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ABSTRACT

Despite recent advances in computer aided design (CAD)
based tools, spacecraft thermal analysis remains outside the realm
of finite element method (FEM) based analysis. The primary com-
plaints against FEM often cited are:

1. FEM is not based on physical principles.
2. FEM codes do not provide procedural modeling

for heaters, heat pipes, or other abstract thermal
control components.

3. Inadequate radiation analysis capabilities.
4. FEM codes generate inappropriately large thermal

models.
However, a failure on the part of existing FEM based codes

does not invalidate the advantages of the Finite Element Method.
Properly implemented, FEM based systems can have significant
advantages.

A simple first law interpretation of FEM is presented, and
shows that finite difference (FD) and FEM meshes may co-exist in
the same thermal model, and solved using traditional analyzers
such as SINDA/FLUINT.

A description of an integrated FD/FEM based system that ef-
ficiently satisfies all areas of spacecraft thermal analysis, including
thermal radiation, is also presented.

INTRODUCTION

Despite the advantages that FEM has in integrating with CAD
generated design geometry and analysis models from other analy-
sis disciplines, its use for thermal analysis has seen very little ap-
plication in the aerospace community. The primary reason is that
existing FEM codes do not currently satisfy some key needs of the
aerospace thermal analyst. Many are based on structural codes and
have solvers that do not allow procedural modeling of thermal con-
trol components such as heaters, and have weak or no support for
thermal radiation.

The situation is understandable in that the thermal aerospace
market is small compared to most FEM code suppliers major cus-
tomer base. Structural analysis tools are applicable for most engi-
neering markets. In addition, there is virtually no demand from the
thermal aerospace community for FEM based tools.

The lack of demand is due in part to the fact that existing tools
do not meet all aerospace analysis requirements, but also due to
many misconceptions about FEM. This paper has two objectives.
One is to present a new view of FEM, based on familiar first law
principles. Many of the complaints against FEM, such as negative
conductors are explained when viewed from a conservation of en-
ergy principle. When viewed in these terms, FEM can be seen to
be fully compatible with existing analyzers and modeling ap-
proaches.

The second objective is to present a description of a FEM
system that does satisfy the requirements of the aerospace thermal
analyst. In particular, the problems associated with radiation anal-
ysis are addressed.

FIRST LAW FEM

One reason that FEM is not used more widely in the aerospace
industry is the belief that the method is purely an abstract mathe-
matical approach, rather than a first-law approach. The fact that it
produces “negative” conductors reinforces the belief that the meth-
od is physically unrealistic.

Part of the beauty of FEM is that it can be applied to a wide
variety of problems including stress, dynamics, fluid flow, electro-
magnetism, and heat transfer. The generality of the method is high-
lighted in most texts on FEM and the method is usually presented
as an abstract technique for solving any governing differential
equation. A weighted residual approach whereby the error in a trial
solution is minimized by the application of successive integrations
of orthogonal weighting functions is often used to reduce the gov-
erning differential equation into a set of algebraic equations that
can be solved on a computer.

The mathematics involved in the derivation are typically be-
yond what is found in the undergraduate engineering curriculum.
Such a difficult abstract approach does not inspire the confidence
in the method that one can easily obtain from a simple energy
balance approach. However, FEM does have a simple first-law in-
terpretation as applied to thermal problems.

POINT SOURCES - Consider the four nodes shown in Figure
1 along with a point source (for instance a laser beam) of heat being
applied exactly at the corner of the nodes. From the symmetry of
the problem, it is expected that all four nodes will be at the same
temperature. A reasonable approach is to divide the heat from the



point source equally among the four nodes so that the model will
also predict identical temperatures.

If the point source is displaced an infinitesimally small dis-
tance from the corner and into the interior of one of the nodes, then
the usual approach is to lump all of the energy into that node.
Because of the infinitesimally small displacement away from the
corner, the temperatures of the nodes in reality will only change
an infinitesimal amount. However, predicted temperatures will
show a much greater change between the two nearly identical cases,
since the way in which energy has been distributed to the nodes
has changed drastically.

If the predicted temperatures change dramatically from divid-
ing the energy equally among the nodes, compared to lumping it
all into one node, then the problem needs a finer nodal resolution.
However, no matter how fine the model is nodalized, the node that
receives all of the energy will still have a predicted temperature
higher than in reality.

