GINO

user guide

BRADLY ASSOCIATES LTD
Manhattan House

140 High Street

Crowthorne

Berkshire RG45 7AY
England

Tel: +44 (1344) 779381

Fax: +44 (1344) 773168
support@gino-graphics.com
www.gino-graphics.com

version 6.0

GlNo"qlgraphics

Information in this manual is subject to change without notice.

While Bradly Associates Ltd. makes every endeavour to ensure the
accuracy of this document, it does not accept liability for any errors or
omissions, or for any consequences arising from the use of the program
or documentation.

GINO user guide version 6.0
© Copyright Bradly Associates Ltd. 2003

All rights reserved.

All trademarks where used are acknowledged.

Contents

INTRODUCTION 23
General DeSCHPtON « « + + « « + + r 23
FAGIlIIES - « « » « = @ » st e e e e 24
Initializing GINO + « =+« « o v 25
GINO SHAtES © + + + « = v r v e 26
Use of External Files - = = - = - o v v v e e e e 28
Diagnostic Facilities = - = =+ =+ o v 29
Output of Error and Warning Messages - = =« = =« o v s s 29
En-or Limits © « 0 v e e e 30
Trapping of EITOTS and Warnings .. 30
Enquiry of En-ors and Warnings .. 30
Routine Trace Fac”lty .. 31
Output File for Error and Tracer Messages - - - = - = - = o - o r v m s 31
DEBUG Utlllty .. 31
WOTKSPACES * « = =+ + vt r e 33
Management of Workspace Area =« « = = s v s 33
Allocation of Workspace Arga =« = = =« v s s 34
GINO Coordinate System « - =« =« = o v me e 36
Graphics Devices Introduction = =« » = v o e e 39
DeViCe DriVerS ... 39
DeViCe ClaSS .. 40
2D and 3D DeViCeS ... 42
Device NOMINGtioN = « « =« « + =« v o r e e 42
Device Defaults - = =+« » - o s 43
Device Attributes « = -« - - o s 43

Device Qualification - = - = - = - s 43

Device Output Filename =+ =« == v v e e e 44
Drawing Units - -« =« v v e e 44
Drawing Limits -« =« v v e e 45
Colour Capabilities = = =+« = v v 46
Device Initialization = - = =+ o v o 48
New DraWing .. 48
Device Dependent Routings: = =+ = =« v v v e e e e e 49
Emptylng the Graphics Buffer = « « « o s 49
Auxiliary DraWing ArEas « ¢+ v vt e e 49
Batch Modifications to Dlsplay ... 50
A|phanumeric Mode = © ¢ ¢ 51
Window VISIblllty .. 51
Device Titles « « « « « v e 52
Device Release and Suspension = =+« » « v s s 52
Using Multiple Devices = - - =« v v s s e e 52
Mapping to the Second Device: = =+« = v v e 53
Saving and Restoring GlNO State 54
Duplicating Output ... 55
IMPORTING AND EXPORTING of
Importing and Exporting Introduction = - = = - - o e o7
OVEIVIBW ® * * » = ¢+« v o e e e e e e 57
Metaf”e Formats: = = = = = = = ¢ s e e e e e 58
SUMMAr = = v v v e 61
Exporting Metafiles from GINO - = - =« = o v oo e e 62
Metafiles into External Packages =« » =« =« - v oo s e 62
Importing Metafiles into GINO- - = - =« - o v o e e e 64
SAVDRA Metafile - -« + v v 64
CGM Metafiles -« = =+ v v e e 69
Image Metafiles: =+« « = v v 73

2D DRAWING 7

2D Drawing Introduction: = =« =+ v oo e e e e e 77
Pen « ¢« 77
AXES: + ¢+ ¢ r s e e e e e 78
2D Start and End Pen Position = « =« « « ¢ ¢ c s e e e e 79
2D Naming Conventions « =« =« + v v v v v s s 79
POSItlonlng ... 80
Straight Lines ... 80
POIYIINGS « « =+« « v o v v 82
Polyllne Sets .. 84
Polyline Set Definition ... 84
P0|y|ine Usage ... 85
Clrcular ArCS .. 86
Two-Dimensional ArCS = « =« =« = =« = o e e e 86
Drawing CIrCleS + « « =« v v e e 88
Hardware and Software ArcS: = =« + =« =« o o s e e 89
Arc Control ROUtINgS =+ =+ v o v e e e e 89
ArcSettings: « + - v v 9N
Use Of Arc RoUtings = =+ v v v e e e e 9
Parametrlc Curves ... 93
Curve End Conditions ... 94
Spline Curves ... 98
Sp“ne CUrVe End Conditions .. 99
Sp“ne CUrVe Tension COntrOl ... 100
BEZIEr CUIVES -+ « =« =« = =+t e e e e 101
End Conditions « =+« s v s 102
Elevation and Reduction - =+ =+ o v vr e 103
Point Storage ... 103
2D Interpolation =+« ¢ v 107
Line Attributes Introduction- =+ =« =« o e e 111
Routines Described in this Chapter = = =« =« - o oo v e m
Current Line Definition and Enquiry- = =« =« o v or e e e e e 12

