
Winteracter Starter Kit

Revision G

P. O. Box 6091
Incline Village, NV 89450

Printed on 50%

recycled paper

td. All
l may
to any
anual,

product

bliga-
n no
l dam-
ade to
ahey
ise this

nt the

low-

ent

nner
nd
Copyright
Copyright © 1997-2002 by Lahey Computer Systems, Inc. and Interactive Software Services, L
rights reserved worldwide. This manual is protected by federal copyright law. No part of this manua
be copied or distributed, transmitted, transcribed, stored in a retrieval system, or translated in
human or computer language, in any form or by any means, electronic, mechanical, magnetic, m
or otherwise, or disclosed to third parties.

Trademarks
Names of Lahey products are trademarks of Lahey Computer Systems, Inc. Other brand and
names are trademarks or registered trademarks of their respective holders.

Disclaimer
Lahey Computer Systems, Inc. reserves the right to revise its software and publications with no o
tion of Lahey Computer Systems, Inc. to notify any person or any organization of such revision. I
event shall Lahey Computer Systems, Inc. be liable for any loss of profit or any other commercia
age, including but not limited to special, consequential, or other damages. While every effort is m
ensure the accuracy of the information in this User Guide, Interactive Software Services Ltd. and L
Computer Systems Inc. cannot be held responsible for any errors therein. The right is reserved to rev
document and the associated software without notice.

Conditions of Use
Use of the Winteracter Starter Kit package shall be in accordance with the Winteracter Starter Kit licence
agreement.

License Agreement

Lahey Computer Systems Inc. and Interactive Software Services Ltd. ("The Licencors") hereby gra
user of this software ("The Licencee") a non-exclusive and non-transferable licence to use the Winteracter
Starter Kit ("The Software") including its associated utilities and documentation according to the fol
ing terms and conditions :

1) The Software may only be copied for back-up purposes, to support its use for software developm
purposes on one processor at any one time.

2) The object and executable code files supplied with The Software may not be modified in any ma
whatsoever. The supplied source code example files may be modified for the purposes of training a
product familiarisation.

s.

ftware
 such
n pro-
uch pro-

 in the
 should

he Soft-
h The
3) The object files and library files supplied with The Software may not be distributed to any third partie

4) Application software in the form of bound executable programs which incorporate any part of The So
may be distributed to any third party. The Licencors do not claim any run-time licence or royalty fees on
software. The character set files supplied with the Software may also be distributed with such applicatio
grams to any third party, so long as they are required by those application programs and provided that s
grams make substantial use of The Software.

5) Application programs developed using The Software should include a clear and prominent comment
source code acknowledging use of The Software. Technical and User documentation for such software
also clearly and prominently acknowledge use of The Software.

6) The supplied copy of The Software may not be used on more than one processor at any one time. T
ware may be transferred from one processor ("The Original") to another so long as all files supplied wit
Software are removed from The Original processor.

7) LICENSORS DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING (WITHOUT
LIMITATION) ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICU-
LAR PURPOSE, WITH RESPECT TO THE SOFTWARE AND USER PROGRAMS, IN NO EVENT
SHALL LICENSORS BE LIABLE FOR ANY LOST OR ANTICIPATED PROFITS, OR ANY INDIRECT,
INCIDENTAL, EXEMPLARY, SPECIAL, OR CONSEQUENTIAL DAMAGES, WHETHER OR NOT
LICENSORS WERE ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Lahey Computer Systems, Inc.
 865 Tahoe Boulevard

 P.O. Box 6091
Incline Village, NV 89450-6091

(775) 831-2500
Fax: (775) 831-8123

Technical Support
(775) 831-2500

support@lahey.com
www.lahey.com

Table of Contents

6
6
7
8
1
4
4
5
7

1
1
8

79

0
1
2
3
4

7
8
9
0
1
2
3
5
.

6
7

Introduction..ix
Window Handling... ix
Input Handling... x
Dialog Management .. x
High Resolution Graphics xi
General Functions... xi

Supplied Files ...1

Building a WiSK Program3
Command Line .. 3
ED for Windows.. 5

Writing Winteracter Programs...............7
Basics... 7
Elements of a Winteracter Program............... 10
A Worked Example 15
Application Wizard.. 21

Resource Editor23
File Menu... 23
Edit Menu .. 24
Resource Menu .. 24
Settings Menu .. 24
View Menu .. 24

Menus ..25
Overview ... 25
Creating and Modifying Menus..................... 27

Dialogs...31
Overview ... 31
Creating and Modifying Dialogs 39

Icons, Bitmaps and Cursors................45
Image Editor .. 46
Adding Images to Your Resource 48
Using Bitmaps and Icons in Dialogs 48

Subroutine Summary51

Window Handling55

Group WM: Window Management55
WindowClear Subroutine...............................5
WindowClose Subroutine5
WindowCloseChild Subroutine5
WindowOpen Subroutine...............................5
WindowOpenChild Subroutine......................6
WindowOutStatusBar Subroutine..................6
WindowSelect Subroutine..............................6
WindowSizePos Subroutine...........................6
WindowStatusBarParts Subroutine................6
WindowTitle Subroutine................................68
WindowUnitsFromPixels Subroutine68
WindowUnitsToPixels Subroutine.................69

Input Handling.......................................71
Group MH: Message Handling7
WMessage Subroutine7
WMessageEnable Subroutine7
WMessagePeek Subroutine............................
Group MN: Menu Handling...........................80
WMenu Subroutine ..8
WMenuFloating Subroutine...........................8
WMenuGetState Function..............................8
WMenuSetState Subroutine8
WMenuSetString Subroutine8

Dialog Manager87
Group DM(1): General Dialog Management .87
WDialogFieldState Subroutine8
WDialogHide Subroutine...............................8
WDialogLoad Subroutine8
WDialogRangeProgressBar Subroutine.........9
WDialogSetField Subroutine9
WDialogSelect Subroutine.............................9
WDialogShow Subroutine9
WDialogUnload Subroutine...........................9
Group DM(2): Assign/Retrieve Field Contents
96
WDialogGetCheckBox Subroutine................9
 WDialogGetMenu Subroutine9
Winteracter Starter Kit v

Contents

5
7
8
9

3

5
5
6
7
8

9
0
2

3
4
5
5

6
7
7
8
8
9
0
1

1
2
2
3
3
4
4
5
5

6

WDialogGetRadioButton Subroutine............ 98
WDialogGetString Subroutine 99
WDialogPutCheckBox Subroutine.............. 100
WDialogPutImage Subroutine 100
WDialogPutMenu Subroutine 101
WDialogPutOption Subroutine 103
WDialogPutProgressBar Subroutine........... 103
WDialogPutRadioButton Subroutine 104
WDialogPutString Subroutine..................... 105
Group CD: Common Dialogs...................... 106
WMessageBox Subroutine 106
WSelectFile Subroutine............................... 109

High Resolution Graphics 113
Group GG: General Graphics...................... 114
IGrArea Subroutine 114
IGrAreaClear Subroutine 115
IGrGetPixel Function 116
IGrInit Subroutine 116
IGrSelect Subroutine 117
IGrUnits Subroutine 119
Group GS: Graphics Style Selection 119
IGrColourModel Subroutine 120
IGrColourN Subroutine............................... 121
IGrFillPattern Subroutine 126
IGrLineType Subroutine 128
IGrPaletteInit Subroutine 129
IGrPalette Subroutine 129
IGrPlotMode Subroutine 131
Group GD: Graphics Drawing/Movement .. 131
IGrCircle Subroutine 132
IGrLineTo Subroutine 132
IGrMoveTo Subroutine 133
IGrPoint Subroutine 134
IGrPolygonComplex Subroutine................. 134
Group GT: Graphics Text............................ 135
WGrOFont* Subroutines............................. 136
WGrTextFont Subroutine............................ 136
WGrTextLength Function 139
WGrTextOrientation Subroutine................. 140
WGrTextString Subroutine 141
WGrVFont* Subroutines............................. 143

General Functions145
Group IF: Information..................................145
InfoError Function14
InfoGraphics Function14
InfoGrPalette Function.................................14
InfoGrScreen Function.................................14
WInfoDialog Function150
WInfoDrawable Function152
WInfoScreen Function15
WInfoWindow Function154
Group OS: Operating System Interface15
IOsExitProgram Subroutine.........................15
IOsVariable Subroutine15
Group MI: Miscellaneous15
WCursorShape Subroutine...........................15
WFlushBuffer Subroutine............................15
WglSelect Subroutine16
WglSwapBuffers Subroutine16
WindowBell Subroutine...............................162
WInitialise Subroutine16
WRGB Function ..16
WRGBsplit Subroutine16
Group CH: Character Manipulation.............16
IFillString Subroutine165
IJustifyString Subroutine16
ILocateChar Function16
ILocateString Subroutine16
ILowerCase Subroutine16
IntegerToString Subroutine16
IStringToInteger Subroutine16
IUpperCase Subroutine................................17
Group OB: Obsolete Routines17
IActualLength Function...............................171
IGrCharJustify Subroutine17
IGrCharLength Function..............................17
IGrCharOut Subroutine................................17
IGrCharSet Subroutine.................................17
IGrCharSize Subroutine...............................17
IGrCharSpacing Subroutine.........................17
IGrGetPixelRGB Subroutine17
IGrPaletteRGB Subroutine17
IGrPause Subroutine17
WindowClearArea Subroutine.....................17
WindowOutString Subroutine176
vi Winteracter Starter Kit

Contents
WindowStringLength Function 177
WindowFont Subroutine.............................. 177
WInfoFont Function 178
WMenuRoot Subroutine.............................. 179
Winteracter Starter Kit vii

Contents
viii Winteracter Starter Kit

Introduction
t tool-

er)

, e.g.,
 sec-
roups.
c-

here
s the
Winteracter is a portable Fortran 9x dedicated user-interface and graphics developmen
set. It combines INTERACTER-compatible graphics with GUI components based on the
Win32 or Motif API’s. In addition to a Fortran 9x subroutine library, Winteracter also pro-
vides visual user interface design tools.

The Winteracter Starter Kit (WiSK) is derived from the full version of Winteracter. It
includes WiSK-specific versions of the ‘resource editor’ (the menu/dialog/image design
plus a library of subroutines organised in five categories :

Window Management

Input Handling

Dialog Management

High Resolution Graphics

General Functions

Each category is sub-divided into groups, which are identified by two-character codes
GT for graphics text manipulation, MH for message handling and so on. The following
tions provide a general summary of the facilities provided by each of these subroutine g
Before starting to use WiSK it is recommended that you browse through the following se
tions to familiarise yourself with the range of features on offer and more importantly, w
to find them. The subroutine group summaries presented here follow the same order a
subroutine reference sections later in this manual.

Window Handling
Winteracter supports a single root window and multiple child windows.
Winteracter Starter Kit ix

Introduction

bined
rol is
ow

g

par-
y

 group
g. set-

,

elds
WM: Window Management
These routines open and close root and child windows. Windows can be hidden or com
with dialogs, if required. The current output window is also selectable. Status bar cont
provided. Window size/position/state control is provided. All or part of the current wind
can be cleared.

Input Handling
This group provides the fundamental message delivery mechanism plus menu handlin
facilities.

MH: Message Handling
All input is reported to the program via the message delivery routines in this group. In
ticular, a typical Winteracter program will revolve around an event loop which repeatedl
calls the WMessage routine.

MN: Menu Handling
Menu layouts are defined separately in a resource file, using the Winteracter resource editor.
Menu selections are reported via the message handling routines in the MH group. This
therefore deals with menu activation and updating the state of individual menu items (e.
ting the ‘checked/unchecked’ state).

Dialog Management
Dialog layouts are defined externally in a resource script, using the Winteracter resource edi-
tor. The routines in the Dialog Manager are therefore mostly concerned with activating
controlling and interrogating these dialogs.

DM(1): General Form Creation & Editing
Dialog activation and selection is controlled through this group.The state of individual fi
can also be controlled.

DM(2): Assign/Retrieve Field Contents
The individual contents of each dialog field are accessed via these routines.
x Winteracter Starter Kit

CD : Common Dialogs

 as tar-
n.

, pol-

, any
. Full

nter-

of the
CD : Common Dialogs
Pre-defined dialogs are accessible for file selection and message boxes.

High Resolution Graphics
These routines provide high resolution graphics output facilities.

GG: General Graphics
A number of general graphics facilities are grouped together under this heading, such
get drawable selection, pixel colour interrogation and area/co-ordinate system selectio

GS: Graphics Style Selection
Control is provided over color, line-type, fill style and plot mode.

GD: Graphics Drawing/Movement
These are the basic drawing primitives. In addition to simple move and draw functions
ygon and circle fill routines are provided.

GT: Graphics Text
Graphics text output supports both driver-specific and software fonts. Under Windows
TrueType font is selectable. Various vector and outline software fonts sets are provided
control is provided over font style, size and orientation.

General Functions
The remaining routines provide a variety of functions which are likely to be required in i
active applications.

IF: Information
A set of functions are provided which enable a program to interrogate the current state
routines in the Winteracter library and the hardware on which the program is currently
running.
Winteracter Starter Kit xi

Introduction

le
OS: Operating System
Environment variable access and termination with exit code routines are provided.

MI: Miscellaneous
The most important routine in this group is WInitialise , the Winteracter initialisation
routine. OpenGL support is also enabled via this group. The mouse cursor is selectab

CH: Character Manipulation
These routines provide string manipulation facilities which are useful in interactive
applications.

OB: Obsolete Routines
A number of obsolete routines are retained for compatibility with earlier releases.
xii Winteracter Starter Kit

1 Supplied Files
ce file

e of
he
This chapter summarises the files which you receive with your Winteracter Starter Kit. These
are installed as part of the compiler installation procedure. Refer to “Building a WiSK
Program” on page 3 for information on how to use and set up Winteracter once it has been
installed.

The Winteracter Starter Kit file set includes the following:

· The Winteracter Resource Editor (bin directory)

· The WiSK Application Wizard (bin directory)

· On-line help covering various topics including the WiSK FAQ (help directory)

· Winteracter Starter Kit library (lib directory)

· WINTERACTER module (lib directory)

· Lahey Video Graphics Library emulation source code (src directory)

· Various WiSK demo programs (examples directory)

· Various OpenGL demos (examples directory)

Several demonstration programs are provided in the WiSK sub-directory of the LF95
examples directory. They illustrate various aspects of Winteracter user interface and
graphics programming. Each sub-directory contains a single demo consisting of a sour
(with a .f90 extension), a resource script (resource.rc) and a program icon
(winter.ico). Some directories will contain additional files dependent on the purpos
the demo. The WiSK OpenGL demos are organised in a similar manner. Alternatively, t
WiSK Application Wizard (wiskwiz) can be used to create a tailored template Winteracter
program.
Winteracter Starter Kit 1

Chapter 1 Supplied Files
2 Winteracter Starter Kit

2 Buildin g a WiSK
Program
atter

 and
A Winteracter program will consist of Fortran source code and a resource script. The l
describes menus, dialogs, etc. required by that program. Building a Winteracter program
therefore consists of three distinct tasks:

(1) Compiling the calling Fortran application source code to create object files.

(2) Compiling the resource script (.rc) to produce object files.

(3) Linking the resulting object files from steps (1) and (2) with the Winteracter library.

Command Line
The LF95 driver will handle these tasks automatically if you specifiy the -wisk (Win32) or
--wisk (Linux) switch on the command line, along with the Fortran source file name(s)
the resource script name. (Note : In the following command line examples, <id> refers to
your compiler installation directory.

Under Windows, try the following in the \<id>\examples\WiSK\example directory:

lf95 example.f90 resource.rc -wisk

which is equivalent to the following commands:

lf95 example.f90 -win -c -mod .;\<id>\lib

rc /i \<id>\src resource.rc

res2obj resource.res resource.obj

lf95 example.obj resource.obj -win -lib \<id>\lib\winter.lib

Under Linux, try the following in the /<id>/examples/WiSK/example directory:

lf95 example.f90 resource.rc --wisk

which is equivalent to:
Winteracter Starter Kit 3

Chapter 2 Building a WiSK Program

efore

e

rm:

s

 com-

s).

iers

odule

/

lf95 example.f90 -c -I /<id>/lib

rc resource.rc

lf95 -o example example.o resource.o -L/<id>/lib -L/usr/X11R6/lib
-lwint -lXm -lXt -lX11

These commands would compile and link the supplied example demonstration program,
along with the accompanying resource.rc resource file. Both are simply examples.
There is no special significance to the choice of these file names. The example program is
discussed in some detail in the next chapter.

The Winteracter library is called winter.lib (Win32) or libwint.a (Linux) and is
installed in the lib sub-directory. This directory will also contain the WINTERACTER
module, which defines data types, interface definitions and symbolic names. All Winteracter
based programs USE this module.

Note : The Winteracter library and the associated WINTERACTER module should be
considered a pair. Trying to mix a library and module from different releases should ther
be considered an error. Hence, objects compiled with an earlier release of Winteracter must
be recompiled when upgrading to a new release, since those objects will otherwise us
definitions based on an out of date module. This is not a Winteracter issue as such, but is
inherent in the implementation of Fortran modules.

Each Winteracter application will have an accompanying resource script. This defines
menus, dialogs, etc. used by the program. It will contain an include statement of the fo

#include "winparam.h"

Under Windows, the file winparam.h contains various standard parameter declaration
and is installed in the installation’s src directory. If you are not using the -wisk switch, then
a command line argument should be used to identify this directory to the RC resource
pilerc. Alternatively, RC will search the include path specified by the INCLUDE environment
variable.(Note : winparam.h is not required or supplied under Linux. However, the
#include statement should still be present in your resource file for portability reason

Winteracter programs need to reference identifiers in the resource script. These identif
are normally declared as PARAMETER values in a Fortran 90 module or include file. The
Winteracter resource editor can generate both file types. Where this file is saved as a m
it should be compiled before the program which USE’s it.

Win32 executables built with WiSK will run on Intel systems under Windows 9x/Me or NT
2000/XP. Linux WiSK executables will run on whichever Intel Linux distributions are
supported by the current LF95 release.

Linux users should be aware that X/WiSK relies on functions provided by the X Windows
(Xlib and Xt) and Motif (Xm) libraries. All Linux distributions include Xlib and Xt, but
Motif may not be included. Refer to the X/WiSK Getting Started Guide (xgetstart.htm)
which is supplied in HTML format in LF95’s help directory.
4 Winteracter Starter Kit

ED for Windows

W

ust
script

ED for Windows
ED4W can be used to build Win32 WiSK programs too. The main issue here is that ED4
normally assumes that your program has only a single source file. However Winteracter
programs consist of two source files, a Fortran program and a resource script, which m
both be compiled and linked together. If you use a hardwired name for your resource
(specifically resource.rc as used in the Examples\wisk demo directories) here's one
solution. Install the following batch file somewhere on your system :

LF95 %1.f90 resource.rc -wisk

Then, in ED use Tool|Programs|Add to add a new program. The command line should
specify the full path of the above batch file, followed by <name>. This tells ED4W to
substitute the name of the current program as argument number 1 of the batch file.
Winteracter Starter Kit 5

Chapter 2 Building a WiSK Program
6 Winteracter Starter Kit

3 Writin g Winteracter
Programs

rked

over
l
This chapter aims to introduce you to writing software using Winteracter. It assumes that you
are already familiar with how to compile and link Winteracter programs, as described in the
previous chapter.

The first section summarizes some basic rules. Later in this chapter you will find a wo
example which provides a gentle introduction to writing a Winteracter application.

Basics
Certain basic principles apply regardless of which Winteracter features you use.

Initialization
All W interacter programs must call WInitialise before opening a window.
WindowOpen must be called before any window or dialog processing.

Fortran I/O
All screen I/O should be performed via Winteracter. While you may find that console I/O
works (e.g. WRITE(*,..) , READ(*,..) , WRITE(6,..) etc.), this will cause an extra
output window to be opened under Windows. The program will have no direct control
this window. This will look untidy, at the very least. Fortran I/O is freely available on al
other channels.
Winteracter Starter Kit 7

Chapter 3 Writing Winteracter Programs

 uses

e
he
t be

se
ll

e

ce
The WINTERACTER Module
A Fortran 90 module called WINTERACTER is supplied which provides three facilities:

• Type definitions for Winteracter specific data structures.

• Interface definitions for Winteracter routines.

• PARAMETER definitions for numerous symbolic names.

Use of the WINTERACTER module is required in any program unit which calls Winteracter
routines. i.e. add the following statement at the beginning of every program unit which
Winteracter:

USE WINTERACTER

When upgrading from an earlier version of WiSK, you must recompile all program units
which USE the WINTERACTER module, before relinking your application. Interface or typ
definitions may change between releases. While such changes will be transparent to t
calling program once recompiled, old objects which use an out-of-date module may no
relinkable. This recompilation requirement is fundamental to the way that Fortran 90
modules work.

Type Definitions
Various Winteracter specific data types are defined in the WINTERACTER module, most
notably, the WIN_MESSAGE structure used by WMessage.

Interface Definitions
As an aid to checking the number and type of arguments supplied to Winteracter routines,
the WINTERACTER module contains an extensive set of interface block definitions. The
define the type and intent of all Winteracter subroutine arguments and functions. They wi
cause the compiler to check the number and type of arguments in each Winteracter call,
potentially saving many hours of debugging.

Symbolic Names
The WINTERACTER module also contains a number of PARAMETER declarations which
define symbolic names for Winteracter subroutine arguments and function results. These
symbolic names can be used in place of numeric subroutine arguments/results and ar
designed to be meaningful, aiding program readability. A handful of Microsoft-
recommended push-button identifiers (e.g. IDOK) are also defined here. All of the
PARAMETER statements contain type declarations, so no further definition is required
outside of the module.

While use of the symbolic names defined in the WINTERACTER module files is not
obligatory, their use is recommended. They are documented in the subroutine referen
section of this manual and form part of the formal definition of Winteracter.
8 Winteracter Starter Kit

Subroutine Arguments

y

-

e any

ed

f
It also
 of the
tart
lly,

Subroutine Arguments
All subroutine arguments of type CHARACTER may be of any length, except where explicitl
documented otherwise. All subroutine arguments of type INTEGER are 4-byte integers. Sim-
ilarly, all REAL arguments are single precision 4-byte variables

Subroutine and Common Block Names
All externally callable routines in Winteracter start with the letter W or I. Winteracter-spe-
cific routines begin with the letter W. Routines which are common to both Winteracter and
INTERACTER begin with an I.

Various internal subroutines and COMMON blocks are used. All internal subroutines have
names starting with the letters XX or YY (e.g. XXGDRV). Internal COMMON blocks are named
WINTnn where nn is a 2 digit number (e.g. WINT01). Avoid using subroutines or COMMON
blocks with similar names.

Error Reporting
All error reporting in Winteracter is performed via a single function called InfoError ,
which is in the IF subroutine group. Whenever Winteracter encounters an error, it sets a glo
bal error flag which can be interrogated using InfoError . This global error flag may be
over-written by subsequent errors, but is never cleared until InfoError is called. It is the
callers responsibility to decide when to interrogate and/or clear the error flag and issu
appropriate error messages. When Winteracter encounters an error it will simply update the
error flag and attempt to take suitable default action. Winteracter will not report errors to the
screen, since this may not be appropriate in many applications.

If a routine sets the Winteracter error flag, the values which it may set it to are document
with the description of the routine. A summary of the Winteracter error codes is provided
later in this manual. Symbolic names for all the possible error codes are defined in the
WINTERACTER module.

On-line Help
On-line help is provided either as a Windows help file called wisk.hlp (under Win32) or
in HTML format as wisk.htm (under Linux). This contains a variety of useful Winteracter
related information, including brief subroutine argument summaries, an FAQ, details o
supplied demos, error codes, a glossary and a description of the resource file format.
describes supported graphics interfaces such as OpenGL and the supplied emulation
Lahey Video Graphics Library. The Windows help file can be accessed via the LF95 S
menu options. The Linux HTML file should be viewed using Netscape 4.x. More usefu
Linux users may wish to start browsing at the index.htm page which provides access to
all of X/WiSK’s on-line help, which also includes a "Getting Started" guide.
Winteracter Starter Kit 9

Chapter 3 Writing Winteracter Programs

tion

long
 and
icons,

ndled
n the

for
t
ce. It
file.

 it.
is
uces

auto-

red to
Elements of a Winteracter Program
A Winteracter program consists of two main elements:

• A resource file describing menu structures, dialogs, icons, etc.

• Fortran 90 source code which calls routines in the Winteracter library.

The resource file is created and managed by our resource editor (resedit). The Fortran 90
source code can be created from scratch or adapted from one of the many demonstra
programs in the demos sub-directory. Alternatively, for a quick start, use the WiSK Wizard
(wiskwiz) to create a substantial Winteracter starter application tailored to your
requirements.

Resource Files
Each Winteracter program requires a resource script to describe its menus and dialogs, a
with miscellaneous information such as the program icon. This script must be created
maintained via the supplied resource editor (ResEdit). This tool allows menus, dialogs,
cursors and bitmap buttons to be created interactively. The resulting user interface
descriptions are saved as resource (.rc) files which must be compiled using the resource
compiler as described in the previous chapter. The resulting .obj (Win32) or .o (Linux)
file can then be linked with a program which calls Winteracter routines to produce a GUI
application program. The -wisk (Win32) or --wisk (Linux) compiler command line
argument will handle resource compilation automatically.

Normally, there is no need to know about the format of a resource file, since this is ha
automatically by the supplied resource editors. However, their format is documented i
on-line help for the sake of completeness.

A Winteracter program may only contain one compiled resource file. While it is feasible
multiple resource scripts to be #include ’d into a ’parent’ resource script, this will preven
the resource editor from properly maintaining the identifiers associated with that resour
is therefore strongly recommended that the resource script be maintained as a single

Identifiers
Every user interface element in a resource file has a numeric identifier associated with
Many Winteracter routines require such an identifier to be specified as an argument. It
therefore important to maintain a separate Fortran module or include file which reprod
these identifier definitions (as INTEGER PARAMETER values) to allow the Winteracter
program to refer to resources via symbolic names. This file is generated and updated
matically by the resource editor. It must be USE'd or INCLUDE'd by the calling program to
enable access to menus/dialogs/etc held in the program resource. This file will be refer
10 Winteracter Starter Kit

Message Loop

ey
ows
ge 1-
he

d not
o use

odule/
d

n some
lying
et
f mes-

as
rogram
-
p:
as the Symbol Header file. Several commonly used push-button identifiers (e.g. IDOK and
IDCANCEL for OK/Cancel buttons) are defined in the WINTERACTER module (see
WMessage).

As a general rule, identifier values should be non-zero unsigned 16-bit integers, i.e. th
should be in the range 1-65535. However, some exceptions apply, mainly under Wind
9x/Me where identifiers for dialogs, bitmap/icon fields and menus should be in the ran
32767. (Note : Identifiers should still be stored as standard four byte integers, despite t
Windows-imposed limit of 16-bit ranges.)

Remember that identifiers must be valid Fortran parameter names. Hence, they shoul
include characters such as ! , + - * () > < etc. The resource editor will reject attempts t
such characters in identifier names.

If a resource file is amended manually (not normally recommended), the associated m
include file can be regenerated by loading the resource file into the resource editor an
resaving it.

Message Loop
Most program input is reported via a message queue (also known as an event queue i
other windowing systems; events and messages are the same thing). While the under
windowing system reports many messages, Winteracter only passes a much reduced subs
of these messages up to the calling program, greatly simplifying the volume and type o
sages which must be processed.

Messages are reported via the WMessage routine. Typical messages are 'a dialog button w
pressed', 'a menu item was selected', 'a window changed size' and so on. The calling p
will usually revolve around a DO loop which calls WMessage then checks the resulting mes
sage in a SELECT CASE statement. The following is a simplified example of such a loo

USE WINTERACTER

TYPE (WIN_MESSAGE) :: MESSAGE

 !

DO ! loop until termination

 CALL WMessage(ITYPE,MESSAGE)

 SELECT CASE (ITYPE)

 IWIN = MESSAGE%WIN ! Originating window

 CASE (MenuSelect) ! A menu item was selected

 ITEM = MESSAGE%VALUE1

 CASE (Resize,Expose) ! The window was resized or exposed

 CALL DrawMyGraph(IWIN)

 CASE (CloseRequest) ! The user closed a window

 IF (IWIN==0) EXIT

 END SELECT

END DO
Winteracter Starter Kit 11

Chapter 3 Writing Winteracter Programs

 will
y lead
e
ssible

tter

 it.

 to

ry co-
uare,

L user-

tents
f the
sed.

nates

he

e

ting
r case,
The location of the message loop is a matter of program choice. In a small program, it
make sense to place the message loop in the main program. However, this can rapidl
to a 'top heavy' program in larger applications. It is therefore perfectly allowable to hav
multiple message loops in a program, provided they are capable of processing all the po
messages which can be reported at a given point in the program’s execution.

See the MH group in the subroutine reference section for more information.

Windows
A Winteracter application consists of a root window and up to 20 child windows. The la
exclude any dialog windows (see the section “Dialogs” on page 13). In this context a
'window' is a standard output window which can have any text or graphics written into
Effectively they are free format output windows.

A root window is always opened first using WindowOpen. Child windows can then be
opened using WindowOpenChild . The graphics routines in the GG/GS/GD/GT groups
can be used to draw in these windows. Every window has a handle which is allocated
automatically by Winteracter when the window is opened. Use this to select the window
receive output in a call to WindowSelect .

In certain cases (e.g. when opening a child window inside a parent window) an arbitra
ordinate system is used which treats a window as being 10000x10000 "window units" sq
measured from the top left corner of the window. Graphics output uses a separate REA
defined cartesian co-ordinate system (see the section “Graphics” on page 14).

When graphics are drawn to a window, the caller is responsible for maintaining the con
of that window. So if another window or dialog overlaps a window, the obscured area o
window will need to be repainted when the overlapping window/dialog is moved or clo
An Expose message is reported via WMessage in this case.

Windows can either be fixed in size or resizeable. In the latter case, the window co-ordi
are rescaled automatically if the user changes the size of the window. A Resize message is
reported via WMessage in this case. The calling program will normally need to repaint t
entire window when this message is received.

Menus
The contents and structure of program menus are defined in resource scripts using th
resource editor. Use WindowOpen, WindowOpenChild , WMenu and/or
WMenuFloating to activate these menus. Main menus remain visible at all times. Floa
menus disappear when a selection is made or they are cancelled by the user. In eithe
menus are managed automatically once displayed. Menu selections are reported via
WMessage.
12 Winteracter Starter Kit

Dialogs

ple,

 The
using

itions
all
m

do not
 the

but

re
side

hild
h

ns,
e detail
 using

r is
rd
a the
in

avail-
outines
The contents and state of individual menu items can be modified at run-time. For exam
menu items can be greyed to prevent them from being selected, by calling
WMenuSetState .

Dialogs
Dialogs are collections of fields (or 'controls') which are displayed in a dedicated child
window. (In other development systems dialogs are also known as 'panels' or 'forms'.)
layout and initial contents of a dialog must be defined in a resource file scripts created
the supplied resource editor.

Two basic types of dialogs are allowed : modal and modeless. Their resource file defin
are identical, but their behaviour when activated is different. A modal dialog will block
other program input until the user terminates the dialog. This makes for simpler progra
development, at the expense of a slightly less friendly user interface. Modeless dialogs
block program execution and allow interaction with other windows/dialogs belonging to
same program. A third dialog type is supported by Winteracter, known is 'semi-modeless'.
These are a useful hybrid dialog type which appears modeless to the calling program
modal to the user. Such dialogs eliminate the need to use callback routines.

Under Windows, all dialogs are either 'pop-up' dialogs or 'child' dialogs (Motif dialogs a
always 'pop-up'). A pop-up dialog can be moved to any position on the screen either in
or outside of the application window. Child dialogs are restricted to the root window. C
dialogs must be modeless. Alternatively a dialog can be combined with a window. Suc
dialogs are always modeless.

To activate a dialog call WDialogLoad and WDialogShow . Multiple simultaneous
dialogs are allowed. See the introduction to the DM(1) group for more details.

Dialogs consist of various field types including strings, four styles of menu, push-butto
radio buttons, progress bars and check boxes. These field types are described in mor
in the Dialogs chapter. The contents of most field types can be assigned and retrieved
the various 'put/get' routines in the DM(2) group.

Winteracter dialogs use standard Windows or Motif controls so all the normal behaviou
available. Notably clipboard cut/paste is supported via the mouse or the usual keyboa
shortcuts (Ctrl/C, Ctrl/V, etc.) Under Windows, the usual shortcuts menu is available vi
right mouse button. Winteracter dialogs also implement Ctrl/A as a shortcut for Select All
string fields.

In addition to application-specific dialogs, some pre-packaged modal dialogs are also
able. The most useful of these (file selection and message box) are supported via the r
in the CD group.
Winteracter Starter Kit 13

Chapter 3 Writing Winteracter Programs

ther
g is
ntify

tc.)

lp

ed,
mula :

55.
Graphics
Winteracter's graphics routines are mostly compatible with the earlier INTERACTER library.
The introduction to the GG group describes the basic principles of Winteracter graphics
programming.

Graphics can appear in any window opened via WindowOpen or WindowOpenChild .
The target window is selectable via WindowSelect or IGrSelect . The latter routine
also allows graphics to be drawn to a dialog field instead of to a window.

The graphics co-ordinate system is fully user definable and is controlled by the IGrUnits
routine. It remains the same regardless of the type of target drawable.

Graphics drawn to a window must normally be maintained by the calling program. In o
words, it is possible for screen graphics to be erased if an overlapping window or dialo
moved/closed. The calling program must process Expose and Resize messages to ide
this situation.

Legacy graphics code written for the Lahey Video Graphics Library (PLOT, PLOTS, e
can be relinked with Winteracter via the LVGL emulation interface in lvgl.f90 . See the
"Graphics Interfaces" section in the on-line help file for further details.

OpenGL graphics are also supported. These can be displayed in any Winteracter window.
See WglSelect and the OpenGL section under "Graphics Interfaces" in the on-line he
file.

Color
Several Winteracter routines accept color arguments. All routines which accept RGB (R
Green, Blue) color arguments encode such color values in a single integer using the for

Red + Green*256 + Blue*256*256

where each of the Red, Green and Blue components are 8-bit values in the range 0-2
Hence these RGB values are also commonly referred to as "24-bit" color values.

The WRGB function can be used to construct a 24-bit color value and WRGBsplit performs
the opposite conversion. Eight symbolic names are also pre-defined in the WINTERACTER
module for the 8 primary colors: RGB_BLACK, RGB_BLUE, RGB_RED,
RGB_MAGENTA, RGB_GREEN, RGB_CYAN, RGB_YELLOW and RGB_WHITE.
14 Winteracter Starter Kit

A Worked Example

-
nd
 high-
along

ot
t

in this

lose
nd plot
an add
 plot
same

es a
A Worked Example
This section explains how to write a simple Winteracter program which uses a small but typ
ical selection of the facilities available, including message handling, common dialogs a
graphics. The short program is built up step by step, with newly introduced statements
lighted at each stage by a '*' in the right hand margin. A copy of the complete program
with its associated resource script can be found in the WiSK demos example directory.

The first thing to do in any Winteracter program is to initialize the library by calling
WInitialise . This must be followed by a call to WindowOpen to open a root window
and initialize the graphics routines. To terminate screen processing, WindowClose must be
called. A minimal Winteracter program therefore looks like this:

PROGRAM WISK_EXAMPLE *

USE WINTERACTER *

IMPLICIT NONE *

CALL WInitialise() ! Initialize Winteracter *

CALL WindowOpen(MENUID=IDR_MENU1, & ! Open root window *

 TITLE=’Example Program’) *

CALL WindowClose() ! Remove program window *

STOP ! Required by Elf90 only *

END PROGRAM WISK_EXAMPLE *

The program initializes the library then fills a data structure with a description of the ro
window which is to be opened. WindowOpen is then called to open that window. Note tha
the program USE's the WINTERACTER module. In this particular example it will define the
WIN_STYLE data type, the symbolic names assigned to the FLAGS element of the window
type argument and the interface blocks for each of the called routines. As noted earlier
chapter, use of this module is required.

So far, all this program will do is open a root window with no menu then immediately c
it again. Let's assume we want the program to read some time series data from a file a
it as a simple line graph. The first task is to introduce some message handling so we c
'Open' and 'Exit' options to the program. This will allow the user to select the data file to
and to exit via a program menu option (though the System menu can be used for the
purpose, where enabled).

