Adds a page to a tab control. The ID returned from this function may be
passed to any GUI_*Add function to add controls such as buttons, text
fields, and so forth, to this tab page.

Note: TGB automatically generates code that uses the function. Only in
rare circumstances will you need to call this function directly yourself.

Syntax: int GUI_TabAddPage(int TabID,

 const char *Caption);

Return Value: ID of the tab page. This ID is returned from GUI_TabAdd(). It may be
passed to any GUI_*Add function to add controls such as buttons, text
fields, and so forth, to this tab page.

Parameters: TabID

Parent tab control ID.

2.3. C Function Syntax
Caption

Caption of this tab control. Must be a valid string of length greater than
zero.

GUI_TabSetCurrentPage

Description: Sets a specific tab page of a tab control as the current tab page.

Syntax: void GUI_TabSetCurrentPage(int TabID,

 int PageID);

Return Value: The ID of the text control.

Parameters: TabID

ID of the parent tab control.

PageID

ID of the page to set as the current tab page.

Note: Calling this function does not generate Activate and Deactivate callback events for the
tab page argument. These callbacks are generated only when the user clicks a tab page with
their mouse.

GUI_TextAdd

Description: Adds a multi-line text control to a dialog.

Note: TGB automatically generates code that uses this function. Only
under rare circumstances will you need to call this function directly
yourself.

Syntax: int GUI_TextAdd(int ParentDialogID,

 int X,

 int Y,

 int Width,
63

Chapter 2. Function Reference

64
 int Height,

 int IsReadOnly,

 GUITextCallback_pf ValueChangedCallback);

Return Value: The ID of the text control.

Parameters: ParentDialogID

ID of the parent dialog.

X

Left coordinate of the control in character width units relative to the
dialog. Must be greater than or equal to zero.

Y

Top coordinate of the control in character height units relative to the
dialog. Must be greater than or equal to zero.

Width

Width of the control in character width units. Must be greater than or
equal to zero.

Height

Height of the control in character height units. Must be greater than or
equal to zero.

IsReadOnly

Set to TRUE to make the control read-only, otherwise set to FALSE.

ValueChangedCallback

Function that performs a user-defined operation when the text value
changes. The data passed to the callback is the text’s new value. See
GUITextCallback_pf for a definition and example. This
parameter may be NULL if IsReadOnly is TRUE.

GUI_TextAppendString

Description: Appends a string to the end of a multi-line text control.

2.3. C Function Syntax
Syntax: void GUI_TextAppendString(

 int TextID,

 const char *TextString);

Return Value: None.

Parameters: TextID

ID of the text control.

TextString

Text to insert. Must not be NULL.

GUI_TextFieldAdd

Description: Adds a text field control to a dialog.

Note: TGB automatically generates code that uses this function. Only
under rare circumstances will you need to call this function directly
yourself.

Syntax: int GUI_TextFieldAdd(

 int ParentDialogID,

 int X,

 int Y,

 int Width,

 int Height,

 GUITextCallback_pf ValueChangedCallback);

Return Value: The ID of the text control.

Parameters: ParentDialogID

ID of the parent dialog.

X

Left coordinate of the control in character width units relative to the
dialog. Must be greater than or equal to zero.
65

Chapter 2. Function Reference

66
Y

Top coordinate of the control in character height units relative to the
dialog. Must be greater than or equal to zero.

Width

Width of the control in character width units. Must be greater than or
equal to zero.

Height

Height of the control in character height units. Must be greater than or
equal to zero.

ValueChangedCallback

Function that performs a user-defined operation when the text value
changes. The data passed to the callback is the text’s new value. See
GUITextCallback_pf for a definition and example.

GUI_TextFieldGetString

Description: Gets the text in a text field control.

Syntax: char *GUI_TextFieldGetString(int TextID);

Return Value: The text current in the control. You must call
TecUtilStringDealloc() to free the returned pointer.

Parameters: TextID

ID of the text field control.

GUI_TextFieldSetString

Description: Sets the text in a text field control. The previous contents of the text field
control are erased.

Syntax: void GUI_TextFieldSetString(

2.3. C Function Syntax
 int TextID,

 const char *TextString);

Return Value: None.

Parameters: TextID

ID of the text field control.

TextString

New string to place in the text control. Must not be NULL.

GUI_TextGetString

Description: Gets the text in a multi-line text control. Lines are separated by new line
characters (’\n’) only.

Syntax: char *GUI_TextGetString(int TextID);

Return Value: The text current in the control. You must call
TecUtilStringDealloc() to free the returned pointer.

Parameters: TextID

ID of the text control.