Drawing Attribute Tables =« =« =« o v o e 13

Individual Attributes =« - = =« - s 114

Changing Individual Attributes of the CurrentLing = = = - = = =« = o oo e 114
Line Visibility - + = =+« o 16
Broken Line Type = = =« = =+ v v o s 16
Ling ColoUr + =« = v v v v 17
Line W|dth ... 119
Drawing Mode ... 120
Line Ends ... 120
Use of Current Attribute Enquiry Routines -« =« -« -« oo e e 122
Atribute TablES: « + + + =+ v v e 124
Attribute Definition Tables: =+« « « « « « « c o o e 124
Broken Line Types Table « « ¢ v e e 124
Continuous Vv DISCONtINUOUS * = = = =+ = = v = v v e e e e e e 128
Line Definition Table: « - =+« - v v o e 129
Changing the Current Line Attributes - = = = =+« « oo oo 130
Retrieving and Storing Current Line Attributes - « = =+« = - -« o oo 131
CHARACTERS 135
Character Introduction = = = =« « v oo 135
Character Mode - Hardware v Software - = - - - = = =« - v v o e 136
Output of Characters: = = = =« « v v o 137
Sing|e ASCIH Characters = = = = =+« = v v e e 137
Character Strings ... 138
0utput Of Numbers: = =« =« « « 138
Field Width: =+« =« o oo 139
Conversion of Numbers to Character Strings: = = = = = = = ==« o oo v e 140
CharaCter FONES =« « =« » =« v v v e e e e e e 141
FONESHYlES: « « + v v v oo v e 141
Font F||| Sty|e ... 144
Font Welght .. 145
Fixed P|tch COntrOl .. 146
Software Font Representation - - -« -« - -« - - oo 146
Font Enquiry .. 147

Character Attributes - - - = = - - - - oo 147

Default Character Seftings « « = = =+« = v oo 147
Character Size: + « =+ + v v v s 147
Character Origntation = =+« = -+ oo e 149
ltalic Characters « « « = = =« v e 150
Current Character Settings Enquiry- = = = = =« = oo e e 151
Underilnlng Of Characters ... 152
Representation of Zero Character = - - -« = -« oo e e 152
Line Attributes affecting Characters - = - -« = - - oo e 152
Character String Attributes: =« « » = = o v e 153
Justification .. 153
TeXtBIOCKS © ¢+ = = ¢ v vt ot e 154
Exponents and |ndices .. 155
Escape Characters « =+« v v v 156
Changing the Escape Character « - - =+ - - -« v v v 158
Escape Character Enquiry « « = =+« v v v v 158
Character Strings Adjusted to Fit a Specified Width - = = -+ - oo v 158
Character Strings Drawn Alonga Curve = - = = =+« =« e 159
Returning Information about a String « = = = = = - - s e 159
Country Specific Characters = =+« « = -+ v o v 160
SYMDOIS * + + ¢ ¢ 161
Positioning Symbols .. 162
Muitipie Symbois ... 163
Area Filling Introduction = = =« = o v o 165
Fillinga Rectangle -« + + + « « « « v r 165
Filling Single Polygons - = =+« + = = v v v 167
Filling POlygOn Sets = =+« + + + + + v v 169
Poiygon Set Definition ... 169
Poiygon Usage .. 170
Filing MOdES « + + + = = v v 171
Hatch Style Definition - - - - - - - o v v v 172
EXampIe 1 ... 178
EXampIe 2 ... 180