The following expanded example assumes that a resource file is supplied which defin
menu consisting of 'Open' and 'Exit' options.
Winteracter Starter Kit 15

Chapter 3 Writing Winteracter Programs

ich it
ted
 sake
crip-

gram

 root
n dia-
PROGRAM WISK_EXAMPLE

USE WINTERACTER

IMPLICIT NONE

INTEGER, PARAMETER :: IDR_MENU1 = 30001 *

INTEGER, PARAMETER :: ID_OPEN = 40001 *

INTEGER, PARAMETER :: ID_EXIT = 40002 *

TYPE(WIN_MESSAGE) :: MESSAGE *

INTEGER :: ITYPE *

CALL WInitialise() ! Initialize Winteracter

CALL WindowOpen(MENUID=IDR_MENU1, & ! Open root window

 TITLE=’Example Program’)

DO ! Loop until user terminates *

 CALL WMessage(ITYPE, MESSAGE) *

 SELECT CASE (ITYPE) *

 CASE (MenuSelect) ! Menu item selected *

 SELECT CASE (MESSAGE%VALUE1) *

 CASE (ID_OPEN) ! Select file to plot *

 CONTINUE ! We will load file here *

 CASE (ID_EXIT) ! Exit program (menu option) *

 EXIT *

 END SELECT *

 CASE (CloseRequest) ! Exit program (e.g. Alt/F4) *

 EXIT *

 END SELECT *

END DO *

CALL WindowClose() ! Remove program window

STOP ! Required by Elf90 only

END PROGRAM WISK_EXAMPLE

Three parameters are now defined which identify the root menu and the two options wh
will contain. Normally such PARAMETER statements would be stored in a module genera
automatically by the resource editor, but they are shown as part of this program for the
of clarity. The identifier of the root menu is now specified as part of the root window des
tion, ensuring that Windows will automatically attach that menu to the window.

The main addition to the example program is the introduction of the DO loop which proc-
esses Windows messages. It loops continuously until the user selects Exit from the pro
menu or closes the window via the title bar controls.

The message loop also allows for the user having selected the 'Open' option from the
menu. We will now expand the program to allow a data file to be selected via a commo
log. Data will then be read from the file ready for plotting.
16 Winteracter Starter Kit

A Worked Example

 used

 the
n
le.
PROGRAM WISK_EXAMPLE

USE WINTERACTER

IMPLICIT NONE

INTEGER, PARAMETER :: IDR_MENU1 = 30001

INTEGER, PARAMETER :: ID_OPEN = 40001

INTEGER, PARAMETER :: ID_EXIT = 40002

TYPE(WIN_MESSAGE) :: MESSAGE

INTEGER :: ITYPE, NVALUE, I *

CHARACTER(LEN=255) :: FNAME *

REAL, DIMENSION(50) :: VALUES *

CALL WInitialise() ! Initialize Winteracter

CALL WindowOpen(MENUID=IDR_MENU1, & ! Open root window

 TITLE=’Example Program’)

FNAME = 'example.dat' *

NVALUE = 0 *

DO ! Loop until user terminates

 CALL WMessage(ITYPE, MESSAGE)

 SELECT CASE (ITYPE)

 CASE (MenuSelect) ! Menu item selected

 SELECT CASE (MESSAGE%VALUE1)

 CASE (ID_OPEN) ! Select file to plot

 CALL WSelectFile('Data File|*.dat|', & *

 PromptOn,FNAME,'Load Data') *

 IF (WInfoDialog(ExitButtonCommon)==CommonOpen) THEN *

 OPEN(20,FILE=FNAME,STATUS='OLD') *

 READ(20,*) NVALUE *

 READ(20,*) (VALUES(I),I=1,NVALUE) *

 CLOSE(20) *

 ENDIF *

 CASE (ID_EXIT) ! Exit program (menu option)

 EXIT

 END SELECT

 CASE (CloseRequest) ! Exit program (e.g. Alt/F4)

 EXIT

 END SELECT

END DO

CALL WindowClose() ! Remove program window

STOP ! Required by Elf90 only

END PROGRAM WISK_EXAMPLE

Our program now defines a values array and a filename variable. A common dialog is
to select the input file (a suitable example.dat file is supplied in the WiSK demos
example directory).

If the user confirms their file selection (i.e. they don't click on Cancel or press Escape)
name of the selected file is returned in the FNAME variable. Data is then read from the chose
file. Note that the file handling contains no error processing, to keep the example simp

We are now ready to plot the data. A separate routine will be introduced which uses
Winteracter's graphics routines.
Winteracter Starter Kit 17

Chapter 3 Writing Winteracter Programs
PROGRAM WISK_EXAMPLE

USE WINTERACTER

IMPLICIT NONE

INTERFACE *

 SUBROUTINE DrawGraph(VALUES,NVALUE) *

 IMPLICIT NONE *

 REAL , INTENT (IN), DIMENSION(:) :: VALUES *

 INTEGER, INTENT (IN) :: NVALUE *

 END SUBROUTINE DrawGraph *

END INTERFACE *

INTEGER, PARAMETER :: IDR_MENU1 = 30001

INTEGER, PARAMETER :: ID_OPEN = 40001

INTEGER, PARAMETER :: ID_EXIT = 40002

INTEGER, PARAMETER :: ID_STRING1 = 50001

TYPE(WIN_MESSAGE) :: MESSAGE

INTEGER :: ITYPE, NVALUE, I

CHARACTER(LEN=255) :: FNAME

REAL, DIMENSION(50) :: VALUES

CALL WInitialise() ! Initialize Winteracter

CALL WindowOpen(MENUID=IDR_MENU1, & ! Open root window

 TITLE=’Example Program’)

FNAME = 'example.dat'

NVALUE = 0

DO ! Loop until user terminates

 CALL WMessage(ITYPE, MESSAGE)

 SELECT CASE (ITYPE)

 CASE (MenuSelect) ! Menu item selected

 SELECT CASE (MESSAGE%VALUE1)

 CASE (ID_OPEN) ! Select file to plot

 CALL WSelectFile('Data File|*.dat|', &

 PromptOn,FNAME,'Load Data')

 IF (WInfoDialog(ExitButtonCommon)==CommonOpen) THEN

 OPEN(20,FILE=FNAME,STATUS='OLD')

 READ(20,*) NVALUE

 READ(20,*) (VALUES(I),I=1,NVALUE)

 CLOSE(20)

 CALL DrawGraph(VALUES,NVALUE) *

 ENDIF

 CASE (ID_EXIT) ! Exit program (menu option)

 EXIT

 END SELECT

 CASE (Expose,Resize) ! Need to redraw picture *

 CALL DrawGraph(VALUES,NVALUE) *

 CASE (CloseRequest) ! Exit program (e.g. Alt/F4)

 EXIT

 END SELECT

END DO

CALL WindowClose() ! Remove program window

STOP ! Required by Elf90 only

END PROGRAM WISK_EXAMPLE
18 Winteracter Starter Kit

A Worked Example

ple L-

e
SUBROUTINE DrawGraph(YVALUE,NVALUE) ! Draw graph *

USE WINTERACTER *

IMPLICIT NONE *

REAL, INTENT(IN), DIMENSION(:) :: YVALUE *

INTEGER, INTENT(IN) :: NVALUE *

! *

REAL :: XMIN,XMAX,YMIN,YMAX,XLEN,YLEN,XPOS *

INTEGER :: IX *

! Calculate X and Y ranges *

XMIN = 1.0 *

XMAX = REAL(NVALUE) *

YMIN = MINVAL(YVALUE) *

YMAX = MAXVAL(YVALUE) *

XLEN = XMAX - XMIN *

YLEN = YMAX - YMIN *

CALL IGrUnits(XMIN-0.1*XLEN,YMIN-0.1*YLEN, & *

 XMAX+0.1*XLEN,YMAX+0.1*YLEN) *

! Draw simple axes *

CALL IGrMoveTo(XMIN,YMAX) *

CALL IGrLineTo(XMIN,YMIN) *

CALL IGrLineTo(XMAX,YMIN) *

! Draw line graph *

CALL IGrMoveTo(XMIN,YMAX) *

DO IX = 2,NVALUE *

 XPOS = XMIN + XLEN*REAL(IX-1)/REAL(NVALUE-1) *

 CALL IGrLineTo(XPOS,YVALUE(IX)) *

END DO *

RETURN *

END SUBROUTINE DrawGraph *

Minimum X and Y values are assigned. IGrUnits is then used to define a co-ordinate
system which leaves a border around the area in which the graph will be plotted. A sim
shaped axis is plotted, followed by the data itself. IGrLineTo is effectively a Pen-Down
and draw operation, so the DO loop creates a connected line graph. The graph will also b
redrawn if the window size changes or the window becomes partly or wholly exposed.

And finally, to add some annotation to the x axis:
Winteracter Starter Kit 19

Chapter 3 Writing Winteracter Programs

mples
 SUBROUTINE DrawGraph(YVALUE,NVALUE) ! Draw graph

 USE WINTERACTER

 IMPLICIT NONE

 REAL, INTENT(IN), DIMENSION(:) :: YVALUE

 INTEGER, INTENT(IN) :: NVALUE

 !

 CHARACTER (LEN=3) :: STR *

 REAL :: XMIN,XMAX,YMIN,YMAX,XLEN,YLEN,XPOS

 INTEGER :: IX,ISTART *

 ! Calculate X and Y ranges

 XMIN = 1.0

 XMAX = REAL(NVALUE)

 YMIN = MINVAL(YVALUE)

 YMAX = MAXVAL(YVALUE)

 XLEN = XMAX - XMIN

 YLEN = YMAX - YMIN

 CALL IGrUnits(XMIN-0.1*XLEN,YMIN-0.1*YLEN, &

 XMAX+0.1*XLEN,YMAX+0.1*YLEN)

 ! Draw simple axes

 CALL IGrMoveTo(XMIN,YMAX)

 CALL IGrLineTo(XMIN,YMIN)

 CALL IGrLineTo(XMAX,YMIN)

 ! Draw line graph

 CALL IGrMoveTo(XMIN,YMAX)

 DO IX = 2,NVALUE

 XPOS = XMIN + XLEN*REAL(IX-1)/REAL(NVALUE-1)

 CALL IGrLineTo(XPOS,YVALUE(IX))

 END DO

 ! Add annotation to X axis *

 CALL WGrTextOrientation(AlignCentre) *

 DO IX = 5,NVALUE,5 *

 CALL IGrMoveTo(REAL(IX),YMIN) *

 CALL IGrLineTo(REAL(IX),YMIN-YLEN*0.025) *

 CALL IntegerToString(IX,STR,'(I3)') *

 ISTART = ILocateChar(STR) *

 CALL WGrTextString(REAL(IX),YMIN-YLEN*0.06,STR(ISTART:)) *

 END DO *

 RETURN

 END SUBROUTINE DrawGraph

Labels and tick marks are added to the x axis using center justified text. For more exa
of how to use Winteracter see the various other WiSK demonstration programs.
20 Winteracter Starter Kit

Application Wizard

 type
 will

 to

r appli-
ll five
l
ing:
Application W izard
To create a new Winteracter program, you may wish to consider using the WiSK Application
Wizard (wiskwiz). This creates a substantial Winteracter starter application tailored to
your requirements.

The Wizard leads you through a series of 5 dialogs which ask simple questions about the
of application you wish to create. Enter the name of the project and the directory which
hold the application files. Use the Back/Next buttons to move to/fro between the Wizard dia-
logs, describing the required appearance of your application and the basic options it is
offer. A preview field will show a mimic of the type of application the Wizard will create
based on your selections. Press Finish when you are ready to generate the files for you
cation. In fact, you can press Finish at any time, even if you have not worked through a
dialogs (the Wizard will just fill in a set of default selections). A confirmation window wil
appear summarising your choices, after which the project files will be created, consist

· Fortran 90 source code for the new application.

· A resource script describing the new application’s menus, dialogs, etc.

· A module or include file (selectable) defining resource file identifiers.

· A program icon file.

The generated program will be ready for immediate compilation.
Winteracter Starter Kit 21

Chapter 3 Writing Winteracter Programs
22 Winteracter Starter Kit

4 Resource Editor
to
 and

lays a
isplay
tton in

rce

e
rce

f the

g a
 header
iers
ation
The main Winteracter user interface design tool is the resource editor. This allows you
create, edit and maintain resource scripts which define dialogs, menus, icons, bitmaps
cursors. The resource editor incorporates dialog, menu and image editors in a single
integrated program.

When a resource is loaded, it can be navigated via the Resources window which disp
list of all of the dialogs, menus, etc. in that resource. Click on an item and press Edit to d
the required resource component. Double clicking has the same effect. The Delete bu
the same window can be used to remove components from a resource script.

This chapter briefly summarises the menus which are common to all parts of the resou
editor. The subsequent chapters entitled Menus, Dialogs and Icons/Bitmaps/Cursors provide
more information on how to build various types of user interface components using th
resource editor. You will also find considerable additional information about the resou
editor in its on-line help, via Help→Contents.

File Menu
A new resource script can be created by selecting File→New. Alternatively, an existing
resource script can be selected via File→Open or the file name can be specified on the
resource editor's command line. The latter option ensures that the Windows version o
editor supports invocation via drag-and-drop or via a file-type association (see
'View→Options→File Types' in Explorer).

The File→Save and File→Save As options save the current resource to disk. When editin
resource script, these options save both the updated script and the associated symbol
file (i.e. the Fortran module or include file which defines parameters for all of the identif
used in the resource script). The resulting resource script will require external recompil
using the resource compiler as described in the earlier Building a WiSK Program chapter.
Winteracter Starter Kit 23

Chapter 4 Resource Editor

ome

exact
 they

 dialog,
ts to

 in the
d on a

ich is

ted as
Once a resource has been loaded, additional resource import/export options also bec
available on the File menu.

Edit Menu
A standard set of Cut/Copy/Paste/Delete options are available on the Edit menu. The
meaning of these options depends on which sub-editor is currently active, but typically
operate on resource sub-components such as dialog fields or menu items.

Resource Menu
The Resource menu operates on complete resource components such as a menu or a
offering Add, Copy and Properties options. Use this menu to introduce new componen
your resource file or to view/amend the properties of the current component.

Settings Menu
Selected features of the editor's behaviour can be customised, via Settings→Preferences. The
Resource List options are saved in the resource editor’s initialisation file (resedit.ini)
and reactivated each time the editor is invoked. The remaining preferences are written
resource file, allowing the symbol header file name, base identifiers, etc. to be selecte
per resource basis.

View Menu
When a resource script is loaded, this menu provides options to view the identifiers wh
uses.

The Identifier Names and Values option shows all of the identifiers used by the entire
resource and allows them to be edited

The Used Identifiers option shows only the identifiers used by the current resource
component (e.g. the current dialog) and allows a particular sub-component to be selec
the 'current' item, via the Select button.
24 Winteracter Starter Kit

5 Menus
 take.
r

osen

f how

as set
y
h a
rce
y the

f the
 win-
r

ser

t.
lected.
Overview
Menus are the main method by which most programs will determine the next action to
They consist of various options which can be chosen by the user using the keyboard o
mouse. When an option is chosen the program will take some action related to the ch
option, such as displaying a dialog or plotting a graph. Menu layout is defined in your
program's resource script, which is created using the supplied resource editor. Details o
to use this program are given later in this chapter and in online help.

Every menu and menu option used in a given program must have a unique identifier,
in the resource file. A Fortran module or include file should normally be used to specif
PARAMETER values for these dialog/field identifiers. The resource editor creates suc
module or include file automatically. This file contains identifier definitions for all resou
types. The values in this file will be updated whenever your resource script is saved b
resource editor.

Up to 50 menu definitions definitions can be built into a program executable, as part o
program resource. The main menu for a window is normally specified when opening a
dow using WindowOpen or WindowOpenChild . This can be changed or removed late
using WMenu. Floating menus are displayed by calling WMenuFloating , usually in
reponse to a right mouse click. Normally only the root window will have a main menu.

When the user selects a menu option a MenuSelect message will be reported via
WMessage. No message will be reported for items which lead to sub-menus or if the u
closes the menu without selecting an option. The MenuSelect message does not report
which type of menu the message came from or what method the user used to select i
Programs should not be concerned with how an option was selected, only that it was se

Menu Types
Two types of menu are supported by WiSK:
Winteracter Starter Kit 25

Chapter 5 Menus

s

d

.
d

hecked
oggle
 the
itor's
Main Menus
A main menu is attached to the top of a window. Most, if not all, of the menu options
in your program should be available via the main menu. The top level of this type of
menu is always displayed. The options at this level normally lead to sub-menus. It is
possible to have items at the top level which do not lead to sub-menus, however thi
is unusual in a Windows or Motif application. This type of menu can not be used with
a child window which lies within its parent window.

Floating Menus
This type of menu can be displayed at any point on the screen. It is normaly displaye
at the position of the mouse cursor in response to a right mouse click. Normally this
type of menu will only have a small number of options and sub-menus. Often it will
consist of a sub-set of the options available via the main menu. Where a floating
menu item performs the same function as a main menu item it should be given the
same identifier. In addition to simplifying your menu code this will also cause the
states of items in the floating menu to match those of items in the main menu.

Menu Item Types
Three types of item exist in menus:

Selectable Options
These are the options which are used to select the functions available in your pro-
gram. They consist of a text string describing the function which the item performs.
When one of these options is chosen by the user a MenuSelect message will be
reported via WMessage.

Popup Options
These options lead to sub-menus. Selection of this type of option is not reported via
WMessage. Normally most of the items at the top level of a main menu will be of
this type.

Separators
Separators are used to split the options in a menu or sub-menu into logical groups
They have no functional effect on your program, but do improve the appearance an
legibility of a menu. Separators do not have an identifier.

Menu Item States
Menu items can be greyed out to prevent them from being selected. They can also be c
to indicate that they have been selected. This is typically used with menu items which t
the state of an option. Checked items in main and floating menus display a tick next to
item text. The initial state for an item is set in the resource script using the resource ed
26 Winteracter Starter Kit

Menu Help

itor's

t dis-
t is
hts an
sence
tored

yboard.
tivate
items
s in a

ntering
 letter
es the
.

 direct
source
ming

ted
 use
 com-
menu
t with

 Editor
Menu Item Properties dialog (double click on the relevant menu item in the resource ed
menu mimic to view this dialog). The state can be updated in your program using the
WMenuSetState routine. Items at the top level of a main menu can not be checked.

Menu Help
Brief help on the purpose of a menu item can be provided by means of associated tex
played in the status bar of the window for both main and floating menus. This help tex
defined using the resource editor and is displayed automatically when the user highlig
option. No code is necessary to display this help text. However you must specify the pre
of a status bar when opening the window. Any previous status bar contents will be res
automatically when the menu is not active.

Keyboard Access to Menus
In addition to selecting menu items using a mouse they can also be accessed via the ke
At the most basic level all main menu items can be accessed by using the Alt key to ac
the menu then using the cursor keys to navigate the menu. The initial letters of menu
can be used to provide quicker access to the items in a sub-menu. Where multiple item
sub-menu start with the same letter, the letter to use for an option can be changed by e
an & character into the caption string in the resource editor. It is advisable to specify the
to be used in this way even when using the initial letter since the & character also caus
letter to be underlined. This is the expected behaviour for a Windows or Motif program

In addition keyboard shortcuts, known as accelerators, can also be defined to provide
access to specific main menu options. Such accelerator keys are defined using the re
editor. Defining a keyboard shortcut as an accelerator requires no additional program
effort since those key sequences are then reported as MenuSelect (rather than KeyDown)
messages by WMessage. When defining accelerators it is useful to use commonly adop
conventions where possible. For example if your program has a 'New' option it should
Ctrl+N for its accelerator. It is also advisable to avoid using commonly used accelerator
binations for options other than their normal purpose. If the keyboard accelerators for a
are to be processed while a dialog is active you should avoid accelerators which conflic
standard dialog keystrokes. See the Dialogs chapter for more details.

Creating and Modifying Menus
Menus are created and maintained using the resource editor. See the earlier Resource
chapter. You should also refer to the resource editor's on-line help, available via
Help→Contents.
Winteracter Starter Kit 27

Chapter 5 Menus

nu to

re.

 the

 it

 the
 with
ange

to edit
source
eys.

urces

nu.
nu

lected
you
layed.

. This
-click
cted

e

 or

eady
A new menu can be created either by starting a new resource script or by adding a me
an existing resource script. To start a new resource script select File→New, then select
Resource File. Next, select Resource→Add and choose 'Menu' to add a new menu structu
Alternatively, open an existing resource script using File→Open. If the resource contains any
existing menus, they will be listed in the Resources window. Double click on a menu in
Resources window to display it. If the resource script contains no menus (for example
contains only dialog definitions) or to start a new menu, select Resource→Add as described
above,

Adding a new menu will display the Menu Properties dialog. This allows the identifier of
menu to be specified. Selecting OK will create a new menu consisting of a single option
an 'Empty' caption. The individual menu options can now be created, see below. To ch
the menu identifier after creation select Resource→Properties.

When a resource script contains several menu defintions you can choose which menu
via the Resources window. Alternatively, whenever a menu is selected as the current re
type, you can cycle though the available menus using the Page Up and Page Down k
Alt+1 to Alt+0 can also be used to select among the first 10 menus in this case.

If a menu is no longer required it can be removed using the Delete button in the Reso
window.

Adding and Modifying Menu Items
To add a menu item use either the Insert After or Insert Before options on the Edit me
These options are also available on the right-click menu or via keyboard shortcuts. Me
items are created with a default caption of 'Empty' and automatically given a default
identifier.

When a menu item is first created it becomes the current item. Different items can be se
via the mouse or cursor keys. To select an item in a sub-menu which is not displayed
must first select the item which leads to that sub-menu. The sub-menu will then be disp
To select an item using its identifier name select View→Used Identifiers. This will display a
list of the items in the current menu. The Select button will select the first item with the
highlighted identifier.

The properties of the selected item can be changed via the Menu Item Properties dialog
can be accessed by double clicking on an item (or select Properties on the Edit or right
menus). Alt+Enter also brings up the same dialog. This dialog is used to enter the sele
item's identifier, caption, status bar prompt (optional), type and initial state. Refer to th
online help for full details of this dialog.

To assign a keyboard accelerator to the selected item select Accelerator from the Edit
right-click menus or press Tab. Full details of this dialog are included in online help. A
description of the chosen accelerator will be added to the caption for the item, if not alr
present.
28 Winteracter Starter Kit

Tutorial - Creating a Menu

u. The

the

t

-

.

t

The selected item can be copied or deleted using the options available on the Edit men
usual keyboard shortcuts, Ctrl+C, Ctrl+X, etc. are also available for these options.

Tutorial - Creating a Menu
This brief tutorial will guide you through the basic steps of creating a menu, based on
methods described in the preceding sections:

1. Load the resource editor and select File→New, then select Resource→Add and
choose 'Menu'. You will be prompted for the identifier of the new menu. For now just
accept the default value. When you click OK a menu mimic, i.e. an emulation of an
application program's menu which allows you to visualise how the menu will appear
in your Winteracter program, will be displayed. Initially it has one item (labelled
Empty) which is highlighted. Double click on this item to display its properties.

2. The properties dialog is used to alter the settings for each individual item. First, se
the text that actually appears on the menu bar. This is done via the Caption field.
Delete the current contents of the field and then type &File into the field. The amper
sand (&) character is used to set which character within the string is underlined. This
key can then be combined with the Alt key to select the menu item via the keyboard

3. Click on the Popup check box (so that a tick appears). This will attach a pull down
menu (or child menu) to the current item. Press OK. You should notice two things.
First the highlighted item will now say File. Secondly, underneath it is a child menu
with a single option (labelled Empty).

4. Double click on the new child item to display the properties dialog. Type &Option 1
into the caption box. As this item will be used to input a user action we must give it
an identifier. This identifier will be reported via WMessage in the message loop at
run-time, when the item is selected. By default an identifier of ID_ITEM2 is given
to this object but let’s change this to something more meaningful. Type
ID_OPTION1 into the item ID field. Press OK.

5. The display will now be updated. To add another item to the child menu select Edi
→Insert After or press Ctrl+A. Remember that the Edit menu can also be accessed
by pressing the right mouse button. You should now have a new item at the bottom
of the child menu (labelled Empty) which will be highlighted.

6. Double click on the new item. Type E&xit into the caption box. Type ID_EXIT into
the item ID box. Click the OK button. Your first menu is now finished.

7. To save your resource, select File→Save. This will display the standard file selector.
Enter a file name (e.g. resource.rc) and click OK.
Winteracter Starter Kit 29

Chapter 5 Menus

tails
.g. dia-
You now have a resource script which can be compiled and linked with your Winteracter
program code. See the earlier Building a WiSK Program chapter for details on how to link
this resource script with your program. Refer to the subroutine reference section for de
on the routines for manipulating menus and processing selections. Other resources (e
logs) can be added to the same resource script.
30 Winteracter Starter Kit

6 Dialo gs
ing
nd in

apter

 the

uch
rce
y the

gram
ialogs

ee
uired.

rrent'
will
Overview

A dialog is a set of associated data entry fields. Normally a dialog will be specific to a
particular application and you will define its layout in your program's resource script us
the resource editor. Details of how to use this program are given later in this chapter a
online help. Alternatively certain dialogs are commonly required by many different
programs. Winteracter provides access to these common dialogs via the routines in the
Common Dialogs section in the subroutine reference section. The remainder of this ch
is concerned with program defined dialogs.

Every dialog and field used in a given program must have a unique identifier, as set in
resource file. A Fortran module or include file should normally be used to specify
PARAMETER values for these dialog/field identifiers. The resource editor will create s
a module or include file automatically. This file contains identifier definitions for all resou
types. The values in this file will be updated whenever your resource script is saved b
resource editor.

Up to 400 dialog descriptions can be built into a program executable, as part of the pro
resource. The Dialog Manager operates by selectively loading one or more of these d
from the program resource (see WDialogLoad), possibly modifying the dialog, then
displaying it (see WDialogShow). When no longer required, a dialog can be unloaded (s
WDialogUnload). The same dialog can be loaded and unloaded as many times as req
Alternatively, it can be loaded just once then repeatedly displayed and hidden (see
WDialogHide).

When more than one dialog is loaded, the Dialog Manager uses the concept of the 'cu
dialog. This is simply the dialog which most of the other dialog management routines
operate on. This can be set explicitly via WDialogSelect , but is also set implicitly by
WDialogLoad . Opening a combined window and dialog using WindowOpen or
WindowOpenChild also selects the combined dialog as the current dialog.
Winteracter Starter Kit 31

Chapter 6 Dialogs

ditor.

s can

 can

n but-
 with
-

he

e

The initial contents of each field can be defined in the resource file, using the resource e
These will be the initial values each time WDialogLoad is called. While loaded, the
contents of the dialog can be updated via the various WDialogPutXXX routines in the
DM(2) group. See the subroutine reference section for details. The values of dialog field
be interrogated, (both before and after user data entry) via the corresponding
WDialogGetXXX routines in the same group. For example, the contents of a string field
be assigned via WDialogPutString and retrieved via WDialogGetString .

When a user has finished entering data in a dialog they will normally press a terminatio
ton (e.g. OK, Cancel, etc.). This will cause a modal dialog to be terminated immediately,
termination information reported via WInfoDialog . However, a modeless or semi-mode
less dialog will remain on-screen, with the button press reported as a PushButton message
via WMessage. The dialog remains on screen until explicitly removed by WDialogHide
or WDialogUnload .

The dialog can also be closed or PushButton messages reported for other user actions. T
following actions will cause this:

· Pressing return in a non-push button field will act as if the default push button was
pressed. If there is no default push button in the current dialog Winteracter will act
as if a default push button with an identifier of IDOK was present. A push button can
be made the default button using its Style Properties dialog in the resource editor.

· Pressing Esc, Alt+F4 or closing the dialog via its title bar controls will act as if a but-
ton with an identifier of IDCANCEL was pressed. For this reason you should
normally use this identifier for the Cancel button of a dialog. This will simplify your
code by ensuring you only have to check for one cancel value.

· Pressing F1 in a modeless or semi-modeless dialog will report a PushButton mes-
sage with an identifier of IDHELP. Using this value for any actual Help button is
recommended since it will simplify your code.

The IDOK, IDCANCEL and IDHELP identifier values are pre-defined in the
WINTERACTER module.

Dialog Types
When a dialog is shown by WDialogShow its type must be specified. This controls how th
dialog interacts with the user and your program. Three types of dialog are supported :

Modal

A modal dialog blocks data entry or option selection via other dialogs or menus
belonging to the current program. The button used to close the dialog is available via
WInfoDialog . Such dialogs are easier to manage from a programming viewpoint
32 Winteracter Starter Kit

Dialog Types

ll

d

n

'

urce
y
 are
s are

 in the
 to be
because display, user-entry and termination all occur as a single operation (in a ca
to WDialogShow). They also eliminate any need to process Resize or Expose
messages while the dialog is displayed.

Modal dialogs are best used where access to the rest of the program is not require
and the only buttons are OK and Cancel buttons to confirm or abandon data entry.

Modeless

A modeless dialog remains on screen while a program continues to run. Button
presses are reported via WMessage, as PushButton messages. The dialog
remains visible until explicitly removed by the calling program. Several modeless
dialogs can be active simultaneously. Because the program continues to run
modeless dialogs permit more sophisticated processing of the displayed dialog tha
is possible when using a modal dialog. For example a combination of
FieldChanged messages and the WDialogFieldState routine can be used to
selectively grey out or enable fields depending on the options chosen in a dialog.

Modeless dialogs should be used when simultaneous access to other dialogs or
windows is required.

Semi-Modeless

A semi-modeless dialog is a useful hybrid of the previous two types. Such a dialog
appears modeless to the program, but modal to the user. In other words, control
returns to the program as soon as the dialog is displayed by WDialogShow
(allowing message processing via WMessage, for example), but input to other
dialogs or program menus is blocked. Like a modeless dialog, a semi-modeless
dialog remains on-screen until explicitly removed by the calling program. Multiple
semi-modeless dialogs can be stacked, allowing the use of 'Options' or 'Advanced
buttons to activate sub-dialogs.

Semi-modeless dialogs should be used when the additional facilities offered by a
modeless dialog are required but access to other windows and dialogs needs to be
prevented.

Under Windows, all dialogs are either 'pop-up' or 'child' dialogs (determined in the reso
file, via Dialog Properties in the resource editor). A pop-up dialog can be moved to an
position on the screen either inside or outside of the application window. Child dialogs
restricted to the root window. Child dialogs must be modeless. 'Sub Component' dialog
a special type of Child dialog. While these can be loaded and displayed by the routines
Dialog Manager chapter of the subroutine reference section they are primarily intended
combined with a window by WindowOpen/WindowOpenChild . Under X Windows, all
dialogs which are not combined with a window are 'pop-up' dialogs.
Winteracter Starter Kit 33

Chapter 6 Dialogs

e

o

Field Types
Whichever dialog type is used, it can consist of the following field/control types :

Strings
String fields allow the user to enter character data into a dialog. Either single-line
strings or multi-line fields are available. In read-only mode, string fields are also
useful for the output of character data which the user can then copy to other
applications via the clipboard.

Menus
Menu fields allow the user to choose from a list of options. Available types are:

Simple Combo Box : In addition to a list of options this type also provides a string
field into which the user may type any value.

Drop Down Combo Box : This also consists of a string field and list of options.
However the list is hidden until the user displays it using the button at the right of the
string field. This type of menu can be used as an enhanced string field which allows
the user to choose from a list of standard values.

Drop Down List Combo Box : This is similar to the Drop Down Combo Box except
that only the listed options may be chosen. This type of menu is useful where spac
is limited.

List Box : This is a simple, permanently visible list. This menu type can optionally
be used for the selection of multiple options. List boxes are also useful for displaying
scrolling output, e.g. a list of messages where the user may wish to scroll back
through earlier messages.

Check Boxes
A check box provides a convenient way for the user to indicate Yes/No choices. They
consist of a label and an on/off indicator.

Radio Buttons
Radio buttons are similar in appearance to checkboxes. However they are used in
groups to select between a small number of mutually exclusive options. When a radi
button is selected all others in the same group are cleared. The grouping of radio
buttons is determined by the 'Group' flags in the 'General Properties' dialogs in the
resource editor.

Push Buttons
These are buttons, such as 'OK' and 'Cancel', which the user can use to close the
dialog. In modeless and semi-modeless dialogs push buttons can also be used to
access other dialogs, e.g. an 'Advanced' or 'Options' button.
34 Winteracter Starter Kit

Field Types

e

hese

d
t

o
Progress Bars
Progress Bars are output only fields which show an integer value as a bar. They ar
typically used to visually indicate the progress of a time consuming task.

In addition to these 'functional' fields a dialog can also include various 'decorations'. T
are defined within the resource script, but are display-only fields:

Labels
Label fields are used to label most other types of fields. They should not be confuse
with string fields since they are different in appearance and do not provide any inpu
or cut/paste facilities.

Group Boxes
Group boxes consist of a box and associated label and are used to visually group
other fields. Group boxes have no functional effect on other fields. In particular, they
do not affect the behaviour of radio button groups.

Pictures / Frames
These allow bitmaps and icons to be displayed in dialogs. They can also be used t
draw unlabelled frames or filled rectangles.The rectangle variation is particularly
suited to displaying program generated graphics in a dialog. See IGrSelect .
Winteracter Starter Kit 35

Chapter 6 Dialogs

es

n-

e

s

se

 most
h a
tter
ther

ll
e
ch
alents

tring
l or

 the
ent
r.

log is
 a
s
Keyboard Processing in Dialogs
When a dialog is displayed and has the input focus it will normally process all keystrok
automatically. For this reason KeyDown message are not reported while a dialog has the
focus. A dialog will process a keystroke in one of several ways:

· It will treat the keystoke as data to be entered into the current editable field. This will
not report a message to the program.

· The Tab and Shift-Tab keys will move to the next or previous fields. This can be
reported via a FieldChanged message for a modeless or semi-modeless dialog.

· The keystoke will correspond to a dialog button and either close a modal dialog or
report a PushButton message in a modeless or semi-modeless dialog, as docu-
mented in the introduction to this chapter. Note: There need not be an actual push
button field corresponding to these actions. For example, the Escape key always ge
erates a PushButton message with an IDCANCEL identifier.

· It will perform a field type dependent action, such as the space bar toggling the stat
of the current checkbox. Some of these actions can be reported as a Field-
Changed message for a modeless or semi-modeless dialog. Other actions, such a
displaying the drop-down list in a combo box, will not report a message.

· The keystroke is a program defined shortcut to a particular field. The exact action
taken in this case depends on the field type. See later for details of how to create the
shortcuts and their effects.

· The keystroke will be ignored because it has no meaning for the current field.

Keyboard shortcuts can be created for a particular field, such as an Apply button. This is
commonly done for push button, check box and radio-button fields. To implement suc
shortcut prefix a letter in the field's caption with an ampersand (&). Normally the first le
of the field's caption will be chosen, except where this would cause a conflict with ano
field. When creating a dialog which will later be combined with a window (see
WindowOpen and WindowOpenChild) you should also avoid choosing letters which wi
cause conflicts with the top level of the window's main menu. The prefixed letter will b
underlined. Alt and the shortcut letter can then be used to access the field directly. Su
shortcuts are not normally defined for the OK and Cancel buttons since keyboard equiv
of these actions already exist.

Keyboard shortcuts can also be used to move directly to an editable field, such as a s
field. In this case the ampersand prefix and shortcut letter should be placed in the labe
group box which labels this field. The fields should be re-ordered so that the field with
shortcut letter immediately precedes the editable field. No coding is needed to implem
these shortcuts. They are handled automatically once defined using the resource edito

Keyboard accelerators for menu items can optionally be enabled when a modeless dia
displayed. Such accelerators are also always enabled when a dialog is combined with
window. If enabled, keystrokes which correspond to these accelerators are reported a
36 Winteracter Starter Kit

Keyboard Processing in Dialogs

th
 this
r.

you
ch an
okes

x

MenuSelect messages in the usual way. This facility will not normally be required wi
non-combined dialogs. It is most useful with permanently displayed child dialogs. Using
facility with a popup or temporarily displayed dialog would be highly unusual behaviou

When creating menu accelerators which will be enabled when a dialog has the focus
should avoid using keystrokes which normally have a meaning in a dialog. Creating su
accelerator would disable the keystoke's usual function in a dialog. The following keystr
should be avoided:

Table 1: Dialog Keystrokes

Keystroke Usual DIalog Function

Unmodified Characters Data entry

Tab/Shift Tab Move between fields.

