Lahey/Fujitsu Fortran 95
User’s Guide
Linux Edition

Revision D

Copyright

Copyright © 1995-2003 Lahey Computer Systems, Inc. All rights reserved worldwide. Copyright © 1999-2003
FUJITSU, LTD. All rights reserved. This manual is protected by federal copyright law. No part of this manual
may be copied or distributed, transmitted, transcribed, stored in aretrieval system, or translated into any human
or computer language, in any form or by any means, electronic, mechanical, magnetic, manual, or otherwise, or
disclosed to third parties.

Trademarks

Names of Lahey products are trademarks of Lahey Computer Systems, Inc. Other brand and product names are
trademarks or registered trademarks of their respective holders.

Disclaimer

Lahey Computer Systems, Inc. reserves the right to revise its software and publications with no obligation of
Lahey Computer Systems, Inc. to notify any person or any organization of such revision. In no event shall Lahey
Computer Systems, Inc. be liable for any loss of profit or any other commercial damage, including but not lim-
ited to special, consequential, or other damages.

Lahey Computer Systems, Inc.
865 Tahoe Boulevard
P.O. Box 6091
Incline Village, NV 89450-6091
(775) 831-2500
Fax: (775) 831-8123

http://www.lahey.com

Technical Support
support@lahey.com

Table of Contents

Getting Started........cccccovviiiviiiieieeniiee, 1
System Requirements.........ccccceeerereeieneriennens 2
Manual Organizationccoceereeeerereriernene 2
Notational Conventions...........ccceeeeereerercnuenn 3
Product RegiStrationcocvevvveveveesieeenennenns 3
Installing Lahey/Fujitsu Fortran 95.................. 3
Maintenance Updatescccovvverveercereneenennns 4
Uninstalling LFO5........cooiiiiierieeece 4
Building Your First LF95 Program.................. 4

Generating the Executable Program............ 5
Running the Programccccoeeevvevvneniennne 5
What' SNEXE? ..o 6
Other Sources of Information..........c.cccevenenen. 6
Developing with LF95....................o. 7
How the Driver WOrksc.ccccveevenereneneenn 7
Running the LF95 DIiverccccccevvveevecennnn, 7
Filenames and EXtensions..........c.ccccveeneene 8
OPLIONS ...t 9
Driver Configuration File (If95.fig)............... 10
Command Files.......ccooeenniiineeereee, 11
Intermediate FilesS........ocoovveeveieienveereees 11
Return Codes from the Drivercccccceee.e. 12
Shared Libraries........ccoceovevinevnecneree, 12
Archive Libraries.......ccoovvveinccncicieenns 12
Using Shared Libraries........c.ccoceieeeineeenne. 13
Using Archive Libraries.........cccooveeenceennnne. 13
Controlling Compilation..........c.cccceeerreeeene. 14
Errorsin Compilation..........ccccceeveereereenene. 14
Compiler and Linker Options..........ccccccveunee. 14
Linking RUIESccovevvvrie e 3R2
Fortran 95 Modules..........ccooeieieieenenennene 32
How the Linker Finds Libraries................ 32
Object File Processing Rules..................... 32
How the Linker Selects Objects................ 32
Linker Options........cccocvvevveenenesenesneeeeeas 33
Distributing LF95 Applications..................... 33
OpenGL Graphics Programs........cccceeeevenee. 34

Scientific Software Libraries (PRO Version

(o] 01V 34
BLAS and LAPACK Libraries (PRO Version
ONIY) e 35
Porting Code Between Windows and Linux..35
Recommended Option Settings...........cccveeene. 35
Mixed Language Programming 37
What Is Supportedccccevvrevereneennenn 37
Declaring Your Procedures...........ccccceene. 37
Interfacing with g77 (GNU Fortran).......... 39
Interfacing with Non-Fortran Languages ..39
Passing Data........cccceverereenenie e 40
Returning Function Valuesto C 42
Returning Function Valuesto Fortran 44
Passing and Receiving Arguments............ 45
PasSiNg AFTAYSceererereeeeie e 46
Passing Character Data.........c..cceeveeceenennee 47
Passing Data through Common Blocks.....49
Program Control: main() and MAIN__ ()..50
Calling Standard C Libraries........ccc...... 50
Command-Line Debugging with fdb...51
Starting fdb......coeeeeece e 51
Communicating with fdb...........cccceiiinenene 52
VariablesS.......ooceeieiieee e 52
VAUES ..o 52
AdAreSSES......oviiieirieeere s 52
REGISLENS....evcveeerie e eree e 53
NAMES ... 53
COMMANGS......cooerueeeereereesie e 53
Executing and Terminating a Program.......53
Help Commands.......cccccvveevvvnieseenesieseenn, 55
Shell Commands.........c.cooovverreneneneneenn, 55
Breakpoints.......c.ccoeeerireeneierreeeseeeees 55
Controlling Program Execution................. 58
Displaying Program Stack Information.....60
Setting and Displaying Program Variables61
Source File Display.......cccovevvvverieeeeenenne, 62
Automatic Displayccoeverenveeeeineecine 63
SYMBOIS ..t 64

Lahey/Fujitsu Fortran 95 User’s Guide i

Contents

S o] o (S 64

S o] 7= | 64
Miscellaneous Controls..........c.cceverereenene 65
FIlES. ot 65
Fortran 95 SPeCifiC......ccveveerveenerecesienn, 66
Memory Leak Detectionccceeeevevenen. 66
Processesand Threadscccccevenrnenne 67
RESLICHIONS.....ocveveveie e 67
Multi-Processing (PRO version only).69
Overview of Multi-Processingccceveeeens 69
Performance Improvement............cc.coeve... 70
Impediments to Improvements.................. 70
Hardware for Multi-Processing................. 71
Compiler Options for Automatic Paralleliza-
HON et 71
Environment Variables ... 71
Details of Multi-Processingcccccevevenee. 72
Optimization Control Line.......ccccceeevrvenen. 77
Noteson Parallelization............ccccoceveunee. 86
OPENMP.....ciieer e 89
Compilation.......ccevreverreeneeereeeeeee s 90
Environment Variables ..o 90
Implementation Specifications.................. 90
Automake (PRO version only)............. 95
INtroductionccocoeevevee v 95
What Does It DO?.......ccveveeeeirceccecieeens 95
How Does It Do That?........ccccceeevveiieenns 95
How Dol Set [t UP? ..cceeoeiiieiiicee 95
What Can GO Wrong?.......cccceeeeerenieneneens 96

Lahey/Fujitsu Fortran 95 User’s Guide

Running AUTOMAKEcccoeeeveieereeenens 96
The AUTOMAKE Configuration File........... 96
Multi-Phase Compilation..........cccccceeurennene 101
Automake NOLES.........cooevererireeeee e 102
Utility Programs........cccccovvvivviieeeeennnns 105
{0 TR 105
hdrstrip.fO0.....ccce v 106
SeqUNF.FO0. ...ei i 106
trybIK.FO0. .. 106
Programming Hintscccccceeivnnnnns 107
Efficiency Considerations............c.ccecvennene 107
Side EffeCtS....ooviniireeeeeeee e 107
File FOrmMatS.....cooovveireireerec e 108
Formatted Sequential File Format 108
Unformatted Sequential File Format....... 108
Direct File Format (Formatted) 109
Direct File Format (Unformatted) 109
Binary File Format.........c.ccoeoeneeininicnnne 109
Endfile Records.........ccooeevvverinnnnnnnenn 109
Porting Unformatted Files....................... 109
File Creation: Default Names...................... 110
Link TIMe....cco i 110
Y ear 2000 cOmplianCe......ccccevevvereeeeiernnnens 110
Limits of Operation..........cccceeeeeenenccnenne 112
Runtime OptioNS......cccccoevvviiiiiiieeenenns 115
Command FOrmatcceeveeeeenerienenierieneens 115
Environment Variables...........ccooovereeennen. 116
Execution Return Values..........ccccoeevveenenene. 117
Standard Input, Output, and Error................ 117
Runtime Options.........ccccoeeerrenineeenee 117
Descriptions of Runtime Options............ 118
Shell Variables for Input/Output.................. 123
Lahey Technical Support.........cccuuuees 125
HOUPS.....coiiiii e, 125
Technical Support Services.........ccocevereennne 126
How Lahey FIXeSBUQS.......cccereeeervrnennnns 126
Contacting Lahey......cccoeeveveevevneeeceenn, 126
Information You Provide..........c.cccceenee 126
World Wide Web Site........cccccveiveenene. 127
Lahey Warranti€s..........ccecvveevereeieecesinnnnns 128
Return Procedure.........ccooeeeeeiieecieeene 128

o Getting Started

Lahey/Fujitsu Fortran 95 (LF95) is a set of software tools for devel oping optimized 32-bit
Fortran applications. LF95 isacompleteimplementation of the Fortran 95 standard. Lahey
providestwo distributionsof LF95, called LF95 Linux Expressand LF95 Linux PRO. Some
chapters or feature descriptions in this manual apply only to LF95 Linux PRO. These chap-
ters and feature descriptions are marked “PRO Version Only”.

LF95 Linux Express

LF95 Express includes an optimizing compiler, debugger, on-line documentation and free e-
mail technical support. Express has two manuals, the User’s Guide (this manual), which
describes how to use the compiler and tools, and the Language Reference, which describes
the Fortran 95 language and various extensions.

LF95 Linux PRO

LF95 PRO includes an optimizing compiler with automatic parallelization and OpenM P sup-
port, debugger, AUTOMAKE (an automatic build tool for Fortran and C), WiSK (an X-
Windows-based user interface and graphicstoolset library), hardcopy manuals and free tele-
phone support. PRO documentation includesthe User’ s Guide, the Language Reference, and
the WiSK Reference, which documents the use of the Winteracter Starter Kit (WiSK) for
graphics and user interface development.

Thismanual assumes that the reader possesses aworking knowledge of the Linux operating
system, including Linux commands, file manipulation, file system navigation, and shell
scripts.

Lahey/Fujitsu Fortran 95 User’s Guide 1

Chapter 1 Getting Sarted

System Requirements

An 80486DX, Pentium series or compatible processor

24 MB of RAM (32 MB or more recommended)

60 MB of available hard disk space for LF95 Linux PRO; 30 MB for LF95 Linux
Express

X-Windows to use WiSK and view the online PDF documentation

A compatible version of the Linux operating system. Table 1 shows the versions of
Linux that are known to be compatible with LF95. Other Linux variants might be
compatibleif they include kernel version 2.4.7 or later and libc version 2.2.4 or later
(see READIVE for last minute updates):

Table 1: Supported Distributions

Distribution Kernel libc
Red Hat Linux 7.2 24.7 224
Red Hat Linux 7.3 2418 225
Red Hat Linux 8.0 2418 2293

Slackware v8.1 2.4.18 225
Linux Mandrake v9.0 24.19 225
SuUSE Linux 8.1 2.4.19 225

Manual Organization

This book is organized into seven chapters and three appendices.

2

Chapter 1, Getting Sarted, identifies system requirements, describesthe installation
process, and takes you through the steps of building your first program.

Chapter 2, Developing with LF95, describes the devel opment process and the driver
program that controls compilation, linking, and the generation of executable pro-
gramsor libraries.

Chapter 3, Mixed Language Programming, describesthe creation of mixed language
programs using C or G77.

Chapter 4, Command-Line Debugging with fdb, describes the command-line
debugger.

Chapter 5, Multi-Processing (PRO version only), describes how to use LF95 PRO’s
automatic and OpenMP parallelization capabilities.

Chapter 6, Automake (PRO version only), describes how to use Automake, LF95
PRO’s automatic build tool.

Lahey/Fujitsu Fortran 95 User’s Guide

Notational Conventions

e Chapter 7, Utility Programs, describes how to use the additional utility programs.

» Appendix A, Programming Hints offers suggestions about programming in Fortran
on the PC with LF95.

» Appendix B, Runtime Options describes options that can be added to your execut-
able's command line to change program behavior.

» Appendix C, Lahey Technical Support describes the services available from Lahey
and what to do if you have trouble.

Notational Conventions

The following conventions are used throughout this manual :

Code and keyst r okes are indicated by courier font.

In syntax descriptions, [brackets] enclose optional items.

Andlipsis, ”...”, following an item indicates that more items of the same form may appear.
Italicsindicate text to be replaced by the programmer.

Non-italic charactersin syntax descriptions are to be entered exactly asthey appear.

A vertical bar separating nonitalic charactersenclosed in curly braces‘{ opt1 | opt2 | opt3}’
indicates a set of possible options, from which oneisto be selected.

Product Registration

To al registered LF95 Express users, Lahey provides free, unlimited technical support via
fax, postal mail, and e-mail. Registered LF95 PRO users are additionally entitled to free
phone support. Procedures for using Lahey Support Services are documented in Appendix
C, Lahey Technical Support.

To ensure that you receive technical support, product updates, newsletters, and new release
announcements, please register viamail or viaour website: ht t p: / / www. | ahey. com If
you move or transfer a Lahey product’s ownership, please let us know.

Installing Lahey/Fujitsu Fortran 95

Inorder toinstall LF95in apublic directory, you must belogged in asroot. Theinstallation
CD must be mounted with execute permission. Theinstall script presentsaseries of choices,
which guide the user through the install ation process.

Lahey/Fujitsu Fortran 95 User’s Guide 3

Chapter 1 Getting Sarted

3. Runinstall,theinstalation script, and follow the menu prompts. The default
installation directory is/ usr/ |1 ocal /| f 9561, however, you can changeitto a
directory of your choice during the installation.

4. If desired, you may install the Adobe Acrobat Reader at alater time. Y ou may run
i nstal | andselect it fromthe menu or install it manually. Itislocated intheacr o-
bat directory ontheinstallation CD asacompressed tar file. Acrobat Reader or xpdf
isrequired to view the on-line documentation.

Maintenance Updates

Maintenance updates are made available for free from Lahey's website. They comprise bug
fixes or enhancements or both for this version of LF95. The update program applies
"patches’ to your files to bring them up-to-date. The maintenance update version shows as
aletter after the version of your compiler. Thisis displayed in thefirst line of output when
you run the compiler.

To get the latest maintenance update for this version, go to Lahey’s web page:
http://www.lahey.com

There you will find update programs you can download, as well as release notes and bug fix
descriptions. Once you have downloaded an update program, you will no longer need an
Internet connection.

In general, if you modify the contents of any of the files installed by this product (except
within the Examples directory), that particular file will no longer be valid for updating, and
the update installation program may abort with an error message.

Uninstalling LF95

The uninstallation program can be found in the LF95 install ation directory (/usr/local/lIf95xx
by default). You must belogged in asroot in order to uninstall LF95. Any new files created
after installation will not be removed.

Building Your First LF95 Program

4

Building and running a Fortran program with LF95 involves three basic steps:

1. Creating a source file using atext editor.

Lahey/Fujitsu Fortran 95 User’s Guide

Generating the Executable Program

2. Generating an executable program using the LF95 driver. The driver automatically
compiles the source file(s) and links the resulting object file(s) with the runtime
library and other libraries you specify.

3. Running the program.

The following paragraphs take you through steps two and three using the deno. f 90 source
fileincluded with LF95.

Generating the Executable Program

Compiling asourcefile into an object file and linking that object file with routines from the
runtimelibrary isaccomplished using the LF95 driver program. From the command prompt,
build the demo program by changing to the directory where deno. f 90 isinstalled (located
inexanpl es/ fortran/ under the installation directory), and entering

| f95 deno. f 90

This causes the compiler to read the sourcefile deno. f 90 and compileit into the object file
denmp. 0. Oncedeno. o iscreated, LF95 invokes the linker to combine necessary routines
from the runtime library and produce the executable program, a. out .

Running the Program
To run the program, type its name at the command prompt and press <Ent er >:

./l a.out

The deno program begins and a screen similar to the following is displayed:

Lahey/ Fujitsu LF95 Conpil er

installation test and denpnstration program

Copyright(c) 1998
Lahey Conputer Systens, |nc.

- factorials

- Fahrenheit to Cel sius conversion

- Carm chael nunbers

- Ramanuj an's series

- Stirling nunbers of the 2nd kind

- chi-square quantiles

- Pythagorean triplets

- date_and_time, and other systemcalls
- <stop this progranr

OO ~NOUAWNLPE

Pl ease sel ect an option by entering the
associ at ed nunber followed by <return>.

Y ou’ ve successfully built and run the Lahey demonstration program.

Lahey/Fujitsu Fortran 95 User’s Guide 5

Chapter 1 Getting Sarted

What's Next?

For a more complete description of the development process and instructions for using
Lahey/Fujitsu Fortran 95, please turn to Chapter 2, Devel oping with LF95.

Before continuing, however, please read the files README and ERRATA. These contain
important |ast-minute information and changes to the documentation.

Other Sources of Information

Files
READMVE last-minute information
FI LELI ST description of all files distributed with LF95
RTERRVEG descriptions of runtime error messages and their | OSTAT values
ERRATA changes that were made after the manuals were finalized
Manuals

Lahey/Fujitsu Fortran 95 Language Reference
Winteracter Starter Kit Reference (PRO Version only)

Newsletters
The Lahey Fortran Source newsl etter

Lahey Web Page
http://ww. | ahey. com

Discussion Groups

The Lahey Fortran Forum (see Lahey Web Page for instructions on joining this dis-
Cussion group)

6 Lahey/Fujitsu Fortran 95 User’s Guide

Developing with
LF95

This chapter describes how to use LF95’ s driver to build Fortran applications. The driver
controls compilation, linking, and the production of archive libraries, executable programs
and shared libraries.

How the Driver Works

Thedriver (I f 95) controlsthetwo main processes—compilation and linking—used to create
an executable program. These component processes are performed by the following pro-
grams under control of the driver:

Compiler. The compiler compiles sourcefilesinto object filesand createsfiles required for
using Fortran 95 modules. It isthis component that performs the actual compilation of the
program, even though the | f 95 driver is commonly referred to as the “ compiler.”

Linux Archive Utility. ar, the archive utility, can beinvoked from the driver or from the
command prompt to create or change static libraries.

Linux Linker. | d isthelinker. The linker combines object files and libraries into asingle
executable program or shared library.

Running the LF95 Driver

By default, the LF95 driver program oversees compilation of any specified source files and
will link them along with any specified object files and libraries into an executable program.

Torunthedriver, typel f 95 followed by alist of one or more filenames and optional com-
mand-line options:

Lahey/Fujitsu Fortran 95 User’s Guide 7

Chapter 2 Developing with LF95

8

| f 95 [optiong] filenames [options]
Thedriver searchesfor the varioustools (the compiler, archivelibrary utility, and linker) first
in the directory the driver islocated and then, if not found, on your path. The command line
options are discussed later in this chapter.

Filenames and Extensions

Depending on the extension(s) of the filename(s) specified, the driver will invoke the neces-
sary tools. Theextensions . f 95,.f90,.for,.f,. F95,. F90,. FOR, and. F, for example,
causethe compiler to beinvoked. Theextension. s causesthe assembler to beinvoked. The
extension . o (dencting an object file) causes the linker to beinvoked. Please notethat if the
suffix for Fortran sourceis uppercase (. F95, . F90, . FOR, or . F), it will cause the C prepro-
cessor to be invoked before the compiler; it is therefore preferable to use alowercase
extension on the filename if the file does not need to be preprocessed.

For lowercase suffixes, the C preprocessor can be invoked using the - Cpp option. Prepro-
cessor options - D (define macro), - U (un-define macro), and - P (send preprocessor output to
file) are also supported, and behave as documented in the man pages for gcc, the GNU C-
compiler. Thismanual does not encourage use of the preprocessor, because such activity fos-
ters non-Fortran-standard programming practices.

Please note: filenames are case sensitive. Filenames containing spaces are not recom-
mended, nor are filenames beginning with ahyphen, i.e., “- ”. Also note that the extension
. mod is reserved for compiler-generated module files. Do not use this extension for your
Fortran source files.

Source Filenames
One or more source filenames may be specified, either by name or using the usual Linux

wild-card characters. Filenames must be separated by a space. Filenames not matching any
of the forms described below are passed directly to the linker.

Example
1 f95 *.f90

If thefilesone. f 90, t wo. f 90, andt hr ee. f or wereinthe current directory, one. f 90 and
t wo. f 90 would be compiled and linked together, and the executablefile, a. out , would be
created in the current directory. t hr ee. f or would not be compiled because its extension
does not match the extension specified on the LF95 command line.

A source filename must be specified completely, including the extension. In the absence of
an option specifying otherwise (i.e., if neither - - fi x or - - nf i x is specified):

.90, .F90, .f95, and .F95 specify interpretation as Fortran 95 free source
form.

.for, .FOR .f, and .F specify interpretation as Fortran 95 fixed source form.

Lahey/Fujitsu Fortran 95 User’s Guide

Options

Once again, please note that an uppercase extension will cause the C preprocessor to be
invoked before the Fortran compiler isinvoked; it istherefore preferable to use alowercase
extension on the filename, if the file does not need to be preprocessed. For a description of
free source form and fixed source form, please see the Language Reference.

Object Filenames

The default name for an object file is the same as the source filename with extension . o.
When an object fileis created, it is placed by default in the current working directory. This
behavior may be overridden by specifying the -o (or --out) option with a new name and path
(see”-oname” on page 24).

Module Filenames

Files containing Fortran 95 module information will have the same name as the module
defined in the source code, in lowercase, followed by the . mod extension. When amodule
fileiscreated, it is placed by default in the current working directory. This behavior may be
overridden by specifying the - - nod or - Moption (see” -M dir” on page 23). The extension
. mod is reserved for compiler-generated module files. Do not use this extension for your
Fortran sourcefiles. If aprogram contains code that USEsamodule, then its object file (cor-
responding to the source file where that module was defined) must be specified on the
command line. The search path for . nod filesmay be specified with the - - mod or - Moption.

Output Filenames

The default name for the executable file produced by the driver isa. out . If no pathisspec-
ified, the current directory will be used. Thismay be overridden by specifying the- - out or
- 0 option with anew name and path. When -c is specified on the command line, the argu-
ment to - - out or - o must be an object filename. (see” -0 name” on page 24).

Library Filenames

The default namefor alibrary typically hasan extension of . a for astaticlibrary and . so for
ashared (dynamic) library (See“ ArchiveLibraries’ and“ Shared Libraries’ on page 12). In
addition, libraries will typically begin with the characters“l i b.” The prefix and extension
must be omitted when referencing the library at link time. For example, | i bsub. so isa
shared library in the current directory that is referenced on the command line as

1f95 main.f90 -L. -1lsub

Options

The driver recognizes one or moreletters preceded by one or two hyphens (- or - -) asacom-
mand-line option. 'Y ou may not combine options after ahyphen: for example, - x and - y
may not be entered as - xy.

Lahey/Fujitsu Fortran 95 User’s Guide 9

Chapter 2 Developing with LF95

Some options take arguments in the form of filenames, strings, letters, or numbers. Please
note: optionswith double hyphens (--) require a delimiting space between the option and its
argument(s); however, options with single hyphens (-) may be followed immediately by the
argument(s), with no intervening space. |f an option has multiple arguments, spaces are not
allowed between the arguments.

Example
-M./WDir/IncDir (delimiting space not required)
--mod ../MyDir/IncDir:./MdDir
(delimiting space required after --mod but prohibited after :)

If an unknown option is detected, the entire text from the beginning of the unknown option
to the beginning of the next option or end of the command lineis passed to the linker. Even
though options with double hyphens are not case-sensitive, it isrecommended that all options
be treated as case-sensitive to avoid confusion. Certain arguments to driver options (i.e.,
names of files or directories) will also be case-sensitive. Toillustrate, if the argument to the
- Moption in the above example were changed to . . / MYDI R/ | NCDI R, then the driver would
be unable to find the actual directory.

An option for another component tool (linker, assembler, or preprocessor) that conflictswith
an L F95 option may be passed directly to that component, verbatim, using the- W , - Wa, and
- W options. These options behave as documented in the man pages for gcc, the GNU C
compiler.

Conflicts Between Options

Command line options are processed from left to right. 1f conflicting options are specified,
the last one specified takes precedence. For example, if the command line contained | f 95
foo --Ist --nlst,the--nlst optionwould be used.

To display the LF95 version number and a summary of valid command-line options, type
1f95 --version --help.

Driver Configuration File (If95.fig)

10

In addition to specifying options on the command line, you may specify a default set of
optionsinthel f 95. fi g file. When thedriver isinvoked, the optionsinthel f 95. fi g file
are processed before those on the command line. Command-line options override those in
thel f95. fi g file. Thedriver searchesfor | f 95. f i g firstinthe current directory and then,
if not found, in the directory in which the driver islocated.

Lahey/Fujitsu Fortran 95 User’s Guide

Command Files

Command Files

If you have too many options and files to fit on the command line, you can place them in a
command file. Enter 1f95 command line argumentsin a command file in exactly the same

manner as on the command line. Command files may have as many lines as needed. Lines
beginning with an initial # are comments.

To process acommand file, preface the name of the file with an @character. When 195
encounters afilename that beginswith @on the command line, it opensthefile and processes
the commandsin it.

Example
1 f95 @ycnds

In this example, 1f95 reads its commands from the file mycnds.

Command filesmay be used both with other command-line optionsand other commandfiles.
Command files may be nested. Multiple command files are processed |eft to right in the
order they are encountered on the command line.

Intermediate Files

Thelf95 driver (and the componentsit controls) may use temporary filesfor storing interme-
diate results and passing them between components. These files are automatically created in
the default temporary directory, using random names, and then deleted. This directory can
be changed by specifying avalue for the shell variable TMPDI R.

Lahey/Fujitsu Fortran 95 User’s Guide 1

Chapter 2 Developing with LF95

Return Codes from the Driver

When the If95 driver receives afailure return code, it aborts the build process. The driver
will return an error code depending on the success of the invoked tools. These return codes
arelisted below:

Table 2: Driver Return Codes

Code Condition
0 Successful compilation and link
1 Compiler fatal error
2 Archive Utility error
3 Linker error
4 Driver error

Shared Libraries

Archive

A shared library isacollection of procedures packaged together in alibrary that isloaded at
runtime. On Unix systems, such libraries have been traditionally referred to as* shared librar-
ies’ or “shared archives’. Theterm “DLL” (Dynamic Link Library) was coined as a name
for the Microsoft Windows implementation of shared libraries. This manual uses the term
“shared library” rather than “DLL,” even though the two can be considered as interchange-
able. A shared library cannot run on its own; the functions and subroutinesin ashared library
must be called from an executablefile that containsamain program. If an LF95 program that
uses shared librariesis distributed to other machines, the shared librariesit uses must also be
distributed or made available at runtime (see* Distributing LF95 Applications’ on page 33).

Libraries

Anarchivelibrary (sometimescalled a“ static library,” or simply an“archive”) isacollection
of proceduresin object form, stored in afile that may be referenced by the linker. At link
time, when the executable program is created, the object code for procedures needed from
the library by the program isincorporated into the program’ s executable file.

12 Lahey/Fujitsu Fortran 95 User’s Guide

Using Shared Libraries

Using Shared Libraries

To create ashared library, use the - - shar ed option.

Example
|1 f95 sub.f90 --out libsub.so --shared

1f95 main.f90 -L. -1lsub

In this example, the source file sub. f 90 contains subroutines or functions, and the source
file mai n. f 90 contains references to these procedures. The following takes place:

1. sub. f90 iscompiled to create object filesub. o.

2. sub. oislinkedto createl i bsub. so, ashared library. Object filesub. o isthen
del eted.

3. mai n. f 90 iscompiled to create mai n. o.

4. mai n. o islinked with the LF95 runtime library and combined with dynamic link
information, referencing proceduresin | i bsub. so, to create an executable pro-
gram. Object filemai n. o isthen deleted.

