
Lahey/Fujitsu Fortran 95
User’s Guide
Linux Edition
Revision D

Copyright
Copyright © 1995-2003 Lahey Computer Systems, Inc. All rights reserved worldwide. Copyright © 1999-2003
FUJITSU, LTD. All rights reserved. This manual is protected by federal copyright law. No part of this manual
may be copied or distributed, transmitted, transcribed, stored in a retrieval system, or translated into any human
or computer language, in any form or by any means, electronic, mechanical, magnetic, manual, or otherwise, or
disclosed to third parties.

Trademarks
Names of Lahey products are trademarks of Lahey Computer Systems, Inc. Other brand and product names are
trademarks or registered trademarks of their respective holders.

Disclaimer
Lahey Computer Systems, Inc. reserves the right to revise its software and publications with no obligation of
Lahey Computer Systems, Inc. to notify any person or any organization of such revision. In no event shall Lahey
Computer Systems, Inc. be liable for any loss of profit or any other commercial damage, including but not lim-
ited to special, consequential, or other damages.

Lahey Computer Systems, Inc.
 865 Tahoe Boulevard

 P.O. Box 6091
Incline Village, NV 89450-6091

(775) 831-2500
Fax: (775) 831-8123

http://www.lahey.com

Technical Support
support@lahey.com

Table of Contents

Getting Started..1

System Requirements 2
Manual Organization 2
Notational Conventions 3
Product Registration .. 3
Installing Lahey/Fujitsu Fortran 95 3
Maintenance Updates 4
Uninstalling LF95.. 4
Building Your First LF95 Program 4

Generating the Executable Program............ 5
Running the Program 5

What’s Next? ... 6
Other Sources of Information 6

 Developing with LF95............................7
How the Driver Works 7
Running the LF95 Driver 7

Filenames and Extensions 8
Options .. 9

Driver Configuration File (lf95.fig)............... 10
Command Files.. 11
Intermediate Files .. 11
Return Codes from the Driver 12
Shared Libraries... 12
Archive Libraries ... 12
Using Shared Libraries 13
Using Archive Libraries 13
Controlling Compilation................................ 14

Errors in Compilation................................ 14
Compiler and Linker Options 14
 Linking Rules ... 32

Fortran 95 Modules 32
How the Linker Finds Libraries 32
Object File Processing Rules..................... 32
How the Linker Selects Objects 32
Linker Options... 33

Distributing LF95 Applications..................... 33
OpenGL Graphics Programs 34
Scientific Software Libraries (PRO Version

only) ...34
BLAS and LAPACK Libraries (PRO Version
only) ...35
Porting Code Between Windows and Linux..35
Recommended Option Settings......................35

Mixed Language Programming37
What Is Supported37
Declaring Your Procedures........................37
Interfacing with g77 (GNU Fortran)..........39
Interfacing with Non-Fortran Languages ..39
Passing Data...40
Returning Function Values to C42
Returning Function Values to Fortran44
Passing and Receiving Arguments45
Passing Arrays ...46
Passing Character Data47
Passing Data through Common Blocks49
Program Control: main() and MAIN__()..50
Calling Standard C Libraries50

Command-Line Debugging with fdb ...51
Starting fdb...51
Communicating with fdb................................52

Variables ..52
Values ..52
Addresses ...52
Registers...53
Names ..53

Commands..53
Executing and Terminating a Program53
Help Commands ..55
Shell Commands ..55
Breakpoints ..55
Controlling Program Execution58
Displaying Program Stack Information60
Setting and Displaying Program Variables61
Source File Display....................................62
Automatic Display63
Symbols ...64
Lahey/Fujitsu Fortran 95 User’s Guide i

Contents
Scripts.. 64
Signals ... 64
Miscellaneous Controls............................. 65
Files ... 65
Fortran 95 Specific.................................... 66
Memory Leak Detection 66
Processes and Threads 67

Restrictions .. 67

Multi-Processing (PRO version only) . 69
Overview of Multi-Processing 69

Performance Improvement........................ 70
Impediments to Improvements.................. 70
Hardware for Multi-Processing................. 71
Compiler Options for Automatic Paralleliza-
tion .. 71
Environment Variables 71
Details of Multi-Processing 72
Optimization Control Line 77
Notes on Parallelization 86

OpenMP... 89
Compilation... 90
Environment Variables 90
Implementation Specifications.................. 90

Automake (PRO version only)............. 95
Introduction ... 95

What Does It Do?...................................... 95
How Does It Do That? 95
How Do I Set It Up? 95
What Can Go Wrong?............................... 96

Running AUTOMAKE..................................96
The AUTOMAKE Configuration File...........96
Multi-Phase Compilation101
Automake Notes...102

Utility Programs..................................105
fot ...105
hdrstrip.f90...106
sequnf.f90...106
tryblk.f90..106

Programming Hints107
Efficiency Considerations............................107
Side Effects ..107
File Formats ...108

Formatted Sequential File Format108
Unformatted Sequential File Format108
Direct File Format (Formatted)109
Direct File Format (Unformatted)109
Binary File Format...................................109
Endfile Records109
Porting Unformatted Files109

File Creation: Default Names110
Link Time...110
Year 2000 compliance110
Limits of Operation......................................112

Runtime Options.................................115
Command Format ..115
Environment Variables116
Execution Return Values117
Standard Input, Output, and Error................117
Runtime Options ..117

Descriptions of Runtime Options118
Shell Variables for Input/Output..................123

Lahey Technical Support...................125
Hours..125
Technical Support Services..........................126

How Lahey Fixes Bugs............................126
Contacting Lahey.....................................126
Information You Provide.........................126
World Wide Web Site..............................127
Lahey Warranties.....................................128
Return Procedure128
ii Lahey/Fujitsu Fortran 95 User’s Guide

1 Getting Started
Lahey/Fujitsu Fortran 95 (LF95) is a set of software tools for developing optimized 32-bit
Fortran applications. LF95 is a complete implementation of the Fortran 95 standard. Lahey
provides two distributions of LF95, called LF95 Linux Express and LF95 Linux PRO. Some
chapters or feature descriptions in this manual apply only to LF95 Linux PRO. These chap-
ters and feature descriptions are marked “PRO Version Only”.

LF95 Linux Express

LF95 Express includes an optimizing compiler, debugger, on-line documentation and free e-
mail technical support. Express has two manuals, the User’s Guide (this manual), which
describes how to use the compiler and tools, and the Language Reference, which describes
the Fortran 95 language and various extensions.

LF95 Linux PRO

LF95 PRO includes an optimizing compiler with automatic parallelization and OpenMP sup-
port, debugger, AUTOMAKE (an automatic build tool for Fortran and C), WiSK (an X-
Windows-based user interface and graphics toolset library), hardcopy manuals and free tele-
phone support. PRO documentation includes the User’s Guide, the Language Reference, and
the WiSK Reference, which documents the use of the Winteracter Starter Kit (WiSK) for
graphics and user interface development.

 This manual assumes that the reader possesses a working knowledge of the Linux operating
system, including Linux commands, file manipulation, file system navigation, and shell
scripts.
Lahey/Fujitsu Fortran 95 User’s Guide 1

Chapter 1 Getting Started
System Requirements
• An 80486DX, Pentium series or compatible processor
• 24 MB of RAM (32 MB or more recommended)
• 60 MB of available hard disk space for LF95 Linux PRO; 30 MB for LF95 Linux

Express
• X-Windows to use WiSK and view the online PDF documentation

• A compatible version of the Linux operating system. Table 1 shows the versions of
Linux that are known to be compatible with LF95. Other Linux variants might be
compatible if they include kernel version 2.4.7 or later and libc version 2.2.4 or later
(see README for last minute updates):

Manual Organization
This book is organized into seven chapters and three appendices.

• Chapter 1, Getting Started, identifies system requirements, describes the installation
process, and takes you through the steps of building your first program.

• Chapter 2, Developing with LF95, describes the development process and the driver
program that controls compilation, linking, and the generation of executable pro-
grams or libraries.

• Chapter 3, Mixed Language Programming, describes the creation of mixed language
programs using C or G77.

• Chapter 4, Command-Line Debugging with fdb, describes the command-line
debugger.

• Chapter 5, Multi-Processing (PRO version only), describes how to use LF95 PRO’s
automatic and OpenMP parallelization capabilities.

• Chapter 6, Automake (PRO version only), describes how to use Automake, LF95
PRO’s automatic build tool.

Table 1: Supported Distributions

Distribution Kernel libc

Red Hat Linux 7.2 2.4.7 2.2.4

Red Hat Linux 7.3 2.4.18 2.2.5

Red Hat Linux 8.0 2.4.18 2.2.93

Slackware v8.1 2.4.18 2.2.5

Linux Mandrake v9.0 2.4.19 2.2.5

SuSE Linux 8.1 2.4.19 2.2.5
2 Lahey/Fujitsu Fortran 95 User’s Guide

Notational Conventions
• Chapter 7, Utility Programs, describes how to use the additional utility programs.
• Appendix A, Programming Hints offers suggestions about programming in Fortran

on the PC with LF95.
• Appendix B, Runtime Options describes options that can be added to your execut-

able’s command line to change program behavior.
• Appendix C, Lahey Technical Support describes the services available from Lahey

and what to do if you have trouble.

Notational Conventions
The following conventions are used throughout this manual:

Code and keystrokes are indicated by courier font.

In syntax descriptions, [brackets] enclose optional items.

An ellipsis, ”...”, following an item indicates that more items of the same form may appear.

Italics indicate text to be replaced by the programmer.

Non-italic characters in syntax descriptions are to be entered exactly as they appear.

A vertical bar separating non italic characters enclosed in curly braces ‘{ opt1 | opt2 | opt3 }’
indicates a set of possible options, from which one is to be selected.

Product Registration
To all registered LF95 Express users, Lahey provides free, unlimited technical support via
fax, postal mail, and e-mail. Registered LF95 PRO users are additionally entitled to free
phone support. Procedures for using Lahey Support Services are documented in Appendix
C, Lahey Technical Support.

To ensure that you receive technical support, product updates, newsletters, and new release
announcements, please register via mail or via our website: http://www.lahey.com. If
you move or transfer a Lahey product’s ownership, please let us know.

Installing Lahey/Fujitsu Fortran 95
In order to install LF95 in a public directory, you must be logged in as root. The installation
CD must be mounted with execute permission. The install script presents a series of choices,
which guide the user through the installation process.
Lahey/Fujitsu Fortran 95 User’s Guide 3

Chapter 1 Getting Started
3. Run install, the installation script, and follow the menu prompts. The default
installation directory is /usr/local/lf9561, however, you can change it to a
directory of your choice during the installation.

4. If desired, you may install the Adobe Acrobat Reader at a later time. You may run
install and select it from the menu or install it manually. It is located in the acro-
bat directory on the installation CD as a compressed tar file. Acrobat Reader or xpdf
is required to view the on-line documentation.

Maintenance Updates
Maintenance updates are made available for free from Lahey's website. They comprise bug
fixes or enhancements or both for this version of LF95. The update program applies
"patches" to your files to bring them up-to-date. The maintenance update version shows as
a letter after the version of your compiler. This is displayed in the first line of output when
you run the compiler.

To get the latest maintenance update for this version, go to Lahey’s web page:

http://www.lahey.com

There you will find update programs you can download, as well as release notes and bug fix
descriptions. Once you have downloaded an update program, you will no longer need an
Internet connection.

In general, if you modify the contents of any of the files installed by this product (except
within the Examples directory), that particular file will no longer be valid for updating, and
the update installation program may abort with an error message.

Uninstalling LF95
The uninstallation program can be found in the LF95 installation directory (/usr/local/lf95xx
by default). You must be logged in as root in order to uninstall LF95. Any new files created
after installation will not be removed.

Building Your First LF95 Program
Building and running a Fortran program with LF95 involves three basic steps:

1. Creating a source file using a text editor.
4 Lahey/Fujitsu Fortran 95 User’s Guide

Generating the Executable Program
2. Generating an executable program using the LF95 driver. The driver automatically
compiles the source file(s) and links the resulting object file(s) with the runtime
library and other libraries you specify.

3. Running the program.

The following paragraphs take you through steps two and three using the demo.f90 source
file included with LF95.

Generating the Executable Program
Compiling a source file into an object file and linking that object file with routines from the
runtime library is accomplished using the LF95 driver program. From the command prompt,
build the demo program by changing to the directory where demo.f90 is installed (located
in examples/fortran/ under the installation directory), and entering

lf95 demo.f90

This causes the compiler to read the source file demo.f90 and compile it into the object file
demo.o. Once demo.o is created, LF95 invokes the linker to combine necessary routines
from the runtime library and produce the executable program, a.out.

Running the Program
To run the program, type its name at the command prompt and press <Enter>:

./a.out

The demo program begins and a screen similar to the following is displayed:

 Lahey/Fujitsu LF95 Compiler

 installation test and demonstration program

 Copyright(c) 1998
 Lahey Computer Systems, Inc.

 Test/Action List:

 1 - factorials
 2 - Fahrenheit to Celsius conversion
 3 - Carmichael numbers
 4 - Ramanujan's series
 5 - Stirling numbers of the 2nd kind
 6 - chi-square quantiles
 7 - Pythagorean triplets
 8 - date_and_time, and other system calls
 0 - <stop this program>

 Please select an option by entering the
 associated number followed by <return>.

You’ve successfully built and run the Lahey demonstration program.
Lahey/Fujitsu Fortran 95 User’s Guide 5

Chapter 1 Getting Started
What’s Next?
For a more complete description of the development process and instructions for using
Lahey/Fujitsu Fortran 95, please turn to Chapter 2, Developing with LF95.

Before continuing, however, please read the files README and ERRATA. These contain
important last-minute information and changes to the documentation.

Other Sources of Information
Files

README last-minute information
FILELIST description of all files distributed with LF95
RTERRMSG descriptions of runtime error messages and their IOSTAT values
ERRATA changes that were made after the manuals were finalized

Manuals
Lahey/Fujitsu Fortran 95 Language Reference
Winteracter Starter Kit Reference (PRO Version only)

Newsletters
The Lahey Fortran Source newsletter

Lahey Web Page
http://www.lahey.com

Discussion Groups
The Lahey Fortran Forum (see Lahey Web Page for instructions on joining this dis-
cussion group)
6 Lahey/Fujitsu Fortran 95 User’s Guide

2 Developing with
LF95
This chapter describes how to use LF95’s driver to build Fortran applications. The driver
controls compilation, linking, and the production of archive libraries, executable programs
and shared libraries.

How the Driver Works
The driver (lf95) controls the two main processes—compilation and linking—used to create
an executable program. These component processes are performed by the following pro-
grams under control of the driver:

Compiler. The compiler compiles source files into object files and creates files required for
using Fortran 95 modules. It is this component that performs the actual compilation of the
program, even though the lf95 driver is commonly referred to as the “compiler.”

Linux Archive Utility. ar, the archive utility, can be invoked from the driver or from the
command prompt to create or change static libraries.

Linux Linker. ld is the linker. The linker combines object files and libraries into a single
executable program or shared library.

Running the LF95 Driver
By default, the LF95 driver program oversees compilation of any specified source files and
will link them along with any specified object files and libraries into an executable program.

To run the driver, type lf95 followed by a list of one or more filenames and optional com-
mand-line options:
Lahey/Fujitsu Fortran 95 User’s Guide 7

Chapter 2 Developing with LF95
lf95 [options] filenames [options]
The driver searches for the various tools (the compiler, archive library utility, and linker) first
in the directory the driver is located and then, if not found, on your path. The command line
options are discussed later in this chapter.

Filenames and Extensions
Depending on the extension(s) of the filename(s) specified, the driver will invoke the neces-
sary tools. The extensions .f95, .f90, .for, .f, .F95, .F90, .FOR, and .F, for example,
cause the compiler to be invoked. The extension .s causes the assembler to be invoked. The
extension .o (denoting an object file) causes the linker to be invoked. Please note that if the
suffix for Fortran source is uppercase (.F95, .F90, .FOR, or .F), it will cause the C prepro-
cessor to be invoked before the compiler; it is therefore preferable to use a lowercase
extension on the filename if the file does not need to be preprocessed.

For lowercase suffixes, the C preprocessor can be invoked using the -Cpp option. Prepro-
cessor options -D (define macro), -U (un-define macro), and -P (send preprocessor output to
file) are also supported, and behave as documented in the man pages for gcc, the GNU C-
compiler. This manual does not encourage use of the preprocessor, because such activity fos-
ters non-Fortran-standard programming practices.

Please note: filenames are case sensitive. Filenames containing spaces are not recom-
mended, nor are filenames beginning with a hyphen, i.e., “-”. Also note that the extension
.mod is reserved for compiler-generated module files. Do not use this extension for your
Fortran source files.

Source Filenames
One or more source filenames may be specified, either by name or using the usual Linux
wild-card characters. Filenames must be separated by a space. Filenames not matching any
of the forms described below are passed directly to the linker.

Example
lf95 *.f90

If the files one.f90, two.f90, and three.for were in the current directory, one.f90 and
two.f90 would be compiled and linked together, and the executable file, a.out, would be
created in the current directory. three.for would not be compiled because its extension
does not match the extension specified on the LF95 command line.

A source filename must be specified completely, including the extension. In the absence of
an option specifying otherwise (i.e., if neither --fix or --nfix is specified):

.f90, .F90, .f95, and .F95 specify interpretation as Fortran 95 free source
form.

.for, .FOR, .f, and .F specify interpretation as Fortran 95 fixed source form.
8 Lahey/Fujitsu Fortran 95 User’s Guide

Options
Once again, please note that an uppercase extension will cause the C preprocessor to be
invoked before the Fortran compiler is invoked; it is therefore preferable to use a lowercase
extension on the filename, if the file does not need to be preprocessed. For a description of
free source form and fixed source form, please see the Language Reference.

Object Filenames

The default name for an object file is the same as the source filename with extension .o.
When an object file is created, it is placed by default in the current working directory. This
behavior may be overridden by specifying the -o (or --out) option with a new name and path
(see “-o name” on page 24).

Module Filenames

Files containing Fortran 95 module information will have the same name as the module
defined in the source code, in lowercase, followed by the .mod extension. When a module
file is created, it is placed by default in the current working directory. This behavior may be
overridden by specifying the --mod or -M option (see “-M dir” on page 23). The extension
.mod is reserved for compiler-generated module files. Do not use this extension for your
Fortran source files. If a program contains code that USEs a module, then its object file (cor-
responding to the source file where that module was defined) must be specified on the
command line. The search path for .mod files may be specified with the --mod or -M option.

Output Filenames

The default name for the executable file produced by the driver is a.out. If no path is spec-
ified, the current directory will be used. This may be overridden by specifying the --out or
-o option with a new name and path. When -c is specified on the command line, the argu-
ment to --out or -o must be an object filename. (see “-o name” on page 24).

Library Filenames

The default name for a library typically has an extension of .a for a static library and .so for
a shared (dynamic) library (See “Archive Libraries” and “Shared Libraries” on page 12). In
addition, libraries will typically begin with the characters “lib.” The prefix and extension
must be omitted when referencing the library at link time. For example, libsub.so is a
shared library in the current directory that is referenced on the command line as

lf95 main.f90 -L. -lsub

Options
The driver recognizes one or more letters preceded by one or two hyphens (- or --) as a com-
mand-line option. You may not combine options after a hyphen: for example, -x and -y
may not be entered as -xy.
Lahey/Fujitsu Fortran 95 User’s Guide 9

Chapter 2 Developing with LF95
Some options take arguments in the form of filenames, strings, letters, or numbers. Please
note: options with double hyphens (--) require a delimiting space between the option and its
argument(s); however, options with single hyphens (-) may be followed immediately by the
argument(s), with no intervening space. If an option has multiple arguments, spaces are not
allowed between the arguments.

Example

-M../MyDir/IncDir (delimiting space not required)

--mod ../MyDir/IncDir:./ModDir

 (delimiting space required after --mod but prohibited after :)

If an unknown option is detected, the entire text from the beginning of the unknown option
to the beginning of the next option or end of the command line is passed to the linker. Even
though options with double hyphens are not case-sensitive, it is recommended that all options
be treated as case-sensitive to avoid confusion. Certain arguments to driver options (i.e.,
names of files or directories) will also be case-sensitive. To illustrate, if the argument to the
-M option in the above example were changed to ../MYDIR/INCDIR, then the driver would
be unable to find the actual directory.

An option for another component tool (linker, assembler, or preprocessor) that conflicts with
an LF95 option may be passed directly to that component, verbatim, using the -Wl, -Wa, and
-Wp options. These options behave as documented in the man pages for gcc, the GNU C
compiler.

Conflicts Between Options

Command line options are processed from left to right. If conflicting options are specified,
the last one specified takes precedence. For example, if the command line contained lf95
foo --lst --nlst, the --nlst option would be used.

To display the LF95 version number and a summary of valid command-line options, type
lf95 --version --help.

Driver Configuration File (lf95.fig)
In addition to specifying options on the command line, you may specify a default set of
options in the lf95.fig file. When the driver is invoked, the options in the lf95.fig file
are processed before those on the command line. Command-line options override those in
the lf95.fig file. The driver searches for lf95.fig first in the current directory and then,
if not found, in the directory in which the driver is located.
10 Lahey/Fujitsu Fortran 95 User’s Guide

Command Files
Command Files
If you have too many options and files to fit on the command line, you can place them in a
command file. Enter lf95 command line arguments in a command file in exactly the same
manner as on the command line. Command files may have as many lines as needed. Lines
beginning with an initial # are comments.

To process a command file, preface the name of the file with an @ character. When lf95
encounters a filename that begins with @ on the command line, it opens the file and processes
the commands in it.

Example
lf95 @mycmds

In this example, lf95 reads its commands from the file mycmds.

Command files may be used both with other command-line options and other command files.
Command files may be nested. Multiple command files are processed left to right in the
order they are encountered on the command line.

Intermediate Files
The lf95 driver (and the components it controls) may use temporary files for storing interme-
diate results and passing them between components. These files are automatically created in
the default temporary directory, using random names, and then deleted. This directory can
be changed by specifying a value for the shell variable TMPDIR.
Lahey/Fujitsu Fortran 95 User’s Guide 11

Chapter 2 Developing with LF95
Return Codes from the Driver
When the lf95 driver receives a failure return code, it aborts the build process. The driver
will return an error code depending on the success of the invoked tools. These return codes
are listed below:

Shared Libraries
A shared library is a collection of procedures packaged together in a library that is loaded at
runtime. On Unix systems, such libraries have been traditionally referred to as “shared librar-
ies” or “shared archives”. The term “DLL” (Dynamic Link Library) was coined as a name
for the Microsoft Windows implementation of shared libraries. This manual uses the term
“shared library” rather than “DLL,” even though the two can be considered as interchange-
able. A shared library cannot run on its own; the functions and subroutines in a shared library
must be called from an executable file that contains a main program. If an LF95 program that
uses shared libraries is distributed to other machines, the shared libraries it uses must also be
distributed or made available at runtime (see “Distributing LF95 Applications” on page 33).

Archive Libraries
An archive library (sometimes called a “static library,” or simply an “archive”) is a collection
of procedures in object form, stored in a file that may be referenced by the linker. At link
time, when the executable program is created, the object code for procedures needed from
the library by the program is incorporated into the program’s executable file.

Table 2: Driver Return Codes

Code Condition

0 Successful compilation and link

1 Compiler fatal error

2 Archive Utility error

3 Linker error

4 Driver error
12 Lahey/Fujitsu Fortran 95 User’s Guide

Using Shared Libraries
Using Shared Libraries
To create a shared library, use the --shared option.

Example

lf95 sub.f90 --out libsub.so --shared

lf95 main.f90 -L. -lsub

In this example, the source file sub.f90 contains subroutines or functions, and the source
file main.f90 contains references to these procedures. The following takes place:

1. sub.f90 is compiled to create object file sub.o.

2. sub.o is linked to create libsub.so, a shared library. Object file sub.o is then
deleted.

3. main.f90 is compiled to create main.o.

4. main.o is linked with the LF95 runtime library and combined with dynamic link
information, referencing procedures in libsub.so, to create an executable pro-
gram. Object file main.o is then deleted.

Note that the name of the shared library must be prefixed with “lib.” Also note that at run-
time, libsub.so must be available on one of the directories specified in the
LD_LIBRARY_PATH variable.

Using Archive Libraries
To create an archive library, use the --nshared option.

Example

lf95 sub.f90 --out libsub.a --nshared

lf95 main.f90 -L. -lsub

Using the same source files as in the example above, The following takes place:

1. sub.f90 is compiled to create sub.o.

2. the archive utility, ar, is automatically invoked to create libsub.a from sub.o.
Note that libsub.a is an archive (static) library.

3. main.f90 is compiled to create main.o.

4. main.o is statically linked with the necessary object code contained in libsub.a to
create an executable program. Note that shared library libsub.so must not be
present in the current directory; otherwise the linker will try to reference that file
instead (See “Linking Rules” on page 32.).
Lahey/Fujitsu Fortran 95 User’s Guide 13

Chapter 2 Developing with LF95
Controlling Compilation
During the compilation phase, the driver submits specified source files to the compiler for
compilation and optimization. If the -c, compile only, option is specified, processing will
stop after the compiler runs and objects and/or modules are created (if necessary). See “-
[n]c” on page 16. Otherwise, processing continues with linking and creation of the
executable program or library file.

Errors in Compilation
If the compiler encounters errors or questionable code, you may receive any of the following
types of diagnostic messages (a letter precedes each message, indicating its severity):

U:Unrecoverable error messages indicate it is not practical to continue
compilation.

S:Serious error messages indicate the compilation will continue, but no object file
will be generated.

W:Warning messages indicate probable programming errors that are not serious
enough to prevent execution. Can be suppressed with the --nwarn or --swm option.

I:Informational messages suggest possible areas for improvement in your code and
give details of optimizations performed by the compiler. These are normally sup-
pressed, but can be seen by specifying the --info option (see “--[n]info” on page 21).

If no unrecoverable or serious errors are detected by the compiler, the error return code is set
to zero (see “Return Codes from the Driver” on page 12). Unrecoverable or serious errors
detected by the compiler (improper syntax, for example) terminate the build process. An
object file is not created.

Compiler and Linker Options
You can control compilation and linking by using any of the following option options.
Options that use a single hyphen are case-sensitive. Some options apply only to the compi-
lation phase, others to the linking phase, and still others (such as -g) to both phases; this is
indicated next to the name of the option. If compilation and linking are performed separately
(i.e., in separate command lines), then options that apply to both phases must be included in
each command line.