Cursor Keys

Move cursor within current enterable field
Change option in current menu
Move between fields in same group (if no other action
defined)

Page Up/Page Down
Move cursor within current enterable field
Change option in current menu

Home/End
Move cursor within current enterable field
Change option in current menu

Shift+Cursor Keys
Shift+Page Up/Down
Shift+Home/End

Select characters in editable field
Select range of options in current extended selection listbo

Ctrl+A Select all characters in editable field

Space Bar

Toggle state of current checkbox
Activate current push button
Toggle state of current option in current mutiple or
extended selection listbox

Enter
Activate current or default push button
Insert new line into multi-line string (if enabled)
Close open drop-down combo box

Esc Cancel dialog (simulate Cancel button)

Alt+F4
Cancel dialog.Under X Windows other key sequences may
perform this function, depending on the window manager
being used

F4 Open/Close current drop down combo box
Winteracter Starter Kit 37

Chapter 6 Dialogs

f
g

ox

e

e

ctually
r using
ts the
essage
 mouse
ust
clude a
age
Dialog Validation and FieldChanged Messages
The data entered into a dialog can be validated in several ways:

· Validation can be performed at the calling level by checking the values returned by
the 'get' routines in group DM(2). See the subroutine reference section for details. I
a modeless or semi-modeless dialog is used this can be done on the fly by checkin
for FieldChanged messages.

· If it is known in advance that selecting certain radio buttons or checkboxes would be
invalid these fields can be disabled, using WDialogFieldState , to prevent such
selections.

These methods can also be combined. For example if selection of a particular checkb
precludes the use of certain other fields in the same dialog then the FieldChanged
message would be used to detect selection of the checkbox and WDialogFieldState
used to disable the other fields.

FieldChanged messages fall into two distinct categories:

· Messages which report that the user has moved from one field to another. For thes
messages the %value1 and %value2 elements of the message structure will be
different.

· Messages which report a change in state of a field with a well defined number of
possible states, i.e. a check box, radio button or menu field. For these messages th
%value1 and %value2 elements will both refer to the changed field.

It is important that code to handle FieldChanged messages should process the correct
messages for the task to be performed. In particular, be aware that some user actions a
result in two messages in quick succession. For example consider the case of the use
the mouse to toggle a checkbox which is not the current field. The first message repor
change of focus. This occurs when the user presses the mouse button. The second m
reports the change of state of the checkbox. This is reported when the user releases the
button. To take action based on the new state of the checkbox when it changes you m
ensure that you process the second of these messages. Specifically your code must in
test that %value1 and %value2 both report the same identifier. Processing the wrong mess

Alt + Letter Program defined field shortcut, see above

Ctrl+X, Shift+Delete Cut selection to clipboard

Ctrl+C, Ctrl+Insert Copy selection to clipboard

Ctrl+V, Shift+Insert Paste clipboard contents

Delete Delete selection

Table 1: Dialog Keystrokes

Keystroke Usual DIalog Function
38 Winteracter Starter Kit

Cut and Paste in Dialogs

e,

 usual

 Editor

log to

y
. The
urces

asic
ether
ent of

semi-

ation,

g to
rent
 Down
can cause various problems. For example in this particular case calling
WDialogGetCheckBox after the first message will report the previous checkbox stat
since it has not yet changed.

FieldChanged messages must be specifically enabled, using WMessageEnable . They
are not reported by default.

Cut and Paste in Dialogs
String fields support cut and paste of their contents. These facilities are available via the
Windows shortcuts, Ctrl+X, Ctrl+C, etc. or via the right-click shortcut menu.

Creating and Modifying Dialogs
Dialogs are created and maintained using the resource editor. See the earlier Resource
chapter. You should also refer to the resource editor's on-line help, available via
Help→Contents.

A new dialog can be created either by starting a new resource script or by adding a dia
an existing resource script. To start a new resource script select File→New, then select
Resource File. Next, select Resource→Add and select 'Dialog' to add a new dialog.
Alternatively, open an existing resource script using File→Open. If the resource contains an
existing dialogs, they will be listed in the Resources window under the Dialogs branch
dialog to edit can be selected by double clicking on the appropriate identifier in the Reso
window. If the resource script contains no dialogs (for example it contains only menu
definitions) or to start a new dialog, select Resource→Add as described above,

Adding a new dialog will display the Dialog Properties dialog. This is used to determine b
features of the dialog such as its identifier, size and title. This dialog also determines wh
the dialog appears outside or inside the root window or is to be used as a sub-compon
another dialog or window. Refer to the online help for details on the individual options
available in this dialog. The position of the dialog and whether it is modal, modeless or
modeless is chosen at run-time by the WDialogShow routine. Selecting OK will create and
display an empty dialog with the chosen properties.

Once created the dialog is ready to have fields added. To modify its properties after cre
select Resource→Properties. Under Windows this dialog can also be displayed by right
clicking on the dialog's title bar.

When a resource script contains several dialog definitions you can choose which dialo
edit via the Resources window. Alternatively, whenever a dialog is selected as the cur
resource type, you can cycle though the available dialogs using the Page Up and Page
keys. Alt+1 to Alt+0 can also be used to select among the first 10 dialogs in this case.
Winteracter Starter Kit 39

Chapter 6 Dialogs

urces

e the

ld to
g the
ields
type
ct the

ed
 be

ngle
nter

g the
fields
 some
the

e
 will

sing
ging

size a

ailable
eld
 to
cted.

lected.

u. The
If a dialog is no longer required it can be removed using the Delete button in the Reso
window.

Creating and Modifying Fields
To create a field you must first select the type of field to be created. To do this either us
toolbar across the top of the main window or Field→Add. Tooltips are available for each of
the buttons on the toolbar which indicate the type of field created. Once the type of fie
create has been selected the field is created by left-clicking in the window representin
dialog. The field is created with its top-left corner at the clicked position. Subsequent f
of the same type can be created simply by further clicks. Alternatively a different field
can be chosen using the toolbar or menu. To prevent accidental creation of fields sele
pointer button on the toolbar. This enters a select only mode.

When a field is first created it becomes the current field. This is indicated by a thicken
border around the field. Any previously selected field is deselected. Different fields can
selected by clicking on them using the mouse. To select a group box field or the recta
variant of the picture/frame field you should click on or near the border. Clicks in the ce
of these fields do not select the field to allow other fields to be created inside them.
Alternatively pressing Tab/Shift-Tab will select the next/previous field. To select a field
using its identifier name select View→Used Identifiers. This will display a list of the fields
used in the current dialog. The Select button will select the field with the highlighted
identfier. To select multiple fields hold down the shift key while clicking a field.
Alternatively a group of fields can be chosen by dragging a rectangle around them usin
mouse when the Select Only option is chosen via the toolbar or menu. When multiple
are selected the last field selected has a different colored border. This is important with
of the field alignment options. To clear any current selection click in an empty area of
dialog when in Select Only mode.

Selected field(s) can be moved to a different position by dragging using the mouse. Th
mouse cursor will change to a four-headed arrow when positioned to move a field. This
snap to the grid unless it has been disabled using View→Grid. Alternatively the selected
field(s) can be moved by a single dialog unit using the cursor keys or by 8 dialog units u
shift and the cursor keys. When only a single field is selected it can be resized by drag
its border. The mouse cursor will change to a two-headed arrow when positioned to re
field. Again this snaps to the grid if enabled.

There are also various options to align selected fields or make them the same size av
via the toolbar at the left of the main window and on the Alignment sub-menu of the Fi
menu. The centring options center each of the selected fields individually. The options
align field edges align the appropriate edge of the selected fields with the last field sele
The sizing options make the appropriate dimension(s) the same as for the last field se
Refer to the online help for full details of these options.

The selected fields can be copied or deleted using the options available on the Edit men
usual keyboard shortcuts (Ctrl+C, Ctrl+X, etc.) are also available.
40 Winteracter Starter Kit

Radio Buttons and Field Grouping

ties.
ield
er
or
otes

order
 in the

e
le
sing
alog.

lusive
, they
s must
When a single field is selected there are various dialogs available to modify its proper
These are accessed via the shortcut menu displayed by the right mouse button or via F→
Properties. The General Properties dialog can also be displayed using Alt+Enter. Und
Windows it can also be accessed by double-clicking a field. Refer to the on-line help f
details of the specific dialogs used for each field type. However the following general n
apply for each option:

General

This dialog is used to control commonly available features of a field such as its
identifier, position, size, initial contents and whether it is enabled or disabled.

Style

This dialog is used to control options affecting the appearance of a field or to enable
optional features.

Border

This dialog controls the style of border, if any, drawn around the field.

Colour

This dialog allows the colors used by the field to be changed. However in general
you should use the default field colors. This will give your application an appearance
which is consistent with other programs. Overuse of color can make your program
look very out of place in a graphical environment.

By default the order of fields is determined by the order in which they are created. This
determines the order in which the Tab key moves between fields and is also important
grouping of radio buttons. Grouping of radio buttons will be dealt with in detail later. To
change the ordering of fields select Dialog→Re-Order Fields. Once chosen simply click th
fields in the desired order. To finish re-ordering fields take any other action, for examp
select Dialog→Test to check the new field order. Fields should be ordered so that pres
the Tab key moves through the fields in a logical order, starting at the top-left of the di
OK, Cancel and other buttons should normally be at the end of the tab order.

Radio Buttons and Field Grouping
Radio buttons are a useful method of choosing between a small number of mutually exc
options. While they are created and modified in the same way as for any other field type
are unique in that several need to be grouped together to be useful. To do this two thing
be done:
Winteracter Starter Kit 41

Chapter 6 Dialogs

t

ts
 field,

 the

K

l

· The fields should be consecutive in the field order. If the fields which form the group
are created at the same time then this will happen automatically. However when
extending a radio button group later it will be necessary to re-order the fields using
Dialog→Re-Order Fields. Specifically you should click each field in the group in
order. This also sets the order within the group for keyboard navigation.

· The Group flags in the General Properties dialog must be set correctly. This flag is
used to indicate that a field is the start of a new group. Hence this flag should be se
for the first radio button in the group, cleared for all other radio buttons in the same
group and set for the first field, of whatever type, after the group. Again the logic in
the resource editor is such that these flags will normally be set correctly when a new
group of radio buttons is created. It will normally only be necessary to change these
flags when extending an existing group.

In addition to arranging radio buttons into functional groups, grouping fields also affec
keyboard navigation of the dialog. Where the cursor keys have no other meaning for a
e.g. for check boxes, they will move between fields in the same group.

Tutorial - Creating a Dialog
This brief tutorial will guide you through the basic steps of creating a dialog, based on
methods described in the preceding sections:

1. Load the resource editor and select File→New, then select Resource→Add and
choose 'Dialog'. You will be prompted for the properties of the new dialog. For now
just accept the defaults. They can be changed later if necessary. When you click O
an empty window will appear. This represents your new dialog. The Field Insertion
toolbar will appear at the top of the main window. This is used to add new fields to
your dialog.

2. Now that we have a dialog we can create some fields inside it. First we will create
the simplest type of field, a label. Click on the 'Label' button then click inside the
window representing your dialog. Don't worry too much about exact positioning at
this stage. The field is created with the default contents 'label'. Let's change this to
something more meaningful. Right click on the field to bring up a small floating
menu. Select General from this menu. This will display a dialog showing the genera
properties of the field. For now just move to the caption field and enter something
more meaningful, then click OK.

3. Having changed the caption of the label field it is likely that it is no longer big enough
to display the text. To fix this, change the field's size by dragging the border of the
field just as if it was a program window. Dragging within the field will move the field
to a new position. Notice that the field's size and position snaps to the grid.
42 Winteracter Starter Kit

Tutorial - Creating a Dialog

to
-

-
.

etails
) can
4. If the next field we wanted to create was also a label then we could simply click in
an empty region of the dialog again. However we will now create an entry field.
Select the 'String' button from the toolbar and click somewhere to the right of your
label. Notice that the thick border is removed from the label and placed around the
string field, indicating that this is currently selected.

5. At this point we can test the dialog by selecting Dialog→Test. This will allow you to
type into your newly created string field. Press Esc or Enter when done.

6. While this dialog worked, having to use the keyboard to close it is not normal for a
graphical environment. Let's create OK and Cancel buttons. Do this by selecting the
'Push Button' toolbar button and clicking twice in the dialog window where you wish
the buttons to appear. Notice that the captions on the buttons are automatically set
'OK' and 'Cancel'. They are also assigned the standard identifiers IDOK and IDCAN
CEL. This is done for the first two buttons in every dialog. Also note that the first
button (OK) was automatically made the default push button (as indicated by its dif
ferent frame style). This will cause the Enter key to act as if this button was pressed
You may now wish to test your dialog again to see the improved effect

7. To save your resource, select File→Save. This will display the standard file selector.
Enter a file name (e.g. resource.rc) and click OK.

You now have a resource script which can be compiled and linked with your Winteracter
program code. See the earlier Building a WiSK Program chapter for details on how to link
this resource script with your program. Refer to the subroutine reference section for d
on the routines for manipulating dialogs in your program. Other resources (e.g. menus
be added to the same resource script.
Winteracter Starter Kit 43

Chapter 6 Dialogs
44 Winteracter Starter Kit

7 Icons, Bitmaps and
Cursors
ipt, in

in

a

e is
Winteracter programs can use icons, bitmaps and cursors defined via the resource scr
several ways:

Icons

Each program has an associated icon. For an existing icon file this can be selected
the resource editor using File→Import Image. Enable 'Set as program icon' in the
subsequent dialog. A 'Set as program icon' checkbox is also available in the Image
Propeties dialog when adding a new icon to a resource script via the Add→Resource
option.

Icons can also be displayed in dialogs in various field types (see Using Bitmaps and
Icons in Dialogs later in this chapter). Their main advantage over bitmaps is that they
allow for transparent pixels. Icons can also be selectively displayed in a dialog at run
time, via WDialogPutImage .

Bitmaps

Bitmaps can also be displayed in dialogs using similar mechanisms to icons (e.g. vi
WDialogPutImage). Unlike icons, bitmaps do not support transparent pixels and
cannot be used as a program icon. The image editor can be used to create small
bitmaps.

Cursors

In addition to various pre-defined cursors, WCursorShape allows selection of user
defined cursors. (Note : User-defined cursors are only used by the Windows version
of Winteracter, but can be created by all versions of the image editor)

Images specified in the resource script will be incorporated into your executable. Ther
therefore no need to distribute the .ico , .bmp or .cur files with your application.
Winteracter Starter Kit 45

Chapter 7 Icons, Bitmaps and Cursors

 can

ilable

48x48
t
ill

 color
 since
o be
ited
Image Editor
An image editor is provided as part of the Winteracter resource editor which allows you to
interactively create and edit icons, small bitmaps and cursors. All of these image types
be incorporated into your application via the resource file.

The image editor within the resource editor can be used in one of two ways:

· Image files can be edited directly, without associating that file with a particular
resource script. An existing image file can be loaded via File→Open or by specifying
its name on the resource editor's command line. The latter option ensures that the
resource editor supports invocation via drag-and-drop or via a file-type association
(View→Options→File Types in Windows Explorer). Alternatively, a new
standalone image can be created via File→New.

· Image files which are associated with a resource file can be edited by loading that
resource file, then selecting the icon, bitmap or cursor to edit from the Resources
window. Alternatively, a new icon, bitmap or cursor can be added to a resource from
scratch using Resource→Add. Using the built-in image editor in this way still creates
a separate image file, but it also ensures that the file is associated with a resource
script.

In addition to this chapter you should also refer to the resource editor's on-line help, ava
via Help→Contents. This contains more detailed information on each of the available
options.

Supported Formats
The image editor can create icons, bitmaps and cursors at any size between 8x8 and
pixels, in either 16 or 256 colors. The image format is specified when the image is firs
created, or by using the Resource→Properties option. Bitmaps larger than 48x48 pixels w
need to be created using an external program which can save files in Windows .bmp format.
Once created these images can be added to your resource script using the File→Import
Image.

Editing 256 color images requires a display which supports more than 256 colors.

When designing an icon for use as the program icon you should select a 32x32 pixel, 16
icon. While any of the supported sizes can be used 32x32 pixels gives the best results
this is the icon size displayed by Explorer under Windows. Other icon sizes will need t
scaled. Using a 16 color icon gives better results than 256 colors on displays with a lim
number of colors.
46 Winteracter Starter Kit

Drawing Tools

lus an
ich are

d
ively
 Picker
 is

con or
 Pen
 by

 the
edit
ng

n tool
o this

ag the
ste from
ouse

n and
Drawing Tools
The image editor displays a grid which represents an enlarged version of your image, p
actual size image and a color selector. The image can be edited using various tools wh
available from the toolbar at the left of the window or from the Tools menu:

Pen : Click to set single pixels or hold mouse button for freehand drawing.

Line : Click and drag to set opposite ends of the line.

Outline Rectangle : Click and drag to set opposite corners of the rectangle.

Filled Rectangle : Click and drag to set opposite corners of the rectangle.

Fill : Click to flood fill an area in the current color.

Hotspot : Click to set the selection point within a cursor.

Mirror image : Reverses the image horizontally.

Flip image : Reverses the image vertically.

Color Selection
The current drawing color can be selected in two ways. Normally colors will be selecte
using the Colour Selector window. To select a color use the left mouse button. Alternat
a color which has already been used in your image can be reselected using the Colour
tool and clicking within the main edit window. This is useful to ensure the exact shade
selected when editing a 256 color image.

In addition to the opaque colors, a transparent color can be selected when editing an i
cursor. Transparent pixels allow the dialog or window background to show through. The
tool can be used to draw transparent pixels, regardless of the currently selected color,
using the right mouse button.

The palette used for an image can be changed in two ways: by right clicking a color in
Colour Selector window or by using the Edit Pixel Colour tool and clicking in the main
window. Either of these will display a dialog to choose a new color for the correspondi
palette entry. All pixels in the changed color will be updated to use the new color.

Cut and Paste
Rectangular areas of the image can be cut, copied and pasted using the Select Regio
and the options on the Edit menu. To cut or copy an area it must first be selected. To d
press and hold the left mouse button in one corner of the area to be selected. Next dr
mouse to the opposite corner and release the mouse button. To paste an area select Pa
the Edit menu. Now select the point at which to paste. To do this press and hold the left m
button. An outline of the area to be pasted will appear. Drag this to the desired locatio
release the mouse button.
Winteracter Starter Kit 47

Chapter 7 Icons, Bitmaps and Cursors

age

 It is

s the

ely,
 icon.

 script

riate
 the
e to

rame,
y, to
y

ame

 than

-
ngle
Cursor Hotspot
When designing a cursor it it important to set the cursor hotspot, i.e. the point in the im
which represents the cursor location. This can be set using the Hotspot tool or via
Resource→Properties.

Adding Images to Your Resource
Images which are used in your program are normally defined via your resource script.
therefore usual to add image files to your resource either via Resource→Add or File→Import
Image. The former option is used to create a resource file image from scratch, wherea
latter is used to import existing image files.

Selecting File→Import Image will prompt for a suitable identifier. This identifier will be
used to refer to the image in your program or to link the image to a dialog field. Alternativ
if the image to be imported is an icon, this dialog allows you to select it as the program
An identifier is not required in this case.

Using Bitmaps and Icons in Dialogs
Both bitmaps and icons can be used in dialogs. They should be added to your resource
as described in the preceding section.

When adding or importing an image for use in a dialog, it is important to select an approp
identifier. This is used to link the picture to a field. In general you should give the picture
same identifier as the field that will display it. However if you intend to assign the pictur
the field at run time (using WDialogPutImage) then any identifier may be used.

Once a picture has been added to your resource script it can be displayed by Picture/F
Group Box, Push Button, Checkbox and Radio Button fields. The type of picture, if an
display is set using the field’s Style Properties dialog. The same image can be used b
multiple fields provided they have the same identifier or WDialogPutImage is used to
assign the image at run-time. This results in a smaller executable than importing the s
image multiple times with different identifiers.

Note : When editing a dialog, the resource editor displays a dummy bitmap/icon rather
the actual picture which will be used at run time.

To display program generated graphics in a dialog, use IGrSelect and a modeless or semi
modeless dialog. The most appropriate type of field to use for this purpose is the recta
variation of the Picture/Frame field.
48 Winteracter Starter Kit

Using Cursors

-
ed via
m cur-
Using Cursors
Cursors are selected at runtime via the WCursorShape routine. This routine supports var
ious pre-defined cursor shapes, using hardcoded identifiers. User defined cursors add
the resource script should therefore use identifier values greater than 100. The progra
sor shape can be changed at any time.
Winteracter Starter Kit 49

Chapter 7 Icons, Bitmaps and Cursors
50 Winteracter Starter Kit

8 Subroutine Summary
Group WM: Window Management
WindowClear Clear all or part of a window
WindowClose Close root window
WindowCloseChild Close a child window
WindowOpen Create root window with various style options
WindowOpenChild Open a child window with various style options
WindowOutStatusBar Output string to the status bar
WindowSelect Specify number of parts in status bar
WindowSizePos Change window size, position, state
WindowStatusBarParts

Select window which all output is sent to
WindowTitle Set window title/icon
WindowUnitsFromPixels

 Convert from pixels to Winteracter co-ordinates
WindowUnitsToPixels

 Convert to pixels from Winteracter co-ordinates

Group MH: Message Handling
WMessage Wait until valid message arrives
WMessageEnable Enable/disable reporting of individual messages
WMessagePeek Get next message or return immediately

Group MN: Menu Handling
WMenu Activate/remove a menu
WMenuFloating Display a floating menu at (x,y)
WMenuGetState Get a menu item state (checked/greyed)
WMenuSetState Set a menu item state (checked/greyed)
WMenuSetString Change text for a given menu item
Winteracter Starter Kit 51

Chapter 8 Subroutine Summary
Group DM(1): General Dialog Management
WDialogFieldState Enable/disable/show/hide a field
WDialogHide Remove a dialog from the screen
WDialogLoad Load a dialog from resource
WDialogRangeProgressBar

 Set range for a progress bar
WDialogSelect Select current dialog
WDialogSetField Make field current
WDialogShow Display a dialog
WDialogUnload Free dialog resource from memory

Group DM(2): Dialog Field Assignment/Retrieval
WDialogGetCheckBox Get check box value
WDialogGetMenu Get menu field value
WDialogGetRadioButton

Get radio-button group value
WDialogGetString Get string value
WDialogPutCheckBox Enable/disable a check-box
WDialogPutImage Change bitmap/icon displayed in a field
WDialogPutMenu Change menu field contents
WDialogPutOption Change menu field option number
WDialogPutProgressBar

Change progress bar value
WDialogPutRadioButton

Change radio-button group value
WDialogPutString Change a string field value

Group CD: Common Dialog Management
WMessageBox Display standard message box with various options
WSelectFile Get a load or save filename from a common dialog

Group GG: General Graphics
IGrArea Define size of graphics area
IGrAreaClear Clear the current graphics screen area
IGrGetPixel Get a screen pixel value
IGrInit Re-initialize graphics output
IGrSelect Select target drawable (window or dialog field)
IGrUnits Define plotting units to be used
52 Winteracter Starter Kit

Group GS: Graphics Style Selection
Group GS: Graphics Style Selection
IGrColourModel Select 8-bit or 24-bit color model
IGrColourN Select graphics color using a color number
IGrFillPattern Define fill pattern (solid/stippled/hatched)
IGrLineType Select line type (solid, dashes, etc.)
IGrPaletteInit Reinitialize graphics palette
IGrPalette Redefine 8-bit color palette
IGrPlotMode Select plot mode (overwrite or exclusive-or)

Group GD: Graphics Drawing Primitives
IGrCircle Draw/fill circle at an absolute position
IGrLineTo Draw line to a new absolute position
IGrMoveTo Move current plotting position to a new absolute position
IGrPoint Draw a single point at new absolute position
IGrPolygonComplex Draw/fill a complex (possibly intersecting) polygon

Group GT: Graphics Text
WGrTextFont Select font
WGrTextLength Return relative length of string
WGrTextOrientation

Select graphics text alignment, angle and direction
WGrTextString Output a string
WGrOFontFixed Load outline font (Fixed)
WGrOFontSwiss Load outline font (Swiss)
WGrVFontDuplexRoman

 Load vector FONT (Duplex Roman)
WGrVFontStandard Load vector font (Standard)
WGrVFontTriplexRoman

Load vector font (Triplex Roman)

Group IF: Information
InfoError Return error information
InfoGraphics Return real graphics information
InfoGrPalette Return graphics palette information
InfoGrScreen Return graphics facilities information (screen)
WInfoDialog Return dialog information
WInfoFont Return information about current font
WInfoScreen Return screen size & available colors
WInfoWindow Return information about the current window
Winteracter Starter Kit 53

Chapter 8 Subroutine Summary
Group OS: Operating System Interface
IOsExitProgram Abort program with an error message & error code
IOsVariable Return the value of an environment variable

Group MI: Miscellaneous
WCursorShape Select mouse cursor shape
WFlushBuffer Flush X Windows i/o buffer
WglSelect Select target OpenGL drawable (window or dialog field)
WglSwapBuffers Swap front/back OpenGL buffers
WindowBell Sound the bell
WInitialise Initialize Winteracter
WRGB Convert (r,g,b) triplet to 24-bit color value
WRGBsplit Convert 24-bit color value to (r,g,b) triplet

Group CH: Character Manipulation Routines
IFillString Fill a character string with a given character
IJustifyString Justify a string within a character variable
ILocateChar Locate position of first non blank character
ILocateString Locate position of first non blank sub-string
ILowerCase Convert a string to lower case
IntegerToString Convert an integer value to a string
IStringToInteger Convert a string to an integer value
IUpperCase Convert a string to upper case

Group OB: Obsolete Routines
IActualLength Return actual length of string excluding trailing blanks/nulls
IGrCharJustify Select graphics text justification
IGrCharLength Return relative length of string allowing for prop spacing
IGrCharOut Output character string at an absolute (x,y) position
IGrCharSet Select graphics character set to use for text output
IGrCharSize Select graphics text/symbol size
IGrCharSpacing Select fixed or proportional spacing
IGrGetPixelRGB Get a screen pixel value as an (r, g, b) triplet
IGrPaletteRGB Redefine 8-bit color palette using an(r, g, b) triplet
IGrPause Start a new picture
WindowClearArea Clear part of a window
WindowFont Set all text attributes
WindowOutString Output string at XY co-ordinate
WindowStringLength Return the unit length of a string
WMenuRoot Activate/remove root menu
54 Winteracter Starter Kit

9 Window Handlin g
dow

tines

rned

ce.

d at
Group WM: Window Management

This group provides routines to open and manipulate windows.

Two types of windows are controlled by the routines in the group. The root (or main) win
should be opened first, using WindowOpen. Multiple child windows can then be opened/
closed using WindowOpenChild and WindowCloseChild . When window processing
is complete, the root window and all its child windows can be removed using
WindowClose . After the initial call to WInitialise , multiple calls to WindowOpen/
WindowClose are allowed, provided these calls are paired.

Windows opened by the routines in this group can be written to using the graphics rou
described in the High Resolution Graphics chapter. Both WindowSelect and
IGrSelect take a window handle as an argument (zero for the root window or as retu
by WindowOpenChild for a child window). The same handle is used by
WindowCloseChild , allowing child windows to be opened and closed in any sequen
OpenGL graphics can be displayed in a window by specifying the window handle to
WglSelect (in the MI group).

Each window can have its own status bar, at the bottom of the window. This is selecte
window creation. It can subsequently be sub-divided via WindowStatusBarParts and
written to using WindowOutStatusBar .

The title string or icon of the current window can be updated at any time via WindowTitle .
All or part of a window can be cleared by WindowClear . The position and/or size of the
current window can be changed by WindowSizePos .

Two utility routines are provided to convert between Winteracter window co-ordinates (0-
9999) and pixel equivalents, namely WindowUnitsToPixels and
WindowUnitsFromPixels .
Winteracter Starter Kit 55

Chapter 9 Window Handling

ing

ory
WindowClear Subroutine

Description
Clear all or part of a window

Syntax
WindowClear(ixtopl,iytopl,ixbotr,iybotr,rgb)

Arguments
INTEGER, OPTIONAL ixtopl = Top left corner x co-ordinate

INTEGER, OPTIONAL iytopl = Top left corner y co-ordinate

INTEGER, OPTIONAL ixbotr = Bottom right corner x co-ordinate

INTEGER, OPTIONAL iybotr = Bottom right corner y co-ordinate

INTEGER, OPTIONAL rgb = Background color (24-bit RGB value)

Effect
Clears the specified area of the current window.

The co-ordinate arguments are expressed in pixels. If any are omitted, the correspond
window edge is assumed. If all four are omitted the entire window is cleared.

The new background color is determined by rgb, which is a 24-bit RGB value. If it is omitted,
the default window background color is used (usually white).

Example
CALL WindowClear() ! clear window using defaults
CALL WindowClear(RGB=RGB_BLUE) ! clear window to blue

WindowClose Subroutine

Description
Close root window.

Syntax
WindowClose()

Effect
Closes all opened windows, including the root window, freeing all resources and mem
allocations. Winteracter internals remain initialized however, allowing WindowOpen to be
called again without reinitialization via WInitialise .
56 Winteracter Starter Kit

WindowCloseChild Subroutine

all to

or
Example
CALL WInitialise() ! Initialize Winteracter

CALL WindowOpen() ! Open root window

CALL WindowClose() ! Close root window

CALL WindowOpen() ! Re-open root window

CALL WindowClose() ! Close root window

WindowCloseChild Subroutine

Description
Close a child window

Syntax
WindowCloseChild(ihandle)

Arguments
INTEGER ihandle = Winteracter child window handle (1-20)

Effect
Closes the specified child window. The window handle must have been obtained by a c
WindowOpenChild . If the specified window handle is invalid, no action is taken. If the
closed child window is also the current window (as set by WindowSelect or
WindowOpenChild) the Winteracter output focus returns to the root window.

If a child window is closed by the user, via the system menu, a CloseRequest message is
sent to the program via WMessage/WMessagePeek. This message returns the handle in
the win member of the WIN_MESSAGE structure. The calling program is then responsible f
closing the window by calling this routine.

Example
CALL WindowOpenChild(ICHILD1) ! Open child window 1

CALL WindowOpenChild(ICHILD2) ! Open child window 2

CALL WindowOpenChild(ICHILD3) ! Open child window 3

 !

CALL WindowCloseChild(ICHILD2) ! Close child window 2

CALL WindowCloseChild(ICHILD1) ! Close child window 1

CALL WindowCloseChild(ICHILD3) ! Close child window 3

Errors
ErrWinHandle (1003) Invalid window handle
Winteracter Starter Kit 57

Chapter 9 Window Handling
WindowOpen Subroutine

Description
Open root window

Syntax
WindowOpen(flags,x,y,width,height,menuid,toolid,dialogid,title,ncol256)

Arguments
INTEGER, OPTIONAL flags= Title bar buttons, etc. Sum of:

SysMenuOn (1) = System menu on title bar

MinButton (2) = Minimize button

MaxButton (4) = Maximize button

MaxWindow (8) = Maximize window

StatusBar (32) = Status bar

FixedSizeWin (64) = Fixed size window

HideWindow (128) = Hidden window

AlwaysOnTop (512) = Keep window on top

INTEGER, OPTIONAL x = Horizontal top corner of window in pixels

INTEGER, OPTIONAL y = Vertical top corner of window in pixels

INTEGER, OPTIONAL width = Width of window in pixels

INTEGER, OPTIONAL height = Height of window in pixels

INTEGER, OPTIONAL menuid = Main horizontal menu identifier

INTEGER, OPTIONAL toolid(4) = Reserved

INTEGER, OPTIONAL menuid = Identifier of dialog to combine with window

CHARACTER, OPTIONAL title = Window title

INTEGER, OPTIONAL ncol256 = Number of colors in a 256-color video mode
(16/32/64/128)

Effect
Opens the root window. Each call to WindowOpen must be paired with a call to
WindowClose and cannot be nested. WindowOpen will :

· Create a new root window of the specified style, size, etc.
· Terminate with a message box if a fatal error occurs.
58 Winteracter Starter Kit

WindowOpen Subroutine

o
emain

ow

f the
f the

t
h

e

dow
· Initialize any accelerators in the resource file.
· Display a menu given a valid menu id.
· Combine the window with a dialog given a dialog id.
· Initialise graphics output.

The flags argument determines various window attributes :

· Presence of a system menu.
· Maximise/minimise buttons on the title bar.
· Maximised or normal window size.
· Presence of a status bar.
· Should the window be fixed in size.
· Window visibility.
· Window stack ordering relative to other windows.

To assign values to flags, sum the appropriate SysMenu, MinButton, MaxButton etc.
parameters.

The HideWindow option causes the window to be created but not displayed, allowing
applications to open 'floating' child windows or pop-up dialogs without a visible root
window. Child dialogs and 'inside-parent' child windows are not available in this case.
Hidden windows still exist, so they must be closed using WindowClose as normal.

Specifying AlwaysOnTop forces a window to remain visible above all windows which d
not have this window style. This also ensures that any dialogs opened by the program r
visible in the same way, even if HideWindow has been specified.

If MinButton or MaxButton are specified, SysMenuOn must also be specified.

If flags is omitted, a system menu and maximise/minimise buttons are selected.

x and y specify the position of the window relative to the full screen. To centre the wind
in either direction, omit the corresponding argument.

width and height specify the size of the client area of the window (i.e. the usable area o
window inside the frame). If either is omitted, the appropriate dimension is set to 80% o
screen size.

Alternatively, WInfoScreen can be used to interrogate the total screen size to allow
screen-specific position and size values to be calculated.

menuid specifies a text menu in the program resource, which should appear as the roo
window menu. Omit this argument if no root menu is required (e.g. for a program whic
relies solely on floating menus and/or dialogs).

toolid is included for compatibility with the full version of Winteracter but is not used in
WiSK. It can be omitted.

dialogid specifies a dialog to be combined with the window. This dialog should not hav
already been loaded. The window will be opened at the exact size required to hold the
specified dialog, allowing for the presence of a menu and status bar. Any specified win
Winteracter Starter Kit 59

Chapter 9 Window Handling

 the

ay
e set
nu of
ed
ince

ow is

is
sly

n

vides
e

size is ignored when combining the window with a dialog. Similarly certain elements of
flags argument are overriden to ensure an appropriate window style. Specifically the
FixedSizeWin flag is always applied and the MaxButton , MaxWindow and
HideWindow flags are ignored. Before a dialog can be combined with a window in this w
its type must first be set to 'Sub Component' in the resource editor. An error code will b
if any other type of dialog is specified. If menu accelerators are defined for the main me
this window then these will be processed before keystrokes are passed to the combin
dialog, regardless of the setting of the 'Allow Accelerators' flag in the resource editor. S
the dialog occupies the entire area of the window text and graphics output to this wind
unavailable.However graphics can be redirected to a field in the dialog using IGrSelect .
Omit this argument to open a standard window for use with text and graphics output.

title specifies the window title, if supplied. This can be changed later via WindowTitle .

ncol256 determines the number of graphics colors used in a 256 color video mode. Th
should be one of 16, 32, 64 or 128 colors. This determines the number of simultaneou
selectable colors via IGrColourN on a 256 color display. It is not used at other color
depths. A default of 16 is assumed if ncol256 is omitted or invalid.

Winteracter graphics routines are also initialised by calling IGrInit(' ') . See the
documentation for IGrInit for details of the initial state of the graphics system. Scree
graphics become available to any output window, including child windows opened
subsequently by WindowOpenChild .

The actual size of the root window and the associated flags value can be obtained at any time
after it has been opened via WInfoWindow . Note : This requires that the root window
should have the current output focus (see WindowSelect).

Note : In earlier versions of WiSK, an alternative calling interface based on the WIN_STYLE
structure was used. This has been replaced by the current calling interface which pro
greater flexibility. The old WIN_STYLE interface is now obsolete, but is still supported. Us
of the newer interface is recommended however.