Note that the name of the shared library must be prefixed with “1i b.” Also note that at run-
time, | i bsub. so must be available on one of the directories specified in the
LD_LI BRARY_PATH variable.

Using Archive Libraries

To create an archive library, use the - - nshar ed option.

Example
|1 f95 sub.f90 --out libsub.a --nshared

1f95 nain.f90 -L. -lsub
Using the same source files as in the example above, The following takes place:

1. sub. f90 iscompiled to create sub. o.

2. thearchive utility, ar, is automatically invoked to createl i bsub. a from sub. o.
Notethat | i bsub. a isan archive (static) library.

3. nai n. f 90 iscompiled to create mai n. o.

4. mai n. o isdtatically linked with the necessary object code containedin| i bsub. a to
create an executable program. Note that shared library | i bsub. so must not be

present in the current directory; otherwise the linker will try to reference that file
instead (See “Linking Rules’ on page 32.).

Lahey/Fujitsu Fortran 95 User’s Guide 13

Chapter 2 Developing with LF95

Controlling Compilation

During the compilation phase, the driver submits specified source files to the compiler for
compilation and optimization. If the - ¢, compile only, option is specified, processing will
stop after the compiler runs and objects and/or modules are created (if necessary). See“ -
[n]c” onpage 16. Otherwise, processing continues with linking and creation of the
executable program or library file.

Errors in Compilation

If the compiler encounters errors or questionabl e code, you may receive any of the following
types of diagnostic messages (aletter precedes each message, indicating its severity):

U:Unrecoverable error messagesindicateit is not practical to continue
compilation.

S: Serious error messages indicate the compilation will continue, but no object file
will be generated.

W:War ning messages indicate probable programming errors that are not serious
enough to prevent execution. Can be suppressed with the --nwarn or --swm option.

I :Infor mational messages suggest possible areas for improvement in your code and
give details of optimizations performed by the compiler. These are normally sup-
pressed, but can be seen by specifying the --info option (see“ --[n]info” on page 21).

If no unrecoverable or serious errors are detected by the compiler, the error return codeis set
to zero (see “ Return Codes from the Driver” on page 12). Unrecoverable or serious errors
detected by the compiler (improper syntax, for example) terminate the build process. An
object fileis not created.

Compiler and Linker Options

14

Y ou can control compilation and linking by using any of the following option options.
Options that use a single hyphen are case-sensitive. Some options apply only to the compi-
lation phase, othersto the linking phase, and still others (such as - g) to both phases; thisis
indicated next to the name of the option. If compilation and linking are performed separately
(i.e., in separate command lines), then options that apply to both phases must beincluded in
each command line.

Most L F95 options begin with two hyphens and are self-descriptive. Commonly used single-
hyphen options are provided (-1 ,-1,-L,-g,-0, - O, -c, etc.) for compatibility with other
Linux products (see descriptions below).

Lahey/Fujitsu Fortran 95 User’s Guide

Compiler and Linker Options

Compiling and linking can be broken into separate steps using the - ¢ option. Unlessthe- ¢
option is specified, the LF95 driver will attempt to link and create an executable after the
compilation phase completes. Specifying - ¢ anywhere in the command line will cause the
link phase to be skipped, and all linker options will be ignored.

Whilelinking isultimately performed by | d, the GNU linker, it is best to perform linking of
LF95 objectsusing the LFO5 driver. Thiswill help toinsurethat all necessary steps aretaken
and all necessary components areincluded to produce thefinal product. Any optionsnot rec-
ognized by the LF95 driver will be passed directly tol d. Remember that any options passed
directly to | d will be treated as case sensitive.

-[n]ap
Arithmetic Precision
Compile only. Default: - - nap

Specify - - ap to guaranteethe consistency of REAL and COMPLEX calculations, regardless
of optimization level; user variables are not assigned to registers. Consider the following
example:

Example
X=S-T
2Y=X-U
3Y=X-U

By default (--nap), during compilation of statement 2, the compiler recognizesthe value X is
already in aregister and does not cause the value to be reloaded from memory. At statement
3, the value X may or may not already be in aregister, and so the value may or may not be
reloaded accordingly. Becausethe precision of the datum isgreater in aregister than in mem-
ory, adifferencein precision at statements 2 and 3 may occur.

Specify --ap to choose the memory reference for non-INTEGER operands; that is, registers
arereloaded. - - ap must be specified when testing for the equality of randomly-generated
values.

The default, --nap, allows the compiler to take advantage of the current values in registers,
with possibly greater accuracy in low-order bits.

Specifying --ap will usually generate slower executables.

--block blocksize
Default 1/0 block size
Compile only. Default: 8192 bytes

Specify --block to change the default block size on OPEN statements. See“BLOCKS ZE="
in the LF95 Language Reference. blocksize must be a decimal INTEGER constant.
Specifying an optimal blocksize can make a significant improvement in the speed of your
executable. The programt rybl ock. f 90 demonstrates how changing blocksize can affect
execution speed. Some experimentation with blocksize in your program is usually necessary

Lahey/Fujitsu Fortran 95 User’s Guide 15

Chapter 2 Developing with LF95

16

to determine the optimal value. This optimal value varies from one machine to the next;
therefore, if your program is moved to another machine and optimal performance is desired,
then blocksize should be re-evaluated.

-[n]c
Suppress Linking
Compile only. Default: - nc (or - ¢ not present)

Specify -c to create object (. o), and, if necessary, module (. nod) files without creating an
executable. Thisisespecially useful in makefiles, whereit isnot alwaysdesirableto perform
the entire build process with one invocation of the driver.

--[n]chk
Checking
Compile only. Default: - - nchk

Specify --chk to generate afatal runtime error message when substring and array subscripts
are out of range, when non-common variables are accessed before they areinitialized, when
array expression shapes do not match, or when procedure arguments do not match in type,
attributes, size, or shape.

Syntax
--[nlchk [[a][, e][, sI[, ul[. x]]

Note: Commas are optional, but are recommended for readability.

Table 3: --chk Arguments

Diagnostic Checking Class Option Argument
Arguments a
Array Expression Shape e
Subscripts S
Undefined variables u
Increased (extra) X

Specifying --chk with no argumentsis equivalent to specifying --chk a,e,s,u. Specify --chk
with any combination of a, e, s, u and x to activate the specified diagnostic checking class.

Specification of the argument x must be used for compilation of all files of the program, or
incorrect results may occur. Do not use with 3rd party compiled modules, objects, or librar-
ies. Specificaly, the x argument must be used to compile all USEd modules and to compile
program units which set values within COMMONSs. Specifying the argument x will force
undefined variables checking (u), and will increase the level of checking performed by any
other specified arguments.

Lahey/Fujitsu Fortran 95 User’s Guide

Compiler and Linker Options

Specifying --chk adds to the size of a program and causes it to run more slowly, sometimes
as much as an order of magnitude. It forces --trace and --O0. --chk overrides --parall€l.

The --chk option will not check bounds in the following conditions:

The referenced expression has the POINTER attribute or is a structure one or more
of whose structure components has the POINTER attribute.

The referenced expression is an assumed-shape array.

The referenced expression is an array section with vector subscript.

The referenced variable is a dummy argument corresponding to an actual argument
that is an array section.

The referenced expression isin a masked array assignment.

The derived type variable with an ultimate component that is an alocatable array.
The referenced expression has the PARAMETER attribute.

The parent string is a scalar constant.

Undefined variables (u) are not checked if:

Subscript checking (s) isalso specified, and diagnostic message 0320-w, 0322-w, or
1562-w isissued.

The referenced expression has the POINTER attribute or is a structure variable one
of whose structure components has the POINTER attribute.

The referenced expression has the SAVE attribute.

The referenced expression is an assumed-shape array.

The referenced expression is an array section with a vector subscript.

A pointer variableis referenced.

The referenced variable is a dummy argument corresponding to an actual argument
that is an array section.

The referenced expression isin a masked array assignment.

The referenced expression has the SAVE attribute.

The derived type variable with an ultimate component that is an alocatable array.

Specifying - - chk u checks for undefined variables by initializing them with abit pattern.
If that bit pattern is detected in avariable on the right side of an assignment then chances are
that the variable was uninitialized. Unfortunately, you can get afalse diagnostic if the vari-
able holds avaluethat isthe same asthisbit pattern. This behavior can be turned off by not
using the u argument to the - - chk option. The values used with - - chk u are:

One-byte integer: -117

Two-byte integer: -29813

Four-byte integer: -1953789045

Eight-byte integer: -8391460049216894069

Default real; -5.37508134e-32

Double precision real: -4.696323204354320d-253

Quadruple precision real: -9.0818487627532284154072898964213742q-4043
Default complex: (-5.37508134e-32,-5.37508134e-32)

Lahey/Fujitsu Fortran 95 User’s Guide 17

Chapter 2 Developing with LF95

Double precision complex: (-4.696323204354320d-253,-4.696323204354320d-
253)

Quadruple precision complex: (-9.0818487627532284154072898964213742q-
4043, -908184876275322841540728989642137427-4043)

Character : Z'8B’

Example
LF95 myprog --chk a, x

instructs the compiler to activate increased runtime argument checking and increased unde-
fined variables checking.

--[n]chkglobal
Global Checking
Compile only. Default: - - nchkgl obal

Specify --chkglobal to generate compiler error messages for inter-program-unit diagnostics,
and to perform full compile-time and runtime checking.

Theglobal checking will only be performed on the source which is compiled within oneinvo-
cation of the compiler (the command line). For example, the checking will not occur on a

USEd modulewhichisnot compiled at the same time as the source containing the USE state-
ment, nor will the checking occur on object files or libraries specified on the command line.

Because specifying --chkglobal forces--chk x, specification of --chkglobal must be used for
compilation of all files of the program, or incorrect results may occur. Do not use with 3rd-
party-compiled modules, objects, or libraries. See the description of --chk for more
information.

Global checking diagnostics will not be published in the listing file. Specifying --chkglobal
addsto the size of aprogram and causesit to run more slowly, sometimes as much asan order
of magnitude. It forces --chk a,e,s,u,x --trace, and removes optimization by forcing --OO0.

The --chkglobal option will not check bounds in the following conditions:

» Thereferenced expression has the POINTER attribute or is a structure one or more
of whose ultimate structure components has the POINTER attribute.

e Thereferenced expression is an assumed-shape array.
» Thereferenced expression isan array section with vector subscript.

» Thereferenced variable isa dummy argument corresponding to an actual argument
that is an array section.

» Thereferenced expression isin a masked array assignment.

» Thereferenced expressionisin aFORALL statement or construct.
» Thereferenced expression has the PARAMETER attribute.

» The parent string is a scalar constant.

18 Lahey/Fujitsu Fortran 95 User’s Guide

Compiler and Linker Options

--[n]co
Compiler Options
Compile and link. Default: - -nco

Specify --co to display current settings of compiler options; specify --nco to suppress them.

--[n]dal
Deallocate Allocatables
Compile only. Default: - - dal

Specify --dal to deallocate allocated arrays (not appearing in DEALLOCATE or SAVE state-
ments) whenever aRETURN, STOP, or END statement is encountered in the program unit
containing the allocatable array. Note that --ndal will suppress automatic deallocation, even
for Fortran 95 files (automatic deallocation is standard behavior in Fortran 95).

--[n]dbl
Double
Compile only. Default: - - ndbl

Specify --dbl to extend all single-precision REAL and single-precision COMPLEX vari-
ables, arrays, constants, and functionsto REAL (KIND=8) and COMPLEX (KIND=8)
respectively. If you use --dbl, all source files (including modules) in a program should be
compiled with --dbl. Specifying --dbl will usualy result in somewhat slower executables.
The --dbl option is cancelled by --openmp.

--[n]f95
Fortran 95 Conformance
Compile only. Default: - - nf 95

Specify --f95 to generate warnings when the compiler encounters non-standard Fortran 95
code.

Note that --nf95 allows any intrinsic data type to be equivalenced to any other.
--file filename

Filename
Compile and link. Default: not present

Precede the name of afile with --file to ensure the driver will interpret the filename as the
name of afile and not an option or an argument to an option.

--[n]fix
Fixed Source Form
Compile only. Default: not present

Specify --fix toinstruct the compiler to interpret source files as Fortran 90 fixed source form.
--nfix instructs the compiler to interpret source files as Fortran 90 free source form.

Lahey/Fujitsu Fortran 95 User’s Guide 19

Chapter 2 Developing with LF95

20

Example
195 @ob.rsp bill.f90

If the command file bob. r sp contains --fix, thenbi I | . f 90 will be interpreted as fixed
source form even though it has the free source form extension . f 90.

Specifying neither --fix nor --nfix will cause LF95 to interpret the source form according to
thefile’' sextension (see” Filenamesand Extensions’ on page8). LF95 will not compilefiles
(including I NCLUDE files) containing both fixed and free source form in the samefile.

-9
Debug
Compile and link. Default: - g not present

Specify -g to instruct the compiler to generate an expanded symbol table and other informa-
tion for the debugger. -g automatically overrides any optimization or parall€elization option
and forces -O0, no optimizations, so your executable will run more slowly than if optimiza-
tion were used. -g isrequired to use the debugger.

--help
Display Compiler Options and Syntax
Compile or link. Default: not present

Specifying this option alone on the command line will cause LF95 to print a summary of
command-line options and syntax to the standard output and then exit.

-l dir

--include dir[:dirl[:dir2 ...]]

Include Path

Compile only. Default: current directory

Specify -1 dir or --include dir to instruct the compiler to search the specified directory(ies)
for Fortran include files. Multiple directories may be specified for --include with a colon-
separated list of paths, which will be searched in the order specified. Note that -1 will also
affect modul e searches (see the Module Path option,” -M dir” on page 23 for directions on
specifying module search paths). The current directory is always searched.

Example
195 denp.f90 --include ../dir2/includes:../dir3/includes

In this example, the compiler first searches the current directory, then searches
..\dir2\incl udes andfinally . . \ di r 3\'i ncl udes for | NCLUDE files specified in the
source file deno. f 90

--[n]in
Implicit None
Compile only. Default: - - nin

Lahey/Fujitsu Fortran 95 User’s Guide

Compiler and Linker Options

Specifying --in is equivalent to including an IMPLICIT NONE statement in each program
unit of your source file: noimplicit typing isin effect over the sourcefile.

When --nin is specified, standard implicit typing rules are in effect.

--[n]info
Display Informational Messages
Compile only. Default: --ni nfo

Specify --info to display informational messages, including suggestions on areas of possible
improvement for your code and information on steps taken by the compiler for optimization
and parallelization. --nwarn forces --ninfo.

-| (lower-case L) name
Specify Library File
Link only. Default: none.

Specify alibrary file whose nameisof theform | i bname. a or | i bname. so. Multiple
library filesmay be specified with multiple-I options. Librariesare searched inthe order that
they appear on the command line (See“ Linking Rules’ on page 32.) Thisoption anditsargu-
ment are passed directly to the linker.

-L path
Library Search Path
Link only. Default: LD L IBRARY_PATH variable.

The -L option adds path to the list of directories that the linker searches for libraries, i.e.,
files beginning with “I i b” and having the extension . a or . so. Note: if “. ” (current direc-
tory) is not specified inyour LD_LIBRARY _PATH variable, then you must specify -L. on
the command line to search for filesin the current directory. This option and its argument
are passed directly to the linker.

Example

The following command line links main.o with libmine.aand libyours.so (residing in adja-
cent directories mylibs and yourlibs, respectively):

1f95 main.o -L../nylibs -Imne -L../yourlibs -lyours
Remember that, by default, the linker searches for shared librariesfirst.

~[n]li
Recognize Lahey intrinsic procedures
Compile and link. Default: --li

Specify --nli to avoid recognizing Lahey’s non standard intrinsic procedures.

Lahey/Fujitsu Fortran 95 User’s Guide 21

Chapter 2 Developing with LF95

22

--[n]long
Long Integers
Compile only. Default: - - nl ong

Specify --long to extend all default INTEGER variables, arrays, constants, and functions to
INTEGER (KIND=8). If you use--long, all source files (including modules) in a program
should be compiled with --long to prevent conflicts in argument type.

--[n]lst [[spec=sval[, spec=sval]]]
Listing
Compile only. Default: - - nl st

Specify --Ist to generate alisting file that contains the source program, compiler options, date
and time of compilation, and any compiler diagnostics. The compiler outputsonelisting file
for each compile session.. By default, listing filenames consist of the basename of the first
source filename plus the extension “. | st ", placed in the current working directory (use

f =sval suboption to override -- see below). The pagewidth of thelisting fileis 274 columns,
and no page breaks or additional headers are inserted into the body of the listing. Note that
--nlst is overridden by --xref.

Syntax
--[n]lst [[spec=sval[, spec=sval]]]

Where:

specisf for thelisting filename, ori toinclude INCLUDE files. Each suboption must be
separated by acommaand space, and the entirelist of suboptions must be enclosed in square
brackets (“[1").

For f =sval, the listing filename, sval specifies the listing filename to use instead of the
default. If afile with this name already exists, it is overwritten. If the user specifiesalisting
filename and more than one source file then the driver diagnoses the error and aborts.

Fori =sval, sval isone of the characters of the set [YyNn], where Y andy indicate that include
files should be included in the listing and N and n indicate that they should not. By defaullt,
include files are not included in the listing.

Example
195 nmyprog.f90 --1st [i=y]

creates the listing file myprog.lst and lists the include files.
See also
--[n] xref

--[n]maxfatals number
Maximum Number of Fatal Errors
Compile only. Default: - - maxfatal s 50

Specify --maxfatals to limit the number of fatal errors LF95 will generate before aborting.

Lahey/Fujitsu Fortran 95 User’s Guide

Compiler and Linker Options

--ml target
Mixed Language
Compile only. Default: not present

The--ml optionis sometimes needed if your code callsor iscalled by code writtenin another
language. The value of target will only affect procedures declared with the

ML_EXTERNAL statement. Currently the only supported value for target iscdecl , which
isneeded for making callsto the system kernel. The--ml option isnot needed for interfacing
with g77 programs. See* Mixed Language Programming” on page 37 for moreinformation.

--mldefault target
Mixed Language Default
Compile only. Default: - nl def aul t

Specify the --mldefault options to set the default target language name decoration/calling
convention for all program units. - - nl def aul t affects name mangling for routine namesin
ML_EXTERNAL statements. Currently the only supported valuefor targetiscdec! , which
is needed for making calls to the system kernel. The --mldefault option is not needed for
interfacing with g77 programs. See “ Mixed Language Programming” on page 37 for more
information.

-M dir

--mod dir[:dirl[:dir2 ...]]

Module Path

Compile only. Default: current directory

Specify --M dir to instruct the compiler to search the specified directory for LF95 module
(. mod) files. Multiple directories may be specified using the -1 option for each additional
search directory. The directory specified by -M is searched first, current working directory
is searched next, and the directories specified with -I are searched last.

Specify --mod dir... to instruct the compiler to search the specified directory or directories
for LF95 module files. When using --mod, multiple directories may be specified using a
colon separated list of directories. If multiple directories are specified, the first directory in
thelist is searched first, the current working directory is searched next, the remaining direc-
tories are then searched in order of appearance.

-M and --mod should not be used in combination on the same command line. When compil-
ing procedures using modules, the path to all modules that are used either directly or
indirectly must be specified. This also applies to modules that are already compiled.

When creating a new module, the .mod file will be placed in the directory specified with -M
or thefirst directory specified by --mod. If the directory does not exist, the compiler will
attempt to createit. If no directories are specified with -M or --mod, then module files are
placed inthe current working directory. Notethat -1 hasno effect on module placement, even

Lahey/Fujitsu Fortran 95 User’s Guide 23

Chapter 2 Developing with LF95

24

though it affects the order that directories are searched for existing modules. Module object
(.0) files are placed in the current working directory. Note that any module object files cre-
ated by previous compilations must be on the LF95 command line when linking.

Example
| f95 nmodprog. f90 nod.o othernnd.o -M../nods -1 ../other

or,
| f95 nodprog. f90 nod.o othernnd.o --nod ../ nods:../other

In these examples, the compiler first searchesfor modulefilesin. . / nods, then searchesthe
current working directory, and finally searches. . / ot her. All modulefilesproduced from
modpr og. f 90 are placed inthe directory . . / nods. All object files produced by mod-
prog.f90 are placed in the current working directory.

{-00|-O}
{--00|--01]-02}
Optimization Level
Compile only. Default: - O

Specify -O0 to disable optimization. -O0 is forced when the -g, --chk, or --chkglobal option
is specified. See“-g” on page 20.

Specify -O to optimizefor execution speed. To see details of steps taken by the compiler for
optimization, specify the --info option. See “--[n]info” on page 21.

Specify --02 to perform additional optimizations. Use of the --02 option may significantly
impact compilation speed.

-00 and --00 are equivalent.

-O and --01 are equivalent.

-0 hame

--out name

Output Filename

Compile: Default isroot name of source file, with extension . o
Link: Defaultis a. out, in current working directory

When not linking (i.e., when -cisspecified), specify -o to override the default object filename
and path. The default path isthe current working directory. When linking (-nc specified or
-c not specified), specify -0 to override the output executable or library default filename. By
default it is placed in the current working directory.

--out differs from the Id option -o in that L F95 uses --out to determineif alibrary is being
built. -ois passed directly to Id. If the desired output is alibrary, use --out and specify an
extension of .aor .so. See” Shared Libraries’ and “ Archive Libraries’ on page 12.

Lahey/Fujitsu Fortran 95 User’s Guide

Compiler and Linker Options

Example
1f95 hello.f90 -c -o/ home/ mydir/hello.o
| 95 main.o --out naintest

--[n]ocl (PRO version only)
Process optimization control lines
Compile only. Default: - - nocl

--ocl causes optimization control lines (OCLS) to be processed. See* Optimization Control
Ling” on page 77 for more information.

--[nJopenmp (PRO version only)
Process OpenMP directives.
Compile and link. Default: - - nopennp

--openmp causes the compiler to process OpenMP directives in Fortran code. See
“ OpenMP” on page 89 for more information.

--[n]parallel (PRO version only)
Attempt automatic parallelization.
Compile and link. Default: --nparal | el

--parallel forces -O (full optimization). Notethat the --parallel isignored if the -g, --chk, or
--chkglobal optionis specified. To seethe compiler’s parallelization decisions, specify
--info. See " Overview of Multi-Processing” on page 69 for more information.

--[n]pca
Protect Constant Arguments
Compile only. Default: - - npca

Specify --pcato prevent invoked subprograms from storing into constants.

Example
call sub(5)
print *, 5
end
subroutine sub(i)
i =i +1
end

This example would print 5 using --pca and 6 using --npca.
--[n]prefetch [level]

Generate prefetch optimizations
Compile only. Default: --nprefetch

Lahey/Fujitsu Fortran 95 User’s Guide 25

Chapter 2 Developing with LF95

26

Prefetch optimizations can improve performance on systems which support prefetch instruc-
tions, such as Pentium 111 and Athlon systems. Level must be either 1 or 2. The prefetch 1
option causes prefetch instructionsto be generated for arraysin loops. The prefetch 2 option
generates optimized prefetch instructions. Because Pentium 4 chips implement prefetch in
hardware, the use of --prefetch can adversely affect performance on those systems. Perfor-
mance will be program dependent. Try each prefetch option (--nprefetch, --prefetch 1, or
--prefetch 2) to determine which works best with your code. The --prefetch options will be
ignored if --O0 or -g are used.

--[n]private
Default Module Accessibility
Compileonly. Default: - -nprivate

Specify --private to change the default accessibility of module entities from PUBLIC to PRI-
VATE (see“PUBLIC” and “PRIVATE” statementsin the Language Reference).

--[n]quad
Quad Precision
Compile only. Default: - - nquad

Specify --quad to extend all double-precision REAL and double-precision COMPLEX vari-
ables, arrays, constants, and functionsto REAL (KIND=16) and COMPLEX (KIND=16)
respectively. Default (single-precision) REAL entitiesremain unaffected. If you use--quad,
all sourcefiles(including modules) in aprogram should be compiled with --quad. Specifying
--quad will usualy result in significantly slower executables. Note that specifying -dbl -
quad will not raise single-precision entities to quad precision.

--[n]quiet
Quiet Compilation
Compile only. Default: - - qui et

Specifying --quiet suppresses the reporting of current file and program unit being compiled.
Instead, only errors, warnings (with --warn), and informational messages (with --info) are
displayed.

--[n]sav
SAVE Local Variables
Compile only. Default: - - nsav

Specify --sav to allocatelocal variablesin acompiler-generated SAVE area. --nsav allocates
variables on the stack. --sav isequivalent to having a SAVE statement in each subprogram
except that --sav does not apply to local variablesin arecursive function whereas the SAVE
statement does. Specifying --sav will cause your executable to run more slowly, especially
if you have many routines. Specifying --nsav may sometimes reguire more program stack.

Lahey/Fujitsu Fortran 95 User’s Guide

Compiler and Linker Options

--[n]shared
Create Shared Library
Link only. Default: - - nshar ed

Specify --shared to create a shared library rather than an archive (static) library (for more
information, see“ Shared Libraries’ on page 12).

--[n]sse2
Optimize using streaming SIMD extensions
Compile only. Default: - - nsse2

Specify --sse? to optimize code using the streaming SIMD (Single Instruction Multiple Data)
extensions. This option may only be specified if --tp4 is a so specified.

--static
Static System Runtime Libraries
Link only. Default: not present

Specify --static to create an executable linked only with static versions of libraries. Thisisa
GNU linker option. For more information, see the man or info pagesfor Id, the GNU linker.

--[n]staticlink
Static Fortran Runtime Libraries
Link only. Default: --nstati clink

Specify --staticlink to create an executable linked with the static LF95 Fortran runtime librar-
ies, and the shared versions of the Linux system libraries. Specifying --staticlink will result
inalarger executable, because it does not depend on the presence of any Fortran runtime
shared libraries. (see" Distributing LF95 Applications’ on page 33).

--[n]swm msg[,msg[...]]
Suppress Warning Message(s)
Compile only. Default: - - nswm

To suppress aparticular warning or informational message that appears during compilation,
specify its four digit number msg after --swm. Multiple messages may be specified asa
comma-separated list with no spaces.

Example
--swm 1040, 2005

This example would suppress warning messages 1040 and 2005. To suppress all warnings
and informational messages, use --nwarn. A list of warning and error numbersisin thefile
RTERRMSG.

{~t4|-tp | --tpp | ~tp4 }
Target Processor
Compile only. Default: --tp

Lahey/Fujitsu Fortran 95 User’s Guide 27

Chapter 2 Developing with LF95

28

Specify --t4 to generate code optimized for the Intel 80386 or 80486 processor.

Specify --tp to generate code optimized for the Intel Pentium or Pentium MM X processors,
or their generic counterparts.

Specify --tpp to generate code optimized for the Intel Pentium Pro, Pentium I1, Pentium 111,
or Celeron processors, or their generic counterparts. Please note: code generated with --tpp
is not compatible with processors made earlier than the Pentium Pro.

Specify --tp4 to generate code optimized for the Intel Pentium 4 processors. Please note: code
generated with --tp4 is not compatible with processors made previous to the Pentium 4.

--threads N (PRO version only)
Number of threads
Compile only. Default: the number of active processors on the system.

--threads specifiesthe number of instances (threads) to be created in therange 2 < N < number
of CPUsactive at runtime. If thisoptionis specified, it eliminates the need for the compiler
to produce overhead code identifying how many CPUs are available at executiontime. Itis
also useful if thereisanatural division of the probleminto parallel segments and the number
of segments is different from the number of available CPUs.