GUI_TextInsertString

Description: Inserts text into a multi-line text control. The next text is inserted to the
right of the current text insert position. Use GUI_TextSetInsertPos
to set the text insert position. Individual lines of the text are delimited by
the ’\n’ character.

Syntax: void GUI_TextInsertString(

 int TextID,

 const char *TextString);

Return Value: None.
67

Chapter 2. Function Reference

68
Parameters: TextID

ID of the text control.

TextString

Text to insert. Must not be NULL.

GUI_TextSetInsertPos

Description: Set the text insert position at the specified position in the text string. Text
is inserted to the right of the specified position. To insert text at the
beginning, set the insert position to zero. To insert text at the end, set the
insert position to the length of the string currently maintained by the
multi-line text control.

See also GUI_TextSetMinInsertPos and
GUI_TextSetMaxInsertPos.

In Windows, the insert position is the position of the caret.

Syntax: void GUI_TextSetInsertPos(

 int TextID,

 int Position);

Return Value: None.

Parameters: TextID

ID of the text control.

Position

Insert position within the text limits: greater than or equal to zero, and
less than or equal to the length of the text string maintained by the
multi-line text control.

2.3. C Function Syntax
GUI_TextSetMaxInsertPos

Description: Set the text insert position at the maximum position in the text string.
Text inserted at the maximum position places the text at the end of the
text string maintained by the multi-line text control.

Syntax: void GUI_TextSetMaxInsertPos(int TextID);

Return Value: None.

Parameters: TextID

ID of the text control.

GUI_TextSetMinInsertPosition

Description: Set the insert position to before the first character in text string
maintained by the multi-line text control. This is equivalent to calling
GUI_TextSetInsertPos(id,0).

Syntax: void GUI_TextSetMinInsertPos(int TextID);

Return Value: None.

Parameters: TextID

ID of the text control.

GUI_TextSetString

Description: Sets the text in a multi-line text control. The previous contents of the
multi-line text control are erased.

Syntax: void GUI_TextSetString(

 int TextID,

 const char *TextString);
69

Chapter 2. Function Reference

70
Return Value: None.

Parameters: TextID

ID of the text control.

TextString

New string to copy into the text control. Must not be NULL.

GUI_ToggleAdd

Description: Adds a toggle control to a dialog.

Note: TGB automatically generates code that uses this function. Only
under rare circumstances will you need to call this function directly
yourself.

Syntax: int GUI_ToggleAdd(

 int ParentDialogID,

 int X,

 int Y,

 int Width,

 int Height,

 const char *Label,

 GUIIntCallback_pf ValueChangedCallback);

Return Value: ID of the toggle.

Parameters: ParentDialogID

ID of the parent dialog.

X

Left coordinate of the control in character width units relative to the
dialog. Must be greater than or equal to zero.

Y

Top coordinate of the control in character height units relative to the
dialog. Must be greater than or equal to zero.

2.3. C Function Syntax
Width

Width of the control in character width units. Must be greater than or
equal to zero.

Height

Height of the control in character height units. Must be greater than or
equal to zero.

Label

Text of the control. Must not be NULL.

ValueChangedCallback

Function that performs a user-defined operation when the toggle value
changes. The data passed to the callback is a reference to the toggle
state: one if the toggle is set, otherwise zero. See
GUIIntCallback_pf for a definition example.

GUI_ToggleGet

Description: Get the current value of a toggle.

Syntax: int GUI_ToggleGet(int ToggleID);

Return Value: The current value of a toggle. Returns one if the toggle is set and zero if
unset.

Parameters: ToggleID

ID of the toggle control.

GUI_ToggleSet

Description: Sets or clears a toggle control.

Syntax: void GUI_ToggleSet(

 int ToggleID,
71

Chapter 2. Function Reference

72
 int SetOn);

Return Value: None.

Parameters: ToggleID

ID of the toggle control.

SetOn

Pass TRUE to set the toggle, FALSE to clear it.

GUI_VertSeparatorAdd

Description: Adds a vertical separator to a dialog.

Note: TGB automatically generates code that uses this function. Only
under rare circumstances will you need to call this function directly
yourself.

Syntax: int GUI_VertSeparatorAdd(

 int ParentDialogID,

 int X,

 int Y,

 int Height);

Return Value: The ID of the vertical separator.

Parameters: ParentDialogID

ID of the parent dialog.

X

Left coordinate of the control in character width units relative to the
dialog. Must be greater than or equal to zero.

Y

Top coordinate of the control in character height units relative to the
dialog. Must be greater than or equal to zero.

2.4. FORTRAN Function Syntax
Height

Height of the separator in character height units. Must be greater than
or equal to zero.