Portability notes
X Windows: The MaxWindow, SysMenuOn, MinButton , MaxButton and
AlwaysOnTop flags have no effect, since these features are controlled by the window
manager.
60 Winteracter Starter Kit

WindowOpenChild Subroutine
Example
INTEGER, PARAMETER :: ID_MENU = 30001
! Initialise Winteracter once, the open window
CALL WInitialise()
CALL WindowOpen(Y=100,HEIGHT=250,MENUID=ID_MENU, &
 TITLE='Hello World')

WindowOpenChild Subroutine

Description
Open child window

Syntax
WindowOpenChild(ihandle,flags,x,y,width,height,menuid,toolid,dialogid,title,iparent)

Arguments
INTEGER ihandle = Returned window handle (1-20)

INTEGER, OPTIONAL flags= Title bar buttons, etc. Sum of:

SysMenuOn (1) = System menu on title bar

MinButton (2) = Minimize button

MaxButton (4) = Maximize button

MaxWindow (8) = Maximize window

InsideParent (16) = Window inside parent

StatusBar (32) = Status bar

FixedSizeWin (64) = Fixed size window

HideWindow (128) = Hidden window

OwnedByParent(256) = Keep window above parent

AlwaysOnTop (512) = Keep window on top

INTEGER, OPTIONAL x = Horizontal top corner of window

INTEGER, OPTIONAL y = Vertical top corner of window

INTEGER, OPTIONAL width = Width of window

INTEGER, OPTIONAL height = Height of window

INTEGER, OPTIONAL menuid = Main horizontal menu identifier
Winteracter Starter Kit 61

Chapter 9 Window Handling

ues.

t win-

n

INTEGER, OPTIONAL toolid(4) = Reserved

INTEGER, OPTIONAL dialogid = Identifier of dialog to combine with window

CHARACTER, OPTIONAL title = Window title

INTEGER, OPTIONAL iparent = Handle of parent window

Effect
Opens a child window using a similar set of arguments to WindowOpen. A maximum of 20
child windows can be open at one time.

A window handle is returned in ihandle which should be used in subsequent calls to
WindowCloseChild , WindowSelect , WMenu, IGrSelect or WglSelect . If a
window could not be created then ihandle will be returned as -1. The first child window to
be opened receives handle 1. All subsequently opened windows have incremental val
Closing windows out of sequence will cause Winteracter to reuse the freed handles for
subsequently opened windows. (Note : ihandle is a Winteracter handle, not a Windows API
or Motif handle.)

Child windows can have a parent window specified via the iparent argument. If no parent
window is specified then the root window will be used as the parent window. The paren
dow is used only with the InsideParent and OwnedByParent flags. Other types of
child window do not have a parent window.

The flags, x, y, width, height, menuid, toolid, dialogid and title arguments have the same
meaning as for WindowOpen, except that :

a) InsideParent is available as one of the flags styles. When InsideParent is
not specified, a child window can move anywhere on the screen. Its size and positio
should then be specified in screen (pixel) units, as for the root window. If Inside-
Parent is specified, the child window will be restricted to the window specified by
iparent. The window size and position should then be specified in Winteracter win-
dow units (0-9999). This style of window is not available when the parent window
is combined with a dialog. (Note : The more general InsideParent name
replaces the earlier InsideRoot . Both names have the same value. The latter name
is still supported for backwards compatibility.)

b) menuid is used only when InsideParent is not specified.

c) If InsideParent is specified and any of x, y, width or height are omitted, the
default values are calculated in the same manner as for WindowOpen but relative to
the parent window rather than the full screen.

d) OwnedByParent is also available as one of the flags styles. This can be used when
InsideParent has not been specified, to force the window to be owned by the
parent window. This ensures that the child window remains above the parent window
62 Winteracter Starter Kit

WindowOpenChild Subroutine

t

output

as -1.

ta-
e

at all times and causes the child window to minimise automatically when the paren
window is minimised. If this flag is not set, the child window effectively becomes a
completely independent window.

e) HideWindow is only normally useful for special types of window which can be cre-
ated with the full version of Winteracter. If it is used with WiSK, the window can be
revealed later using WindowSizePos .

f) AlwaysOnTop affects child windows when InsideParent has not been
specified, but has no effect otherwise. When used on a non-InsideParent child
window, AlwaysOnTop keeps the child window visible above any other
applications windows. Its visibility relative to the root window then depends on
whether that too has the AlwaysOnTop style and whether OwnedByRoot was
specified.

When a child window is opened it receives the current output focus and all subsequent
will go to this window until WindowSelect , WindowOpenChild or
WindowCloseChild are called. See also IGrSelect .

As for the root window, the actual size of a child window and the specified flags value can
be obtained at any time after it has been opened via WInfoWindow , provided it has the
current output focus.

If the parent window is hidden (i.e. HideWindow was specified when the parent window
was opened), child windows must not specify InsideParent as one of the styles in flags.
No window will be opened if InsideParent is specified when the parent window is
hidden and an error code will be generated. The window handle will also be returned

Minimised InsideParent child windows appear in their iconised form just above the s
tus bar (if present) in the parent window. Maximised child windows will not obscure th
status bar.

Portability notes
X Windows: Windows opened with the InsideRoot flag are not restricted to the parent
window. See also the WindowOpen Portability notes.

Example
CALL WindowOpenChild(IHAND1,FLAGS=SysMenuOn+FixedSizeWin, &

 WIDTH=400,HEIGHT=300,TITLE='Child Window')

CALL WindowOpenChild(IHAND2,FLAGS=SysMenuOn+InsideParent, &

 WIDTH=2000,HEIGHT=1500,TITLE='Child Window',IPARENT=IHAND1)

Errors
ErrRootHidden (1016) InsideRoot specified when root window is hidden
Winteracter Starter Kit 63

Chapter 9 Window Handling

e
.
rform

ring
WindowOutStatusBar Subroutine

Description
Write text on the status bar

Syntax
WindowOutStatusBar(ipart,string)

Arguments
INTEGER ipart = Status bar sub-division number (1-255)

CHARACTER string = String to write

Effect
Outputs string to the specified sub-division of the status bar in the current window. If th
window has no status bar or the window has less than ipart sections, this routine has no effect
The contents of the status bar are maintained automatically, so there is no need to pe
Expose/Resize processing on text written here.

By default text is output left justified within the sub-division. Leading spaces are not
removed. The text can also be centred or right justified. To centre the text prefix the st
with a single tab character, ACHAR(9). To right justify the text use two tab characters.

Portability notes
Windows : The status bar font is determined by the 'Tooltips' font setting in
Display:Appearances in Control Panel.

X Windows: The status bar font is determined by the Wint*fontList setting in
.Xdefaults in the current user's home directory.

Example
CALL WindowOutStatusBar(1,’This is on the status bar’)

WindowSelect Subroutine

Description
Select window to receive the output focus

Syntax
WindowSelect(ihandle)
64 Winteracter Starter Kit

WindowSizePos Subroutine

alog),

 in the

r
.

Arguments
INTEGER ihandle = Winteracter window handle (1-20 or 0 for root window)

Effect
Selects the window for Winteracter’s various window manipulation routines such as
WindowClear , WindowTitle , WindowSizePos , etc. It also selects the target window
for graphics output when the current target drawable is set to a window (rather than a di
as determined by IGrSelect . Where menus have been added to child windows, this
routine also determines which menu is affected by many of the menu handling routines
MN group.

Handle 0 specifies the root window, otherwise, ihandle must have been returned by an earlie
WindowOpenChild call. If ihandle specifies a non-existent window, no action is taken

Do not confuse the Winteracter output focus with the Windows input focus (i.e. the front
window). Winteracter allows manipulation of any of its windows while receiving input from
whichever window has the input focus. The two mechanisms are entirely separate.

Example
CALL WindowOpen(TITLE='Root window') ! Create root window

CALL WindowOpenChild(IH1,Y=300,TITLE='Child 1')

 ! Open child window 1

CALL WindowOpenChild(IH2,Y=600,TITLE='Child 2')

 ! Open child window 2

CALL WindowSelect(0) ! Select root window

CALL WGrTextString(0.5,0.5,'Root Window')

CALL WindowSelect(IH2) ! Select child #2

CALL WGrTextString(0.5,0.5,'Child Window 2')

CALL WindowSelect(IH1) ! Select child #1

CALL WGrTextString(0.5,0.5,'Child Window 1')

Errors
ErrWinHandle (1003) Invalid window handle

WindowSizePos Subroutine

Description
Set the size, position or state of the current window

Syntax
WindowSizePos(width,height,x,y,istate)
Winteracter Starter Kit 65

Chapter 9 Window Handling

nd

ill

wing.

n are

w is

ility

trol
 Tile

f the
ent
oved
Arguments
INTEGER, OPTIONAL width = New window width

INTEGER, OPTIONAL height = New window height

INTEGER, OPTIONAL x = New window X position

INTEGER, OPTIONAL y = New window Y position

INTEGER, OPTIONAL istate = New window state:

WinMinimised (0) : minimized

WinNormal (1) : normal size

WinMaximised (2) : maximized

WinHidden (3) : hidden

Effect
Changes the size, position and/or state of the current window. Units for window size a
position are in the same units as the call to WindowOpen or WindowOpenChild used to
open the window, i.e. pixels for the root window and non-InsideParent child windows
and Winteracter window units for InsideParent child windows. Similarly width and
height specify the usable area within the window and x/y specify the top-left corner of the
window, in the same way as for WindowOpen and WindowOpenChild . If an argument is
omitted then the corresponding size or position is left unchanged. Calling this routine w
cause a Resize or Expose message to be reported by WMessage or WMessagePeek if the
window size is changed or moving or displaying the window causes it to require redra

This routine can be used with non-resizeable windows, i.e. those with FixedSizeWin
specified in the call to WindowOpen or WindowOpenChild used to open them. In this
case the window becomes fixed at the newly specified size. i.e. specifying FixedSizeWin
prevents the user from changing the window size, but still allows program control.

When the window state is maximized, minimized or hidden the window size and positio
not updated immediately. Instead WindowSizePos specifies the size and position which
the window will have when the user restores the window to its normal size or the windo
redisplayed without specifying a position or size.

If the current window has been combined with a dialog then only the position and visib
can be changed, any specified size is ignored.

This routine should be used with care. Moving or resizing windows under program con
can confuse users if they have not explicitly asked for it to be done, e.g. by choosing a
or Cascade option from a Window menu. Resizing a window can also be acceptable i
user has chosen an option which changes the data displayed in a window and a differ
window size is required to view the new data. In this case the window should only be m
if required for the new window size to fit on screen.
66 Winteracter Starter Kit

WindowStatusBarParts Subroutine

e text

n
quent
Portability notes

X Windows: The istate argument only controls visibility. WinMinimised and
WinMaximised are treated as WinNormal , since minimised and maximised states are
controlled entirely by the window manager.

Example
!Set usable area of floating window to 800 by 600 pixels

CALL WindowSizePos(800,600)

WindowStatusBarParts Subroutine

Description

Sub-divides the status bar for the current window

Syntax

WindowStatusBarParts(nparts,iwidths,istyles)

Arguments

INTEGER nparts = Number of parts to divide status bar into (1-255)

INTEGER iwidth(*) = Array of status bar section widths

INTEGER, OPTIONAL istyles(*) = Array of sub-division border widths (0-2)

Effect

Sub-divides the status bar for the current window into the specified number of parts. Th
in these sub-divisions can then be updated via separate calls to WindowOutStatusBar .

nparts specifies how many parts the bar should be divided into. The iwidths array defines
how wide each part should be, in Winteracter text window units. The special value of -1 ca
be used to indicate that the specified part extends to the end of the window. All subse
widths will then be ignored.

The optional border style for each sub-division can be specified using istyles, where 0=none,
1=sunken (default) and 2=raised.

If the current window, as set by WindowSelect , WindowOpen or WindowOpenChild
does not have a status bar, this routine has no effect.
Winteracter Starter Kit 67

Chapter 9 Window Handling

ct
Example
CHARACTER(LEN=12) :: FILENAME = 'default.dat'

CALL WInitialise()

CALL WindowOpen(FLAGS=SysMenuOn+StatusBar, &

 TITLE='Window with status bar')

CALL WindowStatusBarParts(2,(/2000,-1/))

CALL WindowOutStatusBar(1,'File:')

CALL WindowOutStatusBar(2,FILENAME)

WindowTitle Subroutine

Description
Set title/icon of current window

Syntax
WindowTitle(title,idicon)

Arguments
CHARACTER title = Window title string

INTEGER idicon = Icon identifier (0=revert to program icon)

Effect
Updates the title string and/or icon of the currently selected output window. If title is omitted
then the current title string is used and only the icon is changed. Similarly if idicon is omitted
the current icon is retained and only the title string is changed. The change takes effe
immediately.

Example
CALL WindowOpen(TITLE=' Original Root Window Title ')

! . . .

CALL WindowSelect(0)

CALL WindowTitle('New Root Window Title')

WindowUnitsFromPixels Subroutine

Description
Convert pixel co-ordinate to Winteracter units
68 Winteracter Starter Kit

WindowUnitsToPixels Subroutine

lent
Syntax

WindowUnitsFromPixels(ixpix,iypix,ixwin,iywin)

Arguments

INTEGER ixpix = X co-ordinate in pixels

INTEGER iypix = Y co-ordinate in pixels

INTEGER ixwin = Returned X co-ordinate in Winteracter units (0-9999)

INTEGER iywin = Returned Y co-ordinate in Winteracter units (0-9999)

Effect

Converts the supplied pixel co-ordinate in the currently selected window to the equiva
Winteracter window units, as used by WindowOpenChild and
WindowStatusbarParts .

WindowUnitsToPixels Subroutine

Description

Convert Winteracter window co-ordinates to pixels

Syntax

WindowUnitsToPixels(ixwin,iywin,ixpix,iypix)

Arguments

INTEGER ixwin = X co-ordinate in Winteracter units (0-9999)

INTEGER iywin = Y co-ordinate in Winteracter units (0-9999)

INTEGER ixpix = Returned X co-ordinate in pixels

INTEGER iypix = Returned Y co-ordinate in pixels

Effect

Converts the supplied Winteracter window units in the currently selected window to the
equivalent pixel values.
Winteracter Starter Kit 69

Chapter 9 Window Handling
70 Winteracter Starter Kit

10 Input Handlin g
bout
ported
tion of

g to be

r parts
abled
Group MH: Message Handling

The WMessage routine will be at the core of most Winteracter programs, reporting all forms
of user input. It reports the main events which a GUI based program needs to know a
including menu selections, key presses, mouse clicks, and so on. These events are re
as 'messages', with associated information being returned at each event (e.g. the loca
the mouse cursor when the user clicked a button). A typical Winteracter program will operate
around a DO loop containing a WMessage call and a SELECT CASE statement which
processes each type of message.

WMessage is complemented by the alternative routine WMessagePeek. This performs
exactly the same task, but does not block program execution if no messages are waitin
processed.

Since some message types may only be needed in certain applications or in particula
of an application, reporting of specific message types can be individually enabled or dis
via WMessageEnable .

WMessage Subroutine

Description

Get next message.

Syntax

WMessage(itype,value)
Winteracter Starter Kit 71

Chapter 10 Input Handling
Arguments
INTEGER itype = The type of message that is returned:

WIN_MESSAGE value = Structure containing additional message information

TYPE WIN_MESSAGE
INTEGER win Window or Dialog the message came from
INTEGER value1 Message-type dependent parameter #1
INTEGER value2 Message-type dependent parameter #2
INTEGER value3 Message-type dependent parameter #3
INTEGER value4 Message-type dependent parameter #4
INTEGER x X co-ordinate in Winteracter window units (0-9999)
INTEGER y Y co-ordinate in Winteracter window units (0-9999)
REAL gvalue1 value1 expressed in graphics units
REAL gvalue2 value2 expressed in graphics units
REAL gx X co-ordinate in graphics units (see IGrUnits)
REAL gy Y co-ordinate in graphics units (see IGrUnits)
INTEGER time Message time in milliseconds
END TYPE WIN_MESSAGE

Table 2: Message types

Name no. Message type

KeyDown 1 Key press

MenuSelect 2 Menu item selected

PushButton 3 Push Button pressed

MouseButDown 4 Mouse button down

MouseButUp 5 Mouse button up

MouseMove 6 Mouse moved

Expose 7 Window expose

Resize 8 Window resize

CloseRequest 9 Window close requested

FieldChanged 10 Changed to a new dialog field

BorderSelect 12
Window selected via border/
title-bar

MouseDoubleClick 16 Mouse button double clicked
72 Winteracter Starter Kit

WMessage Subroutine

ed with

(Default

lection,

he key
umma-
Effect
Returns the next message from the event queue and returns any parameters associat
that message. If no message is available, WMessage waits for the next event to occur. Use
the altenative WMessagePeek to continue processing if no messages are waiting.

Only those messages enabled via WMessageEnable are reported. The initial reporting
state for each message type is shown at the start of each message type description as '
: Enabled/Disabled)'.

For all message types (except 3 and 10), value%win identifies the window which generated
the message. For PushButton and FieldChanged messages, value%win specifies the
unique identifier of the dialog which generated the message.

value%time reports the system time when the event occurred in milliseconds See the
Portability notes for further details.

All other information returned in value is message-type dependent:

itype = KeyDown (Default : Enabled)

If the user presses a key which is not processed as a keystroke in a dialog or a menu se
the key code will be returned in value%value1. KeyDown messages will not be reported
when a dialog or menu has the focus. The (x,y) co-ordinate of the mouse cursor when t
was pressed will also be returned. The possible key codes which can be returned are s
rized in the following table:

Table 3: Key codes

Name Code Key Name Code Key

- 1-31
Ctrl/keys
(Ctrl/A=1)

-
32-
255

Printable
characters

KeyBackSpace 8 Backspace KeyInsert 272 Insert

KeyTab 9 Tab
KeyDelete-
Under

273
Delete under
cursor Key

Return 13 Return KeyShiftTab 274 Shift/Tab

KeyEscape 27 Escape Keypad0 280 Keypad 0

KeyDelete 127 Delete left Keypad1 281 Keypad 1

KeyCursorUp 258 Cursor Up Keypad2 282 Keypad 2

KeyCursorDown 259
Cursor
Down

Keypad3 283 Keypad 3

KeyCursorRight 260 Cursor Right Keypad4 284 Keypad 4
Winteracter Starter Kit 73

Chapter 10 Input Handling

enu,
ot be
Note that F10 is not available, since this is used to activate the system or application m
in the same manner as pressing/releasing the Alt key. Other function key codes may n
available across all platforms. See the Portability notes for details.

KeyCursorLeft 261 Cursor Left Keypad5 285 Keypad 5

KeyPageUp 262 Page Up Keypad6 286 Keypad 6

KeyPageDown 263 Page Down Keypad7 287 Keypad 7

KeyPageRight 264
Shift/cursor
right

Keypad8 288 Keypad 8

KeyPageLeft 265
Shift/cursor
left

Keypad9 289 Keypad 9

KeyUpExtreme 266
Ctrl/cursor
up

KeypadMi-
nus

290 Keypad -

KeyDownEx-
treme

267
Ctrlcursor
down

KeypadPoint 291 Keypad .

KeyRightExtreme 268
Ctrl/cursor
right

KeypadPlus 292 Keypad +

KeyLeftExtreme 269
Ctrl/cursor
left

KeypadDi-
vide

293 Keypad /

KeyHome 270 Home
KeypadMul-
tiply

294 Keypad *

KeyEnd 271 End

KeyF1-KeyF20
301-
320

F1-F20

KeyShiftF1-
KeyShiftF20

321-
340

Shift/F1 -
Shift/F20

KeyCtrlF1-
KeyCtrlF20

341-
360

Ctrl/F1-Ctrl/
F20

Table 3: Key codes

Name Code Key Name Code Key
74 Winteracter Starter Kit

WMessage Subroutine

so be

ntifier

d

ssing

itype = MenuSelect (Default : Enabled)

When a menu item is selected, its unique identifier is returned in value%value1. This will
correspond to the identifier defined in the program's resource file.This message will al
generated when the user presses an accelerator key.

itype = PushButton (Default : Enabled)

When a push button is pressed in a modeless or semi-modeless dialog, the unique ide
of that button is returned in value%value1. This will correspond to the identifier defined in
the program's resource file. value%value2 will be set to the identifier of the currently selecte
field in the corresponding dialog when the button was pressed.(Note : The button pressed to
terminate a modal dialog is available separately, via WInfoDialog(ExitButton))

Certain standard push-button identifiers are pre-defined in the WINTERACTER module :

 INTEGER, PARAMETER :: IDOK = 1
 INTEGER, PARAMETER :: IDCANCEL = 2
 INTEGER, PARAMETER :: IDABORT = 3
 INTEGER, PARAMETER :: IDRETRY = 4
 INTEGER, PARAMETER :: IDIGNORE = 5
 INTEGER, PARAMETER :: IDYES = 6
 INTEGER, PARAMETER :: IDNO = 7
 INTEGER, PARAMETER :: IDCLOSE = 8
 INTEGER, PARAMETER :: IDHELP = 9

Attempting to close a dialog (via the × button, via Close on the system menu or by pre
Alt/F4) will also generate a PushButton message, with a button identifier value of
IDCANCEL (2). Pressing F1 in a dialog will generate a PushButton message, with a
button identifier value of IDHELP (9).

itype = MouseButDown (Default : Enabled)
itype = MouseButUp (Default : Disabled)

When a mouse button-down or button-up occurs, value%value1 will contain the button
number:

LeftButton (1) Left button pressed
MiddleButton (2) Middle button pressed (where available)
RightButton (3) Right button pressed

The (x,y) co-ordinate of the mouse cursor when the event occurred is returned.

value%value2 reports the state of the Ctrl/Shift keyboard modifiers and all three mouse
buttons at the time the event occurred, summed as follows:

ModCtrl (1) Ctrl key down
ModShift (2) Shift key down
ModLeftButton (4) Left button down
ModMiddleButton (8) Middle button down (where available)
ModRightButton (16) Right button down
Winteracter Starter Kit 75

Chapter 10 Input Handling

ables

er
d

o

. The

eld

ws) a

ling
If any picture/frame fields in a currently visible dialog have been selected as target draw
(via IGrSelect), these may report mouse button messages. value%value3 will be set to
FromWindow (0) or FromDialog (1) to indicate the source of the message. In the latt
case, value%value4 reports the identifier of the field in which the button down/up occurre
and value%win reports the dialog id.

(In the original WiSK release, value%value2 returned a centisecond time stamp which is n
longer supported. It was superseded by the value%time millisecond time stamp.)

itype = MouseMove (Default : Disabled)

When a mouse moves, the new mouse (x,y) co-ordinate is returned.

This messages is only reported if specifically enabled via WMessageEnable . Programs
which enable this message must be prepared to process large numbers of movement
messages.

value%value2/3/4 report the same values as MouseButDown /Up messages.

itype = Expose (Default : Enabled)

If all or part of a window becomes exposed, that window area will need to be repainted
returned (x,y) co-ordinate identifies the top left corner of the exposed area. value%value1 and
value%value2 define the width and height of the exposed area.

If any fields in a currently visible dialog have been selected as target drawables (via
IGrSelect), these must be maintained by the calling program. If such a field needs
redrawing, an Expose message will be reported. value%value3 will be set to FromWindow
(0) or FromDialog (1) to indicate the source of the message. In the latter case,
value%value4 reports the identifier of the field which needs to be redrawn and value%win
reports the dialog id. The exact area exposed is not reported in this case. The entire fi
should be redrawn.

itype = Resize (Default : Enabled)

When the user resizes a root or child window, value%value1 and value%value2 return the
new window width/height in pixels.

itype = CloseRequest (Default : Enabled)

If a user selects Close on the system menu (or clicks on the Close button under Windo
CloseRequest message is returned. The handle of the window which originated the
request is returned in value%win. This will be zero for the root window. It is then the
responsibility of the calling program to close that window (via WindowCloseChild or
WindowClose), if the close request is to be allowed. Typically, a CloseRequest
message from the root window should result in program termination. However, the cal
program may wish to ask for the user's confirmation (e.g. via WMessageBox) and close any
data files, before terminating.
76 Winteracter Starter Kit

WMessage Subroutine

ess dia-

e user

g

 in
pace,
field

port the
w's

t which

 to the
k.

er
k.
itype = FieldChanged (Default : Disabled)

When a user changes a field value or moves between fields in a modeless/semi-model
log, value%value1 will be set to the identifier of the previous field and value%value2 will be
set to the 'moved to' or current field. If the current field number has not changed (e.g. th
has just changed their selection in a menu field), value%value1 will be the same as
value%value2. field This allows the calling program to perform field-by-field validation
without having to wait for a dialog to terminate via a PushButton event.

It should be understood that a FieldChanged message is only generated under the
following general conditions :

1) When a field which has multiple known states (a menu, radio button or check box)
changes value.

2) When the user moves between fields (e.g. using the tab/back-tab keys or by clickin
on another field with the mouse).

By implication, FieldChanged messages do not occur in response to every keystroke
an enterable field. This allows users to edit such a field (e.g. using cursor keys, backs
etc.) without the application attempting to perform intrusive validation on an incomplete
value.

itype = BorderSelect (Default : Disabled)

When the user selects a window by clicking on the title bar or border controls, a
BorderSelect message reports the selected window in the value%win parameter. The
mouse button number is returned in value%value1 as for a MouseButDown message.

In practice, this message very rarely needs to be used, since other messages already re
originating window. Note in particular that a focus change via a mouse click in a windo
client area will be reported separately as a MouseButDown message. The BorderSelect
message is not reported by default since most programs need not be concerned abou
window currently has the input focus. It is also non-portable. Use of BorderSelect is
discouraged.

itype = MouseDoubleClick (Default : Disabled)

When the user double-clicks a mouse button this message will be reported in response
second click. A MouseButDown message will already have been reported for the first clic
If this message type is disabled MouseButDown messages are reported for both clicks.
Since a double-click also generates a MouseButDown message you should design your us
interface so that the action for a single-click is a subset of the actions for a double-clic
Details reported by value are the same as for MouseButDown messages.
Winteracter Starter Kit 77

Chapter 10 Input Handling

hin

e for

ow-

meas-
Portability notes
Windows:

ITYPE=KeyDown : Function keys 13-20 are not normally available but are defined wit
Windows itself so we allow for them here.

value%time is the elapsed time in milliseconds since the system start time. It is availabl
all Windows message types.

X Windows:

ITYPE=KeyDown : Keyboard handling is necessarily generalised under X Windows. H
ever, all the listed keys have the potential to be generated under X.

ITYPE=BorderSelect : This message is not available under X. All border selection
actions are intercepted by the window manager.

value%time is only available for keyboard and mouse messages. The returned value is
ured relative to the X server start time.

Example
TYPE (WIN_MESSAGE) :: MESG
DO
 CALL WMessage(ITYPE,MESG)
 SELECT CASE (ITYPE)
 CASE (MenuSelect) ! Check for 'Exit' menu option
 SELECT CASE (MESG%VALUE1)
 CASE (IDM_OPEN) ! Open option on the menu
 CALL OpenMyFile
 CASE (ID_EXIT) ! Was Exit selected from menu
 EXIT
 END SELECT
 CASE (MouseButDown) ! Display floating menu at mouse pos
 CALL WMenuFloating(ID_MENU_TWO, MESG%X, MESG%Y)
 CASE (Resize, Expose) ! Redraw graph
 CALL Draw_My_Graph()
 CASE (CloseRequest) ! Close button or System menu option
 IF (MESG%WIN==0) EXIT
 END SELECT
END DO
CALL WindowClose() ! Close root window and all children

WMessageEnable Subroutine

Description
Enable/disable message reporting.
78 Winteracter Starter Kit

WMessagePeek Subroutine

es not
o the

.
Syntax

WMessageEnable(itype,ionoff)

Arguments

INTEGER itype = Message type, as for WMessage

INTEGER ionoff = Turn message on/off (Disabled (0) = off, Enabled (1) = on)

Effect

Enables or disables reporting of the specified message type via WMessage and
WMessagePeek. See the ’(Default: Enabled/Disabled)’ notes in WMessage for details of
the individual default reporting states. Note that disabling a particular message type do
prevent that event from occurring. It simply determines whether the event is reported t
calling program.

Example

CALL WMessageEnable(KeyDown,Disabled) ! keystroke messages off

CALL WMessageEnable(MouseMove,Enabled) ! mouse move messages on

WMessagePeek Subroutine

Description

Get next message. Return if none waiting.

Syntax

WMessagePeek(itype,ivalue)

Arguments

See WMessage

Effect

This routine is identical to WMessage except that it will not 'block' if no message is waiting
If the input queue contains no messages, itype will be returned as NoMessage (-1). Use
WMessagePeek where a program wishes to poll for messages but needs to continue
processing if no events have occurred.
Winteracter Starter Kit 79

Chapter 10 Input Handling

e

ndow,
ur-
enu.
Example
TYPE (WIN_MESSAGE) :: MESG
DO Iteration = 1, 100000
 CALL WMessagePeek(ITYPE, MESG)
 IF (ITYPE/=NoMessage) THEN
 ! Process message(s) here
 END IF
 ! Next iteration of number cruncher
 CALL Number_Cruncher(Iteration)
END DO

Group MN: Menu Handling
Menu selections are reported via WMessage in the MH group. The routines in this group
provide the remaining menu handling capabilities, namely :

· Activation and removal of main menus via WMenu.
· Activation of floating menus via WMenuFloating .
· Setting and retrieving the state (i.e. checked and/or greyed) of individual menu items

via WMenuSetState /WMenuGetState .
· Updating the strings associated with a given menu item, via WMenuSetString

(initial strings can be assigned in the resource file).

All the routines in this group use unique menu or menu-item identifiers as defined in th
program resource file.

Routines which change or interrogate the state of menu items operate on the current wi
as determined by WindowSelect , if the current window has a main menu. Where the c
rent window does not have a main menu these routines operate on the root window m

WMenu Subroutine

Description
Activate or remove a menu structure.

Syntax
WMenu(menuid,iwindow)

Arguments
INTEGER menuid = Identifier of root menu to activate (0 to remove current root menu)

INTEGER, OPTIONAL iwindow = Window handle
80 Winteracter Starter Kit

WMenuFloating Subroutine

cified

ive on
. The
lable

is-

h a
n be
enu.

ked. If
w's

alling
ported
Effect
Activates the specified main menu structure, which will be attached to the top of the spe
window. If no window is specified the menu is attached to the top of the root window.
Multiple menus are allowed in a single program as a result, though only one can be act
each window at one time. To remove the current menu, specify a zero menu identifier
specified window must be the root window or a popup child window. Menus are not avai
in child windows inside their parent window.

Unlike WMenuFloating , this routine does not block. It simply updates the currently d
played main menu. Item selections are reported via WMessage in a MenuSelect message.

WMenu also loads and activates an accelerator table from the program resource, if suc
table exists with the same identifier. An accelerator table identifies keystrokes which ca
used to directly select a menu item from the keyboard, without having to navigate the m
When a key is pressed the accelerator table for the menu on the active window is chec
the current window does not have a menu then the accelerator table for the root windo
menu is checked.

Depending on the number and length of the menu items and the current window size c
this routine may cause a change in the size of the useable window area. This will be re
via WMessage as a Resize message.

The state of individual menu items (greyed/checked) can be set via WMenuSetState .
Menu item strings can be updated via WMenuSetString .

Example
CALL WMenu(0) ! Remove menu from root window
CALL WMenu(ID_MENU1,IHAND) ! Add a menu to a child window

Errors
ErrLoadMenu (1002) Unable to load menu from resource

WMenuFloating Subroutine

Description
Activate a floating (vertical) menu.

Syntax
WMenuFloating(menuid,ixpos,iypos)

Arguments
INTEGER menuid = Identifier of floating menu to activate
Winteracter Starter Kit 81

Chapter 10 Input Handling

ock
rted

urrent
INTEGER ixpos = X position of top left of menu

INTEGER iypos = Y position of top left of menu

Effect
Activates the specified floating menu at the specified (x,y) position. The program will bl
until a selection is made or the menu is cancelled. If a selection is made, it will be repo
via WMessage.

The (x,y) co-ordinate is measured in Winteracter window units relative to the current win-
dow as selected by WindowSelect .

If any of the menu items on the floating menu have the same identifiers as items in the c
root menu, their state (greyed/checked) and text can be set via WMenuSetState and
WMenuSetString .

Example
CALL WMessage(ITYPE,MESSAGE)
SELECT CASE (ITYPE)
 :
! Use the right mouse button to display a floating menu.
 CASE (MouseButDown)
 IF (MESSAGE%VALUE1==RightButton) &
 CALL WMenuFloating(IDM_SHORTCUT,MESSAGE%X,MESSAGE%Y)
 CASE (MouseMove)
 :
END SELECT

Errors
ErrLoadMenu (1002) Unable to load menu from resource

WMenuGetState Function

Description
Get grayed/checked state of a menu item.

Syntax
INTEGER WMenuGetState(menuitem,iprop)

Arguments
INTEGER menuitem = Menu item identifier as specified in resource file

INTEGER iprop = Property to retrieve:

 ItemEnabled (1): Is item enabled ?
82 Winteracter Starter Kit

WMenuSetState Subroutine

n)

on the
with
 Returns : Disabled (0) Item is greyed out

Enabled (1) Item is selectable

ItemChecked (2): Is item checked ?

 Returns : Unchecked (0) No check mark

 Checked (1) Check mark is present

Effect
Retrieves the state of the specified menu item property. Only one property can be
interrogated at one time. An INTEGER binary flag is returned to indicate the state of the
specified property. See also WMenuSetState .

Example
see WMenuSetState

Errors
ErrMenuItem (1001) Invalid menu item

WMenuSetState Subroutine

Description
Set grayed/checked state of a menu item.

Syntax
WMenuSetState(menuitem,iprop,ivalue)

Arguments
INTEGER menuitem = Menu item identifier as specified in resource file.

INTEGER iprop = Property to set: ItemEnabled (1) Enable item

ItemChecked (2) Check item

 INTEGER ivalue = New state for menu item property (WintOff (0): Off, WintOn (1): O

Effect
Sets the state of the specified menu item property. The specified menu item must exist
current root menu. Floating menu items will also be affected if they share an identifier
an item on the current root menu.

iprop = ItemEnabled
Winteracter Starter Kit 83

Chapter 10 Input Handling

ill be

ram
s.

be
u.
When an item is enabled, it is selectable in the normal manner. When it is disabled, it w
greyed out.

iprop = ItemChecked

A checked item has a tick mark against it.This is used to indicate that a particular prog
option is currently enabled. It is not possible to add checks to top level root menu item

Example
IPROP = WMenuGetState(ID_OPTION,MenuChecked) ! Toggle check mark

 ! next to an option

IPROP = 1 - IPROP

CALL WMenuSetState(ID_OPTION,MenuChecked,IPROP)

Errors
ErrMenuItem (1001) Invalid menu item

WMenuSetString Subroutine

Description
Change the text of a menu item

Syntax
WMenuSetString(menuitem,string)

Arguments
INTEGER menuitem = Menu item identifier as specified in resource file.

CHARACTER string = New text for the specified menu item.

Effect
Changes the text of the specified root menu item. Floating menu item strings will also
modified automatically, if they share an identifier with an item on the current root men
Otherwise, floating menu item strings cannot be modified.

Example
IF (FIRSTTIME) THEN

 CALL WMenuSetString(ID_OPTION,'New data')

ELSE

 CALL WMenuSetString(ID_OPTION,'Old data')

END IF
84 Winteracter Starter Kit

WMenuSetString Subroutine
Errors
ErrMenuItem (1001) Invalid menu item
Winteracter Starter Kit 85

Chapter 10 Input Handling
86 Winteracter Starter Kit

11 Dialo g Manager
 the

n dis-

nt'
An overview of the facilities provided by dialogs and instructions on creating them using
Winteracter resource editor, can be found in the earlier Dialogs chapter.

Group DM(1): General Dialog Management
The main routines in this group are those which load a dialog from a resource and the
play it on the screen (WDialogLoad and WDialogShow). Modeless and semi-modeless
dialogs can be hidden while not required to be visible, by WDialogHide . When a dialog
is no longer needed in memory it can be unloaded completely by WDialogUnload . Up to
100 dialogs can be loaded simultaneously.

 The majority of the routines in this group and in the DM(2) group operate on the 'curre
dialog. This can be set by WDialogSelect . It is also set by WDialogLoad or (in the case
of combined windows/dialogs) by WindowOpen/WindowOpenChild .

Progress bar range control is provided via WDialogRangeProgressBar
.WDialogFieldState determines whether a given field is active. WDialogSetField
forces the specified field to become the current field in a modeless dialog.

WDialogFieldState Subroutine

Description
Set the state of field.

Syntax
WDialogFieldState(ifield,istate)
Winteracter Starter Kit 87

Chapter 11 Dialog Manager

 it or
n
icular

oved to
for
 field

rable
Arguments
INTEGER ifield = Field identifier

INTEGER istate = Field state
Disabled (0) : display only (protected)
Enabled (1) : enterable (unprotected)
DialogReadOnly (2) : read only (protected)
DialogHidden (3) : hidden (protected)

Effect
Sets the state of the specified field. A field can be enabled (i.e. data can be entered in
selections made), disabled/read-only (i.e. an output only field) or hidden (not shown o
screen). This allows the calling program to selectively enable/disable data entry in part
fields at run time.