Rather than increasing the amount of nodes in the thermal
model to obtain better accuracy, a different scheme for distributing
the energy may be employed. When the point source is at the corner
of the four nodes, the most accurate results are obtained by equally
dividing the energy among the four nodes. On the other hand, when
the point source is at the exact center of a control volume, the most
accurate results are obtained when all of the energy is lumped into
that node. The transition between these two extreme conditions can
be handled in a smooth manner, rather than in the traditional step
change fashion. As the point source moves closer to a control vol-
ume center, more energy is apportioned to that node, and less to
the neighboring nodes.

The apportionment of energy can be handled by a simple bi-
linear interpolation scheme, carried out over an imaginary rectan-
gle connecting the centers of the four nodes (see Figure 2). The
energy is divided such that the sum of the energy distributed to all
of the nodes equals the total energy being deposited.

The position inside the interpolation region can be denoted by
two scalar variables, u and v, that vary between zero and unity. For
example, the center of node 3 has u,v coordinates (0,0) and the

center of node 2 has coordinates (1,1). The amount of energy each
node receives by a point source of energy inside the interpolation
region is given by multiplying the total energy of the point source
by the factors listed in EQ (1).

EQ (1)

The sum of all the factors is unity for all u,v positions, ensuring
that the deposited energy is conserved. The distribution of energy
into a node based on its proximity to the control volume center can
be viewed as the fundamental technique of FEM for heat transfer.
In fact, all heat sources are treated in this consistent manner.

DISTRIBUTED SOURCES - Suppose that the nodes in Fig-
ure 2 are being illuminated by a distributed, rather than a point
source. A distributed source is handled in the same manner by
dividing it up into many small areas, each of which is considered
as a point source. For example, consider a flux incident on the
interpolation region that can be expressed as a function of the u,v
coordinates. The amount of heat that is assigned to node 2 is given
by:

EQ (2)

This equation is the integral over the interpolating region of
the heat flux per unit area multiplied by the apportioning function
for node 2 given in EQ (1) (assuming a rectangular interpolation
region).

The traditional method of apportioning energy into a control
volume may be viewed as a special case where the apportioning
function is a step function that is unity over the control volume,
and zero everywhere else. Note also that for a heat load that is
constant over the interpolation region, the results obtained using
the apportioning functions in EQ (1) gives the same results as a
using the traditional step function.

CAPACITANCE - The thermal capacitance of a node can also
be derived by using a consistent apportioning of energy viewpoint.
The differential form of the basic heat conduction equation relates
the rate of internal energy being stored at a point to the net rate of
energy being deposited by conduction and volumetric heat sources:

EQ (3)

It can be seen that each of the terms has the same units - heat
flux per unit volume. The differential form of the heat conduction
equation treats all terms as point sources. We can use the smoothly
varying energy apportioning function to determine the contribution
due to stored energy to a node’s energy balance equation.

For example, using the interpolation region shown in Figure
2, the contribution to node 2’s energy balance equation due to sen-
sible heating or cooling is given by:

EQ (4)

The term enclosed in the square brackets is the thermal capac-
itance associated with node 2 that is contributed by the material
spanned by the interpolation region. If the density and specific heat
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are constant over the interpolation region, the integral assigns one
fourth of the thermal mass to node 2, the same as using step function
apportioning. The total thermal mass of node 2 is determined by
the sum of the contributions for all interpolation regions that con-
tain node 2.

CONDUCTION - The net energy accumulating at a point due
to conduction can also be apportioned to each node. Using the
example in Figure 2 again, the net energy into node 2 by conduction
is given by:

EQ (5)

To simplify the discussion, let us use the symbol Ni for the
apportioning function for node i. We can also use Green’s theorem
[2] to simplify the Laplacian in EQ (5) into a gradient. The energy
into a node by conduction is therefore also given by EQ (6).

EQ (6)

Note that the gradient of the apportioning function, ,

points towards the node center. The apportioning function can be
visualized as a “tent” with a value of unity at the node center, and
a value of zero at the far boundaries of the interpolating region.
The gradient gives the direction of steepest ascent. When negated
and dotted with the temperature gradient, it gives the heat flowing
per unit volume towards the node by conduction (when multiplied
by k).

The contributions to the node’s energy balance equation for
heat sources and thermal capacitance can be solved for directly.
However, the equation for the conduction term contains the tem-
perature gradient. We must therefore supply an approximation to
the temperature gradient as a function of the unknown temperatures
so that the integration may be carried out.

We can approximate the temperature gradient over the inter-
polation interval by first approximating the temperature:

EQ (7)

One can see that by substituting the apportioning functions
given by EQ (1) into EQ (7) that the above formulation is a simple
bilinear interpolation of the temperatures at the node centers over
the interpolation region. The gradient of the temperature is now
given by:

EQ (8)

Note that the same functions are used to interpolate the tem-
peratures across the region as are used to apportion energy into a
node. In FEM parlance, using the same apportioning functions (or
“weighting” functions) as the interpolating functions (or “shape”
functions) is called the Galerkin method.