Most LF95 options begin with two hyphens and are self-descriptive. Commonly used single-
hyphen options are provided (-I, -l, -L, -g, -o, -O, -c, etc.) for compatibility with other
Linux products (see descriptions below).
14 Lahey/Fujitsu Fortran 95 User’s Guide

Compiler and Linker Options
Compiling and linking can be broken into separate steps using the -c option. Unless the -c
option is specified, the LF95 driver will attempt to link and create an executable after the
compilation phase completes. Specifying -c anywhere in the command line will cause the
link phase to be skipped, and all linker options will be ignored.

While linking is ultimately performed by ld, the GNU linker, it is best to perform linking of
LF95 objects using the LF95 driver. This will help to insure that all necessary steps are taken
and all necessary components are included to produce the final product. Any options not rec-
ognized by the LF95 driver will be passed directly to ld. Remember that any options passed
directly to ld will be treated as case sensitive.

--[n]ap
Arithmetic Precision
Compile only. Default: --nap

Specify --ap to guarantee the consistency of REAL and COMPLEX calculations, regardless
of optimization level; user variables are not assigned to registers. Consider the following
example:

Example
 X = S - T
2 Y = X - U
...
3 Y = X - U

By default (--nap), during compilation of statement 2, the compiler recognizes the value X is
already in a register and does not cause the value to be reloaded from memory. At statement
3, the value X may or may not already be in a register, and so the value may or may not be
reloaded accordingly. Because the precision of the datum is greater in a register than in mem-
ory, a difference in precision at statements 2 and 3 may occur.

Specify --ap to choose the memory reference for non-INTEGER operands; that is, registers
are reloaded. --ap must be specified when testing for the equality of randomly-generated
values.

The default, --nap, allows the compiler to take advantage of the current values in registers,
with possibly greater accuracy in low-order bits.

Specifying --ap will usually generate slower executables.

--block blocksize
Default I/O block size
Compile only. Default: 8192 bytes

Specify --block to change the default block size on OPEN statements. See “BLOCKSIZE=”
in the LF95 Language Reference. blocksize must be a decimal INTEGER constant.
Specifying an optimal blocksize can make a significant improvement in the speed of your
executable. The program tryblock.f90 demonstrates how changing blocksize can affect
execution speed. Some experimentation with blocksize in your program is usually necessary
Lahey/Fujitsu Fortran 95 User’s Guide 15

Chapter 2 Developing with LF95
to determine the optimal value. This optimal value varies from one machine to the next;
therefore, if your program is moved to another machine and optimal performance is desired,
then blocksize should be re-evaluated.

-[n]c
Suppress Linking
Compile only. Default: -nc (or -c not present)

Specify -c to create object (.o), and, if necessary, module (.mod) files without creating an
executable. This is especially useful in makefiles, where it is not always desirable to perform
the entire build process with one invocation of the driver.

--[n]chk
Checking
Compile only. Default: --nchk

Specify --chk to generate a fatal runtime error message when substring and array subscripts
are out of range, when non-common variables are accessed before they are initialized, when
array expression shapes do not match, or when procedure arguments do not match in type,
attributes, size, or shape.

Syntax
 --[n]chk [[a][,e][,s][,u][,x]]

Note: Commas are optional, but are recommended for readability.

Specifying --chk with no arguments is equivalent to specifying --chk a,e,s,u. Specify --chk
with any combination of a, e, s, u and x to activate the specified diagnostic checking class.

Specification of the argument x must be used for compilation of all files of the program, or
incorrect results may occur. Do not use with 3rd party compiled modules, objects, or librar-
ies. Specifically, the x argument must be used to compile all USEd modules and to compile
program units which set values within COMMONs. Specifying the argument x will force
undefined variables checking (u), and will increase the level of checking performed by any
other specified arguments.

Table 3: --chk Arguments

Diagnostic Checking Class Option Argument

Arguments a

Array Expression Shape e

Subscripts s

Undefined variables u

Increased (extra) x
16 Lahey/Fujitsu Fortran 95 User’s Guide

Compiler and Linker Options
Specifying --chk adds to the size of a program and causes it to run more slowly, sometimes
as much as an order of magnitude. It forces --trace and --O0. --chk overrides --parallel.

The --chk option will not check bounds in the following conditions:

• The referenced expression has the POINTER attribute or is a structure one or more
of whose structure components has the POINTER attribute.

• The referenced expression is an assumed-shape array.
• The referenced expression is an array section with vector subscript.
• The referenced variable is a dummy argument corresponding to an actual argument

that is an array section.
• The referenced expression is in a masked array assignment.
• The derived type variable with an ultimate component that is an allocatable array.
• The referenced expression has the PARAMETER attribute.
• The parent string is a scalar constant.

Undefined variables (u) are not checked if:
• Subscript checking (s) is also specified, and diagnostic message 0320-w, 0322-w, or

1562-w is issued.
• The referenced expression has the POINTER attribute or is a structure variable one

of whose structure components has the POINTER attribute.
• The referenced expression has the SAVE attribute.
• The referenced expression is an assumed-shape array.
• The referenced expression is an array section with a vector subscript.
• A pointer variable is referenced.
• The referenced variable is a dummy argument corresponding to an actual argument

that is an array section.
• The referenced expression is in a masked array assignment.
• The referenced expression has the SAVE attribute.
• The derived type variable with an ultimate component that is an allocatable array.

Specifying --chk u checks for undefined variables by initializing them with a bit pattern.
If that bit pattern is detected in a variable on the right side of an assignment then chances are
that the variable was uninitialized. Unfortunately, you can get a false diagnostic if the vari-
able holds a value that is the same as this bit pattern. This behavior can be turned off by not
using the u argument to the --chk option. The values used with --chk u are:

One-byte integer: -117
Two-byte integer: -29813
Four-byte integer: -1953789045
Eight-byte integer: -8391460049216894069
Default real: -5.37508134e-32
Double precision real: -4.696323204354320d-253
Quadruple precision real: -9.0818487627532284154072898964213742q-4043
Default complex: (-5.37508134e-32,-5.37508134e-32)
Lahey/Fujitsu Fortran 95 User’s Guide 17

Chapter 2 Developing with LF95
Double precision complex: (-4.696323204354320d-253,-4.696323204354320d-
253)

Quadruple precision complex: (-9.0818487627532284154072898964213742q-
4043, -90818487627532284154072898964213742q-4043)

Character : Z’8B’

Example
LF95 myprog --chk a,x

instructs the compiler to activate increased runtime argument checking and increased unde-
fined variables checking.

--[n]chkglobal
Global Checking

Compile only. Default: --nchkglobal

Specify --chkglobal to generate compiler error messages for inter-program-unit diagnostics,
and to perform full compile-time and runtime checking.

The global checking will only be performed on the source which is compiled within one invo-
cation of the compiler (the command line). For example, the checking will not occur on a
USEd module which is not compiled at the same time as the source containing the USE state-
ment, nor will the checking occur on object files or libraries specified on the command line.

Because specifying --chkglobal forces --chk x, specification of --chkglobal must be used for
compilation of all files of the program, or incorrect results may occur. Do not use with 3rd-
party-compiled modules, objects, or libraries. See the description of --chk for more
information.

Global checking diagnostics will not be published in the listing file. Specifying --chkglobal
adds to the size of a program and causes it to run more slowly, sometimes as much as an order
of magnitude. It forces --chk a,e,s,u,x --trace, and removes optimization by forcing --O0.

The --chkglobal option will not check bounds in the following conditions:

• The referenced expression has the POINTER attribute or is a structure one or more
of whose ultimate structure components has the POINTER attribute.

• The referenced expression is an assumed-shape array.

• The referenced expression is an array section with vector subscript.

• The referenced variable is a dummy argument corresponding to an actual argument
that is an array section.

• The referenced expression is in a masked array assignment.

• The referenced expression is in a FORALL statement or construct.

• The referenced expression has the PARAMETER attribute.

• The parent string is a scalar constant.
18 Lahey/Fujitsu Fortran 95 User’s Guide

Compiler and Linker Options
--[n]co
Compiler Options
Compile and link. Default: --nco

Specify --co to display current settings of compiler options; specify --nco to suppress them.

--[n]dal
Deallocate Allocatables
Compile only. Default: --dal

Specify --dal to deallocate allocated arrays (not appearing in DEALLOCATE or SAVE state-
ments) whenever a RETURN, STOP, or END statement is encountered in the program unit
containing the allocatable array. Note that --ndal will suppress automatic deallocation, even
for Fortran 95 files (automatic deallocation is standard behavior in Fortran 95).

--[n]dbl
Double
Compile only. Default: --ndbl

Specify --dbl to extend all single-precision REAL and single-precision COMPLEX vari-
ables, arrays, constants, and functions to REAL (KIND=8) and COMPLEX (KIND=8)
respectively. If you use --dbl, all source files (including modules) in a program should be
compiled with --dbl. Specifying --dbl will usually result in somewhat slower executables.
The --dbl option is cancelled by --openmp.

--[n]f95
Fortran 95 Conformance
Compile only. Default: --nf95

Specify --f95 to generate warnings when the compiler encounters non-standard Fortran 95
code.

Note that --nf95 allows any intrinsic data type to be equivalenced to any other.

--file filename
Filename
Compile and link. Default: not present

Precede the name of a file with --file to ensure the driver will interpret the filename as the
name of a file and not an option or an argument to an option.

--[n]fix
Fixed Source Form
Compile only. Default: not present

Specify --fix to instruct the compiler to interpret source files as Fortran 90 fixed source form.
--nfix instructs the compiler to interpret source files as Fortran 90 free source form.
Lahey/Fujitsu Fortran 95 User’s Guide 19

Chapter 2 Developing with LF95
Example
lf95 @bob.rsp bill.f90

If the command file bob.rsp contains --fix, then bill.f90 will be interpreted as fixed
source form even though it has the free source form extension .f90.

Specifying neither --fix nor --nfix will cause LF95 to interpret the source form according to
the file’s extension (see “Filenames and Extensions” on page 8). LF95 will not compile files
(including INCLUDE files) containing both fixed and free source form in the same file.

-g
Debug
Compile and link. Default: -g not present

Specify -g to instruct the compiler to generate an expanded symbol table and other informa-
tion for the debugger. -g automatically overrides any optimization or parallelization option
and forces -O0, no optimizations, so your executable will run more slowly than if optimiza-
tion were used. -g is required to use the debugger.

--help
Display Compiler Options and Syntax
Compile or link. Default: not present

Specifying this option alone on the command line will cause LF95 to print a summary of
command-line options and syntax to the standard output and then exit.

-I dir
--include dir[:dir1[:dir2 ...]]
Include Path
Compile only. Default: current directory

Specify -I dir or --include dir to instruct the compiler to search the specified directory(ies)
for Fortran include files. Multiple directories may be specified for --include with a colon-
separated list of paths, which will be searched in the order specified. Note that -I will also
affect module searches (see the Module Path option,“-M dir” on page 23 for directions on
specifying module search paths). The current directory is always searched.

Example
lf95 demo.f90 --include ../dir2/includes:../dir3/includes

In this example, the compiler first searches the current directory, then searches
..\dir2\includes and finally ..\dir3\includes for INCLUDE files specified in the
source file demo.f90

--[n]in
Implicit None
Compile only. Default: --nin
20 Lahey/Fujitsu Fortran 95 User’s Guide

Compiler and Linker Options
Specifying --in is equivalent to including an IMPLICIT NONE statement in each program
unit of your source file: no implicit typing is in effect over the source file.

When --nin is specified, standard implicit typing rules are in effect.

--[n]info
Display Informational Messages

Compile only. Default: --ninfo

Specify --info to display informational messages, including suggestions on areas of possible
improvement for your code and information on steps taken by the compiler for optimization
and parallelization. --nwarn forces --ninfo.

-l (lower-case L) name
Specify Library File

Link only. Default: none.

Specify a library file whose name is of the form libname.a or libname.so. Multiple
library files may be specified with multiple -l options. Libraries are searched in the order that
they appear on the command line (See “Linking Rules” on page 32.) This option and its argu-
ment are passed directly to the linker.

-L path
Library Search Path

Link only. Default: LD_LIBRARY_PATH variable.

The -L option adds path to the list of directories that the linker searches for libraries, i.e.,
files beginning with “lib” and having the extension .a or .so. Note: if “.” (current direc-
tory) is not specified in your LD_LIBRARY_PATH variable, then you must specify -L. on
the command line to search for files in the current directory. This option and its argument
are passed directly to the linker.

Example

The following command line links main.o with libmine.a and libyours.so (residing in adja-
cent directories mylibs and yourlibs, respectively):

lf95 main.o -L../mylibs -lmine -L../yourlibs -lyours

Remember that, by default, the linker searches for shared libraries first.

--[n]li
Recognize Lahey intrinsic procedures

Compile and link. Default: --li

Specify --nli to avoid recognizing Lahey’s non standard intrinsic procedures.
Lahey/Fujitsu Fortran 95 User’s Guide 21

Chapter 2 Developing with LF95
--[n]long
Long Integers
Compile only. Default: --nlong

Specify --long to extend all default INTEGER variables, arrays, constants, and functions to
INTEGER (KIND=8). If you use --long, all source files (including modules) in a program
should be compiled with --long to prevent conflicts in argument type.

--[n]lst [[spec=sval[, spec=sval]]]
Listing
Compile only. Default: --nlst

Specify --lst to generate a listing file that contains the source program, compiler options, date
and time of compilation, and any compiler diagnostics. The compiler outputs one listing file
for each compile session.. By default, listing filenames consist of the basename of the first
source filename plus the extension “.lst”, placed in the current working directory (use
f=sval suboption to override -- see below). The page width of the listing file is 274 columns,
and no page breaks or additional headers are inserted into the body of the listing. Note that
--nlst is overridden by --xref.

Syntax
--[n]lst [[spec=sval[, spec=sval]]]

Where:
spec is f for the listing filename, or i to include INCLUDE files. Each suboption must be
separated by a comma and space, and the entire list of suboptions must be enclosed in square
brackets (“[]”).

For f=sval, the listing filename, sval specifies the listing filename to use instead of the
default. If a file with this name already exists, it is overwritten. If the user specifies a listing
filename and more than one source file then the driver diagnoses the error and aborts.

For i=sval, sval is one of the characters of the set [YyNn], where Y and y indicate that include
files should be included in the listing and N and n indicate that they should not. By default,
include files are not included in the listing.

Example
lf95 myprog.f90 --lst [i=y]

creates the listing file myprog.lst and lists the include files.

See also
--[n]xref

--[n]maxfatals number
Maximum Number of Fatal Errors
Compile only. Default: --maxfatals 50

Specify --maxfatals to limit the number of fatal errors LF95 will generate before aborting.
22 Lahey/Fujitsu Fortran 95 User’s Guide

Compiler and Linker Options
--ml target

Mixed Language

Compile only. Default: not present

The --ml option is sometimes needed if your code calls or is called by code written in another
language. The value of target will only affect procedures declared with the
ML_EXTERNAL statement. Currently the only supported value for target is cdecl, which
is needed for making calls to the system kernel. The --ml option is not needed for interfacing
with g77 programs. See “Mixed Language Programming” on page 37 for more information.

--mldefault target
Mixed Language Default

Compile only. Default: -mldefault

Specify the --mldefault options to set the default target language name decoration/calling
convention for all program units. --mldefault affects name mangling for routine names in
ML_EXTERNAL statements. Currently the only supported value for target is cdecl, which
is needed for making calls to the system kernel. The --mldefault option is not needed for
interfacing with g77 programs. See “Mixed Language Programming” on page 37 for more
information.

-M dir
--mod dir[:dir1[:dir2 ...]]
Module Path

Compile only. Default: current directory

Specify --M dir to instruct the compiler to search the specified directory for LF95 module
(.mod) files. Multiple directories may be specified using the -I option for each additional
search directory. The directory specified by -M is searched first, current working directory
is searched next, and the directories specified with -I are searched last.

Specify --mod dir... to instruct the compiler to search the specified directory or directories
for LF95 module files. When using --mod, multiple directories may be specified using a
colon separated list of directories. If multiple directories are specified, the first directory in
the list is searched first, the current working directory is searched next, the remaining direc-
tories are then searched in order of appearance.

-M and --mod should not be used in combination on the same command line. When compil-
ing procedures using modules, the path to all modules that are used either directly or
indirectly must be specified. This also applies to modules that are already compiled.

When creating a new module, the .mod file will be placed in the directory specified with -M
or the first directory specified by --mod. If the directory does not exist, the compiler will
attempt to create it. If no directories are specified with -M or --mod, then module files are
placed in the current working directory. Note that -I has no effect on module placement, even
Lahey/Fujitsu Fortran 95 User’s Guide 23

Chapter 2 Developing with LF95
though it affects the order that directories are searched for existing modules. Module object
(.o) files are placed in the current working directory. Note that any module object files cre-
ated by previous compilations must be on the LF95 command line when linking.

Example
lf95 modprog.f90 mod.o othermod.o -M ../mods -I ../other

or,

lf95 modprog.f90 mod.o othermod.o --mod ../mods:../other

In these examples, the compiler first searches for module files in ../mods, then searches the
current working directory, and finally searches ../other. All module files produced from
modprog.f90 are placed in the directory ../mods. All object files produced by mod-
prog.f90 are placed in the current working directory.

{ -O0 | -O }
{ --o0 | --o1 | --o2 }
Optimization Level
Compile only. Default: -O

Specify -O0 to disable optimization. -O0 is forced when the -g, --chk, or --chkglobal option
is specified. See “-g” on page 20.

Specify -O to optimize for execution speed. To see details of steps taken by the compiler for
optimization, specify the --info option. See “--[n]info” on page 21.

Specify --o2 to perform additional optimizations. Use of the --o2 option may significantly
impact compilation speed.

-O0 and --o0 are equivalent.

-O and --o1 are equivalent.

-o name
--out name
Output Filename
Compile: Default is root name of source file, with extension .o
Link: Default is a.out, in current working directory

When not linking (i.e., when -c is specified), specify -o to override the default object filename
and path. The default path is the current working directory. When linking (-nc specified or
-c not specified), specify -o to override the output executable or library default filename. By
default it is placed in the current working directory.

--out differs from the ld option -o in that LF95 uses --out to determine if a library is being
built. -o is passed directly to ld. If the desired output is a library, use --out and specify an
extension of .a or .so. See “Shared Libraries” and “Archive Libraries” on page 12.
24 Lahey/Fujitsu Fortran 95 User’s Guide

Compiler and Linker Options
Example
lf95 hello.f90 -c -o/home/mydir/hello.o

lf95 main.o --out maintest

--[n]ocl (PRO version only)
Process optimization control lines
Compile only. Default: --nocl

--ocl causes optimization control lines (OCLs) to be processed. See “Optimization Control
Line” on page 77 for more information.

--[n]openmp (PRO version only)
Process OpenMP directives.
Compile and link. Default: --nopenmp

--openmp causes the compiler to process OpenMP directives in Fortran code. See
“OpenMP” on page 89 for more information.

--[n]parallel (PRO version only)
Attempt automatic parallelization.
Compile and link. Default: --nparallel

--parallel forces -O (full optimization). Note that the --parallel is ignored if the -g, --chk, or
--chkglobal option is specified. To see the compiler’s parallelization decisions, specify
--info. See “Overview of Multi-Processing” on page 69 for more information.

--[n]pca
Protect Constant Arguments
Compile only. Default: --npca

Specify --pca to prevent invoked subprograms from storing into constants.

Example
call sub(5)

print *, 5

end

subroutine sub(i)

i = i + 1

end

This example would print 5 using --pca and 6 using --npca.

--[n]prefetch [level]
Generate prefetch optimizations
Compile only. Default: --nprefetch
Lahey/Fujitsu Fortran 95 User’s Guide 25

Chapter 2 Developing with LF95
Prefetch optimizations can improve performance on systems which support prefetch instruc-
tions, such as Pentium III and Athlon systems. Level must be either 1 or 2. The prefetch 1
option causes prefetch instructions to be generated for arrays in loops. The prefetch 2 option
generates optimized prefetch instructions. Because Pentium 4 chips implement prefetch in
hardware, the use of --prefetch can adversely affect performance on those systems. Perfor-
mance will be program dependent. Try each prefetch option (--nprefetch, --prefetch 1, or
--prefetch 2) to determine which works best with your code. The --prefetch options will be
ignored if --O0 or -g are used.

--[n]private
Default Module Accessibility

Compile only. Default: --nprivate

Specify --private to change the default accessibility of module entities from PUBLIC to PRI-
VATE (see “PUBLIC” and “PRIVATE” statements in the Language Reference).

--[n]quad
Quad Precision

Compile only. Default: --nquad

Specify --quad to extend all double-precision REAL and double-precision COMPLEX vari-
ables, arrays, constants, and functions to REAL (KIND=16) and COMPLEX (KIND=16)
respectively. Default (single-precision) REAL entities remain unaffected. If you use --quad,
all source files (including modules) in a program should be compiled with --quad. Specifying
--quad will usually result in significantly slower executables. Note that specifying -dbl -
quad will not raise single-precision entities to quad precision.

--[n]quiet
Quiet Compilation

Compile only. Default: --quiet

Specifying --quiet suppresses the reporting of current file and program unit being compiled.
Instead, only errors, warnings (with --warn), and informational messages (with --info) are
displayed.

--[n]sav
SAVE Local Variables

Compile only. Default: --nsav

Specify --sav to allocate local variables in a compiler-generated SAVE area. --nsav allocates
variables on the stack. --sav is equivalent to having a SAVE statement in each subprogram
except that --sav does not apply to local variables in a recursive function whereas the SAVE
statement does. Specifying --sav will cause your executable to run more slowly, especially
if you have many routines. Specifying --nsav may sometimes require more program stack.
26 Lahey/Fujitsu Fortran 95 User’s Guide

Compiler and Linker Options
--[n]shared
Create Shared Library
Link only. Default: --nshared

Specify --shared to create a shared library rather than an archive (static) library (for more
information, see “Shared Libraries” on page 12).

--[n]sse2
Optimize using streaming SIMD extensions
Compile only. Default: --nsse2

Specify --sse2 to optimize code using the streaming SIMD (Single Instruction Multiple Data)
extensions. This option may only be specified if --tp4 is also specified.

--static
Static System Runtime Libraries
Link only. Default: not present

Specify --static to create an executable linked only with static versions of libraries. This is a
GNU linker option. For more information, see the man or info pages for ld, the GNU linker.

--[n]staticlink
Static Fortran Runtime Libraries
Link only. Default: --nstaticlink

Specify --staticlink to create an executable linked with the static LF95 Fortran runtime librar-
ies, and the shared versions of the Linux system libraries. Specifying --staticlink will result
in a larger executable, because it does not depend on the presence of any Fortran runtime
shared libraries. (see “Distributing LF95 Applications” on page 33).

--[n]swm msg[,msg[,...]]
Suppress Warning Message(s)
Compile only. Default: --nswm

To suppress a particular warning or informational message that appears during compilation,
specify its four digit number msg after --swm. Multiple messages may be specified as a
comma-separated list with no spaces.

Example
--swm 1040,2005

This example would suppress warning messages 1040 and 2005. To suppress all warnings
and informational messages, use --nwarn. A list of warning and error numbers is in the file
RTERRMSG.

{ --t4 | --tp | --tpp | --tp4 }
Target Processor
Compile only. Default: --tp
Lahey/Fujitsu Fortran 95 User’s Guide 27

Chapter 2 Developing with LF95
Specify --t4 to generate code optimized for the Intel 80386 or 80486 processor.

Specify --tp to generate code optimized for the Intel Pentium or Pentium MMX processors,
or their generic counterparts.

Specify --tpp to generate code optimized for the Intel Pentium Pro, Pentium II, Pentium III,
or Celeron processors, or their generic counterparts. Please note: code generated with --tpp
is not compatible with processors made earlier than the Pentium Pro.

Specify --tp4 to generate code optimized for the Intel Pentium 4 processors. Please note: code
generated with --tp4 is not compatible with processors made previous to the Pentium 4.

--threads N (PRO version only)
Number of threads
Compile only. Default: the number of active processors on the system.

--threads specifies the number of instances (threads) to be created in the range 2 ≤ N ≤ number
of CPUs active at runtime. If this option is specified, it eliminates the need for the compiler
to produce overhead code identifying how many CPUs are available at execution time. It is
also useful if there is a natural division of the problem into parallel segments and the number
of segments is different from the number of available CPUs.

Be sure that the environment variable PARALLEL is set to the specified number (N) at run-
time. The executable program that is generated by specifying this option is always executed
with N CPUs, even if the program is moved to a machine with a different number of CPUs.

--threads requires --parallel. -g, --chk, or --chkglobal cause --threads to be ignored.

--threadstack N (PRO version only)
Thread Stack Size
Compile only. Default: the executable stack size.

--threadstack sets the size of the stack for each thread to N kilobytes, where N is between 16
and 2048, inclusive. The maximum stack size for a Linux thread is 2048 kilobytes. This
option takes precedence over the environment variable THREAD_STACK_SIZE (see
“Environment Variable THREAD_STACK_SIZE” on page 72).

--threadstack requires --openmp or --parallel and must be specified for the file with the main
program unit. -g, --chk, or --chkglobal cause --threadstack to be ignored.

--threadheap [size] (PRO version only)
Thread Heap Size
Compile only. Default: 4096 bytes

If the --threadheap option is specified, local arrays in a procedure or parallel region that are
larger than size bytes are allocated on the heap except for the following arrays:

• equivalenced arrays
• arrays that are namelist object
28 Lahey/Fujitsu Fortran 95 User’s Guide

Compiler and Linker Options
• arrays of derived type that specify default initialization
• arrays in common that have the PRIVATE attribute

size must be a positive number less than 2147483648. If the =size is omitted, 4096 is selected
for size.

Execution performance may degrade when --threadheap is specified. Use this option only
when the required thread stack size exceeds 2048 bytes.

--threadheap requires --openmp. -g, --chk, or --chkglobal cause --threadheap to be ignored.

--[n]trace
Location and Call Traceback for Runtime Errors
Compile and link. Default: --trace

The --trace option causes a call traceback with routine names and line numbers to be gener-
ated with runtime error messages. With --ntrace no line numbers are generated. --trace might
cause your program to run more slowly.

--[n]trap
Trap numeric exceptions
Compile only. Default: --ntrap

The --trap option causes the Fortran runtime library to publish an error message on a divide
by zero or overflow exception. The application then terminates. If the -WI,-i runtime option
is specified (see “Interrupt Processing” on page 121), then no trapping occurs for overflow
exceptions. If the -WI,-u runtime option is specified, then underflow exceptions are trapped
(see “Underflow Interrupt Processing” on page 123).

--[n]unroll limit
Compile only. Default: --nunroll

Loop unrolling
Specify --unroll limit to control the level of loop unrolling.

limit is a number in the range 2 ≤ limit ≤ 100, and denotes the maximum level of loop
expansion.

If limit is omitted, the value of limit is determined by the compiler.