2.4. FORTRAN Function Syntax

This section shows the syntax for the FORTRAN functions equivalent to the GUI_ functions
of the previous section. For a complete discussion of how to use each function see the
corresponding GUI_ function in the previous section.

This section only documents the FORTRAN syntax and any additional notes related to
differences in how the function is used in FORTRAN as compared to the c function
equivalent.

Functions related the creation of dialogs and controls are not listed in this section. Those
functions are automatically created and maintained for you by TGB itself.

 SUBROUTINE GUIF_DialogDismiss(DialogID)

 INTEGER*4 DialogID

 INTEGER*4 FUNCTION GUIF_DialogIsUp(DialogID)

 INTEGER*4 DialogID

 SUBROUTINE GUIF_DialogLaunch(DialogID)

 INTEGER*4 DialogID

 SUBROUTINE GUIF_LabelSetText(Label,

 & LabelString)

 INTEGER*4 Label

 CHARACTER*(*) LabelString

 SUBROUTINE GUIF_ListAppendItem(List,

 & Item)

 INTEGER*4 List

 CHARACTER*(*) Item
73

Chapter 2. Function Reference

74
 SUBROUTINE GUIF_ListDeleteAllItems(List)

 INTEGER*4 List

 SUBROUTINE GUIF_ListDeleteItemAtPos(List,

 & Position)

 INTEGER*4 List

 INTEGER*4 Position

 SUBROUTINE GUIF_ListDeselectAllItems(List)

 INTEGER*4 List

 INTEGER*4 FUNCTION GUIF_ListGetItemCount(List)

 INTEGER*4 List

 SUBROUTINE GUIF_ListGetSelectedItems(List,

 & MaxSelectedItemCount,

 & SelectedItemList,

 & SelectedItemCount)

 INTEGER*4 List

 INTEGER*4 MaxSelectedItemCount

 INTEGER*4 SelectedItemList(1)

 INTEGER*4 SelectedItemCount

 SUBROUTINE GUIF_ListGetString(List,

 & Position,

 & MaxCharacters,

 & ItemString)

 INTEGER*4 List

 INTEGER*4 Position

 INTEGER*4 MaxCharacters)

 CHARACTER*(*) ItemString

 SUBROUTINE GUIF_ListReplaceItem(List,

2.4. FORTRAN Function Syntax
 & Item,

 & Position)

 INTEGER*4 List

 CHARACTER*(*) Item

 INTEGER*4 Position

 SUBROUTINE GUIF_ListSetSelectedItem(List,

 & Position)

 INTEGER*4 List

 INTEGER*4 Position

 SUBROUTINE GUIF_ListSetSelectedItems(List,

 & SelectedItemList,

 & SelectedItemCount)

 INTEGER*4 List

 INTEGER*4 SelectedItemList(1)

 INTEGER*4 SelectedItemCount

 INTEGER*4 FUNCTION GUIF_OptionMenuGet(OptionMenu)

 INTEGER*4 OptionMenu

 SUBROUTINE GUIF_OptionMenuSet(OptionMenu,

 & Selection)

 INTEGER*4 OptionMenu

 INTEGER*4 Selection

 INTEGER*4 FUNCTION GUIF_RadioBoxGetToggle(RadioBox)

 INTEGER*4 RadioBox

 SUBROUTINE GUIF_RadioBoxSetToggle(RadioBox,

 & ToggleNumber)

 INTEGER*4 RadioBox

 INTEGER*4 ToggleNumber

75

Chapter 2. Function Reference

76
 INTEGER*4 FUNCTION GUIF_ScaleGetValue(Scale)

 INTEGER*4 Scale

 SUBROUTINE GUIF_ScaleSetLimits(Scale,

 & ScaleMin,

 & ScaleMax,

 & DecimalPrecision)

 INTEGER*4 Scale

 INTEGER*4 ScaleMin

 INTEGER*4 ScaleMax

 INTEGER*4 DecimalPrecision

 SUBROUTINE GUIF_ScaleSetValue(Scale,

 & NewValue)

 INTEGER*4 Scale

 INTEGER*4 NewValue

 SUBROUTINE GUIF_SetSensitivity(Control,

 & IsSensitive)

 INTEGER*4 Control

 INTEGER*4 IsSensitive

 SUBROUTINE GUIF_SetVisibility(Control,

 & IsVisible)

 INTEGER*4 Control

 INTEGER*4 IsVisible

 SUBROUTINE GUIF_TextAppendString(TextControl,

 & TextString)