Be sure that the environment variable PARALLEL is set to the specified number (N) at run-
time. The executable program that is generated by specifying thisoption is always executed
with N CPUs, even if the program is moved to a machine with a different number of CPUs.

--threads requires --parallel. -g, --chk, or --chkglobal cause --threads to be ignored.

--threadstack N (PRO version only)
Thread Stack Size
Compile only. Default: the executable stack size.

--threadstack sets the size of the stack for each thread to N kilobytes, where N is between 16
and 2048, inclusive. The maximum stack size for aLinux thread is 2048 kilobytes. This
option takes precedence over the environment variable THREAD_STACK_SIZE (see

“ Environment Variable THREAD_STACK_SIZE” on page 72).

--threadstack requires --openmp or --parallel and must be specified for the file with the main
program unit. -g, --chk, or --chkglobal cause --threadstack to be ignored.

--threadheap [size] (PRO version only)
Thread Heap Size
Compile only. Default: 4096 bytes

If the --threadheap option is specified, local arraysin aprocedure or parallel region that are
larger than size bytes are allocated on the heap except for the following arrays:

e equivalenced arrays
» arraysthat are namelist object

Lahey/Fujitsu Fortran 95 User’s Guide

Compiler and Linker Options

» arrays of derived type that specify default initialization
» arraysin common that have the PRIVATE attribute

sizemust be apositive number lessthan 2147483648. If the=sizeisomitted, 4096 is selected
for size.

Execution performance may degrade when --threadheap is specified. Use this option only
when the required thread stack size exceeds 2048 bytes.

--threadheap requires --openmp. -g, --chk, or --chkglobal cause --threadheap to be ignored.

--[n]trace
Location and Call Traceback for Runtime Errors
Compileand link. Default: --trace

The --trace option causes a call traceback with routine names and line numbers to be gener-
ated with runtime error messages. With --ntrace no line numbers are generated. --trace might
cause your program to run more slowly.

--[n]trap
Trap numeric exceptions
Compile only. Default: - - ntrap

The --trap option causes the Fortran runtime library to publish an error message on adivide
by zero or overflow exception. The application then terminates. If the -WI,-i runtime option
is specified (see“ Interrupt Processing” on page 121), then no trapping occurs for overflow
exceptions. If the-WI,-u runtime option is specified, then underflow exceptions are trapped
(see* Underflow Interrupt Processing” on page 123).

--[nJunroll limit
Compile only. Default: - -nunrol |

Loop unrolling
Specify --unroll limit to control the level of loop unralling.

limit isanumber in the range 2 < limit < 100, and denotes the maximum level of loop
expansion.

If limit is omitted, the value of limit is determined by the compiler.
Note that -O forces --unroll

--[n]varheap size

Compile only. Default: - - nvar heap

Place local variables on heap
Specify --varheap to cause local variables to be allocated on the heap rather than in the bss
segment.

Lahey/Fujitsu Fortran 95 User’s Guide 29

Chapter 2 Developing with LF95

30

sizeisthe minimum variable size that will be placed on the heap. Variables smaller than size
are not placed on the heap.

If size is omitted, it defaults to 4096.

Note that the --varheap option does not apply to variables having the SAVE attribute, which
includes initialized variables.

--[n]verbose
Compile only. Default: - - nver bose

Verbose Output
Specify --verbose to see details of commands passed to al component tools used in the cre-
ation of object files, executable files, and libraries.

--[n]version
Print Version Information
Compile and link. Default: - - nversi on

Specify --version to display product serial number, copyright, and version information when
compiling or linking.

--[nJwarn
Warn
Compile only. Default: - -warn

Specify --warn to display warnings at compile time. Note that --nwarn forces --ninfo.

--[n]wide
Wide-Format Source Code
Compile only. Default: - - nwi de

Specify --wide to compile fixed-format source code that extends out to column 255. This
option has no effect when compiling free-format source.

--[n]wisk (PRO version only)
Winteracter Starter Kit
Compile and link. Default: - nwi sk (conpile and |ink)

Specify --wisk to create an application using the Winteracter Starter Kit (WiSK, seethe Win-
teracter Starter Kit Manual). Note that aresource file name must be given on the command
line whenever specifying - wi sk. See the Winteracter Starter Kit manual for more
information.

--[nJwo
Warn Obsolescent
Compile only. Default: - - nwo

Lahey/Fujitsu Fortran 95 User’s Guide

Compiler and Linker Options

Specify --wo to display warning messages when the compiler encounters obsol escent Fortran
95 features.

-x arg
Inline Code
Compile only. Default: do not inline

Specify -x to cause proceduresto be inserted inline at the point they are referenced in the call-
ing code. Multiple arguments are separated by commas. At least one argument must be
present. The -x option may only be specified once per compile session.

If arg isanumber, any user defined procedure with total lines of code smaller than argis
inlined. This argument may only appear once in the argument list.

If arg isanumber with the letter “K” appended, arrays which have a size less than arg kilo-
bytesareinlined. Thisargument may only appear once in the argument list.

If arg is aprocedure name, or comma separated list of procedure names, the named proce-
dures areinlined.

If argisthe dash character “-”, all procedures having fewer than 30 lines of code and all local
dataare inlined. If the dash argument is specified, no other arguments may be present.

Use of the -x option may cause long compile times, and may lead to very large executables.

--[n]xref
Cross-Reference Listing
Compile only. Default: - - nxr ef

Specify --xref to generate cross-referenceinformationinthelisting file. By default, crossref-
erence filenames consist of the basename of the source filename, plusthe extension“. | st ”,
placed in the current working directory (see“ --[n]Ist [[spec=sval[, spec=sval]]]” on page
22). Specifying --xref will override --nlst.

See also
—~[n]lst

--[n]zfm
Enable zero flash mode for SSE2 instructions
Compile only. Default: - - nzf m

Specify --zfm enable zero flash mode for SSE2 instructions. This option may only be spec-
ified if --sse2 and --tp4 are also specified.

Note that using --zfm will disable trapping for floating underflow. If an underflow condition
occurs during execution of an SSE2 instruction, the affected variable is set to zero. If this
behavior presents a problem, use the --nzfm option to guarantee that the underflow exception
isthrown.

Lahey/Fujitsu Fortran 95 User’s Guide 31

Chapter 2 Developing with LF95

Linking Rules

32

During thelink phase, the driver submits object files and object filelibraries to the linker for
creation of the executable (or shared library) output file.

Fortran 95 Modules

If your program uses Fortran 95 modules that have already been compiled, you must add the
modul e object filenames (i.e., the source filename with extension . o) to the LF95 command
line when linking. Compiling a Fortran 95 module will generate an object (. o) fileand a
module (. nod) fileif the source file contains executable code. 1f the sourcefile does not con-
tain any executable code but does contain public entities, then only a. nod file will be
generated.

How the Linker Finds Libraries

The linker reads individual object files and object module libraries, resolves references to
external symbols, and writes out a single executable file (or shared library).

If an object file or library was specified on the command line and contains path information,
then it must reside at the location specified. If the path was not specified, the linker looks for
the filesin the following order:

1. inany directories specified with the - L option.
2. inany directories specified by the LD _LI BRARY_PATH environment variable.

Note: the current working directory “. ” will not be searched unlessit is specified by the-L
option or the LD_LI BRARY_PATH environment variable.

In each case, the linker will first attempt to locate ashared library (with a. so file extension)
containing the desired symbol(s). If that is not found, then it will seek an archive or static
library (with a. a file extension). The- - st ati cl i nk option does not affect this behavior;
this option only determines the specific group of runtime libraries that will be linked to the
executable.

Searching rules for INCLUDE files and Fortran 95 modules are governed by the compiler,
not the linker. See* -1 dir” on page 20 and “ -M dir” on page 23 for discussion.

Object File Processing Rules
Object files are processed in the order they appear on the command line.

How the Linker Selects Objects
Thel d linker applies the following rules when searching object libraries:

Lahey/Fujitsu Fortran 95 User’s Guide

Linker Options

1. Any libraries specified using the- | option are searched in the order in which they
appear in the LF95 command string before the LF95 runtimelibrary, or any libraries
appearing in directories specified by the - L option or the LD _LI BRARY_PATH envi-
ronment variable. The compiler writes the default LF95 library names into each
object fileit generates.

2. Eachlibrary is searched until all possible external references are resolved. If neces-
sary, system libraries appearingin /1i b or/usr/|i b may also be searched.

Linker Options

In most cases, LF95 passes unrecognized options on to the linker; however, some linker
options may conflict with existing LF95 options. In this case, an option may be passed
directly tothelinker from the LF95 command line using the- W option. Thisoption behaves
as documented in the man pages for gcc, the GNU C compiler (coincidentally, -W isthe
same option used to indicate runtime options as described in Appendix B, Runtime Options).

For further information, see the man pagesfor | d, the GNU linker.

Distributing LF95 Applications

When you distribute applications built with L F95, you need to be aware of the shared
(dynamic) libraries that your application requiresto run on the target platform. Y ou can use
the Linux command | dd to display the shared libraries required by your application.

Any shared libraries that have been created must be distributed them with your application.

Y ou must link with the --staticlink option, which will bind the LF95 Fortran static runtime
libraries to the executable (see* --[n] staticlink” on page 27). Y ou are not allowed to distrib-
utethe LF95 Fortran sharedlibraries(* . so. 1) residinginthel i b subdirectory of your LF95
installation.

The remaining required shared libraries (usually residing under the/ | i b directory) are the
GNU Cruntimelibrarieswhich will be available onany Linux systemthat hasglibcinstalled.
Distributing these libraries is not recommended and is governed by a GNU Public License.
These shared libraries allow your application to use the GNU C runtime of the target Linux
system, whether it be newer or older. Notethat aprogram built on asystem running anewer
version of glibc might not execute properly on a system running an older version. Itisrec-
ommended that you build your application on the earliest version available for best
portability.

If it isnecessary for you to statically link the GNU C runtime librarieswith your application,
you must link with the -static linker option. Y our distribution will be governed by a GNU
Public License and the Lahey Software License Agreement, which states:

Lahey/Fujitsu Fortran 95 User’s Guide 33

Chapter 2 Developing with LF95

“If you distribute User Programs that statically link the Lahey/Fujitsu Fortran and the GNU
C runtime librariesinto your program, you may redistribute the Lahey/Fujitsu Fortran static
libraries (*. a) and thef j 90rt 0. o file with your programs for the sole purpose of alowing
your customersto rebuild the programs you distribute, provided you instruct your customers,
and they agree, to removethe Lahey/Fujitsu Fortran static libraries (*. a) andthef j 90rt 0. o
file from their computer systems after rebuilding the programs you distribute.”

OpenGL Graphics Programs

OpenGL isa software interface for applicationsto generate interactive 2D and 3D computer
graphicsindependent of operating system and hardware operations. It is essentially a2D/3D
graphicslibrary which was originally developed by Silicon Graphicswith thegoal of creating
an efficient, platform-independent interface for graphical applications (Note: OpenGL isa
trademark of Silicon Graphicsinc.). Itisavailable on many Win32, Linux, and Unix systems,
and is strong on 3D visualization and animation.

f90gl isapublic domain implementation of the official Fortran 90 bindingsfor OpenGL, con-
sisting of aset of libraries and modulesthat define the function interfaces. A complete set of
demonstration programs may be downloaded from the Lahey web site. The f90gl interface
was developed by William F. Mitchell of the Mathematical and Computational Sciences
Division, National Institute of Standards and Technology, Gaithersburg, MD, in the USA.
For information on f90gl, seethef90gl web pageat ht t p: / / mat h. ni st . gov/ f 90gl . For
more information on using OpenGL and f90gl with LF95, seethe HTML help file
“wisk.htm” in the help directory provided with LF95 PRO.

Scientific Software Libraries (PRO Version only)

34

The Scientific Software Libraries (SSL2) are alibrary of subroutines and functions designed
to aid in the solution of common scientific and engineering problems. Three versions of the
library are provided, a generic version suitable for use with any supported processor, amul-
tithreaded version suitable for use with any supported multiple processor hardware, and a
highly optimized multithreaded version for use with systems using multiple Pentium 4 pro-
cessors. For more information concerning the SSL2 libraries or specific procedures, seethe
SSL 2 PDF documentsin the manualsdirectory of your LF95 distribution, or consult the man
page for the procedure in question.

Lahey/Fujitsu Fortran 95 User’s Guide

BLAS and LAPACK Libraries (PRO Version only)

BLAS and LAPACK Libraries (PRO Version only)

Multithreaded versions of the BLAS and LAPACK libraries are provided. These libraries
provide a standardized set of procedures for solving linear algebra and matrix algebra prob-
lems. Two versions of the BLAS library are provided, a multithreaded version suitable for
use with any supported multiple processor hardware, and a highly optimized multithreaded
version for use with systems using multiple Pentium 4 processors. The LAPACK library is
only supplied in a multithreaded version, but may be linked with the Pentium 4 optimized
versions of BLAS. For more information concerning the BLAS and LAPACK libraries or
specific procedures, seethe BLAS/LAPACK PDF document in the manual sdirectory of your
LF95 distribution.

Porting Code Between Windows and Linux

If your codeis F77, FOO, or F95 standard conforming, it will port to Linux simply by recom-
piling. If you are using the Winteracter or Gino GUI libraries, you can recompile your code
and link with the Linux version of these libraries without having to make any other changes.
If you are using Automake, the basic structure of the automake.fig configuration file will
remain the same. If any code or data contains path information, you will have to change the
Windows directory separator "\" to the Unix separator "/*, and make sure that pertinent files
arein theindicated directories. If you use environment variables, you will need to convert
from Windows style "%var%" to Unix style "$var". Many non standard extensions are sup-
ported under both the Windows and Linux environments. If an extension is not supported, it
will most likely cause an "undefined symbol" error when linking. If your code usesthe SY S
TEM subroutine, you should consult your Language reference. Although the basic form of
the SY STEM command is supported under both systems, optional arguments are not sup-
ported on the Linux side.

Recommended Option Settings

Ifanl f 95. fi g fileexistsin the current directory, examine its contents to insure that it con-
tains the desired options.

For debugging, the following option settings will provide an increased level of diagnostic
ability, both at compile time, and during execution:

--chk -g --trace --info

The - pca option may be additionally be used to check for corruption of constant arguments;
if the results are correct with - pca but bad with - npca aconstant argument has been
corrupted.

For further analysis during development, consider specifying any of the following options:

Lahey/Fujitsu Fortran 95 User’s Guide 35

Chapter 2 Developing with LF95

36

--ap --chkglobal -f95 --lst --sav --wo --xref

(Note: Specifying - chkgl obal or-chk (x) must beused for compilation of al files of the
program, or incorrect results may occur.)

For production code, we recommend the following option settings:
--nap --nchk --ng -O --npca --nsav --ntrace

Also,use--t4, --tp, --tpp, or tp4 dependingon your preferred target processor.
Note that code compiled with - - t pp will only run on Pentium Pro or newer compatible
chips. Notethat code compiled with - - t p4 will only run on Pentium 4 or newer compatible
chips.

If the program performs many 1/O operations, consider tuning the blocksize with the --block
option.

Programs may be tuned with the --02 and the -x option to increase optimization and to inline
code and data.

If the target processor is a Pentium I11 or Athlon, consider experimenting with the
--nprefetch, --prefetch 1or--prefetch 2 optionsto select the onewhich pro-
vides the best performance.

If the target processor is a Pentium 4, consider tuning with the - - sse2 and - - zf moptions.

If optimization (-O) produces radically different results or causes runtime errors, try compil-
ing with - - i nf o to see exactly which steps are being taken to optimize. The- - i nf o option
also generates warnings on sections of code that are unstable and therefore may cause prob-
lemswhen optimized. A common example of such codeis an IF statement that compares
floating-point variables for equality. When optimization seemsto alter the results, try using
the - - ap option to preserve arithmetic precision while still retaining some optimization.

Lahey/Fujitsu Fortran 95 User’s Guide

Mixed Language
Programming

LF95 code can call and be called by code written in certain other languages. With LF95 one
can create object and library filesfor use with the language systemsin the table below. Calls
can be made from Fortran to Fortran, from Fortran to another language, and from another lan-
guageto Fortran. If you are calling LF95 routines from alanguage system other than L F95,
it may be necessary to refer to that language system’ s documentation for more information.

What Is Supported

L ahey/Fujitsu Fortran 95 supports mixed language interfaces to the following languages and
operating systems (thislist is subject to change -- see READ_M. for any changes):

Table 4: Compiler Support for Mixed Language

Language System (Sg‘e' EZIt(i)(\)/\r/])
Linux kernel and stan-
dard C libraries --ml cdecl
GuC --ml cdecl
Fujitsu C --ml cdecl
Gnu Fortran77 (none)

Declaring Your Procedures

In order to reference a procedure across amixed language interface, the LF95 compiler must
be informed of the procedure name and told how to “ decorate” thisname asit appearsin the
object file. These procedure names are defined with the M._EXTERNAL statement (see
“ML_EXTERNAL Satement” in the LF95 Language Reference). The DLL_EXPORT and

Lahey/Fujitsu Fortran 95 User’s Guide 37

Chapter 3 Mixed Language Programming

DLL_I MPORT statements used in the LF95 Windows product are still supported, but their
effectisidentical toM._EXTERNAL sincethe calling conventionsarethe samefor Linux static
and shared libraries.

Please note that in general, mixed language procedure names are case sensitive (unlike the
Fortran naming convention, which ignores case). M._EXTERNAL is used when defining a
Fortran procedure and when referencing an external procedure. The type of mixed language
interface is defined with the use of the- - M compiler option. Y ou cannot mix - - nl options
in asingleinvocation of LF95. If you need to reference procedures from multiple languages
you can do so by putting the references in separate source files and compiling them
separately.

Thetable below describesthe varieties of procedures that may be found in an LF95 program,
along with the form taken by the procedure’ s default external name (i.e., the name seen by

thelinker). ProceduresMAI N__ () and mai n() play aspecial role in mixed-language pro-
grams. Thisisdescribed in“ Program Control: main() and MAIN__ ()" on page 50.

Table 5: Default External Names for Fortran Procedures

Procedure Name Seen from outside as:
FUNCTI ON MyFunc() myfunc_
SUBROUTI NE My Sub() mysub_
f_procl
intrinsic procedure pr oc1() or
g_procl
main program MAI N
Fortran startup/initialization routine mai n
common block a a_

38 Lahey/Fujitsu Fortran 95 User’s Guide

Interfacing with g77 (GNU Fortran)

The external names of Fortran functions and subroutines may be modified by using the
M._EXTERNAL statement, along with the --ml compiler option. The purpose of the
M._EXTERNAL statement isto modify the “ name decoration” or “name mangling” that is
applied to the external procedure name (in accordance with the - - m compiler option) and
to allow case to be preserved.

Table 6: Effect of --ml Option on External name of Fortran Procedure MySub1(),
Declared as ML_EXTERNAL

--m| option Seen from outside as:
--m cdecl MySubl
--m not specified MySubl_
not declared as M._EXTERNAL mysubl_
- (--m hasno effect)

Notethat if MySub1() isnot declared as M._EXTERNAL, thenthe- - m option has no effect,
and its external name will alwaysbenysubl_. Fortran naming conventions can be accom-
modated in C by declaring the C function as lower case and adding a trailing underscore
character, thus eliminating the need for the M__ EXTERNAL statement or the - - mi compiler
option. On the other hand, if Fortranis calling a C library for which no source code is avail-
able, then the M__EXTERNAL statement and the - - ml compiler option are required.

Interfacing with g77 (GNU Fortran)

When writing procedures in LF95 that will call or be called from g77, it is not necessary to

specify the --ml option on the command line or apply the ML_EXTERNAL statement to the
procedure name. It is, however, important to link to the proper libraries so that intrinsic pro-
cedures may beresolved. Seethe exanpl es/ mi x_| ang directory under your installation

root directory for examples of how to link with g77 objects.

Interfacing with Non-Fortran Languages

When you create aFortran library or object file, you will usually indicate each procedure that
you want made available using the M__ EXTERNAL statement. The procedure may be a sub-
routine or a function. When a Fortran function returns a value, the calling language must
match the value to its corresponding data type as described in Table 8 on page 43.

integer function hal f(x)
mM _external half !nanme is case-sensitive.
integer :: X
hal f = x/2

end

Lahey/Fujitsu Fortran 95 User’s Guide 39

Chapter 3 Mixed Language Programming

40

When you create a Fortran program that references non-Fortran procedure(s), you declare the
non-Fortran procedure name(s) with the M._EXTERNAL statement in your Fortran code. The
syntax of the M._ EXTERNAL statement in thiscaseis:

M__EXTERNAL external-name-list

where external-name-listisacommarseparated list of names of proceduresreferenced inthis
scoping unit. The procedures may be subroutines or functions. Non-Fortran functions may
only return data types specified in Table 7 on page 41.

program main
implicit none
real :: My_C Func, x
m _external My_C Func !name is case-sensitive.
x = My_C _Func()
wite (*,*) x
end program main
These codes must be compiled using LF95's - - n1 target option in order to be callable by
language target (See “--ml target” on page 23.).

Note that M._ EXTERNAL is a statement and not an attribute. In other words, M._ EXTERNAL
may not appear in an attribute listin an INTEGER, REAL, COMPLEX, LOGICAL, CHAR-
ACTER or TY PE statement.

For further examples, refer to the directories below LF95's exanpl es directory.

Passing Data

Data may be passed to or from other language systems as arguments, function results, exter-
nal (COMMON) variables, or infiles. LF95 does not support arrays of pointers passed from
C, or pointers with more than one level of indirection.

LF95's calling conventions are as follows:

» All arguments are pass-by-address, not pass-by-value asin C. LF95 can pass argu-
ments by value to other languages, using the VAL () intrinsic.

» Arraysof pointers cannot be passed from C to Fortran.

» COMPLEX and derived type arguments can be passed as pointersto structures.
Because C does not have a native type for complex data, it must be declared as a
structure. For example, Fortran default COMPLEX isdeclared in C as

struct {

float real;

fl oat inmaginary;
} conpl ex;

* When passing dataviaafile, the file must be closed prior to calling the non-Fortran
procedure.

» Fortran common blocks can be accessed as an external or “global” structure from C.
For example, the named common block,

Lahey/Fujitsu Fortran 95 User’s Guide

Passing Data

conmon /my_common/ a, b, c
real a, b, ¢

can be accessed as
extern struct

{
float a, b, c;
} ny_comon_; /* my_comon_ must be all | ower-case */

“Blank” (unnamed) common istreated the sameway; the structureisnamed BLNK_
instead of ny_common_.

Data passed between Fortran and C programs must have corresponding attributes. The fol-
lowing table describes corresponding data types between C and Fortran. Note that some of
the listed data types will be unavailable on some C compilers.

Table 7: Corresponding Data Types in Fortran and C

Data Type Fortran C Comments
one-byte logical LOG CAL(1) L1 char L1; 1 byte
two-byte logica LOG CAL(2) L2 short int L2; 2 bytes
four-byte logical LOG CAL(4) L4 long int L4; 4 bytes
eight-byte logical | LOG CAL(8) L8 'Lg,”g long int 8 bytes
one-byteinteger | I NTEGER(1) 11 f'lgned char 1 byte
two-byte integer | NTEGER(2) 12 short int 12; 2 bytes
four-byteinteger | | NTEGER(4) 14 long int I4; 4 bytes

Lahey/Fujitsu Fortran 95 User’s Guide 41

Chapter 3 Mixed Language Programming

Table 7: Corresponding Data Types in Fortran and C
Data Type Fortran C Comments
eight-byteinteger | | NTEGER(8) |8 : one long int 8 bytes
real REAL(4) R4 float R4; 4 bytes
do”b'er“ep;ec's'on REAL(8) R8 doubl e R: 8 bytes
quadruple-preci- | ong doubl e
Sion resl REAL(16) R16 RL6: 16 bytes
struct
complex COWPLEX(4) C8 {float r, i;} 8 bytes
G8;
. struct
double-precision | b evig) c16 | {double r, i:} 16 bytes
complex Cle:
quad-precision struct
| COVPLEX(16) C32 | {l ong doubl e 32 bytes
compiex r, i;} C32;
character (fixed CHARACTER*10 S | char S[10] See examples for
length) assumed-length
TYPE TAG struct tag
SEQUENCE { Size (in bytes) =
. | NTEGER | 4 . ,
derived type int 14 sum of all compo-
REAL(8) R8 doubl e R8;
END TYPE ', ’ nenis
TYPE(TAG D :
. *nyarray[10]
array of pointers | not al | owed **hi sarray

Returning Function Values to C

Fortran functions are called from C as functions returning avalue, with all arguments passed
by reference. Values are passed on the stack, with the exception of COVPLEX and CHARAC-
TERdata, in which case the values are passed viathe argument list. Thefollowing tablelists
the data types that may be returned to C from a Fortran function. In thethird column of the
table (“examples’ column), thevariabler esul t representsthe value returned by the Fortran
function nyf unc() . In the last example, the variable st r | en represents the length of the
character value returned by myf unc() .

42 Lahey/Fujitsu Fortran 95 User’s Guide

Returning Function Valuesto C

This section does not discuss Fortran subroutines, which are called from C as“void” func-
tions. Thisconcept isillustrated in alater section, “ Passing and Receiving Arguments’ on

page 45.

Table 8: Declaring C Result Types for Fortran Function Types

Fortran Function Type

C Result Type

Example

I NTEGER(1) signed char result = nyfunc_();
I NTEGER(2) short int result = nyfunc_();
| NTEGER(4) long int result = nyfunc_();
I NTEGER(8) long long int result = nyfunc_();
LOGd CAL(1) unsi gned char result = nyfunc_();
LOd CAL(2) short int result = nyfunc_();
LOGd CAL(4) long int result = nyfunc_();
LOd CAL(8) long long int result = nyfunc_();
REAL(4) fl oat result = nyfunc_();
REAL(8) doubl e result = nyfunc_();
REAL(16) | ong doubl e result = nyfunc_();
COVPLEX(4) voi d myfunc_(&esult);
COVPLEX(8) voi d myfunc_(&esult);
COVPLEX(16) voi d myfunc_(&esult);
CHARACTER(LEN=*) voi d nyfunc_(& esult,len);
Derived Type not applicable not applicable

For exampl e, the Fortran function:

integer function foo(i,j)

integer :: i,

j

end function foo

corresponds to the C prototype:

long int foo(long int *i,

long int *j);

To illustrate returning an assumed-length character value, the Fortran function:

Lahey/Fujitsu Fortran 95 User’s Guide

43

Chapter 3 Mixed Language Programming

44

function cfun()
character(len=*) :: cfun
cfun = ' 1234567890’

end function cfun

isinvoked from C as follows:

void cfun_(char *strl, int strlen);
MAIN_ ()

{
char nystr[10];
cfun_(nystr, 10);

}

The preceding example may be a bit confusing, since it runs counter to the intuitive concept
of afunction returning avalue. For further explanation, see “ Passing Character Data” on

page 47.

Returning Function Values to Fortran

C functions are also called by Fortran as functions returning avalue. By default, all argu-
ments are passed to C by reference. Arguments may also be passed to C by value using
LF95'sVAL() intrinsic. It isnot possibleto return character strings or structures from C.

Fortran calls “void” C functions in the same manner that it calls Fortran subroutines. This
concept isillustrated in the section below, “ Passing and Receiving Arguments’ on page 45.