Note that -O forces --unroll

--[n]varheap size
Compile only. Default: --nvarheap

Place local variables on heap
Specify --varheap to cause local variables to be allocated on the heap rather than in the bss
segment.
Lahey/Fujitsu Fortran 95 User’s Guide 29

Chapter 2 Developing with LF95
size is the minimum variable size that will be placed on the heap. Variables smaller than size
are not placed on the heap.

If size is omitted, it defaults to 4096.

Note that the --varheap option does not apply to variables having the SAVE attribute, which
includes initialized variables.

--[n]verbose
Compile only. Default: --nverbose

Verbose Output
Specify --verbose to see details of commands passed to all component tools used in the cre-
ation of object files, executable files, and libraries.

--[n]version
Print Version Information
Compile and link. Default: --nversion

Specify --version to display product serial number, copyright, and version information when
compiling or linking.

--[n]warn
Warn
Compile only. Default: --warn

Specify --warn to display warnings at compile time. Note that --nwarn forces --ninfo.

--[n]wide
Wide-Format Source Code
Compile only. Default: --nwide

Specify --wide to compile fixed-format source code that extends out to column 255. This
option has no effect when compiling free-format source.

--[n]wisk (PRO version only)
Winteracter Starter Kit
Compile and link. Default: -nwisk (compile and link)

Specify --wisk to create an application using the Winteracter Starter Kit (WiSK, see the Win-
teracter Starter Kit Manual). Note that a resource file name must be given on the command
line whenever specifying -wisk. See the Winteracter Starter Kit manual for more
information.

--[n]wo
Warn Obsolescent
Compile only. Default: --nwo
30 Lahey/Fujitsu Fortran 95 User’s Guide

Compiler and Linker Options
Specify --wo to display warning messages when the compiler encounters obsolescent Fortran
95 features.

-x arg
Inline Code
Compile only. Default: do not inline

Specify -x to cause procedures to be inserted inline at the point they are referenced in the call-
ing code. Multiple arguments are separated by commas. At least one argument must be
present. The -x option may only be specified once per compile session.

If arg is a number, any user defined procedure with total lines of code smaller than arg is
inlined. This argument may only appear once in the argument list.

If arg is a number with the letter “K” appended, arrays which have a size less than arg kilo-
bytes are inlined. This argument may only appear once in the argument list.

If arg is a procedure name, or comma separated list of procedure names, the named proce-
dures are inlined.

If arg is the dash character “-”, all procedures having fewer than 30 lines of code and all local
data are inlined. If the dash argument is specified, no other arguments may be present.

Use of the -x option may cause long compile times, and may lead to very large executables.

--[n]xref
Cross-Reference Listing
Compile only. Default: --nxref

Specify --xref to generate cross-reference information in the listing file. By default, cross ref-
erence filenames consist of the basename of the source filename, plus the extension “.lst”,
placed in the current working directory (see “--[n]lst [[spec=sval[, spec=sval]]]” on page
22). Specifying --xref will override --nlst.

See also
--[n]lst

--[n]zfm
Enable zero flash mode for SSE2 instructions
Compile only. Default: --nzfm

Specify --zfm enable zero flash mode for SSE2 instructions. This option may only be spec-
ified if --sse2 and --tp4 are also specified.

Note that using --zfm will disable trapping for floating underflow. If an underflow condition
occurs during execution of an SSE2 instruction, the affected variable is set to zero. If this
behavior presents a problem, use the --nzfm option to guarantee that the underflow exception
is thrown.
Lahey/Fujitsu Fortran 95 User’s Guide 31

Chapter 2 Developing with LF95
 Linking Rules
During the link phase, the driver submits object files and object file libraries to the linker for
creation of the executable (or shared library) output file.

Fortran 95 Modules
If your program uses Fortran 95 modules that have already been compiled, you must add the
module object filenames (i.e., the source filename with extension .o) to the LF95 command
line when linking. Compiling a Fortran 95 module will generate an object (.o) file and a
module (.mod) file if the source file contains executable code. If the source file does not con-
tain any executable code but does contain public entities, then only a .mod file will be
generated.

How the Linker Finds Libraries
The linker reads individual object files and object module libraries, resolves references to
external symbols, and writes out a single executable file (or shared library).

If an object file or library was specified on the command line and contains path information,
then it must reside at the location specified. If the path was not specified, the linker looks for
the files in the following order:

1. in any directories specified with the -L option.
2. in any directories specified by the LD_LIBRARY_PATH environment variable.

Note: the current working directory “.” will not be searched unless it is specified by the -L
option or the LD_LIBRARY_PATH environment variable.

In each case, the linker will first attempt to locate a shared library (with a .so file extension)
containing the desired symbol(s). If that is not found, then it will seek an archive or static
library (with a .a file extension). The --staticlink option does not affect this behavior;
this option only determines the specific group of runtime libraries that will be linked to the
executable.

Searching rules for INCLUDE files and Fortran 95 modules are governed by the compiler,
not the linker. See “-I dir” on page 20 and “-M dir” on page 23 for discussion.

Object File Processing Rules
Object files are processed in the order they appear on the command line.

How the Linker Selects Objects
The ld linker applies the following rules when searching object libraries:
32 Lahey/Fujitsu Fortran 95 User’s Guide

Linker Options
1. Any libraries specified using the -l option are searched in the order in which they
appear in the LF95 command string before the LF95 runtime library, or any libraries
appearing in directories specified by the -L option or the LD_LIBRARY_PATH envi-
ronment variable. The compiler writes the default LF95 library names into each
object file it generates.

2. Each library is searched until all possible external references are resolved. If neces-
sary, system libraries appearing in /lib or /usr/lib may also be searched.

Linker Options
In most cases, LF95 passes unrecognized options on to the linker; however, some linker
options may conflict with existing LF95 options. In this case, an option may be passed
directly to the linker from the LF95 command line using the -Wl option. This option behaves
as documented in the man pages for gcc, the GNU C compiler (coincidentally, -Wl is the
same option used to indicate runtime options as described in Appendix B, Runtime Options).

For further information, see the man pages for ld, the GNU linker.

Distributing LF95 Applications
When you distribute applications built with LF95, you need to be aware of the shared
(dynamic) libraries that your application requires to run on the target platform. You can use
the Linux command ldd to display the shared libraries required by your application.

Any shared libraries that have been created must be distributed them with your application.

You must link with the --staticlink option, which will bind the LF95 Fortran static runtime
libraries to the executable (see “--[n]staticlink” on page 27). You are not allowed to distrib-
ute the LF95 Fortran shared libraries (*.so.1) residing in the lib subdirectory of your LF95
installation.

The remaining required shared libraries (usually residing under the /lib directory) are the
GNU C runtime libraries which will be available on any Linux system that has glibc installed.
Distributing these libraries is not recommended and is governed by a GNU Public License.
These shared libraries allow your application to use the GNU C runtime of the target Linux
system, whether it be newer or older. Note that a program built on a system running a newer
version of glibc might not execute properly on a system running an older version. It is rec-
ommended that you build your application on the earliest version available for best
portability.

If it is necessary for you to statically link the GNU C runtime libraries with your application,
you must link with the -static linker option. Your distribution will be governed by a GNU
Public License and the Lahey Software License Agreement, which states:
Lahey/Fujitsu Fortran 95 User’s Guide 33

Chapter 2 Developing with LF95
“If you distribute User Programs that statically link the Lahey/Fujitsu Fortran and the GNU
C runtime libraries into your program, you may redistribute the Lahey/Fujitsu Fortran static
libraries (*.a) and the fj90rt0.o file with your programs for the sole purpose of allowing
your customers to rebuild the programs you distribute, provided you instruct your customers,
and they agree, to remove the Lahey/Fujitsu Fortran static libraries (*.a) and the fj90rt0.o
file from their computer systems after rebuilding the programs you distribute.”

OpenGL Graphics Programs
OpenGL is a software interface for applications to generate interactive 2D and 3D computer
graphics independent of operating system and hardware operations. It is essentially a 2D/3D
graphics library which was originally developed by Silicon Graphics with the goal of creating
an efficient, platform-independent interface for graphical applications (Note: OpenGL is a
trademark of Silicon Graphics Inc.). It is available on many Win32, Linux, and Unix systems,
and is strong on 3D visualization and animation.

f90gl is a public domain implementation of the official Fortran 90 bindings for OpenGL, con-
sisting of a set of libraries and modules that define the function interfaces. A complete set of
demonstration programs may be downloaded from the Lahey web site. The f90gl interface
was developed by William F. Mitchell of the Mathematical and Computational Sciences
Division, National Institute of Standards and Technology, Gaithersburg, MD, in the USA.
For information on f90gl, see the f90gl web page at http://math.nist.gov/f90gl. For
more information on using OpenGL and f90gl with LF95, see the HTML help file
“wisk.htm” in the help directory provided with LF95 PRO.

Scientific Software Libraries (PRO Version only)
The Scientific Software Libraries (SSL2) are a library of subroutines and functions designed
to aid in the solution of common scientific and engineering problems. Three versions of the
library are provided, a generic version suitable for use with any supported processor, a mul-
tithreaded version suitable for use with any supported multiple processor hardware, and a
highly optimized multithreaded version for use with systems using multiple Pentium 4 pro-
cessors. For more information concerning the SSL2 libraries or specific procedures, see the
SSL2 PDF documents in the manuals directory of your LF95 distribution, or consult the man
page for the procedure in question.
34 Lahey/Fujitsu Fortran 95 User’s Guide

BLAS and LAPACK Libraries (PRO Version only)
BLAS and LAPACK Libraries (PRO Version only)
Multithreaded versions of the BLAS and LAPACK libraries are provided. These libraries
provide a standardized set of procedures for solving linear algebra and matrix algebra prob-
lems. Two versions of the BLAS library are provided, a multithreaded version suitable for
use with any supported multiple processor hardware, and a highly optimized multithreaded
version for use with systems using multiple Pentium 4 processors. The LAPACK library is
only supplied in a multithreaded version, but may be linked with the Pentium 4 optimized
versions of BLAS. For more information concerning the BLAS and LAPACK libraries or
specific procedures, see the BLAS/LAPACK PDF document in the manuals directory of your
LF95 distribution.

Porting Code Between Windows and Linux
If your code is F77, F90, or F95 standard conforming, it will port to Linux simply by recom-
piling. If you are using the Winteracter or Gino GUI libraries, you can recompile your code
and link with the Linux version of these libraries without having to make any other changes.
If you are using Automake, the basic structure of the automake.fig configuration file will
remain the same. If any code or data contains path information, you will have to change the
Windows directory separator "\" to the Unix separator "/", and make sure that pertinent files
are in the indicated directories. If you use environment variables, you will need to convert
from Windows style "%var%" to Unix style "$var". Many non standard extensions are sup-
ported under both the Windows and Linux environments. If an extension is not supported, it
will most likely cause an "undefined symbol" error when linking. If your code uses the SYS-
TEM subroutine, you should consult your Language reference. Although the basic form of
the SYSTEM command is supported under both systems, optional arguments are not sup-
ported on the Linux side.

Recommended Option Settings
If an lf95.fig file exists in the current directory, examine its contents to insure that it con-
tains the desired options.

For debugging, the following option settings will provide an increased level of diagnostic
ability, both at compile time, and during execution:

 --chk -g --trace --info

The -pca option may be additionally be used to check for corruption of constant arguments;
if the results are correct with -pca but bad with -npca a constant argument has been
corrupted.

For further analysis during development, consider specifying any of the following options:
Lahey/Fujitsu Fortran 95 User’s Guide 35

Chapter 2 Developing with LF95
 --ap --chkglobal -f95 --lst --sav --wo --xref

(Note: Specifying -chkglobal or -chk (x) must be used for compilation of all files of the
program, or incorrect results may occur.)

For production code, we recommend the following option settings:

--nap --nchk --ng -O --npca --nsav --ntrace

Also, use --t4, --tp, --tpp, or tp4 depending on your preferred target processor.
Note that code compiled with --tpp will only run on Pentium Pro or newer compatible
chips. Note that code compiled with --tp4 will only run on Pentium 4 or newer compatible
chips.

If the program performs many I/O operations, consider tuning the blocksize with the --block
option.

Programs may be tuned with the --o2 and the -x option to increase optimization and to inline
code and data.

If the target processor is a Pentium III or Athlon, consider experimenting with the
--nprefetch, --prefetch 1 or --prefetch 2 options to select the one which pro-
vides the best performance.

If the target processor is a Pentium 4, consider tuning with the --sse2 and --zfm options.

If optimization (-O) produces radically different results or causes runtime errors, try compil-
ing with --info to see exactly which steps are being taken to optimize. The --info option
also generates warnings on sections of code that are unstable and therefore may cause prob-
lems when optimized. A common example of such code is an IF statement that compares
floating-point variables for equality. When optimization seems to alter the results, try using
the --ap option to preserve arithmetic precision while still retaining some optimization.
36 Lahey/Fujitsu Fortran 95 User’s Guide

3 Mixed Language
Programming
LF95 code can call and be called by code written in certain other languages. With LF95 one
can create object and library files for use with the language systems in the table below. Calls
can be made from Fortran to Fortran, from Fortran to another language, and from another lan-
guage to Fortran. If you are calling LF95 routines from a language system other than LF95,
it may be necessary to refer to that language system’s documentation for more information.

What Is Supported
Lahey/Fujitsu Fortran 95 supports mixed language interfaces to the following languages and
operating systems (this list is subject to change -- see READ_ML for any changes):

Declaring Your Procedures
In order to reference a procedure across a mixed language interface, the LF95 compiler must
be informed of the procedure name and told how to “decorate” this name as it appears in the
object file. These procedure names are defined with the ML_EXTERNAL statement (see
“ML_EXTERNAL Statement” in the LF95 Language Reference). The DLL_EXPORT and

Table 4: Compiler Support for Mixed Language

Language System
--ml option
(see below)

Linux kernel and stan-
dard C libraries

--ml cdecl

Gnu C --ml cdecl

Fujitsu C --ml cdecl

Gnu Fortran77 (none)
Lahey/Fujitsu Fortran 95 User’s Guide 37

Chapter 3 Mixed Language Programming
DLL_IMPORT statements used in the LF95 Windows product are still supported, but their
effect is identical to ML_EXTERNAL since the calling conventions are the same for Linux static
and shared libraries.

Please note that in general, mixed language procedure names are case sensitive (unlike the
Fortran naming convention, which ignores case). ML_EXTERNAL is used when defining a
Fortran procedure and when referencing an external procedure. The type of mixed language
interface is defined with the use of the --ml compiler option. You cannot mix --ml options
in a single invocation of LF95. If you need to reference procedures from multiple languages
you can do so by putting the references in separate source files and compiling them
separately.

The table below describes the varieties of procedures that may be found in an LF95 program,
along with the form taken by the procedure’s default external name (i.e., the name seen by
the linker). Procedures MAIN__() and main() play a special role in mixed-language pro-
grams. This is described in “Program Control: main() and MAIN__()” on page 50.

Table 5: Default External Names for Fortran Procedures

Procedure Name Seen from outside as:

FUNCTION MyFunc()
SUBROUTINE MySub()

myfunc_
mysub_

intrinsic procedure proc1()
f_proc1
or
g_proc1

main program MAIN__

Fortran startup/initialization routine main

common block a a_
38 Lahey/Fujitsu Fortran 95 User’s Guide

Interfacing with g77 (GNU Fortran)
The external names of Fortran functions and subroutines may be modified by using the
ML_EXTERNAL statement, along with the --ml compiler option. The purpose of the
ML_EXTERNAL statement is to modify the “name decoration” or “name mangling” that is
applied to the external procedure name (in accordance with the --ml compiler option) and
to allow case to be preserved.

Note that if MySub1() is not declared as ML_EXTERNAL, then the --ml option has no effect,
and its external name will always be mysub1_. Fortran naming conventions can be accom-
modated in C by declaring the C function as lower case and adding a trailing underscore
character, thus eliminating the need for the ML_EXTERNAL statement or the --ml compiler
option. On the other hand, if Fortran is calling a C library for which no source code is avail-
able, then the ML_EXTERNAL statement and the --ml compiler option are required.

Interfacing with g77 (GNU Fortran)
When writing procedures in LF95 that will call or be called from g77, it is not necessary to
specify the --ml option on the command line or apply the ML_EXTERNAL statement to the
procedure name. It is, however, important to link to the proper libraries so that intrinsic pro-
cedures may be resolved. See the examples/mix_lang directory under your installation
root directory for examples of how to link with g77 objects.

Interfacing with Non-Fortran Languages
When you create a Fortran library or object file, you will usually indicate each procedure that
you want made available using the ML_EXTERNAL statement. The procedure may be a sub-
routine or a function. When a Fortran function returns a value, the calling language must
match the value to its corresponding data type as described in Table 8 on page 43.

integer function half(x)

 ml_external half !name is case-sensitive.

 integer :: x

 half = x/2

end

Table 6: Effect of --ml Option on External name of Fortran Procedure MySub1(),
Declared as ML_EXTERNAL

--ml option Seen from outside as:

--ml cdecl MySub1

--ml not specified MySub1_

not declared as ML_EXTERNAL
mysub1_
(--ml has no effect)
Lahey/Fujitsu Fortran 95 User’s Guide 39

Chapter 3 Mixed Language Programming
When you create a Fortran program that references non-Fortran procedure(s), you declare the
non-Fortran procedure name(s) with the ML_EXTERNAL statement in your Fortran code. The
syntax of the ML_EXTERNAL statement in this case is:

ML_EXTERNAL external-name-list

where external-name-list is a comma-separated list of names of procedures referenced in this
scoping unit. The procedures may be subroutines or functions. Non-Fortran functions may
only return data types specified in Table 7 on page 41.

program main
 implicit none
 real :: My_C_Func, x
 ml_external My_C_Func !name is case-sensitive.
 x = My_C_Func()
 write (*,*) x
end program main

These codes must be compiled using LF95’s --ml target option in order to be callable by
language target (See “--ml target” on page 23.).

Note that ML_EXTERNAL is a statement and not an attribute. In other words, ML_EXTERNAL
may not appear in an attribute list in an INTEGER, REAL, COMPLEX, LOGICAL, CHAR-
ACTER or TYPE statement.

For further examples, refer to the directories below LF95’s examples directory.

Passing Data
Data may be passed to or from other language systems as arguments, function results, exter-
nal (COMMON) variables, or in files. LF95 does not support arrays of pointers passed from
C, or pointers with more than one level of indirection.

LF95’s calling conventions are as follows:

• All arguments are pass-by-address, not pass-by-value as in C. LF95 can pass argu-
ments by value to other languages, using the VAL() intrinsic.

• Arrays of pointers cannot be passed from C to Fortran.
• COMPLEX and derived type arguments can be passed as pointers to structures.

Because C does not have a native type for complex data, it must be declared as a
structure. For example, Fortran default COMPLEX is declared in C as

struct {
float real;
float imaginary;
} complex;

• When passing data via a file, the file must be closed prior to calling the non-Fortran
procedure.

• Fortran common blocks can be accessed as an external or “global” structure from C.
For example, the named common block,
40 Lahey/Fujitsu Fortran 95 User’s Guide

Passing Data
common /my_common/ a, b, c
real a, b, c

can be accessed as
extern struct
{
float a, b, c;
} my_common_; /* my_common_ must be all lower-case */

“Blank” (unnamed) common is treated the same way; the structure is named _BLNK_
instead of my_common_.

Data passed between Fortran and C programs must have corresponding attributes. The fol-
lowing table describes corresponding data types between C and Fortran. Note that some of
the listed data types will be unavailable on some C compilers.

Table 7: Corresponding Data Types in Fortran and C

Data Type Fortran C Comments

one-byte logical LOGICAL(1) L1 char L1; 1 byte

two-byte logical LOGICAL(2) L2 short int L2; 2 bytes

four-byte logical LOGICAL(4) L4 long int L4; 4 bytes

eight-byte logical LOGICAL(8) L8
long long int
L8;

8 bytes

one-byte integer INTEGER(1) I1
signed char
I1;

1 byte

two-byte integer INTEGER(2) I2 short int I2; 2 bytes

four-byte integer INTEGER(4) I4 long int I4; 4 bytes
Lahey/Fujitsu Fortran 95 User’s Guide 41

Chapter 3 Mixed Language Programming
Returning Function Values to C
Fortran functions are called from C as functions returning a value, with all arguments passed
by reference. Values are passed on the stack, with the exception of COMPLEX and CHARAC-
TER data, in which case the values are passed via the argument list. The following table lists
the data types that may be returned to C from a Fortran function. In the third column of the
table (“examples” column), the variable result represents the value returned by the Fortran
function myfunc(). In the last example, the variable strlen represents the length of the
character value returned by myfunc().

eight-byte integer INTEGER(8) I8
long long int
I8;

8 bytes

real REAL(4) R4 float R4; 4 bytes

double-precision
real

REAL(8) R8 double R8; 8 bytes

quadruple-preci-
sion real

REAL(16) R16
long double
R16;

16 bytes

complex COMPLEX(4) C8
struct
{float r, i;}
C8;

8 bytes

double-precision
complex

COMPLEX(8) C16
struct
{double r, i;}
C16;

16 bytes

quad-precision
complex

COMPLEX(16)C32
struct
{long double
r, i;} C32;

32 bytes

character (fixed
length)

CHARACTER*10 S char S[10]
See examples for
assumed-length

derived type

TYPE TAG
SEQUENCE
INTEGER I4
REAL(8) R8
END TYPE
TYPE(TAG) D

struct tag
{
int I4;
double R8;
} D;

Size (in bytes) =
sum of all compo-

nents

array of pointers not allowed
*myarray[10]
**hisarray

Table 7: Corresponding Data Types in Fortran and C

Data Type Fortran C Comments
42 Lahey/Fujitsu Fortran 95 User’s Guide

Returning Function Values to C
This section does not discuss Fortran subroutines, which are called from C as “void” func-
tions. This concept is illustrated in a later section, “Passing and Receiving Arguments” on
page 45.

For example, the Fortran function:

integer function foo(i,j)

integer :: i, j

 :

 :

end function foo

corresponds to the C prototype:

long int foo(long int *i, long int *j);

To illustrate returning an assumed-length character value, the Fortran function:

Table 8: Declaring C Result Types for Fortran Function Types

Fortran Function Type C Result Type Example

INTEGER(1) signed char result = myfunc_();

INTEGER(2) short int result = myfunc_();

INTEGER(4) long int result = myfunc_();

INTEGER(8) long long int result = myfunc_();

LOGICAL(1) unsigned char result = myfunc_();

LOGICAL(2) short int result = myfunc_();

LOGICAL(4) long int result = myfunc_();

LOGICAL(8) long long int result = myfunc_();

REAL(4) float result = myfunc_();

REAL(8) double result = myfunc_();

REAL(16) long double result = myfunc_();

COMPLEX(4) void myfunc_(&result);

COMPLEX(8) void myfunc_(&result);

COMPLEX(16) void myfunc_(&result);

CHARACTER(LEN=*) void myfunc_(&result,len);

Derived Type not applicable not applicable
Lahey/Fujitsu Fortran 95 User’s Guide 43

Chapter 3 Mixed Language Programming
function cfun()
character(len=*) :: cfun
cfun = ‘1234567890’
end function cfun

is invoked from C as follows:

void cfun_(char *str1, int strlen);
MAIN__()
{
 char mystr[10];
 cfun_(mystr,10);
}

The preceding example may be a bit confusing, since it runs counter to the intuitive concept
of a function returning a value. For further explanation, see “Passing Character Data” on
page 47.

Returning Function Values to Fortran
C functions are also called by Fortran as functions returning a value. By default, all argu-
ments are passed to C by reference. Arguments may also be passed to C by value using
LF95’s VAL() intrinsic. It is not possible to return character strings or structures from C.

Fortran calls “void” C functions in the same manner that it calls Fortran subroutines. This
concept is illustrated in the section below, “Passing and Receiving Arguments” on page 45.

Table 9: Declaring Fortran Result Types for C Function Types

C Function Type Fortran Result Type Example

void not applicable call my_c_func()

signed char INTEGER(1) result = my_c_func()

short int INTEGER(2) result = my_c_func()

long int
INTEGER(4)
LOGICAL(4)

result = my_c_func()

long long int INTEGER(8) result = my_c_func()

float REAL(4) result = my_c_func()

double REAL(8) result = my_c_func()

long double REAL(16) result = my_c_func()

char cannot be accepted not applicable

structure cannot be accepted not applicable
44 Lahey/Fujitsu Fortran 95 User’s Guide

Passing and Receiving Arguments
Passing and Receiving Arguments
By default, Fortran passes arguments “by reference” (i.e., it passes the address of each vari-
able in the argument list, rather than the value of the argument, on the program stack);
however, many C functions expect variables to be passed “by value” on the program stack.
This practice can be accommodated by applying the VAL() intrinsic to the variable as it
appears in the argument list of the Fortran reference to the function.

In all subsequent C code examples, a declaration of int is synonymous with long int. Note
that any array arguments or arguments of type COMPLEX must not be passed by value to C;
they should always be passed by reference. Character data is a special case -- it may be
passed using either the CARG intrinsic or VAL(OFFSET()). See the section below, “Pass-
ing Character Data” on page 47 for further illustration.

Example: Passing Arguments by Value from Fortran to C
The C function

void mysum_(i, j, k)
int *i, j, k;
{
i = j + k;
}

is called from Fortran as follows:

integer i, j, k
j = 3
k = 4
call mysum(i, val(j), val(k))
write (*,*) ‘ Result: j+k = ‘, i

Example: Passing Arguments by Reference from C to Fortran
Variables can be passed by reference from C using the l-value operator (&). The Fortran
function

integer function myfunc(x, y)
integer x, y
myfunc = x + y
return
end function

is called from C as

MAIN__()
{
 long int myfunc_(*long int i, *long int j);
 long int i, j, k;
 i = 5
 j = 7
 k = myfunc_(&i, &j)
}

Lahey/Fujitsu Fortran 95 User’s Guide 45

Chapter 3 Mixed Language Programming
Passing Arrays
Because C stores multidimensional arrays in row-major order, and Fortran stores them in col-
umn-major order, there are some special considerations in processing a Fortran array.
Excluding a single-dimension array (which is stored the same in C as in Fortran), you will
need to reverse the indices when accessing a Fortran array in C. The reason for this is that in
C, the right-most index varies most quickly and in Fortran the left-most index varies most
quickly (multi-dimensional). In an array of arrays, the columns are stored sequentially: row
1-column 1 is followed by row 1-column 2, etc. In a multi-dimensional array, the rows are
stored sequentially: row 1-column 1 is followed by row 2-column 1, etc.

Also note that all C arrays start at 0. We do not recommend that you use a lower dimension
bound other than zero (0) as your C code will have to modify the indices based on the value
used. We strongly recommend that you do not use negative lower and upper dimension
bounds!

If the subscript ranges are not known at compile time, they can be passed at runtime, but you
will have to provide the code to scale the indices to access the proper members of the array.