 INTEGER*4 TextControl

 CHARACTER*(*) TextString

 SUBROUTINE GUIF_TextFieldGetString(TextField,

 & MaxCharacters,

 & TextString)

2.4. FORTRAN Function Syntax
 INTEGER*4 TextField

 INTEGER*4 MaxCharacters

 CHARACTER*(*) TextString

 SUBROUTINE GUIF_TextFieldSetString(TextField,

 & TextString)

 INTEGER*4 TextField

 CHARACTER*(*) TextString

 SUBROUTINE GUIF_TextGetString(TextControl,

 & MaxCharacters,

 & TextString)

 INTEGER*4 TextControl

 INTEGER*4 MaxCharacters

 CHARACTER*(*) TextString

 SUBROUTINE GUIF_TextInsertString(TextControl,

 & TextString)

 INTEGER*4 TextControl

 CHARACTER*(*) TextString

 SUBROUTINE GUIF_TextSetInsertPos(TextControl,

 & Position)

 INTEGER*4 TextControl

 INTEGER*4 Position

 SUBROUTINE GUIF_TextSetMaxInsertPos(TextControl)

 INTEGER*4 TextControl

 SUBROUTINE GUIF_TextSetMinInsertPos(TextControl)

 INTEGER*4 TextControl

 SUBROUTINE GUIF_TextSetString(TextControl,

 & TextString)
77

Chapter 2. Function Reference

78
 INTEGER*4 Text

 CHARACTER*(*) TextString

 INTEGER*4 FUNCTION GUIF_ToggleGet(Toggle)

 INTEGER*4 Toggle

 SUBROUTINE GUIF_ToggleSet(Toggle,

 & SetOn)

 INTEGER*4 Toggle

 INTEGER*4 SetOn

 SUBROUTINE GUIF_OptionMenuDeleteItemAtPos(OptionMenu,

& Position)

 INTEGER*4 OptionMenu

 INTEGER*4 Position

 SUBROUTINE GUIF_OptionMenuAppendItem(OptionMenu,

& Item,

& Item_MAXLEN)

 INTEGER*4 OptionMenu

 CHARACTER*(*) Item

 INTEGER*4 Item_MAXLEN

 INTEGER*4 FUNCTION_GUIF_OptionMenuGetItemCount(OptionMenu)

 INTEGER*4 OptionMenu

 SUBROUTINE GUIF_OptionMenuDeleteAllItems(OptionMenu)

 INTEGER*4 OptionMenu

 SUBROUTINE STDCALL GUIF_OptionMenuGetString(OptionMenu,

& Position,

& MaxCharacters,

& ItemString,

& ItemString_MAXLEN)

2.4. FORTRAN Function Syntax
 INTEGER*4 OptionMenu

 INTEGER*4 Position

 INTEGER*4 MaxCharacters

 CHARACTER*(*) ItemString

 INTEGER*4 ItemString_MAXLEN

 SUBROUTINE GUIF_OptionMenuReplaceItem(OptionMenu,

& NewText,

& NewText_MAXLEN,

& Position)

 INTEGER*4 OptionMenu

 CHARACTER*(*) NewText

 INTEGER*4 NewText_MAXLEN

 INTEGER*4 Position

 SUBROUTINE GUIF_FormSetCurrentPage(FormID)

 INTEGER*4 FormID

 SUBROUTINE GUIF_ScaleShowNumericDisplay(ScaleID,

& ShowDisplay)

 INTEGER*4 ScaleID

 INTEGER*4 ShowDisplay

 SUBROUTINE GUIF_DialogEnableActionArea(DialogID,

& ShowActionArea)

 INTEGER*4 DialogID

 INTEGER*4 ShowActionArea

 SUBROUTINE GUIF_ListSelectAllItems(List)

 INTEGER*4 List
79

Chapter 2. Function Reference

80

Index
A
Adding controls 10
Adding dialogs or controls 3
Add-On Wizard 1

B
Building and maintaining the GUI 3
Building the source code 8
Button functions 23

C
C function syntax 21
Callback function prototypes 17
Callback functions 17
Compiling your add-on

UNIX or Windows 12
Control options in TGB 5
Controls

adding or removing 10
types and keywords 4

Coordinate system
for dialogs 16

Created files
generated by TGB 8

D
Default files

created by TGB 8
Dialog building process 3
Dialog coordinate system 16
Dialog functions 25
Dialogs

adding or creating 3

F
Files created by TGB 8
FORTRAN function syntax 73
Frame functions 33
Function callback prototypes 17