Read-only fields are the same as disabled fields except that the cursor/focus can be m
the field and the contents can be copied to the clipboard. This option applies to fields
which a read-only state can be defined in the resource editor. For other field types, the
is disabled instead.

Hidden fields are most useful when a nearly identical dialog is required for multiple
purposes. If the state of a field can change while the dialog is displayed it is usually prefe
to disable it rather than hide it.

Example
! Disable all bar one field in the current dialog.
DO IFIELD = 1,NFIELD
 CALL WDialogFieldState(IFIELD,0)
END DO
CALL WDialogFieldState(IDF_FIELD3,1)

Errors
ErrCurDialog (1005) No current dialog

ErrFieldNum (1006) Invalid field identifier

WDialogHide Subroutine

Description
Remove current dialog from screen.

Syntax
WDialogHide()
88 Winteracter Starter Kit

WDialogLoad Subroutine

n still
ialogs.

ctive,

ed to
l
s
Effect
Remove the current dialog from the screen, but keep it in memory so that its contents ca
be accessed. It is only necessary to call this routine for modeless or semi-modeless d
Modal dialogs are automatically removed from the screen when WDialogShow terminates.

If the current dialog is semi-modeless and there are no other semi-modeless dialogs a
then all program windows and modeless dialogs are re-enabled.

A dialog can be removed from memory subsequently by calling WDialogUnload .

Example
CALL WMessage(ITYPE,MESSAGE)

SELECT CASE (ITYPE)

 CASE (MenuSelect)

 :

 CASE (PushButton)

 CALL WDialogHide() ! Remove dialog from display

 ! when a push-button is pressed

 CASE (MouseButDown)

 :

END SELECT

Errors
ErrCurDialog (1005) No current dialog

WDialogLoad Subroutine

Description
Load a dialog definition from program resource.

Syntax
WDialogLoad(idialog)

Arguments
INTEGER idialog = Identifier of dialog to load, as defined in the resource script.

Effect
Loads the specified dialog from the program resource. The dialog contents are initializ
the settings specified in the resource script. To make the dialog appear on screen, cal
WDialogShow . Optionally, the contents of the dialog can be modified using the variou
WDialogPutXXX routines in the DM(2) group, before the WDialogShow call.
Winteracter Starter Kit 89

Chapter 11 Dialog Manager

nt

 in a

 are
WDialogLoad implicitly selects idialog as the current dialog for use by other Winteracter
routines. A dialog can be reselected after loading other dialogs by calling
WDialogSelect .

If the dialog specified by idialog is already loaded, it will simply be re-selected as the curre
dialog. To completely reinitialize a dialog, unload it (via WDialogUnload) and reload it.

Example
CALL WDialogLoad(IDD_ABOUT)

CALL WDialogShow(ITYPE=Modal)

CALL WDialogUnload()

Errors
ErrLoadDialog (1007) Unable to load dialog from resource

WDialogRangeProgressBar Subroutine

Description
Set the range of a progress bar field

Syntax
WDialogRangeProgressBar(ifield,ipbmin,ipbmax)

Arguments
INTEGER idialog = Progress bar field identifier

INTEGER ipbmin = Value which represents an empty progress bar (0-65535)

INTEGER ipbmax = Value which represents a full progress bar (0-65535)

Effect
Defines the range for a progress bar. The default range is 0-100. If the progress bar is
modeless or semi-modeless dialog which is currently visible, the display is updated
immediately. Max/min values must be in the range 0-65535. Values outside this range
ignored and generate error code 1013.

Example
See WDialogPutProgressBar
90 Winteracter Starter Kit

WDialogSetField Subroutine

ve

the
re
aced
he

e-fly

be
Errors

ErrCurDialog (1005) No current dialog

ErrFieldNum (1006) Invalid field identifier

ErrProgressRange (1013) Invalid range

WDialogSetField Subroutine

Description

Move input cursor to a specific field

Syntax

WDialogSetField(ifield,ipos)

Arguments

INTEGER ifield = Field identifier

INTEGER, OPTIONAL ipos = Initial cursor position (string or combobox)

Effect

Forces ifield to become the current input field in the current dialog. The dialog must ha
been selected (by WDialogLoad or WDialogSelect) and it must be currently visible
(i.e. it must be a modeless or semi-modeless dialog).

If ifield is a string or numeric field or a combo box menu with an enterable string then
initial cursor position can also be specified. If ipos is present then the cursor is placed befo
the specified character. If an initial cursor position is not specified then the cursor is pl
at the end of the string, for single line strings and numeric fields. For multiline strings t
cursor is placed at the start of the string by default.

Overuse of this routine is discouraged. However, it is an important control where on-th
field validation is performed.

The initially selected input field for a dialog which is not combined with a window, can
set in the call to WDialogShow which displays the dialog.
Winteracter Starter Kit 91

Chapter 11 Dialog Manager

ar (see
Example
! Force an important value to be entered in a modeless dialog.
CALL WMessage(ITYPE,MESSAGE)
SELECT CASE (ITYPE)
 CASE (FieldChanged)
 IF (MESSAGE%VALUE1==IDF_IMPORTANT) THEN
 CALL WDialogGetStringLength(IDF_IMPORTANT,LENGTH)
 IF (LENGTH==0) THEN
 CALL WDialogSetField(IDF_IMPORTANT)
 END IF
 END IF
END SELECT

Errors
ErrCurDialog (1005) No current dialog

ErrFieldNum (1006) Invalid field identifier

WDialogSelect Subroutine

Description
Select the current dialog.

Syntax
WDialogSelect(idialog)

Arguments
INTEGER idialog = Identifier of dialog to select

Effect
Selects the current dialog. This is the dialog which all Winteracter field manipulation
routines subsequently operate on. Calling this routine does not cause the dialog to appe
WDialogShow). The specified dialog must already be loaded (see WDialogLoad).

Example
CALL WDialogLoad(IDD_DIALOG1) ! Load several dialogs
CALL WDialogLoad(IDD_DIALOG2)
CALL WDialogLoad(IDD_DIALOG3)
CALL WDialogSelect(IDD_DIALOG2)
CALL WDialogShow(ITYPE=Modal) ! Will show 2nd dialog

Errors
ErrSelDialog (1008) Unable to select specified dialog
92 Winteracter Starter Kit

WDialogShow Subroutine

 must

 calling
ters

urce
oved

To
t it to

g.
WDialogShow Subroutine

Description
Display the currently selected dialog.

Syntax

 WDialogShow(ixpos,iypos,ifield,itype)

Arguments
INTEGER ixpos = X Co-ordinate of top left corner of dialog (-1 or omit to center)

 (Child dialogs: Winteracter units, Popup dialogs : Pixels)

INTEGER iypos = Y Co-ordinate of top left corner of dialog (-1 or omit to center)

 (Child dialogs: Winteracter units, Popup dialogs : Pixels)

INTEGER, OPTIONAL ifield = Identifier of initial field to edit

(0 for default: 1st field with WS_TABSTOP style)

INTEGER, OPTIONAL itype = Dialog type for popup dialogs

Modal (1) : Modal dialog

Modeless (2) : Modeless dialog (default)

Semi-modeless (3) : Semi-modeless dialog

Effect
Displays the currently selected dialog, allowing the user to edit its contents. The dialog
have been loaded previously using WDialogLoad . If the current dialog selection has
changed since the dialog was loaded, the dialog to be displayed must be reselected by
WDialogSelect . If the specified dialog is already active, the position and type parame
will be ignored. Instead the dialog will simply be brought to the front and made active.

Both child and popup dialogs are supported (this is determined by a setting in the reso
file). Child dialogs are restricted to the program’s root window. Popup dialogs can be m
anywhere on screen. The initial position of a child dialog is determined in Winteracter units
(i.e. 0-9999), relative to the top corner of the root window. Popup dialog positions are
specified in pixels relative to the top corner of the screen. Only popup dialogs can be
displayed if the root window is hidden (i.e. if HideParent was specified in the call to
WindowOpen). Attempting to show a child dialog will fail and generate an error code.
centre a dialog, either horizontally or vertically, omit the corresponding argument or se
-1.

ifield specifies the initially highlighted data entry field. This argument has the OPTIONAL
attribute. If it is zero or omitted, the initial field will be the first editable field in the dialo
Winteracter Starter Kit 93

Chapter 11 Dialog Manager

.

ese
mi-

r

logs
child

itype specifies the dialog type:

Modal : A modal dialog is one which blocks all other input to the program until the
user terminates the dialog (e.g. by clicking on OK). WDialogShow will not return
until the user has terminated the dialog at which point the dialog window is
automatically removed from the screen. The exit field and terminating button
identifiers are available via WinfoDialog .

Modeless : A modeless dialog does not block input. WDialogShow returns as soon
as the dialog has been displayed. The dialog remains on screen until WDialogHide
or WDialogUnload is called. Any push-button clicks in the dialog will be reported
via WMessage as a PushButton message. The current field number when the
button was pressed will be returned via the associated value argument. It is not
possible to display a modeless dialog while a semi-modeless dialog is already active
If any semi-modeless dialogs are active and modeless is requested then the dialog
will be displayed as semi-modeless and an error code set.

SemiModeless : A semi-modeless dialog is a hybrid of the other two dialog types. It
appears modeless to the program but modal to the user. It blocks user input to all
other dialogs and windows, but WDialogShow returns as soon as the dialog has
been displayed. The dialog remains on screen until WDialogHide or
WDialogShow is called. Any push-button clicks in the dialog will be reported via
WMessage as a PushButton message. The current field number when the button
was pressed will be returned via the associated value argument.

The itype argument is OPTIONAL and need only be specified for popup dialogs. If not
specified, the default type is Modeless.

Further dialogs may be activated while a semi-modeless dialog is in use. However, th
dialogs must be modal or semi-modeless. If a modeless dialog is requested, then a se
modeless dialog will be displayed instead. Error code 1014 will be set in this case.

Portability notes
Windows : Child dialogs are always modeless, since Windows does not allow modal o
semi-modeless child dialogs.

X Windows: All dialogs are 'popup' dialogs, regardless of the resource file setting. Dia
which are specified as 'child' dialogs are still positioned according to the documented
dialog logic and are treated as modeless regardless of itype. This ensures consistency with the
Windows implementation.

Example
CALL WDialogLoad(IDD_DIALOG1) ! Display dialog1 as

CALL WDialogShow() ! a centered modeless dialog

CALL WDialogLoad(IDD_DIALOG2) ! Display dialog2 as a

CALL WDialogShow(ITYPE=Modal) ! centered modal dialog
94 Winteracter Starter Kit

WDialogUnload Subroutine

en

ources.
Errors
ErrCurDialog (1005) No current dialog

ErrFieldNum (1006) Invalid field identifier

ErrDialogType (1014) Invalid dialog type

ErrRootHidden (1016) Child dialogs cannot be shown when root window hidd

ErrModalPixmapLow (1041) X server pixmap resources are low

ErrModalPixmapExh (1042) X server pixmap resources are exhausted

WDialogUnload Subroutine

Description
Remove dialog from screen and memory.

Syntax
 WDialogUnload(iaction)

Arguments
INTEGER, OPTIONAL iaction = Not used in Starter Kit

Effect
Removes the currently selected dialog from the screen, if it is currently visible. It then
removes the dialog and its associated data from memory, releasing all associated res
The same dialog can be reloaded later using WDialogLoad , though this will reset all the
dialog parameters to their initial values as set in the program resource.

Example
CALL WDialogLoad(IDD_ABOUT)

CALL WDialogShow(ITYPE=Modal)

CALL WDialogUnload()

Errors
ErrCurDialog (1005) No current dialog

ErrFieldNum (1006) Invalid field identifier
Winteracter Starter Kit 95

Chapter 11 Dialog Manager

ia a

d

pdate

 mind
Group DM(2): Assign/Retrieve Field Contents
The routines in this group assign and retrieve the contents of individual dialog fields v
set of WDialogPutXXX and WDialogGetXXX routines. The 'Put' routines would
normally be called before WDialogShow . The resulting field contents can then be retrieve
from a dialog using the 'Get' equivalents after WDialogShow .

Where a field is part of an already visible modeless dialog, the various 'Put' routines u
the on-screen contents of the dialog immediately.

All routines in this group affect the currently selected dialog, as set by WDialogLoad or
WDialogSelect . The error flag is therefore set to ErrCurDialog if an attempt is made
to assign or retrieve the contents of a field when no dialog is currently selected. Bear in
that WDialogUnload causes the current dialog to become undefined. WDialogSelect
must be called in this case to reselect the current dialog.

WDialogGetCheckBox Subroutine

Description
Get state of a dialog check box.

Syntax
WDialogGetCheckBox(ifield,istate)

Arguments
INTEGER ifield = Field identifier as set in resource file

INTEGER istate = Returned check box state (Unchecked (0): Clear, Checked (1): Set)

Effect
Gets the state of a check box field in the current dialog.

Example
LOGICAL :: UseColor

CALL WDialogGetCheckBox(IDF_COLOR,ICHECKED)

UseColor = ICHECKED==1

Errors
ErrCurDialog (1005) No current dialog

ErrFieldNum (1006) Invalid field identifier
96 Winteracter Starter Kit

WDialogGetMenu Subroutine

 box

on-

s set.

ed.
 a

imply
 WDialogGetMenu Subroutine

Description

Get a value from a dialog menu field.

Syntax

WDialogGetMenu(ifield,ioption,cvalue)

Arguments

INTEGER ifield = Field identifier as set in resource file

INTEGER ioption = Number of selected option or 0 if user entered a string in a combo

or

INTEGER ioption(:) = Array of binary flags indicating state of each option

CHARACTER, OPTIONAL cvalue = Entered string

Effect

Gets a value (or values) from a menu field in the current dialog.

For combo boxes and single-selection list boxes, ioption returns the currently selected item
number from the pre-defined list held in this field. If this returns 0, the user entered a n
matching string in the enterable field of a combo box menu field.

For mutiple and extended selection list boxes ioption returns the state of each option. 1 is
returned for selected options, 0 is returned for unselected options.

If ioption is not an array for a multiple or extended selection list box then an error code i
The same error code will be set if an array is specified for a single selection menu.

If cvalue is supplied, the string corresponding to the currently selected option is return
This is mainly useful when ioption returns zero, i.e. when the user has entered a string in
combo box. cvalue returns the user supplied string in this case. cvalue should not be specified
for multiple or extended selection list boxes.

If the menu field contents are undefined and there is no user entered string value, ioption is
returned as -999 and an error code is set. Multiple and extended selection list boxes s
return 0 for each element of ioption.
Winteracter Starter Kit 97

Chapter 11 Dialog Manager

rent

oup

Example
CHARACTER (LEN=80) :: USERSTRING

CALL WDialogGetMenu(IDF_COMBO1,IOPTION,USERSTRING)

IF (IOPTION==0) THEN

 : ! Process user option.

ELSE IF (IOPTION>0) THEN

 : ! Process standard options

ELSE

 : ! Combo box contents are undefined

END IF

Errors
ErrCurDialog (1005) No current dialog

ErrFieldNum (1006) Invalid field identifier

ErrFieldUndefined (1010) Field value is undefined

WDialogGetRadioButton Subroutine

Description
Gets a radio-button group value

Syntax
WDialogGetRadioButton(ifield,iset)

Arguments
INTEGER ifield = Field identifier of a radio button as set in resource file

INTEGER iset = Position of currently set radio button within the group which contains
button ifield. (-999 if none set)

Gets the position of the currently selected item in the group of radio buttons in the cur
dialog which contains button ifield. In other words, rather than returning the state of the
specified individual radio button, this routine identifies which radio button is on in the gr
which ifield belongs to. Note that iset is a positional value. So, for example, if there are 5
radio buttons in a group, iset will normally be in the range 1 to 5.

If all the radio buttons are clear (because the initial button state was not defined in the
resource file) iset is returned as -999 and an error code is set.
98 Winteracter Starter Kit

WDialogGetString Subroutine

d to
f just
-boxes
Example
CALL WDialogGetRadioButton(IDF_RADIO1,IPOSITION)
SELECT CASE (IPOSITION)
 !
END SELECT

Errors
ErrCurDialog (1005) No current dialog

ErrFieldNum (1006) Invalid field identifier

ErrFieldUndefined (1010) Field value is undefined

WDialogGetString Subroutine

Description
Get a string from a dialog string field.

Syntax
WDialogGetString(ifield,cvalue)

Arguments
INTEGER ifield = Field identifier as set in resource file

CHARACTER cvalue = Returned character value (blank if undefined)

Effect
Gets a string from a field of almost any type. While this routine will normally just be use
retrieve the contents of ordinary string fields, it also provides access to the contents o
about any field which has an associated string value. This includes push buttons, check
and radio-buttons.

Portability notes
Windows : If ifield specifies a multi-line edit control, the returned string will contain
embedded carriage return/line-feed pairs (CHAR(13)//CHAR(10)) indicating line ends.

X Windows: If ifield specifies a multi-line edit control, the returned string will contain
embedded line-feed characters (CHAR(10)) indicating line ends.

Example
CHARACTER (LEN=20) :: TEXT,BUT
CALL WDialogGetString(IDF_STRING,TEXT) ! Contents of string field
CALL WDialogGetString(IDF_BUTTON,BUT) ! Caption of a push-button
Winteracter Starter Kit 99

Chapter 11 Dialog Manager

g, call
Errors
ErrCurDialog (1005) No current dialog

ErrFieldNum (1006) Invalid field identifier

WDialogPutCheckBox Subroutine

Description
Set the state of a dialog check box.

Syntax
 WDialogPutCheckBox(ifield,istate)

Arguments
INTEGER ifield = Field identifier as set in resource file

INTEGER istate = Check box field state (Unchecked (0): Clear, Checked (1): Set)

Effect
Sets the state of a check box in the current dialog. To set the associated check box strin
WDialogPutString .

Example
CALL WDialogPutCheckBox(IDF_CHECK,Checked)

Errors
ErrCurDialog (1005) No current dialog

ErrFieldNum (1006) Invalid field identifier

WDialogPutImage Subroutine

Description
Change the bitmap/icon displayed in a field.

Syntax
 WDialogPutImage(ifield,imageid,itype)

Arguments
INTEGER ifield = Field identifier as set in resource file
100 Winteracter Starter Kit

WDialogPutMenu Subroutine

. The

itmap
INTEGER imageid = Bitmap or icon identifier as set in resource file

INTEGER, OPTIONAL itype = Image type

1 : Bitmap (default)

2 : Icon

Changes the bitmap or icon which is displayed in the specified field in the current dialog
bitmap or icon must exist in the program resource and the field specified by ifield must be
one of the following types :

Picture/frame

Push-button

Group-box

Check-box

Radio button

If itype is omitted, a bitmap resource is assumed. The significant difference between a b
and an icon is that the latter allows for transparent pixels.

Example
CALL WDialogPutImage(IDF_PICTURE,ID_BITMAP)

Errors
ErrCurDialog (1005) No dialogs currently loaded

ErrFieldNum (1006) Invalid field identifier

ErrImageNum (1015) Invalid bitmap/icon identifier

WDialogPutMenu Subroutine

Description
Set the contents of a dialog menu field.

Syntax
 WDialogPutMenu(ifield,option,maxopt, ioption,cvalue)

Arguments
INTEGER ifield = Field identifier as set in resource file

CHARACTER option(:) = Array of menu options

INTEGER maxopt = Number of menu options
Winteracter Starter Kit 101

Chapter 11 Dialog Manager

 menu
 of

c-

 error
 menu.

ally
INTEGER ioption = Number of initially highlighted option

or

INTEGER ioption(:) = Array of binary flags indicating options to highlight

CHARACTER, OPTIONAL cvalue = User modifiable string

Effect
Sets the contents of the specified menu field in the current dialog. An array of maxopt option
strings should be supplied. The maximum number of options which can be added to a
field is 32767. In practice the lengths of the option strings are limited only by the width
the field.

For combo boxes and single selection list boxes ioption specifies the item number which
should be highlighted initially. This will normally be in the range 1 to maxopt.

For multiple and extended selection list boxes ioption specifies the state of each option. Spe
ify 1 to highlight an option and 0 to not highlight an option.

If ioption is not specified as an array for a multiple or extended selection list box then an
code is set. The same error code will be set if an array is specified for a single selection

If ifield specifies a combo box with a user enterable field, cvalue can contain the initial user
modifiable value. In this case, ivalue should be specified as zero. Otherwise, cvalue can be
omitted since it has the OPTIONAL attribute. cvalue should not be specified for multiple or
extended selection list boxes.

If ifield specifies a list box, option strings can contain tab characters (ASCII 9) to vertic
align sub-strings within menu items.

Example
INTEGER, PARAMETER :: NFRUIT = 4

CHARACTER (LEN=7), DIMENSION (NFRUIT) :: FRUIT = &

 (/'Apples','Oranges','Pears','Bananas'/)

IFRUIT = 1

CALL WDialogPutMenu(IDF_FRUIT,FRUIT,NFRUIT,IFRUIT)

Errors
ErrCurDialog (1005) No dialogs currently loaded

ErrFieldNum (1006) Invalid field identifier

ErrOptionNum (1011) Option number out of range
102 Winteracter Starter Kit

WDialogPutOption Subroutine

is the

hted.
WDialogPutOption Subroutine

Description
Set the selected option in a dialog menu field.

Syntax
WDialogPutOption(ifield,ioption)

Arguments
INTEGER ifield = Field identifier as set in resource file

INTEGER ioption = Menu option number to highlight (0=none, combo boxes only)

or

INTEGER ioption(:) = Array of binary flags indicating options to select

Effect
Sets the currently selected option or options in a menu field in the current dialog. This
same as the ioption argument to WDialogPutMenu . The option number can be zero if ifield
specifies a combo box, in which case none of the predefined menu items will be highlig
When used with a multiple or extended selection list box ioption should contain the same
number of entries as there are options in the menu.

Example
CALL WDialogPutOption(IDF_FRUIT,IAPPLE)

Errors
ErrCurDialog (1005) No dialogs currently loaded

ErrFieldNum (1006) Invalid field identifier

ErrOptionNum (1011) Option number out of range

WDialogPutProgressBar Subroutine

Description
Set the value of a progress bar

Syntax
WDialogPutProgressBar(ifield,ivalue,method)
Winteracter Starter Kit 103

Chapter 11 Dialog Manager

 an
Arguments
INTEGER ifield = Field identifier

INTEGER ivalue = Absolute or relative progress bar value

INTEGER, OPTIONAL method = Interpretation of ivalue.
Absolute (0) : Set progress bar to specified value
Relative (1) : Change progress bar by specified value

Effect
Sets the value of a progress bar field. By default, ivalue is treated as an absolute value. By
specifying an optional method argument of 1, the progress bar value can be amended by
incremental value (either positive or negative).

Out of range values are truncated to the appropriate min/max value.

Example
CALL WDialogLoad(ID_DIALOG1)
CALL WDialogShow(ITYPE=SemiModeless)
!
CALL WDialogRangeProgressBar(IDF_PROG1,1,MAXITER)
DO ITER = 1,MAXITER
 ! Calculation in here
 CALL WDialogPutProgressBar(IDF_PROG1,ITER,Absolute)
END DO
CALL WDialogHide()
CALL WDialogUnload()

Errors
ErrCurDialog (1005) No dialogs currently loaded

ErrFieldNum (1006) Invalid field identifier

WDialogPutRadioButton Subroutine

Description
Set the state of a radio button group.

Syntax
WDialogPutRadioButton(ifield)

Arguments
INTEGER ifield = Field identifier as set in resource file
104 Winteracter Starter Kit

WDialogPutString Subroutine

ngs

ts of
ush

 car-

racter
 with
ld or
buttons
lly
ource
nds
Enables the specified radio button. All other radio buttons in the group to which it belo
are automatically unselected.

Example
! Set Radio button number 2, clear all others in the same group

CALL WDialogPutRadioButton(IDF_RADIO2)

Errors
ErrCurDialog (1005) No dialogs currently loaded

ErrFieldNum (1006) Invalid field identifier

WDialogPutString Subroutine

Description
Set the value of a dialog string.

Syntax
 WDialogPutString(ifield,cvalue)

Arguments
INTEGER ifield = Field identifier as set in resource file

CHARACTER cvalue = Character string to be placed in field

Effect
Sets the string of a field of almost any type. This routine can be used to set the conten
ordinary string fields or any field which has an associated string value. This includes p
buttons, check boxes, radio-buttons and multi-line edit controls.

If ifield specifies a multi-line edit control, the supplied string should contain embedded
riage return/line-feed pairs (i.e. CHAR(13)//CHAR(10)) to indicate line ends.

On labels, group-boxes, push-buttons, check-boxes and radio-buttons an & prefix cha
will normally be available. The character after the & then acts as a short-cut when used
the Alt key. For labels and group boxes this shortcut either moves to the next entry fie
acts as if the next push-button was pressed. For push-buttons, check-boxes and radio-
the shortcut acts as if the field was clicked. Specify two ampersands (i.e. &&) to actua
display a single ampersand. On label fields, use of the & prefix can be disabled in the res
editor via the field Style dialog (enable the 'No prefix' check box). In this case ampersa
are displayed without interpretation.
Winteracter Starter Kit 105

Chapter 11 Dialog Manager

r

xt.
ext,

 this
Portability notes
Windows : Multi-line edit controls can hold a maximum of 64k of text (maximum 1k pe
line). Ordinary string fields (i.e. not multi-line) are limited to a maximum of 32k of text.
These limits are subject to Windows sucessfully allocating sufficient storage for the te
Windows 9x/Me will sometimes fail to allocate sufficient storage for large amounts of t
even when several megabytes of memory are available. Tab characters (CHAR(9)) can be
embedded to vertically align text at tab stops in multi-line edit controls.

X Windows: There are no specific limits on string length.

Example
CALL WDialogPutString(IDF_STRING,'Some Text')
! now a push button field
CALL WDialogPutString(IDF_BUTTON,'Press Me')

Errors
ErrCurDialog (1005) No dialogs currently loaded

ErrFieldNum (1006) Invalid field identifier

Group CD: Common Dialogs
The file-selector and message-box ’common dialogs' are supported via the routines in
group. The dialogs displayed by these routines are modal.

WMessageBox Subroutine

Description
Display a standard Windows message box.

Syntax
WMessageBox(ibutton,icon,idefbut,message,title)
106 Winteracter Starter Kit

WMessageBox Subroutine
Arguments

INTEGER ibutton = The type of buttons to be displayed

INTEGER icon = The type of icon to be displayed

INTEGER idefbut = Default highlighted button:

Table 4: Common Dialog Buttons

Name No. Button(s)

OKOnly 0 OK button

OKCancel 1 OK and Cancel buttons

RetryCancel 2 Retry and Cancel buttons

YesNo 3 Yes and No buttons

YesNoCancel 4 Yes, No and Cancel buttons

RetryAbortIgnore 5 Retry/Abort/Ignore buttons

Table 5: Common Dialog Icons

Name No. Icon

NoIcon 0 No icon

StopIcon 1 Stop icon

QuestionIcon 2 Question mark icon

ExclamationIcon 3 Exclamation mark icon

InformationIcon 4 Information icon

Table 6: Common Dialog Button Numbers

Name No. Highlighted Button

CommonCancel 0 Cancel

CommonIgnore 0 Ignore

CommonOK 1 OK

CommonOpen 1 Open
Winteracter Starter Kit 107

Chapter 11 Dialog Manager

s. Since
duce

This

is not
 CHARACTER message = Message box text

 CHARACTER title = Message box title

Effect
Displays a standard message box consisting of a message and up to three push button
many programs require only simple confirmations from the user this routine can help re
the number of required dialog resources.

ibutton selects the number and type of buttons the message box will contain.

icon selects the pre-defined icon that appears in the message box beside the text.

idefbut specifies which button will be highlighted when the message box is first opened.
value follows the same numbering scheme as the exit button code returned by
WInfoDialog .

message should contain the text to be displayed in the message box. The supplied text
automatically word wrapped. The message string must contain carriage returns (i.e.
CHAR(13)) to break the lines at the appropriate places. The message can be blank if
required.

title should contain the message box title. Again, this can be blank.

The button pressed to exit from this routine is available via WInfoDialog(4) . This uses
the same numbering scheme as idefbut.

Example
CALL WMessageBox(YesNo, QuestionIcon, 1, &

 'Another message box ?', 'Question')

IF (WInfoDialog(4)==1) THEN

 CALL WMessageBox(OKOnly, InformationIcon, 1, &

 'This is how to split your text'//CHAR(13)// &

 'over several lines.','Information')

END IF

CommonYes 1 Yes

CommonRetry 1 Retry

CommonAbort 2 Abort

CommonNo 2 No

Table 6: Common Dialog Button Numbers

Name No. Highlighted Button
108 Winteracter Starter Kit

WSelectFile Subroutine

m

nter a

 and
Errors
ErrCommonDlg (1004) Common dialog function returned an error. Actual syste

error code available via InfoError(3)

ErrModalPixmapLow (1041) X server pixmap resources are low

ErrModalPixmapExh (1042) X server pixmap resources are exhausted

WSelectFile Subroutine

Description
Choose a file using the standard file selector dialog

Syntax
WSelectFile(filterstr,iflags,filedir,title,iftype)

Arguments
CHARACTER filterstr = Filter strings

INTEGER iflags = Dialog settings. Sum of:

LoadDialog (0)) Load or
or SaveDialog (1)) Save dialog

PromptOn (2) Enable prompting
NonExPath (4) Allow non existent paths
DirChange (8) Allow directory change
MultiFile (16) Allow multiple file selection
AppendExt (32) Append extension

CHARACTER filedir = Entry : Initial directory path + filename

 Exit : Final directory path + filename

CHARACTER, OPTIONAL title = Dialog title

INTEGER, OPTIONAL iftype = File type on entry and exit

Effect
Prompts for a filename using the standard file selector. The dialog allows the user to e
new file name or path. It is the responsibility of the caller to create these if necessary.

The dialog is displayed slightly below the top left corner of the window or dialog which
currently has the input focus. If the file selector is displayed relative to the root window
the root window is hidden, you can still specify the window position to WindowOpen to
determine where the file selector dialog will appear.
Winteracter Starter Kit 109

Chapter 11 Dialog Manager

ns
ct the
pond-

the
n

e file

olete

r the

f bit
ill be

r will

e

on
owses
-

d
-

he
tring
ermine
filterstr defines a list of filter pairs. This will normally consist of program type descriptio
and corresponding file name match strings. They are used by the file selector to restri
file types which are offered in the dialog. Each description is separated from its corres
ing match string by a vertical bar (|). For example :

'Windows Bitmap|*.bmp|Paintbrush Image|*.pcx|'

This would add the filters *.bmp and *.pcx to the file type combo box. The first filter in
list is used initially. Note that the final "|" in the filter string is required. Multiple filters ca
be attached to one filter string by separating them with semi-colons, e.g.

'Fortran files|*.f90;*.for;*.f|'

Pass filterstr as a blank to match all files.

[Note : Alternatively, the filter strings argument can be specified as an integer resourc
id, documented in early versions as ifilterid . This should be the identifier of a string table
entry in the resource script. Use of this calling interface is supported for backwards
compatibility, but its use in new software is strongly discouraged. In particular, this obs
interface will not work with the X Windows implementation.]

iflags provides control over the exact behaviour of the file selector, by summing togethe
following settings :

LoadDialog selects a standard open-file (i.e. Load) dialog. SaveDialog selects a Save
file dialog.

Add PromptOn to iflags to enable prompting. When prompts are enabled, the setting o
0 determines the actual type of warning prompts displayed. For Load dialogs the user w
prompted if they specify a file or directory that does not exist. For Save dialogs the use
be prompted if they try to save to a file that already exists.

Add NonExPath to iflags, if non-existent paths (i.e. non-existent directories) are to be
allowed. Otherwise, only file names with valid directory names can be returned from th
dialog.

Add DirChange to iflags to allow the current directory to be updated. Enabling this opti
causes the current directory to be updated dependent on which directories the user br
in the file selector. If this option is not selected, WSelectFile saves and restores the cur
rent directory across the call to the file selector dialog.

Add MultiFile to iflags to allow multiple file selection. The Shift or Ctrl keys can be use
in combination with mouse clicks to select groups of files or multiple single files respec
tively. Multiple file selection is only available when LoadDialog is specified.

Add AppendExt to iflags to automatically add an extension to the selected filename. T
extension added depends on the filter string chosen by the user. If the selected filter s
contains more than one extension then the first extension is used. The rules used to det
110 Winteracter Starter Kit

WSelectFile Subroutine

 which

en

lt.

e.

ndow.

. The

 a

elect
). If

he
d

pears
itely

ise
whether the user has actually specified an extension, or has simply entered a filename
includes a full-stop/period, are slightly complex. Supposing a filename such as
myfile.xyz is entered, a file extension will still be added to this if :

a) myfile.xyz does not exist in the selected directory

and

b) xyz is not one of the file extensions in the filter string table

Add MustExist to iflags to allow only the names of existing files to be selected in an op
file dialog. This flag has no effect when SaveDialog is specified. If this flag is specified
then PromptOn and NonExPath will have no effect, the user will alway be prompted if
they enter a non-existent path or filename.

On entry filedir will contain the directory path and/or filename to use as the initial defau
Specify a trailing directory separator (\ under Windows or / under Linux) if filedir identifies
a directory only. If filedir is blank the current directory path is used with no default file nam
On exit the final path and file name will be returned in filedir, if a single file was selected.
This will be left unchanged if the user pressed the Cancel button or closed the dialog wi

If multiple file selection is enabled and multiple files are chosen, filedir will contain the
directory name (without a trailing directory separator character) and a list of file names
directory and file names will be separated by nulls (i.e. CHAR(0)). The calling program is
responsible for extracting the individual file names.

title specifies the dialog window title, e.g. 'Load a Data File'. If this is blank or omitted,
default title of 'Select File' is used.

The optional iftype argument allows you to determine which of the supplied filter strings
appears in the 'Files of type' field initially. This is an index value, so a value of 2 would s
the second file type in the filter string list (e.g. "Paintbrush Image" in our earlier example
the iftype argument is specified, it will also then return the index of the file type which t
user selected on exit. If iftype is omitted, the first file type in the filter string list is used an
no result is returned.

The exit button/result from this routine will be available via WInfoDialog(4) .

Portability notes
Microsoft Windows: Under NT 4.0, multiple file selection requires one of Microsoft's
service packs to be installed. A base NT 4.0 system with no service packs installed ap
to be limited to a maximum return string length of 241 characters. Service Pack 3 defin
fixes this problem. SP1 or 2 may also be suitable but this is untested.

X Windows: The supplied filter string is only used it it specifies a single file type, otherw
all files are shown. The MultiFile and AppendExt flags are not currently supported.
Winteracter Starter Kit 111

Chapter 11 Dialog Manager

m
Example
CHARACTER (LEN=255) FILENAME
 :
FILENAME = 'C:\PICTURES' ! Default file path
IFLAGS = LoadDialog + PromptOn ! Select load dialog
CALL WSelectFile(&
 'Fortran 90|*.f90|Fortran 77|*.for|', &
 IFLAGS, FILENAME, 'Select source file')
IF (WInfoDialog(4)==CommonOK) CALL process_file(FILENAME)

Errors
ErrCommonDlg (1004) Common dialog function returned an error. Actual syste

error code available via InfoError(3)

ErrModalPixmapLow (1041) X server pixmap resources are low

ErrModalPixmapExh (1042) X server pixmap resources are exhausted
112 Winteracter Starter Kit

12 High Resolution
Graphics
 the

also be

all

raw
The routines described in this chapter are divided into 4 groups:

GG General Graphics (Drawable selection, pixel interrogation, units)

GS Graphics Style selection (color, line type, fill style)

GD Graphics Drawing and Movement (Line/fill primitives)

GT Graphics Text (Text primitives)

In addition, graphics related information functions are provided in the IF group.

Starting and Finishing

Winteracter's graphics are automatically initialized by WindowOpen. Graphics are always
directed to the currently selected root or child window as set by WindowOpen,
WindowOpenChild or WindowSelect . Graphics remain available until
WindowClose is called.

Target Drawable

WiSK can generate graphics output to either a window or a dialog field, referred to as
current 'drawable'. The initial target drawable is the current window, as set by
WindowOpen, WindowOpenChild or WindowSelect . This can be changed by calling
IGrSelect .