Table 9: Declaring Fortran Result Types for C Function Types

C Function Type Fortran Result Type Example

voi d not applicable call ny_c_func()

si gned char I NTEGER(1) result = ny_c_func()
short int I NTEGER(2) result = ny_c_func()
long int :_STGE%E 3; result = ny_c_func()
long long int | NTEGER(8) result = ny_c_func()
fl oat REAL(4) result = ny_c_func()
doubl e REAL(8) result = nmy_c_func()
| ong doubl e REAL(16) result = ny_c_func()
char cannot be accepted not applicable
structure cannot be accepted not applicable

Lahey/Fujitsu Fortran 95 User’s Guide

Passing and Receiving Arguments

Passing and Receiving Arguments

By default, Fortran passes arguments “ by reference” (i.e., it passes the address of each vari-
ablein the argument list, rather than the value of the argument, on the program stack);
however, many C functions expect variablesto be passed “by value” on the program stack.
This practice can be accommodated by applying the VAL () intrinsic to the variable as it
appears in the argument list of the Fortran reference to the function.

Inall subsequent C code examples, adeclaration of i nt issynonymouswithl ong i nt . Note
that any array arguments or arguments of type COMPLEX must not be passed by valueto C;
they should always be passed by reference. Character datais a special case -- it may be
passed using either the CARG intrinsic or VAL(OFFSET()) . Seethe section below, “ Pass-
ing Character Data” on page 47 for further illustration.

Example: Passing Arguments by Value from Fortran to C

The C function
void nmysum (i, j, k)
int *i, j, k;
{
i = + k;
}
is called from Fortran as follows:
integer i, j, k
j =3
k =4

call nysum(i, val(j), val(k))

wite (*,*) ‘" Result: j+k =", i
Example: Passing Arguments by Reference from C to Fortran
Variables can be passed by reference from C using the |-value operator (&). The Fortran
function

i nteger function nyfunc(x, vy)
integer x, y

nyfunc = x +vy

return

end function

iscalled from C as

MAIN__()
{
long int nmyfunc_(*long int i, *long int j);
long int i, j, k;
i 5
i 7
k myfunc_(& , &)

Lahey/Fujitsu Fortran 95 User’s Guide 45

Chapter 3 Mixed Language Programming

46

Passing Arrays

Because C stores multidimensional arraysin row-major order, and Fortran storesthemin col-
umn-major order, there are some special considerationsin processing a Fortran array.
Excluding a single-dimension array (which is stored the same in C asin Fortran), you will
need to reverse the indices when accessing aFortran array in C. Thereason for thisisthat in
C, the right-most index varies most quickly and in Fortran the left-most index varies most
quickly (multi-dimensional). Inan array of arrays, the columns are stored sequentially: row
1-column 1 isfollowed by row 1-column 2, etc. In amulti-dimensional array, the rows are
stored sequentially: row 1-column 1 isfollowed by row 2-column 1, etc.

Also note that all C arrays start at 0. We do not recommend that you use alower dimension
bound other than zero (0) as your C code will have to modify the indices based on the value
used. We strongly recommend that you do not use negative lower and upper dimension
bounds!

If the subscript ranges are not known at compile time, they can be passed at runtime, but you
will have to provide the code to scale the indices to access the proper members of the array.

Some sample code may help explain the array differences. Y our Fortran code would look
like:

subroutine test(real _array)
real :: real _array(0:4,0:5,0:6,0:7,0:8,0:9,0:10)
integer :: i,j,k,I,mn,o
do o =0, 10
don=0, 9
dom=20, 8
do!l =0, 7
do k =0, 6
doj =0, 5
doi =0, 4
real _array(i,j,k,I,mn,0) = 12.00
end do
end do
end do
end do
end do
end do
end do
end subroutine test

The equivalent C code would look like:

Lahey/Fujitsu Fortran 95 User’s Guide

Passing Character Data

void test(float real _array[10][9][8]1[7]1[6][5][4])

int i,j,k,I,mn,o;
/*
** this is what the subscripts would ook |ike on the C side
*/
for(o = 0; o < 11; o++)

for(n = 0; n < 10; n++)

for(m=0; m< 9; m+)
for(l =0; | < 8; |++)
for(k = 0; k < 7; k++)
for(j =0; j <6; j++)
for(i =0; i <5; i++)
real _array[o][n][mM[I]1[K]I[jI[i] = 12.000;

return;

}

On the Fortran side of the call, the array argument must not be dimensioned as an assumed-
shape array. You should use explicit shape, assumed size, or adjustable arrays.

Passing Character Data

Character arguments are passed as pointersto strings. When a Fortran program unit contains
character dummy arguments, then any routine calling that program unit must append to the
end of the argument list the length of each of the corresponding character actual arguments.

The length must be passed by value, as afour-byte integer (1 ong i nt), to Fortran.

For example, the Fortran subroutine:

subroutine exanple3 (intl, charl, int2, char?2)
integer intl, int2

character (len=*) :: charl
character (len=25) :: char2
end

corresponds to this prototypein C:

void exanple3 (long int *intl, \
char *charl, \
long int *int2, \
char *char2, \
long int charl_len);

When passing acharacter string from Fortran to C, Fortran will by default append a“hidden”

integer value, representing the length of the string, to the end of the argument list. Thisinte-
ger ispassed by value. If more than one character string is passed, the length val ues appear
in the same order as the strings, at the end of the argument list. To prevent the length value
from being added, apply the CARG() intrinsic or combinethe VAL (OFFSET()) intrinsics, so
that only the pointer to the string is passed.

Lahey/Fujitsu Fortran 95 User’s Guide 47

Chapter 3 Mixed Language Programming

48

Inaddition, C requiresaNULL terminator (i.e.,, CHAR(0), abyte whose valueis zero) at the
end of acharacter string in order to processit. LF95 does not supply this; hence it must be
appended to a character literal or character variable beforeit is passed to C. Furthermore,
Fortran padsthe end of the string with blankstofill itsentire declared length. If thispadding
is not desired then it must be removed by applying the TRIM() intrinsic and appending a
NULL before the string is passed to C.

Example: Passing Character Variables and Character Constants from Fortran to C
The following Fortran program

program strtest

character*20 nystr

nystr = 'abcde'

call sub(nystr)

call sub('abcde'//char(0))

call sub2(carg(trimnystr)//char(0)))
call sub2(val (of fset(nystr)))

call sub2(carg('abcde'//char(0)))

end

and the following C subroutine

void sub_(strl,i)

char *str1;

long int i;

{
printf("hidden length = %\n",i);
printf("%H !\n",strl);

}

voi d sub2_(str1l)

char *str1;

{
printf("%End.\n",strl);

}
produce the following output:

hi dden | ength = 20
abcde Hi!
hi dden length = 6
abcdeHi !

abcdeEnd.

abcde End.
abcdeEnd.

Example: Passing String Variables from C to Fortran
Thefollowing Fortran function has assumed-length character dummy arguments and returns
an assumed-length character result:

Lahey/Fujitsu Fortran 95 User’s Guide

Passing Data through Common Blocks

function MYFUNC(strl1, str2)

character(len=*) :: strl, str2, nyfunc
nyfunc = strl1//str2//char(0)

return

end

When called by the following C program,

void nmyfunc_(char *strl, int i, char *str2, \
char *str3, int j, int k);

MAIN__ ()

{

/* Leave space for NULL in character declarations */
char res[10], ch[4], nsg[7];

strcpy(ch, "H ");

strcpy(nsg, "there!");

nyfunc_(res, 10, ch, nsg, 3, 6);

printf("Result received by C %\n", res);

}
The following output is generated:

Result received by C H there!

Inthe call to MYFUNC from C, thefirst and second arguments are the value and | ength, respec-
tively, of the result returned by MYFUNC. The last two arguments are the respective lengths
of the character arguments being passed to MYFUNC.

Passing Data through Common Blocks
The variables in a Fortran common block may be referenced as C structure members.

Example: Named Common
In the following Fortran program, the variablesin common block “ ext”

conmon /ext/ i, |j
i =1

j =2

call sub()

end

are accessed by a C function as follows:

extern struct tab {
int i, j;

} ext_;

voi d sub_()

{

printf("i=% j=%\n", ext_.i, ext_.j);
}

Lahey/Fujitsu Fortran 95 User’s Guide 49

Chapter 3 Mixed Language Programming

Example: Blank Common

Passing dataviablank common isaccomplished in the same manner asin the above example,
except in the C code, the name ext _ isreplaced by _BLNK .

Program Control: main() and MAIN__ ()

If the top level of control in a mixed-language program resides in the non-Fortran language
system (i.e., control isfirst passed to the non-Fortran portion of the program), the top-level
procedure must be giventhename MAI N__() . It must not be giventhenamenai n() , asthis
isreserved for startup and initialization of the Fortran runtime environment.

Example: Passing Control First to a C Program
The following C program calls Fortran subroutine SUB() and then exits.

void sub_();
MAIN_ ()

{

sub_();

}

Calling Standard C Libraries

When calling functions in the Linux kernel and standard C libraries, it is necessary to apply
the ML_EXTERNAL statement to the function name, and compile with the --ml compiler
option.

Example: Calling a Linux Kernel Function
The following Fortran program illustrates a call to the standard function usleep().

program cal |l sys

m _external usleep

wite(*,*) 'Going to sleep...'
! sleep for 10 seconds

call usl eep(10000000)

wite (*,*) ' Wake up!’

end program

The above program must be compiled using the command line,

1f95 callsys.f90 --m cdecl

Lahey/Fujitsu Fortran 95 User’s Guide

Command-Line
Debugging with fdb

fdb is a command-line symbolic source-level debugger for Fortran 95, C, and assembly
programs.

Before debugging your program you must compileit using the - g option (see* Compiler and
Linker Options’” on page 14). The - g option creates additional symbolic debugging infor-
mation within the executable code.

This chapter contains references to debugging of C code. These references are meant for C
programs compiled with f cc, the Fujitsu C compiler. fdb is not compatible with the debug
information generated by gcc, the GNU C compiler. It is, however, possible to debug LF95
programs using gdb (GNU debugger), subject to the following restrictions:

Fortran 90/95 specifications are not supported in gdb.

The contents of COMMON can only be examined in gdb by examining memory and
interpreting the values there.

Fortran procedures must be specified as lowercase with trailing underscore (). You
can step through modul e procedures but you cannot set a breakpoint or examine the
values of variables or parameters.

Fortran variables must be specified in capital letters.

Starting fdb

To start f db type:
f db [exefile] [corefile]

Where: exefileisthe name of an executabl e file compiled with the - g option, and corefileis
the name of the core file (if any) produced by abnormal termination of the executable. If
exefileis not supplied, then f db will assume the executablefileisa. out . If corefileis not
supplied, then f db will assume the core dump fileiscor e.

Lahey/Fujitsu Fortran 95 User’s Guide 51

Chapter 4 Command-Line Debugging with fdb

If cor e is present in the current directory, or if corefileis specified, then f db will start with
the current line of code being the one that caused the abnormal termination, and the current
file being the one that contains that line of code. If cor e or corefileisnot adump of exefile,
then there will be no debug information available.

Otherwise, if nocor e fileisavailable or corefile does not exist, then f db starts with the cur-
rent line of code being the first executable line of the file containing the main program.

Communicating with fdb

52

Variables
Variables are specified in f db in the same manner as they are specified in Fortran 95 or C.

In C, astructure member is specified as variable. member or variable- >member if variable
isapointer. In Fortran 95, a derived-type (i.e., structure) component is specified as
variablevsmember.

InC, an array element is specified asvariable] member] [member] In Fortran 95, an array
element is specified as variable(member, member, ...) . Notethat in Fortran 95, omission of
array subscripts implies areference to the entire array. Listing of array contentsin Fortran

95islimited by thepri nt el ement s parameter (see* Miscellaneous Controls’ on page 65).

Values

Numeric values can be of typesinteger, real, unsigned octal, or unsigned hexadecimal.
Unsigned octal values must begin with a0 and unsigned hexadecimal values must begin with
0x. Values of type real can have an exponent, for example 3. 14e10.

InaFortran 95 program, values of type complex, logical, and character are also alowed. Val-
ues of type complex are represented as (real-part,imaginary-part). Character datais
represented as" character string " (the string is delimited by quotation marks, i.e., ascii 34).

Vaues of typelogical arerepresentedas.t. or.f..

Addresses

Addresses can be represented as unsigned decimal numbers, unsigned octal numbers (which
must start with 0), or unsigned hexadecimal numbers (which must start with 0x or 0X). The
following examples show print commands with address specifications.

menprint 1024 (The content of the area addressed by 0x0400 is displayed.)
menprint 01024 (The content of the area addressed by 0x0214 is displayed.)
menprint 0x1024 (The content of the area addressed by 0x1024 is displayed.)

Lahey/Fujitsu Fortran 95 User’s Guide

Registers

Registers
$BP Base Pointer
$SP Stack Pointer
$EI P Program counter

$EFLAGS Processor state register
$ST[0- 7] Floating-point registers

Names

When communicating with fdb, all procedure names must bein lower case, regardless of the
case used in the source file. The main program name, when not specified in a PROGRAM
statement, isnmai n. In order to prevent user names from conflicting with intrinsic or runtime
library names, the compiler “decorates’ procedure and common block names by adding an
underscore, ‘', after the corresponding name specified in the Fortran source program. When
referencing an external or module procedure or acommon block in fdb, the trailing under-
scoreisoptional. However, when referencing any internal procedures, the name must be
specified with the trailing underscore.

Commands

Commands can be abbreviated by entering only the underlined letter or lettersin the com-
mand descriptions. For example, ki | | can be abbreviated simply k and oncebr eak can be
abbreviated ob. All commands should be typed in lower case, unless otherwise noted.
Character literals must be enclosed by quotation marks (the symbol ", whichisascii 34). File
names must be enclosed by the grave accent (the symbol °, which is ascii 96).

Executing and Terminating a Program

run arglist

Passesthe arglist list of argumentsto the program at execution time. When arglist is omitted,
the program is executed using the arguments | ast specified. If arglist contains an argument
that startswith "<" or ">", the program is executed after the 1/O isredirected. If single-step-
ping or other program control is desired, a breakpoint must be set beforeissuing ther un
command, otherwisethe program will immediately run to completion. For an explanation of
breakpoints, see “ Breakpoints’ on page 55. A breakpoint can also be set at MAI N__, the
main Fortran entry point. Do not set a breakpoint at nai n; no debug information will exist
there.

Lahey/Fujitsu Fortran 95 User’s Guide 53

Chapter 4 Command-Line Debugging with fdb

Run

Executes the program without arguments. The “R” should be upper case. As explained
above, a breakpoint must be set before issuing this command if single-stepping or other con-
trol is desired.

kill

<ctl-c>

Forces cancellation of the program. <CTL-C> (control+c) has the same effect as the kill
command.

tty dev
Direct standard error 1/0O to device dev in the next run.

param commandline arglist
Assign the program’s command line argument list a new set of values

param commandline
Display the current list of command line arguments

clear commandline
The argument list is deleted

setenv
show environment
All environment variables and their values are displayed.

setenv "var"

show environment "var"

Environment variable var and its value are displayed
setenv "var" "s"

The environment variable var is set to the value strings.

unsetenv "var"
The variable var is deleted from the environment.

quit
Ends the debugging session.

54 Lahey/Fujitsu Fortran 95 User’s Guide

Help Commands

Help Commands

help
Display thelist of all commands

help cmd
Display help for command cmd

help "regex"
Display help for all commands corresponding to regular expression regex. Note that the quo-
tation marks (ascii 34) are required.

Shell Commands

cd dir
Change working directory to dir

pwd
Display the current working directory path

sh cmd
Execute arbitrary shell command cmd

Breakpoints

General Syntax
break [location [? expr]]

Where location corresponds to an address in the program or aline number in a source file,
and expr corresponds to a conditional expression associated with the breakpoint. The value
of location may be specified by one of the following items:

« [file' Jline specifieslinenumber lineinthesourcefilefile. If omitted, filedefaults
to the current file. Note that the “ apostrophes” used in “file', above, are the grave
accent (ascii 96), not the standard apostrophe character.

e proc[+]- offset] specifiestheline number corresponding to the entry point of func-
tion or subroutine proc plus or minus offset lines. When using this syntax, proc may
not be amodule or internal procedure.

e proc@inproc specifiesinternal procedure inproc within proc.

* [mod@]proc]@inproc_] specifies procedure proc contained in module

Lahey/Fujitsu Fortran 95 User’s Guide 55

Chapter 4 Command-Line Debugging with fdb

56

mod or internal procedure inproc within module procedure proc. Note that a break-
point may be set on a module procedure without specifying the module name. |If
there is more than on module with a procedure of a given name, then you will be
prompted to select from alist.

» *addr specifiesaphysical address (default radix is hexadecimal).
» |f location is omitted, it defaults to the current line of code

The conditional expression expr can be constructed of program variables, structure compo-
nents, and constants, along with the following operators:

Minus unary operator (-)

Plus unary operator (+)

Assignment statement (=)

Scalar relational operator (<, <=, ==, /=, >,>=, LT., .LE., .EQ., .NE,, .GT., .GE.)
Logical operator (.NOT., .AND., .OR,, .EQV., .NEQV.)

break [* file']line

Sets a breakpoint at the line number line in the sourcefilefile. If omitted, file defaultsto the
current file. Notethat the “apostrophes’ used in “file', above, are the grave accent (ascii 96),
not the standard apostrophe character.

break [* file'] procname

Sets a breakpoint at the entry point of the procedure proc in the sourcefile file. If omitted,
file defaultsto the current file. Notethat the“ apostrophes’ usedin “file’, above, arethegrave
accent (ascii 96), not the standard apostrophe character.

break *addr
Sets a breakpoint at addressaddr .

break
Sets a breakpoint at the current line.

breakoff [#n]

Disables breakpoint number n. When #nisomitted, all breakpoints are disabled. The break-
points still exist and can be enabled using the breakon command. Note that the "#' symbol
isrequired.

breakon [#n]

Enables breakpoint number n. When #n is omitted, all breakpoints are enabled. Note that
the "#" symbol is required.

Lahey/Fujitsu Fortran 95 User’s Guide

Breakpoints

condition #n expr
Associate conditional expression expr with the breakpoint whose serial number is n. Note
that the “#” symbol is required.

condition #n
Remove any condition associated with the breakpoint whose serial number isn. Note that
the “#” symbol is required.

oncebreak

Sets atemporary breakpoint that is deleted after the program is stopped at the breakpoint
once. OnceBreak in other regards, including arguments, works like Break.

regularbreak "regex"
Set a breakpoint at the beginning of all procedures with aname matching regular expression
regex.

delete location
Removes the breakpoint at location location as described in above syntax description.

delete [‘ file']line

Removesthe breakpoint for theline number linein the sourcefile specified asfile. If omitted,
filedefaultsto the current file. Notethat the“ apostrophes’ usedin “file’, above, arethe grave
accent (ascii 96), not the standard apostrophe character.

delete [‘ file'] procname

Removes the breakpoint for the entry point of the procedure procname in the sourcefilefile.
If omitted, file defaults to the current file. Note that the “ apostrophes” used in “file’, above,
are the grave accent (ascii 96), not the standard apostrophe character.

delete *addr
Removes the breakpoint for the address addr .

delete #n
Removes breakpoint number n.

delete
Removes all breakpoints.

skip #n count
Skips the breakpoint number n count times.

Lahey/Fujitsu Fortran 95 User’s Guide 57

Chapter 4 Command-Line Debugging with fdb

58

onstop #n cmd[;cmd2;cmd3...;cmdn]
Upon encountering breakpoint n, execute the specified fdb command(s).

show break
B
Displays al breakpoints. If using the abbreviation “B”, the “B” must be upper case.

Controlling Program Execution

continue [count]

Continues program execution until abreakpoint's count reaches count. Then, execution stops.
If omitted, count defaultsto 1 and the executionisinterrupted at the next breakpoint. Program
execution is continued without the program being notified of asignal, even if the program
was broken by that signal. In this case, program execution is usually interrupted later when
the program is broken again at the same instruction.

silentcontinue [count]

Sameas Continue but if asignal breaksaprogram, the programisnotified of that signal when
program execution is continued.

step [count]

Executes the next count lines, including the current line. If omitted, count defaultsto 1, and
only the current lineis executed. If afunction or subroutine call is encountered, execution
“stepsinto” that procedure.

silentstep [count]

Same as Step but if asignal breaks a program, the program is notified of that signal when
program execution is continued.

stepi [count]

Executes the next count machine language instructions, including the current instruction. If
omitted, count defaultsto 1, and only the current instruction is executed.

silentstepi [count]

Sameasst epi but if asignal breaks a program, the program is notified of that signal when
program execution is continued.

Lahey/Fujitsu Fortran 95 User’s Guide

Controlling Program Execution

next [count]

Executes the next count lines, including the current line, where afunction or subroutine call
isconsideredto bealine. If omitted, count defaultsto 1, and only the current lineisexecuted.
In other words, if afunction or subroutine call is encountered, execution “ steps over” that
procedure.

silentnext [count]

Same as Next but if asignal breaks a program, the program is notified of that signal when
program execution is continued.

nexti [count]

Executes the next count machine language instructions, including the current instruction,
where a procedure call is considered to be an instruction. If omitted, count defaultsto 1, and
only the current instruction is executed.

silentnexti [count] or nin [count]

Same as Nexti but if asignal breaks a program, the program is notified of that signal when
program execution is continued.

until
Continues program execution until reaching the next instruction or statement.

until location

Continues program execution until reaching the location location. The same syntax rules as
for breakpoints apply.

until *addr
Continues program execution until reaching the address addr.

until +|-offset

Continues program execution until reaching the line forward (+) or backward (-) offset lines
from the current line.

until return

Continues program execution until returning to the calling line of the procedure that includes
the current breakpoint.

goto [‘ file*]line
Execution is restarted from the specified line linein filefile.

Lahey/Fujitsu Fortran 95 User’s Guide 59

Chapter 4 Command-Line Debugging with fdb

60

jump [“ file*]line
Changes the program counter (jumps) to the address corresponding to the specified lineline
infilefile.

jump *addr
Changes the program counter (jumps) to address addr.

Displaying Program Stack Information

traceback [n]

Displays subprogram entry points (frames) in the stack, where n is the number of stack
frames to be processed from the current frame.

frame
Select stack frame number n. If n is omitted, the current stack frame is selected.

upside [n]
Select the stack frame for the procedure n levels up the call chain (down the chainif nisless
than 0). The default value of nis 1.

downside [n]
Select the stack frame for the procedure n levels down the call chain (up the chainif nisless
than 0). The default value of nis 1.

show args

Display argument information for the procedure corresponding to the currently selected
frame

show locals
Display local variables for the procedure corresponding to the currently selected frame

show reg [$r]

Displays the contents of the register r in the current frame. r cannot be a floating-point reg-

ister. If $r isomitted, the contentsof all registersexcept floating-point registers are displayed.

Note that the $ symbol isrequired (see“ Registers’ on page 53 for register notation details).

show freg [$fr]

Displays the contents of the floating-point register fr in the current frame. If $fr is omitted,
the contents of all floating-point registers are displayed. Note that the $ symbol is required
(see” Registers’ on page 53 for register notation details).

Lahey/Fujitsu Fortran 95 User’s Guide

Setting and Displaying Program Variables

show regs
Displays the contents of all registers including floating-point registersin the current frame.

show map
Displays the address map.

Setting and Displaying Program Variables

set variable = value
Sets variable to value.

set *addr = value
Sets *addr to value.

set reg = value
Setsreg to value. reg must be aregister or afloating-point register (see” Registers’ on page
53 for register notation details).

print [[:F] variable [= value]]

Displays the content of the program variable variable by using the edit format F. If edit for-
mat F is omitted, it isimplied based on the type of variable. variable can be ascalar, array,
array element, array section, derived type, derived type element, or common block. F can
have any of the following values:

hexadecimal
signed decimal
unsigned decimal
octal

floating-point
character

character string

a address of variable

nw O "0 c o X

If value is specified, the variable will be set to value.

If no arguments are specified, the last print command having arguments is repeated.
memprint [:FuN] addr

dump [:FuN] addr

Displays the content of the memory address addr by using edit format F. u indicates the dis-

play unit, and N indicates the number of units. F can have the same values as were defined
for the Print command variable F.

If omitted, f defaultsto x (hexadecimal -- seeformat descriptionsinpri nt command above).

Lahey/Fujitsu Fortran 95 User’s Guide 61

Chapter 4 Command-Line Debugging with fdb

62

u can have any of the following values:

b onebyte

h two bytes (half word)

w four bytes (word)

| eight bytes (long word/double word)

If uisomitted, it defaultsto w(word). If N isomitted, it defaultsto 1. Therefore, the two fol-
lowing commands have the same resullt:

menprint addr
menprint :xwl addr

Source File Display

show source
Displays the name of the current file.

list now
Displaysthe current line.

list next
Displays the next 10 lines, including the current line. The current line is changed to the last
line displayed.

list previous
Displaysthelast 10 lines, except for the current line. The current line is changed to the last
line displayed.

list around
Displaysthelast 5 lines and the next 5 lines, including the current line. The current lineis
changed to the last line displayed.

list sigaround
Displaysthelast 5 lines and the next 5 lines, including the line of the current file nearest the
address where the signal occurred.

list[* file'] num

Changesfrom the current line of the current file to the line number num of the sourcefilefile,
and displays the next 10 lines, including the new current line. If file is omitted, the current
fileisnot changed. Note that the “apostrophes’ used in “file’, above, are the grave accent
(ascii 96), not the standard apostrophe character.

Lahey/Fujitsu Fortran 95 User’s Guide

Automatic Display

list +|-offset

Displaysthe line forward (+) or backward (-) offset lines from the current line. The current
lineis changed to the last line displayed.

list[* file'] top,bot

Displaysthe source file lines between line number top and line number bot in the source file
file. If fileisomitted, it defaults to the current file. The current lineis changed to the last line
displayed. Notethat the “apostrophes’ used in “file’, above, are the grave accent (ascii 96),
not the standard apostrophe character.

list [func[tion]] procname
Displaysthelast 5 lines and the next 5 lines of the entry point of the procedure procname.

disas
Displays the current machine language instruction in disassembled form.

disas *addrl [,*addr2]

Displays the machine language instructions between address addr 1 and address addr2 in dis-
assembled form. If addr2 is omitted, it defaults to the end of the current procedure that
contains address addr 1.

disas prochame
Displays al instructions of the procedure procname in disassembled form.

Automatic Display

screen [:F] expr
Displaysthe value of expression expr according to format F every time the program stops.

screen

Displaysthe names and values of all expressions set by the screen [:F] expr command above.
Refer to“ print [[:F] variable[= value]]” on page 61 for an explanation of F.

unscreen [#n]

Remove automatic display number n (“#’ symbol required). When #n is omitted, all are
removed.

screenoff [#n]
Deactivate automatic display number n. When #n is omitted, all are deactivated.

Lahey/Fujitsu Fortran 95 User’s Guide 63

Chapter 4 Command-Line Debugging with fdb

64

screenon [#n]
Activate automatic display number n. When #n is omitted, all are activated.

show screen
Displays anumbered list of all expressions set by the screen [:F] expr command above.

Symbols

show function ["regex"]

Display the type and name of all functions or subroutines with a name that matches regular
expression regex (quotation marks required). When regex is omitted, all procedure names
and types are displayed.

show variable ["regex"]
Display thetype and name of all variableswith aname that matches regular expression regex
(quotation marks required). When regex is omitted, all variable names and types are

displayed.

Scripts

script * script’
The commands in file script are executed. Note that the “apostrophes’ used in “script’,
above, are the grave accent (ascii 96), not the standard apostrophe character.

alias cmd "cmd-str”
Assigns the fdb command(s) in cmd-str (quotation marks required) to alias cmd.

alias [cmd]
show alias [cmd]
display the alias cmd definition. When cmd is omitted, all the definitions are displayed.

unalias [cmd]
Remove the alias cmd definition. When cmd is omitted, all the definitions are removed.