The Galerkin method has a special significance in that it guar-
antees a symmetric set of terms in the set of nodal energy balance
equations. Substituting EQ (8) into EQ (6) gives:

EQ (9)

The net heat flowing into a node by conduction is given by an
algebraic equation of the four unknown temperatures. Further-
more, because of symmetry, Gij is the same quantity as Gji. Because
the interpolating functions sum to unity at every point in the inter-
polating region, the following relation is also true:

EQ (10)

The terms to node i’s energy balance equation due to conduc-
tion can therefore be expressed in the familiar form:

EQ (11)

NEGATIVE CONDUCTORS - One of the hardest conceptual
aspects of FEM to overcome for thermal engineers that have be-
come accustomed to a lumped parameter electrical analogy view
of thermal modeling is that for some types of interpolation regions,
namely triangles with interior angles greater than 90 degrees, neg-
ative conductors can result. This is often the basis for eliminating
FEM as an acceptable modeling approach, since these negative
terms are regarded as physically unrealistic.

It must be recognized that a conduction term between two
nodes produced by FEM does not represent the heat transfer be-
tween the two nodes. The conduction terms in EQ (11) considered
together represent the total energy balance for a thermal node. The
net heat into a node is given by a linear combination of tempera-
tures, which can be rearranged into a form that is compatible with
SINDA/FLUINT [1]. This form looks like “conductors”, but they
are not.

Let us consider a simple example to see the difference between
the global energy balance for a node and individual heat flows
between nodes. The traditional centroid approach uses an algebraic
approximation to the integral form of the heat conduction equation:

EQ (12)

The above equation is put into algebraic form by using sum-
mations as approximations for the integrals, and differences as ap-
proximations for the differential terms:

EQ (13)

The summation on the left is usually carried out with only one
integration interval, the entire control volume. The mean value
theorem tells us that the best place to evaluate the integral, in lieu
of any other knowledge of the solution, is at the centroid of the
volumetric element. The centroid method could also be called a
“finite-sum-finite-difference” method.

For rectangular nodes, the summation on the right hand side
of EQ (13) is broken down into four intervals corresponding to
each face. The temperature gradient normal to the control volume
surface is approximated by the temperature difference between the
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centroids of adjacent nodes divided by the distance between them
as shown in Figure 3. Note that the line connecting the nodes must
be perpendicular to the control volume surface for an accurate ap-
proximation. Using a cosine projection does not always yield ac-
curate results.

We may extend this approach and formulate a more accurate
approximation to the heat flowing across the control surfaces by
using more than one interval for each face in the summation on the
right hand side of EQ (13). In this case, the right hand face is divided
into two intervals (see Figure 4) and the temperature gradient nor-
mal to the control surface at the centers of each interval is approx-
imated. This approach could be considered as a second-order cen-
troid method with respect to approximating the conduction terms.

We can use interpolation regions again to assist in evaluating
the temperatures at the points a through d in order to compute the
temperature gradient normal to the control surface interval. Con-
sider a square geometry with unit thickness and unit lengths for
the sides of the control volumes. The algebraic approximation to
the heat flow through the right hand face is given by:

EQ (14)

The heat flow from node 2 to node 1 is now expressed as a
function of six nodal temperatures, rather than just nodes 1 and 2.
This expression can be algebraically rearranged to look like “con-
ductors”:

EQ (15)

We have negative “conductors” connecting node 1 to nodes 5
and 3. This does not mean that negative energy flows between these
nodes! The heat flow between nodes 1 and 2 is given by a collection
of “conductors”, not just a single term. The algebraic equations are
rearranged only to make the input compatible with thermal ana-
lyzers such as SINDA/FLUINT. Once this data is read in by SIN-
DA/FLUINT, the numeric computations that are performed are
equivalent to EQ (14).

Notice that in EQ (14) only the terms for T2 and T1 can be
rearranged to look like a typical conductor. The terms for T3 to T6

were made to look like conductors by artificially adding terms for
T1 in EQ (15). The four artificially added terms for T1 all sum to

zero, yielding the original equation.
To complete the energy balance equation for node 1, the heat

flow through the other faces must also be considered. When all of
the conductors generated from considering the heat flow through
all of the faces are summed together, the network shown in Figure
5 results.