Some sample code may help explain the array differences. Your Fortran code would look
like:

subroutine test(real_array)

real :: real_array(0:4,0:5,0:6,0:7,0:8,0:9,0:10)

integer :: i,j,k,l,m,n,o

do o = 0, 10

 do n = 0, 9

 do m = 0, 8

 do l = 0, 7

 do k = 0, 6

 do j = 0, 5

 do i = 0, 4

 real_array(i,j,k,l,m,n,o) = 12.00

 end do

 end do

 end do

 end do

 end do

 end do

end do

end subroutine test

The equivalent C code would look like:
46 Lahey/Fujitsu Fortran 95 User’s Guide

Passing Character Data
void test(float real_array[10][9][8][7][6][5][4])
 int i,j,k,l,m,n,o;
 /*
 ** this is what the subscripts would look like on the C side
 */
 for(o = 0; o < 11; o++)
 for(n = 0; n < 10; n++)
 for(m = 0; m < 9; m++)
 for(l = 0; l < 8; l++)
 for(k = 0; k < 7; k++)
 for(j = 0; j < 6; j++)
 for(i = 0; i < 5; i++)
 real_array[o][n][m][l][k][j][i] = 12.000;
 return;
}

On the Fortran side of the call, the array argument must not be dimensioned as an assumed-
shape array. You should use explicit shape, assumed size, or adjustable arrays.

Passing Character Data
Character arguments are passed as pointers to strings. When a Fortran program unit contains
character dummy arguments, then any routine calling that program unit must append to the
end of the argument list the length of each of the corresponding character actual arguments.
The length must be passed by value, as a four-byte integer (long int), to Fortran.

For example, the Fortran subroutine:

subroutine example3 (int1, char1, int2, char2)
 integer int1, int2
 character (len=*) :: char1
 character (len=25) :: char2
end

 corresponds to this prototype in C:

void example3 (long int *int1, \
 char *char1, \
 long int *int2, \
 char *char2, \
 long int char1_len);

When passing a character string from Fortran to C, Fortran will by default append a “hidden”
integer value, representing the length of the string, to the end of the argument list. This inte-
ger is passed by value. If more than one character string is passed, the length values appear
in the same order as the strings, at the end of the argument list. To prevent the length value
from being added, apply the CARG() intrinsic or combine the VAL(OFFSET()) intrinsics, so
that only the pointer to the string is passed.
Lahey/Fujitsu Fortran 95 User’s Guide 47

Chapter 3 Mixed Language Programming
In addition, C requires a NULL terminator (i.e., CHAR(0), a byte whose value is zero) at the
end of a character string in order to process it. LF95 does not supply this; hence it must be
appended to a character literal or character variable before it is passed to C. Furthermore,
Fortran pads the end of the string with blanks to fill its entire declared length. If this padding
is not desired then it must be removed by applying the TRIM() intrinsic and appending a
NULL before the string is passed to C.

Example: Passing Character Variables and Character Constants from Fortran to C
The following Fortran program

program strtest

character*20 mystr

mystr = 'abcde'

call sub(mystr)

call sub('abcde'//char(0))

call sub2(carg(trim(mystr)//char(0)))

call sub2(val(offset(mystr)))

call sub2(carg('abcde'//char(0)))

end

and the following C subroutine

void sub_(str1,i)

char *str1;

long int i;

{

 printf("hidden length = %i\n",i);

 printf("%sHi!\n",str1);

}

void sub2_(str1)

char *str1;

{

printf("%sEnd.\n",str1);

}

produce the following output:

hidden length = 20

abcde Hi!

hidden length = 6

abcdeHi!

abcdeEnd.

abcde End.

abcdeEnd.

Example: Passing String Variables from C to Fortran
The following Fortran function has assumed-length character dummy arguments and returns
an assumed-length character result:
48 Lahey/Fujitsu Fortran 95 User’s Guide

Passing Data through Common Blocks
function MYFUNC(str1, str2)
character(len=*) :: str1, str2, myfunc
myfunc = str1//str2//char(0)
return
end

When called by the following C program,

void myfunc_(char *str1, int i, char *str2, \
 char *str3, int j, int k);
MAIN__()
{
/* Leave space for NULL in character declarations */
char res[10], ch[4], msg[7];
strcpy(ch, "Hi ");
strcpy(msg, "there!");
myfunc_(res, 10, ch, msg, 3, 6);
printf("Result received by C: %s\n", res);
}

The following output is generated:

Result received by C: Hi there!

In the call to MYFUNC from C, the first and second arguments are the value and length, respec-
tively, of the result returned by MYFUNC. The last two arguments are the respective lengths
of the character arguments being passed to MYFUNC.

Passing Data through Common Blocks
The variables in a Fortran common block may be referenced as C structure members.

Example: Named Common
In the following Fortran program, the variables in common block “ext”

common /ext/ i, j
i = 1
j = 2
call sub()
end

are accessed by a C function as follows:

extern struct tab {
int i, j;
} ext_;
void sub_()
{
printf("i=%i j=%i\n", ext_.i, ext_.j);
}

Lahey/Fujitsu Fortran 95 User’s Guide 49

Chapter 3 Mixed Language Programming
Example: Blank Common

Passing data via blank common is accomplished in the same manner as in the above example,
except in the C code, the name ext_ is replaced by _BLNK_.

Program Control: main() and MAIN__()
If the top level of control in a mixed-language program resides in the non-Fortran language
system (i.e., control is first passed to the non-Fortran portion of the program), the top-level
procedure must be given the name MAIN__(). It must not be given the name main(), as this
is reserved for startup and initialization of the Fortran runtime environment.

Example: Passing Control First to a C Program

The following C program calls Fortran subroutine SUB() and then exits.

void sub_();

MAIN__()

{

sub_();

}

Calling Standard C Libraries
When calling functions in the Linux kernel and standard C libraries, it is necessary to apply
the ML_EXTERNAL statement to the function name, and compile with the --ml compiler
option.

Example: Calling a Linux Kernel Function

The following Fortran program illustrates a call to the standard function usleep().

program callsys

ml_external usleep

write(*,*) 'Going to sleep...'

! sleep for 10 seconds

call usleep(10000000)

write (*,*) ' Wake up!'

end program

The above program must be compiled using the command line,

lf95 callsys.f90 --ml cdecl
50 Lahey/Fujitsu Fortran 95 User’s Guide

4 Command-Line
Debugging with fdb
fdb is a command-line symbolic source-level debugger for Fortran 95, C, and assembly
programs.

Before debugging your program you must compile it using the -g option (see“Compiler and
Linker Options” on page 14). The -g option creates additional symbolic debugging infor-
mation within the executable code.

This chapter contains references to debugging of C code. These references are meant for C
programs compiled with fcc, the Fujitsu C compiler. fdb is not compatible with the debug
information generated by gcc, the GNU C compiler. It is, however, possible to debug LF95
programs using gdb (GNU debugger), subject to the following restrictions:

Fortran 90/95 specifications are not supported in gdb.

The contents of COMMON can only be examined in gdb by examining memory and
interpreting the values there.

Fortran procedures must be specified as lowercase with trailing underscore (_). You
can step through module procedures but you cannot set a breakpoint or examine the
values of variables or parameters.

Fortran variables must be specified in capital letters.

Starting fdb
To start fdb type:

fdb [exefile] [corefile]

Where: exefile is the name of an executable file compiled with the -g option, and corefile is
the name of the core file (if any) produced by abnormal termination of the executable. If
exefile is not supplied, then fdb will assume the executable file is a.out. If corefile is not
supplied, then fdb will assume the core dump file is core.
Lahey/Fujitsu Fortran 95 User’s Guide 51

Chapter 4 Command-Line Debugging with fdb
If core is present in the current directory, or if corefile is specified, then fdb will start with
the current line of code being the one that caused the abnormal termination, and the current
file being the one that contains that line of code. If core or corefile is not a dump of exefile,
then there will be no debug information available.

Otherwise, if no core file is available or corefile does not exist, then fdb starts with the cur-
rent line of code being the first executable line of the file containing the main program.

Communicating with fdb

Variables
Variables are specified in fdb in the same manner as they are specified in Fortran 95 or C.

In C, a structure member is specified as variable.member or variable->member if variable
is a pointer. In Fortran 95, a derived-type (i.e., structure) component is specified as
variable%member.

In C, an array element is specified as variable[member][member].... In Fortran 95, an array
element is specified as variable(member,member,...). Note that in Fortran 95, omission of
array subscripts implies a reference to the entire array. Listing of array contents in Fortran
95 is limited by the printelements parameter (see “Miscellaneous Controls” on page 65).

Values
Numeric values can be of types integer, real, unsigned octal, or unsigned hexadecimal.
Unsigned octal values must begin with a 0 and unsigned hexadecimal values must begin with
0x. Values of type real can have an exponent, for example 3.14e10.

In a Fortran 95 program, values of type complex, logical, and character are also allowed. Val-
ues of type complex are represented as (real-part,imaginary-part). Character data is
represented as " character string " (the string is delimited by quotation marks, i.e., ascii 34).

Values of type logical are represented as .t. or .f..

Addresses
Addresses can be represented as unsigned decimal numbers, unsigned octal numbers (which
must start with 0), or unsigned hexadecimal numbers (which must start with 0x or 0X). The
following examples show print commands with address specifications.

memprint 1024 (The content of the area addressed by 0x0400 is displayed.)

memprint 01024 (The content of the area addressed by 0x0214 is displayed.)

memprint 0x1024 (The content of the area addressed by 0x1024 is displayed.)
52 Lahey/Fujitsu Fortran 95 User’s Guide

Registers
Registers
$BP Base Pointer

$SP Stack Pointer

$EIP Program counter

$EFLAGS Processor state register

$ST[0-7] Floating-point registers

Names
When communicating with fdb, all procedure names must be in lower case, regardless of the
case used in the source file. The main program name, when not specified in a PROGRAM
statement, is main. In order to prevent user names from conflicting with intrinsic or runtime
library names, the compiler “decorates” procedure and common block names by adding an
underscore, ‘_’, after the corresponding name specified in the Fortran source program. When
referencing an external or module procedure or a common block in fdb, the trailing under-
score is optional. However, when referencing any internal procedures, the name must be
specified with the trailing underscore.

Commands
Commands can be abbreviated by entering only the underlined letter or letters in the com-
mand descriptions. For example, kill can be abbreviated simply k and oncebreak can be
abbreviated ob. All commands should be typed in lower case, unless otherwise noted.
Character literals must be enclosed by quotation marks (the symbol ", which is ascii 34). File
names must be enclosed by the grave accent (the symbol `, which is ascii 96).

Executing and Terminating a Program

run arglist

Passes the arglist list of arguments to the program at execution time. When arglist is omitted,
the program is executed using the arguments last specified. If arglist contains an argument
that starts with "<" or ">", the program is executed after the I/O is redirected. If single-step-
ping or other program control is desired, a breakpoint must be set before issuing the run
command, otherwise the program will immediately run to completion. For an explanation of
breakpoints, see “Breakpoints” on page 55. A breakpoint can also be set at MAIN__, the
main Fortran entry point. Do not set a breakpoint at main; no debug information will exist
there.
Lahey/Fujitsu Fortran 95 User’s Guide 53

Chapter 4 Command-Line Debugging with fdb
Run
Executes the program without arguments. The “R” should be upper case. As explained
above, a breakpoint must be set before issuing this command if single-stepping or other con-
trol is desired.

kill
<ctl-c>

Forces cancellation of the program. <CTL-C> (control+c) has the same effect as the kill
command.

tty dev
Direct standard error I/O to device dev in the next run.

param commandline arglist
Assign the program’s command line argument list a new set of values

param commandline
Display the current list of command line arguments

clear commandline
The argument list is deleted

setenv
show environment

All environment variables and their values are displayed.

setenv "var"
show environment "var"
Environment variable var and its value are displayed

setenv "var" "s"
The environment variable var is set to the value strings.

unsetenv "var"
The variable var is deleted from the environment.

quit
Ends the debugging session.
54 Lahey/Fujitsu Fortran 95 User’s Guide

Help Commands
Help Commands

help
Display the list of all commands

help cmd
Display help for command cmd

help "regex"
Display help for all commands corresponding to regular expression regex. Note that the quo-
tation marks (ascii 34) are required.

Shell Commands

cd dir
Change working directory to dir

pwd
Display the current working directory path

sh cmd
Execute arbitrary shell command cmd

Breakpoints

General Syntax
break [location [? expr]]

Where location corresponds to an address in the program or a line number in a source file,
and expr corresponds to a conditional expression associated with the breakpoint. The value
of location may be specified by one of the following items:

• [‘file‘] line specifies line number line in the source file file. If omitted, file defaults
to the current file. Note that the “apostrophes” used in `file`, above, are the grave
accent (ascii 96), not the standard apostrophe character.

• proc [+|- offset] specifies the line number corresponding to the entry point of func-
tion or subroutine proc plus or minus offset lines. When using this syntax, proc may
not be a module or internal procedure.

• proc@inproc specifies internal procedure inproc within proc.
• [mod@]proc[@inproc_] specifies procedure proc contained in module
Lahey/Fujitsu Fortran 95 User’s Guide 55

Chapter 4 Command-Line Debugging with fdb
 mod or internal procedure inproc within module procedure proc. Note that a break-
point may be set on a module procedure without specifying the module name. If
there is more than on module with a procedure of a given name, then you will be
prompted to select from a list.

• *addr specifies a physical address (default radix is hexadecimal).

• If location is omitted, it defaults to the current line of code

The conditional expression expr can be constructed of program variables, structure compo-
nents, and constants, along with the following operators:

Minus unary operator (-)

Plus unary operator (+)

Assignment statement (=)

Scalar relational operator (<, <=, ==, /=, >, >=, .LT., .LE., .EQ., .NE., .GT., .GE.)

Logical operator (.NOT., .AND., .OR., .EQV., .NEQV.)

break [‘file‘] line
Sets a breakpoint at the line number line in the source file file. If omitted, file defaults to the
current file. Note that the “apostrophes” used in `file`, above, are the grave accent (ascii 96),
not the standard apostrophe character.

break [‘file‘] procname
Sets a breakpoint at the entry point of the procedure proc in the source file file. If omitted,
file defaults to the current file. Note that the “apostrophes” used in ̀ file`, above, are the grave
accent (ascii 96), not the standard apostrophe character.

break *addr
Sets a breakpoint at address addr.

break
Sets a breakpoint at the current line.

breakoff [#n]
Disables breakpoint number n. When #n is omitted, all breakpoints are disabled. The break-
points still exist and can be enabled using the breakon command. Note that the "#" symbol
is required.

breakon [#n]
Enables breakpoint number n. When #n is omitted, all breakpoints are enabled. Note that
the "#" symbol is required.
56 Lahey/Fujitsu Fortran 95 User’s Guide

Breakpoints
condition #n expr
Associate conditional expression expr with the breakpoint whose serial number is n. Note
that the “#” symbol is required.

condition #n
Remove any condition associated with the breakpoint whose serial number is n. Note that
the “#” symbol is required.

oncebreak
Sets a temporary breakpoint that is deleted after the program is stopped at the breakpoint
once. OnceBreak in other regards, including arguments, works like Break.

regularbreak "regex"
Set a breakpoint at the beginning of all procedures with a name matching regular expression
regex.

delete location
Removes the breakpoint at location location as described in above syntax description.

delete [‘file‘] line
Removes the breakpoint for the line number line in the source file specified as file. If omitted,
file defaults to the current file. Note that the “apostrophes” used in ̀ file`, above, are the grave
accent (ascii 96), not the standard apostrophe character.

delete [‘file‘] procname
Removes the breakpoint for the entry point of the procedure procname in the source file file.
If omitted, file defaults to the current file. Note that the “apostrophes” used in `file`, above,
are the grave accent (ascii 96), not the standard apostrophe character.

delete *addr
Removes the breakpoint for the address addr.

delete #n
Removes breakpoint number n.

delete
Removes all breakpoints.

skip #n count
Skips the breakpoint number n count times.
Lahey/Fujitsu Fortran 95 User’s Guide 57

Chapter 4 Command-Line Debugging with fdb
onstop #n cmd[;cmd2;cmd3...;cmdn]

Upon encountering breakpoint n, execute the specified fdb command(s).

show break

B

Displays all breakpoints. If using the abbreviation “B”, the “B” must be upper case.

Controlling Program Execution

continue [count]

Continues program execution until a breakpoint's count reaches count. Then, execution stops.
If omitted, count defaults to 1 and the execution is interrupted at the next breakpoint. Program
execution is continued without the program being notified of a signal, even if the program
was broken by that signal. In this case, program execution is usually interrupted later when
the program is broken again at the same instruction.

silentcontinue [count]

Same as Continue but if a signal breaks a program, the program is notified of that signal when
program execution is continued.

step [count]

Executes the next count lines, including the current line. If omitted, count defaults to 1, and
only the current line is executed. If a function or subroutine call is encountered, execution
“steps into” that procedure.

silentstep [count]

Same as Step but if a signal breaks a program, the program is notified of that signal when
program execution is continued.

stepi [count]

Executes the next count machine language instructions, including the current instruction. If
omitted, count defaults to 1, and only the current instruction is executed.

silentstepi [count]

Same as stepi but if a signal breaks a program, the program is notified of that signal when
program execution is continued.
58 Lahey/Fujitsu Fortran 95 User’s Guide

Controlling Program Execution
next [count]
Executes the next count lines, including the current line, where a function or subroutine call
is considered to be a line. If omitted, count defaults to 1, and only the current line is executed.
In other words, if a function or subroutine call is encountered, execution “steps over” that
procedure.

silentnext [count]
Same as Next but if a signal breaks a program, the program is notified of that signal when
program execution is continued.

nexti [count]
Executes the next count machine language instructions, including the current instruction,
where a procedure call is considered to be an instruction. If omitted, count defaults to 1, and
only the current instruction is executed.

silentnexti [count] or nin [count]
Same as Nexti but if a signal breaks a program, the program is notified of that signal when
program execution is continued.

until
Continues program execution until reaching the next instruction or statement.

until location
Continues program execution until reaching the location location. The same syntax rules as
for breakpoints apply.

until *addr
Continues program execution until reaching the address addr.

until +|-offset
Continues program execution until reaching the line forward (+) or backward (-) offset lines
from the current line.

until return
Continues program execution until returning to the calling line of the procedure that includes
the current breakpoint.

goto [‘file‘] line
Execution is restarted from the specified line line in file file.
Lahey/Fujitsu Fortran 95 User’s Guide 59

Chapter 4 Command-Line Debugging with fdb
jump [‘file‘] line
Changes the program counter (jumps) to the address corresponding to the specified line line
in file file.

jump *addr
Changes the program counter (jumps) to address addr.

Displaying Program Stack Information

traceback [n]
Displays subprogram entry points (frames) in the stack, where n is the number of stack
frames to be processed from the current frame.

frame
Select stack frame number n. If n is omitted, the current stack frame is selected.

upside [n]
Select the stack frame for the procedure n levels up the call chain (down the chain if n is less
than 0). The default value of n is 1.

downside [n]
Select the stack frame for the procedure n levels down the call chain (up the chain if n is less
than 0). The default value of n is 1.

show args
Display argument information for the procedure corresponding to the currently selected
frame

show locals
Display local variables for the procedure corresponding to the currently selected frame

show reg [$r]
Displays the contents of the register r in the current frame. r cannot be a floating-point reg-
ister. If $r is omitted, the contents of all registers except floating-point registers are displayed.
Note that the $ symbol is required (see “Registers” on page 53 for register notation details).

show freg [$fr]
Displays the contents of the floating-point register fr in the current frame. If $fr is omitted,
the contents of all floating-point registers are displayed. Note that the $ symbol is required
(see “Registers” on page 53 for register notation details).
60 Lahey/Fujitsu Fortran 95 User’s Guide

Setting and Displaying Program Variables
show regs
Displays the contents of all registers including floating-point registers in the current frame.

show map
Displays the address map.

Setting and Displaying Program Variables

set variable = value
Sets variable to value.

set *addr = value
Sets *addr to value.

set reg = value
Sets reg to value. reg must be a register or a floating-point register (see “Registers” on page
53 for register notation details).

print [[:F] variable [= value]]
Displays the content of the program variable variable by using the edit format F. If edit for-
mat F is omitted, it is implied based on the type of variable. variable can be a scalar, array,
array element, array section, derived type, derived type element, or common block. F can
have any of the following values:

x hexadecimal
d signed decimal
u unsigned decimal
o octal
f floating-point
c character
s character string
a address of variable

If value is specified, the variable will be set to value.

If no arguments are specified, the last print command having arguments is repeated.

memprint [:FuN] addr
dump [:FuN] addr
Displays the content of the memory address addr by using edit format F. u indicates the dis-
play unit, and N indicates the number of units. F can have the same values as were defined
for the Print command variable F.

If omitted, f defaults to x (hexadecimal -- see format descriptions in print command above).
Lahey/Fujitsu Fortran 95 User’s Guide 61

Chapter 4 Command-Line Debugging with fdb
u can have any of the following values:

b one byte
h two bytes (half word)
w four bytes (word)
l eight bytes (long word/double word)

If u is omitted, it defaults to w (word). If N is omitted, it defaults to 1. Therefore, the two fol-
lowing commands have the same result:

memprint addr
memprint :xw1 addr

Source File Display

show source
Displays the name of the current file.

list now
Displays the current line.

list next
Displays the next 10 lines, including the current line. The current line is changed to the last
line displayed.

list previous
Displays the last 10 lines, except for the current line. The current line is changed to the last
line displayed.

list around
Displays the last 5 lines and the next 5 lines, including the current line. The current line is
changed to the last line displayed.

list sigaround
Displays the last 5 lines and the next 5 lines, including the line of the current file nearest the
address where the signal occurred.

list [‘file‘] num
Changes from the current line of the current file to the line number num of the source file file,
and displays the next 10 lines, including the new current line. If file is omitted, the current
file is not changed. Note that the “apostrophes” used in `file`, above, are the grave accent
(ascii 96), not the standard apostrophe character.
62 Lahey/Fujitsu Fortran 95 User’s Guide

Automatic Display
list +|-offset
Displays the line forward (+) or backward (-) offset lines from the current line. The current
line is changed to the last line displayed.

list [‘file‘] top,bot
Displays the source file lines between line number top and line number bot in the source file
file. If file is omitted, it defaults to the current file. The current line is changed to the last line
displayed. Note that the “apostrophes” used in `file`, above, are the grave accent (ascii 96),
not the standard apostrophe character.

list [func[tion]] procname
Displays the last 5 lines and the next 5 lines of the entry point of the procedure procname.

disas
Displays the current machine language instruction in disassembled form.

disas *addr1 [,*addr2]
Displays the machine language instructions between address addr1 and address addr2 in dis-
assembled form. If addr2 is omitted, it defaults to the end of the current procedure that
contains address addr1.

disas procname
Displays all instructions of the procedure procname in disassembled form.

Automatic Display

screen [:F] expr
Displays the value of expression expr according to format F every time the program stops.

screen
Displays the names and values of all expressions set by the screen [:F] expr command above.
Refer to “print [[:F] variable [= value]]” on page 61 for an explanation of F.

unscreen [#n]
Remove automatic display number n (“#” symbol required). When #n is omitted, all are
removed.

screenoff [#n]
Deactivate automatic display number n. When #n is omitted, all are deactivated.
Lahey/Fujitsu Fortran 95 User’s Guide 63

Chapter 4 Command-Line Debugging with fdb
screenon [#n]
Activate automatic display number n. When #n is omitted, all are activated.

show screen
Displays a numbered list of all expressions set by the screen [:F] expr command above.

Symbols

show function ["regex"]
Display the type and name of all functions or subroutines with a name that matches regular
expression regex (quotation marks required). When regex is omitted, all procedure names
and types are displayed.

show variable ["regex"]
Display the type and name of all variables with a name that matches regular expression regex
(quotation marks required). When regex is omitted, all variable names and types are
displayed.

Scripts

script ‘script‘
The commands in file script are executed. Note that the “apostrophes” used in `script`,
above, are the grave accent (ascii 96), not the standard apostrophe character.

alias cmd "cmd-str"
Assigns the fdb command(s) in cmd-str (quotation marks required) to alias cmd.

alias [cmd]
show alias [cmd]
display the alias cmd definition. When cmd is omitted, all the definitions are displayed.

unalias [cmd]
Remove the alias cmd definition. When cmd is omitted, all the definitions are removed.

Signals

signal sig action
Behavior action is set for signal sig. Please refer to signal(5) for the name which can be spec-
ified for sig. The possible values for action are:
64 Lahey/Fujitsu Fortran 95 User’s Guide

Miscellaneous Controls
stop Execution stopped when signal sig encountered

nostop Execution not stopped when signal sig encountered

show signal [sig]
Displays the set response for signal sig. If sig is omitted, the response for all signals is
displayed.

Miscellaneous Controls

param listsize num
The number of lines displayed by the list command is set to num. The initial (default) value
of num is 10.

param prompt "str"
str is used as a prompt character string (quotation marks required). The initial (default)
value is “fdb*”.

param printarray on|off
When the value is “on,” the elements of arrays are displayed, one element per line, in
response to the print command. The initial (default) value is “off,” which causes elements
to be displayed as a comma-separated list which wraps around the end of the console screen.

param printstructure on|off
When the value is “on,” the elements of derived types (structures) are displayed, one element
per line, in response to the print command. The initial (default) value is “off.”

param printelements num
Set the number of displayed array elements to num when printing arrays. The initial (default)
value is 200. The minimum value of num is 10. Setting num to 0 implies no limit.

param prm
Display the value of parameter prm.

Files

show exec
Display the name of the current executable file.
Lahey/Fujitsu Fortran 95 User’s Guide 65

Chapter 4 Command-Line Debugging with fdb
param execpath [path]
Add path to the execution file search path. If path is omitted, the value of the search path is
displayed.

param srcpath [path]
Add path to the source file search path when searching for procedures, variables, etc. If path
is omitted, the value of the search path is displayed. Note that this search path can also be
controlled via the FDB_SRC_PATH environment variable, which is comprised of a list of
directories separated by colons.

show source
Display the name of the current source file.

show sources
Display the names of all source files in the program.

Fortran 95 Specific

breakall mdl
Set a breakpoint in all Fortran procedures (including internal procedures) in module mdl.

breakall func
Set a breakpoint in all internal procedures in procedure func.

show ffile
Displays information about the files that are currently open in the Fortran program.

show fopt
Display the runtime options specified at the start of Fortran program execution.