G
Generated files

created by TGB 8
GUI

building source code 8
control types and keywords 4
modifying source code 9

GUI building process 3
GUI_BlockForModalDialog 22
GUI_ButtonAdd 23
GUI_ButtonSetText 24
GUI_DialogAddApplyButton 24
GUI_DialogCreateModal 25
GUI_DialogCreateModeless 26
GUI_DialogDismiss 28
GUI_DialogEnableActionArea 28
GUI_DialogIsUp 29
GUI_DialogLaunch 29
GUI_DialogSetTitle 30
GUI_DialogSetTopmost 30
GUI_FormAdd 31
GUI_FormAddPage 32
GUI_FormSetCurrentPage 32
GUI_FrameAdd 33
GUI_GetVersion 34
GUI_HorzSeparatorAdd 34
GUI_LabelAdd 35
GUI_LabelSetText 36
81

Index

82
GUI_ListAdd 36
GUI_ListAppendItem 38
GUI_ListDeallocItemList 38
GUI_ListDeleteAllItems 38
GUI_ListDeleteItemAtPos 39
GUI_ListDeselectAllItems 39
GUI_ListGetItemCount 40
GUI_ListGetSelectedItems 40
GUI_ListGetString 41
GUI_ListReplaceItem 41
GUI_ListSelectAllItems 42
GUI_ListSetSelectedItem 42
GUI_ListSetSelectedItems 43
GUI_MenuAdd 43
GUI_MenuAddItem 44
GUI_MenuAddSeparator 45
GUI_MenuAddToggle 45
GUI_MenuBarAdd 46
GUI_MenuDeleteItem 46
GUI_MenuItemSetText 46
GUI_MenuSetToggle 47
GUI_OptionMenuAdd 47
GUI_OptionMenuAppendItem 49
GUI_OptionMenuDeleteAllItems 49
GUI_OptionMenuDeleteItemAtPos 49
GUI_OptionMenuGet 50
GUI_OptionMenuGetItemCount 50
GUI_OptionMenuGetString 51
GUI_OptionMenuReplaceItem 51
GUI_OptionMenuSet 52
GUI_RadioBoxAdd 52
GUI_RadioBoxGetToggle 54
GUI_RadioBoxSetToggle 54
GUI_ScaleAdd 54
GUI_ScaleGetValue 56
GUI_ScaleSetLimits 56
GUI_ScaleSetValue 57
GUI_ScaleShowNumericDisplay 58
GUI_SetSensitivity 58
GUI_SetVisibility 59
GUI_SpinTextFieldAdd 59
GUI_TabAdd 60
GUI_TabAddPage 62
GUI_TabSetCurrentPage 62
GUI_TextAdd 63
GUI_TextAppendString 64
GUI_TextFieldAdd 65
GUI_TextFieldGetString 66
GUI_TextFieldSetString 66

GUI_TextGetString 67
GUI_TextInsertString 67
GUI_TextSetInsertPos 68
GUI_TextSetMaxInsertPos 68
GUI_TextSetMinInsertPosition 69
GUI_TextSetString 69
GUI_ToggleAdd 70
GUI_ToggleGet 71
GUI_ToggleSet 71
GUI_VertSeparatorAdd 72
GUI’s

adding or creating 3
GUIIntCallback_pf 17
GUITextCallback_pf 19
GUIVoidCallback_pf 21

K
Keywords

for GUI controls 4

L
Label functions 35
List functions 36

M
Menu functions 47
Menus

coding for 10
Modifying your source code 9

O
Option menu functions 47
Option menus

special coding 10
Options for TGB controls 5

R
Radio box functions 52
Removing controls 10
Running your add-on 13

S
Scale functions 54
Separator functions

horizontal 34
vertical 72

Source code
building using TGB 8

modifying 9
Steps in building a GUI 3
Syntax

FORTRAN functions 73

T
Tecplot.add file 2
TGB

building source code building 8
modifying source code 9

TGB basic steps 3
TGB control options 5
TGB created files 8
Toggle functions 70
Types of controls and keywords 4
83

	Contents
	CHAPTER 1 Tecplot GUI Builder
	1.1. New in Tecplot GUI Builder
	1.2. Using Tecplot GUI Builder
	1.3. How TGB Works
	1.3.1. Step 1: Building and Maintaining the GUI
	1.3.2. Step 2: Building the Source Code
	1.3.3. Step 3: Modifying Your Source Code
	1.3.4. Step 4: Compiling Your Add-On
	1.3.5. Step 5: Informing Tecplot of Your New Add-On
	1.3.6. Step 6: Running Your New Add-On

	CHAPTER 2 Function Reference
	2.1. Dialog Coordinate System
	2.2. Function Callback Prototypes
	2.3. C Function Syntax
	2.4. FORTRAN Function Syntax

	Index