In this simple example, heat flows between two nodes are
represented by negative conductors. The conductors representing
the heat flows across each face could be input to SINDA/FLUINT
as is, or common node-to-node terms can be summed together to
yield a composite conductor which represents components of heat
flows between more than one node.

This method can be extended to arbitrary quadrilateral inter-
polation regions, by computing the gradient of the temperature at
the centers of the control surface intervals using EQ (8). This meth-
od is called CV-FEM [3]. In the example of square control volumes,
the composite conductor is positive, since the negative conductors
are offset by larger positive conductors. This may not be so for
skewed triangular geometries.

Even when the net algebraic expression yields only positive
conductors, they cannot be viewed individually as representing the
heat transfer by conduction between the two nodes that they con-
nect. Positive conductors exist between the center node in Figure
5 and the diagonal nodes, however, no heat flows directly from the
center node to these nodes. If the value of the heat flow between
two nodes is desired, the original expression given by EQ (14) must
be used with the predicted temperatures.

For well formed interpolation regions, the generated conduc-
tors will be positive. When regions become highly skewed, nega-
tive conductors can result. Recall that the heat flow by conduction
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is expressed by interpolating the temperatures across the element.
When elements become skewed, extrapolation results. For exam-
ple, consider the problem of determining a surface temperature for
a simple 1D finite difference problem as shown in Figure 6 by
extrapolating the temperatures at nodes 1 and 2. The expression
for the surface temperature contains negative terms. Extrapolation,
rather than interpolation, also occurs for 2D regions with large
interior angles, resulting in negative terms to represent the heat
flow.

The presence of large, or highly skewed elements may gener-
ate negative conductors, but this does not automatically indicate a
high degree of error. What is important is how well the actual tem-
peratures match with the assumptions of how the temperature var-
ies over the interpolating region. For quadrilateral regions, the tem-
perature is assumed to vary bi-linearly. For triangular regions, the
temperature is assumed to vary linearly.

Costello [4] has performed a series of “thermal patch” tests,
where an arbitrary shaped triangular element is imbedded inside a
larger rectangular region. The net heat flow across the patch is
computed by setting one side to zero and the other side to unity
and solving the network using the FEM generated conductors. This
heat flow was compared to the exact solution and was found to
match exactly for all interior angles chosen for the triangle, even
those that exceeded 90 degrees and caused negative conductors.

In this case, the actual solution varied linearly across the patch
(zero on one side to unity on the other). The linear approximation
used for the triangle is sufficient to match this case exactly, even
with highly skewed elements that generate negative conductors.

Costello [4] also points out an apparent paradox with respect
to FEM. He considers a single triangular element as shown in Fig-
ure 7. A negative conductor will exist between nodes 1 and 3, since
the triangle has an interior angle greater than 90 degrees. Suppose
that node 1 is a sink at zero degrees and node 2 is a sink at 1 degree.
It is desired to maintain node 3 at a temperature of 1 degree by
applying heat as needed. Since the temperature of node 3 matches
node 2, it is assumed that no heat is transferred between nodes 3
and 2. Since the conductor between node 1 and 3 is negative, heat
must be paradoxically removed, rather than added to node 3 to
maintain its temperature at 1 degree.

The problems arising with the application of this element to
this thermal problem can be explained by first considering the as-
sumptions imposed by the element. A triangular element assumes
a linear variation of temperature between the nodes. In this exam-
ple, the temperatures of all three nodes have been specified, and
therefore so has the temperature gradient within the element. For
these particular temperatures, the gradient is perpendicular to the
face formed by nodes 2 and 3. For a triangular element, the gradient

is constant everywhere over the interpolation region. Isotherms for
the assumed temperature distribution are shown.

Had this triangle been imbedded in a larger network of ele-
ments, the gradient shown might be reasonable. However, in this
particular thermal problem, the sides of the triangle are adiabatic,
and the actual isotherms must be perpendicular to the boundaries.
The true temperature solution differs significantly from the as-
sumptions used by the triangular element. A better approach would
be to use more than one element (bisecting the element into to two
triangles would yield a good result), or use the knowledge of the
expected form of the solution to generate a conduction term by
hand.

One final observation should be made about the example in
Figure 7. Because of the negative conduction term between nodes
1 and 3, it is assumed that negative energy must flow between them,
a physically unreal situation. Again we must consider all of the
conductors together in order to compute the heat flow between
nodes on an element. Consider the control volumes for this exam-
ple:

Given the prescribed temperatures, the gradient is perpendic-
ular to the right hand face and is constant everywhere in the ele-
ment. The temperature gradient is shown at the centers of the con-
trol surfaces that separate the nodes. Qualitatively, it can be seen
that heat does flow from node 3 to node 1. It can also be seen that
heat flows from node 2 to node 3, even though they are at the same
temperature. If this element were in a larger network and this gra-
dient actually existed, then heat actually would flow across this
surface.