Memory Leak Detection

param leak off | mem | all
Controls level of memory leak checking, where the level is determined as follows:

off No leak checking (default).
mem Memory manipulation functions and statements (such as ALLOCATE, DEAL-

LOCATE, malloc, free, and memcpy) are checked.
all Character string system procedures are checked, in addition to those checked by

the mem option.
66 Lahey/Fujitsu Fortran 95 User’s Guide

Processes and Threads
param leak
Reports current level of leak checking.

show leak log | error | summary
Displays memory leak information, where the type of information displayed is as follows:

log Displays procedures being monitored, in the order that they are called.
error Displays error messages.
summary Summary information only.

Processes and Threads

ps [pid]
Displays information about process-id pid. If pid is not specified, then information is dis-
played for all process-id’s.

Restrictions
1 An adjustable array that is a dummy argument cannot be debugged if it appears at the

beginning of a procedure or a function in a Fortran program.

 Example:

 subroutine sub(x,y,i)
 real x(5:i)
 real y(i+3)

 In this example, adjustable arrays "x" and "y" cannot be debugged at the subroutine
statement.

2 The dummy argument of a main entry cannot be debugged at the sub-entry in a For-
tran program.

 Example:

 subroutine sub(a,b)
 entry ent(b)

 In this example, the dummy argument "b" which is in the main entry's argument list,
but not in the sub-entry's argument, cannot be debugged at the sub-entry "ent". How-
ever, the dummy argument "b", which is passed to the sub-entry "ent", can be
debugged.

3 Breakpoints cannot be set at any executable statements of an include file in Fortran
programs.
Lahey/Fujitsu Fortran 95 User’s Guide 67

Chapter 4 Command-Line Debugging with fdb
4 An array of an assumed size can be debugged only for the lower bound of the array
in a Fortran program.

5 The statement label in a Fortran program cannot be debugged.

6 In a Fortran program, the breakpoint you can make at the beginning of a procedure
may vary in cases where the -g or --chk option is specified.

7 In include files that contain expressions in Fortran and C, programs cannot be
debugged.

8 If you want to set a break point in the main procedure which has no program state-
ment in a Fortran program, the break point is set at the first executable statement or
declare statement.

9 When in the Fortran program the continue statement has no instruction, even if you
want to set a break point at this statement, the break point is set at the next executable
statement.

 Example:

 integer :: i
 assign 10
 10 continue
 i = 1

A break point set at the continue statement will break at the next executable state-
ment (i = 1).

10 The index name of the FORALL statement in a Fortran program cannot be debugged.

11 In Fortran, a name exceeding 2048 bytes cannot be displayed.

12 In Fortran, the value of floating-point registers cannot be displayed or set."
68 Lahey/Fujitsu Fortran 95 User’s Guide

5 Multi-Processing
(PRO version only)
This chapter describes the method of processing a Fortran program in parallel. Processing a
Fortran program in parallel is called multi-processing.

Overview of Multi-Processing
In this document, multi-processing means that one program is executed on two or more CPUs
that can work independently and simultaneously. As used here, it does not mean executing
two or more programs simultaneously. Consider the following code:

do i = 1, 50000

 a(i) = b(i) + c(i)

end do

Different iterations of the DO loop are executed on different CPUs at the same time.

CPU 1:

do i1 = 1, 25000

 a(i1) = b(i1) + c(i1)

end do

CPU 2:

do i2 = 25001, 50000

 a(i2) = b(i2) + c(i2)

end do
Lahey/Fujitsu Fortran 95 User’s Guide 69

Chapter 5 Multi-Processing (PRO version only)
Performance Improvement
The effect of multi-processing is to save elapsed execution time by using two or more CPUs
simultaneously. For instance, if a DO loop can be executed in parallel by dividing it as shown
above, then, theoretically, the execution time of this DO loop may be cut in half. In practice,
improving performance requires some care and some work on the part of the programmer, as
explained in the next section.

Although the elapsed time usually will be decreased by multi-processing, the total CPU time
required to execute the program may increase. This is because the total CPU time is at least
as large as the CPU time when the program is executed on a single processor, and the over-
head time for multi-processing may increase the total CPU time.

Impediments to Improvements
Speed improvements from multi-processing using LF95 PRO come from splitting up loops
among the available processors. Impediments to performance improvements include the
following:

• Overhead for initiating and managing threads on secondary processors.

• Lack of large arrays and loops operating on them.

• I/O intensive rather than computationally intensive programs.

• Potential for incorrect results.

• Other unparallelizable loops.

These impediments are discussed in the sections below.

Overhead

Time is spent whenever your program starts up or shuts down a thread (a separate stream of
execution) on a secondary processor. This time can outweigh the time gained by running part
of the code on a secondary processor if the work to be done on that processor is not
significant.

Lack of Large Arrays

If your program does not spend the bulk of its time in computationally intensive loops then
there is not adequate work to divide among the processors. Your program will likely run at
least as fast without parallelization. For example, if half of your program’s time is spent in
parallelizable loops then the best time savings you can expect by parallelization on two pro-
cessors is 25%. If your program takes two minutes to run serially, and half of its time is spent
in parallelizable loops, then the theoretically optimal parallel run time is one minute and
thirty seconds.
70 Lahey/Fujitsu Fortran 95 User’s Guide

Hardware for Multi-Processing
I/O Intensive Programs
If your program spends much of its time reading or writing files or waiting for user input then
any speed increase due to parallelization will likely be dwarfed by the time spent doing I/O.
Your program will likely not show a significant performance improvement.

Potential for Incorrect Results
Certain loops can be analyzed sufficiently to be parallelized by the compiler without input
from the programmer. However, many loops have data dependencies that would prevent
automatic parallelization because of the potential for incorrect results. For that reason, LF95
PRO includes optimization control lines (see “Optimization Control Line” on page 77) and
OpenMP directives (see “OpenMP” on page 89), with which the programmer can provide
the information necessary for the compiler to parallelize otherwise unparallelizable loops.

Other Unparallelizable Loops
Some loops cannot be parallelized for other reasons discussed later in this chapter. Some-
times recoding a loop to move a statement or group of statements outside the loop will allow
that loop to be parallelized.

Hardware for Multi-Processing
A computer environment with two CPUs that operate independently and simultaneously is
necessary to save elapsed time by multi-processing. A multi-processing program can be exe-
cuted on hardware with only a single CPU; however, the elapsed time will not be less than
the execution time for a comparable program written without multi-processing features.

Automatic Parallelization
With automatic parallelization, DO loops and array operations are parallelized without the
programmer making any modifications to the program. This makes it easy to migrate source
programs to other processing systems as long as the program conforms with the Fortran
standard.

Compiler Options for Automatic Parallelization
There are four compiler options for automatic parallelization. They are --parallel, --threads,
--threadstack, and --ocl. These options are documented in “Compiler and Linker Options”
on page 14.

Environment Variables
The following section details the various environment variables that can be set to alter the
way a parallel program executes.
Lahey/Fujitsu Fortran 95 User’s Guide 71

Chapter 5 Multi-Processing (PRO version only)
Environment Variable PARALLEL
When the environment variable PARALLEL is set, its value must be less than or equal to the
number of CPUs active at run-time. (It is called the number of active CPUs.)

Note:
If --threads is specified during compilation, the value of PARALLEL must be equal to the
argument to --threads and the number of active CPUs must be greater than or equal to the
argument to --threads. If the environment variable PARALLEL is not set, the argument to
--threads. must be the same as the number of active CPUs.

Environment Variable THREAD_STACK_SIZE
When the environment variable THREAD_STACK_SIZE is set, it sets the stack size in Kilo-
bytes for each thread stack. Local variables in DO loops and array operations are allocated
on the stack. You may need to extend the stack size if there are many of these local variables.
The default stack size for each thread is the same as that of the executable. The compiler
option --threadstack and environment variable THREAD_STACK_SIZE can change the
stack size of each thread. The compiler option --threadstack takes precedence over the envi-
ronment variable THREAD_STACK_SIZE.

Examples of Compilation and Execution
% lf95 --info --parallel --ocl test1.f

% a.out

In example above, automatic parallelization and optimization control lines (OCLs) are in
effect during compilation. This program is executed using all active CPUs on the machine.

% lf95 --parallel test2.f

5001-i: "test2.f", line 2: DO loop with index i parallelized.

% setenv PARALLEL 2

% a.out

% setenv PARALLEL 4

% a.out

In this second example, the environment variable PARALLEL is set to 2 and the program
executes with two CPUs. Next, the environment variable PARALLEL is set to 4 and the pro-
gram executes with four CPUs.

Details of Multi-Processing
This section describes multi-processing in more detail.

Targets for Automatic Parallelization
Target statements of the automatic parallelization are DO loops (including nested DO loops)
and array operations (array expressions and array assignments).
72 Lahey/Fujitsu Fortran 95 User’s Guide

Details of Multi-Processing
Loop Slicing
Automatic parallelization may slice a DO loop into several pieces. The elapsed execution
time is reduced by executing the sliced DO loops in parallel.

do i = 1, 50000
 a(i) = b(i) + c(i)
end do

Different iterations of the DO loop can be executed on different CPUs at the same time.

CPU 1:

do i1 = 1, 25000
 a(i1) = b(i1) + c(i1)
end do

CPU 2:

do i2 = 25001, 50000
 a(i2) = b(i2) + c(i2)
end do

Array Operations and Automatic Parallelization
Automatic parallelization also targets statements with array operations (array expressions
and array assignments).

integer a(1000), b(1000)
a = a + b

Half of the operations are made on one CPU and half are made on the other.

CPU 1:

a(1:500) = a(1:500) + b(1:500)

CPU 2:

a(501:1000) = a(501:1000) + b(501:1000)

Automatic Loop Slicing by the Compiler
LF95 parallelizes a DO loop if the order of data references will be the same as with serial
execution. LF95 assures that the result of a multi-processing program is the same as if the
program were processed serially.

The next example is a DO loop that is not amenable to loop slicing. In this DO loop, when
the DO variable I is 5001, it is necessary to have the value of array element A(5000).

do i = 2,10000
 a(i) = a(i-1) + b(i)
end do

The following loop slicing cannot happen with the code above:
Lahey/Fujitsu Fortran 95 User’s Guide 73

Chapter 5 Multi-Processing (PRO version only)
CPU 1:

do i = 2,5000

 a(i) = a(i-1) + b(i)

end do

CPU 2:

do i = 5001, 10000

 a(i) = a(i-1) + b(i)

end do

A(5000) is not available to CPU2 and the loop will not be sliced

Loop Interchange and Automatic Loop Slicing
When a nested DO loop is sliced, LF95 attempts to parallelize the outermost loop if it can.
LF95 selects a DO loop that can be sliced and interchanges it with the outermost possible
loop. The purpose of this is to reduce the overhead of multi-processing and improve execu-
tion performance.

The next figure shows an example of loop interchange for a nested loop. It is possible to slice
the inner loop with control variable J. The frequency of multi-processing control can be
reduced by interchanging it with the outer loop.

do i = 2, 10000

 do j = 1, 10

 a(i,j) = a(i-1,j) + b(i,j)

 end do

end do

With loops interchanged, this becomes:

do j = 1, 10

 do i = 2, 10000

 a(i,j) = a(i-1,j) + b(i,j)

 end do

end do

When parallelized, this becomes:

CPU 1:

do j = 1, 5

 do i = 2, 10000

 a(i,j) = a(i-1,j) + b(i,j)

 end do

end do

CPU 2:
74 Lahey/Fujitsu Fortran 95 User’s Guide

Details of Multi-Processing
do j = 6, 10

 do i = 2, 10000

 a(i,j) = a(i-1,j) + b(i,j)

 end do

end do

Loop Distribution and Automatic Loop Slicing
In the next example, the references to array A cannot be sliced, because the order of data ref-
erences would be different from the data reference order in serial execution. Array B can be
sliced, because the order of data references is the same as for serial execution. For this case,
the statement where array A is defined and the statement where array B is defined are sepa-
rated into two DO loops, and the DO loop where array B is defined is parallelized.

do i = 1, 10000

 a(i) = a(i-1) + c(i)

 b(i) = b(i) + c(i)

end do

With the loop distributed this becomes:

do i = 1, 10000

 a(i) = a(i-1) + c(i)

end do

do i = 1, 10000

 b(i) = b(i) + c(i)

end do

The second loop is then parallelized:

CPU 1:

do i = 1, 5000

 b(i) = b(i) + c(i)

end do

CPU 2:

do i = 5001, 10000

 b(i) = b(i) + c(i)

end do

Loop Fusion and Automatic Loop Slicing
In the next example, there are DO loops in sequence having the same DO loop control. In
this case, the overhead of the DO loop control and the frequency of multi-processing control
can be reduced by merging those two loops into a single loop.
Lahey/Fujitsu Fortran 95 User’s Guide 75

Chapter 5 Multi-Processing (PRO version only)
do i = 1, 10000

 a(i) = b(i) + c(i)

end do

do i = 1, 10000

 d(i) = e(i) + f(i)

end do

With loops fused this becomes:

do i = 1, 10000

 a(i) = b(i) + c(i)

 d(i) = e(i) + f(i)

end do

When parallelized, this becomes:

CPU 1:

do i = 1, 5000

 a(i) = b(i) + c(i)

 d(i) = e(i) + f(i)

end do

CPU 2:

do i = 5001, 10000

 a(i) = b(i) + c(i)

 d(i) = e(i) + f(i)

end do

Loop Reduction
Loop reduction slices the DO loop, changing order of the operations (addition and multipli-
cation, etc.). Note that loop reduction may cause small differences in execution results.

Loop reduction optimization is applied if there is one of the following operations in the DO
loop:

• SUM: S=S+A(I)
• PRODUCT: P=P*A(I)
• DOT PRODUCT: P=P+A(I)*B(I)
• MIN: X=MIN(X,A(I))
• MAX: Y=MAX(Y,A(I))
• OR: N=N.OR. A(I)
• AND: M=M.AND.A(I)

The next example shows loop reduction and automatic loop slicing.
76 Lahey/Fujitsu Fortran 95 User’s Guide

Optimization Control Line
sum = 0
do i = 1, 10000
 sum = sum + a(i)
end do

Parallelized becomes:

CPU 1:

sum1 = 0
do i = 1, 5000
 sum1 = sum1 + a(i)
end do

CPU 2:

sum2 = 0
do i = 5001, 10000
 sum2 = sum2 + a(i)
end do

The partial sums are added:

sum = sum + sum1 + sum2

Restrictions on Loop Slicing
The following types of DO loop are not targets for loop slicing.

1. Loops where it is forecast that the elapsed time would not be reduced.
2. The loop contains operations of a type not suitable for loop slicing.
3. The loop contains a procedure reference.
4. The loop is too complicated.
5. The loop contains an I/O statement.
6. Loops where the order of data references would be different from that of serial

execution.

Debugging
Multi-threaded programs cannot be debugged using fdb.

Optimization Control Line
LF95 PRO offers an optimization control line (OCL) feature that helps automatic paralleliza-
tion. The optimization control line is used by the programmer to identify constructs that may
be executed in parallel. Because OCLs are in Fortran comments, programs with OCLs can
still be standard-conforming and can be compiled with other compilers that do not support
OCLs.

The optimization control lines (OCLs) take effect when both --parallel and --ocl options are
specified.
Lahey/Fujitsu Fortran 95 User’s Guide 77

Chapter 5 Multi-Processing (PRO version only)
Optimization Control Specifier
The optimization control lines (OCLs) have several functions depending on the optimization
control specifier.

Syntax of OCL
Columns 1-5 of an optimization control line (OCL) must be "!OCL ". One or more optimi-
zation control specifiers follow.

!OCL i [,i]

where each i is an optimization control specifier, either SERIAL, PARALLEL, DISJOINT,
TEMP, or INDEPENDENT (see “Optimization Control Specifier” on page 78).

Position of OCL
The position of the OCL depends on the optimization control specifier.

The OCL for automatic parallelization must occur at a total-position or loop-position. Total-
position and loop-position are defined as follows:

• Total-position: the top of each program unit.
• Loop-position: immediately before a DO loop. However, more than one OCL may

be specified at loop-position and comment lines may be specified between the OCLs
and the DO loop.

!ocl serial <------------------ total-position
 subroutine sub(b, c, n)
 integer a(n), b(n), c(n)
 do i = 1, n
 a(i) = b(i) + c(i)
 end do
 print*, fun(a)
!ocl parallel <---------------- loop-position
 do i = 1, n
 a(i) = b(i) * c(i)
 end do
 print*, fun(a)
 end

Automatic Parallelization and Optimization Control Specifiers
An optimization control specifier becomes ineffective for a DO loop that is not a target of
loop slicing, even if the optimization control specifier for automatic parallelization is
specified.

Optimization Control Specifiers
The following optimization control specifiers are used to enhance automatic parallelization:

• SERIAL
78 Lahey/Fujitsu Fortran 95 User’s Guide

Optimization Control Line
• PARALLEL
• DISJOINT
• TEMP
• INDEPENDENT

SERIAL
The SERIAL specifier is used to inhibit DO loop slicing.

For instance, if the programmer knows that serial execution of a DO loop is faster than par-
allel execution, perhaps because the iteration count will always be small, the programmer
may specify the SERIAL specifier for the DO loop.

Syntax:
!OCL SERIAL

The SERIAL specifier may be specified at the loop position or the total position. The effect
of SERIAL depends on its position.

• At the loop position

SERIAL inhibits loop slicing for the DO loop (including any nested loops) corresponding to
the OCL.

• At the total position

SERIAL inhibits loop slicing for all loops in the program unit containing the OCL.

In the following program, if loop 2 should not be sliced, loop slicing can be disabled by spec-
ifying SERIAL.

the letter p on the left side of the source program marks the parallelized statements.

 p do j = 1, 10

 p do i = 1, l ! <----------- loop 1

 p a1(i,j) = a1(i,j) + b1(i,j)

 p c1(i,j) = c1(i,j) + d1(i,j)

 p e1(i,j) = e1(i,j) + f1(i,j)

 p g1(i,j) = g1(i,j) + h1(i,j)

 p end do

 p end do

 p do j=1, 10

 p do i=1, m ! <------------ loop 2

 p a2(i,j) = a2(i,j) + b2(i,j)

 p c2(i,j) = c2(i,j) + d2(i,j)

 p e2(i,j) = e2(i,j) + f2(i,j)

 p g2(i,j) = g2(i,j) + h2(i,j)

 p end do

 p end do
Lahey/Fujitsu Fortran 95 User’s Guide 79

Chapter 5 Multi-Processing (PRO version only)
 p do j=1, 10
 p do i=1, n ! <------------ loop 3
 p a3(i,j) = a3(i,j) + b3(i,j)
 p c3(i,j) = c3(i,j) + d3(i,j)
 p e3(i,j) = e3(i,j) + f3(i,j)
 p g3(i,j) = g3(i,j) + h3(i,j)
 p end do
 p end do

 p do j = 1, 10
 p do i = 1, l ! <------------ loop 1
 p a1(i,j) = a1(i,j) + b1(i,j)
 p c1(i,j) = c1(i,j) + d1(i,j)
 p e1(i,j) = e1(i,j) + f1(i,j)
 p g1(i,j) = g1(i,j) + h1(i,j)
 p end do
 p end do

 !ocl serial
 do j = 1, 10
 do i = 1, m ! <------------ loop 2
 a2(i,j) = a2(i,j) + b2(i,j)
 c2(i,j) = c2(i,j) + d2(i,j)
 e2(i,j) = e2(i,j) + f2(i,j)
 g2(i,j) = g2(i,j) + h2(i,j)
 end do
 end do

 p do j = 1, 10
 p do i = 1, n <-------------- loop 3
 p a3(i,j) = a3(i,j) + b3(i,j)
 p c3(i,j) = c3(i,j) + d3(i,j)
 p e3(i,j) = e3(i,j) + f3(i,j)
 p g3(i,j) = g3(i,j) + h3(i,j)
 p end do
 p end do

PARALLEL
The PARALLEL specifier is used to reverse the effect of the SERIAL specifier and enables
loop slicing.

Syntax:
!OCL PARALLEL

The PARALLEL specifier can be placed at the loop position or the total position.

The effect of PARALLEL depends on its position.

• At the loop position
80 Lahey/Fujitsu Fortran 95 User’s Guide

Optimization Control Line
PARALLEL allows loop slicing for the DO loop (and any nested loops) corresponding to the
OCL.

• At the total position

PARALLEL allows loop slicing for all loops in the program containing the OCL.

In the following example, if only loop 2 should be sliced, it can be sliced by specifying PAR-
ALLEL together with SERIAL as shown.

The letter P on the left side of the source program marks the parallelized statements.

!ocl serial <------------ total position
 .
 .
 .
 do j = 1, 10
 do i = 1, l ! <----------- loop 1
 a1(i,j) = a1(i,j) + b1(i,j)
 c1(i,j) = c1(i,j) + d1(i,j)
 e1(i,j) = e1(i,j) + f1(i,j)
 g1(i,j) = g1(i,j) + h1(i,j)
 end do
 end do

!ocl parallel
 p do j = 1, 10
 p do i = 1, m ! <----------- loop 2
 p a2(i,j) = a2(i,j) + b2(i,j)
 p c2(i,j) = c2(i,j) + d2(i,j)
 p e2(i,j) = e2(i,j) + f2(i,j)
 p g2(i,j) = g2(i,j) + h2(i,j)
 p end do
 p end do

 do j = 1, 10
 do i = 1, n ! <----------- loop 3
 a3(i,j) = a3(i,j) + b3(i,j)
 c3(i,j) = c3(i,j) + d3(i,j)
 e3(i,j) = e3(i,j) + f3(i,j)
 g3(i,j) = g3(i,j) + h3(i,j)
 end do
 end do

DISJOINT
The DISJOINT specifier indicates that the order of data references (references to arrays in
the DO loop) is the same whether executed serially or in parallel.

As a result, it is possible to slice a DO loop that would not be sliced otherwise because the
compiler would be unable to determine the order of data references.
Lahey/Fujitsu Fortran 95 User’s Guide 81

Chapter 5 Multi-Processing (PRO version only)
Syntax:
!OCL DISJOINT [(a [,a]...)]

Here, "a" is the array name for which loop slicing is possible. A wild-card specification is
usable in "a". If the array name is omitted, DISJOINT becomes effective for all arrays within
the range of the DO loop. See“Wild Card Specification” on page 85 for the wild-card syntax.

The DISJOINT specifier can be placed at the loop position or the total position.

The effect of DISJOINT depends on its position.

• At the loop position

DISJOINT promotes loop slicing for the DO loop (and all nested loops) corresponding to the
OCL.

• At the total position

DISJOINT promotes loop slicing for all loops in the program unit. Consider the following
code:

do j = 1, 1000
 do i = 1, 1000
 a(i,l(j)) = a(i,l(j)) + b(i,j)
 end do
end do

Because the subscript expression of array A is another array element L(J), the system cannot
determine whether there is a problem if array A is sliced. Therefore, this system does not
slice the outer DO loop.

If the programmer knows that there is no problem if array A is sliced, the outer DO loop will
be sliced if DISJOINT is used as shown in the example below.

The letter P shown on the left side of the source program marks the parallelized statements.

!ocl disjoint(a)
 p do j = 1, 1000
 p do i = 1, 1000
 p a(i,l(j)) = a(i,l(j)) + b(i,j)
 p end do
 p end do

Note:
If an array which cannot be sliced is marked DISJOINT by mistake, LF95 may perform an
incorrect loop slicing and the program results may be incorrect.

TEMP
The TEMP specifier is used to indicate to the system that the variables listed are used tem-
porarily in the DO loop.

As a result, the execution performance of the parallelized DO loop can be improved.
82 Lahey/Fujitsu Fortran 95 User’s Guide

Optimization Control Line
Syntax:

!OCL TEMP [(s [,s]...)]

Here, "s" is a variable name used temporarily in a DO loop. A wild card specification is
usable in "s". If the variable name is omitted, TEMP becomes effective for all scalar vari-
ables within the range of the DO loop. See “Wild Card Specification” on page 85 for the
wild-card syntax.

The TEMP specifier can be placed at the loop position or the total position.

The effect of TEMP depends on its position.

• At the loop position

TEMP indicates that the variables in the DO loop corresponding to the OCL are temporary
variables.

• At the total position

TEMP indicates that the variables of all loops in the program unit containing the OCL are
temporary variables.

In the example below, because T is a common variable, LF95 must assume that variable T is
referenced in subroutine SUB even if T is used only in the DO loop. LF95 adds code to guar-
antee that T has the correct value at the end of the parallelized DO loop.

The letter P shown on the left side of the source program marks the parallelized statements.

 common t

 .

 .

 .

 p do j = 1, 50

 p do i = 1, 1000

 p t = a(i,j) + b(i,j)

 p c(i,j) = t + d(i,j)

 p end do

 p end do

 .

 .

 .

 call sub

If the programmer knows that the value of T at the end of the DO loop is not needed in sub-
routine SUB, the programmer may specify the TEMP specifier with T as shown in the
following code. As a result, the execution performance improves, because the instruction
which corrects the value of T becomes unnecessary at the end of the DO loop.
Lahey/Fujitsu Fortran 95 User’s Guide 83

Chapter 5 Multi-Processing (PRO version only)
 common t

 .

 .

 .

!ocl temp(t)

 p do j = 1, 50

 p do i = 1, 1000

 p t = a(i,j) + b(i,j)

 p c(i,j) = t + d(i,j)

 p end do

 p end do

 .

 .

 .

 call sub

Note:
If a variable that is not used temporarily is described in a TEMP specifier by mistake, LF95
may do an incorrect loop slicing and the program results may be incorrect.

INDEPENDENT
The INDEPENDENT specifier is used to indicate to LF95 that parallel execution is the same
as serial execution even if a procedure is called in the DO loop. As a result, the DO loop that
contains the procedure is suitable for loop slicing.

Syntax:
!OCL INDEPENDENT [(e [,e]...)]

Here, "e" is a procedure name which does not inhibit loop slicing. The wild card specifica-
tion is usable in "e". If the procedure name is omitted, INDEPENDENT becomes effective
for all procedures within the range of the DO loop. See “Wild Card Specification” on page
85 for wild card specification.

Note that the procedure e must be compiled with the --parallel option.

The INDEPENDENT specifier can be placed at the loop position or the total position.

The effect of INDEPENDENT depends on its position.

• At the loop position

INDEPENDENT allows loop slicing for the DO loop (and all nested loops) corresponding to
the OCL.

• At the total position

INDEPENDENT allows loop slicing for all loops in the program containing the OCL. Con-
sider the following code:
84 Lahey/Fujitsu Fortran 95 User’s Guide

Optimization Control Line
do i = 1, 10000
 j = i
 a(i) = fun(j)
end do
 .
 .
end
function fun(j)
fun = sqrt(real(j**2+3*j+6))
end

In the program above, because the procedure "FUN" is called in the DO loop, the system can-
not determine whether the DO loop can be parallelized.

If the programmer knows that there is no problem even if the DO loop which contains the
reference to the procedure "FUN" is sliced, the DO loop can be sliced by using INDEPEN-
DENT as shown in the code below.