Signals

signal sig action
Behavior actionisset for signal sig. Pleaserefer to signal(5) for the name which can be spec-
ified for sig. The possible values for action are:

Lahey/Fujitsu Fortran 95 User’s Guide

Miscellaneous Controls

st op Execution stopped when signal sig encountered
nostop Execution not stopped when signal sig encountered

show signal [sig]
Displaysthe set response for signal sig. If sig is omitted, the response for all signalsis
displayed.

Miscellaneous Controls

param listsize num

The number of linesdisplayed by thel i st commandissetto num. Theinitial (default) value
of numis 10.

param prompt "str"

st r isused as aprompt character string (quotation marks required). The initial (default)
valueis“f db*".

param printarray on|off

When the valueis“on,” the elements of arrays are displayed, one element per ling, in
response to the print command. Theinitial (default) value is “off,” which causes elements
to be displayed as a comma-separated list which wraps around the end of the consol e screen.

param printstructure on|off

Whenthevalueis*on,” the elements of derived types (structures) are displayed, one element
per line, in response to the print command. Theinitial (default) valueis “off.”

param printelements num

Set the number of displayed array elementsto numwhen printing arrays. Theinitial (default)
value is 200. The minimum value of numis 10. Setting numto O implies no limit.

param prm
Display the value of parameter prm.

Files

show exec
Display the name of the current executable file.

Lahey/Fujitsu Fortran 95 User’s Guide 65

Chapter 4 Command-Line Debugging with fdb

param execpath [path]
Add path to the execution file search path. If path is omitted, the value of the search path is

displayed.

param srcpath [path]

Add path to the sourcefile search path when searching for procedures, variables, etc. If path
is omitted, the value of the search path is displayed. Note that this search path can aso be
controlled viathe FDB_SRC_PATH environment variable, which is comprised of alist of
directories separated by colons.

show source
Display the name of the current sourcefile.

show sources
Display the names of all source filesin the program.

Fortran 95 Specific

breakall mdl
Set a breakpoint in all Fortran procedures (including internal procedures) in module mdl.

breakall func
Set a breakpoint in all internal proceduresin procedure func.

show ffile
Displays information about the files that are currently open in the Fortran program.

show fopt
Display the runtime options specified at the start of Fortran program execution.

Memory Leak Detection

param leak off | mem | all
Controls level of memory leak checking, where the level is determined as follows:

of f No leak checking (default).

mem Memory manipulation functions and statements (such as ALLOCATE, DEAL-
LOCATE, mallac, free, and memcpy) are checked.

al | Character string system procedures are checked, in addition to those checked by
the memoption.

66 Lahey/Fujitsu Fortran 95 User’s Guide

Processes and Threads

param leak
Reports current level of leak checking.

show leak log | error | summary
Displays memory leak information, where the type of information displayed is as follows:

| og Displays procedures being monitored, in the order that they are called.
error Displays error messages.
summary Summary information only.

Processes and Threads

ps [pid]
Displays information about process-id pid. If pid isnot specified, then information is dis-
played for all process-id’s.

Restrictions

1 Anadjustablearray that isadummy argument cannot be debugged if it appearsat the
beginning of a procedure or afunction in a Fortran program.

Example:

subroutine sub(x,y,i)
real x(5:i)
real y(i+3)

In this example, adjustable arrays"x" and "y" cannot be debugged at the subroutine
statement.

2 The dummy argument of amain entry cannot be debugged at the sub-entry in a For-
tran program.

Example:

subroutine sub(a,b)
entry ent(b)

In this example, the dummy argument "b" which isin the main entry's argument list,
but not in the sub-entry's argument, cannot be debugged at the sub-entry "ent". How-
ever, the dummy argument "b", which is passed to the sub-entry "ent", can be
debugged.

3 Breakpoints cannot be set at any executable statements of an include file in Fortran
programs.

Lahey/Fujitsu Fortran 95 User’s Guide 67

Chapter 4 Command-Line Debugging with fdb

68

4

An array of an assumed size can be debugged only for the lower bound of the array
in a Fortran program.

The statement label in a Fortran program cannot be debugged.

In a Fortran program, the breakpoint you can make at the beginning of a procedure
may vary in cases where the -g or --chk option is specified.

Ininclude files that contain expressions in Fortran and C, programs cannot be
debugged.

If you want to set a break point in the main procedure which has no program state-
ment in a Fortran program, the break point is set at the first executable statement or
declare statement.

When in the Fortran program the continue statement has no instruction, even if you
want to set abreak point at this statement, the break point isset at the next executable
Statement.

Example:
integer :: i
assign 10
10 conti nue
i =1
A break point set at the continue statement will break at the next executable state-
ment (i = 1).

10 Theindex name of the FORALL statement in aFortran program cannot be debugged.

11 In Fortran, a name exceeding 2048 bytes cannot be displayed.

12 In Fortran, the value of floating-point registers cannot be displayed or set."

Lahey/Fujitsu Fortran 95 User’s Guide

Multi-Processing
(PRO version only)

This chapter describes the method of processing a Fortran programin parallel. Processing a
Fortran program in parallel is called multi-processing.

Overview of Multi-Processing

Inthisdocument, multi-processing meansthat one program is executed on two or more CPUs
that can work independently and ssmultaneously. As used here, it does not mean executing
two or more programs simultaneously. Consider the following code:

doi =1, 50000
a(i) = b(i) + c(i)

end do

Different iterations of the DO loop are executed on different CPUs at the same time.

CPU 1

do il =1, 25000
a(il) = b(i1l) + c(il)

end do
CPU 2:

do i2 = 25001, 50000
a(i2) =b(i2) + c(i2)

end do

Lahey/Fujitsu Fortran 95 User’s Guide 69

Chapter 5 Multi-Processing (PRO version only)

70

Performance Improvement

The effect of multi-processing isto save elapsed execution time by using two or more CPUs
simultaneoudly. For instance, if aDO loop can be executed in parallel by dividing it asshown
above, then, theoretically, the execution time of this DO loop may be cut in half. In practice,
improving performance requires some care and some work on the part of the programmer, as
explained in the next section.

Although the elapsed time usually will be decreased by multi-processing, thetotal CPU time
required to execute the program may increase. Thisis because thetotal CPU timeisat least
as large as the CPU time when the program is executed on a single processor, and the over-
head time for multi-processing may increase the total CPU time.

Impediments to Improvements

Speed improvements from multi-processing using LF95 PRO come from splitting up loops
among the available processors. Impediments to performance improvements include the
following:

» Overhead for initiating and managing threads on secondary processors.
» Lack of large arrays and loops operating on them.

* |/Ointensive rather than computationally intensive programs.

» Potential for incorrect results.

e Other unparallelizable loops.

These impediments are discussed in the sections below.

Overhead

Timeis spent whenever your program starts up or shuts down athread (a separate stream of
execution) on asecondary processor. Thistime can outweigh thetime gained by running part
of the code on a secondary processor if the work to be done on that processor is not
significant.

Lack of Large Arrays

If your program does not spend the bulk of itstime in computationally intensive loops then
there is not adequate work to divide among the processors. Y our program will likely run at
least as fast without parallelization. For example, if half of your program’stimeis spent in
parallelizable loops then the best time savings you can expect by parallelization on two pro-
cessorsis25%. If your program takestwo minutesto run serially, and half of itstimeisspent
in parallelizable loops, then the theoretically optimal parallel run time is one minute and
thirty seconds.

Lahey/Fujitsu Fortran 95 User’s Guide

Hardware for Multi-Processing

I/O Intensive Programs

If your program spends much of itstime reading or writing files or waiting for user input then
any speed increase due to parallelization will likely be dwarfed by the time spent doing 1/0.
Y our program will likely not show a significant performance improvement.

Potential for Incorrect Results

Certain loops can be analyzed sufficiently to be parallelized by the compiler without input
from the programmer. However, many loops have data dependencies that would prevent
automatic parallelization because of the potential for incorrect results. For that reason, LF95
PRO includes optimization control lines (see* Optimization Control Line” on page 77) and
OpenMP directives (see “ OpenMP” on page 89), with which the programmer can provide
the information necessary for the compiler to parallelize otherwise unparallelizable loops.

Other Unparallelizable Loops

Some |oops cannot be parallelized for other reasons discussed later in this chapter. Some-
timesrecoding aloop to move a statement or group of statements outside the loop will allow
that loop to be parallelized.

Hardware for Multi-Processing

A computer environment with two CPUs that operate independently and simultaneously is
necessary to save el apsed time by multi-processing. A multi-processing program can be exe-
cuted on hardware with only asingle CPU; however, the elapsed time will not be less than
the execution time for a comparable program written without multi-processing features.

Automatic Parallelization

With automatic parallelization, DO loops and array operations are parallelized without the
programmer making any modificationsto the program. This makesit easy to migrate source
programs to other processing systems as long as the program conforms with the Fortran
standard.

Compiler Options for Automatic Parallelization

There are four compiler options for automatic parallelization. They are --parallel, --threads,
--threadstack, and --ocl. These options are documented in “ Compiler and Linker Options’
on page 14.

Environment Variables
The following section details the various environment variables that can be set to alter the
way a parallel program executes.

Lahey/Fujitsu Fortran 95 User’s Guide 71

Chapter 5 Multi-Processing (PRO version only)

72

Environment Variable PARALLEL

When the environment variable PARALLEL is set, itsvalue must belessthan or equal to the
number of CPUs active at run-time. (It is called the number of active CPUs.)

Note:

If --threads is specified during compilation, the value of PARALLEL must be equal to the
argument to --threads and the number of active CPUs must be greater than or equal to the
argument to --threads. If the environment variable PARALLEL is not set, the argument to
--threads. must be the same as the number of active CPUs.

Environment Variable THREAD_STACK_SIZE

When the environment variable THREAD_STACK_SIZE isset, it setsthe stack sizein Kilo-
bytes for each thread stack. Local variablesin DO loops and array operations are allocated
onthestack. You may needto extend the stack sizeif there are many of theselocal variables.
The default stack size for each thread is the same as that of the executable. The compiler
option --threadstack and environment variable THREAD_STACK_SIZE can change the
stack size of each thread. The compiler option --threadstack takes precedence over the envi-
ronment variable THREAD_STACK_SIZE.

Examples of Compilation and Execution
%1f95 --info --parallel --ocl testl.f
% a. out

In example above, automatic parallelization and optimization control lines (OCLS) arein
effect during compilation. This program is executed using all active CPUs on the machine.

%1f95 --parallel test2. f

5001-i: "test2.f", line 2: DO loop with index i parallelized.
% setenv PARALLEL 2

% a. out

% setenv PARALLEL 4

% a. out

In this second exampl e, the environment variable PARALLEL is set to 2 and the program
executes with two CPUs. Next, the environment variable PARALLEL is set to 4 and the pro-
gram executes with four CPUs.

Details of Multi-Processing
This section describes multi-processing in more detail.

Targets for Automatic Parallelization

Target statements of the automatic parallelization are DO loops (including nested DO loops)
and array operations (array expressions and array assignments).

Lahey/Fujitsu Fortran 95 User’s Guide

Details of Multi-Processing

Loop Slicing
Automatic paralelization may slicea DO loop into several pieces. The elapsed execution
time is reduced by executing the sliced DO loopsin parallel.

do i =1, 50000
a(i) = b(i) + c(i)

end do
Different iterations of the DO loop can be executed on different CPUs at the same time.
CPU 1.

do il =1, 25000
a(il) = b(il) + c(il)
end do

CPU 2:

do i 2 = 25001, 50000
a(i2) =b(i2) + c(i2
end do

Array Operations and Automatic Parallelization
Automatic parallelization al so targets statements with array operations (array expressions
and array assignments).

i nteger a(1000), b(1000)
a=a+hb

Half of the operations are made on one CPU and half are made on the other.
CPU 1

a(1:500) = a(1:500) + b(1:500)
CPU 2:

a(501: 1000) = a(501:1000) + b(501: 1000)

Automatic Loop Slicing by the Compiler

LF95 parallelizesa DO loop if the order of data references will be the same as with serial
execution. LF95 assures that the result of a multi-processing program is the same as if the
program were processed serially.

The next exampleisa DO loop that is not amenable to loop slicing. In this DO loop, when
the DO variable | is 5001, it is necessary to have the value of array element A(5000).

do i = 2,10000
a(i) = a(i-1) + b(i)
end do

The following loop slicing cannot happen with the code above:

Lahey/Fujitsu Fortran 95 User’s Guide 73

Chapter 5 Multi-Processing (PRO version only)

74

CPU 1

do i = 2,5000
a(i) = a(i-1) + b(i)
end do

CPU 2:

do i = 5001, 10000
a(i) = a(i-1) + b(i)
end do

A(5000) is not available to CPU2 and the loop will not be sliced

Loop Interchange and Automatic Loop Slicing

When anested DO loop is sliced, LF95 attempts to parallelize the outermost loop if it can.
LF95 selectsa DO loop that can be sliced and interchanges it with the outermost possible
loop. The purpose of thisisto reduce the overhead of multi-processing and improve execu-
tion performance.

The next figure shows an exampl e of loop interchange for anested loop. Itispossibletoslice
the inner loop with control variable J. The frequency of multi-processing control can be
reduced by interchanging it with the outer loop.

do i = 2, 10000
doj =1, 10
a(i,j) =a(i-1,j) + b(i,j)
end do
end do

With loops interchanged, this becomes:

doj =1, 10
do i = 2, 10000
a(i,j) =a(i-1,j) + b(i,j)
end do
end do

When parallelized, this becomes:

CPU 1:
doj =1, 5
doi =2, 10000
a(i,j) =a(i-1,j) + b(i,j)
end do
end do
CPU 2:

Lahey/Fujitsu Fortran 95 User’s Guide

Details of Multi-Processing

doj =6, 10
do i =2, 10000
a(i,j) =a(i-1,j) + b(i,j)
end do
end do

Loop Distribution and Automatic Loop Slicing

In the next example, the referencesto array A cannot be sliced, because the order of dataref-
erences would be different from the data reference order in serial execution. Array B can be
dliced, because the order of datareferencesisthe same asfor serial execution. For thiscase,
the statement where array A is defined and the statement where array B is defined are sepa-
rated into two DO loops, and the DO loop where array B is defined is parallelized.

do i =1, 10000
a(i) = a(i-1) + c(i)
b(i) = b(i) + c(i)
end do

With the loop distributed this becomes:

doi =1, 10000
a(i) = a(i-1) + c(i)
end do

doi =1, 10000
b(i) = b(i) + c(i)

end do

The second loop is then parallelized:

CPU 1

CPU 2:

doi =1, 5000
b(i) = b(i) + c(i)

end do

do i = 5001, 10000
b(i) = b(i) + c(i)
end do

Loop Fusion and Automatic Loop Slicing

In the next example, there are DO loops in sequence having the same DO loop control. In
this case, the overhead of the DO loop control and the frequency of multi-processing control
can be reduced by merging those two loops into a single loop.

Lahey/Fujitsu Fortran 95 User’s Guide 75

Chapter 5 Multi-Processing (PRO version only)

doi =1, 10000
a(i) = b(i) + c(i)

end do

doi =1, 10000
d(i) = e(i) + f(i)

end do

With loops fused this becomes:

do i =1, 10000
a(i) = b(i) + c(i)
d(i) = e(i) + f(i)
end do

When parallelized, this becomes:
CPU 1.

doi =1, 5000
a(i) = b(i) + c(i)
d(i) = e(i) + (i)

end do

CPU 2:

do i = 5001, 10000
a(i) = b(i) + c(i)
d(i) = e(i) + f(i)

end do

Loop Reduction

L oop reduction slices the DO loop, changing order of the operations (addition and multipli-
cation, etc.). Note that loop reduction may cause small differencesin execution results.

L oop reduction optimization is applied if thereis one of the following operations in the DO
loop:

e SUM: S=S+A(Il)

* PRODUCT: P=P*A(l)

» DOT PRODUCT: P=P+A(1)*B(1)
¢ MIN: X=M N(X, A(1))

o« MAX: Y=MAX(Y, A(1))

¢« OR: N=N.OR A(l)

« AND: M=M AND. A(1)

The next example shows loop reduction and automatic loop dicing.

76 Lahey/Fujitsu Fortran 95 User’s Guide

Optimization Control Line

sum= 0

doi =1, 10000
sum = sum + a(i)

end do

Parallelized becomes:
CPU 1:

0
doi =1, 5000
= sunl + a(i)

CPU 2:

5001, 10000
sun? = sun + a(i)

The partial sums are added:

sum = sum + suml + sun®

Restrictions on Loop Slicing
The following types of DO loop are not targets for loop slicing.

1. Loopswhereitisforecast that the elapsed time would not be reduced.

The loop contains operations of atype not suitable for loop dlicing.

The loop contains a procedure reference.

The loop istoo complicated.

The loop contains an 1/0O statement.

L oops where the order of data references would be different from that of serial
execution.

Ok WD

Debugging
Multi-threaded programs cannot be debugged using fdb.

Optimization Control Line

LF95 PRO offers an optimization control line (OCL) feature that hel ps automatic paralleliza-
tion. The optimization control lineisused by the programmer to identify constructsthat may
be executed in parallel. Because OCLsare in Fortran comments, programs with OCLs can
still be standard-conforming and can be compiled with other compilers that do not support
OClLs.

The optimization control lines (OCL s) take effect when both --parallel and --ocl options are
specified.

Lahey/Fujitsu Fortran 95 User’s Guide 77

Chapter 5 Multi-Processing (PRO version only)

78

Optimization Control Specifier
The optimization control lines (OCL s) have several functions depending on the optimization
control specifier.

Syntax of OCL
Columns 1-5 of an optimization control line (OCL) must be "!OCL ". One or more optimi-
zation control specifiersfollow.

IOCL i [i]

where each i is an optimization control specifier, either SERIAL, PARALLEL, DISJOINT,
TEMP, or INDEPENDENT (see“ Optimization Control Specifier” on page 78).

Position of OCL
The position of the OCL depends on the optimization control specifier.

The OCL for automatic parallelization must occur at atotal-position or loop-position. Total-
position and loop-position are defined as follows:

» Total-position: the top of each program unit.

» Loop-position: immediately beforeaDO loop. However, more than one OCL may
be specified at |oop-position and comment lines may be specified between the OCL s
and the DO loop.

locl serial <--------ommmonann- total -position
subroutine sub(b, c, n)
i nteger a(n), b(n), c(n)

doi =1, n
a(i) = b(i) + c(i)
end do
print*, fun(a)
locl parallel <---------n-m---- | oop-posi tion
doi =1, n
a(i) =b(i) * c(i)
end do
print*, fun(a)
end

Automatic Parallelization and Optimization Control Specifiers

An optimization control specifier becomesineffective for aDO loop that is not atarget of
loop dlicing, even if the optimization control specifier for automatic parallelization is
specified.

Optimization Control Specifiers
The following optimization control specifiers are used to enhance automatic parallelization:

» SERIAL

Lahey/Fujitsu Fortran 95 User’s Guide

Optimization Control Line

« PARALLEL

» DISIOINT

« TEMP

» INDEPENDENT

SERIAL
The SERIAL specifier is used to inhibit DO loop dlicing.

For instance, if the programmer knows that serial execution of a DO loop is faster than par-
allel execution, perhaps because the iteration count will always be small, the programmer
may specify the SERIAL specifier for the DO loop.

Syntax:
I0CL SERIAL

The SERIAL specifier may be specified at the loop position or the total position. The effect
of SERIAL depends on its position.

» Attheloop position

SERIAL inhibitsloop slicing for the DO loop (including any nested 1oops) corresponding to
the OCL.

» Atthetotal position
SERIAL inhibits loop slicing for al loops in the program unit containing the OCL.

In the following program, if loop 2 should not be dliced, loop slicing can be disabled by spec-
ifying SERIAL.

the letter p on the left side of the source program marks the parallelized statements.

p doj =1, 10

p doi =1, | [loop 1
p al(i,j) =al(i,j) + bl(i,j)

p cl(i,j) = cl(i,j) + di(i,j)

p el(i,j) =-el(i,j) + f1(i,j)

p g1(i,j) = 91(i,j) + hi(i,j)

p end do

p end do

p do j=1, 10

p doi=1, m ! <------u----- | oop 2
p az(i,j) =az2(i,j) + b2(i,j)

p c2(i,j) =c2(i,j) + d2(i,j)

p e2(i,j) =e2(i,j) +f2(i,j)

p 92(i,j) =92(i,j) + h2(i,j)

p end do

p end do

Lahey/Fujitsu Fortran 95 User’s Guide 79

Chapter 5 Multi-Processing (PRO version only)

p do j=1, 10
p doi=1, n ! <------------ | oop 3
p a3(i,j) =a3(i,j) + b3(i,j)
p c3(i,j) = c3(i,j) + d3(i,j)
p e3(i,j) =e3(i,j) + f3(i.j)
p 93(i,j) = 93(i,j) + h3(i,j)
p end do
p end do
p doj =1, 10
p doi =1, | e loop 1
p al(i,j) =al(i,j) + bl(i,j)
p cl(i,j) = cl(i,j) + di(i,j)
p el(i,j) =el(i,j) + f1(i,j)
p g1(i,j) = 91(i,j) + h1(i,j)
p end do
p end do
locl serial
doj =1, 10
doi =1, m ! <------------ | oop 2
az2(i,j) =a2(i,j) + b2(i,j)
c2(i,j) =c2(i,j) + d2(i,j)
e2(i,j) =e2(i,j) + f2(i,j)
92(i,j) = 92(i,j) + h2(i,j)
end do
end do
p doj =1, 10
p doi =1, n <-------------- l oop 3
p a3(i,j) =a3(i,j) + b3(i,j)
p c3(i,j) = c3(i,j) + d3(i,j)
p e3(i,j) =e3(i,j) + f3(i.j)
p g3(i,j) = 93(i.j) + h3(i,j)
p end do
p end do
PARALLEL
The PARALLEL specifier isused to reverse the effect of the SERIAL specifier and enables
loop dlicing.

Syntax:
IOCL PARALLEL

The PARALLEL specifier can be placed at the loop position or the total position.
The effect of PARALLEL depends on its position.
» Attheloop position

80 Lahey/Fujitsu Fortran 95 User’s Guide

Optimization Control Line

PARALLEL alowsloop slicing for the DO loop (and any nested |oops) corresponding to the
OCL.

» Atthetotal position
PARALLEL alowsloop dicing for al loopsin the program containing the OCL.

In thefollowing example, if only loop 2 should be sliced, it can be sliced by specifying PAR-
ALLEL together with SERIAL as shown.

The letter P on the left side of the source program marks the parallelized statements.

locl serial <------------ total position
doj =1, 10
doi =1, | S L loop 1
al(i,j) = al(i,j) + bl(i,j)
cl(i,j) =c1(i,j) + di(i,j)
el(i,j) =el(i,j) + f1(i,j)
g1(i,j) = 91(i,j) + h1(i,j)
end do
end do

locl parallel

p doj =1, 10
p doi =1, m | <----m-mnn-- | oop 2
p az(i,j) =az2(i,j) + b2(i,j)
p c2(i,j) =c2(i,j) + d2(i,j)
p e2(i,j) =e2(i,j) + f2(i,j)
p 92(i,j) =92(i,j) + h2(i,j)
p end do
p end do
doj =1, 10
doi =1, n [S | oop 3
a3(i,j) =a3(i,j) + b3(i,j)
c3(i,j) =c3(i,j) + d3(i,j)
e3(i,j) =e3(i,j) + f3(i,j)
g3(i,j) =93(i,j) + h3(i,j)
end do
end do
DISJOINT

The DISJOINT specifier indicates that the order of data references (referencesto arraysin
the DO loop) is the same whether executed serially or in parallel.

Asaresult, it ispossible to slice a DO loop that would not be sliced otherwise because the
compiler would be unable to determine the order of data references.

Lahey/Fujitsu Fortran 95 User’s Guide 81

Chapter 5 Multi-Processing (PRO version only)

82

Syntax:
IOCL DISIOINT [(al.a]...)]

Here, "a" isthe array name for which loop dlicing is possible. A wild-card specificationis
usablein"a". If thearray nameisomitted, DISJOINT becomeseffectivefor al arrayswithin
therange of the DO loop. See" Wild Card Specification” on page 85 for the wild-card syntax.

The DISJOINT specifier can be placed at the loop position or the total position.
The effect of DISIOINT depends on its position.
» Attheloop position

DISIOINT promotesloop dlicing for the DO loop (and all nested 1oops) corresponding to the
OCL.

» Atthetotal position

DISIOINT promotes loop slicing for all loops in the program unit. Consider the following
code:

doj =1, 1000
doi =1, 1000
a(i,1(j)) =a(i,1(j)) + b(i,j)
end do
end do

Because the subscript expression of array A isanother array element L(J), the system cannot
determine whether there isa problem if array A isdliced. Therefore, this system does not
dice the outer DO loop.

If the programmer knows that thereisno problem if array A is sliced, the outer DO loop will
be sliced if DISJOINT is used as shown in the example below.

The letter P shown on the | eft side of the source program marks the parallelized statements.

locl disjoint(a)

p doj =1, 1000

p doi =1, 1000

p a(i,1(j)) =a(i,1(j)) +b(i,j)
p end do

p end do

Note:
If an array which cannot be sliced is marked DISJOINT by mistake, LF95 may perform an
incorrect loop dicing and the program results may be incorrect.

TEMP
The TEMP specifier is used to indicate to the system that the variables listed are used tem-
porarily in the DO loop.

As aresult, the execution performance of the parallelized DO loop can be improved.

Lahey/Fujitsu Fortran 95 User’s Guide

Optimization Control Line

Syntax:
IOCL TEMP[(s[,9]..)]

Here, "s' isavariable name used temporarily in aDO loop. A wild card specificationis
usablein"s". If the variable name is omitted, TEM P becomes effective for all scalar vari-
ables within the range of the DO loop. See* Wild Card Specification” on page 85 for the
wild-card syntax.

The TEMP specifier can be placed at the loop position or the total position.
The effect of TEMP depends on its position.
» Attheloop position

TEMP indicates that the variables in the DO loop corresponding to the OCL are temporary
variables.

» Atthetotal position

TEMP indicates that the variables of al loops in the program unit containing the OCL are
temporary variables.

In the example below, because T isacommon variable, LF95 must assume that variable T is
referenced in subroutine SUB evenif T isused only inthe DO loop. LF95 adds code to guar-
antee that T has the correct value at the end of the parallelized DO loop.

The letter P shown on the | eft side of the source program marks the parallelized statements.

comon t
p doj =1, 50
p doi =1, 1000
p t =a(i,j) + b(i,j)
p c(i,j) =t +d(i,j)
p end do
p end do

call sub

If the programmer knows that the value of T at the end of the DO loop is not needed in sub-
routine SUB, the programmer may specify the TEMP specifier with T as shown in the
following code. Asaresult, the execution performance improves, because the instruction
which corrects the value of T becomes unnecessary at the end of the DO loop.

Lahey/Fujitsu Fortran 95 User’s Guide 83

Chapter 5 Multi-Processing (PRO version only)

84

comon t
locl tenp(t)
p doj =1, 50
p doi =1, 1000
p t =a(i,j) +b(i,j)
p c(i,j) =t +d(i,j)
p end do
p end do
call sub

Note:
If avariable that isnot used temporarily is described in a TEMP specifier by mistake, LF95
may do an incorrect loop slicing and the program results may be incorrect.

INDEPENDENT

The INDEPENDENT specifier isused to indicate to LF95 that parallel execution isthe same
asserial execution even if aprocedureiscaled inthe DO loop. Asaresult, the DO loop that
contains the procedure is suitable for loop dicing.