In anticipating the solution to our example problem, however,
we would expect that the temperature gradient point from node 1
to node 3, almost perpendicular to the gradient imposed by our
choice of element and temperatures. Heat must be removed from
node 3 not because negative energy is flowing from node 1, but
because positive energy is flowing from node 2.
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Figure 6: Extrapolation yields negative terms
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While potentially useful in aiding understanding of the heat
transfer process, the electrical network analogy is not valid for all
types of thermal problems. Some thermal problems can be posed
such that they have an electrical network equivalent. However, not
all thermal problems are subjected to the constraints of the lumped
parameter electrical network analogy. It is not that negative “con-
ductors” are unrealistic, but that it may be physically impossible
to construct a lumped parameter electrical analogue of a given
thermal problem.

With respect to FEM, conductors should be viewed as a by
product of algebraically rearranging a valid first law expression for
the heat flow. They are conduction terms rearranged into “conduc-
tor” form. Approaching thermal modeling with the fundamental
first law heat transfer equations in mind, and an understanding of
how differential and integral quantities are approximated by alge-
braic means can avoid many pitfalls and provide modeling ap-
proaches that might otherwise be missed.

COMPATIBILITY WITH FD METHODS

The derivation of the energy balance equation terms, (heat
sources, capacitance, and conduction) has been presented here for
a simple rectangular interpolating region. For arbitrarily shaped
regions, the Jacobian must be included in the integration to relate
a dudv element to the actual area. The gradients of the interpolating
functions, Ni, must also be converted from u,v coordinates to x,y,z

space. However, the purpose here is not to present the detailed
mechanics of generating energy balance equation coefficients us-
ing FEM or CV-FEM. That is a task that is better suited for a
computer than by hand, and is covered in detail by many references
[5].

The purpose here is to present the method in terms of an energy
balance approach so that it can become apparent how FEM can
integrate with FD methods, traditional solution techniques, and
with radiation analysis. FEM can be viewed as a technique where
energy from a source is apportioned to a node based on the relative
closeness to the center of the control volume. The apportioning
functions are in general arbitrary, but a simple form results from
using the simplest representation, linear interpolation. External
sources, thermal mass, and conduction are all viewed in the same
manner.

The “element” in FEM is nothing more than a region of the
problem demarcated to use a particular set of apportioning func-
tions. A nodal point can still be viewed as representing a location
in a control volume that is used to represent its average temperature.
The centers of the elements surrounding a node may be connected
together and viewed as the control volume for a thermal node.

Furthermore, the option exists when formulating the energy
balance equation for a node to use either the step function appor-
tioning functions (FD), or the smoothly varying apportioning func-
tions (FEM) for any of the types of terms (heating source, capac-
itance, or conduction). For example, consider the geometry shown
in Figure 9.

A small strip heater is placed near node 6. The control volume
for node 6 can be viewed as the boundary connecting the centers
of the elements that surround the node. The thermal mass could be
computed using this control volume, or by using EQ (4). The en-
ergy dissipated by the strip heater could be lumped completely into
node 6, or distributed to the nodes that share the element using the
smoothly varying apportioning functions.

Using a FEM approach, the strip heater could be subdivided
into smaller regions, and then heat from each region distributed
according to the apportioning functions. But this is not a necessity.
If this part of the model was being constructed by hand, then it may
be that the improved accuracy is not worth the trouble to calculate
the distributed heat loads into all of the nodes near the strip heater.
In this case, lumping the all of the generated heat into node 6 is the
best use of engineering judgement.

Once an element is defined, a computer can generate the con-
duction and capacitance terms, saving much tedious and error
prone work by hand. If part of the model is not represented by
geometry, however, then abstract nodes using FD generated con-
ductors can be connected to any of the nodes in the FEM mesh.

For example, suppose the mesh in Figure 9 represents a plate
and the connection from node 12 to node 11 represents a simplified
view of a heat leak from a mounting point on the plate. The heat
leak might be due to conduction through bracketry, insulating
washers, and bolts. Using a simple abstraction of the mounting
hardware rather than a detailed FEM model of each bracket com-
ponent makes sense for this model (although a detailed FEM model
may have been used to deduce the simple abstract representation).