The letter P shown on the left side of the source program marks the parallelized statements.

 !ocl independent(fun)
 p do i = 1,1000
 p j = i
 p a(i) = fun(j)
 p end do
 .
 .
 end
 function fun(j)
 fun = sqrt(real(j**2+3*j+6))
 end

Note:
If a procedure that cannot be sliced is described in an INDEPENDENT specifier by mistake,
LF95 may perform an incorrect loop slicing and program results may be incorrect.

Wild Card Specification
In the operand of the following optimization control specifiers, a wild card may be specified
for a variable name or a procedure name:

• DISJOINT
• TEMP
• INDEPENDENT

The wild card specification is a combination of the special wild card characters and alphanu-
meric characters. The effect is the same as specifying all of the variable names and procedure
names that agree with the wild card expression. There are two wild card characters, "*" and
"?", and they match the following character strings.

• "*" matches any character string of one or more alphanumeric characters.
Lahey/Fujitsu Fortran 95 User’s Guide 85

Chapter 5 Multi-Processing (PRO version only)
• "?" matches any single alphanumeric character.

A wild card specification cannot contain more than one wild card character.

!ocl temp(w*)

In this example, w* matches any variable beginning with w and having a length of two or
more characters. For example, the variable names work1, w2, and work3 are included in this
specification.

!ocl disjoint(a?)

In this example, a? matches any two-character array name which has a for the first character.
For example, the array names a1, a2, and aa are included in this specification. The array
name abc is not included in this specification because its length is not two.

!ocl independent(sub?)

In this example, sub? matches any four-character procedure name whose first three character
are sub. For example, procedure names sub1, sub2, and sub9 are included in this
specification.

Notes on Parallelization
This section explains some specifics about the parallelization facility.

--threads
When the number of CPUs executed in parallel is specified by the --threads compiler option,
the argument to --threads must have the same value as the value of the PARALLEL environ-
ment variable. If the PARALLEL environment variable is not set, the value of the argument
to --threads must be the same value as the number of CPUs active at run-time.

The example below shows an invalid use of the --threads compiler option when the number
of active CPUs is four. If an invalid value for --threads is specified, execution results may
be incorrect.

In the following incorrect example, the value of N and the value of PARALLEL are different.

% setenv PARALLEL 2
% lf95 --parallel --threads 4 a.f

In the following example, execution results may be incorrect if the number of active CPUs is
not equal to two.

% lf95 --parallel --threads 2 a.f

Multi-Processing of Nested DO Loops
If there is a parallelized DO loop in a procedure that is called from within another parallelized
DO loop, a nest of parallelized DO loops is generated. A program that contains such DO
loops must not be compiled with the --threads compiler option.
86 Lahey/Fujitsu Fortran 95 User’s Guide

Notes on Parallelization
The following is an example in which the parallelized DO loop should be executed serially.
If a source program that contains such DO loops is compiled with the --threads compiler
option, the result may be incorrect.

file: a.f
!ocl independent(sub)
 do i = 1,100 ! <------ executed in parallel
 j = i
 call sub(j)
 end do
 :
 end
 subroutine sub(n)
 :
 do i = 1, 10000 ! < ----- should be executed serially
 a(i) = 1 / b(i)**n
 end do
 :
 end

The result may be incorrect if the source program a.f is compiled as follows.

% lf95 --parallel --threads 4 a.f (invalid use)

To prevent such a mistake, specify the optimization control line !OCL SERIAL in the proce-
dure that is called from within the parallelized DO loop.

!ocl serial
 subroutine sub(n)
 :
 do i = 1,10000
 a(i) = 1 / b(i)**n
 end do
 :
 end

Loop Reduction Effects
When --parallel is specified as a compiler option, the result of execution may be different
from the result of serial execution. The reason for this is that as a result of loop reduction,
the operation order may be different between the parallel execution and the serial execution.

The following illustrates the loop reduction optimization.

sum = 0
do i = 1, 10000
 sum = sum + a(i)
end do

When parallelized, this becomes:

CPU 1:
Lahey/Fujitsu Fortran 95 User’s Guide 87

Chapter 5 Multi-Processing (PRO version only)
sum1 = 0

do i = 1, 5000

 sum1 = sum1 + a(i)

end do

CPU 2:

sum2 = 0

do i = 5001, 10000

 sum2 = sum2 + a(i)

end do

Then the partial sums are added:

sum = sum + sum1 + sum2

The variable SUM accumulates the values A(1) to A(10000) in order with serial execution.
In parallel execution, SUM1 accumulates the values A(1) to A(5000), and SUM2 accumu-
lates the values A(5001) to A(10000) at the same time. After that, the sum of SUM1 and
SUM2 is added to SUM.

Loop reduction optimization may cause a side effect (a different result due to rounding) in
the execution result, because the order of adding the array elements is different between par-
allel execution and serial execution.

Invalid Usage of Optimization Control Line
The following program specifies DISJOINT by mistake for array A. The execution result
will be incorrect when array A is sliced, because the order of the data references for array A
is different from the order of data references for serial execution.

!ocl disjoint(a)

 do i = 2,10000

 a(i) = a(i-1) + b(i)

 end do

The following program specifies TEMP by mistake for variable T. The correct value will not
be assigned to variable last, because LF95 does not guarantee a correct value of variable T
at the end of the DO loop.

!ocl temp(t)

 do i = 1, 1000

 t = a(i) + b(i)

 c(i) = t + d(i)

 end do

 last = t

The following program specifies INDEPENDENT by mistake for procedure SUB. The execu-
tion result may be incorrect when array A is sliced, because the order of the data references
for array A is different from the data references for serial execution.
88 Lahey/Fujitsu Fortran 95 User’s Guide

OpenMP
 common a(1000), b(1000)

!ocl independent(sub)

 do i = 2, 1000

 a(i) = b(i) + 1.0

 call sub(i-1)

 end do

 ...

 end

 subroutine sub(j)

 common a(1000)

 a(j) = a(j) + 1.0

 end

Multi-processing I/O Statements and Intrinsic Procedure References
If there is an I/O statement, an intrinsic subroutine or function reference that is not suitable
for loop slicing in a procedure that is called in a parallelized DO loop, execution of the pro-
gram will produce incorrect results. The execution performance of the multi-processing
program may decrease due to the overhead of parallel execution. Also, the result of the I/O
statement may be different from the result of serial execution.

The following is an example in which an I/O statement occurs in a procedure that is called in
a parallelized DO loop.

file: a.f

 !ocl independent(sub)

 do i = 1, 100

 j = i

 call sub(j)

 end do

 :

 end

 recursive subroutine sub(n)

 :

 print*, n

 :

 end

OpenMP
The compiler supports OpenMP v.2.0 directives. This section describes parallelization using
OpenMP. Refer to the OpenMP Fortran specification included with LF95 in PDF format for
non-implementation-specific information on OpenMP. The following website includes com-
prehensive information on OpenMP:

http://www.openmp.org/
Lahey/Fujitsu Fortran 95 User’s Guide 89

Chapter 5 Multi-Processing (PRO version only)
It is assumed that the reader has an understanding of OpenMP. LF95’s implementation of
OpenMP is described below.

Compilation
There are three compiler options for OpenMP parallelization. They are --openmp,
--threadstack, and --threadheap. These options are documented in “Compiler and Linker
Options” on page 14.

Environment Variables
OpenMP specifies a number of environment variables, which are described in the OpenMP
documentation at http://www.openmp.org. Along with the OpenMP environment vari-
ables, this implementation has:

FLIB_FASTOMP={ true | false }
If the environment variable FLIB_FASTOMP is present and set to true or 1, the compiler will
link with high-speed runtime libraries optimized for OPENMP..

FLIB_SPINWAIT=wait_time
The user can specify the mode of waiting threads using the environment variable
FLIB_SPINWAIT.

wait_time denotes how long to wait before suspending the thread, and is specified in seconds
by appending the letter “s” to wait_time, or is specified in milliseconds by appending the let-
ters “ms” to wait_time. wait_time may also have the value unlimited, which is the default
value. If the value of wait_time is unlimited, the waiting thread is never suspended. If the
value of wait_time is 0, the waiting thread is immediatelty suspended. Use of a large or
unlimited wait_time will result in a faster elapsed time for program execution, but will
cause the total CPU time consumed to increase.

THREAD_STACK_SIZE=num
The user can specify the size of stack for each thread using the environment variable
THREAD_STACK_SIZE.

num is a number in the range 16 ≤ num ≤ 2048.

The --threadstack compiler option overrides this environment variable.

Implementation Specifications
This section gives details on features that are left processor-dependent by the OpenMP spec-
ification along with other specifications and restrictions.

Nesting of Parallel Regions
Nesting of parallel regions is supported.
90 Lahey/Fujitsu Fortran 95 User’s Guide

Implementation Specifications
Dynamic Thread Adjustment Features
Dynamic thread adjustment features are supported, and are on by default.

Number of Threads
The number of threads for OpenMP is decided with the following priority.

1 OMP_SET_NUM_THREADS service routine
2 Environment variable OMP_NUM_THREADS
3 Environment variable PARALLEL
4 One thread

SCHEDULE Clause
If the SCHEDULE Clause is omitted, the default is SCHEDULE(STATIC).

OMP_SCHEDULE Environment Variable
When the OMP_SCHEDULE environment variable is omitted, a DO directive or PARAL-
LEL DO directive having the schedule type RUNTIME will default to
SCHEDULE(STATIC).

ASSIGN and Assigned GO TO Statements
An ASSIGN statement within an OpenMP block cannot refer to a statement label that is out-
side of the OpenMP directive block. Also, a statement label in an OpenMP directive block
cannot be referred to by an ASSIGN statement that is outside of the OpenMP directive block.

Jumping into or out of a directive block area using an assigned GO TO statement is not
supported.

Additional Functions and Operators in ATOMIC directive and REDUCTION
Clause
The following intrinsic functions and operators can be specified in an ATOMIC directive or
REDUCTION clause.

Intrinsic functions : AND, OR

Operators : .XOR., .EOR.

FORALL construct
In a FORALL construct, OpenMP directives cannot be used.

THREADPRIVATE
When using the THREADPRIVATE directive, a given common block must be defined the
same in all program units. A common block specified as THREADPRIVATE cannot have
its size extended.
Lahey/Fujitsu Fortran 95 User’s Guide 91

Chapter 5 Multi-Processing (PRO version only)
IF Clause for PARALLEL Directive
When the IF clause for a PARALLEL directive is not true, the PARALLEL directive is
ignored. Therefore, no team of threads is created. However, the PARALLEL directive
remains in effect.

Inline Expansion
The following procedures are not inline expanded.

• User-defined procedures that include OpenMP Fortran directives.

• User-defined procedure that are referred to in OpenMP directives.

Internal Procedure Calling from Parallel Region
A variable in the host procedure referenced in an internal procedure that is called in a parallel
region is regarded as SHARED even if it is privatized in the parallel region.

:

i = 1 ! this i is shared

!$omp parallel private(i)

i = 2 ! i is private

print*, i ! i is private

call proc ! i is private

!$omp end parallel

contains

 subroutine proc()

 : ! i is shared

 print*, i ! i is shared

 : ! i is shared

 end subroutine

:

DO Variable for Serial DO Loop in Parallel Region
When the DO variable of a serial DO loop within a parallel region is marked as "SHARED",
it is privatized in the scope of the DO loop.

!$omp parallel shared(i)

i = 1 ! i is shared

do i = 1, n ! i is private

 : ! i is private

end do ! i is private

print*, i ! i is shared

!$omp end parallel
92 Lahey/Fujitsu Fortran 95 User’s Guide

Implementation Specifications
!$omp parallel private(i)
i = 1 ! i is private
do i = 1, n ! i is private
 : ! i is private
end do ! i is private
print*, i ! i is private
!$omp end parallel

Statement Function Statement
A variable that appears in a statement function statement cannot have the PRIVATE,
FIRSTPRIVATE, LASTPRIVATE, REDUCTION, or THREADPRIVATE attribute.

Namelist Group Object
A variable declared as a namelist group object cannot have the PRIVATE, FIRSTPRIVATE,
LASTPRIVATE, REDUCTION, or THREADPRIVATE attribute.

Materialization of Parallel Region
Internal procedures are SCHEDULE(STATIC).

The generated internal procedure has the name "_n_", where n is a consecutive number.

Automatic Parallelization with OpenMP
The --openmp option and the --parallel option may be specified at the same time. The --par-
allel option is ignored in any program unit that contains OpenMP directives.

Debugging
Multi-threaded programs cannot be debugged using fdb.
Lahey/Fujitsu Fortran 95 User’s Guide 93

Chapter 5 Multi-Processing (PRO version only)
94 Lahey/Fujitsu Fortran 95 User’s Guide

6 Automake
(PRO version only)
Introduction

What Does It Do?
AUTOMAKE is a simple-to-use tool for re-building a program after you have made changes
to the Fortran and/or C source code. It examines the creation times of all the source, object
and module files, and recompiles wherever it finds that an object or module file is non-exis-
tent, empty or out of date. In doing this, it takes account not only of changes or additions to
the source code files, but also changes or additions to MODULEs and INCLUDEd files -
even when nested. For example, if you change a file which is INCLUDEd in half a dozen
source files, AUTOMAKE ensures that these files are re-compiled. In the case of Fortran 95,
AUTOMAKE ensures that modules are recompiled from the bottom up, taking full account
of module dependencies.

How Does It Do That?
AUTOMAKE stores details of the dependencies in your program (e.g., file A INCLUDEs file
B) in a dependency file, usually called automake.dep. AUTOMAKE uses this data to
deduce which files need to be compiled when you make a change. Unlike conventional
MAKE utilities, which require the user to specify dependencies explicitly, AUTOMAKE
creates and maintains this data itself. To do this, AUTOMAKE periodically scans source
files to look for INCLUDE and USE statements. This is a very fast process, which adds very
little to the overall time taken to complete the update.

How Do I Set It Up?
The operation of AUTOMAKE is controlled by a configuration file which contains the
default compiler name and options, INCLUDE file search rule, etc. For simple situations,
where the source code to be compiled is in a single directory, and builds into a single execut-
Lahey/Fujitsu Fortran 95 User’s Guide 95

Chapter 6 Automake (PRO version only)
able, it will probably be possible to use the system default configuration file. In that case there
is no need for any customization of AUTOMAKE— just type am to update both your pro-
gram and the dependency file.

In other cases, you may wish to change the default compiler name or options, add a special
link command, or change the INCLUDE file search rule; this can be achieved by customizing
a local copy of the AUTOMAKE configuration file. More complex systems, perhaps involv-
ing source code spread across several directories, can also be handled in this way.

What Can Go Wrong?
Not much. AUTOMAKE is very forgiving. For example, you can mix manual and AUTO-
MAKE controlled updates without any ill effects. You can even delete the dependency file
without causing more than a pause while AUTOMAKE regenerates the dependency data. In
fact, this is the recommended procedure if you do manage to get into a knot.

Running AUTOMAKE
To run AUTOMAKE, simply type am. If there is a configuration file (AUTOMAKE.FIG) in
the current directory, AUTOMAKE reads it.

The AUTOMAKE Configuration File
The AUTOMAKE configuration file is used to specify the compile and link procedures, and
other details required by AUTOMAKE. It consists of a series of records of the form

keyword=value

or

keyword

where keyword is an alphanumeric keyword name, and value is the string of characters
assigned to the keyword. The keyword name may be preceded by spaces if required. Any
record with a '#', '!' or '*' as the first non-blank character is treated as a comment.

The keywords that may be inserted in the configuration file are:

LF95
Equivalent to specifying the default LF95 compile and link commands.

COMPILE=lf95 -c %fi --mod %mo

LINK=lf95 %ob -o %ex --mod %mo

The LF95 keyword should appear in any automake.fig file that is to be used with LF95.
96 Lahey/Fujitsu Fortran 95 User’s Guide

The AUTOMAKE Configuration File
FILES=
Specifies the names of files which are candidates for re-compilation. The value field should
contain a single filename optionally including wild-cards. For example,

FILES=*.f90

You can also have multiple FILES= specifications, separated by AND keywords.

FILES=F90/*.F90
AND
FILES=F77/*.FOR
AND
...

Note that, with each new FILES= line the default COMPILE= is used, unless a new COM-
PILE= value is specified after the FILES= line and before AND.

Note also that, if multiple FILES= lines are specified, then the %RF place marker (place
markers will be explained in the next section) cannot be used in any COMPILE= lines.

COMPILE=
Specifies the command to be used to compile a source file. The command may contain place
markers, which are expanded as necessary before the command is executed. For example,

COMPILE=lf95 -c %fi
Lahey/Fujitsu Fortran 95 User’s Guide 97

Chapter 6 Automake (PRO version only)
The string '%fi' in the above example is a place marker, which expands to the full name of
the file to be compiled. The following table is a complete list of place markers and their
meanings:

COMPILE=lf95 -c %fi --mod %mo

COMPILE=lf95 -c @%rf --include %id

Note that with LF95 the -c option should always be used in a COMPILE= line.

TARGET=
Specifies the name of the program or library file which is to be built from the object code.
Note that you will also have to tell the linker the name of the target file. You can do this using
a %EX place marker (which expands to the file name specified using TARGET=).

TARGET=/execs/MYPROG.EXE

Table 10: COMPILE= Place Markers

Place Marker Meaning

%SD expands to the name of the directory containing the source file -
including a trailing '/'.

%SF expands to the source file name, excluding the directory and exten-
sion.

%SE expands to the source file extension—including a leading under-
score. For example if the file to be compiled is /source/
main.for, %SD expands to /source/, %SF to main, and %SE to
.for.

%OD expands to the name of the directory containing object code, as spec-
ified using the OBJDIR= command (see below), including a trailing
'/'.

%OE expands to the object file extension, as specified using the OBJEXT=
command (see below), including a leading '.'.

%ID expands to the INCLUDE file search list (as specified using
INCLUDE= (see below))

%MO expands to the name of directory containing modules (as specified
using MODULE= (see below))

%RF expands to the name of a response file, created by AUTOMAKE,
containing a list of source files. If %RF is present, the compiler is
invoked only once.

%FI is equivalent to %SD%SF%SE
98 Lahey/Fujitsu Fortran 95 User’s Guide

The AUTOMAKE Configuration File
If there is no TARGET= keyword, AUTOMAKE will update the program object code, but will
not attempt to re-link.

LINK=

Specifies a command which may be used to update the program or library file once the object
code is up to date:

LINK=lf95 %ob -o %ex --mod %mo'

LINK=lf95 @%rf -o %ex --mod %mo'

The following place markers are allowed in the command specified using LINK=.

INCLUDE=

May be used to specify the INCLUDE file search list. If no path is specified for an
INCLUDEd file, AUTOMAKE looks first in the directory which contains the source file, and
after that, in the directories specified using this keyword. The directory names must be sep-
arated by semi-colons. For example, we might have:

INCLUDE=/include:/include/sys

Note that the compiler will also have to be told where to look for INCLUDEd files. You can
do this using a %ID place marker (which expands to the list of directories specified using
INCLUDE).

Table 11: LINK= Place Markers

Place Marker Meaning

%OD
expands to the name of the directory containing object code, as spec-
ified using the OBJDIR= command (see below), including a trailing
'/'.

%OE
expands to the object file extension, as specified using the OBJEXT=
command (see below), including a leading '.'.

%OB
expands to a list of object files corresponding to source files speci-
fied using all FILES= commands.

%EX expands to the executable file name, as specified using TARGET=.

%MO
expands to the name of directory containing modules (as specified
using MODULE= (see below))

%RF
expands to the name of a response file, created by AUTOMAKE,
containing a list of object files.
Lahey/Fujitsu Fortran 95 User’s Guide 99

Chapter 6 Automake (PRO version only)
SYSINCLUDE=
May be used to specify the search list for C or C++ system INCLUDE files (i.e. any enclosed
in angled brackets), as in

#include <stat.h>

If no path is specified, AUTOMAKE looks in the directories specified using this keyword. It
does not look in the current directory for system INCLUDE files unless explicitly instructed
to. The directory names following SYSINCLUDE= must be separated by semi-colons.

OBJDIR=
May be used to specify the name of the directory in which object files are stored. For
example,

OBJDIR=OBJ/

The trailing '/' is optional. If OBJDIR= is not specified, AUTOMAKE assumes that source
and object files are in the same directory. Note that if source and object files are not in the
same directory, the compiler will also have to be told where to put object files. You can do
this using a %OD place marker (which expands to the directory specified using OBJDIR).

OBJEXT=
May be used to specify a non-standard object file extension. For example to specify that
object files have the extension '.abc', specify

OBJEXT=abc

This option may be useful for dealing with unusual compilers, but more commonly to allow
AUTOMAKE to deal with processes other than compilation (for example, you could use
AUTOMAKE to ensure that all altered source files are run through a pre-processor prior to
compilation).

MODULE=
May be used to specify the name of the directory in which module files are stored.

MODULE=MODS/

The trailing '/' is optional. If MODULE= is not specified, AUTOMAKE assumes that source
and module files are in the same directory. Note that if source and module files are not in the
same directory, the compiler will also have to be told where to put module files. You can do
this using a %MO place marker (which expands to the directory specified using MODULE=).

DEP=
May be used to over-ride the default dependency file name.

DEP=thisprog.dep

causes AUTOMAKE to store dependency data in 'thisprog.dep' instead of
'automake.dep'.

QUITONERROR
Specifies that AUTOMAKE should halt immediately if there is a compilation error.
100 Lahey/Fujitsu Fortran 95 User’s Guide

Multi-Phase Compilation
NOQUITONERROR
Specifies that AUTOMAKE should not halt if there is a compilation error.

MAKEMAKE
Specifies that AUTOMAKE should create a text file called automake.mak containing
dependency information.

DEBUG
Causes AUTOMAKE to write debugging information to a file called automake.dbg.

LATESCAN
Delays scanning of source files until the last possible moment, and can, in some cases,
remove the need for some scans. However this option is not compatible with Fortran 90
modules.

CHECK=
May be used to specify a command to be inserted after each compilation. A typical applica-
tion would be to check for compilation errors.

Multi-Phase Compilation
Sometimes, more than one compilation phase is required. For example, if source files are
stored in more than one directory, you will need a separate compilation phase for each direc-
tory. Multiple phases are also required if you have mixed C and Fortran source, or if you need
special compilation options for particular source files.

The 'AND' keyword may be inserted in your configuration file to add a new compilation phase.
You can reset the values of FILES=, COMPILE=, INCLUDE=, OBJDIR=, OBJEXT= and MOD-
ULE= for each phase. All default to the value used in the previous phase, except that
OBJDIR= defaults to the new source directory.

The following example shows how this feature might be used with the LF95 compiler. The
same principles apply to other compilers and other platforms.
Lahey/Fujitsu Fortran 95 User’s Guide 101

Chapter 6 Automake (PRO version only)
Example Configuration file for Multi-Phase

Compilation

Compilation 1 - files in current directory

LF95

INCLUDE=/include

FILES=*.f90

OBJDIR=obj

COMPILE=lf95 -c %fi -I %id -o %od%sf%oe --tp -O1

AND

Compilation 2 - files in utils/

INCLUDE= defaults to previous value (/include)

if OBJDIR= were not set, it would default to utils (NOT obj)

FILES=utils/*.f90

OBJDIR=utils/obj

COMPILE=lf95 -c %fi -I %id -o %od%sf%oe --sav --chk

Relink

TARGET=a.out

LINK=lf95 %ob -o %ex

Automake Notes
• As AUTOMAKE executes, it issues brief messages to explain the reasons for all

compilations. It also indicates when it is scanning through a file to look for
INCLUDE statements.

• If for any reason the dependency file is deleted, AUTOMAKE will create a new one.
Execution of the first AUTOMAKE will be slower than usual, because of the need
to regenerate the dependency data.

• AUTOMAKE recognizes the INCLUDE statements in all common variants of For-
tran and C, and can be used with both languages.

• When AUTOMAKE scans source code to see if it contains INCLUDE statements, it
recognizes the following generalized format:

• Optional spaces at the beginning of the line followed by an optional compiler control
character, '%', '$' or '#', followed by the word INCLUDE (case insensitive) followed
by an optional colon followed by the file name, optionally enclosed between apos-
trophes, quotes or angled brackets. If the file name is enclosed in angled brackets, it
is assumed to be in one of the directories specified using the SYSINCLUDE key-
word. Otherwise, AUTOMAKE looks in the source file directory, and if it is not
there, in the directories specified using the INCLUDE keyword.

• If AUTOMAKE cannot find an INCLUDE file, it reports the fact to the screen and
ignores the dependency relationship.
102 Lahey/Fujitsu Fortran 95 User’s Guide

Automake Notes
• AUTOMAKE is invoked using a script file called am. There is seldom any reason to
modify the script file, though it is very simple to do so if required. It consists of two
(or three) operations:

1. Execute AUTOMAKE. AUTOMAKE determines what needs to be done in order to
update your project and writes a script file to do it. The options which may be
appended to the AUTOMAKE command are:

TO= specifies the name of the output script file created by AUTOMAKE.

FIG= specifies the name of the AUTOMAKE configuration file.

2. Execute the command file (automake.tmp) created by AUTOMAKE.

3. Delete the command file created by AUTOMAKE. This step is, of course, optional.
Lahey/Fujitsu Fortran 95 User’s Guide 103

Chapter 6 Automake (PRO version only)
104 Lahey/Fujitsu Fortran 95 User’s Guide

7 Utility Programs
This chapter documents the following utility programs:

• fot

• hdrstrip.f90

• sequnf.f90

• tryblk.f90

fot
Usage:

fot [file1] [file2]

fot is a program that is used for converting files created by LF95, opened as CARRIAGE-
CONTROL=’FORTRAN’, into a form suitable for printing. fot interprets the first character
of each line of file1 as a Fortran carriage control character to be used for printing, producing
a file file2 in Linux format. The first character of each line of file1 causes the following
modifications:

blank: The blank is deleted, which causes the line to be printed with single spacing. A
line of all blanks is converted to a line with no characters.

0: The character is changed to a new-line character, which causes the line to be printed
with double spacing.

1: The character is changed to the new-page character, which causes the line to be
printed at the beginning of a new page.

+: If it is the first line of a file, the character is deleted. Otherwise, the character is
replaced by a carriage-return character, which causes the line to be printed over the
previous one.