Hatch Styie Enqu|ry .. 182

Multiple Hatch Styles- - = = = - - - - oo e 183

Box Hatchstyle - -« o oo 183
Brick Hatch Style » « = -« v v oo v e 184
Honeycomb Hatch Style: = -« = -+« oo v 185
Trellis Hatch Style - -+« + + oo 187
Complex Polygonal Definition, Drawing and Filling = = =+« = = oo e e e e e e 188
IMAGE HANDLING 189
Image Handling Introduction - = = =« » = v o e 189
P|Xe| Coordmate System ... 190
Reading and Writing Single Pixels: = =+« » - oo vv v e 191
|mage DlSplay .. 191
|mage Data .. 192
SUb |mages .. 192
PiXeI Packing ... 194
|mage DISplay Mode .. 197
Pixel Coordinate Conversion: = = = =« =« x v o e e e e 198
Pixel Transformations - = = - -+ = = o v v 198
Pixel Rotationand Scaling + « = =+« v v v 198
Pixel Replication: + « =+« v v v v 201
Pixel Enquiry Routings - =+« v v e e 202
Reading Pixe| Data .. 203
Copylng Pixe| |mages 203
COLOUR DEFINITION 205
Colour Definition Introduction = -+ = = =« v v v e 205
COlOUr Tab|e ... 205
D|Sp|ay Types ... 206
Colour Reso|ution ... 207
Colour Coordinate Systems = - - - - = = v v v oo 207
Conversion Between Coordinate Systems « = = = =« oo v v e 210

RGB Colour Coordinate System = = = =« =« = v e e 211

Using the RGB System = =+ = = - - v v v e e 212
HSV Colour Coordinate System - = =+ =« = v oe e e 212
Using the HSV System = « + + + « + = v oo e o 214
HLS Colour Coordinate System « = = = =« =« o ve e e e 215
Using the HLS System = = = =+ o e oo e 216
Direct Colour Control- « = =+ =« v v s e e e 217
MAPPING, WINDOWING AND MASKING 219
Mapping, Windowing and Masking Introduction- =+ =+ = =« o oo 219
Viewport Mappmg .. 21 9
VieWpOrt Enquiry ... 221
C|earing the VieWpOI’t ... 221
C“ppmg .. 222
Window Mode - =+« - s s 222
Rectangular Window = =+« = v o e e 223
Enquiring Window Limits = - =+ = o c e 224
ReCtangU'ar MaSkS .. 224
Mask Enquiry ... 225
2D TRANSFORMATIONS 227
2D Transformations Introduction: - = = = =« o o 227
Simple 2D Transformations - =« = =« o s e 227
2D Shiftings + ¢ v 227
2D Rotation = -« v v 228
2D Scaling: = - s 229
Mirrorimages = -« =« o v 230
2D Shearing -« + v v e 231
Combining Transformations - =« » =« =« oo e e e 232
Using the Same Transformation Type = =« = -« o v oe oo 232

Using Different Transformation Types = = = = -« = v o ov e e e 233

2D Transformation Enquiry = - =« - s e e 238

Current Drawing Position « = = =+« v v v 238
2D Untransforming = = =« v v s s 238
Point Testing of Current 2D Transformation = =« = =+« oo v e v 238
2D Transformation Control- =+ =« =« v oe e e 239
Transforming Characters and Symbols = =+ =« - v ov e e 239
BASIC INTERACTION 241
Basic Interaction Introduction + = = - = = e 241
Cursor |npUt ... 241
Defining Cursor Shapes = =+ =« = v o v e s 242
Defining Cursor Action Types = = =« = =« o v s e e 243
App”cation .. 243
ADVANCED USE OF 2D POLYGONS 245
Advanced Use of 2D Polygons Introduction- = =+« = =« oo v e 245
Allocating Workspace for the Storage of Polygons « = =+« = - v oo v e 245
Polygon Definition = « =« =« o oo 247
Polygon ldentity - = =« = = o e 249
Clearing Polygon Workspace - « = =« =« v s os e 250
Status of Polygon Workspace =« » =« =« v s 250
Drawing Polygon Boundarigs = = - - = = - c s s e e e 251
Polygon Filling Workspace Requirements - =« = =+ =« o v oo e e 252
Hardware Fill Workspace Requirements = = = -« =« o v e oo e e 252
Software Fill Workspace Requirements: - = =« = - oo v e e e 253
Example Calculations of Workspace Requirements = = = = = = o oo v oo 253
Polygon Selection = « =« =+ v s e 254
Polygon Selection Enquiry =« = = = v v s 257