Syntax:
IOCL INDEPENDENT [(e[.€].-)]

Here, "€" is aprocedure name which does not inhibit loop dicing. The wild card specifica-
tionisusablein "e". If the procedure name is omitted, INDEPENDENT becomes effective
for all procedures within the range of the DO loop. See* Wild Card Specification” on page
85 for wild card specification.

Note that the procedure e must be compiled with the --parallel option.

The INDEPENDENT specifier can be placed at the loop position or the total position.
The effect of INDEPENDENT depends on its position.

» Attheloop position

INDEPENDENT allowsloop dicing for the DO loop (and all nested |oops) corresponding to
the OCL.

» Atthetotal position

INDEPENDENT alowsloop dlicing for al loopsin the program containing the OCL. Con-
sider the following code:

Lahey/Fujitsu Fortran 95 User’s Guide

Optimization Control Line

doi =1, 10000
j o=
a(i) = fun(j)
end do
end

function fun(j)
fun = sqrt(real (j **2+3*j +6))
end

In the program above, because the procedure"FUN" iscalled in the DO loop, the system can-
not determine whether the DO loop can be parallelized.

If the programmer knows that there is no problem even if the DO loop which contains the
reference to the procedure "FUN" is sliced, the DO loop can be diced by using INDEPEN-
DENT as shown in the code below.

The letter P shown on the | eft side of the source program marks the parallelized statements.

locl independent (fun)

p doi = 1,1000
p jo= .
P a(i) = fun(j)
p end do

end

function fun(j)

fun = sqrt(real (j**2+3*] +6))

end
Note:
If aprocedure that cannot be sliced isdescribed in an INDEPENDENT specifier by mistake,
LF95 may perform an incorrect loop slicing and program results may be incorrect.

Wild Card Specification
In the operand of the foll owing optimization control specifiers, awild card may be specified
for avariable name or a procedure name;

* DISIOINT
« TEMP
» INDEPENDENT

Thewild card specification is acombination of the specia wild card characters and al phanu-
meric characters. Theeffect isthe sameas specifying all of the variable namesand procedure
names that agree with the wild card expression. There aretwo wild card characters, "*" and
"?', and they match the following character strings.

» "*" matches any character string of one or more al phanumeric characters.

Lahey/Fujitsu Fortran 95 User’s Guide 85

Chapter 5 Multi-Processing (PRO version only)

86

e "?'" matches any single alphanumeric character.
A wild card specification cannot contain more than one wild card character.
locl tenmp(w)

In this example, w* matches any variable beginning with w and having a length of two or
more characters. For example, the variable nameswor k1, w2, and wor k3 areincluded in this
specification.

locl disjoint(a?)

Inthisexample, a? matches any two-character array namewhich hasa for thefirst character.
For example, the array names al, a2, and aa are included in this specification. The array
name abc is not included in this specification because its length is not two.

locl independent (sub?)

Inthisexample, sub? matchesany four-character procedure namewhosefirst three character
are sub. For example, procedure names subl, sub2, and sub9 are included in this
specification.

Notes on Parallelization
This section explains some specifics about the parallelization facility.

--threads

When the number of CPUs executed in parallel is specified by the --threads compiler option,
the argument to --threads must have the same value as the value of the PARALLEL environ-
ment variable. If the PARALLEL environment variableis not set, the value of the argument
to --threads must be the same value as the number of CPUs active at run-time.

The example below shows an invalid use of the --threads compiler option when the number
of active CPUsisfour. If aninvalid value for --threads is specified, execution results may
be incorrect.

Inthe following incorrect example, the value of N and the value of PARALLEL aredifferent.

% setenv PARALLEL 2
%1f95 --parallel --threads 4 a.f

In the following example, execution results may beincorrect if the number of active CPUsis
not equal to two.

%1f95 --parallel --threads 2 a.f

Multi-Processing of Nested DO Loops

If thereisaparallelized DO loop in aprocedurethat is called from within another parallelized
DO loop, anest of parallelized DO loopsis generated. A program that contains such DO
loops must not be compiled with the --threads compiler option.

Lahey/Fujitsu Fortran 95 User’s Guide

Notes on Paralldization

Thefollowing is an example in which the parallelized DO loop should be executed serially.
If a source program that contains such DO loops is compiled with the --threads compiler
option, the result may be incorrect.

file: a.f
locl independent (sub)
doi = 1,100 S executed in parall el

o=
call sub(j)
end do

end
subrouti ne sub(n)

doi =1, 10000 ! < ----- shoul d be executed serially
a(i) =1/ b(i)**n

end do

end

The result may beincorrect if the source program a. f is compiled as follows.
%1f95 --parallel --threads 4 a.f (invalid use)

To prevent such a mistake, specify the optimization control line! OCL SERI AL in the proce-
dure that is called from within the parallelized DO loop.

locl serial
subrouti ne sub(n)

do i = 1,10000

a(i) =1/ b(i)**n
end do
end

Loop Reduction Effects

When --parallel is specified as a compiler option, the result of execution may be different
from the result of serial execution. The reason for thisisthat as aresult of loop reduction,
the operation order may be different between the parallel execution and the serial execution.

The following illustrates the loop reduction optimization.

sum= 0

doi =1, 10000
sum = sum + a(i)

end do

When parallelized, this becomes:
CPU 1

Lahey/Fujitsu Fortran 95 User’s Guide 87

Chapter 5 Multi-Processing (PRO version only)

88

sunl = 0
doi =1, 5000

sunl = sunl + a(i)
end do

CPU 2:

sung = 0

do i 5001, 10000
sun = sun + a(i)

end do

Then the partial sums are added:

sum = sum + suml + sun®

The variable SUM accumulates the values A(1) to A(10000) in order with serial execution.
In parallel execution, SUM1 accumulates the values A(1) to A(5000), and SUM2 accumu-
lates the values A(5001) to A(10000) at the sametime. After that, the sum of SUM1 and
SUM2 is added to SUM.

L oop reduction optimization may cause a side effect (a different result due to rounding) in
the execution result, because the order of adding the array elementsis different between par-
allel execution and serial execution.

Invalid Usage of Optimization Control Line

The following program specifies DISJOINT by mistake for array A. The execution result
will beincorrect when array A is sliced, because the order of the datareferencesfor array A
is different from the order of datareferencesfor seria execution.

locl disjoint(a)
do i = 2,10000
a(i) = a(i-1) + b(i)
end do

Thefollowing program specifies TEMP by mistake for variable T. The correct value will not
be assigned to variable| ast , because LF95 does not guarantee a correct value of variable T
at the end of the DO loop.

locl tenp(t)
doi =1, 1000
t =a(i) + b(i)
c(i) =t + d(i)
end do
last =t

The following program specifies | NDEPENDENT by mistake for procedure SUB. The execu-
tion result may beincorrect when array A is dliced, because the order of the data references
for array A isdifferent from the data references for serial execution.

Lahey/Fujitsu Fortran 95 User’s Guide

OpenMP

comon a(1000), b(1000)
locl independent (sub)
doi =2, 1000
a(i) =b(i) + 1.0
call sub(i-1)
end do
end
subroutine sub(j)
comon a(1000)
a(j) =a(j) +10
end

Multi-processing I/O Statements and Intrinsic Procedure References

If thereis an I/O statement, an intrinsic subroutine or function reference that is not suitable
for loop dlicing in a procedure that is called in a paralelized DO loop, execution of the pro-
gram will produce incorrect results. The execution performance of the multi-processing
program may decrease due to the overhead of parallel execution. Also, the result of the I/O
statement may be different from the result of serial execution.

Thefollowing isan examplein which an I/O statement occursin aprocedurethat iscalled in
aparallelized DO loop.

file: a.f
I'ocl independent (sub)
doi =1, 100
=i
call sub(j)
end do

end
recursive subroutine sub(n)

print*, n

end

OpenMP

The compiler supports OpenMPv.2.0 directives. Thissection describesparall€elization using
OpenMP. Refer tothe OpenM P Fortran specification included with LF95 in PDF format for
non-implementati on-specific information on OpenMP. Thefollowing websiteincludes com-
prehensive information on OpenMP:

http://ww. opennp. or g/

Lahey/Fujitsu Fortran 95 User’s Guide 89

Chapter 5 Multi-Processing (PRO version only)

90

It is assumed that the reader has an understanding of OpenMP. LF95'simplementation of
OpenMP is described below.

Compilation

There are three compiler options for OpenMP parallelization. They are --openmp,
--threadstack, and --threadheap. These options are documented in “ Compiler and Linker
Options” on page 14.

Environment Variables

OpenMP specifies anumber of environment variables, which are described in the OpenMP
documentation at ht t p: / / www. opennp. or g. Along with the OpenM P environment vari-
ables, thisimplementation has:

FLIB_FASTOMP={ true | false }
If the environment variable FLIB_FASTOMPis present and set to true or 1, the compiler will
link with high-speed runtime libraries optimized for OPENMP..

FLIB_SPINWAIT=wait_time
The user can specify the mode of waiting threads using the environment variable
FLIB_SPINWAIT.

wait_time denotes how long to wait before suspending the thread, and i s specified in seconds
by appending the letter “s” to wait_time, or is specified in milliseconds by appending the | et-
ters“ms’ towait_time. wait_time may also havethevalueunl i ni t ed, which isthe default
value. If thevalue of wait_timeisunl i m t ed, thewaiting thread is never suspended. If the
value of wait_timeis 0, the waiting thread isimmediatelty suspended. Use of alarge or

unl i m t ed wait_time will result in afaster elapsed time for program execution, but will
cause the total CPU time consumed to increase.

THREAD_STACK_SIZE=num
The user can specify the size of stack for each thread using the environment variable
THREAD_STACK_SIZE.

num is a number in the range 16 < num < 2048.

The --threadstack compiler option overrides this environment variable.

Implementation Specifications

This section gives details on features that are left processor-dependent by the OpenM P spec-
ification along with other specifications and restrictions.

Nesting of Parallel Regions
Nesting of parallel regionsis supported.

Lahey/Fujitsu Fortran 95 User’s Guide

I mplementation Specifications

Dynamic Thread Adjustment Features
Dynamic thread adjustment features are supported, and are on by default.

Number of Threads
The number of threads for OpenMP is decided with the following priority.

1 OMP_SET NUM_THREADS service routine
2 Environment variable OMP_NUM_THREADS
3 Environment variable PARALLEL

4 Onethread

SCHEDULE Clause
If the SCHEDULE Clause is omitted, the default is SCHEDULE(STATIC).

OMP_SCHEDULE Environment Variable

When the OMP_SCHEDULE environment variable is omitted, a DO directive or PARAL-
LEL DO directive having the schedule type RUNTIME will default to
SCHEDULE(STATIC).

ASSIGN and Assigned GO TO Statements

An ASSIGN statement within an OpenMP block cannot refer to a statement label that is out-
side of the OpenMP directive block. Also, a statement label in an OpenMP directive block
cannot bereferred to by an ASSIGN statement that is outside of the OpenM P directive block.

Jumping into or out of adirective block area using an assigned GO TO statement is not
supported.

Additional Functions and Operators in ATOMIC directive and REDUCTION
Clause

Thefollowing intrinsic functions and operators can be specified in an ATOMIC directive or
REDUCTION clause.

Intrinsic functions : AND, OR
Operators . XOR,, .EOR.

FORALL construct
InaFORALL construct, OpenMP directives cannot be used.

THREADPRIVATE

When using the THREADPRIVATE directive, a given common block must be defined the
samein al program units. A common block specified as THREADPRIVATE cannot have
its size extended.

Lahey/Fujitsu Fortran 95 User’s Guide 91

Chapter 5 Multi-Processing (PRO version only)

IF Clause for PARALLEL Directive

When the |F clause for aPARALLEL directiveis not true, the PARALLEL directiveis
ignored. Therefore, no team of threads is created. However, the PARALLEL directive
remains in effect.

Inline Expansion
The following procedures are not inline expanded.

e User-defined procedures that include OpenM P Fortran directives.
» User-defined procedure that are referred to in OpenMP directives.

Internal Procedure Calling from Parallel Region

A variableinthe host procedurereferenced in an internal procedurethat iscalledinaparallel
regionisregarded as SHARED eveniif it is privatized in the paralléel region.

i =1 ! this i is shared
!'$omp paral lel private(i)
i =2 ' i is private
print*, i ' i is private
call proc ' i is private
1'$onp end parallel
cont ai ns
subroutine proc()
: ' i is shared
print*, i ! i is shared
: ' i is shared

end subroutine

DO Variable for Serial DO Loop in Parallel Region

When the DO variable of aserial DO loop within aparallel regionis marked as"SHARED",
it is privatized in the scope of the DO loop.

! $onp paral l el shared(i)

i =1 ' i is shared
doi =1, n ' i is private

: ' i is private
end do ' i is private
print*, i ! i is shared

1'$onp end parallel

92 Lahey/Fujitsu Fortran 95 User’s Guide

I mplementation Specifications

!'$omp paral lel private(i)

i =1 ' i is private
doi =1, n ' i is private

: ' i is private
end do ' i is private
print*, i ' i is private

!'$omp end parall el

Statement Function Statement
A variable that appearsin a statement function statement cannot have the PRIVATE,
FIRSTPRIVATE, LASTPRIVATE, REDUCTION, or THREADPRIVATE éttribute.

Namelist Group Object
A variable declared asanamelist group object cannot havethe PRIVATE, FIRSTPRIVATE,
LASTPRIVATE, REDUCTION, or THREADPRIVATE attribute.

Materialization of Parallel Region
Internal procedures are SCHEDULE(STATIC).

The generated internal procedure hasthe name™_n ", where n is a consecutive humber.

Automatic Parallelization with OpenMP
The --openmp option and the --parallel option may be specified at the sametime. The --par-
allel option isignored in any program unit that contains OpenMP directives.

Debugging
Multi-threaded programs cannot be debugged using fdb.

Lahey/Fujitsu Fortran 95 User’s Guide 93

Chapter 5 Multi-Processing (PRO version only)

94 Lahey/Fujitsu Fortran 95 User’s Guide

Automake
(PRO version only)

Introduction

What Does It Do?

AUTOMAKE isasimple-to-usetool for re-building a program after you have made changes
to the Fortran and/or C source code. It examines the creation times of all the source, object
and module files, and recompiles wherever it finds that an object or module file is non-exis-
tent, empty or out of date. In doing this, it takes account not only of changes or additions to
the source code files, but also changes or additions to MODULEs and INCLUDEd files -
even when nested. For example, if you change afile which isINCLUDEd in half adozen
sourcefiles, AUTOMAKE ensuresthat these filesare re-compiled. Inthe case of Fortran 95,
AUTOMAKE ensures that modules are recompiled from the bottom up, taking full account
of module dependencies.

How Does It Do That?

AUTOMAKE storesdetails of the dependenciesin your program (e.g., file AINCLUDEsfile
B) in adependency file, usually called aut onake. dep. AUTOMAKE uses this data to
deduce which files need to be compiled when you make a change. Unlike conventional
MAKE utilities, which require the user to specify dependencies explicitly, AUTOMAKE
creates and maintains this dataitself. To do this, AUTOMAKE periodically scans source
filestolook for INCLUDE and USE statements. Thisisavery fast process, which adds very
little to the overall time taken to complete the update.

How Do | Set It Up?

The operation of AUTOMAKE is controlled by a configuration file which contains the
default compiler name and options, INCLUDE file search rule, etc. For simple situations,
where the source code to be compiled isin asingle directory, and buildsinto a single execut-

Lahey/Fujitsu Fortran 95 User’s Guide 95

Chapter 6 Automake (PRO version only)

able, it will probably be possibleto usethe system default configurationfile. In that casethere
isno need for any customization of AUTOMAKE— just type amto update both your pro-
gram and the dependency file.

In other cases, you may wish to change the default compiler name or options, add a special
link command, or changethe INCLUDE file search rule; this can be achieved by customizing
alocal copy of the AUTOMAKE configuration file. More complex systems, perhapsinvolv-
ing source code spread across several directories, can also be handled in this way.

What Can Go Wrong?

Not much. AUTOMAKE isvery forgiving. For example, you can mix manual and AUTO-
MAKE controlled updates without any ill effects. Y ou can even delete the dependency file
without causing more than a pause while AUTOMAKE regenerates the dependency data. In
fact, thisis the recommended procedure if you do manage to get into a knot.

Running AUTOMAKE

Torun AUTOMAKE, simply typeam If thereisa configuration file (AUTOMAKE. FI G) in
the current directory, AUTOMAKE readsiit.

The AUTOMAKE Configuration File

96

The AUTOMAKE configuration fileis used to specify the compile and link procedures, and
other details required by AUTOMAKE. It consists of a series of records of the form

keyword=value

or

keyword

where keyword is an aphanumeric keyword name, and value is the string of characters
assigned to the keyword. The keyword name may be preceded by spacesif required. Any
record witha'#',"! ' or * ' asthe first non-blank character is treated as a comment.

The keywords that may be inserted in the configuration file are:

LF95
Equivalent to specifying the default LF95 compile and link commands.

COWPI LE=I f95 -¢c % i --nbpd %m0
LINK=I f95 %b -0 %X --nmpd %

The LF95 keyword should appear in any aut omake. f i g filethat isto be used with LF95.

Lahey/Fujitsu Fortran 95 User’s Guide

The AUTOMAKE Configuration File

FILES=
Specifies the names of files which are candidates for re-compilation. The value field should
contain a single filename optionally including wild-cards. For example,

FI LES=*. f 90
Y ou can aso have multiple FILES= specifications, separated by AND keywords.

FI LES=F90/ *. F90
AND
FI LES=F77/*. FOR
AND

Note that, with each new FILES= line the default COMPILE= is used, unless a new COM-
PILE= valueis specified after the FILES= line and before AND.

Note also that, if multiple FILES= lines are specified, then the %RF place marker (place
markers will be explained in the next section) cannot be used in any COMPILE= lines.

COMPILE=
Specifies the command to be used to compile a source file. The command may contain place
markers, which are expanded as necessary before the command is executed. For example,

COWPI LE=I f95 -c % i

Lahey/Fujitsu Fortran 95 User’s Guide 97

Chapter 6 Automake (PRO version only)

Thestring '% i ' in the above example is a place marker, which expands to the full name of
the file to be compiled. The following table is a complete list of place markers and their

meanings.

Table 10: COMPILE= Place Markers

Place Marker

Meaning

%sD

expands to the name of the directory containing the source file -
including atrailing '/'.

YSF

expands to the source file name, excluding the directory and exten-
sion.

YSE

expands to the source file extension—including a leading under-
score. For exampleif the file to be compiled is/ sour ce/

mai n. f or, 8D expandsto/ sour ce/ , %8F to mai n, and %8E to
.for.

%D

expands to the name of the directory containing object code, as spec-
ified using the OBJDI R= command (see below), including atrailing
T

YOE

expands to the object file extension, as specified using the OBJEXT=
command (see below), including aleading . .

% D

expands to the INCLUDE file search list (as specified using
| NCLUDE= (see below))

9O

expands to the name of directory containing modules (as specified
using MODUL E= (see below))

YRF

expands to the name of aresponsefile, created by AUTOMAKE,
containing alist of sourcefiles. If 94RF is present, the compiler is
invoked only once.

%I

is equivalent to ¥SDYSF¥SE

COWPI LE=I f95 -c %i --nmpd %
COWPI LE=If95 -¢c @4f --include %d

Note that with LF95 the -¢ option should always be used in a COMPILE= line.

TARGET=

Specifies the name of the program or library file which isto be built from the object code.
Notethat you will also haveto tell the linker the name of thetarget file. Y ou can do thisusing
a%EX place marker (which expands to the file name specified using TARGET=).

TARGET=/ execs/ MYPROG. EXE

98 Lahey/Fujitsu Fortran 95 User’s Guide

The AUTOMAKE Configuration File

If thereisno TARGET= keyword, AUTOMAKE will update the program object code, but will
not attempt to re-link.

LINK=

Specifiesacommand which may be used to update the program or library file once the object
code is up to date;

LINK=I f95 %b -0 %ex --npd %o’
LINK=If95 @6f -0 %&x --nbpd %'
The following place markers are allowed in the command specified using L1 NK=.

Table 11: LINK= Place Markers

Place Marker Meaning
expands to the name of the directory containing object code, as spec-
%D ified using the OBJDI R= command (see below), including atrailing
I
0 expands to the object file extension, as specified using the OBJEXT=
YOFE . . T
command (see below), including aleading '. .
%8 expandsto alist of object files corresponding to source files speci-
fied using all FI LES= commands.
%EX expands to the executable file name, as specified using TARGET=.
e ex_pands to the name of directory containing modules (as specified
using MODULE= (see below))
0 expands to the name of aresponsefile, created by AUTOMAKE,
VR_F
containing alist of object files.
INCLUDE=

May be used to specify the INCLUDE file search list. If no path is specified for an
INCLUDEdfile, AUTOMAKE looksfirst in thedirectory which containsthe sourcefile, and
after that, in the directories specified using this keyword. The directory names must be sep-
arated by semi-colons. For example, we might have:

I NCLUDE=/ i ncl ude: /i ncl ude/ sys

Note that the compiler will also have to be told whereto look for INCLUDEd files. You can
do thisusing a% D place marker (which expandsto the list of directories specified using
INCLUDE).

Lahey/Fujitsu Fortran 95 User’s Guide 99

Chapter 6 Automake (PRO version only)

100

SYSINCLUDE=
May be used to specify the search list for C or C++ system INCLUDE files (i.e. any enclosed
in angled brackets), asin

#i ncl ude <stat.h>

If no path is specified, AUTOMAKE looksin the directories specified using this keyword. It
does not ook in the current directory for system INCLUDE files unless explicitly instructed
to. Thedirectory names following SYSI NCLUDE= must be separated by semi-colons.

OBJDIR=
May be used to specify the name of the directory in which object files are stored. For
example,

OBJDI R=0BJ/

Thetrailing /" isoptional. 1f OBJDI R=is not specified, AUTOMAKE assumes that source
and object files are in the same directory. Note that if source and object files are not in the
same directory, the compiler will aso have to be told where to put object files. Y ou can do
this using a %0D place marker (which expandsto the directory specified using OBJDI R).

OBJEXT=
May be used to specify a non-standard object file extension. For example to specify that
object files have the extension . abc’, specify

OBJEXT=abc

This option may be useful for dealing with unusual compilers, but more commonly to allow
AUTOMAKE to deal with processes other than compilation (for example, you could use
AUTOMAKE to ensure that all altered source files are run through a pre-processor prior to
compilation).

MODULE=
May be used to specify the name of the directory in which module files are stored.
MODUL E=MODS/

Thetrailing /" isoptional. 1f MODULE= is not specified, AUTOMAKE assumes that source
and module filesare in the same directory. Note that if source and modulefilesare not in the
same directory, the compiler will also have to be told where to put modulefiles. Y ou can do
this using a %vO place marker (which expands to the directory specified using MODULE=).

DEP=
May be used to over-ride the default dependency file name.

DEP=t hi spr og. dep

causes AUTOMAKE to store dependency datain' t hi sprog. dep' instead of
' aut omeke. dep' .

QUITONERROR
Specifiesthat AUTOMAKE should halt immediately if thereis a compilation error.

Lahey/Fujitsu Fortran 95 User’s Guide

Multi-Phase Compilation

NOQUITONERROR
Specifies that AUTOMAKE should not halt if there is a compilation error.

MAKEMAKE
Specifiesthat AUTOMAKE should create atext file called aut omake. mak containing
dependency information.

DEBUG
Causes AUTOMAKE to write debugging information to afile called aut onake. dbg.

LATESCAN

Delays scanning of source files until the last possible moment, and can, in some cases,
remove the need for some scans. However this option is not compatible with Fortran 90
modules.

CHECK=
May be used to specify a command to be inserted after each compilation. A typical applica-
tion would be to check for compilation errors.

Multi-Phase Compilation

Sometimes, more than one compilation phase is required. For example, if sourcefilesare
stored in more than one directory, you will need a separate compilation phase for each direc-
tory. Multiple phasesare also required if you have mixed C and Fortran source, or if you need
special compilation options for particular source files.

The'AND' keyword may beinserted in your configuration fileto add anew compilation phase.
Y ou can reset the values of FI LES=, COVPI LE=, | NCLUDE=, OBJDI R=, OBJEXT= and MOD-
ULE= for each phase. All default to the value used in the previous phase, except that
OBJDI R= defaults to the new source directory.

The following example shows how this feature might be used with the LF95 compiler. The
same principles apply to other compilers and other platforms.

Lahey/Fujitsu Fortran 95 User’'sGuide 101

Chapter 6 Automake (PRO version only)

Exanple Configuration file for Milti-Phase

Conpil ation

Conpilation 1 - files in current directory

LF95

I NCLUDE=/ i ncl ude

FI LES=*. f 90

OBJDI R=0bj

COWPI LE=If95 -c %i -1 %d -o %d%f%e --tp -OL
AND

Conpilation 2 - files in utils/

| NCLUDE= defaults to previous value (/include)

if OBIDIR= were not set, it would default to utils (NOT obj)
FI LES=utils/*.f90

OBJDI R=uti | s/ obj

COWPI LE=1f95 -c Ui -1 %d -o %d¥%f%e --sav --chk
Rel i nk

TARCGET=a. out

LI NK=I f 95 %ob -0 %X

Automake Notes

« AsAUTOMAKE executes, it issues brief messages to explain the reasons for all
compilations. It also indicates when it is scanning through afile to look for
INCLUDE statements.

 If for any reason the dependency fileisdeleted, AUTOMAKE will create anew one.
Execution of the firss AUTOMAKE will be slower than usual, because of the need
to regenerate the dependency data.

* AUTOMAKE recognizes the INCLUDE statementsin all common variants of For-
tran and C, and can be used with both languages.

* When AUTOMAKE scans source codeto seeif it contains INCLUDE statements, it
recognizes the following generalized format:

» Optional spacesat the beginning of theline followed by an optional compiler control
character, '%', '$ or '#, followed by theword INCLUDE (case insensitive) followed
by an optional colon followed by the file name, optionally enclosed between apos-
trophes, quotes or angled brackets. If the file nameisenclosed in angled brackets, it
isassumed to be in one of the directories specified using the SY SINCLUDE key-
word. Otherwise, AUTOMAKE looksin the sourcefile directory, and if it is not
there, in the directories specified using the INCLUDE keyword.

* If AUTOMAKE cannot find an INCLUDE file, it reports the fact to the screen and
ignores the dependency relationship.

102 Lahey/Fujitsu Fortran 95 User’s Guide

Automake Notes

AUTOMAKE isinvoked using ascript file called am Thereis seldom any reason to
modify the script file, though it is very simpleto do so if required. It consists of two
(or three) operations:

. Execute AUTOMAKE. AUTOMAKE determines what needs to be donein order to
update your project and writes a script file to do it. The options which may be
appended to the AUTOMAKE command are;

TO= specifies the name of the output script file created by AUTOMAKE.

FI G= specifies the name of the AUTOMAKE configuration file.

. Execute the command file (aut onake. t mp) created by AUTOMAKE.

. Delete the command file created by AUTOMAKE. Thisstep is, of course, optional.

Lahey/Fujitsu Fortran 95 User’'s Guide 103

Chapter 6 Automake (PRO version only)

104 Lahey/Fujitsu Fortran 95 User’s Guide

fot

0 Utility Programs

This chapter documents the following utility programs:

« fot

e hdrstrip.f90
* sequnf.f90

e tryblk.f90

Usage:
fot [filel] [file2]

f ot isaprogram that is used for converting files created by LF95, opened as CARRIAGE-
CONTROL="FORTRAN’, into aform suitablefor printing. f ot interpretsthefirst character
of each line of filel as a Fortran carriage control character to be used for printing, producing
afilefile2in Linux format. The first character of each line of filel causes the following
modifications:

blank: The blank is deleted, which causes the line to be printed with single spacing. A
line of al blanksis converted to aline with no characters.