Examples
1. fot < infile > outfile

2. a.out | fot | lpr

3. fot infile outfile
Lahey/Fujitsu Fortran 95 User’s Guide 105

Chapter 7 Utility Programs
Diagnostics
If the first character of a line is none of the above, the line is unchanged. Upon completion
of the command, a diagnostic message is displayed in the standard error file indicating the
number of lines not containing a valid Fortran carriage control character. For example:

invalid n lines carriage control conventions in file1

hdrstrip.f90
hdrstrip.f90 is a Fortran source file that you can compile, link, and execute with LF95.
It converts LF90 direct-access files to LF95 style.

sequnf.f90
sequnf.f90 is a Fortran source file that you can compile, link, and execute with LF95. It
converts LF90 unformatted sequential files to LF95 style.

tryblk.f90
tryblk.f90 is a Fortran source file you can build with LF95. It tries a range of BLOCK-
SIZEs and displays an elapsed time for each. You can use the results to determine an
optimum value for your system to specify in your programs. Note that a particular BLOCK-
SIZE may not perform as well on other systems.
106 Lahey/Fujitsu Fortran 95 User’s Guide

A Programming Hints
This appendix contains information that may help you create better LF95 programs.

Efficiency Considerations
In the majority of cases, the most efficient solution to a programming problem is one that is
straightforward and natural. It is seldom worth sacrificing clarity or elegance to make a pro-
gram more efficient.

The following observations, which may not apply to other implementations, should be con-
sidered in cases where program efficiency is critical:

• For dummy arguments, start each array dimension at zero (not at one, which is the
default). Thus, declare an array A to be A(0:99), not A(100).

• One-dimensional arrays are more efficient than two, two are more efficient than
three, etc.

• Make a direct file record length a power of two.
• Unformatted input/output is faster for numbers.
• Formatted CHARACTER input/output is faster using:

CHARACTER*256 C

than:
CHARACTER*1 C(256)

Side Effects
LF95 arguments are passed to subprograms by address, and the subprograms reference those
arguments as they are defined in the called subprogram. Because of the way arguments are
passed, the following side effects can result:
Lahey/Fujitsu Fortran 95 User’s Guide 107

Appendix A Programming Hints
• Declaring a dummy argument as a different numeric data type from that declared in
the calling program unit can cause unpredictable results and NDP error aborts.

• Declaring a dummy argument to be larger in the called program unit than in the call-
ing program unit can result in other variables and program code being modified and
unpredictable behavior.

• If a variable appears twice as an actual argument in a single CALL statement or func-
tion reference, then the corresponding dummy arguments in the subprogram will
refer to the same location. Whenever one of those dummy arguments is modified, so
is the other. In accordance with the Fortran standard, the compiler and/or runtime is
not required to notice such changes; this allows optimizations to be performed (e.g.,
keeping the second dummy argument, or elements thereof, in registers).

• Function arguments are passed in the same manner as subroutine arguments, so that
modifying any dummy argument in a function will also modify the corresponding
argument in the function invocation:

y = x + f(x)

The result of the preceding statement is undefined if the function f modifies the
dummy argument x.

File Formats

Formatted Sequential File Format
Files controlled by formatted sequential input/output statements have an undefined length
record format. One Fortran record corresponds to one logical record. The length of the unde-
fined length record depends on the Fortran record to be processed. The maximum length may
be assigned in the OPEN statement RECL= specifier. A linefeed character terminates the log-
ical record. If the $ edit descriptor or \ edit descriptor is specified for the format of the
formatted sequential output statement, the Fortran record does not include the linefeed.

Unformatted Sequential File Format
Files processed using unformatted sequential input/output statements have a variable length
record format. One Fortran record corresponds to one logical record. The length of the vari-
able length record depends on the length of the Fortran record. The length of the Fortran
record includes 4 bytes added to the beginning and end of the logical record. The maximum
length may be assigned in the OPEN statement RECL= specifier. The beginning area is used
when an unformatted sequential READ statement is executed. The end area is used when a
BACKSPACE statement is executed.
108 Lahey/Fujitsu Fortran 95 User’s Guide

Direct File Format (Formatted)
Direct File Format (Formatted)
Files processed by formatted direct input/output statements have a fixed length record for-
mat. One Fortran record corresponds to one logical record. The length of the logical record
must be assigned in the OPEN statement RECL= specifier. If the Fortran record is shorter than
the logical record, the remaining part is padded with blanks. The length of the Fortran record
must not exceed the logical record. This fixed length record format is unique to Fortran.

Direct File Format (Unformatted)
Files processed by unformatted direct-access input/output statements have a fixed length
record format, with no header record. One Fortran record can correspond to more than one
logical record. The record length must be assigned in the OPEN statement RECL= specifier.
If the Fortran record terminates within a logical record, the remaining part is padded with
binary zeros. If the length of the Fortran record exceeds the logical record, the remaining data
goes into the next record.

Binary File Format
Files opened with FORM=’BINARY’ (or ACCESS=’TRANSPARENT’) are processed as a
stream of bytes with no record separators. While any format of file can be processed as
binary, you must know its format to process it correctly. Note that, even though
ACCESS=’TRANSPARENT’ is supported by LF95, FORM=’BINARY’ is the preferred method
of opening such files. Note that these specifiers are not currently part of the Fortran standard
and may vary from one compiler to the next; however, this may change in future versions of
the Fortran standard.

Endfile Records
An endfile record must be the last record of a sequential file. Endfile records do not have a
length attribute. The ENDFILE statement writes an endfile record in a sequential file. After
at least one WRITE statement is executed, an endfile record is output under the following
conditions:

• A REWIND statement is executed.
• A BACKSPACE statement is executed.
• A CLOSE statement is executed.

Porting Unformatted Files
Unformatted files created on other platforms can be accommodated with certain runtime
options. “Big-endian” numeric data (integer, logical, and IEEE floating-point) can be accom-
modated with runtime option T. Note that the big-endian conversion is not performed for real
variables that are elements of a derived type if the whole type is being read. IBM370-format
Lahey/Fujitsu Fortran 95 User’s Guide 109

Appendix A Programming Hints
floating-point data can be accommodated with runtime options C and M (see “Runtime
Options” on page 115). By default, LF95 reads and writes numeric data in “little-endian”
format.

File Creation: Default Names
If a file is opened without specifying a filename, the file is assigned the name fort.unit,
where unit is the unit number specified in the OPEN statement.

If a file is opened as STATUS=’SCRATCH’, and FILE= is not specified, then the file is
assigned a random name and is created in the system temporary directory. If FILE= is spec-
ified, then the file is created in the current working directory. In both cases, the file is deleted
upon program termination, even if it is closed with STATUS=’KEEP’ (see “Intermediate
Files” on page 11).

Normal program termination causes all files to be closed.

Link Time
You can reduce the link time by reducing the number of named COMMON blocks you use.
Instead of coding:

common /a1/ i
common /a2/ j
common /a3/ k
...
common /a1000/ k1000

code:

common /a/ i,j,k, ..., k1000

Year 2000 compliance
The "Year 2000" problem arises when a computer program uses only two digits to represent
the current year and assumes that the current century is 1900. A compiler can look for indi-
cations that this might be occurring in a program and issue a warning, but it cannot foresee
every occurrence of this problem. It is ultimately the responsibility of the programmer to cor-
rect the situation by modifying the program. The most likely source of problems for Fortran
programs is the use of the obsolete DATE() subroutine. Even though LF95 will compile and
link programs that use DATE(), its use is strongly discouraged; the use of
DATE_AND_TIME(), which returns a four digit date, is recommended in its place.
110 Lahey/Fujitsu Fortran 95 User’s Guide

Year 2000 compliance
LF95 can be made to issue a warning at runtime whenever a call to DATE() is made. This
can be accomplished by running a program with the runtime options -Wl,Ry,li for
example,

myprog.exe -Wl,-Ry,-li

For more information on runtime options, see “Runtime Options” on page 117.
Lahey/Fujitsu Fortran 95 User’s Guide 111

Appendix A Programming Hints
Limits of Operation
112 Lahey/Fujitsu Fortran 95 User’s Guide

Limits of Operation
Table 11: LF95 Limits of Operation

Item Maximum

program size
4 Gigabytes or available memory (including virtual

memory), whichever is smaller

number of files open concurrently
system dependent (see limits command of csh;
subtract three for Fortran units 0, 5, and 6 from the

system limit)

Length of CHARACTER datum 2,147,418,072 bytes

I/O block size 2,147,483,647 bytes

I/O record length 2,147,483,647 bytes

I/O file size 18,446,744,073,709,551,614 bytes

I/O maximum number of records
(direct-access files)

18,446,744,073,709,551,614 divided by the value
of the RECL= specifier

nesting depth of function, array
section, array element, and sub-

string references
255

nesting depth of DO, CASE, and
IF statements

50

nesting depth of implied-DO loops 25

nesting depth of INCLUDE files 16

number of array dimensions 7

array size

T, where the absolute value of T obtained by the formula below
must not exceed 2147483647, and the absolute value must not

exceed 2147483647 for any intermediate calculations:

n: Array dimension number
s: Array element length

l: Lower bound of each dimension
d: Size of each dimension

T: Value calculated for the array declaration

T l1 s li dm 1 s×–

m 2=

i

∏
 
 
 
 

×

 
 
 
 
 

i 2=

n

∑+×=
Lahey/Fujitsu Fortran 95 User’s Guide 113

Appendix A Programming Hints
114 Lahey/Fujitsu Fortran 95 User’s Guide

B Runtime Options
The behavior of the LF95 runtime library can be modified at execution time by a set of com-
mands which are submitted via the command line when invoking the executable program, or
via shell environment variables. These runtime options can modify the behavior of input/out-
put operations, diagnostic reporting, and floating-point operations.

Runtime options submitted on the command line are specified by using a character sequence
that uniquely identifies the runtime options, so that they may be distinguished from regular
command line arguments utilized by the user’s program. In the current version of the com-
piler, the values obtained via the GETCL(), GETPARM(), and GETARG() functions will
include the runtime options as well as user-defined command line arguments. This can cause
problems if the number of runtime options specified is always changing or is unknown to the
programmer. The solution in this case is to place the runtime options in environment variable
FORT90L (see “Environment Variables” on page 116).

Command Format
Runtime options and user-defined executable program options may be specified as command
option arguments of an execution command. The runtime options use functions supported by
the LF95 runtime library. Please note that these options are case-sensitive.

The format of runtime options is as follows:

exe_file [-Wl,[runtime options]...] [user-defined program arguments]...

Where exe_file indicates the user’s executable program file. The string “-Wl,” must precede
any runtime options, so they may be identified as such and distinguished from user-defined
program arguments. Note that it is W followed by a lowercase L (not the number one). Please
note also that if an option is specified more than once with different arguments, the last occur-
rence is used.
Lahey/Fujitsu Fortran 95 User’s Guide 115

Appendix B Runtime Options
Environment Variables
As an alternative to the command line, the environment variable FORT90L may be used to
specify runtime options. Any runtime options specified in the command line are combined
with those specified in FORT90L. The command line arguments take precedence over the
corresponding options specified in the shell variable FORT90L.

The following examples show how to use the shell variable FORT90L (the actual meaning
of each runtime option will be described in the sections below):

Example 1:
Setting the value of shell variable FORT90L and executing the program as such:

setenv FORT90L=-Wl,-e99,-le
a.out -Wl,-m99 -myopt

has the same effect as the command line

a.out -Wl,-e99,-le,-m99 -myopt

The result is that when executing the program a.out, the runtime options -e99, -le, -m99,
and user-defined executable program argument -myopt are in effect.

Example 2:
When the following command lines are used,

setenv FORT90L=-Wl,-e10
a.out -Wl,-e99

the result is that a.out is executed with runtime option -e99 in effect, overriding the option
-e10 set by shell variable FORT90L.

Note that setenv would be export in the examples above for Korn and bash shell users.
116 Lahey/Fujitsu Fortran 95 User’s Guide

Execution Return Values
Execution Return Values
The following table lists possible values returned to the operating system by an LF95 execut-
able program upon termination and exit. These correspond to the levels of diagnostic output
that may be set by various runtime options:

Standard Input, Output, and Error
The default unit numbers for standard input, output, and error output for LF95 executable
programs are as follows, and may be changed to different unit numbers by the appropriate
runtime options:

Standard input: Unit number 5
Standard output: Unit number 6
Standard error output: Unit number 0

Runtime Options
Runtime options may be specified as arguments on the command line, or in the FORT90L
shell variable. This section explains the format and functions of the runtime options. Please
note that all runtime options are case-sensitive.

The runtime option format is as follows:

-Wl[,option][,option]...

Table 12: Execution Return Values

Return value Status

0 No error or level I (information message)

4 Level W error (warning)

8 Level E error (medium)

12 Level S error (serious)

16
Limit exceeded for level W, E, S error, or a level U

error (Unrecoverable) was detected

240 Abnormal termination

Other Forcible termination
Lahey/Fujitsu Fortran 95 User’s Guide 117

Appendix B Runtime Options
When runtime options are specified, the string “-Wl” (where l is lowercase L) is required at
the beginning of the options list, and the options must be separated by commas. No space is
allowed after a comma. If the same runtime option is specified more than once, the last
occurrence is used.

Example:
a.out -Wl,-a,-p10,-x

Descriptions of Runtime Options

-C or -C[u_no]
Convert IBM370 Floating Point Format

The -C option specifies how to process an unformatted file of IBM370-format floating-point
data using an unformatted input/output statement. When the -C option is specified, the REAL
and DOUBLE PRECISION data of an unformatted file associated with the specified unit
number is regarded as IBM370-format floating-point data in an unformatted input/output
statement. The optional argument u_no specifies an integer from 0 to 2147483647 as the unit
number. If optional argument u_no is omitted, the C option is valid for all unit numbers con-
nected to unformatted files. When the specified unit number is connected to a formatted file,
the option is ignored for the file. When the -C option is not specified, the data of an unfor-
matted file associated with unit number u_no is regarded as IEEE-format floating-point data
in an unformatted input-output statement.

Example:
a.out -Wl,-C10

-M
Mantissa Conversion Error Reporting for IBM370 data

The -M option specifies whether to output the diagnostic message (0147i-w) when bits of the
mantissa are lost during conversion of IBM370-IEEE-format floating-point data. If the -M
option is specified, a diagnostic message is output if conversion of IBM370-IEEE-format
floating-point data results in bits of the mantissa being lost. When the -M option is omitted,
the diagnostic message (0147i-w) is not output.

Example:
a.out -Wl,-M

-Q
Blank-padding for Formatted Input

The -Q option suppresses padding of an input field with blanks when a formatted input state-
ment is used to read a Fortran record (this behavior will apply to all unit numbers). This
option applies to cases where the field width needed in a formatted input statement is longer
than the length of the Fortran record and the file was not opened with an OPEN statement.
118 Lahey/Fujitsu Fortran 95 User’s Guide

Descriptions of Runtime Options
The result is the same as if the PAD= specifier in an OPEN statement is set to NO. If the -Q
option is omitted, the input record is padded with blanks. The result is the same as when the
PAD= specifier in an OPEN statement is set to YES or when the PAD= specifier is omitted.

Example:
a.out -Wl,-Q

-Re
Runtime Error Handling
Disables the runtime error handler. Traceback, error summaries, user control of errors by ser-
vice routines ERRSET and ERRSAV, and execution of user code for error correction are
suppressed. If possible, the standard correction will be performed when an error occurs.

Example:
a.out -Wl,-Re

-Rm:filename
Runtime Diagnostic Output to File
The -Rm option saves the following output items to the file specified by the filename
argument:

• Messages issued by PAUSE or STOP statements
• Runtime library diagnostic messages
• Traceback map
• Error summary

Example:
a.out -Wl,-Rm:errors.txt

-Ry
Y2K (Year 2000) Compliance Diagnostics
Encourages Y2K compliance at runtime by generating an i-level (information) diagnostic
whenever code is encountered which may cause problems after the year 2000 A.D. Must be
used in conjunction with the -li option in order to view diagnostic output.

Example:
a.out -Wl,-Ry,-li

-T or -T[unit]
Big-endian Data Conversion
“Big-endian” data (integer, logical, and IEEE floating-point) is transferred in an unformatted
input/output statement. The optional argument unit is a unit number, valued between 0 and
2147483647, connected with an unformatted file. If unit is omitted, -T takes effect for all unit
numbers. If both -T and -Tunit are specified, then -T takes effect for all unit numbers. By
default, LF95 reads and writes numeric data (integer, logical, and IEEE floating-point) as
“little-endian.” Note that this conversion is not performed if the real variable is a component
of a derived type, and the whole type is being read.
Lahey/Fujitsu Fortran 95 User’s Guide 119

Appendix B Runtime Options
Example:

a.out -Wl,-T10

-a
Force Abnormal Termination

When the -a option is specified, an abend (abnormal termination event) is forcibly exe-
cuted following normal program termination. This processing is executed immediately
before closing external files.

Example:

a.out -Wl,-a

-d[num] 1 < num < 32767
Direct Access I/O Work Area

The -d option determines the size of the input/output work area used by a direct access input/
output statement. The -d option improves input/output performance when data are read from
or written to files a record at a time in sequential record-number order. If the -d option is
specified, the input/output work area size is used for all units used during execution.

To specify the size of the input/output work area for individual units, specify the number of
Fortran records in the shell variable fuunitbf where unit is the unit number (see“Shell Vari-
ables for Input/Output” on page 123 for details). When the -d option and shell variable are
specified at the same time, the -d option takes precedence. The optional argument num spec-
ifies the number of Fortran records, in fixed-block format, included in one block. The
optional argument num must be an integer from 1 to 32767. To obtain the input/output work
area size, multiply num by the value specified in the RECL= specifier of the OPEN statement.
If the files are shared by several processes, the number of Fortran records per block must be
one. If the -d option is omitted, the size of the input/output work area is four kilobytes.

Example:

a.out -Wl,-d8

-e[num] 0 < num < 32767
Execution error limit

The -e option controls termination based on the total number of execution errors. The option
argument num, specifies the error limit as an integer from 0 to 32767. When num is greater
than or equal to 1, execution terminates when the total number of errors reaches the limit. If
-enum is omitted or num is zero, execution is not terminated based on the error limit. How-
ever, program execution still terminates if the Fortran system error limit is reached.

Example:

a.out -Wl,e10
120 Lahey/Fujitsu Fortran 95 User’s Guide

Descriptions of Runtime Options
-g[num] 1 < num
Sequential Access I/O Work Area
The -g option sets the size of the input/output work area used by sequential access input/out-
put statements. This size is set in units of kilobytes for all unit numbers used during
execution. The argument num specifies an integer with a value of one or more. If the -g
option is omitted, the size of the input/output work area defaults to eight kilobytes.

The -g option improves input/output performance when a large amount of data are read from
or written to files by an unformatted sequential access input/output statement. The argument
num is used as the size of the input/output work area for all units. To avoid using excessive
memory, specify the size of the input/output work area for individual units by specifying the
size in the shell variable fuunitbf, where unit is the unit number (see“Shell Variables for
Input/Output” on page 123 for details). When the -g option is specified at the same time as
the shell variable fuunitbf, the -g option has precedence.

Example:
a.out -Wl,-g10

-i
Interrupt Processing
The -i option controls processing of runtime interrupts. When the -i option is specified, the
Fortran library is not used to process interrupts. When the i option is not specified, the Fortran
library is used to process interrupts. These interrupts are exponent overflow, exponent under-
flow, division check, and integer overflow. If runtime option -i is specified, no exception
handling is taken. The -u option must not be combined with the -i option

Example:
a.out -Wl,-i

-lerrlevel errlevel: { i | w | e | s }
Diagnostic Reporting Level
The -l option (lowercase L) controls the output of diagnostic messages during execution.
The optional argument errlevel, specifies the lowest error level, i (informational), w (warn-
ing), e (medium), or s (serious), for which diagnostic messages are to be output. If the -l
option is not specified, diagnostic messages are output for error levels w, e, and s. However,
messages beyond the print limit are not printed.

i
The li option outputs diagnostic messages for all error levels.

w
The lw option outputs diagnostic messages for error levels w, e, s, and u.

e
The le option outputs diagnostic messages for error levels e, s, and u.

s
The ls option outputs diagnostic messages for error levels s and u.
Lahey/Fujitsu Fortran 95 User’s Guide 121

Appendix B Runtime Options
Example:
a.out -Wl,-le

-munit 0 < unit < 2147483647
Standard Error Output
The -m option connects the specified unit number unit to the standard error output file/device
(STDERR) where diagnostic messages are to be written. Argument unit is an integer from 0
to 2147483647. If the -m option is omitted, unit number 0, the system default, is connected
to the standard error output file. Care should be taken to avoid conflict with units specified
by -p and -r options. Also, see “Shell Variables for Input/Output” on page 123 for further
details.

Example:
a.out -Wl,-m10

-n
Prompt Messages, Standard Input
The -n option controls whether prompt messages are sent to standard input (STDIN). When
the -n option is specified, prompt messages are output when data are to be entered from stan-
dard input using formatted sequential READ statements, including list-directed and namelist
statements. If the -n option is omitted, prompt messages are not generated when data are to
be entered from standard input using a formatted sequential READ statement.

Example:
a.out -Wl,-n

-punit 0 < unit < 2147483647
Standard Output
The p option connects the unit number unit to the standard output file/device (STDOUT),
where unit is an integer ranging from 0 to 2147483647. If the p option is omitted, unit number
6, the system default, is connected to the standard output file. Care should be taken to avoid
conflict with units specified by -m and -r options. Also, see “Shell Variables for Input/Out-
put” on page 123 for further details.

Example:
a.out -Wl,-p10

-q
Capitalize Numeric Edit Output Characters
The -q option specifies whether to capitalize the E, EN, ES, D, Q, G, L, and Z numeric edit
output characters produced by formatted output statements. This option also specifies
whether to capitalize the alphabetic characters in the character constants used by the inquiry
specifier (excluding the NAME specifier) in the INQUIRE statement. If the -q option is
specified, the characters appear in uppercase letters. If the q option is omitted, the characters
appear in lowercase letters.
122 Lahey/Fujitsu Fortran 95 User’s Guide

Shell Variables for Input/Output
Example:
a.out -Wl,-q

-runit 0 < unit < 2147483647
Standard Input

The -r option connects the unit number unit to the standard input file/device (STDIN) during
execution, where unit is an integer ranging from 0 to 2147483647. If the -r option is omitted,
unit number 5, the system default, is connected to the standard input file. Care should be
taken to avoid conflict with units specified by -m and -p options. Also, see “Shell Variables
for Input/Output” on page 123 for further details.

Example:
a.out -Wl,-r10

-u
Underflow Interrupt Processing

The -u option controls floating point underflow interrupt processing. If the -u option is
specified, LF95 performs floating point underflow interrupt processing. The system may
output diagnostic message0012i-e during execution. If the -u option is omitted, the system
ignores floating point underflow interrupts and continues processing. The -i option must
not be combined with the -u option.

Example:
a.out -Wl,-u

-x
Blanks in Numeric Formatted Input

The -x option determines whether blanks in numeric formatted input data are ignored or
treated as ZEROs. If the -x option is specified, blanks are changed to zeros during numeric
editing with formatted sequential input statements for which no OPEN statement has been
executed. The result is the same as when the BLANK= specifier in an OPEN statement is set
to ZERO. If the -x option is omitted, blanks in the input field are treated as null and ignored.
The result is the same as if the BLANK= specifier in an OPEN statement is set to NULL or
if the BLANK= specifier is omitted.

Example:
a.out -Wl,-x

Shell Variables for Input/Output
This section describes shell variables that control file input/output operations. These envi-
ronment variables are lower-case unless otherwise indicated.
Lahey/Fujitsu Fortran 95 User’s Guide 123

Appendix B Runtime Options
fuunit = filename 00 < unit < 2147483647
The fuunit shell variable pre-connects units to files. The value unit is a unit number (must be
at least two digits). The value filename is a file to be connected to unit number unit. The stan-
dard input and output files (fu05 and fu06) and error file (fu00) must be avoided, unless
their values have been modified using the -m, -p, or -r options, in which case those new val-
ues must be avoided.

The following example shows how to connect myfile.dat to unit number 10 prior to the start
of execution.

Example:

setenv fu10 myfile.dat

fuunitbf size 00 < unit < 2147483647
The fuunitbf shell variable specifies the size of the input/output work area used by sequen-
tial or direct access input/output statements. This applies equally to both formatted and
unformatted files. The value unit in the fuunitbf shell variable specifies the unit number (the
number must have at least two digits). The size argument used for sequential access input/
output statements is in kilobytes; the size argument used for direct access input/output state-
ments is in records. The size argument must be an integer with a value of 1 or more. A size
argument specified for one unit does not automatically apply to other units.

If this shell variable and the -g option are omitted, the input/output work area size used by
sequential access input/output statements defaults to eight kilobytes. The size argument for
direct access input/output statements is the number of Fortran records per block in fixed-
block format. The size argument must be an integer from 1 to 32767 that indicates the number
of Fortran records per block. If this shell variable and the -d option are omitted, the area size
is four kilobytes.

Example 1:

Sequential Access Input/Output Statements.

setenv fu10bf 64

When sequential access input/output statements are executed for unit number 10, the state-
ments use an input/output work area of 64 kilobytes.

Example 2:

Direct Access Input/Output Statements.

setenv fu10bf 50

When direct access input/output statements are executed for unit number 10, the number of
Fortran records included in one block is 50. The input/output work area size is obtained by
multiplying 50 by the value specified in the RECL= specifier of the OPEN statement.
124 Lahey/Fujitsu Fortran 95 User’s Guide

C Lahey Technical
Support
Lahey Computer Systems takes pride in the relationships we have with our customers. We
maintain these relationships by providing quality technical support, an informative website,
newsletters, product brochures, and new release announcements. In addition, we listen care-
fully to your comments and suggestions. The World Wide Web site has product patch files,
new Lahey product announcements, lists of Lahey-compatible software vendors and infor-
mation about downloading other Fortran-related software.

Hours

Lahey’s Business Hours Are
7:45 A.M. to 5:00 P.M. Pacific Time Monday - Thursday

7:45 A.M. to 12:45 P.M. Pacific Time Friday

Telephone Technical Support Is Available
8:30 A.M. to 3:30 P.M. Pacific Time Monday - Thursday

8:30 A.M. to 12:00 P.M. Pacific Time Friday

We Have Several Ways for You to Communicate with Us:
• PHONE: (775) 831-2500

• FAX: (775) 831-8123

• E-MAIL: support@lahey.com

• ADDRESS: 865 Tahoe Blvd.

P.O. Box 6091

Incline Village, NV 89450-6091 U.S.A.

• WWW: http://www.lahey.com
Lahey/Fujitsu Fortran 95 User’s Guide 125

Appendix C Lahey Technical Support
Technical Support Services
Lahey provides free technical support to registered users of current versions of our products.
This support is available by e-mail, fax, and mail for all products. For LF95 PRO, technical
support is also available by telephone. Technical support includes assistance in the use of our
software and in getting any bugs you may find in our software fixed. It does not include tutor-
ing in how to program in Fortran or how to use any host operating system or operating system
APIs.