Co-ordinate System

The Winteracter graphics co-ordinate system is user-definable and is not related to the
physical resolution of the output device, making graphics based programs device
independent. The area of the output drawable to be used for the graphics display can
defined. The IGrArea and IGrUnits routines control the main graphics area and co-
ordinate system respectively. Calls to routines in other groups, such as IGrLineTo ,
WGrTextString , etc. all use (x,y) co-ordinates defined in terms of the range set by the c
to IGrUnits . So if IGrUnits sets the min and max X values as 0-1000 and the min and
max Y values as 0-500 , all co-ordinate values should be in these ranges too. Attempts to d
Winteracter Starter Kit 113

Chapter 12 High Resolution Graphics

ll

th

 the

hics

outside this area will be clipped at the edge of the graphics area. By default (0,0) is the
bottom left corner of the graphics area. Initially, the main graphics area is set to the fu
drawable.

Lahey Graphics Emulation
Legacy code which was written for the Lahey Video Graphics Library can be rebuilt wi
Winteracter using the emulation code in lvgl.f90 . Refer to the on-line help file
(WiSK.HLP or wisk.htm) for details.

OpenGL Graphics
The OpenGL graphics interface is accessible in Winteracter based programs, enabled via
WglSelect in the MI group. A selection of demonstration programs are supplied in
WiSK’s OpenGL sub-directory. See the OpenGL pages under "Graphics Interfaces" in
on-line help file (WiSK.HLP or wisk.htm) for further information.

Group GG: General Graphics
This group provides various graphics routines which don't naturally belong in the grap
other subroutine groups. These include certain house keeping routines which are
fundamental to using Winteracter graphics routines, namely IGrArea and IGrUnits
which define the size of the graphics area and the co-ordinates within that area.

The target drawable is determined by IGrSelect . This can be either a window or a dialog
field.

Winteracter's graphics can be re-initialised via IGrInit .

The graphics area can be cleared by IGrAreaClear .

Pixel colors in the current drawable can be interrogated using IGrGetPixel .

IGrArea Subroutine

Description
Define size of graphics area.

Syntax
IGrArea(xleft,ylower,xright,yupper)

Arguments
REAL xleft = Left limit of main graphics area (0.0 <= xleft < 0)

REAL ylower= Lower limit of main graphics area(0.0 <= ylower <1.0)
114 Winteracter Starter Kit

IGrAreaClear Subroutine

s. The
 area

ging
isplay

nger
or

f the
REAL xright = Right limit of main graphics area (0.0 < xright <= 1.0)

REAL yupper= Upper limit of main graphics area(0.0 < yupper <= 1.0)

Effect
Defines the area of the current drawable to be used by all following graphics command
full window is defined as being 1 unit high and 1 unit wide, so you should describe your
in values in the range 0.0 - 1.0 as shown above. When you call IGrUnits , that then
defines the co-ordinate system to be used within the area defined by IGrArea . The default
values for both the IGrArea and IGrUnits ranges, are 0.0 to 1.0 occupying the whole of
the graphics screen. The current graphics area dimensions can be interrogated via theInfo-

Graphics function.

IGrArea is particularly useful when you wish to rescale a graphics image without chan
your co-ordinate system or any other parameters. In the example below, a full screen d
is reduced to a quarter size, at the top right of the screen, by a single call to IGrArea .

It is important to appreciate that if you set a graphics area in which the sides are no lo
equal (e.g., 0.5 high and 1.0 wide) then regular shapes will be distorted accordingly. F
example, circles become elliptical, squares become rectangular and so on.

Example
CALL IGrArea(0.0,0.0,1.0,1.0)

CALL MYGRAF()

CALL IGrArea(0.5,0.5,1.0,1.0)

CALL MYGRAF()

Errors
ErrBadArea (44) Invalid X and/or Y range. Range reset to 0-1 .

IGrAreaClear Subroutine

Description
Clear the current graphics screen area.

Syntax
IGrAreaClear()

Effect
Clears the current main graphics area as defined by IGrArea , to the current background
color. Part of the graphics window can therefore be cleared without affecting the rest o
window.
Winteracter Starter Kit 115

Chapter 12 High Resolution Graphics

alue.
When the graphics area is defined to be 0.0-1.0 in both x and y directions, the whole win-
dow is cleared.

Example
CALL IGrArea(0.05,0.05,0.4,0.4)
CALL IGrAreaClear()
CALL MYGRAF()

IGrGetPixel Function

Description
Read a screen pixel color value

Syntax
INTEGER IGrGetPixel(xpos,ypos)

Arguments
REAL xpos = X co-ordinate

REAL ypos = Y co-ordinate

Effect
Returns the color of the specified co-ordinate in the current drawable, as a 24-bit color v
Individual color components can be extracted using WRGBsplit . The (x,y) co-ordinate
should be expressed in user units as set via IGrUnits . If the specified co-ordinate lies
outside the graphics area, -1 is returned.

IGrInit Subroutine

Description
Re-initialize graphics output.

Syntax
IGrInit(type,nx,ny,nc)

Arguments
CHARACTER type = Type of output. Leave blank in Starter Kit implementation.

INTEGER, OPTIONAL nx = INTERACTER compatibility argument

INTEGER, OPTIONAL ny = INTERACTER compatibility argument
116 Winteracter Starter Kit

IGrSelect Subroutine

e reset

of the
INTEGER, OPTIONAL nc = INTERACTER compatibility argument

Effect
Re-initializes graphics output. This routine is called by WindowOpen, so it should not nor-
mally be necessary to call it again unless the whole of the graphics system needs to b
to its default state.

Winteracter's internal graphics are reinitialized to the following defaults:

• Calls IGrArea with parameters (0.0,0.0,1.0,1.0)
• Calls IGrUnits with parameters (0.0,0.0,1.0,1.0)
• Sets current plotting position to (0.0,0.0)
• Sets fill pattern to none
• Selects the 8-bit color model
• Sets plotting color to 223 (black)
• Sets secondary color for mixed-color fills to 0 (white)
• Sets line type to solid
• Selects driver-specific Courier font, with all style attributes disabled
• Sets character size to width=.01333333 and height=.04.
• Resets the target drawable to the current window

The nx, ny and nc arguments are provided for compatibility with INTERACTER. They are
not used in Winteracter and have the OPTIONAL atrribute. They can be safely omitted in
Winteracter-specific code.The type argument should be specified as a blank in Winteracter
Starter Kit programs (this argument has meaning in the full version of Winteracter).

IGrSelect Subroutine

Description
Select the target drawable for graphics output.

Syntax
IGrSelect(itarget,ident)

Arguments
INTEGER itarget = Target drawing surface:

INTEGER, OPTIONAL ident = Handle or identifier of target drawable:

Effect
Selects the target drawing surface ("drawable") for graphics output. The type and size
currently selected drawable can be interrogated via WInfoDrawable . Output can be routed
to a window or a dialog field:
Winteracter Starter Kit 117

Chapter 12 High Resolution Graphics

ion

rget

t
g is

ally

s).
o the
ined
ller's

ion
rwite

xes to
ialog.
 with

lip
itarget = DrawWin : By default, graphics output is routed to the current window. This opt
routes graphics output to the specified window. ident must specify a valid window handle, as
returned by WindowOpenChild , or zero for the root window. If the window handle is
omitted or an invalid window is specified the currently selected window becomes the ta
drawable. The root window is the target drawable at initialisation. Calling IGrSelect with
itarget set to 1 calls WindowSelect internally. While output to a window is selected,
WindowSelect can be called directly to update the target window for graphics outpu
(WindowSelect has no effect on the target graphics drawable while output to a dialo
selected).

itarget = DrawField : To draw into a dialog field, specify the field identifier in ident. This
must identify a field in the current dialog. In theory, this can be any type of field, but typic
this feature is best used with label or picture/frame fields. If ident is zero or omitted, the
whole of the current dialog becomes available for drawing (but see the Portability note
Specifying an invalid field identifier is treated as an error and the output target returns t
current window. It should be noted that dialog fields drawn in this way must be mainta
by the calling program. Normal dialog fields are repainted automatically, but it is the ca
responsibility to repaint 'user drawn' fields. The Expose message reported by WMessage
allows for this possibility.

Portability notes

Windows: Drawing to the whole dialog (itarget=3 and ident omitted or zero) will cause
graphics to overwrite any fields in the dialog window, by default. If the 'Clip Fields' opt
is selected (see the Dialog Properties dialog in the resource editor), graphics will not ove
field contents, effectively drawing to the 'background' of the dialog. While the latter
behaviour is preferable, enabling 'Clip Fields' causes the background of any group bo
become transparent. This in turn causes rear windows to become visible through the d
We therefore don't recommend whole-dialog drawing (and hence the use of Clip Fields)
dialogs which contain group boxes.

X Windows: When drawing to the whole dialog (itarget=3 and ident omitted or zero),
graphics are always clipped by the current dialog fields, regardless of field type. The 'C
Fields' option in the resource editor has no effect.

Example
CALL IGrSelect(DrawWin) ! Draw graph in root window

CALL MYGRAF()

CALL IGrSelect(DrawField,IDF_PIC) ! Draw same graph in a dialog

CALL MYGRAF()

Errors

ErrBadTarget (1019) Invalid window handle or field identifier
118 Winteracter Starter Kit

IGrUnits Subroutine

wing

lor.

ll
here
olor
IGrUnits Subroutine

Description
Define plotting units to be used.

Syntax
IGrUnits(xleft,ylower,xright,yupper)

Arguments
REAL xleft = Lower X co-ordinate limit

REAL ylower= Lower Y co-ordinate limit

REAL xright = Upper X co-ordinate limit

REAL yupper= Upper Y co-ordinate limit

IGrUnits defines the plotting units (the 'user co-ordinate system') to be used when dra
in the main graphics area defined by IGrArea . The initial ranges are 0.0 to 1.0 on both
axes. The example below shows how to plot values in the range 500-1000 on the x axis and
values of 300-600 on the y axis. The current plotting units can be interrogated via the
InfoGraphics function.

Selecting an invalid X or Y range, sets the limits for that axis to 0-1 .

Example
CALL IGrUnits(500.0,300.0,1000.0,600.0)

CALL IGrCircle(750.,450.,50.)

Errors
ErrBadUnits (16) Lower X or Y value is greater than or equal to upper X or Y

Group GS: Graphics Style Selection
This group controls the appearance of output from other graphics routines.

Probably the most commonly used routines in this group will be those which control co
The current graphics color is selected using IGrColourN . The number of available colors
is display dependent, so Winteracter uses a common 8-bit color numbering scheme on a
devices, by default. This provides 256 nominal colors (a near equivalent is selected w
fewer than 256 colors are available). Alternatively, some video modes support 24-bit c
mode where colors are specified directly as an RGB value. IGrColourN can use either an
8-bit or a 24-bit color model, selectable via IGrColourModel .
Winteracter Starter Kit 119

Chapter 12 High Resolution Graphics

re-
ons,
d

l and

/

-255.
 fewer
ch

lors.
ll 24-
play

r as
In the 8-bit color model, color 0 is treated as the background color and all others as fo
ground. However, color 0 can still be selected as the current color for graphics operati
though it will only be visible if the operation takes place on top of some non-backgroun
color.

The 8-bit color palette (the relationship between the 256 color numbers in the 8-bit mode
the actual colors displayed) can be redefined using IGrPalette . By default the
background color is white. The palette can be reinitialised by calling IGrPaletteInit .

In addition to color control, line type, plot mode and fill style are selectable via
IGrLineType , IGrPlotMode and IGrFillPattern .

IGrColourModel Subroutine

Description
Select 8-bit or 24-bit color model

Syntax
IGrColourModel(nbits)

Arguments
INTEGER nbits = Color model : 8 or 24 bits.

Effect
Selects the current color model used by IGrColourN . nbits should either be 8, for an 8-bit
256-color palette based color model, or 24 for a 24-bit RGB based model.

By default, an 8-bit model is used, where colors are specified as values in the range 0
These represent index values in a nominal 256 color palette. On devices which support
than 256 simultaneous colors, Winteracter automatically uses a subset of this palette. Ea
of the 256 colors in the 8-bit palette can be redefined using a 24-bit RGB value via
IGrPalette , but no more than 256 colors are available at one time.

When the 24-bit color model is selected, colors are specified to IGrColourN as an RGB
value of the form red+256*green+256*256*blue. This eliminates the indirection enforced by
the use of a palette and allows for a theoretical maximum of 16 million simultaneous co
This color specification model does not necessarily require a device which supports fu
bit color (e.g. it can be used successfully on a 16-bit color display). Where a target dis
does not support 24-bit/RGB color specification, Winteracter identifies the nearest matching
color in its own nominal 8-bit palette. It then uses the corresponding 8-bit color numbe
though that had been specified directly to IGrColourN . This allows the 24-bit color model
to be used on all displays with no significant loss of generality.
120 Winteracter Starter Kit

IGrColourN Subroutine

s

, it is

 color

The

dent
ber of
s
rdware.
 given

ilable,
The ability of the current screen driver to take advantage of 24-bit color specification i
reported by InfoGrScreen(42) .

While it is generally advisable to select a single color model throughout an application
feasible to switch between color models as needed. Internally, Winteracter stores the 'current'
color both as an 8-bit color index and as a 24-bit RGB value, so changes in the current
model should be transparent to the underlying screen driver.

See IGrColourN for a further explanation of the implications of calling this routine.

Example
! select bright red in two different ways
 CALL IGrColourModel(8)
 CALL IGrColourN(31)
 CALL IGrColourModel(24)
 CALL IGrColourN(255)

IGrColourN Subroutine

Description
Select graphics color using a color number.

Syntax
IGrColourN(ncolor)

Arguments
INTEGER ncolor = color number:

8-bit color model : 0-255
24-bit color model : Red + Green*256 + Blue*256*256

Effect
Selects the graphics color for lines, points, text and fills, using a single color number.
meaning and valid range of ncolor depends on the color model selected by
IGrColourModel :

8-bit Color model

By default, Winteracter uses an 8-bit color numbering scheme based on a device indepen
palette of 256 colors. The same color numbers are used regardless of the actual num
colors available on the output device. Winteracter performs an internal mapping between it
device independent color scheme and the actual color numbers used by the current ha
The 256 color numbers are organised into 16 groups, each consisting of 16 shades of a
color. On devices which support less than 256 colors, Winteracter sub-divides the palette
according to the number of available colors. For example, where only 16 colors are ava
Winteracter Starter Kit 121

Chapter 12 High Resolution Graphics

a

 red,
ives a
-bit
-
e 8-bit

s
e

or 16-

ot

dy
ly to
values of 16-31 all give bright red. Each color in the palette can be redefined via
IGrPalette , giving a maximum of 256 simultaneously different colors selected from
theoretical palette of 16 million.

24-bit Color model

When the alternative 24-bit color model is selected, ncolor specifies, the exact combination
of red, green and blue to be used, according to the formula shown earlier. Each of the
green and blue components should be specified as a value in the range 0-255. This g
theoretical maximum of 16 million simultaneously different colors. On devices where 24
color selection is not supported, Winteracter identifies the nearest equivalent color in its 8
bit palette and treats the resulting color number as though it had been selected using th
color model.

8-bit versus 24-bit ?

So which of the above color models should a program use ? The 8-bit color model wa
devised for use with INTERACTER in the late 1980's when 24-bit color hardware was rar
and/or expensive. Applications developed using INTERACTER or earlier releases of
Winteracter will therefore exclusively use the 8-bit model, so this is the default for
compatibility reasons. However, modern hardware offers cheap access to 24-bit color (
bit color which Winteracter treats as logically equivalent). Use of the 24-bit model is
therefore recommended in new development. This is particularly true, given that Winteracter
will automatically determine the equivalent 8-bit palette value to use if 24-bit color is n
available.

More about the 8-bit Color Model

While the 24-bit color model may be preferable in new software, a lot of code will alrea
exist which uses the default 8-bit model. The following notes therefore apply specifical
the 8-bit color model:

• Color zero is treated specially by Winteracter as the background color. This can still
be selected as the current graphics color, enabling you to draw or fill in one fore-
ground color and then plot on top of that using the current background color.

• The default palette associated with the Winteracter 8-bit color model is as follows
(values are (r,g,b) triplets where maximum intensity = 255) :
122 Winteracter Starter Kit

IGrColourN Subroutine
Table 7: 256-Color Numbering Scheme Default Palette

 Actual Color Color # 256-Color Palette

White 0-15 (255,255,255) -> (195,195,195)

Light red 16-31 (195, 0, 0) -> (255, 0, 0)

Dark red 32-47 (131, 0, 0) -> (191, 0, 0)

Light yellow 48-63 (195,195, 0) -> (255,255, 0)

Dark yellow 64-79 (131,131, 0) -> (191,191, 0)

Light green 80-95 (0,195, 0) -> (0,255, 0)

Dark green 96-111 (0,131, 0) -> (0,191, 0)

Light cyan 112-127 (0,195,195) -> (0,255,255)

Dark cyan 128-143 (0,131,131) -> (0,191,191)

Light blue 144-159 (0, 0,195) -> (0, 0,255)

Dark blue 160-175 (0, 0,131) -> (0, 0,191)

Light magenta 176-191 (195, 0,195) -> (255, 0,255)

Dark magenta 192-207 (131, 0,131) -> (191, 0,191)

Black 208-223 (60, 60, 60) -> (0, 0, 0)

Dark gray 224-239 (124,124,124) -> (64, 64, 64)

Light gray 240-255 (191,191,191) -> (131,131,131)
Winteracter Starter Kit 123

Chapter 12 High Resolution Graphics

a
s

.
s

d
In 16 or 8 color output, a subset of the above palette is used:

• On a 256 color screen, a 16-color palette is used as shown in the table. However,
larger palette of 32, 64 or 128 colors can optionally be used in such a video mode, a
specified via the optional ncol256 argument of WindowOpen. When a 32/16/128
color palette is selected, the default 256-color palette is sub-divided accordingly (e.g
in a 32-color palette, colors 0-7 are the same whereas in a 64 color palette only color
0-3 are the same).

• Whatever 8-bit color number is used, IGrColourN has no effect on the actual color
which is associated with that number. It simply sets the logical color number to be
used by any following graphics operations. To redefine the association of displayed
colors with logical colors you should use IGrPalette .

• Requesting a color number outside the range 0-255, in the 8-bit model, is ignored an
an error code is set.

Table 8: 16 or 8 Color Palette

Actual Color Color # 16-color palette 8-color palette

White 0-15 (255,255,255) (255,255,255)

Light red 16-31 (255, 0, 0) (255, 0, 0)

Dark red 32-47 (191, 0, 0) (255, 0, 0)

Light yellow 48-63 (255,255, 0) (255,255, 0)

Dark yellow 64-79 (191,191, 0) (255,255, 0)

Light green 80-95 (0,255, 0) (0,255, 0)

Dark green 96-111 (0,191, 0) (0,255, 0)

Light cyan 112-127 (0,255,255) (0,255,255)

Dark cyan 128-143 (0,191,191) (0,255,255)

Light blue 144-159 (0, 0,255) (0, 0,255)

Dark blue 160-175 (0, 0,191) (0, 0,255)

Light magenta 176-191 (255, 0,255) (255, 0,255)

Dark magenta 192-207 (191, 0,191) (255, 0,255)

Black 208-223 (0, 0, 0) (0, 0, 0)

Dark gray 224-239 (64, 64, 64) (0, 0, 0)

Light gray 240-255 (191,191,191) (255,255,255)
124 Winteracter Starter Kit

IGrColourN Subroutine

color

a

r

/16/
• The number of colors available in the 8-bit color model can be checked using
InfoGrScreen(30) . The actual number of screen colors may be different and
can be obtained via WInfoScreen(3) .

When the 24-bit color model is selected, but the current display does not allow 24-bit
selection (e.g. a 256 color screen), Winteracter reverts internally to using the 8-bit color
model and all of the above rules apply even though the 8-bit model was not explicitly
requested. InfoGrScreen(42) reports the ability of the current screen driver to take
advantage of 24-bit color specification.

Two consecutive calls to IGrColourN will select the colors to be used by mixed-color are
fills (see IGrFillPattern) or opaque text (see WGrTextFont). The two most recently
requested colors are available via InfoGrScreen(34/35) . The default graphics color at
initialisation is black.

See the col256 and col24bit demo programs.

The number of colors supported by Winteracter’s 8-bit color model is related to the numbe
of colors provided by the Windows video driver or X server, as follows:

When the 24-bit color model is requested, Winteracter will use the supplied RGB values
directly on 15/16/24/32 bit color displays and will revert to its 8-bit model internally on 2
256 color displays.

Example
DO ICOL = 31,255,32

 CALL IGrColourN(ICOL)

 CALL IGrMoveTo(0.0,0.0)

 CALL IGrLineTo(0.5,REAL(ICOL))

END DO

Errors
ErrBadcolor (42) Unknown color number. Current color unchanged

Table 9: Windows colors

Video Driver or
X server Colors

Size of 8-bit palette
used by Winteracter

2 2

16 8

256 16/32/64/128

32k/65k/16m 256
Winteracter Starter Kit 125

Chapter 12 High Resolution Graphics
IGrFillPattern Subroutine

Description
Define fill pattern (solid/mixed-colors/hatched).

Syntax
IGrFillPattern(istyle,idense,iangle)

Arguments
INTEGER istyle = Fill style:

INTEGER, OPTIONAL idense = Hatched fill density:

Table 10: Fill styles

Name No. Information

CrossHatchNoOut -2 Cross-hatched fill with no outline

HatchedNoOut -1 Hatched fill with no outline

Outline 0 No fill, ouline only (default)

Hatched 1 Hatched fills

CrossHatch 2 Cross-hatched fills

MixedColour 3 Mixed-colors (stippled)

Solid 4 Solid fills

Table 11: Hatched Fill Density

Name No. Information

Sparse 1 Sparse

Medium 2 Medium (default)

Dense1 3 Dense

Dense2 4 Very dense

Dense3 5 Very very dense
126 Winteracter Starter Kit

IGrFillPattern Subroutine

ls.

le

If
s are

ted,
ughly
ection
ted
or-

 last

actly
hades
 a solid
d in

cal in
INTEGER, OPTIONAL iangle = Hatched line angle:

IGrFillPattern defines the fill pattern (if any) to be used by IGrCircle and IGrPoly-

gonComplex . The basic choice is between no fills and hatched, solid or mixed-color fil

The default fill style is zero which gives outlines only. In this case, the density and ang
parameters are ignored.

idense and iangle have the OPTIONAL attribute. They can be omitted when not required.
they are omitted when a value is expected, (e.g. for hatched fills) the indicated default
assumed.

Hatched fills draw lines at intervals across the area to be filled. If a hatched fill is selec
the density and angle parameters define the precise style of the fill. A dense fill uses ro
twice as many lines to fill the area as a sparse fill. The angle parameter controls the dir
of the fill lines. Type 1 hatched fills draw lines in one direction only, according to the selec
iangle value. Type 2 (cross-hatched) fills draw lines in both directions. Hatched fills are n
mally drawn with an outline. Specify a negative istyle value to suppress this outline.

Type 4 (solid) fills use a pure color, as most recently defined by a call to IGrColourN .

Type 3 (mixed) fills are similar to solid ones, except that the two colors as defined by the
two calls to IGrColourN are mixed. Hence if two successive calls to IGrColourN specify
Yellow then Red, a type 3 fill will mix these colors. This will either use a stippled fill (where
alternate pixels are plotted in each color) or a (r,g,b) value will be selected which is ex
half way between the two specified colors.This can give the appearance of many more s
than some devices actually support. Selecting the same color twice in succession gives
fill. On monochrome displays, the foreground/background colors are automatically mixe
stippled fills, regardless of the last two colors specified, unless those colors were identi
which case a solid fill is selected.

When solid/stippled fills are requested, angle and density are ignored.

If an invalid style, density or angle is specified, then the indicated defaults are used.

Example
CALL IGrColourN(48) ! select first mixed-fill color

CALL IGrColourN(144) ! select 2nd mixed-fill color

CALL IGrFillPattern(MixedColour) ! density and angle omitted

CALL IGrCircle(150.,500.,30.)

Table 12: Hatched Line Angle

Name No. Information

FillHoriz 3 Horizontal lines (default)

FillVertic 4 Vertical lines
Winteracter Starter Kit 127

Chapter 12 High Resolution Graphics

ype is

ore
IGrLineType Subroutine

Description
Select line type (solid, dots, dashes or dot/dash).

Syntax
IGrLineType(ltype)

Arguments
INTEGER, OPTIONAL ltype = Line type:

Effect
Selects the line type for subsequent drawing operations. The currently requested line t
available via InfoGrScreen(36) . If ltype is omitted, solid lines are selected.

Windows only supports 5 line styles. The line type which is supposed to be dotted is m
like short dashes on most displays.

Portability notes
Windows: Only 5 line types are available. Line types 2 and 3 duplicate types 6 and 5
respectively.

Table 13: Line Types

Name No. Information

SolidLine 0 Solid (default)

Dotted 1 Dots

Dashed 2 Dashes

DotDash 3 Dot/dash

DotDotDash 4 Dot/dot/dash

LongShort 5 Long/short dashes *

ShortDash 6 Short dashes *
128 Winteracter Starter Kit

IGrPaletteInit Subroutine
Example
CALL IGrLineType(1)

! draw a grid of dotted lines

DO I = 1, 9

 CALL IGrMoveTo(0.0, 0.1*REAL(I))

 CALL IGrLineToRel(1.0,0.0)

 CALL IGrMoveTo(0.1*REAL(I),0.0)

 CALL IGrLineToRel(0.0,1.0)

END DO

IGrPaletteInit Subroutine

Description
Reinitialize graphics color palette.

Syntax
IGrPaletteInit()

Effect
Reinitializes the Winteracter graphics palette to the default settings. See IGrColourN .

IGrPalette Subroutine

Description
Redefine 8-bit color palette

Syntax
IGrPalette(ncolor,rgb,ipost)

Arguments
INTEGER ncolor = 8-bit color number (same numbering scheme as IGrColourN)

INTEGER rgb = 24-bit RGB color value

INTEGER, OPTIONAL ipost = Postpone palette realisation on 256 color screen

(0 or omitted=no 1=yes)
Winteracter Starter Kit 129

Chapter 12 High Resolution Graphics

e. An
he
 by

sing

lor

ucted

f the
e
 on a

mined
rs.
result
ny

enefit

n a

for

X
finable

he
cified
Effect
Controls the 8-bit graphics color palette, using the Red/Green/Blue (RGB) color schem
actual 24-bit color value is assigned to a specified 8-bit color number. Redefinition of t
screen palette only affects subsequent plotting. The background color can be changed
calling IGrPalette with an ncolor value of 0.

ncolor specifies the color which would be selected by supplying the same value to
IGrColourN using the 8-bit color model. Hence ncolor should lie in the range 0 to 255 and
will be converted to an appropriate actual color number for the current screen mode, u
the same rules as IGrColourN . When the 24-bit color model is selected, this routine is
limited to setting the RGB value in the 8-bit palette which will still be used internally on co
limited devices. See IGrColourN for a description of the colors available in the default
palette. The current 8-bit palette values can be interrogated via InfoGrPalette .

rgb specifies the required physical color, in the usual 24-bit color range. It can be constr
using the WRGB function. Where an output device supports fewer colors, the nearest
approximation to the requested color is selected.

When the optional ipost argument is specified as a non-zero value it causes 'realisation' o
screen palette to be postponed. When this argument is omitted or is set to zero, palett
realisation is performed immediately. Enabling this option can have significant benefits
256 color display when setting multiple palette values. On a 256 color display, Winteracter
uses its own private palette for screen graphics colors. The size of this palette is deter
by WindowOpen. It contains 16 entries by default, but can hold up to 128 different colo
Updating a single color in this palette can be a relatively "expensive" operation and can
in palette cycling effects if other applications or the desktop background also uses ma
colors. By setting ipost/=0, Winteracter's internal palette is updated but the expensive
"realise" operation is not performed. When updating N palette values, a performance b
can thus be obtained by setting ipost to be non-zero for the first N-1 calls, and zero (or
omitted) for the final call. Hence only one realise-palette operation will be performed o
256 color display instead of N such operations. This is both faster and neater. The col256
demo illustrates this technique in the grey scale display option.

If ipost/=0 on a 256 color display, then the associated color number must not be used
drawing until a subsequent call specifies ipost=0 (or omits ipost) to force the palette to be
realised. ipost has no effect on anything other than 256 color displays.

Color redefinition is normally only effective when the current Windows video driver or
server operates in a screen mode with 256 colors or more. Colors are not normally rede
on a 16-color display, in which case the 'nearest' available color is used when plotting
subsequently in color ncolor. On a display which provides more than 256 colors, use of t
alternative 24-bit color model is recommended, since this allows RGB values to be spe
directly to IGrColourN , rather than indirectly via IGrPalette .

Example
CALL IGrPalette(200,WRGB(255,200,200)) ! Pale pink
130 Winteracter Starter Kit

IGrPlotMode Subroutine

ode,
, the
s, text
 dis-

mode.
e in

pe
d if

 the
IGrPlotMode Subroutine

Description
Set the plotting mode

Syntax
IGrPlotMode(mode)

Arguments
CHARACTER(LEN=*), OPTIONAL mode = Plotting mode (N:normal overwrite, E:EOR
(exclusive-or))

Effect
Selects the plotting mode for lines, points, software text and fills. In normal over-write m
the line/point/text/fill simply replaces what was already in the drawable. In EOR mode
color is exclusive or'ed with that already on the screen. The main use of this is that line
and fills can be drawn in EOR mode then erased again, still using EOR mode, without
turbing what was previously in the drawable.

Only the first character of the supplied argument is used to determine the required plot
If mode is blank or omitted, normal plotting is selected. The plot mode argument can b
upper or lower case.

The currently requested plot mode is available via InfoGrScreen(37) .

Portability notes
Windows: Due to a Windows GDI limitation, plot mode selection does not affect TrueTy
fonts, which are always drawn in normal (over-write) mode. Software text must be use
plot mode control is required.

Example
CALL IGrPlotMode('EOR')
CALL IGrPoint(X,Y) ! now you see it
 :
CALL IGrPoint(X,Y) ! now you don't
CALL IGrPlotMode(' ') ! ... and back to normal

Group GD: Graphics Drawing/Movement
The routines in this group provide the main Winteracter graphics drawing primitives. An
important concept here is the 'current plotting position'. This can be set explicitly using
IGrMoveTo , but is automatically updated by other drawing and graphics text routines in
GD and GT groups.
Winteracter Starter Kit 131

Chapter 12 High Resolution Graphics

ed
 of

 the

n-
IGrCircle and IGrPolygonComplex draw shapes in various styles which are determin
by the IGrFillPattern routine in the GS group. By default they simply draw an outline
the appropriate shape, but they can also perform hatched, mixed-color or solid fills.

Simple straight line drawing can be performed using IGrLineTo . Single points can be plot-
ted using IGrPoint .

IGrCircle Subroutine

Description
Draw/fill circle at an absolute position.

Syntax
IGrCircle(xpos,ypos,radius)

Arguments
REAL xpos = X co-ordinate of circle center

REAL ypos = Y co-ordinate of circle center

REAL radius = Radius of circle in current plotting units

Effect
Draws a circle of a given radius centered at the specified absolute plotting position, in
current graphics color and plotting mode as selected by IGrColourN and IGrPlotMode .
The circle will be filled, if required, using the fill pattern selected by IGrFillPattern . The
current plotting position becomes (xpos, ypos) . Aspect ratio is preserved regardless of wi
dow shape. The radius is expressed in terms of the X co-ordinate system.

Example
CALL IGrUnits(50.,100.,500.,300.)
CALL IGrFillPattern(2,2,3)
CALL IGrCircle(100.,200.,20.)

Errors
ErrBadRadius (20) radius <= zero. Nothing will be drawn.

IGrLineTo Subroutine

Description
Draw line to a new absolute position.
132 Winteracter Starter Kit

IGrMoveTo Subroutine
Syntax
IGrLineTo(xpos,ypos)

Arguments
REAL xpos = X co-ordinate to draw to

REAL ypos = Y co-ordinate to draw to

Effect
Draws a line from the current plotting position (as set by a previous call to IGrMoveTo or
IGrLineTo itself) to the new absolute plotting position specified by (xpos, ypos) . On exit,
(xpos, ypos) becomes the current plotting position.

Example
CALL IGrUnits(0.0,0.0,1000.0,500.0)

CALL IGrMoveTo(200.0,100.0)

CALL IGrLineTo(800.0,100.0)

IGrMoveTo Subroutine

Description
Move current plotting position to a new absolute position.

Syntax
IGrMoveTo(xpos,ypos)

Arguments
REAL xpos = X co-ordinate

REAL ypos = Y co-ordinate

Effect
Moves the current plotting position to the absolute position (xpos, ypos) without any visible
effect.

Example
CALL IGrUnits(100.,0.,300.,400.)

CALL IGrMoveTo(150.,200.)

CALL IGrLineTo(200.,300.)
Winteracter Starter Kit 133

Chapter 12 High Resolution Graphics

lot

t
IGrPoint Subroutine

Description
Draw a single point at new absolute position.

Syntax
IGrPoint(xpos,ypos)

Arguments
REAL xpos = X co-ordinate

REAL ypos = Y co-ordinate

Effect
Sets the current plotting position to the absolute position (xpos, ypos) and plots a point at
that position.

Example
CALL IGrUnits(100.,0.,300.,400.)

CALL IGrPoint(150.,200.)

IGrPolygonComplex Subroutine

Description
Draw/fill a complex (possibly intersecting) polygon.

Syntax
IGrPolygonComplex(x,y,nvert)

Arguments
REAL x(:) = Array of X co-ordinates

REAL y(:) = Array of Y co-ordinates

INTEGER nvert= Number of vertices in supplied x/y arrays (<=5000)

Draws an irregular polygon defined by the specified absolute plotting positions, with
possibly intersecting borders. The polygon is drawn in the current graphics color and p
mode as selected by IGrColourN and IGrPlotMode . The polygon will be filled, if
required, using the pattern set by IGrFillPattern . The polygon will be closed, i.e., the las
point will be joined to the first.
134 Winteracter Starter Kit

Group GT: Graphics Text

n-

t

rrent

rious
ic
rnally

 via

nisms
IGrPolygonComplex uses an API primitive for solid and mixed-color fills. A generic sca
line search method is used for hatch fills. In very rare situations, a polygon may be too
complex for IGrPolygonComplex 's generic algorithm, in which case the routine will exi
with error code 49. This is only likely to occur in very extreme cases.

If no fill is specified, IGrPolygonComplex simply draws a poly-line, i.e. it joins the points
specified in x and y regardless of whether the borders cross. Whether filled or not, the cu
plotting position becomes (x(1), y(1)) .

Example

REAL, DIMENSION (4095) :: X, Y

READ(20,*) N

N = MIN(N,4095)

DO I = 1,N

 READ(20,*) X(I),Y(I)

END DO

CALL IGrPolygonComplex(X,Y,N)

Errors

ErrFillComplex (49) Fill too complex. Unable to fill polygon.

Group GT: Graphics Text
Graphics text strings are written using WGrTextString . Font family, style, size and
spacing are all selectable via WGrTextFont . This provides access to both driver-specific
fonts and software based vector/outline fonts. Data for the latter are loaded via the va
WGrVFont* and WGrOFont* routines. In general, we recommend use of driver-specif
fonts. Software fonts are provided for portability reasons and are sometimes used inte
to substitute for unavailable fonts in non-Windows GDI output.

The alignment, rotation angle and direction of graphics text is controlled by
WGrTextOrientation . The relative length of a graphics text string can be measured
the WGrTextLength function.

Backward Compatibility Note : the routines in the GT group replace the earlier IGrChar*
routines of the GC group. In particular, the use of external software 'character set' files
became obsolete in the new calling interface, though the previous font selection mecha
are still supported for backwards compatibility.
Winteracter Starter Kit 135

Chapter 12 High Resolution Graphics

out

ct
d by
WGrOFont* Subroutines

Description
Load outline software font data

Syntax
WGrOFontFixed()
WGrOFontSwiss()

Effect
Each of these routines contains all of the font shape data for the corresponding outline
software font. Calling one of these routines loads the data for that font into Winteracter's
software font data area. This font can then be selected by calling WGrTextFont with a font
family type of FFSoftware . The current software font can be changed at any time with
needing to call WGrTextFont again, unless style, size or spacing are to be changed (in
which case WGrTextFont should be called with the appropriate arguments assigned).
Note: Unlike the earlier IGrCharSet routine which they replace, they do not actually sele
the named font for text output. Rather they load the specified font, ready to be selecte
WGrTextFont .