The use of FEM does not exclude any other modeling ap-
proach. A consistent view of FEM as an energy balance approach
allows a thermal model to consist of FEM generated and FD gen-
erated terms. Where amenable to a geometric representation, FEM
can provide significant savings in the modeling effort. Where ge-
ometry is not available or inappropriate, FD methods should be
used. FEM should be viewed as a modeling tool that complements,
not excludes, the existing FD approach.

INTEGRATION WITH SINDA/FLUINT

As shown by EQ (2), EQ (4), and EQ (11), nodal energy bal-
ance terms generated using FEM are directly compatible with SIN-
DA/FLUINT. Any 1D, 2D or 3D element that uses linear interpo-
lation will produce compatible conductors and capacitances.

It is often thought that SINDA/FLUINT is a finite-difference
electrical analogy thermal analyzer. While this is an acceptable
view, a more accurate description is that it is a general purpose
equation solver, and can accept FEM generated coefficients with-
out modification. Thus the solution to many of the complaints about
solvers bundled with FEM codes is to simply not use them.

As discussed earlier, additional information must be input to
SINDA/FLUINT if particular node-to-node heat flows are to be
calculated. A finite element pre-processor could automatically
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Figure 9: Energy into a node may be assigned with
either smooth or step apportioning functions
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generate the data files and subroutines needed for these calcula-
tions. Rather than manually computing the heat flow by obtaining
the temperatures and conductors between nodes in user logic, spe-
cial routines could be supplied as part of the standard SINDA/
FLUINT library to perform this function automatically.

Another complaint about FEM is that the network is harder to
adjust in order to correlate with test data. This is true if individual
network elements are being modified by hand, since individual
conductors do not represent heat flows. Correlation is best handled
by using the heat flow routines to gain information about the model,
and then adjusting the thickness, conductivity, specific heat, or
shape of the original FEM geometry.

Other approaches have been formulated to integrate FEM
meshes with thermal analyzers such as SINDA/FLUINT, usually
based on an attempt to convert the FEM mesh to an FD represen-
tation using the element centroids.

Part of the motivation for the FD conversion is to generate a
network using a familiar approach, since many analysts have an
adverse view of FEM, but mostly to be compatible with existing
radiation analysis tools. Formulating the network based on the el-
ements makes it easier to interface the mesh to traditional tools
such as TRASYS [6] or TSS [7].

Converting a FEM mesh to some sort of FD representation
does allow compatibility with existing thermal radiation analyzers,
but does have other drawbacks. As EQ (13) shows, the accuracy
of centroid methods depends on having the lines connecting the
centroids perpendicular to the sides of the elements. Significant
errors can occur when nodes are “skewed.” Using a cosine scaling
does not always produce acceptable results as shown in Figure 10.

The temperature gradient in any direction is determined by the
projection of the temperature gradient vector. In the example
shown, the cosine of the gradient approximated by using the two
nodal points is significantly less than the actual gradient perpen-
dicular to the control volume boundary. Projecting the control sur-
face area instead of the gradient yields the same error. If the actual
temperature gradient lies in the same direction as the line connect-
ing nodes 1 and 2, no error will result. Error increases as the tem-
perature gradient becomes perpendicular to the centroid-to-cen-
troid line.

Post processing and model-to-model data mapping are also
hampered when using a centroid approach in that element values
must be converted back to nodal values. Nodal values are usually
taken as the average of the element temperatures that are connected
to the node. This produces an artificial smoothing of the data.

Another approach is to place an additional node at the center
of each element, and then connect this node to the original nodes
with smaller FEM elements. The node at the center of the element
is used for radiation heat transfer. This is a valid approach, but
generates many additional nodes. Using the mesh directly avoids
these complications.

The most direct and beneficial method of interfacing FEM
generated meshes with traditional thermal analyzers is to use them
exactly as they are. The problem does not lie with incompatibilities
of the FEM mesh, but with the radiation analyzer. The best ap-
proach is therefore to fix the problems with the radiation analyzer,
rather than deal with the problems and drawbacks of FEM-to-FD
mesh translation.

INTEGRATION WITH RADIATION ANALYSIS

The aerospace thermal analyst is not only concerned with con-
duction, but more importantly, the effects from orbital heating and
from radiation exchange among the spacecraft surfaces. These cal-
culations often consume more computer resources than the solu-
tion step to predict temperatures. The lack of integration with suit-
able radiation analysis tools is probably the biggest reason for the
lack of widespread use of FEM techniques.

As discussed earlier, nodes on a FEM mesh may be viewed in
the traditional control volume fashion, or by using a smoothly vary-
ing apportioning of energy. Radiation exchange can be performed
with codes such as TRASYS or TSS by using the traditional control
volume view of nodes on a FEM mesh. Control surfaces for each
node are generated by subdividing the element into smaller poly-
gons as shown in Figure 11.