0: The character ischanged to anew-line character, which causesthelineto be printed
with double spacing.

1: The character is changed to the new-page character, which causes the line to be
printed at the beginning of a new page.

+: If itisthefirst line of afile, the character is deleted. Otherwise, the character is
replaced by a carriage-return character, which causes the line to be printed over the
previous one.

Examples
1 fot <infile > outfile
2. a.out | fot | Ipr

3. fot infile outfile

Lahey/Fujitsu Fortran 95 User’s Guide 105

Chapter 7 Utility Programs

Diagnostics

If the first character of alineis none of the above, the line is unchanged. Upon completion
of the command, a diagnostic message is displayed in the standard error file indicating the
number of lines not containing avalid Fortran carriage control character. For example:

invalid n lines carriage control conventions in filel

hdrstrip.f90

hdrstri p. f 90 isaFortran sourcefile that you can compile, link, and execute with LF95.
It converts LF90 direct-access filesto LF95 style.

sequnf.f90

sequnf . f 90 isa Fortran source file that you can compile, link, and execute with LF95. It
converts LF90 unformatted sequential filesto LF95 style.

tryblk.fo0

trybl k. f 90 isaFortran source file you can build with LF95. It tries arange of BLOCK-
Sl ZEs and displays an elapsed time for each. Y ou can use the results to determine an
optimum value for your system to specify in your programs. Note that a particular BLOCK-
SI ZE may not perform as well on other systems.

106 Lahey/Fujitsu Fortran 95 User’s Guide

Programming Hints

This appendix contains information that may help you create better LF95 programs.

Efficiency Considerations

In the majority of cases, the most efficient solution to a programming problem is one that is
straightforward and natural. It is seldom worth sacrificing clarity or elegance to make a pro-
gram more efficient.

The following observations, which may not apply to other implementations, should be con-
sidered in cases where program efficiency iscritical:

e For dummy arguments, start each array dimension at zero (not at one, which isthe
default). Thus, declare an array Ato be A(0: 99) , not A(100) .

e One-dimensional arrays are more efficient than two, two are more efficient than
three, etc.

» Makeadirect filerecord length a power of two.

» Unformatted input/output is faster for numbers.

» Formatted CHARACTER input/output is faster using:
CHARACTER* 256 C

than:
CHARACTER* 1 C(256)

Side Effects

LF95 arguments are passed to subprograms by address, and the subprograms reference those
arguments as they are defined in the called subprogram. Because of the way arguments are
passed, the following side effects can result:

Lahey/Fujitsu Fortran 95 User’s Guide 107

Appendix A Programming Hints

» Declaring adummy argument as a different numeric data type from that declared in
the calling program unit can cause unpredictable results and NDP error aborts.

» Declaring adummy argument to be larger in the called program unit than in the call-
ing program unit can result in other variables and program code being modified and
unpredictable behavior.

e Ifavariableappearstwice asan actual argumentinasingle CALL statement or func-
tion reference, then the corresponding dummy arguments in the subprogram will
refer to the samelocation. Whenever one of those dummy argumentsis modified, so
isthe other. In accordance with the Fortran standard, the compiler and/or runtimeis
not required to notice such changes; this allows optimizations to be performed (e.g.,
keeping the second dummy argument, or elements thereof, in registers).

» Function arguments are passed in the same manner as subroutine arguments, so that
modifying any dummy argument in afunction will also modify the corresponding
argument in the function invocation:

y = x + f(x)

The result of the preceding statement is undefined if the function f modifies the
dummy argument x.

File Formats

108

Formatted Sequential File Format

Files controlled by formatted sequential input/output statements have an undefined length
record format. One Fortran record correspondsto onelogical record. The length of the unde-
fined length record depends on the Fortran record to be processed. The maximum length may
be assigned in the OPEN statement RECL = specifier. A linefeed character terminates the log-
ical record. If the $ edit descriptor or \ edit descriptor is specified for the format of the
formatted sequential output statement, the Fortran record does not include the linefeed.

Unformatted Sequential File Format

Files processed using unformatted sequential input/output statements have avariable length
record format. One Fortran record corresponds to one logical record. The length of the vari-
ablelength record depends on the length of the Fortran record. The length of the Fortran
record includes 4 bytes added to the beginning and end of the logical record. The maximum
length may be assigned in the OPEN statement RECL = specifier. The beginning areais used
when an unformatted sequential READ statement is executed. The end areais used when a
BACKSPACE statement is executed.

Lahey/Fujitsu Fortran 95 User’s Guide

Direct File Format (Formatted)

Direct File Format (Formatted)

Files processed by formatted direct input/output statements have afixed length record for-
mat. One Fortran record corresponds to one logical record. The length of the logical record
must be assigned inthe OPEN statement RECL = specifier. If the Fortran record is shorter than
thelogical record, the remaining part is padded with blanks. The length of the Fortran record
must not exceed the logical record. This fixed length record format is unique to Fortran.

Direct File Format (Unformatted)

Files processed by unformatted direct-access input/output statements have afixed length
record format, with no header record. One Fortran record can correspond to more than one
logical record. Therecord length must be assigned in the OPEN statement RECL = specifier.
If the Fortran record terminates within alogical record, the remaining part is padded with
binary zeros. If thelength of the Fortran record exceedsthelogical record, the remaining data
goes into the next record.

Binary File Format

Files opened with FORM=" Bl NARY" (or ACCESS=" TRANSPARENT’) are processed asa
stream of bytes with no record separators. While any format of file can be processed as
binary, you must know its format to processit correctly. Note that, even though

ACCESS=" TRANSPARENT" is supported by LF95, FORM=" Bl NARY’ isthe preferred method
of opening such files. Notethat these specifiers are not currently part of the Fortran standard
and may vary from one compiler to the next; however, this may change in future versions of
the Fortran standard.

Endfile Records

An endfile record must be the last record of a sequential file. Endfile records do not have a
length attribute. The ENDFILE statement writes an endfile record in asequential file. After
at least one WRITE statement is executed, an endfile record is output under the following
conditions:

« A REWIND statement is executed.
» A BACKSPACE statement is executed.
* A CLOSE statement is executed.

Porting Unformatted Files

Unformatted files created on other platforms can be accommodated with certain runtime
options. “Big-endian” numeric data (integer, logical, and | EEE floating-point) can be accom-
modated with runtime option T. Notethat the big-endian conversionisnot performed for real
variablesthat are elements of aderived typeif thewholetypeisbeing read. IBM370-format

Lahey/Fujitsu Fortran 95 User’'s Guide 109

Appendix A Programming Hints

floating-point data can be accommodated with runtime options C and M (see “ Runtime
Options’ on page 115). By default, LF95 reads and writes numeric datain “little-endian”
format.

File Creation: Default Names

If afileis opened without specifying afilename, thefile is assigned the namef or t . unit,
where unit is the unit number specified in the OPEN statement.

If afileis opened as STATUS=" SCRATCH , and FI LE= is not specified, then thefileis
assigned arandom name and is created in the system temporary directory. If FI LE= is spec-
ified, then thefileis created inthe current working directory. Inboth cases, thefileisdeleted
upon program termination, even if it is closed with STATUS=" KEEP' (see" Intermediate
Files’ on page 11).

Normal program termination causes al files to be closed.

Link Time

Y ou can reduce the link time by reducing the number of named COMMON blocks you use.
Instead of coding:

comon /al/ i

common / a2/ j

comon /a3/ k

comon /al000/ k1000
code;

comon /al i,j,k, ..., k1000

Year 2000 compliance

110

The"Y ear 2000" problem arises when a computer program uses only two digits to represent
the current year and assumes that the current century is 1900. A compiler can look for indi-
cations that this might be occurring in a program and issue awarning, but it cannot foresee

every occurrence of thisproblem. Itisultimately the responsibility of the programmer to cor-
rect the situation by modifying the program. The most likely source of problems for Fortran
programsisthe use of the obsolete DATE() subroutine. Even though LF95 will compile and
link programs that use DATE() , itsuseis strongly discouraged; the use of

DATE_AND_TI ME() , which returns afour digit date, is recommended in its place.

Lahey/Fujitsu Fortran 95 User’s Guide

Year 2000 compliance

LF95 can be made to issue awarning at runtime whenever acall to DATE() ismade. This
can be accomplished by running a program with the runtime options- W, Ry, | i for
example,

nyprog. exe -W,-Ry, -1i
For more information on runtime options, see “ Runtime Options’ on page 117.

Lahey/Fujitsu Fortran 95 User's Guide 111

Appendix A Programming Hints

Limits of Operation

112 Lahey/Fujitsu Fortran 95 User’s Guide

Limits of Operation

Table 11: LF95 Limits of Operation

Iltem

Maximum

program size

4 Gigabytesor available memory (including virtual
memory), whichever is smaller

number of files open concurrently

system dependent (seel i ni t s command of csh;
subtract three for Fortran units 0, 5, and 6 from the

system limit)
Length of CHARACTER datum 2,147,418,072 bytes
I/0 block size 2,147,483,647 bytes
1/O record length 2,147,483,647 bytes

I/Ofilesize

18,446,744,073,709,551,614 bytes

1/0O maximum number of records
(direct-accessfiles)

18,446,744,073,709,551,614 divided by the value
of the RECL = specifier

nesting depth of function, array

section, array element, and sub- 255
string references
nesting depth of DO, CASE, and 50
IF statements
nesting depth of implied-DO loops 25
nesting depth of INCLUDE files 16
number of array dimensions 7

array size

T, where the absolute value of T obtained by the formula below
must not exceed 2147483647, and the absolute value must not
exceed 2147483647 for any intermediate calculations:

n i
T:|1XS+Z Iix[ndm—lx%
i=2 m=2

n: Array dimension number
s. Array element length
I: Lower bound of each dimension
d: Size of each dimension
T: Value calculated for the array declaration

Lahey/Fujitsu Fortran 95 User’'s Guide 113

Appendix A Programming Hints

114 Lahey/Fujitsu Fortran 95 User’s Guide

Runtime Options

The behavior of the LF95 runtime library can be modified at execution time by a set of com-
mands which are submitted viathe command line when invoking the executable program, or
viashell environment variables. These runtime options can modify the behavior of input/out-
put operations, diagnostic reporting, and floating-point operations.

Runtime options submitted on the command line are specified by using a character sequence
that uniquely identifies the runtime options, so that they may be distinguished from regular
command line arguments utilized by the user’s program. In the current version of the com-
piler, the values obtained viathe GETCL(), GETPARM(), and GETARG() functions will
includethe runtime optionsaswell as user-defined command line arguments. Thiscan cause
problemsif the number of runtime options specified is always changing or is unknown to the
programmer. The solutioninthiscaseisto placetheruntimeoptionsin environment variable
FORTOOL (see* Environment Variables’ on page 116).

Command Format

Runtime options and user-defined executabl e program options may be specified ascommand
option arguments of an execution command. The runtime options use functions supported by
the LF95 runtime library. Please note that these options are case-sensitive.

The format of runtime optionsis as follows:

exe file [-WI,[runtime optiong]...] [user-defined program arguments)...

Whereexe fileindicatesthe user’ s executable programfile. Thestring “-WI,” must precede
any runtime options, so they may be identified as such and distinguished from user-defined
program arguments. Notethat itisW followed by alowercase L (not the number one). Please

note also that if an option is specified more than once with different arguments, thelast occur-
renceis used.

Lahey/Fujitsu Fortran 95 User’'sGuide 115

Appendix B Runtime Options

Environment Variables

116

As an dternative to the command line, the environment variable FORT90L may be used to
specify runtime options. Any runtime options specified in the command line are combined
with those specified in FORT90L. The command line arguments take precedence over the

corresponding options specified in the shell variable FORTO0L .

The following examples show how to use the shell variable FORTO0L (the actual meaning
of each runtime option will be described in the sections below):

Example 1:
Setting the value of shell variable FORTO0L and executing the program as such:

setenv FORT90L=-W, -e99, -le
a.out -W,-m9 -myopt

has the same effect as the command line
a.out -W,-e99,-le,-nmB9 -nyopt

Theresult isthat when executing the program a. out , the runtime options -e99, -l e, -nB9,
and user-defined executable program argument - myopt arein effect.

Example 2:
When the following command lines are used,

setenv FORT90L=-W, -el0
a.out -W, -e99

theresult is that a.out is executed with runtime option - €99 in effect, overriding the option
- e10 set by shell variable FORT9O0L .

Note that set env would be expor t in the examples above for Korn and bash shell users.

Lahey/Fujitsu Fortran 95 User’s Guide

Execution Return Values

Execution Return Values

Thefollowing table lists possible values returned to the operating system by an LF95 execut-
able program upon termination and exit. These correspond to the levels of diagnostic output

that may be set by various runtime options:

Table 12: Execution Return Values

Return value Status
0 No error or level | (information message)
4 Level W error (warning)
8 Level E error (medium)
12 Level Serror (serious)
16 Limit exceeded for level W, E, Serror, or alevel U
error (Unrecoverable) was detected
240 Abnormal termination
Other Forcible termination

Standard Input, Output, and Error

The default unit numbers for standard input, output, and error output for LF95 executable
programs are as follows, and may be changed to different unit numbers by the appropriate

runtime options:

Standard input: Unit number 5
Standard output: Unit number 6
Standard error output: Unit number O

Runtime Options

Runtime options may be specified as arguments on the command line, or in the FORT90L
shell variable. This section explains the format and functions of the runtime options. Please

note that all runtime options are case-sensitive.
The runtime option format is as follows:

- W [,option][,option]...

Lahey/Fujitsu Fortran 95 User's Guide 117

Appendix B Runtime Options

118

When runtime options are specified, the string “- W " (wherel islowercaseL) is required at
the beginning of the optionslist, and the options must be separated by commas. No spaceis
allowed after acomma. If the same runtime option is specified more than once, the last
occurrence is used.

Example:
a.out -W, -a,-plo0, -x

Descriptions of Runtime Options

-C or -C[u_no]

Convert IBM370 Floating Point Format

The - Coption specifies how to process an unformatted file of IBM370-format floating-point
datausing an unformatted input/output statement. Whenthe- Coptionis specified, the REAL
and DOUBL E PRECISION data of an unformatted file associated with the specified unit
number is regarded as |BM 370-format floating-point data in an unformatted input/output
statement. The optional argument u_no specifiesan integer from 0to 2147483647 asthe unit
number. If optional argument u_no is omitted, the C optionisvalid for al unit numbers con-
nected to unformatted files. When the specified unit number is connected to aformatted file,
the option isignored for the file. When the - C option is not specified, the data of an unfor-
matted file associated with unit number u_no isregarded as | EEE-format floating-point data
in an unformatted input-output statement.

Example:
a.out -W, -C10

-M

Mantissa Conversion Error Reporting for IBM370 data

The - Moption specifies whether to output the diagnostic message (0147i-w) when bits of the
mantissa are lost during conversion of IBM370-1EEE-format floating-point data. If the - M
option is specified, a diagnostic message is output if conversion of IBM370-1EEE-format
floating-point data results in bits of the mantissa being lost. When the - Moption is omitted,
the diagnostic message (0147i-w) is not output.

Example:
a.out -W,-M

Q

Blank-padding for Formatted Input

The - Qoption suppresses padding of an input field with blanks when aformatted input state-
ment is used to read a Fortran record (this behavior will apply to all unit numbers). This
option appliesto cases where the field width needed in aformatted input statement islonger
than the length of the Fortran record and the file was not opened with an OPEN statement.

Lahey/Fujitsu Fortran 95 User’s Guide

Descriptions of Runtime Options

Theresult isthe same as if the PAD= specifier in an OPEN statement is set to NO. If the- Q
option is omitted, theinput record is padded with blanks. The result isthe same as when the
PAD= specifier in an OPEN statement is set to Y ES or when the PAD= specifier is omitted.

Example:
a.out -W,-Q

-Re

Runtime Error Handling

Disablesthe runtime error handler. Traceback, error summaries, user control of errors by ser-
viceroutines ERRSET and ERRSAV, and execution of user code for error correction are
suppressed. If possible, the standard correction will be performed when an error occurs.

Example:
a.out -W, -Re

-Rm:filename

Runtime Diagnostic Output to File

The - Rmoption saves the following output items to the file specified by the filename
argument:

» Messagesissued by PAUSE or STOP statements
» Runtime library diagnostic messages

» Traceback map

e Error summary

Example:
a.out -W,-Rmerrors.txt

_Ry

Y2K (Year 2000) Compliance Diagnostics

Encourages Y 2K compliance at runtime by generating an i-level (information) diagnostic
whenever code is encountered which may cause problems after the year 2000 A.D. Must be
used in conjunction with the -1 i option in order to view diagnostic output.

Example:
a.out -W,-Ry,-1li

-T or -T[unit]

Big-endian Data Conversion

“Big-endian” data (integer, logical, and | EEE floating-point) istransferred in an unformatted
input/output statement. The optional argument unit is a unit number, valued between 0 and
2147483647, connected with an unformatted file. If unitisomitted, - T takes effect for all unit
numbers. If both - T and - Tunit are specified, then - T takes effect for al unit numbers. By
default, LF95 reads and writes numeric data (integer, logical, and |EEE floating-point) as
“little-endian.” Notethat this conversionisnot performed if thereal variableisacomponent
of aderived type, and the whole type is being read.

Lahey/Fujitsu Fortran 95 User’'s Guide 119

Appendix B Runtime Options

120

Example:
a.out -W,-T10

-a
Force Abnormal Termination

Whenthe-a opti on isspecified, an abend (abnormal termination event) is forcibly exe-
cuted following normal program termination. This processing is executed immediately
before closing external files.

Example:
a.out -W, -a

-d[num] 1 <num < 32767
Direct Access I/O Work Area

The - d option determines the size of the input/output work area used by adirect accessinput/
output statement. The - d option improvesinput/output performance when dataare read from
or written to files arecord at atime in sequential record-number order. If the - d optionis
specified, the input/output work areasizeis used for al units used during execution.

To specify the size of the input/output work areafor individual units, specify the number of
Fortran recordsin the shell variable f uunitbf where unit isthe unit number (see” Shell Vari-
ables for Input/Output” on page 123 for details). When the - d option and shell variable are
specified at the sametime, the - d option takes precedence. The optional argument num spec-
ifies the number of Fortran records, in fixed-block format, included in one block. The
optional argument num must be an integer from 1 to 32767. To obtain the input/output work
areasize, multiply numby the value specified in the RECL = specifier of the OPEN statement.
If thefiles are shared by several processes, the number of Fortran records per block must be
one. If the-d option is omitted, the size of the input/output work areais four kilobytes.

Example:
a.out -W, -d8

-e[num] 0 < num < 32767

Execution error limit

The - e option control stermination based on the total number of execution errors. The option
argument num, specifies the error limit as an integer from 0 to 32767. When numis greater
than or equal to 1, execution terminates when the total number of errors reachesthe limit. If

- enumis omitted or numis zero, execution is not terminated based on the error limit. How-
ever, program execution still terminatesif the Fortran system error limit is reached.

Example:
a.out -W,el0

Lahey/Fujitsu Fortran 95 User’s Guide

Descriptions of Runtime Options

-g[num] 1<num

Sequential Access I/0 Work Area

The - g option setsthe size of the input/output work area used by sequential access input/out-
put statements. This sizeis set in units of kilobytes for all unit numbers used during
execution. The argument num specifies an integer with a value of one or more. If the- g
option is omitted, the size of the input/output work area defaults to eight kilobytes.

The - g optionimprovesinput/output performance when alarge amount of dataare read from
or written to files by an unformatted sequential accessinput/output statement. The argument
num is used as the size of the input/output work areafor al units. To avoid using excessive
memory, specify the size of the input/output work areafor individual units by specifying the
sizein the shell variable f uunitbf , where unit is the unit number (see” Shell Variables for
Input/Output” on page 123 for details). When the - g option is specified at the same time as
the shell variable f uunitbf , the - g option has precedence.

Example:
a.out -W,-g10

-l

Interrupt Processing

The-i option controls processing of runtimeinterrupts. Whenthe- i optionisspecified, the
Fortran library isnot used to processinterrupts. When thei option isnot specified, the Fortran
library isused to processinterrupts. Theseinterrupts are exponent overflow, exponent under-
flow, division check, and integer overflow. If runtime option - i is specified, no exception
handling istaken. The - u option must not be combined with the-i option

Example:
a.out -W, -i

-lerrlevel errlevel: {i|w]|e|s}

Diagnostic Reporting Level

The-1 option (lowercase L) controls the output of diagnostic messages during execution.
The optional argument errlevel, specifies the lowest error level, i (informational), w (warn-
ing), e (medium), or s (serious), for which diagnostic messages are to be output. If the - |
option is not specified, diagnostic messages are output for error levelsw, e, and s. However,
messages beyond the print limit are not printed.

i

Theli option outputs diagnostic messages for al error levels.

w

The lw option outputs diagnostic messages for error levelsw, e, s, and u.

e
The le option outputs diagnostic messages for error levels e, s, and u.

S
The s option outputs diagnostic messages for error levels sand u.

Lahey/Fujitsu Fortran 95 User’'sGuide 121

Appendix B Runtime Options

122

Example:
a.out -W,-le

-munit 0 < unit £2147483647

Standard Error Output

The- moption connectsthe specified unit number unit to the standard error output file/device
(STDERR) where diagnostic messages are to be written. Argument unit is an integer from 0
to 2147483647. If the - moption is omitted, unit number 0, the system default, is connected
to the standard error output file. Care should be taken to avoid conflict with units specified
by - p and - r options. Also, see* Shell Variablesfor Input/Output” on page 123 for further
details.

Example:
a.out -W, -nml0O

-Nn

Prompt Messages, Standard Input

The - n option controls whether prompt messages are sent to standard input (STDIN). When
the- n option is specified, prompt messages are output when data are to be entered from stan-
dard input using formatted sequential READ statements, including list-directed and namelist
statements. If the - n option is omitted, prompt messages are not generated when data are to
be entered from standard input using a formatted sequential READ statement.

Example:
a.out -W,-n

-punit 0 < unit £2147483647

Standard Output

The p option connects the unit number unit to the standard output file/device (STDOUT),
where unitisaninteger ranging from 0to 2147483647. If the p option isomitted, unit number
6, the system default, is connected to the standard output file. Care should be taken to avoid
conflict with units specified by - mand - r options. Also, see” Shell Variablesfor Input/Out-
put” on page 123 for further details.

Example:
a.out -W,-pl0

-

Capitalize Numeric Edit Output Characters

The - g option specifies whether to capitalize the E, EN, ES, D, Q, G, L, and Z numeric edit
output characters produced by formatted output statements. This option also specifies
whether to capitalize the a phabetic charactersin the character constants used by the inquiry
specifier (excluding the NAME specifier) in the INQUIRE statement. If the - g option is
specified, the characters appear in uppercase letters. If the g option is omitted, the characters
appear in lowercase |etters.

Lahey/Fujitsu Fortran 95 User’s Guide

Shell Variables for Input/Output

Example:
a.out -W, -q

-runit 0 < unit £2147483647

Standard Input

The- r option connectsthe unit number unit to the standard input file/device (STDIN) during
execution, where unitisan integer ranging from 0to 2147483647. If the- r optionisomitted,
unit number 5, the system default, is connected to the standard input file. Care should be
taken to avoid conflict with units specified by - mand - p options. Also, see” Shell Variables
for Input/Output” on page 123 for further details.

Example:
a.out -W,-r10

-u

Underflow Interrupt Processing

The - u option controls floating point underflow interrupt processing. If the - u option is
specified, LF95 performs floating point underflow interrupt processing. The system may
output diagnostic message0012i-e during execution. If the - u option is omitted, the system
ignores floating point underflow interrupts and continues processing. The-i option must
not be combined with the - u option.

Example:
a.out -W, -u

-X

Blanks in Numeric Formatted Input

The - x option determines whether blanks in numeric formatted input data are ignored or
treated as ZEROs. If the - x option is specified, blanks are changed to zeros during numeric
editing with formatted sequential input statements for which no OPEN statement has been
executed. Theresult isthe same as when the BLANK = specifier in an OPEN statement is set
to ZERO. If the - x option isomitted, blanksin the input field are treated as null and ignored.
Theresultisthe same asif the BLANK= specifier in an OPEN statement is set to NULL or
if the BLANK= gpecifier is omitted.

Example:
a.out -W, -x

Shell Variables for Input/Output

This section describes shell variables that control file input/output operations. These envi-
ronment variables are lower-case unless otherwise indicated.

Lahey/Fujitsu Fortran 95 User’'s Guide 123

Appendix B Runtime Options

124

fuunit = filename 00 < unit £2147483647

Thef uunit shell variable pre-connects unitsto files. The value unit isa unit number (must be
at least two digits). The valuefilenameisafileto be connected to unit number unit. The stan-
dard input and output files (f u05 and f u06) and error file (f u00) must be avoided, unless
their values have been modified using the -m, -p, or -r options, in which case those new val-
ues must be avoided.

The following exampl e shows how to connect myfile.dat to unit number 10 prior to the start
of execution.

Example:
setenv ful0 nyfile. dat

fuunitbf size 00 < unit £ 2147483647

Thef uunitbf shell variable specifies the size of the input/output work area used by sequen-
tial or direct access input/output statements. This applies equally to both formatted and
unformatted files. Thevalueunitinthe f uunitbf shell variable specifiesthe unit number (the
number must have at least two digits). The size argument used for sequential accessinput/
output statementsisin kilobytes; the size argument used for direct access input/output state-
ments isin records. The size argument must be an integer with avalue of 1 or more. A size
argument specified for one unit does not automatically apply to other units.

If this shell variable and the - g option are omitted, the input/output work area size used by
sequential access input/output statements defaults to eight kilobytes. The size argument for
direct access input/output statements is the number of Fortran records per block in fixed-
block format. The size argument must be aninteger from 1to 32767 that indicatesthe number
of Fortran records per block. If thisshell variable and the - d option are omitted, the areasize
isfour kilobytes.

Example 1:
Sequentia Access Input/Output Statements.

setenv fulObf 64

When sequential access input/output statements are executed for unit number 10, the state-
ments use an input/output work area of 64 kilobytes.

Example 2:
Direct Access Input/Output Statements.

setenv fulObf 50

When direct access input/output statements are executed for unit number 10, the number of
Fortran records included in one block is 50. The input/output work area size is obtained by
multiplying 50 by the value specified in the RECL = specifier of the OPEN statement.

Lahey/Fujitsu Fortran 95 User’s Guide

Lahey Technical
Support

Hours

Lahey Computer Systems takes pride in the relationships we have with our customers. We
maintain these relationships by providing quality technical support, an informative website,
newsl etters, product brochures, and new rel ease announcements. In addition, we listen care-
fully to your comments and suggestions. The World Wide Web site has product patch files,
new Lahey product announcements, lists of Lahey-compatible software vendors and infor-

mation about downloading other Fortran-related software.