Example
CALL WGrOFontSwiss()
CALL WGrTextFont(FFSoftware,FSBold)
CALL WGrTextString(0.5,0.5,'Bold Swiss outline font')

WGrTextFont Subroutine

Description
Set graphics text alignment, rotation and direction

Syntax
WGrTextFont(ifamily,istyle,width,height,name,ispace)

Arguments
INTEGER, OPTIONAL ifamily = Font family

FFUser (100) : User defined GDI font
FFCourier (101) : Courier
FFHelvetica (102) : Helvetica/Arial
FFSoftware (1) : Current software font
FFDriver (2) : Current driver-specific font
0 or omitted : Leave current selection unchanged
136 Winteracter Starter Kit

WGrTextFont Subroutine

a

ws
font,
tline

reen,
I
ected
s set

,

eful
cific
INTEGER, OPTIONAL istyle = Font style. Sum of:

FSBold (1) : Bold

FSItalic (2) : Italic

FSUnderline (4) : Underline

FSOpaque (8) : Opaque background

REAL, OPTIONAL width = Average character width as a proportion of the graphics are

(default = 0.01333333)

REAL, OPTIONAL height = Character cell height as a proportion of the graphics area

(default = 0.04)

CHARACTER, OPTIONAL name = User defined GDI font name, if ifamily=FFUser

INTEGER, OPTIONAL ispace = Spacing

(0=font-specific, 1=fixed, 2=software-proportional)

Effect
Selects the font to be used in graphics text output.

ifamily=101-102 selects a driver-specific font of the specified family. As their name
suggests, driver-specific fonts are those which are available for use by a particular
Winteracter graphics output driver. The most common examples are TrueType (Windo
GDI) or Adobe (PostScript) fonts. If a particular output driver does not support such a
an equivalent software outline font will be substituted automatically. These software ou
fonts are built into the library as standard.

ifamily=100 selects a user-specified GDI font, as named in the name argument. This can be
any Windows font name and will be used in all subsequent Windows GDI output to sc
memory bitmap, metafile or printer. If this option is specified when generating non-GD
output, a Courier or Helvetica style font will be selected, depending on the currently sel
spacing. If ifamily specifies a user defined font, but no name is supplied an error code i
and a Courier or Helvetica font will be selected, as for non-GDI output.

ifamily=1/2 allows switching between the current software and device-specific fonts:

· FFSoftware : Selects the current software font as determined by the most recent
call to one of the WGrOFont* or WGrVFont* routines. The 'Standard' vector font
is loaded by default.

· FFDriver : Selects the current driver-specific font as most recently selected by
ifamily=100-104. This allows such a font to be reselected after using a software font
without the overhead of recreating the driver-specific font

If ifamily is omitted or zero, the current font family selection will remain unchanged (us
when only the font size needs to be changed). The initial default font family is driver-spe
Courier (101).
Winteracter Starter Kit 137

Chapter 12 High Resolution Graphics

he
ny

s

he
anges.

ed.

t,

t

-

t

61-
istyle selects the required font style. This can be changed without specifying any other
arguments, if required. Specifying zero will disable all. Omitting this argument leaves t
current style selection unchanged. When opaque text is enabled, the background of a
graphics text is filled using the last but one graphics color selected by IGrColourN .

Some minor qualifications apply to style selection:

· The character generator used to draw software vector fonts uses double-width line
when bold is enabled.

· Underlining and opaque backgrounds work well with all GDI fonts, all software
fonts and non-GDI Courier style fonts. However, the underline and opaque
background extent is only guaranteed to be correct for non-GDI driver-specific
proportional fonts when software-based proportional spacing is selected.

width and height specify the required character cell size, expressed as a proportion of t
graphics area size. Hence, the physical font size will change if the graphics area size ch
The initial default width and height are 0.013333 and 0.04 (chosen for backwards
compatibility reasons). If width or height are omitted, the most recently specified size is us

name allows any available Windows font to be specified by name, for use in GDI outpu
provided ifamily=100. It will be ignored, if present and ifamily/=100.

ispace allows specific font spacing to be enforced, dependent on which font family was
requested:

· ispace=0 : Selects the 'native' spacing associated with a given font. This is the defaul
if omitted and ifamily is present. This means monospaced text for the Courier font or
the Standard software vector font. Driver-specific proportional spacing is used when
ifamily=100 or 102. Software-based proportional spacing is selected when any soft
ware font other than Standard is loaded.

· ispace=1 : Selects fixed spacing if ifamily=1, 100 or 101. Native spacing is used
otherwise.

· ispace=2 : Selects software based proportional spacing, if ifamily=2, 100 or 102.
Native spacing is used otherwise. 'Software' spacing uses a built-in font-independen
character width table which can be updated by WGrTextWidth . Due to the generic
nature of this width table, the quality of spacing may suffer, but this option has
certain specific benefits:

· WGrTextLength is guaranteed to give accurate results.
· The underlining extent of non-GDI proportional device-specific fonts is correct.
· The current graphics position is updated more accurately, giving better results if

the (xpos,ypos) arguments are omitted when writing strings.

· Spacing remains unchanged if ifamily and ispace are both omitted (e.g. if font size
only is specified).

Most fonts provide 8-bit ISO Latin-1 character sets (i.e. character codes 32-126 and 1
255).
138 Winteracter Starter Kit

WGrTextLength Function

oth

.
e
utline

ISO
o be
.
Portability notes
Windows: The Courier New and Arial TrueType fonts are used for families 101/102. B
provide 8-bit Latin-1 character sets (except Symbol) and are fully rescalable.

X Windows: The Courier and Helvetica families are both supported under X Windows
While rescaleable X fonts are used, these do not guarantee to give exactly the font siz
requested. When a font of the required size (or a near equivalent) is not available, an o
software font (and hence software spacing) is substituted. This also occurs under all
conditions for rotated (i.e. non-horizontal) text output. The supported X fonts are 8-bit
Latin-1 fonts. Changing character size under X Windows, may require a new font file t
loaded. Frequent character size changes should therefore be avoided where possible

Example
CALL WGrTextFont(FFHelvetica)

CALL WGrTextString(0.5,0.8,'Helvetica/Arial')

CALL WGrTextFont(FFCourier,FSBold+FSItalic)

CALL WGrTextString(0.5,0.7,'Courier Bold/Italic')

CALL WGrTextFont(FFUser,NAME='Comic Sans MS')

CALL WGrTextString(0.5,0.6,'User Defined')

CALL WGrTextFont(FFHelvetica,WIDTH=0.025,HEIGHT=0.08)

CALL WGrTextString(0.5,0.5,'Enlarged Arial')

CALL WGrVFontTriplexRoman()

CALL WGrTextFont(FFSoftware,WIDTH=0.013,HEIGHT=0.04)

CALL WGrTextString(0.5,0.4,'Triplex Roman (vector)')

CALL WGrTextFont(FFDriver)

CALL WGrTextString(0.5,0.3,'Back to Arial')

WGrTextLength Function

Description
Measure the length of a graphics text string.

Syntax
REAL WGrTextLength(string,method)

Arguments
CHARACTER string = String or character to measure

INTEGER, OPTIONAL method = How to measure the string:
0 or omitted : Use ’best’ available method
1 : Force use of software character widths table
Winteracter Starter Kit 139

Chapter 12 High Resolution Graphics

abled,

'
e
ble is
ctors,
Effect
When proportional spacing is enabled, this function returns the relative length of the
specified string, assuming the average character width is 1.0. When fixed spacing is en
WGrTextLength(STRING) always returns REAL(LEN(STRING)) . Hence the result
of WGrTextLength multiplied by InfoGraphics(3) always returns the width of the
string in user-units, regardless of which type of spacing is enabled.

Internally, this function will use one of two methods to measure a string when a
proportionally spaced font is currently selected. When a driver-specific font and 'native
spacing is selected, WGrTextLength will attempt to use the underlying API to measure th
string. When a software font or software spacing is in use, a generic internal widths ta
used. Which is most appropriate of these two methods varies depending on several fa
so WGrTextLength will choose the 'best' when method=0 or is omitted. Specify method=1
to force the software widths table to be used.

Example
CALL WGrVFontSwiss()
CALL WGrTextFont(FFSoftware)
! draw a box around a string
WIDTH = WGrTextLength(STRING)*InfoGraphics(3)
HEIGHT = InfoGraphics(4)
CALL WGrTextOrientation(AlignLeft)
CALL WGrTextString(X,Y+HEIGHT/2.0,STRING)
CALL IGrFillPattern(Outline)
CALL IGrMoveTo(X,Y)
CALL IGrLineTo(X+WIDTH,Y)
CALL IGrLineTo(X+WIDTH,Y+HEIGHT)
CALL IGrLineTo(X,Y+HEIGHT)
CALL IGrLineTo(X,Y)

WGrTextOrientation Subroutine

Description
Set graphics text alignment, rotation and direction

Syntax
WGrTextOrientation(ialign,angle,idir,nangle)

Arguments
INTEGER, OPTIONAL ialign = Alignment of graphics text strings

AlignLeft (0) : Left
AlignCentre (1) : Centre
AlignRight (2) : Right
140 Winteracter Starter Kit

WGrTextString Subroutine

zontal.

ition
hat
rtical
r to

gle is
ence,
f the

fined
REAL, OPTIONAL angle = Graphics text rotation angle
(degrees counter clockwise from horizontal)

INTEGER, OPTIONAL idir = Graphic text direction
DirHoriz (0) : Horizontal
DirVertic (1) : Vertical

INTEGER, OPTIONAL nalign = Reserved. Not used in WiSK.

Effect
Sets the alignment, angle of rotation and direction of graphics text. If any argument is
omitted, that setting remains unchanged. By default text is centred, unrotated and hori

ialign determines how graphics text strings/numbers are aligned relative to a plotting pos
Left aligned text is printed starting from a given position, right aligned text finishes at t
position and centred text appears either side of it. This is true of both horizontal and ve
text and is independent of the current angle of rotation. In all cases 'left' and 'right' refe
which end of the string is actually at the specified plotting position.

angle defines the angle at which graphics text strings/numbers are to be written. The an
measured in degrees counter clockwise from the horizontal, which is treated as zero. H
an angle of 90 degrees would give sideways text which runs vertically from the bottom o
graphics area toward the top.

idir specifies graphics text direction relative to the angle of rotation specified by angle. i.e.
Vertical text is printed one character above the next, perpendicular to the base line de
by the current rotation angle.

Example
CALL WGrTextOrientation(AlignLeft)
CALL WGrTextString(100.,100.'This starts at (100,100)')
CALL WGrTextOrientation(AlignRight,0.0,DirVertic)
CALL WGrTextString(100.,150.,'This finishes at (100,150)')
CALL WGrTextOrientation(AlignCentre,180.0,DirHoriz)
CALL WGrTextString(200.0,200.0,'Upside down text !')
CALL WGrTextOrientation(ANGLE=90.0)
CALL WGrTextString(200.0,250.0,'Bottom to top')

WGrTextString Subroutine

Description
Output character string at an absolute (x,y) position.

Syntax
WGrTextString(xpos,ypos,string)
Winteracter Starter Kit 141

Chapter 12 High Resolution Graphics

 unro-

ft/
ese

after

idth

his

rea is

s.

eeds
ware

 ISO
e very
r in
Arguments
REAL xpos = X co-ordinate

REAL ypos = Y co-ordinate

CHARACTER string = String to write

Effect
Outputs string at (xpos,ypos). The plotting mode and color are as previously defined by
IGrPlotMode and IGrColourN . Font style, size and spacing are determined by
WGrTextFont . A monospaced Courier style font is used by default.

The position of the text relative to (xpos,ypos) is determined by WGrTextOrientation ,
as are the direction and angle of rotation of the string. By default, text is centre aligned,
tated and horizontal.

When text is output horizontally, ypos specifies a position half-way up a character. When
vertical output has been selected, xpos specifies a position halfway across a character. In le
right justification mode the other co-ordinate specifies an extreme end of the string. Th
rules apply regardless of the angle of rotation.

On exit the current plotting position is updated to a point within the next character cell
the string which has been written. The exact position within the cell will depend on the
orientation selected by WGrTextOrientation . (For the purposes of calculating this
plotting position, the final character cell after the output string is assumed to be a fixed w
cell, regardless of whether fixed or proportional spacing is currently selected.)

If either of xpos or ypos are omitted, the corresponding current plotting position is used. T
allows text to be placed immediately after a previous string when using left alignment.

Text which would extend beyond the limits of the graphics area (as defined by IGrArea) is
clipped at the edge of that area. Text which would be completely outside the graphics a
not printed.

Graphics text is normally transparent, i.e. it does not obliterate any underlying graphic
Specifying FSOpaque in the font style to WGrTextFont will cause graphics text to be
written with an opaque background in the color specified by the last but one call to
IGrColourN .

Normal 'over-write' plot mode is recommended for vector-based software fonts. If text n
to be plotted in exclusive-or mode (to allow it to be 'unplotted' later), use an outline soft
font.

Text written by this routine can contain both 7-bit and 8-bit characters, as defined in the
Latin-1 standard (i.e. character codes in the range 32-126 and 161-255). However, whil
widely supported, Latin-1 8-bit characters are not universally available on all devices o
all fonts. See WGrTextFont .
142 Winteracter Starter Kit

WGrVFont* Subroutines

 be
Example
CALL WGrTextString(100.0,200.0,'This is centred at (100,200)')
CALL WGrTextOrientation(AlignLeft)
CALL WGrTextString(300.0,200.0,'This starts at (300,200)')

WGrVFont* Subroutines

Description
Load vector software font data

Syntax
WGrVFontDuplexRoman(igl)
WGrVFontStandard(igl)
WGrVFontTriplexRoman(igl)

Arguments
INTEGER, OPTIONAL igl = Reserved. Omit in WiSK programs.

Effect
Each of these routines contains all of the font shape data for the corresponding vector
software font. Logically, these are exactly equivalent to the various WGrOFont* routines
except that the associated fonts are line based rather than filled outlines. They should
called in combination with WGrTextFont .

The igl argument is reserved for use with the full version of Winteracter and can be omitted.

Example
CALL WGrVFontStandard()
CALL WGrTextFont(FFSoftware,FSBold)
CALL WGrTextString(0.5,0.5,'Bold Standard vector font')
Winteracter Starter Kit 143

Chapter 12 High Resolution Graphics
144 Winteracter Starter Kit

13 General Functions
ply
ro-

utine

mes

s an
Group IF: Information

To help you find out exactly what facilities are available on the current system or to sim
interrogate the state of Winteracter variables, a number of functions and subroutines are p
vided to return information to the calling program. In all cases one call to an IF group ro
returns one item of information.

The routines in this group fall into two categories:

· INTERACTER compatible Info functions

· Winteracter specific WInfo routines

Logically there is no particular difference between these two sets of routines. Their na
simply differ to reflect the above separation.

In all cases, specifying an invalid information item number to an IF group routine return
undefined result.

InfoError Function

Description

Return error information.

Syntax

INTEGER InfoError(item)
Winteracter Starter Kit 145

Chapter 13 General Functions

 start-
ve

ain of

lable

y this
r).
Arguments
INTEGER item = Number of information item required:

Effect
Returns information about the last error to be detected. If no errors have occurred since
up or since the last call to InfoError , the last error is returned as zero. If several errors ha
occurred since the last call to InfoError , only the most recent error is returned.

A call to InfoError also resets the corresponding error flag (depending on the value of item)
to zero. This feature can be used to clear the error flags, when your program is uncert
what errors may already have occurred.

If a type 1 or type 2 error occurs (error on file/device open, read or write), a call with an item
value of 2 returns the associated Fortran OPEN/READ/WRITE statement IOSTAT value or
system I/O routine error code. This IOSTAT value will still be available if further I/O is per-
formed or other non I/O errors occur. i.e., The error code for an I/O error remains avai
until it is cleared by interrogating InfoError(2) or until another I/O error occurs.

item 3 returns the error code set by internal operating system interface routines. Typicall
value will only be set when item 1 returns a value of 13 (Operating system command erro
This will be an internal operating system error code.As for the IOSTAT value described
above, this return code remains available until it is cleared by interrogating InfoError(3)
or until another o.s. error occurs.

Example
CHARACTER(LEN=6) :: STR
IERROR = InfoError(1) ! clear error flags first
ISTAT = InfoError(2)
CALL IGrCharSet(’badname.chr’) ! obsolete, used for illustration
IERROR = InfoError(1)
IF (IERROR==1.OR.IERROR==2) THEN
 CALL WMessageBox(OKOnly,StopIcon,1,'Error on load', &
 'File Error')
 ISTAT = InfoError(2)
END IF

Table 14: Error Information item s

Name No. Information

LastError 1
Last error set by Winteracter
(0 if no errors since last call to InfoError(1))

IOErrorCode 2
I/O code for last type 1 or 2 error (file open or
read/write error), otherwise undefined

OsErrorCode 3 Operating system error code
146 Winteracter Starter Kit

InfoGraphics Function

 which
InfoGraphics Function

Description
Return real graphics mode information.

Syntax
REAL InfoGraphics(item)

Arguments
INTEGER item = Number of information item required:

Effect
Returns certain REAL graphics mode parameters. These are generally dynamic values
change depending on calls to other graphics routines. See also InfoGrScreen which returns
INTEGER data, mainly describing the capabilities of the current display.

Table 15: Graphics Mode Information item s

Name No. Information

GraphicsX 1
Current X plotting position
(in user units as set in IGrUnits)

GraphicsY 2
Current Y plotting position
(in user units as set in IGrUnits)

GraphicsChWidth 3
Current character width
(in user units as set in IGrUnits)

GraphicsChHeight 4
Current character height
(in user units as set in IGrUnits)

GraphicsAreaMinX 7 Left limit of main graphics area

GraphicsAreaMinY 8 Lower limit of main graphics area

GraphicsAreaMaxX 9 Right limit of main graphics area

GraphicsAreaMaxY 10 Upper limit of main graphics area

GraphicsUnitMinX 11 Lower X co-ordinate limit

GraphicsUnitMinY 12 Lower Y co-ordinate limit

GraphicsUnitMaxX 13 Upper X co-ordinate limit

GraphicsUnitMaxY 14 Upper Y co-ordinate limit
Winteracter Starter Kit 147

Chapter 13 General Functions

ly

d into
The current plotting position, as set by IGrMoveTo and other routines, is accessible using
item values 1 and 2.

The current graphics text character size (item's 3 and 4) is derived from the size set using
WGrTextFont and converted to user plotting units. This can be useful in calculating the
extent of a graphics string to be output by WGrTextString .

item's 7 to 10 return the graphics area dimensions as most recently specified to IGrArea .
Similarly, item's 11 to 14 return the user definable graphics area co-ordinates as most
recently specified to IGrUnits .

Example
! write a blue string on a white background
CALL WGrTextFont(FFCourier)
WIDTH = FLOAT(LEN(STRING))*InfoGraphics(3)
HEIGHT = InfoGraphics(4)
CALL IGrMoveTo(X,Y)
CALL IGrColourN(223)
CALL IGrFillPattern(Solid)
CALL RECTANGLE(WIDTH,HEIGHT)
CALL WGrTextOrientation(AlignLeft)
CALL IGrColourN(159)
CALL WGrTextSTring(X,Y+HEIGHT/2.0,STRING)

InfoGrPalette Function

Description
Return 8-bit color palette information.

Syntax
INTEGER InfoGrPalette(item)

Arguments
INTEGER item = 8-bit color number

Effect
Returns the RGB value associated with color number item in Winteracter's device
independent 8-bit graphics color palette, as used by IGrColourN when the 8-bit color
model is selected. These are the same color values which can be updated by IGrPalette .
This information is available regardless of which color model (8-bit or 24-bit) is current
selected.

The returned RGB value is encoded in the usual 24-bit format, which can be separate
individual color components using WRGBsplit .
148 Winteracter Starter Kit

InfoGrScreen Function

 cur-

 a win-
used
ich

lor
InfoGrScreen Function

Description
Return graphics facilities information (screen).

Syntax
INTEGER InfoGrScreen(item)

Arguments
INTEGER item = Number of information item required:

Effect
Returns information about the graphics facilities available on the current display in the
rent mode. The value returned is an INTEGER.

item number 30 return the number of selectable colors (see IGrColourN for details of how
this is determined).

item 32 returns the aspect ratio of the current drawable as a percentage. For example, in
dow with an aspect ratio of 1.4, a value of 140 would be returned. This aspect ratio is
internally by Winteracter when drawing circles, but can also be useful in applications wh
require a shape to be rotated without distortion.

item's 34 and 35 return the last two color numbers which have been requested. The co
returned by item 34 is only used in mixed-color fills.

Table 16: Graphics Screen Information item s

Name No. Information

ColNumAvailable 30 Number of colors availablee

AspectRatio 32 Aspect ratio as a percentage

PrevColReq 34 Last but one requested graphics color

ColorReq 35 Most recently requested color

LineTypeReq 36 Most recently requested line type

PlotModeReq 37
Most recently requested plot mode
PlotNormal (0) = Normal/overwrite
PlotEor (3) = Exclusive-or

Col24Bits 42 24-bit color specification supported (0=no 1=yes)
Winteracter Starter Kit 149

Chapter 13 General Functions

l is
item’s 36 and 37 returns the last line type and plot mode requested via IGrLineType and
IGrPlotMode .

item 42 reports support for 24-bit color specification. This will report 1 on a display with
more than 256 colors, or 0 otherwise. In the former case, use of the 24-bit color mode
available and recommended (see IGrColourModel). If zero is returned, the 24-bit color
model can still be used, but the 8-bit color palette will be used internally.

WInfoDialog Function

Description
Return dialog information.

Syntax
INTEGER WInfoDialog(item)

Arguments
INTEGER item = Number of information item required.

Table 17: Dialog Information items

Name No. Information

ExitButton 1
Identifier of button used to terminate program-sup-
plied modal dialog

ExitField 2 Current field when modal dialog terminated

CurrentDialog 3 Identifier of current dialog, 0 = none

ExitButtonCommon 4 Button used to terminate common dialog (0-2)

DialogXPos 6 Current dialog X position

DialogYPos 7 Current dialog Y position

DialogWidth 8 Current dialog width

DialogHeight 9 Current dialog height

DialogType 10

Current dialog type
DialogPopup (1) : Popup dialog
DialogChild (2) : Child dialog
DialogCombined (4) : Combined with a window
150 Winteracter Starter Kit

WInfoDialog Function

on
ess

alog.

the

 use-
t

ialog

e
Effect
Returns dialog information. item's 1-4 are available after a modal or common dialog functi
call has terminated. item's 6-9 are available for currently visible modeless or semi-model
dialogs.

item 1 returns the identifier of the push button used to exit a program supplied modal di
If an error occurred in the dialog, -1 is returned. Commonly used identifiers (e.g. IDOK and
IDCANCEL which are typically attached to the OK and Cancel buttons) are defined in
WINTERACTER module. See the PushButton message under WMessage for a list. The
actual button codes will depend on the definition of the particular dialog.

item 2 returns the identifier of the last active field before a dialog terminated. This can be
ful if a Help button is pressed, to provide context sensitive help. This return value is no
available for common dialogs.

item 3 returns the current dialog identifier, as set by WDialogLoad or WDialogSelect .
Note, this is not necessarily the same as the dialog that has the current input focus.

item 4 returns a code which indicates which button was used to terminate a common d
in the CD group:

item's 6 and 7 return the position of the current dialog as selected by WDialogLoad or
WDialogSelect . The returned values are in pixels relative to the top left corner of th
screen for a popup dialog. For a child dialog, the returned values are in Winteracter window
units, relative to the top left corner of the root window.

item's 8 and 9 return the width and height of the current dialog, in the same units as item’s 6
and 7.

Table 18: Common Dialog Termination Codes

Name No. Button

CommonCancel 0 Cancel

CommonIgnore 0 Ignore

CommonOK 1 OK

CommonOpen 1 Open

CommonYes 1 Yes

CommonRetry 1 Retry

CommonAbort 2 Abort

CommonNo 2 No
Winteracter Starter Kit 151

Chapter 13 General Functions

item 10 determines if the current dialog is a popup or child dialog or is combined with a
window.

Example
CALL WDialogLoad(ID_DIALOG1)

CALL WDialogShow(ITYPE=Modal)

IF (WinfoDialog(ExitButton)==IDOK) THEN

 CALL WDialogGetString (IDC_STRING1,CVALUE)

END IF

CALL WDialogUnload()

WInfoDrawable Function

Description
Return drawable information.

Syntax
INTEGER WInfoDrawable(item)

Arguments
INTEGER item = Number of information item required

Effect
Returns information about the current target graphics drawable, as selected by IGrSelect .

item's 1 and 2 return the drawable’s type and handle/identifier as set by IGrSelect .

item's 3 and 4 return the drawable’s pixel dimensions.

Table 19: Drawable Information items

Name No. Information

DrawableType 1 Type (1=window 3=dialog field)

DrawableID 2 Handle/identifier

DrawableWidth 3 Width in pixels

DrawableHeight 4 Height in pixels
152 Winteracter Starter Kit

WInfoScreen Function

 after
mine

ected
sed

when
WInfoScreen Function

Description

Return screen information.

Syntax

INTEGER WInfoScreen(item)

Arguments

INTEGER item = Number of information item required

Effect

Returns information about the current screen. This information is available immediately
WInitialise has been called, allowing the results of this function to be used to deter
the required root window size.

item's 1 and 2 return the screen resolution, in pixels, for the video mode which was sel
when WInitialise was called. If a dynamic video mode changer (e.g. QuickRes) is u
subsequently, the new screen dimensions will not be updated.

item 3 returns the total number of screen colors available in the current screen mode
WInitialise was called. Note this is different to the number of colors used by
Winteracter graphics. See IGrColourN .

Example

CALL WInitialise()

ISCRWID = WInfoScreen(1) ! Get screen width

ISCRHGT = WInfoScreen(2) ! Get screen height

CALL WindowOpen(WIDTH=ISCRWID=2,HEIGHT=ISCRHGT/3) ! Open window

Table 20: Screen Information items

Name No. Information

ScreenWidth 1 Screen Width

ScreenHeight 2 Screen Height

ScreenColours 3 Number of screen colors
Winteracter Starter Kit 153

Chapter 13 General Functions

WInfoWindow Function

Description
Return window information.

Syntax
INTEGER WInfoWindow(item)

Arguments
INTEGER item = Number of information item required.

Effect
Returns window related information.

item's 1 and 2 return the dimensions of the current root or child window as selected by
WindowSelect , WindowOpen or WindowOpenChild . The returned values are in
pixels.

Table 21: Window Information items

Name No. Information

WindowWidth 1 Current window width

WindowHeight 2 Current window height

OpenFlags 3 Window style flags

WindowHandle 4 Current window handle

WindowXPos 5 Current window X position

WindowYPos 6 Current window Y position

ClientXPos 7 Current window client-area X position

ClientYPos 8 Current window client-area y position

WindowState 9

Current window state :
WinMinimised (0) : minimised
WinNormal (1) : normal size
WinMaximised (2) : maximised

WindowType 10
Window type:
WinStandard (0) : standard window
WinDialog (3) : combined window/dialog
154 Winteracter Starter Kit

Group OS: Operating System Interface

t

r an

 win-
ve to

.

om-
table
item 3 returns the flags value specified in the original WindowOpen or
WindowOpenChild call.

item 4 returns the Winteracter handle of the current window. This will be zero for the roo
window or 1-20 for a child window.

item's 5 and 6 return the position of the current root or child window as selected by
WindowSelect , WindowOpen or WindowOpenChild . The returned values are in
pixels relative to the top left corner of the screen for a root or floating child window. Fo
’inside parent’ child window, the returned values are in Winteracter window units, relative
to the top left corner of the parent window.

item's 7 and 8 return the position of the top left corner of the 'client' area of the current
dow (i.e. the drawable area within the frame). This is always expressed in pixels relati
the corner of the screen.

item 9 returns the minimised/normal/maximised state of the currently selected window

item 10 identifies the type of the current window. A basic window which has not been c
bined with a dialog is reported as a 'standard' window (0). Such a window will be selec
as a target graphics drawable.

Portability notes
X Windows: Item 9 is not implemented, since this information is not available.

Example
IWINWID = WInfoWindow(1) ! Get parent window width
IWINHGT = WInfoWindow(2) ! Get parent window height
! Set child to half width/height of parent
CALL WindowOpenChild(IHANDLE,WIDTH=IWINWID/2,HEIGHT=IWINHGT/2)

Group OS: Operating System Interface
The routines in this group provide access to environment variables (IOsVariable) and
allow controlled program termination with a message (IOsExitProgram).

IOsExitProgram Subroutine

Description
Abort program with an error message and error code.

Syntax
IOsExitProgram(errmes,iexcod)
Winteracter Starter Kit 155

Chapter 13 General Functions

d by
 fatal

 20 are

 non-

de is
rne
Arguments
CHARACTER errmes = Error message to display to the user.

 (if blank, error message display is suppressed)

INTEGER iexcod = Exit code to return to operating system

Effect
Aborts the current program, with the message string 'Abnormal exit (code nn)' followe
the supplied error message. This routine is designed to be used when an unexpected
error is encountered. If errmes is blank, the program terminates without a message.

In general it is recommended that exit codes greater than 20 are used. Codes from 1 to
reserved for use by Winteracter.

If you wish to leave a program immediately without issuing either an error message or a
zero exit code, simply supply a blank error message and an iexcod value of zero.

Portability notes
Windows: The 'Abnormal exit' message is displayed in a standard message box. The
supplied exit code is then returned to Windows via the API ExitProcess function.

Linux: The 'Abnormal exit' message is written to standard output. The supplied exit co
returned to the shell via the C library exit function. The special shell variables $? (Bou
shell) or $status (C shell) will contain the program exit code.

Example
LOGICAL :: EXISTS

INQUIRE(FILE=’mydata.dat’,EXIST=EXISTS)

IF (.NOT.EXISTS) CALL IOsExitProgram('Data file not found’,21)

IOsVariable Subroutine

Description
Return the value of an operating system environment variable.

Syntax
IOsVariable(vname,value)

Arguments
CHARACTER vname = Name of variable to interrogate

CHARACTER value = Returned value (blank if not found)
156 Winteracter Starter Kit

Group MI: Miscellaneous

 has

iable
n
name

bled.

es or
Effect
Returns the value of the specified environment variable. If the specified variable name
not been initialized or has no value, value will be returned blank.

Portability notes
Windows: IOsVariable returns environment variables as assigned using the SET
command (or Control Panel, under Windows NT). The operating system converts all var
names to upper case, so the supplied variable name vname must also be in upper case. Whe
defining environment variables using SET, avoid trailing spaces between the variable
and the '=' since these will be treated as part of the variable name. IOsVariable strips
trailing blanks from the supplied variable name.

An error code will be set if the return buffer value is too small. value is returned blank in this
case.

Linux: If the C shell (csh) is in use it is important to distinguish between environment
variables and operating system variables. IOsVariable returns environment variables,
which are assigned in the C shell using the setenv command. If the ’bash’ shell is used,
environment variables can be assigned using commands of the form :

 export VARNAME=string

Errors
ErrBufferSize (1023) value is too small

Example
CHARACTER (LEN=80) :: FILNAM
CALL IOsVariable('DEFDATA',FILNAM)
IF (IActualLength(FILNAM)>0) THEN
 OPEN(20,FILE=FILNAM,STATUS='OLD')
ELSE
 OPEN(20,FILE='default.dat',STATUS='OLD')
END IF

Group MI: Miscellaneous
This group is for routines which have no obvious home elsewhere.

The most important routine in this group is WInitialise . It must be called in every
Winteracter program before opening a window.

OpenGL graphics can be enabled via WglSelect . The associated WglSwapBuffers
routine exchanges the front/back buffers when double buffered OpenGL output is ena

WCursorShape allows the mouse cursor to be selected from various pre-defined shap
a user defined cursor can be specified.
Winteracter Starter Kit 157

Chapter 13 General Functions

ell.
Color values can be converted to/from 24-bit RGB integer color values using WRGB and
WRGBsplit .

WindowBell is provided to ring the bell and to control whether other routines ring the b

WCursorShape Subroutine

Description

Select shape of mouse cursor

Syntax

WCursorShape(ishape)

Arguments

INTEGER ishape = Mouse cursor shape

Table 22:

Name no. Cursor Type

CurArrow 0 Standard arrow

CurHourGlass 1 Hourglass

CurSmallHour 2 Standard arrow/small hourglass

CurCrossHair 3 Crosshair

CurIBeam 4 Text I-beam

CurCircle 5 Slashed circle

CurFourPoint 6 Four pointed arrow (N/S/E/W)

CurDoubleNS 7 Double pointer (N to S)

CurDoubleEW 8 Double pointer (E to W)

CurDoubleNESW 9 Double pointer (NE to SW)

CurDoubleNWSE 10 Double pointer (NW to SE)

CurVertical 11 Vertical arrow

101+ User defined cursor
158 Winteracter Starter Kit

WFlushBuffer Subroutine

it is
e. a

 The
reated

eater

 X
, but
Effect

Selects the mouse cursor shape. The mouse cursor is updated immediately provided
within one of the application’s windows or in a user-drawn picture/frame dialog field (i.
field which has been selected for graphics output via IGrSelect).

ishape can either specify a pre-defined cursor or the identifier of a user defined cursor.
latter should be defined in the program's resource script. User-defined cursors can be c
using the resource editor.

Identifiers of user defined cursors must be greater than 11. We recommend values gr
than 100, to allow for the possible introduction of additional pre-defined cursor types in
future.

If a specified user defined cursor does not exist, the standard arrow cursor

Portability notes

X Windows: User defined cursor (101+) are not currently supported under X.

Example

CALL WCursorShape(CurHourGlass)

! . . . Do some data processing

CALL WCursorShape(CurArrow) ! Restore cursor shape

WFlushBuffer Subroutine

Description

Flush X Windows screen output buffer.

Syntax

WFlushBuffer()

Effect

Flushes the screen output buffer to synchronise the application and the display under
Windows. It has no effect under Windows. It will rarely be necessary to call this routine
it may be required before performing a time consuming operation.
Winteracter Starter Kit 159

Chapter 13 General Functions

able
phics

GL

en-
r

It
 pro-
ility
Example
CALL WGrTextString(.5,.5,'Hang on while I crunch some numbers!')
CALL WFlushBuffer()
CALL CRUNCH()

WglSelect Subroutine

Description
Enable/disable OpenGL graphics

Syntax
WglSelect(itarget,ident,iflags)

Arguments
INTEGER itarget = Target drawing surface for OpenGL graphics

Disabled (0) : None
DrawWin (1) : Window
DrawField (3) : Dialog field

INTEGER, OPTIONAL ident = Window handle or field identifier

INTEGER, OPTIONAL iflags = Flags controlling type of OpenGL support. Sum of:
wglColourIndex (1) : Colour index model (default=RGBA)
wglDoubleBuffer (2) : Double buffering (default=single buffering)

Effect
Selects the target drawing surface for OpenGL graphics. Specifying a zero target draw
disables OpenGL graphics. Only one target drawable may be selected for OpenGL gra
output at any one time. If OpenGL graphics are already enabled on another drawable,
OpenGL output to that drawable is automatically disabled.

WglSelect is logically similar to IGrSelect . It allows OpenGL output to be routed to
the following types of target drawable:

itarget = 1 : Enables OpenGL graphics output to the specified window. ident must specify a
valid window handle, as returned by WindowOpenChild , or zero for the root window. If
the window handle is omitted, the currently selected window becomes the target Open
drawable.

itarget = 3 : To draw OpenGL graphics into a dialog field, of any type, specify the field id
tifier in ident. This must identify a field in the current dialog. If no identifier is specified o
ident is zero, the whole of the current dialog becomes available for OpenGL graphics.
should be noted that dialog fields drawn in this way must be maintained by the calling
gram. Normal dialog fields will be repainted automatically, but it is the callers responsib
160 Winteracter Starter Kit

WglSelect Subroutine

 out-

r
log

ource
' of
s
refore
gs
 'Clip

n this

s

or
le

 the
to repaint 'user drawn' fields. The Expose message reported by WMessage allows for this
possibility. Dialog fields selected for OpenGL output need to be visible at the point when
put occurs.

Drawing to the whole dialog (i.e. ident omitted or zero) introduces one complication unde
Windows. By default this will cause OpenGL graphics to overwrite any fields in the dia
window. If the 'Clip Fields' option is selected (see the Dialog Properties dialog in the res
editor), graphics will not overwite field contents, effectively drawing to the 'background
the dialog. However, when 'Clip Fields' is enabled, the background of any group boxe
become transparent causing rear windows to become visible through the dialog. We the
do not recommend whole-dialog drawing (and hence the use of Clip Fields) with dialo
which contain group boxes. Under X Windows programs always behave as though the
Fields' option were enabled.

itarget = 0 : This option disables OpenGL output. The other arguments can be omitted i
case. Be sure to call this option when OpenGL output is complete.