Node 1 in Figure 11 would have four separate polygons gen-
erated for use by TRASYS or TSS. This approach will produce
accurate results, but efficiency will suffer and large database files
will result due to the many surfaces produced. Another approach
is possible that yields better accuracy and is consistent with FEM
energy apportioning.

Using EQ (2), the effects of direct incident heating can be
computed directly for nodes on a FEM mesh. The method works
well with both area integration and Monte Carlo methods. For the
area integration technique, the element is subdivided into smaller
regions, each of which is considered as a point source. The method
fits particularly well with Monte Carlo methods, since each ray is
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Figure 11: Control volume view of nodes used to
generate radiation exchange surfaces in a FEM mesh
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considered as a point source bundle of energy. The energy depos-
ited by the point sources are distributed to the nodes using the
energy apportioning functions associated with the element.

Radiation exchange factors can also be computed directly for
a FEM mesh, using a consistent energy apportioning approach [8].
Just as the interpolation functions are used to interpolate the tem-
perature across an element, EQ (7), they can be used to interpolate
the radiosity across an element (see Figure 12). Rather than the
constraint of an isothermal emitting surface, a FEM surface can
emit non-isothermally, yielding better accuracy for the same size
nodal regions.

In this approach, a ray leaving an element represents an energy
bundle consisting of contributions from each of the nodes used by
the element. The interpolation functions are used to determine the
relative contribution of energy to the ray from each node. This
technique generates global node-to-node radiation exchange fac-
tors directly and avoids the element to node conversion problems.
This method has also been incorporated into ESATAN/ESARAD
[9].

Alternatively, instead of considering a ray to be composed of
energy from each node, calculations can be performed for a single
node at a time if the interpolation function is used to weight the
generation of the emitting location on the element. Using this ap-
proach, each ray will have a energy value for one node only, but
more rays will be fired closer to the nodal point.

Modeling radiation leaving a surface uniformly, as with tradi-
tional isothermal approaches, is equivalent to a viewing a geomet-
ric model using a “flat” shading model. Each facet appears as a
single shade of color. Using the non-isothermal FEM mesh, radi-
ation leaving a surface is equivalent to using a smooth “Phong”
type of shading, where a curved surface appears curved, rather than
faceted.

In fact, the use of thermal aerospace radiosity techniques have
found recent application in the graphics world as a technique for
generating extremely realistic images [10]. The problem in graph-
ics image generation is an almost exact analogue to the thermal
radiation problem. The only difference is that the quantity of in-
terest for image generation is the total energy leaving a surface
(which strikes your eye), rather than the total energy being ab-
sorbed. Many methods have been formulated including one that
incorporates a traditional double area integration scheme using fi-
nite elements [11]. This is an area of active research and will likely
spawn useful algorithms that are applicable to thermal radiation
modeling.

It should be reiterated that a radiation analyzer does not need
to be exclusively based on FEM. A program that accepts traditional

planar and conic “uniform-radiosity” surfaces and arbitrary shaped
“non-uniform-radiosity” FEM meshes can be constructed. The use
of FEM for radiation modeling does not exclude traditional tech-
niques. The development of a new radiation analyzer, RadCAD™
[12], that incorporates these features is currently underway.

A BETTER MESH GENERATOR

Once a radiation analyzer is created that can analyze FEM
meshes directly and produce nodal heating rates and radiation ex-
change factors, then the conduction and capacitance network cre-
ated using FEM can be used directly with SINDA/FLUINT.

However, one more drawback still remains. Using traditional
radiation analyzers, a cylinder can be modeled using relatively few
circumferential nodes. Using existing FEM based meshing utili-
ties, a cylinder must be modeled using enough planar elements to
geometrically approximate the cylinder. The nodal density is driv-
en by geometric fidelity, rather than thermal accuracy concerns.
One usually ends up with a thermal model with many more nodes
that what one could obtain using TRASYS or TSS.

This is a problem with existing FEM codes, however, not with
the finite element method. Existing FEM codes have been devel-
oped with a library of element types that are primarily designed
for structural analysis.

Elements specific to thermal aerospace applications can be
formulated. In the example shown in Figure 2, a simple bilinear
scheme was used to approximate the temperature variation over
the flat rectangular element. The same interpolation scheme could
be used for a rectangular region wrapped around a cylinder as
shown in Figure 13.