Lahey’s Business Hours Are
7:45 A.M. to 5:00 P.M. Pacific Time Monday - Thursday
7:45 A.M. to 12:45 P.M. Pacific Time Friday

Telephone Technical Support Is Available
8:30 A.M. to 3:30 P.M. Pacific Time Monday - Thursday
8:30 A.M. to 12:00 P.M. Pacific Time Friday

We Have Several Ways for You to Communicate with Us:

PHONE:
FAX:
E-MAIL:
ADDRESS:

WWW:

(775) 831-2500

(775) 831-8123

support@Iahey.com

865 Tahoe Blvd.

P.O. Box 6091

Incline Village, NV 89450-6091 U.S.A.
http://www.lahey.com

Lahey/Fujitsu Fortran 95 User’s Guide

125

Appendix C Lahey Technical Support

Technical Support Services

126

Lahey providesfreetechnical support to registered usersof current versions of our products.
This support is available by e-mail, fax, and mail for all products. For LF95 PRO, technical
support isalso available by telephone. Technical support includes assistancein the use of our
software and in getting any bugsyou may find in our softwarefixed. It doesnot includetutor-
ing in how to program in Fortran or how to use any host operating system or operating system
APlIs.

How Lahey Fixes Bugs

Lahey’ stechnical support goal isto make sure you can create working executables using
LF95. Towardsthisend, Lahey maintainsabug reporting and prioritized resolution system.
We give abug a priority based on its severity.

The definition of any bug’s severity is determined by whether or not it directly affects your
ability to build and execute aprogram. 1f abug keepsyou from being ableto build or execute
your program, it receivesthe highest priority. If you report abug that does not keep you from
creating aworking program, it receives alower priority. Also, if Lahey can provide a
“workaround” to the bug, it receives alower priority.

In recognizing that problems sometimes occur in changing software versions, Lahey allows
you to revert to an earlier version of the software until Lahey resolves the problem.

Contacting Lahey

To expedite support services, we prefer written or electronic communications viafax or e-
mail. These systems receive higher priority service and minimize the chances for any mis-
takes in our communications.

Before contacting L ahey Technical Support, we suggest you do the following to help us pro-
cess your report.

» Determineif the problem is specific to code you created. Can you reproduceit using
the demo programs we provide?
« If you have another machine available, does the problem occur on it?

Information You Provide
When contacting Lahey, please include or have available the information listed below.

» Registered user name

* Registered serial number

* Product title and version (for example, LF95 v5.5)

» Patch level (for example, the h patch)

» Operating system (for example, Windows 98 or Redhat Linux v6.0)

Lahey/Fujitsu Fortran 95 User’s Guide

World Wide Web Site

» A short source code example. Thiswill allow usto reproduce the problem. Please
make sure the source code is as short as possible to alow us to analyze your issue
quickly. Attach the source code file to your e-mail to support@lahey.com.

e Third-party products used. If you are using an add-on library (such as Winteracter)
or productivity tool (such as Visual Analyzer), provide the name and version of this
product. If your application is mixed-language (such as Fortran and C), provide the
name and version of the non-Fortran language system.

» System environment settings
To save your environment variablesin atext file, go to acommand prompt and redi-
rect the output of the SET command to afile:
SET > SETCMD. QUT

Attach the SETCVD. QUT file to your e-mail to support@lahey.com.

e Step-by-step problem description. Tell usthe sequenceof commands or buttons used
that lead up to the problem occurring. Remember, if we can't reproduce it, we can't
fix it for you.

e Compiler, linker, or Make/Automake messages.

* While simply typing the complete error message is always an option, you can save
extensive messages to atext file to send to us, if that is easier. To save the messages
asatext file, from the command line redirect the command output asin the following
example:

your _comand_l i ne > CVD. QUT

» Attach the CVD. OUT file to your e-mail to support@Ilahey.com. If you are using the
ED editor, run your compile command and attach the ERRS.* file of the working
directory to your e-mail to support@lahey.com

e Exact text of error message or Window message box.

Support isprovided freeto solve problemswith our products, and to answer questions on how
to use Lahey products. Support personnel are not available to teach programming, debug pro-
grams, or answer questions about the use of non-Lahey products or tools (such asMS
Windows, Linux, MS Visual Basic, etc.). These services are provided on a paid consulting
basis.

World Wide Web Site

Our URL ishttp: //ww. | ahey. com Visit our web site to get the latest information and
product patch files and to access other sites of interest to Fortran programmers.

Lahey/Fujitsu Fortran 95 User’'s Guide 127

Appendix C Lahey Technical Support

128

Lahey Warranties

Lahey’s 30 Day Money Back Guarantee

L ahey agreesto unconditionally refund to the purchaser the entire purchase price of the prod-
uct (including shipping charges up to a maximum of $10.00) within 30 days of the original
purchase date.

All refunds require a Lahey Returned Materials Authorization (RMA) number. Lahey must
receive the returned product within 15 days of assigning you an RMA number. If you pur-
chased your Lahey product through a software dealer, the return must be negotiated through
that dealer.

Lahey’s Extended Warranty
Lahey agreesto refund to the purchaser the entire purchase price of the product (excluding
shipping) at any time subject to the conditions stated below.

All refunds require a Lahey Returned Materials Authorization (RMA) number. Lahey must
receive the returned product in good condition within 15 days of assigning you an RMA
number.

Y ou may return an LF95 Language System if:

» Itisdetermined not to beafull implementation of the Fortran 95 Standard and L ahey
does not fix the deviation from the standard within 60 days of your report.

» Lahey failsto fix abug with the highest priority within 60 days of verifying your
report.

» All returnsfollowing the origina 60 days of ownership are subject to Lahey’s dis-
cretion. If Lahey has provided you with asource code workaround, acompiler patch,
anew library, or areassembled compiler within 60 days of verifying your bug report,
the problem is considered by Lahey to be solved and no product return and refund is
considered justified.

Return Procedure

Y ou must report the reason for the refund request to a Lahey Solutions Representative and
receive an RMA number. ThisRMA number must be clearly visible on the outside of the
return shipping carton. Lahey must receive the returned product within 15 days of assigning
you an RMA number. Y ou must destroy the following files before returning the product for
arefund:

» All copies of Lahey files delivered to you on the software disks and all backup
copies.
» All files created by this Lahey Language System.

A signed statement of compliance to the conditions listed above must be included with the
returned software. Copy the following example for this statement of compliance:

Lahey/Fujitsu Fortran 95 User’s Guide

Return Procedure

1, (your name), in accordance with the terms speci-
fied here, acknowledge that | have destroyed all backup copies of and all other files created with the
Lahey software. | no longer have in my possession any copies of the returned files or documentation.
Any violation of this agreement will bring legal action governed by the laws of the State of Nevada.

Signature:

Print Name:

Company Name:

Address:

Telephone:

Product: Version: Seria #:
RMA Number:

Refund Check Payable To:

Return Shipping Instructions
Y ou must package the software diskettes with the manual and write the RMA number on the
outside of the shipping carton. Shipping charges incurred will not be reimbursed. Ship to:

Lahey Computer Systems, Inc.
865 Tahoe Blvd.
P.O. Box 6091
Incline Village, NV 89450-6091
U.SA.

Lahey/Fujitsu Fortran 95 User’'s Guide 129

Appendix C Lahey Technical Support

130 Lahey/Fujitsu Fortran 95 User’s Guide

Index

Symbols
-21
.mod filename extension 8, 9

A

-aruntime option 120
abnormal termination, forced, run-
time option -a 120
--ap option, arithmetic precision 15
ar, archive utility 7
AUTOMAKE 95
CHECK= 101
COMPILE= 97
DEBUG 101
FILES= 96
LATESCAN 101
LF90 96
LINK= 99
MAKEMAKE 101
NOQUITONERROR 101
OBJDIR= 100
OBJEXT= 100
QUITONERROR 100
SYSINCLUDE= 100
TARGET= 98
automatic parallelization 71

B
big-endian data
porting files 109
runtime option -T 119
binary file format 109
blank padding, runtime option -
Q 118
BLAS 35
--block, blocksize option 15
breakpoints 55
bugs 126

C
C preprocessor
filenamesand 8
-C runtime option 118
-, suppress linking option 16

-chk, checking option 16
-chkglobal, global checking option 18
--c0, display compiler options
option 19
Command 51
command files 11
command line arguments and runtime
options 115
compiler 7,14
controlling 14
errors 14
compiler options (see "options") 14
Conflicts 10
-Cpp, invoke preprocessor option 8

D

-d runtime option 120
-D, define macro option 8

--dal, deallocate all ocatables option 19

--dbl, double option 19
debugging
with FDB 51
with GDB 51
demo.f90 5
diagnostic output, runtime option -
Rm 119
diagnogtic reporting level, runtime
option-l 121
direct fileformat 109
disassembly 63
DISIOINT 81
driver
configuration file 10
syntax 7
dummy argument 108

E

-eruntime option 120
efficiency considerations 107
endfile records 109
Environment 90
environment variables
FORT9O0L, runtime options
variable 116

FUnn, pre-connect file to unit 124

FUNNBF, i/o work area 124
ERRATA 6
error limit, runtime option -e 120
error output, runtime option -m 122
errors

compiler 14
external procedure names 38

F

--f95, Fortran 95 conformance
option 19

file formats

direct 108

formatted sequential 108

transparent 108

unformatted sequential 108
--file, specify file option 19
FILELIST 6
filenames 8

.mod extension 8, 9

library file 9

object file 9

output file 9

sourcefile 8
files

'scratch’ (temporary) 110

ERRATA 6

fort.nn (default name) 110

HDRSTRIPF90 106

I1f95.fig 10

README 6

TRYBLK.F90 106
--fix, fixed source-form option 19
formatted sequential file format 108
FORT90L environment varieble 116
fot 105
FUnn environment variable 124
FUNNBF environment variable 124

G

-g runtime option 121

-g, debug option 20

GETCL(), command line argument
vs. runtime options 115

Lahey/Fujitsu Fortran 95 User’s Guide 131

Index

H
HDRSTRIPF90 106
--help, display command
options 20
--help, options summary
options 20
hints
efficiency
considerations 107
fileformats 108
performance
considerations 110
side effects 107
hours 125

-i runtime option 121
-1, include path option 20
ilowork area
environment variables
for 124
runtime option -d 120
runtime option -g 121
IBM370 data, runtime
options 118
--in, IMPLICIT NONE option 20
INDEPENDENT 84
--info, display informationa mes-
sages option 21
installation 3
interrupt processing, runtime
option-i 121

L

-l runtime option 121
-L, library path option 21
-1, specify library option 21
Language Reference Manual 6
LAPACK 35
Id linker utility 7
1f95.fig configuration file 10
--li, Lahey intrinsic procedures 21
librarian (ar utility) 7
libraries

BLAS 35

C 39,50

creating 24

distributing LF95

applications 27

filenames 9
g77 39
- option (specify file) 21
-L option (specify search
path) 21
LAPACK 35
LD_LIBRARY_PATH
variable 21
Linux kernel 37, 50
--nshared option and 27
-ooptionand 24
OpenGL graphics 34
--out option and 24
runtime 27
--shared option and 27
SSL2 34
standard 37, 50
static (archive) 7
--staticlink option and 27
library searching rules 32
linker 7
rules 32
linker options (see "options") 14
linking 32
little-endian data
porting files 109
runtime option -T 119
--long, long integers option 22
loop reduction 76
loop dlicing 73
--Ist, listing option 22

M

-M runtime option 118
-m runtime option 122
-M, module path option 23
MAKE utility 95
--maxfatals, maximum fatals
option 22
--ml, mixed language option 23
--midefault, mixed language default
option 23
--mod, module path option 23
modules
.mod extension 8, 9

N

-n runtime option 122
notational conventions 3

numeric input, runtime option -x 123

132 Lahey/Fujitsu Fortran 95 User’s Guide

numeric output, runtime option -q 122

O
-O, optimization option 24
-0, output file name option 24
-00, optimization level zero option 24
object filenames 9
ocL 77
--ocl 25
OMP_NUM_THREADS 91
OMP_SCHEDULE 91
OMP_SET_NUM_THREADS 91
OpenGL graphics 34
--openmp 25
Optimization 24
options
--ap, arithmetic precision 15
--block, blocksize 15
-C, suppresslinking 16
-chk, checking 16
-chkglobal, global checking 18
--co, display compiler options 19
-Cpp, invoke preprocessor 8
-D, define preprocessor macro 8
--dal, deallocate allocatables 19
--dbl, double precision rea
variables 19
description 9
--f95, Fortran 95
conformance 19
--file, specify file 19
--fix, fixed source-form 19
-g, debug 20
-1, include path 20
--in, IMPLICIT NONE 20
--info, display informational
messages 21
-L, library search path 21
-1, specify library file 21
--long, long integers 22
--lst, listing 22
-M, module path option 23
--maxfatals, maximum fatal
errors 22
--ml, mixed language 23
--midefault, mixed language
default 23
--mod, module path 23
-0, optimize for speed 24
-0, output file name 24

Index

-0O0, no optimization 24

-00, optimization level
zero 24

--out, output file name 24

-P, preprocessor output to
file 8

--pca, protect constant
arguments 25

--prefetch, prefetch optimiza-
tion option 25

--private, module
accessiblity 26

-Q, listing 22

--quad, quadruple
precision 26

--quiet, quiet compilation 26

--sav, SAVE local variables 26

--shared, create shared
library 27

--Sse2, use streaming SIMD
extensions2 27

--static, statically link runtime
libraries 27

--staticlink, link to static
runtime 27

--SWm, suppress warning
messages 27

--t4, target 486 27

--tp, target Pentium 27

--tp4, target Pentium 4 27

--tpp, target Pentium Pro 27

--trace, location and call trace-
back for runtime errors 29

--trap, trap numeric
exceptions 29

-U, undefine preprocessor
macro 8

--unroll, loop unrolling 29

--varheap, local variable on
heap 29

--verbose, verbose output 30

--version, print version
information 30

-Wa, pass option to
assembler 10

--warn, display warning
messages 30

--wide, wide source format 30

-wisk, Winteracter Starter
Kit 30

-WI, passoption to linker 10, 33
--wo, warn obsolescent 30
-Wp, pass option to
preprocessor 10
-X, inline code 31
--xref, cross-reference listing 31
--zfm, zero flash mode for SSE2
instructions 31
options, --li 21
--out, output file name option 24
output filenames 9

P

-p runtime option 122
-P, preprocessor output option 8
PARALLEL 72,80
--paralle 25
--pca, protect constant arguments
option 25
pre-connected units
environment variables for 124
standard i/o 117
STDIN, runtime option -r 123
STDOUT, runtime option -p 122
--prefetch, prefetch optimization
option 25
--private, module accessibility
option 26
program size 113
programming hints 107

Q

-Q runtime option 118

-q runtime option 122

-Q, listing option 22

--quad, quadruple precision option 26
--quiet, quiet compilation option 26

R

-r runtime option 123
-Reruntime option 119
README 6
registering 3
registers 60
requirements

system 2
return codes 12
return values, execution 117
-Rm runtime option 119

RTERRMSG 6
runtime arguments, command
line 115
runtime diagnostics, runtime option -
| 121
runtime error handling, runtime
option -Re 119
Runtime Options 115, 117
environment variablesfor 116
syntax of 117
runtime options
-a, force abnormal
termination 120
-C, IBM370 data
conversion 118
command line arguments
and 115
-d, direct i/o work area 120
-e, execution error limit 120
-g, sequential i/o work area 121
GETCL() and GETARG()
returned values 115
-i, interrupt processing 121
-1, diagnostic reporting
level 121
-M, IBM370 data
conversion 118
-m, standard error output 122
-n, prompt messages, stdin 122
-p, standard output 122
-Q, blank padding 118
-q, capitalize numeric edit
output 122
-1, standard inputunit 123
-Re, runtime error handling 119
-Rm, diagnostic output file 119
-Ry, Y2K compliance 119
-T, big-endian conversion 119
-u, undrflow interrupts 123
-WI, indicate runtime
option 115
-X, blanks in numeric input 123
-Ry runtime option 119

S
--sav, SAVE local variables option 26
Scientific Software Libraries 34
searching rules

library 32
SEQUNF.F90

Lahey/Fujitsu Fortran 95 User’s Guide 133

Index

files
SEQUNF.F90 106
SERIAL 79
--shared, shared library option 27
side effects 107
SIMD 27
source filenames 8
SSE2 27,31
--Sse2, use streaming SIMD exten-
sions 2 option 27
SSL2 34
standard input/output units 117
--static, static runtime library
option 27
--staticlink, static runtime
option 27
STDERR
runtime option -m 122
STDIN
prompt messages, runtime
option-n 122
unit assignment, runtime
option -r 123
STDIN, STDERR, STDOUT 117
STDOUT
unit assignment, runtime
option-p 122
step 58
support services 125
--SWm, SUppress warning mes-
sage(s) option 27
syntax
driver 7
system requirements 2

T

-T runtime option 119
--t4, target 486 option 27
technical support 126
TEMP 82
THREAD_STACK_SIZE 72,90
--threadheap 28
--threads 28
--threadstack 28
--tp, target Pentium option 27
--tp4, target Pentium 4 option 27
--tpp, target Pentium Pro
option 27
--trace, runtime error traceback
option 29

transparent file format 109

--trap, trap numeric exceptions
option 29

TRYBLK.F90 106

U

-u runtime option 123
-U, undefine macro option 8
underflow interrupts, runtime option -
u 123
unformatted sequential file
format 108
Uningtalling LF95 4
--unroll, loop unrolling option 29
utility programs 105

\Y,

--varheap, local variables on heap
option 29

--verbose, verbose output option 30

--version, version info option 30

W

-Wa, assembler option 10

--warn, warnings option 30

warranties 128

--wide, wide source format 30

Winteracter Starter Kit Reference 6

-wisk, Winteracter Starter Kit
option 30

-WI, indicate runtime option 115

-WI, linker option 10, 33

--wo, warn obsolescent option 30

World Wide Web 127

-Wp, preprocessor option 10

X

-X runtime option 123

-X, inline code option 31

--xref, cross-reference listing
option 31

Y

Y 2K compliance
runtime option -Ry 119

Z

--zfm, zero flash mode for SSE2
instructions option 31

134 Lahey/Fujitsu Fortran 95 User’s Guide

	Getting Started
	LF95 Linux Express
	LF95 Linux PRO
	System Requirements
	Manual Organization
	Notational Conventions
	Product Registration
	Installing Lahey/Fujitsu Fortran 95
	Maintenance Updates
	Uninstalling LF95
	Building Your First LF95 Program
	Generating the Executable Program
	Running the Program

	What’s Next?
	Other Sources of Information
	Files
	Manuals
	Newsletters
	Lahey Web Page
	Discussion Groups

	Developing with LF95
	How the Driver Works
	Running the LF95 Driver
	Filenames and Extensions
	Source Filenames
	Object Filenames
	Module Filenames
	Output Filenames
	Library Filenames

	Options
	Conflicts Between Options

	Driver Configuration File (lf95.fig)
	Command Files
	Intermediate Files
	Return Codes from the Driver
	Shared Libraries
	Archive Libraries
	Using Shared Libraries
	Using Archive Libraries
	Controlling Compilation
	Errors in Compilation

	Compiler and Linker Options
	--[n]ap
	--block blocksize
	-[n]c
	--[n]chk
	--[n]chkglobal
	--[n]co
	--[n]dal
	--[n]dbl
	--[n]f95
	--file filename
	--[n]fix
	-g
	--help
	-I dir
	--[n]in
	--[n]info
	-l (lower-case L) name
	-L path
	--[n]li
	--[n]long
	--[n]lst [[spec=sval[, spec=sval]]]
	--[n]maxfatals number
	--ml target
	--mldefault target
	-M dir
	{ -O0 | -O }
	-o name
	--[n]ocl (PRO version only)
	--[n]openmp (PRO version only)
	--[n]parallel (PRO version only)
	--[n]pca
	--[n]prefetch [level]
	--[n]private
	--[n]quad
	--[n]quiet
	--[n]sav
	--[n]shared
	--[n]sse2
	--static
	--[n]staticlink
	--[n]swm msg[,msg[,...]]
	{ --t4 | --tp | --tpp | --tp4 }
	--threads N (PRO version only)
	--threadstack N (PRO version only)
	--threadheap [size] (PRO version only)
	--[n]trace
	--[n]trap
	--[n]unroll limit
	--[n]varheap size
	--[n]verbose
	--[n]version
	--[n]warn
	--[n]wide
	--[n]wisk (PRO version only)
	--[n]wo
	-x arg
	--[n]xref
	--[n]zfm

	Linking Rules
	Fortran 95 Modules
	How the Linker Finds Libraries
	Object File Processing Rules
	How the Linker Selects Objects
	Linker Options

	Distributing LF95 Applications
	OpenGL Graphics Programs
	Scientific Software Libraries (PRO Version only)
	BLAS and LAPACK Libraries (PRO Version only)
	Porting Code Between Windows and Linux
	Recommended Option Settings

	Mixed Language Programming
	What Is Supported
	Declaring Your Procedures
	Interfacing with g77 (GNU Fortran)
	Interfacing with Non-Fortran Languages
	Passing Data
	Returning Function Values to C
	Returning Function Values to Fortran
	Passing and Receiving Arguments
	Passing Arrays
	Passing Character Data
	Passing Data through Common Blocks
	Program Control: main() and MAIN__()
	Calling Standard C Libraries

	Command-Line Debugging with fdb
	Starting fdb
	Communicating with fdb
	Variables
	Values
	Addresses
	Registers
	Names

	Commands
	Executing and Terminating a Program
	run arglist
	Run
	kill
	tty dev
	param commandline arglist
	param commandline
	clear commandline
	setenv
	setenv "var"
	setenv "var" "s"
	unsetenv "var"
	quit

	Help Commands
	help
	help cmd
	help "regex"

	Shell Commands
	cd dir
	pwd
	sh cmd

	Breakpoints
	General Syntax
	break [‘file‘] line
	break [‘file‘] procname
	break *addr
	break
	breakoff [#n]
	breakon [#n]
	condition #n expr
	condition #n
	oncebreak
	regularbreak "regex"
	delete location
	delete [‘file‘] line
	delete [‘file‘] procname
	delete *addr
	delete #n
	delete
	skip #n count
	onstop #n cmd[;cmd2;cmd3...;cmdn]
	show break

	Controlling Program Execution
	continue [count]
	silentcontinue [count]
	step [count]
	silentstep [count]
	stepi [count]
	silentstepi [count]
	next [count]
	silentnext [count]
	nexti [count]
	silentnexti [count] or nin [count]
	until
	until location
	until *addr
	until +|-offset
	until return
	goto [‘file‘] line
	jump [‘file‘] line
	jump *addr

	Displaying Program Stack Information
	traceback [n]
	frame
	upside [n]
	downside [n]
	show args
	show locals
	show reg [$r]
	show freg [$fr]
	show regs
	show map

	Setting and Displaying Program Variables
	set variable = value
	set *addr = value
	set reg = value
	print [[:F] variable [= value]]
	memprint [:FuN] addr

	Source File Display
	show source
	list now
	list next
	list previous
	list around
	list sigaround
	list [‘file‘] num
	list +|-offset
	list [‘file‘] top,bot
	list [func[tion]] procname
	disas
	disas *addr1 [,*addr2]
	disas procname

	Automatic Display
	screen [:F] expr
	screen
	unscreen [#n]
	screenoff [#n]
	screenon [#n]
	show screen

	Symbols
	show function ["regex"]
	show variable ["regex"]

	Scripts
	script ‘script‘
	alias cmd "cmd-str"
	alias [cmd]
	unalias [cmd]

	Signals
	signal sig action
	show signal [sig]

	Miscellaneous Controls
	param listsize num
	param prompt "str"
	param printarray on|off
	param printstructure on|off
	param printelements num
	param prm

	Files
	show exec
	param execpath [path]
	param srcpath [path]
	show source
	show sources

	Fortran 95 Specific
	breakall mdl
	breakall func
	show ffile
	show fopt

	Memory Leak Detection
	param leak off | mem | all
	param leak
	show leak log | error | summary

	Processes and Threads
	ps [pid]

	Restrictions

	Multi-Processing (PRO version only)
	Overview of Multi-Processing
	Performance Improvement
	Impediments to Improvements
	Overhead
	Lack of Large Arrays
	I/O Intensive Programs
	Potential for Incorrect Results
	Other Unparallelizable Loops

	Hardware for Multi-Processing

	Automatic Parallelization
	Compiler Options for Automatic Parallelization
	Environment Variables
	Environment Variable PARALLEL
	Environment Variable THREAD_STACK_SIZE
	Examples of Compilation and Execution

	Details of Multi-Processing
	Targets for Automatic Parallelization
	Loop Slicing
	Array Operations and Automatic Parallelization
	Automatic Loop Slicing by the Compiler
	Loop Interchange and Automatic Loop Slicing
	Loop Distribution and Automatic Loop Slicing
	Loop Fusion and Automatic Loop Slicing
	Loop Reduction
	Restrictions on Loop Slicing
	Debugging

	Optimization Control Line
	Optimization Control Specifier
	Syntax of OCL
	Position of OCL
	Automatic Parallelization and Optimization Control Specifiers
	Optimization Control Specifiers
	SERIAL
	PARALLEL
	DISJOINT
	INDEPENDENT
	Wild Card Specification

	Notes on Parallelization
	--threads
	Multi-Processing of Nested DO Loops
	Invalid Usage of Optimization Control Line

	OpenMP
	Compilation
	Environment Variables
	Implementation Specifications
	Nesting of Parallel Regions
	Dynamic Thread Adjustment Features
	Number of Threads
	SCHEDULE Clause
	OMP_SCHEDULE Environment Variable
	ASSIGN and Assigned GO TO Statements
	Additional Functions and Operators in ATOMIC directive and REDUCTION Clause
	FORALL construct
	THREADPRIVATE
	IF Clause for PARALLEL Directive
	Inline Expansion
	Internal Procedure Calling from Parallel Region
	DO Variable for Serial DO Loop in Parallel Region
	Statement Function Statement
	Namelist Group Object
	Materialization of Parallel Region
	Automatic Parallelization with OpenMP
	Debugging

	Automake (PRO version only)
	Introduction
	What Does It Do?
	How Does It Do That?
	How Do I Set It Up?
	What Can Go Wrong?

	Running AUTOMAKE
	The AUTOMAKE Configuration File
	Multi-Phase Compilation
	Automake Notes

	Utility Programs
	fot
	hdrstrip.f90
	sequnf.f90
	tryblk.f90

	Programming Hints
	Efficiency Considerations
	Side Effects
	File Formats
	Formatted Sequential File Format
	Unformatted Sequential File Format
	Direct File Format (Formatted)
	Direct File Format (Unformatted)
	Binary File Format
	Endfile Records
	Porting Unformatted Files

	File Creation: Default Names
	Link Time
	Year 2000 compliance
	Limits of Operation

	Runtime Options
	Command Format
	Environment Variables
	Execution Return Values
	Standard Input, Output, and Error
	Runtime Options
	Descriptions of Runtime Options
	-C or -C[u_no]
	-M
	-Q
	-Re
	-Rm:filename
	-Ry
	-T or -T[unit]
	-a
	-d[num] 1 < num < 32767
	-e[num] 0 < num < 32767
	-g[num] 1 < num
	-i
	-lerrlevel errlevel: { i | w | e | s }
	-munit 0 < unit < 2147483647
	-n
	-punit 0 < unit < 2147483647
	-q
	-runit 0 < unit < 2147483647
	-u
	-x

	Shell Variables for Input/Output
	fuunit = filename 00 < unit < 2147483647
	fuunitbf size 00 < unit < 2147483647

	Lahey Technical Support
	Hours
	Lahey’s Business Hours Are
	Telephone Technical Support Is Available
	We Have Several Ways for You to Communicate with Us:

	Technical Support Services
	How Lahey Fixes Bugs
	Contacting Lahey
	Information You Provide
	World Wide Web Site
	Lahey Warranties
	Lahey’s 30 Day Money Back Guarantee
	Lahey’s Extended Warranty

	Return Procedure
	Return Shipping Instructions