Specifying an invalid identifier/handle in ident, when itarget=1 or 3, will cause error code
1019 to be set and OpenGL graphics will be disabled.

If the initialisation of OpenGL graphics fails for some reason other than a bad ident value,
error code 1035 is set and a platform-specific error code will be available via
InfoError(3) .

The initialisation of OpenGL graphics can be modified via the iflags argument. This is the
sum of the following settings:

wglColourIndex : By default the RGBA color model is used. Setting this flag enable
the alternative Color Index model.

WglDoubleBuffer : By default single buffered output is used, which is appropriate f
static graphics displays. If animation is required, selecting this option will enable doub
buffering.

A selection of OpenGL demos are provided in WiSK’s OpenGL directory. For more
information about OpenGL graphics refer to "Graphics Interfaces : OpenGL" section in
WiSK on-line help file.

Example
USE WINTERACTER
USE OPENGL
 !
CALL WglSelect(DrawWindow) ! Select current window for OpenGL
CALL draw_my_OpenGL_image() ! Draw OpenGL image
CALL WglSelect(Disabled) ! End OpenGL output

Errors
ErrBadTarget (1019) Unknown target window handle
Winteracter Starter Kit 161

Chapter 13 General Functions

 will
ErrOpenGLInit (1035) OpenGL initialization failed

WglSwapBuffers Subroutine

Description
Swap front/back OpenGL buffers

Syntax
WglSwapBuffers()

Effect
Swaps the front/back buffers in double buffered OpenGL graphics output. This routine
normally only be used in animated OpenGL graphics to update the next frame of the
animation.

Example
USE WINTERACTER
USE OPENGL
 !
CALL WglSelect(DrawWindow,0,wglDoubleBuffer)
 !
CALL glPopMatrix()
IF (doubleBuffer) THEN
 CALL WglSwapBuffers()
ELSE
 CALL glFlush()
END IF

WindowBell Subroutine

Description
Ring/enable/disable the bell.

Syntax
WindowBell(onoff)

Arguments
CHARACTER onoff = 'ON'or ’OFF’ to enable/disable the bell

 Any other value to ring bell if currently enabled
162 Winteracter Starter Kit

WInitialise Subroutine

y. To
ols
.

n

t
Effect
By default the bell is enabled so a call to WindowBell with a blank argument would ring
the bell. However, in some environments the bell can become irritating if used frequentl
stop WindowBell producing any sound, the on/off option is provided. This simply contr
the action taken by WindowBell when an argument other than 'ON' or 'OFF' is supplied

Example
LOGICAL :: ENABLE_BELL

IF (ENABLE_BELL) THEN

 CALL WindowBell('ON')

ELSE

 CALL WindowBell('OFF')

END IF

! now check state of bell

CALL WindowBell(' ')

WInitialise Subroutine

Description
Initialize Winteracter.

Syntax
WInitialise(initfile)

Arguments
CHARACTER, OPTIONAL initfile = Initialization file name (not used in Starter Kit)

Effect
WInitialise must be called to initialize the library before calling any other Winteracter
screen i/o routines.

initfile can be omitted when linking with the Starter Kit version of Winteracter.

WInitialise identifies the current screen dimensions and number of available scree
colors. This information then becomes available via WInfoScreen . This information may
prove useful when selecting the initial window size/position in the subsequent call to
WindowOpen. Bear in mind that WInitialise performs no screen output and does no
open a window. That is the task of WindowOpen and the other Winteracter routines.

This routine should only called once per program run. Subsequent calls to WInitialise
will therefore be ignored and no values will be altered.
Winteracter Starter Kit 163

Chapter 13 General Functions

y most

 be
Example
PROGRAM

! Variables, modules, etc. here

CALL WInitialise() ! Initialize

 :

! Winteracter program code

 :

STOP

END PROGRAM

WRGB Function

Description
Convert (r,g,b) triplet into a 24-bit integer color value.

Syntax
INTEGER WRGB(ir,ig,ib)

Arguments
INTEGER ir = Red component (0-255)

INTEGER ig = Green component (0-255)

INTEGER ib = Blue component (0-255)

Effect
Packs the supplied red, green and blue values into a 24-bit RGB color value, as used b
Winteracter color handling routines.

The WINTERACTER module pre-defines names for eight primary color values which can
used in place of WRGB, namely RGB_BLACK, RGB_RED, RGB_GREEN, RGB_YELLOW,
RGB_BLUE, RGB_MAGENTA, RGB_CYAN and RGB_WHITE.

Example
IRGB = WRGB(200,255,200) ! pale green

CALL IGrColourModel(24)

CALL IGrColourN(IRGB)

!

IRGB = WRGB(255,0,0) ! these statements have

IRGB = RGB_RED ! an identical effect
164 Winteracter Starter Kit

WRGBsplit Subroutine

es.
o

 UI
sic
 so on.
WRGBsplit Subroutine

Description
Split a 24-bit integer color value into an (r,g,b) triplet

Syntax
WRGBsplit(rgb,ir,ig,ib)

Arguments
INTEGER rgb = 24-bit color value

INTEGER, OPTIONAL ir = Returned red component (0-255)

INTEGER, OPTIONAL ig = Returned green component (0-255)

INTEGER, OPTIONAL ib = Returned blue component (0-255)

Effect
Splits the supplied 24-bit RGB color value into its component red, green and blue valu
Each of the individual color component arguments is optional, so it is only necessary t
retrieve those which are required.

Example
! get green component from a screen pixel
IRGB = IGrGetPixel(X,Y)
IF (IRGB /= -1) CALL WRGBsplit(IRGB,IG=IGREEN)

Group CH: Character Manipulation
The routines in this group are not strictly user interface functions. However, since any
code involves considerable manipulation of textual information, they provide useful ba
facilities such as string to numeric conversion, sub-string location, case conversion and

IFillString Subroutine

Description
Fill a character string with a given character.

Syntax
IFillString(string,chr)
Winteracter Starter Kit 165

Chapter 13 General Functions

)

-blank
Arguments

CHARACTER string = String to be filled

CHARACTER chr = Character to fill string with (note: only first character of chr is used)

Effect

Fills the whole of string with the first character of chr.

Example
CHARACTER (LEN=80) :: STARS

CALL IFillString(STARS,'*')

IJustifyString Subroutine

Description

Justify a string within a character variable.

Syntax

IJustifyString(string,lcr)

Arguments

CHARACTER string = Variable containing string to justify (also receives returned string

CHARACTER lcr = Justification required:

= 'L' : Left justify (upper or lower case)

= 'C' : center justify (default)) (upper or lower case)

= 'R' : Right justify (upper or lower case)

Effect

Justifies a string within the character variable which holds it.

Note that in the sense used here, a "string" is defined as all characters from the first non
character to the last non-blank character within the character variable string. Since
IJustifyString justifies the string within the supplied variable itself, string must be
passed as a variable rather than as a literal string. If string is blank, IJustifyString takes
no action.
166 Winteracter Starter Kit

ILocateChar Function

er
Example
CHARACTER (LEN=14) :: TITLE
TITLE = ' Test Results '
CALL IJustifyString(TITLE,'L')
! variable TITLE will now contain: 'Test Results '
CALL IJustifyString(TITLE,'C')
! variable TITLE will now contain: ' Test Results '
CALL IJustifyString(TITLE,'R')
! variable TITLE will now contain: ' Test Results'

ILocateChar Function

Description
Locate position of first non blank character.

Syntax
INTEGER ILocateChar(string)

Arguments
CHARACTER string = String to search

Effect
Locates and returns the position (an INTEGER) of the first non-blank/non-null charact
within string. If the string contains only blanks and nulls, zero is returned.

Example
CHARACTER (LEN=20) :: FILNAM
CALL WDialogGetString(ID_FILE,FILNAM)
IPOS1 = ILocateChar(FILNAM)

ILocateString Subroutine

Description
Locate position of first non blank sub-string.

Syntax
ILocateString(string,istart,iend)

Arguments
CHARACTER string = String to search
Winteracter Starter Kit 167

Chapter 13 General Functions

 just
INTEGER istart = Start position of first non-blank string

INTEGER iend = End position of first non-blank string

Locates the first sub-string within string, returning the start and end positions in istart and
iend. If string is blank istart and iend are returned as zero. This routine is similar to the
function ILocateChar except here the start and end positions are returned, rather than
the start position.

Example
CHARACTER (LEN=80) :: STRING
READ(LFN,'(A80)') STRING
CALL ILocateString(STRING,ISTART,IEND)
IF (ISTART>0) &
 CALL WindowOutString(100,300, &
 'First substring is '//STRING(ISTART:IEND))

ILowerCase Subroutine

Description
Convert a string to lower case.

Syntax
ILowerCase(string)

Arguments
CHARACTER string = String to be converted to lower case

Effect
Converts any upper case characters in string to lower case.

Example
CHARACTER (LEN=10) :: STRING
STRING = 'ABCDE12345'
CALL ILowerCase(STRING)
! string should now be abcde12345

IntegerToString Subroutine

Description
Convert an integer value to a string.
168 Winteracter Starter Kit

IStringToInteger Subroutine

r
Syntax
IntegerToString(ivalue,string,frmat)

Arguments
INTEGER ivalue = Value to convert to a string

CHARACTER string = Character variable to receive numeric

CHARACTER frmat = Character string defining format to use
(a bracketed expression as in a Fortran FORMAT)

Effect
Converts an INTEGER value into a string using the specified Fortran format. If an erro
occurs, (e.g., ivalue is too large) string is filled with asterisks. IntegerToString is the
reverse of IStringToInteger .

Example
CHARACTER (LEN=5) :: CHR
I = 100
CALL IntegerToString(I,CHR,'(I5)')
CALL WindowOutString(IX,IY,CHR)

Errors
ErrNumToStr (18) Numeric-to-string conversion error.

IStringToInteger Subroutine

Description
Convert a string to an integer value.

Syntax
IStringToInteger(string,ivalue)

Arguments
CHARACTER string = String containing number to be converted.

INTEGER ivalue = Value to be returned

Effect
Converts the first substring of string into an integer value. The numeric in string must be a
valid INTEGER, optionally including a leading +/- sign. If an error occurs during conver-
sion ivalue is returned as zero and the error flag is set. IStringToInteger is the reverse of
IntegerToString .
Winteracter Starter Kit 169

Chapter 13 General Functions
Example
CHARACTER (LEN=80) :: LINE

CHARACTER (LEN=10) :: VALSTR

CALL WDialogGetString(IFIELD,LINE)

CALL IStringToInteger(LINE,IVALUE)

IF (InfoError(1)>0) THEN

 CALL WindowOutString(IX,IY,'Wrong !!')

ELSE

 CALL IntegerToString(IVALUE,VALSTR,'(I10)')

 CALL WindowOutString(IX,IY,'Value = '//VALSTR)

END IF

Errors
ErrLargeNum (4) Number too large (exceeds 4-byte INTEGER limits)

ErrNoSubstring (10) No substring found (string is blank)

ErrBadChar (12) Invalid character detected (i.e. not 0123456789 or
leading +/-)

IUpperCase Subroutine

Description
Convert a string to upper case.

Syntax
IUpperCase(string)

Arguments
CHARACTER string = String to be converted to upper case

Effect
Converts any lower case characters in string to upper case.

Example
CHARACTER (LEN=10) :: STRING

STRING = 'abcde12345'

CALL IUpperCase(STRING)

! string should now be ABCDE12345
170 Winteracter Starter Kit

Group OB: Obsolete Routines

d for

e
e be

s
Group OB: Obsolete Routines
This group collects together a handful of routines which are now obsolete, but retaine
backwards compatibility. In the main these are routines which were provided for
INTERACTER compatibility or routines for which a better calling interface now exists. W
recommend that these routines should not be used in new code and that existing usag
eliminated when convenient.

IActualLength Function

Description
Return actual length of string excluding trailing blanks or nulls.

Syntax
INTEGER IActualLength(string)

Arguments
CHARACTER string = String to search

Effect
Returns the actual length of the character string held in string, excluding any trailing spaces
or nulls. If the string is completely blank, (i.e. only contains spaces and/or nulls) zero i
returned. IActualLength offers an alternative to the Fortran 90 LEN_TRIM intrinsic
which treats nulls as significant characters. It is mainly included for the sake of
INTERACTER compatibility. Use of LEN_TRIM is normally recommended.

IGrCharJustify Subroutine

Description
Select graphics text justification.

Syntax
IGrCharJustify(justif)

Arguments
CHARACTER justif = Justification mode for graphics text output:

= C: centered (default)
= L: Left justified
= R: Right justified
Winteracter Starter Kit 171

Chapter 13 General Functions

y
Effect
Sets the justification to be used when outputting graphics text via IGrCharOut . This routine
has been superseded by WGrTextOrientation .

IGrCharLength Function

Description
Measure the length of a graphics text string.

Syntax
REAL IGrCharLength(string)

Arguments
CHARACTER string = String or character to measure

Effect
When proportional spacing is enabled, this function returns the relative length of the
specified string. This routine has been superseded by WGrTextLength .

IGrCharOut Subroutine

Description
Output character string at an absolute (x,y) position.

Syntax
IGrCharOut(xpos,ypos,string)

Arguments
REAL xpos = X co-ordinate

REAL ypos = Y co-ordinate

CHARACTER string = String to write

Effect
Outputs string at the graphics co-ordinate (xpos, ypos) . This routine has been superseded b
WGrTextString .
172 Winteracter Starter Kit

IGrCharSet Subroutine

n)

 of
isplay.
IGrCharSet Subroutine

Description
Select graphics character set to use for text output.

Syntax
IGrCharSet(filnam)

Arguments
CHARACTER filnam = Filename or string describing character set to use

= 'H' or 'h': select hardware-dependent text (TrueType fonts)

= ' ' : load/select default software character set

= ' filename' : load software character set from 'filename'

Effect
Selects the character set to be used by future calls to IGrCharOut to output graphics text.
This routine has been superseded by WGrTextFont and the various WGrOFont/
WGrVFont routines.

IGrCharSize Subroutine

Description
Select graphics text size.

Syntax
IGrCharSize(xsize,ysize)

Arguments
REAL xsize = Character width (1.0 = base character width, equivalent to 75 per line)

REAL ysize = Character height (1.0 = base character height, equivalent to 25 per colum

Effect
Sets the size of characters printed by IGrCharOut . Width/height values of 1.0 give standard
size text, corresponding to 75 columns by 25 rows. This character size is independent
window size, ensuring a consistent character size, regardless of the resolution of the d
This routine has been superseded by the width and height arguments to WGrTextFont .
Winteracter Starter Kit 173

Chapter 13 General Functions

,-1).
IGrCharSpacing Subroutine

Description
Select fixed or proportional spacing for graphics text.

Syntax
IGrCharSpacing(fixprop)

Arguments
CHARACTER fixprop = Required character spacing:

= F: Fixed (default) (can be upper or lower case)

= P: Proportional (can be upper or lower case)

Effect
Selects fixed or proportional character spacing. This routine has been superseded by
WGrTextFont .

IGrGetPixelRGB Subroutine

Description
Read a screen pixel color value as an (r,g,b) triplet

Syntax
IGrGetPixelRGB(xpos,ypos,ired,igreen,iblue)

Arguments
REAL xpos = X co-ordinate

REAL ypos = Y co-ordinate

INTEGER ired = Red component of specified point (0-255)

INTEGER igreen= Green component of specified point (0-255)

INTEGER iblue = Blue component of specified point (0-255)

Effect
Returns the color of the specified co-ordinate in the current drawable, as an (r,g,b) triplet. The
(x,y) co-ordinate should be expressed in the normal user units as set via IGrUnits .If the
specified co-ordinate lies outside the graphics area the RGB value is returned as (-1,-1

This routine has been superseded by the IGrGetPixel function.
174 Winteracter Starter Kit

IGrPaletteRGB Subroutine

me

 has

IGrPaletteRGB Subroutine

Description
Redefine 8-bit color palette using an (r,g,b) triplet

Syntax
IGrPaletteRGB(ncolor,ired,igreen,iblue,ipost)

Arguments
INTEGER ncolor = Logical color number to which an actual color is to be assigned (sa
numbering scheme as IGrColourN)

INTEGER ired = Amount of red to assign to displayed color (0-255)

INTEGER igreen= Amount of green to assign to displayed color (0-255)

INTEGER iblue = Amount of blue to assign to displayed color (0-255)

INTEGER ipost = Postpone palette realisation on 256 color screen (0=no 1=yes)

Effect
Controls the 8-bit graphics color palette, using an (r,g,b) color triplet value. This routine
been superseded by IGrPalette which uses a 24-bit color value instead.

IGrPause Subroutine

Description
End of picture.

Syntax
IGrPause(action)

Arguments
CHARACTER action = String describing required action (default is clear window)

 = 'P': Preserve contents of graphics window

Effect
Sounds the bell and optionally clears the graphics window. This routine is included for
INTERACTER-compatibility. There is little benefit in using it in Winteracter applications.
Winteracter Starter Kit 175

Chapter 13 General Functions

olor.

ate,
in-
WindowClearArea Subroutine

Description
Clear part of a window

Syntax
WindowClearArea(ixtopl,iytopl,ixbotr,iybotr)

Arguments
INTEGER ixtopl = Top left corner x co-ordinate

INTEGER iytopl = Top left corner y co-ordinate

INTEGER ixbotr = Bottom right corner x co-ordinate

INTEGER iybotr = Bottom right corner y co-ordinate

Effect
Clears the specified area of the current window to the currently selected background c
WindowClear now incorporates the functionality of this routine.

WindowOutString Subroutine

Description
Write text to a window

Syntax
WindowOutString(ix,iy,string)

Arguments
INTEGER ix = Horizontal start position (0-9999)

INTEGER iy = Vertical start position (0-9999)

CHARACTER string = String to write

Effect
Outputs string to the currently selected window, starting at the specified window co-ordin
in the font selected by WindowFont . Text which extends beyond the right edge of the w
dow will be truncated.
176 Winteracter Starter Kit

WindowStringLength Function

 by
WindowStringLength Function

Description
Measure a string in window units

Syntax
INTEGER WindowStringLength(string)

Arguments
CHARACTER string = String to measure

Effect
Returns the length of the supplied string using the current font characteristics selected
WindowFont , in terms of Winteracter units for the current window.

WindowFont Subroutine

Description
Select font and font attributes

Syntax
WindowFont(font)

Arguments
WIN_FONT font = Structure describing font characteristics
Winteracter Starter Kit 177

Chapter 13 General Functions
TYPE WIN_FONT
INTEGER ifontnum = Font number (0-6)

 INTEGER iwidth = Average font width
 INTEGER iheight = Font height
 INTEGER ibold = Bold (0=no 1=yes)
 INTEGER italic = Italics (0=no 1=yes)
 INTEGER iunder = Underlined (0=no 1=yes)
 INTEGER ifcol = Foregound color (-1 or 0-16)
 INTEGER ibcol = Background color (-1 or 0-16)
 END TYPE WIN_FONT

Effect
Sets the characteristics of the font to be used in future calls to WindowOutString .

This routine has been superseded by WGrTextFont .

WInfoFont Function

Description
Return font information.

Syntax
INTEGER WInfoFont(item)

Table 23: Font Numbers

Symbolic Name Number Windows Font X Windows Font

SystemProp 0 System Proportional Lucida *

SystemFixed 1 System Fixed 6x13

TimesNewRoman 2 Times New Roman Times Roman
178 Winteracter Starter Kit

WMenuRoot Subroutine

t win-
Arguments
INTEGER item = Number of information item required.

Effect
Returns information about the obsolete WindowFont and WindowOutString routines.

WMenuRoot Subroutine

Description
Activate or remove a root menu structure.

Syntax
WMenuRoot(menuid)

Arguments
INTEGER menuid = Identifier of root menu to activate (0 to remove current root menu)

Effect
Activates the specified root menu structure, which will be attached to the top of the roo
dow. The functionality of this routine has been supseded by the more general WMenu.

Table 24: Font Information items

Name No. Information

FontXPos 1 Output cursor X position

FontYPos 2 Output cursor Y position

FontBold 3 Bold (0=off 1=on)

FontItalic 4 Italic (0=off 1=on)

FontUnderline 5 Underline (0=off 1=on)

FontForeCol 6 Foreground color index

FontBackCol 7 Background color index

FontStyleNum 8 Currently selected font number

FontWidth 9 Current font width

FontHeight 10 Current font height
Winteracter Starter Kit 179

Chapter 13 General Functions
180 Winteracter Starter Kit

Index
A
Assign/Retrieve Field Contents 96

C
Character Manipulation 165, 171
Common Dialogs 106

D
Dialog Manager 87
DialogEd 10, 25
dialogs 13

E
ED for Windows 5
error reporting 9
events 11
example program 4
example.dat 17

G
General Dialog Management 87
General Functions 145
General Graphics 114
Graphics Character Output 135
Graphics Drawing/Movement 131
Graphics Style Selection 119

H
High Resolution Graphics 113

I
IActualLength Function 171
identifiers 10
IFillString Subroutine 165
IGrArea Subroutine 114
IGrAreaClear Subroutine 115
IGrCharJustify Subroutine 136,

143, 171
IGrCharLength Function 136, 139,

140, 172
IGrCharOut Subroutine 141, 172
IGrCharSet Subroutine 173
IGrCharSize Subroutine 173
IGrCharSpacing Subroutine 174
IGrCircle Subroutine 132
IGrColorN Subroutine 120
IGrColourN Subroutine 121
IGrFillPattern Subroutine 126
IGrGetPixel 116
IGrGetPixelRGB 174
IGrGetPixelRGB Subroutine 116, 174
IGrInit Subroutine 116, 117
IGrLineTo Subroutine 19, 132
IGrLineType Subroutine 128
IGrMoveTo Subroutine 133
IGrPaletteInit Subroutine 129
IGrPaletteRGB Subroutine 120, 129,

131, 175
IGrPause Subroutine 175
IGrPoint Subroutine 134
IGrPolygonComplex Subroutine 134
IGrUnits Subroutine 14, 119
IJustifyString Subroutine 166
ILocateChar Function 167
ILocateString Subroutine 167
ILowerCase Subroutine 168
INCLUDE environment variable 4
InfoError Function 9, 145, 148
InfoGraphics Function 147
InfoGrScreen Function 149
Information 145
Input Handling 71
IntegerToString Subroutine 168
IOsExitProgram Subroutine 155
IOsVariable Subroutine 156
IStringToInteger Subroutine 169
IUpperCase Subroutine 170

M
menu handling 80
MenuEd 10, 12, 23
menus 12
message handling 71
message queue 11
messages 11

N
names 9
O
OpenGL demo programs 1
Operating System Interface 155

R
RC resource compiler 4
resource files 10
resource scripts 10
resource.rc 1, 4

S
screen I/O 7
Subroutine 160
subroutine arguments 9
Symbol Header file 11

W
WDialogGetCheckBox

Subroutine 96
WDialogGetMenu Subroutine 97
WDialogGetString Subroutine 98, 99
WDialogHide Subroutine 87
WDialogLoad Subroutine 13, 87, 89
WDialogPutCheckBox

Subroutine 100
WDialogPutMenu Subroutine 101
WDialogPutOption Subroutine 103,

104
WDialogPutString Subroutine 105
WDialogSelect Subroutine 90, 91, 92
WDialogShow Subroutine 13, 93
WDialogUnload Subroutine 95
WglSelect Subroutine 160
WglSwapBuffers Subroutine 159,

162
WIN_STYLE data type 15
WIN_STYLE structure 8
window management 55
WindowBell Subroutine 158, 162,

164, 165
WindowClear Subroutine 56
WindowClearArea Subroutine 174
WindowClose Subroutine 15, 56
WindowCloseChild Subroutine 57
Winteracter Starter Kit 181

Index
WindowFont Subroutine 177

WindowOpen Subroutine 12, 14,
15, 58

WindowOpenChild
Subroutine 12, 14, 61

WindowOutString Subroutine 64,
65, 67, 176

windows 12

WindowSelect Subroutine 12, 64,
69

WindowStatusBarParts
Subroutine 65, 67

WindowStringLength
Function 177

WindowUnitsFromPixels
Subroutine 68

WInfoDialog Function 150

WInfoFont Function 178

WInfoScreen Function 152, 153

WInfoWindow Function 154

WInitialise Subroutine 15, 163

winparam.h 1, 4

winter.ico 1

winter.lib 4

wintera0.mod 1

WINTERACTER module 4, 8

Wisk demo programs 1

WMenuGetState Function 82

WMenuRoot Subroutine 12, 80,
81, 179

WMenuSetState Subroutine 13,
83

WMenuSetString Subroutine 84

WMessage Subroutine 11, 12, 71

WMessageBox Subroutine 106

WMessageEnable Subroutine 78

WMessagePeek Subroutine 79

WSelectFile Subroutine 109
182 Winteracter Starter Kit

	Introduction
	Window Handling
	WM: Window Management

	Input Handling
	MH : Message Handling
	MN : Menu Handling

	Dialog Management
	DM(1): General Form Creation & Editing
	DM(2): Assign/Retrieve Field Contents
	CD : Common Dialogs

	High Resolution Graphics
	GG: General Graphics
	GS: Graphics Style Selection
	GD: Graphics Drawing/Movement
	GT: Graphics Text

	General Functions
	IF: Information
	OS: Operating System
	MI: Miscellaneous
	CH: Character Manipulation
	OB: Obsolete Routines

	Supplied Files
	Building a WiSK Program
	Command Line
	ED for Windows

	Writing Winteracter Programs
	Basics
	Initialization
	Fortran I/O
	The WINTERACTER Module
	Type Definitions
	Interface Definitions
	Symbolic Names

	Subroutine Arguments
	Subroutine and Common Block Names
	Error Reporting
	On-line Help

	Elements of a Winteracter Program
	Resource Files
	Identifiers
	Message Loop
	Windows
	Menus
	Dialogs
	Graphics
	Color

	A Worked Example
	Application Wizard

	Resource Editor
	File Menu
	Edit Menu
	Resource Menu
	Settings Menu
	View Menu

	Menus
	Overview
	Menu Types
	Main Menus
	Floating Menus

	Menu Item Types
	Selectable Options
	Popup Options
	Separators

	Menu Item States
	Menu Help
	Keyboard Access to Menus

	Creating and Modifying Menus
	Adding and Modifying Menu Items
	Tutorial - Creating a Menu

	Dialogs
	Overview
	Dialog Types
	Modal
	Modeless
	Semi-Modeless

	Field Types
	Strings
	Menus
	Check Boxes
	Radio Buttons
	Push Buttons
	Progress Bars
	Labels
	Group Boxes
	Pictures / Frames

	Keyboard Processing in Dialogs
	Table 1: Dialog Keystrokes

	Dialog Validation and FieldChanged Messages
	Cut and Paste in Dialogs

	Creating and Modifying Dialogs
	Creating and Modifying Fields
	General
	Style
	Border
	Colour

	Radio Buttons and Field Grouping
	Tutorial - Creating a Dialog

	Icons, Bitmaps and Cursors
	Icons
	Bitmaps
	Cursors
	Image Editor
	Supported Formats
	Drawing Tools
	Color Selection
	Cut and Paste
	Cursor Hotspot

	Adding Images to Your Resource
	Using Bitmaps and Icons in Dialogs
	Using Cursors

	Subroutine Summary
	Group WM: Window Management
	Group MH: Message Handling
	Group MN: Menu Handling
	Group DM(1): General Dialog Management
	Group DM(2): Dialog Field Assignment/Retrieval
	Group CD: Common Dialog Management
	Group GG: General Graphics
	Group GS: Graphics Style Selection
	Group GD: Graphics Drawing Primitives
	Group GT: Graphics Text
	Group IF: Information
	Group OS: Operating System Interface
	Group MI: Miscellaneous
	Group CH: Character Manipulation Routines
	Group OB: Obsolete Routines

	Window Handling
	Group WM: Window Management
	WindowClear Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example

	WindowClose Subroutine
	Description
	Syntax
	Effect
	Example

	WindowCloseChild Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	WindowOpen Subroutine
	Description
	Syntax
	Arguments
	Effect
	Portability notes
	Example

	WindowOpenChild Subroutine
	Description
	Syntax
	Arguments
	Effect
	Portability notes
	Example
	Errors

	WindowOutStatusBar Subroutine
	Description
	Syntax
	Arguments
	Effect
	Portability notes
	Example

	WindowSelect Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	WindowSizePos Subroutine
	Description
	Syntax
	Arguments
	Effect
	Portability notes
	Example

	WindowStatusBarParts Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example

	WindowTitle Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example

	WindowUnitsFromPixels Subroutine
	Description
	Syntax
	Arguments
	Effect

	WindowUnitsToPixels Subroutine
	Description
	Syntax
	Arguments
	Effect

	Input Handling
	Group MH: Message Handling
	WMessage Subroutine
	Description
	Syntax
	Arguments
	Table 2: Message types

	Effect
	Table 3: Key codes

	Portability notes
	Example

	WMessageEnable Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example

	WMessagePeek Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example

	Group MN: Menu Handling
	WMenu Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	WMenuFloating Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	WMenuGetState Function
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	WMenuSetState Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	WMenuSetString Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	Dialog Manager
	Group DM(1): General Dialog Management
	WDialogFieldState Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	WDialogHide Subroutine
	Description
	Syntax
	Effect
	Example
	Errors

	WDialogLoad Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	WDialogRangeProgressBar Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	WDialogSetField Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	WDialogSelect Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	WDialogShow Subroutine
	Description
	Syntax
	WDialogShow(ixpos,iypos,ifield,itype)
	Arguments
	Effect
	Portability notes
	Example
	Errors

	WDialogUnload Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	Group DM(2): Assign/Retrieve Field Contents
	WDialogGetCheckBox Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	WDialogGetMenu Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	WDialogGetRadioButton Subroutine
	Description
	Syntax
	Arguments
	Example
	Errors

	WDialogGetString Subroutine
	Description
	Syntax
	Arguments
	Effect
	Portability notes
	Example
	Errors

	WDialogPutCheckBox Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	WDialogPutImage Subroutine
	Description
	Syntax
	Arguments
	Example
	Errors

	WDialogPutMenu Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	WDialogPutOption Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	WDialogPutProgressBar Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	WDialogPutRadioButton Subroutine
	Description
	Syntax
	Arguments
	Example
	Errors

	WDialogPutString Subroutine
	Description
	Syntax
	Arguments
	Effect
	Portability notes
	Example
	Errors

	Group CD: Common Dialogs
	WMessageBox Subroutine
	Description
	Syntax
	Arguments
	Table 4: Common Dialog Buttons
	Table 5: Common Dialog Icons
	Table 6: Common Dialog Button Numbers

	Effect
	Example
	Errors

	WSelectFile Subroutine
	Description
	Syntax
	Arguments
	Effect
	Portability notes
	Example
	Errors

	High Resolution Graphics
	Group GG: General Graphics
	IGrArea Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	IGrAreaClear Subroutine
	Description
	Syntax
	Effect
	Example

	IGrGetPixel Function
	Description
	Syntax
	Arguments
	Effect

	IGrInit Subroutine
	Description
	Syntax
	Arguments
	Effect

	IGrSelect Subroutine
	Description
	Syntax
	Arguments
	Effect
	Portability notes
	Example
	Errors

	IGrUnits Subroutine
	Description
	Syntax
	Arguments
	Example
	Errors

	Group GS: Graphics Style Selection
	IGrColourModel Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example

	IGrColourN Subroutine
	Description
	Syntax
	Arguments
	Effect
	Table 7: 256-Color Numbering Scheme Default Palette
	Table 8: 16 or 8 Color Palette
	Table 9: Windows colors

	Example
	Errors

	IGrFillPattern Subroutine
	Description
	Syntax
	Arguments
	Table 10: Fill styles
	Table 11: Hatched Fill Density
	Table 12: Hatched Line Angle

	Example

	IGrLineType Subroutine
	Description
	Syntax
	Arguments
	Table 13: Line Types

	Effect
	Portability notes
	Example

	IGrPaletteInit Subroutine
	Description
	Syntax
	Effect

	IGrPalette Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example

	IGrPlotMode Subroutine
	Description
	Syntax
	Arguments
	Effect
	Portability notes
	Example

	Group GD: Graphics Drawing/Movement
	IGrCircle Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	IGrLineTo Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example

	IGrMoveTo Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example

	IGrPoint Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example

	IGrPolygonComplex Subroutine
	Description
	Syntax
	Arguments
	Example
	Errors

	Group GT: Graphics Text
	WGrOFont* Subroutines
	Description
	Syntax
	Effect
	Example

	WGrTextFont Subroutine
	Description
	Syntax
	Arguments
	Effect
	Portability notes
	Example

	WGrTextLength Function
	Description
	Syntax
	Arguments
	Effect
	Example

	WGrTextOrientation Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example

	WGrTextString Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example

	WGrVFont* Subroutines
	Description
	Syntax
	Arguments
	Effect
	Example

	General Functions
	Group IF: Information
	InfoError Function
	Description
	Syntax
	Arguments
	Table 14: Error Information items

	Effect
	Example

	InfoGraphics Function
	Description
	Syntax
	Arguments
	Table 15: Graphics Mode Information items

	Effect
	Example

	InfoGrPalette Function
	Description
	Syntax
	Arguments
	Effect

	InfoGrScreen Function
	Description
	Syntax
	Arguments
	Table 16: Graphics Screen Information items

	Effect

	WInfoDialog Function
	Description
	Syntax
	Arguments
	Table 17: Dialog Information items

	Effect
	Table 18: Common Dialog Termination Codes

	Example

	WInfoDrawable Function
	Description
	Syntax
	Arguments
	Table 19: Drawable Information items

	Effect

	WInfoScreen Function
	Description
	Syntax
	Arguments
	Table 20: Screen Information items

	Effect
	Example

	WInfoWindow Function
	Description
	Syntax
	Arguments
	Table 21: Window Information items

	Effect
	Portability notes
	Example

	Group OS: Operating System Interface
	IOsExitProgram Subroutine
	Description
	Syntax
	Arguments
	Effect
	Portability notes
	Example

	IOsVariable Subroutine
	Description
	Syntax
	Arguments
	Effect
	Portability notes
	Errors
	Example

	Group MI: Miscellaneous
	WCursorShape Subroutine
	Description
	Syntax
	Arguments
	Table 22:

	Effect
	Portability notes
	Example

	WFlushBuffer Subroutine
	Description
	Syntax
	Effect
	Example

	WglSelect Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	WglSwapBuffers Subroutine
	Description
	Syntax
	Effect
	Example

	WindowBell Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example

	WInitialise Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example

	WRGB Function
	Description
	Syntax
	Arguments
	Effect
	Example

	WRGBsplit Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example

	Group CH: Character Manipulation
	IFillString Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example

	IJustifyString Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example

	ILocateChar Function
	Description
	Syntax
	Arguments
	Effect
	Example

	ILocateString Subroutine
	Description
	Syntax
	Arguments
	Example

	ILowerCase Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example

	IntegerToString Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	IStringToInteger Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	IUpperCase Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example

	Group OB: Obsolete Routines
	IActualLength Function
	Description
	Syntax
	Arguments
	Effect

	IGrCharJustify Subroutine
	Description
	Syntax
	Arguments
	Effect

	IGrCharLength Function
	Description
	Syntax
	Arguments
	Effect

	IGrCharOut Subroutine
	Description
	Syntax
	Arguments
	Effect

	IGrCharSet Subroutine
	Description
	Syntax
	Arguments
	Effect

	IGrCharSize Subroutine
	Description
	Syntax
	Arguments
	Effect

	IGrCharSpacing Subroutine
	Description
	Syntax
	Arguments
	Effect

	IGrGetPixelRGB Subroutine
	Description
	Syntax
	Arguments
	Effect

	IGrPaletteRGB Subroutine
	Description
	Syntax
	Arguments
	Effect

	IGrPause Subroutine
	Description
	Syntax
	Arguments
	Effect

	WindowClearArea Subroutine
	Description
	Syntax
	Arguments
	Effect

	WindowOutString Subroutine
	Description
	Syntax
	Arguments
	Effect

	WindowStringLength Function
	Description
	Syntax
	Arguments
	Effect

	WindowFont Subroutine
	Description
	Syntax
	Arguments
	Table 23: Font Numbers

	Effect

	WInfoFont Function
	Description
	Syntax
	Arguments
	Table 24: Font Information items

	Effect

	WMenuRoot Subroutine
	Description
	Syntax
	Arguments
	Effect