One can image a rectangular plate subjected to a certain set of
boundary conditions to produce a certain temperature distribution.
This distribution is unchanged if the plate is folded or curved in
any manner that does not “stretch” the surface. Topologically the
curved surface is the same as the flat surface with respect to com-
puting capacitance and conduction terms.

The finite element method may be applied to any region on a
curved surface (even “stretched” regions), as long as a suitable
method of interpolating the temperature distribution over the re-
gion can be formulated. The set of familiar primitives currently in
use, such as cones, spheres, toroids, etc., may be used with the
finite element method. If such element types were available, ther-
mal FEM models could be formulated with no penalty associated
with excessive elements.

In addition, elements do not have to be restricted to be parallel
to the principle parametric directions of the surface. Current ana-
lyzers allow surfaces such as cylinders to be subdivided along con-
stant height and angular lines only. Improved modeling flexibility

Emitted ray is made up of energy
contributions from each node on element

Ray energy
is distributed to nodes
on hit element using
apportioning functions

Figure 12: Raytracing with finite elements

Figure 13: A flat element yields the same capacitance
and conduction terms as a curved cylindrical element



could be obtained by first specifying the general orientation and
dimensions of a cylinder, and then demarcating regions using a set
of three or four (height, angle) pairs. Three and four sided surface
elements are mapped to curved surfaces using parametric coordi-
nates, rather than x,y,z values. The radiation analyzer first performs
an intersection test with the high level graphics primitive, then
determines which element is hit, and then distributes the appropri-
ate amount energy into the nodes on the element.

Curved elements are simple to implement for thermal calcu-
lations, but complicate things considerably when used for stress or
dynamics calculations. A folded piece of paper behaves much dif-
ferently under stress than does a flat piece of paper. This is the
reason that only flat elements are typically available in existing
FEM codes.

A FEM based meshing program specific to thermal aerospace
needs could contain other types of specialized elements to aid in
spacecraft modeling. Just as there are specialized (and somewhat
abstract) stress elements such as dampers, springs, and point mass-
es, specific thermal elements could be created such as heaters, heat-
pipes, contact conductance, and MLI blankets. An element can be
used to approximate a given differential equation over a given do-
main, and it can also be used to denote parts of the model that are
more abstractly represented, or represented by procedures (user
logic). Models are built using thermal modeling “objects”, some
that generate data and SINDA/FLUINT logic, some that use FD
techniques to generate thermal mass and conductors, and some that
use FEM techniques to generate capacitances and conduction
terms.

These new FEM techniques are being integrated with tradi-
tional modeling methods in a program called ConCAD™ [13].
ConCAD will be the first system to integrate a finite element meth-
od specifically tailored to aerospace thermal analysis, traditional
FD methods, and non-geometric modeling methods into a single
CAD based system.

SUMMARY

The use of FEM for aerospace applications has been limited
for a number of reasons, foremost being the inability of currently
available FEM based codes to produce efficiently sized models,
supply necessary procedural modeling capabilities, and provide
adequate radiation analysis capabilities. Current suppliers of FEM
based systems have little motivation to expand the capabilities of
existing codes due to low demand and a generally adverse view of
the finite element method by the aerospace community.

Previous approaches to integrating FEM meshes with existing
tools have been hampered by the incompatibility with existing ra-
diation analyzers, not by a fundamental incompatibility with ex-
isting thermal analyzers. A better solution is the fix the incompat-
ibilities with current radiation analyzers, rather than transforming
an otherwise accurate and useful FEM mesh.

Viewing FEM from first law principles adds an existing mod-
eling technique to the thermal analyst’s toolbox, in conjunction
with current procedural and FD based modeling practices. A closer
look at the physics involved and the algebraic approximations used
explains the phenomenon of negative “conductors.” Conductors
generated using FEM and higher order FD methods do not repre-
sent the heat flow between the two nodes that they connect. The
conductors represent components of heat flows between many
nodes.

Adding the capability for curved elements on conic surfaces
to existing FEM based mesh generators will allow the creation of
combined conduction/radiation models with nodal densities com-
parable with existing approaches. Allowing arbitrary orientation
of elements on curved surfaces and additional modeling elements
such as MLI blankets and heaters will provide new and powerful
model building capabilities.

Table 1 summarizes the theses of this paper, identifying the
problems often cited in the aerospace community regarding FEM
codes, and their resolution. Once aerospace thermal engineers are
able to separate the negative aspects of the current structural ori-
ented FEM meshers and solvers from the positive aspects of FEM,
and are provided with tools that are truly appropriate to the unique
aspects of thermal control, they will find that they have gained CAD
integration and concurrent engineering, and have lost only the task
of generating models by hand.
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