How Lahey Fixes Bugs
Lahey’s technical support goal is to make sure you can create working executables using
LF95. Towards this end, Lahey maintains a bug reporting and prioritized resolution system.
We give a bug a priority based on its severity.

The definition of any bug’s severity is determined by whether or not it directly affects your
ability to build and execute a program. If a bug keeps you from being able to build or execute
your program, it receives the highest priority. If you report a bug that does not keep you from
creating a working program, it receives a lower priority. Also, if Lahey can provide a
“workaround” to the bug, it receives a lower priority.

In recognizing that problems sometimes occur in changing software versions, Lahey allows
you to revert to an earlier version of the software until Lahey resolves the problem.

Contacting Lahey
To expedite support services, we prefer written or electronic communications via fax or e-
mail. These systems receive higher priority service and minimize the chances for any mis-
takes in our communications.

Before contacting Lahey Technical Support, we suggest you do the following to help us pro-
cess your report.

• Determine if the problem is specific to code you created. Can you reproduce it using
the demo programs we provide?

• If you have another machine available, does the problem occur on it?

Information You Provide
When contacting Lahey, please include or have available the information listed below.

• Registered user name
• Registered serial number
• Product title and version (for example, LF95 v5.5)
• Patch level (for example, the h patch)
• Operating system (for example, Windows 98 or Redhat Linux v6.0)
126 Lahey/Fujitsu Fortran 95 User’s Guide

World Wide Web Site
• A short source code example. This will allow us to reproduce the problem. Please
make sure the source code is as short as possible to allow us to analyze your issue
quickly. Attach the source code file to your e-mail to support@lahey.com.

• Third-party products used. If you are using an add-on library (such as Winteracter)
or productivity tool (such as Visual Analyzer), provide the name and version of this
product. If your application is mixed-language (such as Fortran and C), provide the
name and version of the non-Fortran language system.

• System environment settings

To save your environment variables in a text file, go to a command prompt and redi-
rect the output of the SET command to a file:

SET > SETCMD.OUT

Attach the SETCMD.OUT file to your e-mail to support@lahey.com.

• Step-by-step problem description. Tell us the sequence of commands or buttons used
that lead up to the problem occurring. Remember, if we can't reproduce it, we can't
fix it for you.

• Compiler, linker, or Make/Automake messages.

• While simply typing the complete error message is always an option, you can save
extensive messages to a text file to send to us, if that is easier. To save the messages
as a text file, from the command line redirect the command output as in the following
example:

your_command_line > CMD.OUT

• Attach the CMD.OUT file to your e-mail to support@lahey.com. If you are using the
ED editor, run your compile command and attach the ERRS.* file of the working
directory to your e-mail to support@lahey.com

• Exact text of error message or Window message box.

Support is provided free to solve problems with our products, and to answer questions on how
to use Lahey products. Support personnel are not available to teach programming, debug pro-
grams, or answer questions about the use of non-Lahey products or tools (such as MS
Windows, Linux, MS Visual Basic, etc.). These services are provided on a paid consulting
basis.

World Wide Web Site
Our URL is http://www.lahey.com. Visit our web site to get the latest information and
product patch files and to access other sites of interest to Fortran programmers.
Lahey/Fujitsu Fortran 95 User’s Guide 127

Appendix C Lahey Technical Support
Lahey Warranties

Lahey’s 30 Day Money Back Guarantee
Lahey agrees to unconditionally refund to the purchaser the entire purchase price of the prod-
uct (including shipping charges up to a maximum of $10.00) within 30 days of the original
purchase date.

All refunds require a Lahey Returned Materials Authorization (RMA) number. Lahey must
receive the returned product within 15 days of assigning you an RMA number. If you pur-
chased your Lahey product through a software dealer, the return must be negotiated through
that dealer.

Lahey’s Extended Warranty
Lahey agrees to refund to the purchaser the entire purchase price of the product (excluding
shipping) at any time subject to the conditions stated below.

All refunds require a Lahey Returned Materials Authorization (RMA) number. Lahey must
receive the returned product in good condition within 15 days of assigning you an RMA
number.

You may return an LF95 Language System if:

• It is determined not to be a full implementation of the Fortran 95 Standard and Lahey
does not fix the deviation from the standard within 60 days of your report.

• Lahey fails to fix a bug with the highest priority within 60 days of verifying your
report.

• All returns following the original 60 days of ownership are subject to Lahey’s dis-
cretion. If Lahey has provided you with a source code workaround, a compiler patch,
a new library, or a reassembled compiler within 60 days of verifying your bug report,
the problem is considered by Lahey to be solved and no product return and refund is
considered justified.

Return Procedure
You must report the reason for the refund request to a Lahey Solutions Representative and
receive an RMA number. This RMA number must be clearly visible on the outside of the
return shipping carton. Lahey must receive the returned product within 15 days of assigning
you an RMA number. You must destroy the following files before returning the product for
a refund:

• All copies of Lahey files delivered to you on the software disks and all backup
copies.

• All files created by this Lahey Language System.

A signed statement of compliance to the conditions listed above must be included with the
returned software. Copy the following example for this statement of compliance:
128 Lahey/Fujitsu Fortran 95 User’s Guide

Return Procedure
I, __(your name), in accordance with the terms speci-
fied here, acknowledge that I have destroyed all backup copies of and all other files created with the
Lahey software. I no longer have in my possession any copies of the returned files or documentation.
Any violation of this agreement will bring legal action governed by the laws of the State of Nevada.
Signature:
Print Name:
Company Name:
Address:

Telephone:
Product: Version: Serial #:
RMA Number:
Refund Check Payable To:

Return Shipping Instructions
You must package the software diskettes with the manual and write the RMA number on the
outside of the shipping carton. Shipping charges incurred will not be reimbursed. Ship to:

Lahey Computer Systems, Inc.
865 Tahoe Blvd.
P.O. Box 6091

Incline Village, NV 89450-6091
 U.S.A.
Lahey/Fujitsu Fortran 95 User’s Guide 129

Appendix C Lahey Technical Support
130 Lahey/Fujitsu Fortran 95 User’s Guide

Index
Symbols
- 21
.mod filename extension 8, 9

A
-a runtime option 120
abnormal termination, forced, run-

time option -a 120
--ap option, arithmetic precision 15
ar, archive utility 7
AUTOMAKE 95

CHECK= 101
COMPILE= 97
DEBUG 101
FILES= 96
LATESCAN 101
LF90 96
LINK= 99
MAKEMAKE 101
NOQUITONERROR 101
OBJDIR= 100
OBJEXT= 100
QUITONERROR 100
SYSINCLUDE= 100
TARGET= 98

automatic parallelization 71

B
big-endian data

porting files 109
runtime option -T 119

binary file format 109
blank padding, runtime option -

Q 118
BLAS 35
--block, blocksize option 15
breakpoints 55
bugs 126

C
C preprocessor

filenames and 8
-C runtime option 118
-c, suppress linking option 16
-chk, checking option 16
-chkglobal, global checking option 18
--co, display compiler options

option 19
Command 51
command files 11
command line arguments and runtime

options 115
compiler 7, 14

controlling 14
errors 14

compiler options (see "options") 14
Conflicts 10
-Cpp, invoke preprocessor option 8

D
-d runtime option 120
-D, define macro option 8
--dal, deallocate allocatables option 19
--dbl, double option 19
debugging

with FDB 51
with GDB 51

demo.f90 5
diagnostic output, runtime option -

Rm 119
diagnostic reporting level, runtime

option -l 121
direct file format 109
disassembly 63
DISJOINT 81
driver

configuration file 10
syntax 7

dummy argument 108

E
-e runtime option 120
efficiency considerations 107
endfile records 109
Environment 90
environment variables

FORT90L, runtime options
variable 116

FUnn, pre-connect file to unit 124
Lahey/Fu
FUnnBF, i/o work area 124
ERRATA 6
error limit, runtime option -e 120
error output, runtime option -m 122
errors

compiler 14
external procedure names 38

F
--f95, Fortran 95 conformance

option 19
file formats

direct 108
formatted sequential 108
transparent 108
unformatted sequential 108

--file, specify file option 19
FILELIST 6
filenames 8

.mod extension 8, 9
library file 9
object file 9
output file 9
source file 8

files
’scratch’ (temporary) 110
ERRATA 6
fort.nn (default name) 110
HDRSTRIP.F90 106
lf95.fig 10
README 6
TRYBLK.F90 106

--fix, fixed source-form option 19
formatted sequential file format 108
FORT90L environment variable 116
fot 105
FUnn environment variable 124
FUnnBF environment variable 124

G
-g runtime option 121
-g, debug option 20
GETCL(), command line argument

vs. runtime options 115
jitsu Fortran 95 User’s Guide 131

Index
H
HDRSTRIP.F90 106
--help, display command

options 20
--help, options summary

options 20
hints

efficiency
considerations 107

file formats 108
performance

considerations 110
side effects 107

hours 125

I
-i runtime option 121
-I, include path option 20
i/o work area

environment variables
for 124

runtime option -d 120
runtime option -g 121

IBM370 data, runtime
options 118

--in, IMPLICIT NONE option 20
INDEPENDENT 84
--info, display informational mes-

sages option 21
installation 3
interrupt processing, runtime

option -i 121

L
-l runtime option 121
-L, library path option 21
-l, specify library option 21
Language Reference Manual 6
LAPACK 35
ld linker utility 7
lf95.fig configuration file 10
--li, Lahey intrinsic procedures 21
librarian (ar utility) 7
libraries

BLAS 35
C 39, 50
creating 24
distributing LF95

applications 27
132 Lahey/Fujitsu Fortran 95 Use
filenames 9
g77 39
-l option (specify file) 21
-L option (specify search

path) 21
LAPACK 35
LD_LIBRARY_PATH

variable 21
Linux kernel 37, 50
--nshared option and 27
-o option and 24
OpenGL graphics 34
--out option and 24
runtime 27
--shared option and 27
SSL2 34
standard 37, 50
static (archive) 7
--staticlink option and 27

library searching rules 32
linker 7

rules 32
linker options (see "options") 14
linking 32
little-endian data

porting files 109
runtime option -T 119

--long, long integers option 22
loop reduction 76
loop slicing 73
--lst, listing option 22

M
-M runtime option 118
-m runtime option 122
-M, module path option 23
MAKE utility 95
--maxfatals, maximum fatals

option 22
--ml, mixed language option 23
--mldefault, mixed language default

option 23
--mod, module path option 23
modules

.mod extension 8, 9

N
-n runtime option 122
notational conventions 3
numeric input, runtime option -x 123

numeric output, runtime option -q 122

O
-O, optimization option 24
-o, output file name option 24
-o0, optimization level zero option 24
object filenames 9
OCL 77
--ocl 25
OMP_NUM_THREADS 91
OMP_SCHEDULE 91
OMP_SET_NUM_THREADS 91
OpenGL graphics 34
--openmp 25
Optimization 24
options

--ap, arithmetic precision 15
--block, blocksize 15
-c, suppress linking 16
-chk, checking 16
-chkglobal, global checking 18
--co, display compiler options 19
-Cpp, invoke preprocessor 8
-D, define preprocessor macro 8
--dal, deallocate allocatables 19
--dbl, double precision real

variables 19
description 9
--f95, Fortran 95

conformance 19
--file, specify file 19
--fix, fixed source-form 19
-g, debug 20
-I, include path 20
--in, IMPLICIT NONE 20
--info, display informational

messages 21
-L, library search path 21
-l, specify library file 21
--long, long integers 22
--lst, listing 22
-M, module path option 23
--maxfatals, maximum fatal

errors 22
--ml, mixed language 23
--mldefault, mixed language

default 23
--mod, module path 23
-O, optimize for speed 24
-o, output file name 24
r’s Guide

Index
-O0, no optimization 24
-o0, optimization level

zero 24
--out, output file name 24
-P, preprocessor output to

file 8
--pca, protect constant

arguments 25
--prefetch, prefetch optimiza-

tion option 25
--private, module

accessiblity 26
-Q, listing 22
--quad, quadruple

precision 26
--quiet, quiet compilation 26
--sav, SAVE local variables 26
--shared, create shared

library 27
--sse2, use streaming SIMD

extensions 2 27
--static, statically link runtime

libraries 27
--staticlink, link to static

runtime 27
--swm, suppress warning

messages 27
--t4, target 486 27
--tp, target Pentium 27
--tp4, target Pentium 4 27
--tpp, target Pentium Pro 27
--trace, location and call trace-

back for runtime errors 29
--trap, trap numeric

exceptions 29
-U, undefine preprocessor

macro 8
--unroll, loop unrolling 29
--varheap, local variable on

heap 29
--verbose, verbose output 30
--version, print version

information 30
-Wa, pass option to

assembler 10
--warn, display warning

messages 30
--wide, wide source format 30
-wisk, Winteracter Starter

Kit 30
-Wl, pass option to linker 10, 33
--wo, warn obsolescent 30
-Wp, pass option to

preprocessor 10
-x, inline code 31
--xref, cross-reference listing 31
--zfm, zero flash mode for SSE2

instructions 31
options, --li 21
--out, output file name option 24
output filenames 9

P
-p runtime option 122
-P, preprocessor output option 8
PARALLEL 72, 80
--parallel 25
--pca, protect constant arguments

option 25
pre-connected units

environment variables for 124
standard i/o 117
STDIN, runtime option -r 123
STDOUT, runtime option -p 122

--prefetch, prefetch optimization
option 25

--private, module accessibility
option 26

program size 113
programming hints 107

Q
-Q runtime option 118
-q runtime option 122
-Q, listing option 22
--quad, quadruple precision option 26
--quiet, quiet compilation option 26

R
-r runtime option 123
-Re runtime option 119
README 6
registering 3
registers 60
requirements

system 2
return codes 12
return values, execution 117
-Rm runtime option 119
Lahey/Fu
RTERRMSG 6
runtime arguments, command

line 115
runtime diagnostics, runtime option -

l 121
runtime error handling, runtime

option -Re 119
Runtime Options 115, 117

environment variables for 116
syntax of 117

runtime options
-a, force abnormal

termination 120
-C, IBM370 data

conversion 118
command line arguments

and 115
-d, direct i/o work area 120
-e, execution error limit 120
-g, sequential i/o work area 121
GETCL() and GETARG()

returned values 115
-i, interrupt processing 121
-l, diagnostic reporting

level 121
-M, IBM370 data

conversion 118
-m, standard error output 122
-n, prompt messages, stdin 122
-p, standard output 122
-Q, blank padding 118
-q, capitalize numeric edit

output 122
-r, standard inputunit 123
-Re, runtime error handling 119
-Rm, diagnostic output file 119
-Ry, Y2K compliance 119
-T, big-endian conversion 119
-u, undrflow interrupts 123
-Wl, indicate runtime

option 115
-x, blanks in numeric input 123

-Ry runtime option 119

S
--sav, SAVE local variables option 26
Scientific Software Libraries 34
searching rules

library 32
SEQUNF.F90
jitsu Fortran 95 User’s Guide 133

Index
files
SEQUNF.F90 106

SERIAL 79
--shared, shared library option 27
side effects 107
SIMD 27
source filenames 8
SSE2 27, 31
--sse2, use streaming SIMD exten-

sions 2 option 27
SSL2 34
standard input/output units 117
--static, static runtime library

option 27
--staticlink, static runtime

option 27
STDERR

runtime option -m 122
STDIN

prompt messages, runtime
option -n 122

unit assignment, runtime
option -r 123

STDIN, STDERR, STDOUT 117
STDOUT

unit assignment, runtime
option -p 122

step 58
support services 125
--swm, suppress warning mes-

sage(s) option 27
syntax

driver 7
system requirements 2

T
-T runtime option 119
--t4, target 486 option 27
technical support 126
TEMP 82
THREAD_STACK_SIZE 72, 90
--threadheap 28
--threads 28
--threadstack 28
--tp, target Pentium option 27
--tp4, target Pentium 4 option 27
--tpp, target Pentium Pro

option 27
--trace, runtime error traceback

option 29
134 Lahey/Fujitsu Fortran 95 Use
transparent file format 109
--trap, trap numeric exceptions

option 29
TRYBLK.F90 106

U
-u runtime option 123
-U, undefine macro option 8
underflow interrupts, runtime option -

u 123
unformatted sequential file

format 108
Uninstalling LF95 4
--unroll, loop unrolling option 29
utility programs 105

V
--varheap, local variables on heap

option 29
--verbose, verbose output option 30
--version, version info option 30

W
-Wa, assembler option 10
--warn, warnings option 30
warranties 128
--wide, wide source format 30
Winteracter Starter Kit Reference 6
-wisk, Winteracter Starter Kit

option 30
-Wl, indicate runtime option 115
-Wl, linker option 10, 33
--wo, warn obsolescent option 30
World Wide Web 127
-Wp, preprocessor option 10

X
-x runtime option 123
-x, inline code option 31
--xref, cross-reference listing

option 31

Y
Y2K compliance

runtime option -Ry 119

Z
--zfm, zero flash mode for SSE2

instructions option 31
r’s Guide

	Getting Started
	LF95 Linux Express
	LF95 Linux PRO
	System Requirements
	Manual Organization
	Notational Conventions
	Product Registration
	Installing Lahey/Fujitsu Fortran 95
	Maintenance Updates
	Uninstalling LF95
	Building Your First LF95 Program
	Generating the Executable Program
	Running the Program

	What’s Next?
	Other Sources of Information
	Files
	Manuals
	Newsletters
	Lahey Web Page
	Discussion Groups

	Developing with LF95
	How the Driver Works
	Running the LF95 Driver
	Filenames and Extensions
	Source Filenames
	Object Filenames
	Module Filenames
	Output Filenames
	Library Filenames

	Options
	Conflicts Between Options

	Driver Configuration File (lf95.fig)
	Command Files
	Intermediate Files
	Return Codes from the Driver
	Shared Libraries
	Archive Libraries
	Using Shared Libraries
	Using Archive Libraries
	Controlling Compilation
	Errors in Compilation

	Compiler and Linker Options
	--[n]ap
	--block blocksize
	-[n]c
	--[n]chk
	--[n]chkglobal
	--[n]co
	--[n]dal
	--[n]dbl
	--[n]f95
	--file filename
	--[n]fix
	-g
	--help
	-I dir
	--[n]in
	--[n]info
	-l (lower-case L) name
	-L path
	--[n]li
	--[n]long
	--[n]lst [[spec=sval[, spec=sval]]]
	--[n]maxfatals number
	--ml target
	--mldefault target
	-M dir
	{ -O0 | -O }
	-o name
	--[n]ocl (PRO version only)
	--[n]openmp (PRO version only)
	--[n]parallel (PRO version only)
	--[n]pca
	--[n]prefetch [level]
	--[n]private
	--[n]quad
	--[n]quiet
	--[n]sav
	--[n]shared
	--[n]sse2
	--static
	--[n]staticlink
	--[n]swm msg[,msg[,...]]
	{ --t4 | --tp | --tpp | --tp4 }
	--threads N (PRO version only)
	--threadstack N (PRO version only)
	--threadheap [size] (PRO version only)
	--[n]trace
	--[n]trap
	--[n]unroll limit
	--[n]varheap size
	--[n]verbose
	--[n]version
	--[n]warn
	--[n]wide
	--[n]wisk (PRO version only)
	--[n]wo
	-x arg
	--[n]xref
	--[n]zfm

	Linking Rules
	Fortran 95 Modules
	How the Linker Finds Libraries
	Object File Processing Rules
	How the Linker Selects Objects
	Linker Options

	Distributing LF95 Applications
	OpenGL Graphics Programs
	Scientific Software Libraries (PRO Version only)
	BLAS and LAPACK Libraries (PRO Version only)
	Porting Code Between Windows and Linux
	Recommended Option Settings

	Mixed Language Programming
	What Is Supported
	Declaring Your Procedures
	Interfacing with g77 (GNU Fortran)
	Interfacing with Non-Fortran Languages
	Passing Data
	Returning Function Values to C
	Returning Function Values to Fortran
	Passing and Receiving Arguments
	Passing Arrays
	Passing Character Data
	Passing Data through Common Blocks
	Program Control: main() and MAIN__()
	Calling Standard C Libraries

	Command-Line Debugging with fdb
	Starting fdb
	Communicating with fdb
	Variables
	Values
	Addresses
	Registers
	Names

	Commands
	Executing and Terminating a Program
	run arglist
	Run
	kill
	tty dev
	param commandline arglist
	param commandline
	clear commandline
	setenv
	setenv "var"
	setenv "var" "s"
	unsetenv "var"
	quit

	Help Commands
	help
	help cmd
	help "regex"

	Shell Commands
	cd dir
	pwd
	sh cmd

	Breakpoints
	General Syntax
	break [‘file‘] line
	break [‘file‘] procname
	break *addr
	break
	breakoff [#n]
	breakon [#n]
	condition #n expr
	condition #n
	oncebreak
	regularbreak "regex"
	delete location
	delete [‘file‘] line
	delete [‘file‘] procname
	delete *addr
	delete #n
	delete
	skip #n count
	onstop #n cmd[;cmd2;cmd3...;cmdn]
	show break

	Controlling Program Execution
	continue [count]
	silentcontinue [count]
	step [count]
	silentstep [count]
	stepi [count]
	silentstepi [count]
	next [count]
	silentnext [count]
	nexti [count]
	silentnexti [count] or nin [count]
	until
	until location
	until *addr
	until +|-offset
	until return
	goto [‘file‘] line
	jump [‘file‘] line
	jump *addr

	Displaying Program Stack Information
	traceback [n]
	frame
	upside [n]
	downside [n]
	show args
	show locals
	show reg [$r]
	show freg [$fr]
	show regs
	show map

	Setting and Displaying Program Variables
	set variable = value
	set *addr = value
	set reg = value
	print [[:F] variable [= value]]
	memprint [:FuN] addr

	Source File Display
	show source
	list now
	list next
	list previous
	list around
	list sigaround
	list [‘file‘] num
	list +|-offset
	list [‘file‘] top,bot
	list [func[tion]] procname
	disas
	disas *addr1 [,*addr2]
	disas procname

	Automatic Display
	screen [:F] expr
	screen
	unscreen [#n]
	screenoff [#n]
	screenon [#n]
	show screen

	Symbols
	show function ["regex"]
	show variable ["regex"]

	Scripts
	script ‘script‘
	alias cmd "cmd-str"
	alias [cmd]
	unalias [cmd]

	Signals
	signal sig action
	show signal [sig]

	Miscellaneous Controls
	param listsize num
	param prompt "str"
	param printarray on|off
	param printstructure on|off
	param printelements num
	param prm

	Files
	show exec
	param execpath [path]
	param srcpath [path]
	show source
	show sources

	Fortran 95 Specific
	breakall mdl
	breakall func
	show ffile
	show fopt

	Memory Leak Detection
	param leak off | mem | all
	param leak
	show leak log | error | summary

	Processes and Threads
	ps [pid]

	Restrictions

	Multi-Processing (PRO version only)
	Overview of Multi-Processing
	Performance Improvement
	Impediments to Improvements
	Overhead
	Lack of Large Arrays
	I/O Intensive Programs
	Potential for Incorrect Results
	Other Unparallelizable Loops

	Hardware for Multi-Processing

	Automatic Parallelization
	Compiler Options for Automatic Parallelization
	Environment Variables
	Environment Variable PARALLEL
	Environment Variable THREAD_STACK_SIZE
	Examples of Compilation and Execution

	Details of Multi-Processing
	Targets for Automatic Parallelization
	Loop Slicing
	Array Operations and Automatic Parallelization
	Automatic Loop Slicing by the Compiler
	Loop Interchange and Automatic Loop Slicing
	Loop Distribution and Automatic Loop Slicing
	Loop Fusion and Automatic Loop Slicing
	Loop Reduction
	Restrictions on Loop Slicing
	Debugging

	Optimization Control Line
	Optimization Control Specifier
	Syntax of OCL
	Position of OCL
	Automatic Parallelization and Optimization Control Specifiers
	Optimization Control Specifiers
	SERIAL
	PARALLEL
	DISJOINT
	INDEPENDENT
	Wild Card Specification

	Notes on Parallelization
	--threads
	Multi-Processing of Nested DO Loops
	Invalid Usage of Optimization Control Line

	OpenMP
	Compilation
	Environment Variables
	Implementation Specifications
	Nesting of Parallel Regions
	Dynamic Thread Adjustment Features
	Number of Threads
	SCHEDULE Clause
	OMP_SCHEDULE Environment Variable
	ASSIGN and Assigned GO TO Statements
	Additional Functions and Operators in ATOMIC directive and REDUCTION Clause
	FORALL construct
	THREADPRIVATE
	IF Clause for PARALLEL Directive
	Inline Expansion
	Internal Procedure Calling from Parallel Region
	DO Variable for Serial DO Loop in Parallel Region
	Statement Function Statement
	Namelist Group Object
	Materialization of Parallel Region
	Automatic Parallelization with OpenMP
	Debugging

	Automake (PRO version only)
	Introduction
	What Does It Do?
	How Does It Do That?
	How Do I Set It Up?
	What Can Go Wrong?

	Running AUTOMAKE
	The AUTOMAKE Configuration File
	Multi-Phase Compilation
	Automake Notes

	Utility Programs
	fot
	hdrstrip.f90
	sequnf.f90
	tryblk.f90

	Programming Hints
	Efficiency Considerations
	Side Effects
	File Formats
	Formatted Sequential File Format
	Unformatted Sequential File Format
	Direct File Format (Formatted)
	Direct File Format (Unformatted)
	Binary File Format
	Endfile Records
	Porting Unformatted Files

	File Creation: Default Names
	Link Time
	Year 2000 compliance
	Limits of Operation

	Runtime Options
	Command Format
	Environment Variables
	Execution Return Values
	Standard Input, Output, and Error
	Runtime Options
	Descriptions of Runtime Options
	-C or -C[u_no]
	-M
	-Q
	-Re
	-Rm:filename
	-Ry
	-T or -T[unit]
	-a
	-d[num] 1 < num < 32767
	-e[num] 0 < num < 32767
	-g[num] 1 < num
	-i
	-lerrlevel errlevel: { i | w | e | s }
	-munit 0 < unit < 2147483647
	-n
	-punit 0 < unit < 2147483647
	-q
	-runit 0 < unit < 2147483647
	-u
	-x

	Shell Variables for Input/Output
	fuunit = filename 00 < unit < 2147483647
	fuunitbf size 00 < unit < 2147483647

	Lahey Technical Support
	Hours
	Lahey’s Business Hours Are
	Telephone Technical Support Is Available
	We Have Several Ways for You to Communicate with Us:

	Technical Support Services
	How Lahey Fixes Bugs
	Contacting Lahey
	Information You Provide
	World Wide Web Site
	Lahey Warranties
	Lahey’s 30 Day Money Back Guarantee
	Lahey’s Extended Warranty

	Return Procedure
	Return Shipping Instructions