10

F"lmg a Polygon ... 257

Interaction with Polygons =+ = = =+ o s e 261
Polygon Windowing and Masking - = =« » = v« v o s e 261
Polygons Suitable for Windowing and Masking = = = = = = = o oo 261
Workspace Requirements for Windowing and Masking of Filled Areas « « « « « =« v v v o e e e 262
Windowing Requirements - « =« =« =« v v e 262
Masking Requirements =« =+ =« o v s e 262
Requirements for Simultaneous Windowing and Masking « + = = =« « « o oo 263
Example - Calculation of Fill Workspace Requirements = = = = = = = v o oo e e oo 263
Polygonal Windowing « =+ =+ = v o v r s 264
Polygonal Masking =« =+ = v o v s 265
Windowing and Masking Polygon List Enquiry - =« =« = v e e e e 266
Windowing and Masking Control = = =+« =« v e 267
3D Graphics Introduction: = =+ =« = s 269
Shaded Objects « =+ = -« v v v s 270
TRESCENE ™ « + v v v s 270
3D Device Drivers « =« + v v s e 271
The 3D WOrd: « « « « « o v o 272
3D Viewport Mapping = « =+« ¢ s 273
3D Cllpplng .. 275
Enquiring 3D Window L|m|ts ... 275
3D DRAWING 277
3D Drawing Introduction - = = =+ = v v s e 277
3D AXES .. 278
3D Stan and End Pen Position .. 278
3D Naming Conventions ... 278
3D Positioning .. 279
3D Straight Lings: -+« = - - 280
3D Polylines ... 280

Shaded P0|y|ines ... 281

3D Polyline Sets ... 282

3D Polyline Set Definition « « = =+« o v 282
BDAICS: « « « + ¢t 284
Direction Vector .. 288
3D SPlINE CUIVES® « « « « v 288
3D Spline Curve Control « « =+« v v v v 289
3D BEZIEr CUIVES = « * + * * » + + o o e e e 200
3D E|evatI0n and RedUCtIOH ... 290
BDPOIYGONS « « « « ¢ e 200
OVerIapping Polygons ... 291
3D POInt Storage ... 293
3D INtErPOIation = « « « ¢ 204
FACETS 295
Facets Introduction- = = = =« - v oo 295
Facet DEfiNItion: « « « = = =+« « @ o e 206
FacetFaces = - -« v« v v 296
NOMMAlS + + + v v v 297
Textured Facet: + « -+ v v v 299
Coloured Facet « « + -+ v v v v 299
Facet AHTDULES © + + + + v v v o 301
Facet F||I Style ... 301
Facet Oﬁset .. 302
3D OBJECTS 305
3D Objects Introduction = = = =« « v v 305
LOCaI Axes System .. 306
Object COmpleX'ty ... 306
Object Shadmg .. 306
Object Texture Mappmg .. 306
Shaded Polyling « « « « « 307

12

D Primitives =« « = ¢ ¢ c e e e e e 307

BOXES * v v 307
Wedges -- 309
Cylinders and Cones =+ + + « « oo e 309
SPRErEs « vt 310
Vo|umes Of Rotation .. 311
Surface Primitives « « © « + « ¢« o s e e 312
SPINE SUMACE = « 313
BeZier SUrfaCe ... 31 7
Tabulated Bezier surface = « « « « ¢ ¢ s e e e 320
SWEPt BEZIEr SUMACE « « « + + + + + ¢t 320
Ruled Bezier surface - « -+« = = v s s e e e e e e e 321
Bezier Sphere ... 322
BEZIEr VOIUME « + + + + + =+ r v v m e e 323
LIGHTING AND SHADING 325
Lighting and Shading Introduction = = = =+« « oo 325
Shadlng .. 325
CuIIing -- 326
Blending - + « - v c e 326
Winding Rule =« - - v v o 327
Shading Enquiry- -« =+« - s 397
Depth Buﬁering .. 327
Lighting .. 329
LIght SOUMCES = =+« v = v v v oo 329
Light SWitch « = =+« v o v v v e 332
Default nghts ... 332
Light Source ENQUIrY « =« + = = = =+ o v o 333
LIght USAge « « « « « + + v r v 333
Fog .. 337
FOGENQUIFY « = =+ v v o v e e e 338
MATERIAL PROPERTIES 339
Material Properties Introduction - - = = =« v v oo 339
Material Property Definition = = = = = o oo 339
Colour Matching .. 340
Materia| Table ... 340
Facet Material Properties « « + =« =+« « « oo v 342

13

Translucence ... 342

SRAOWS * * « « « * = 5t e 342
Texture Mapping Introduction = =« + = = v v s 345
Texture Mapping Modes = = = =« v v v 345
Texture Mappmg Data 346
Multiple Texture Maps - = =+« + v o 348
Tiling Images - - - - - v s 349
Texture Mapping Coordinates = « « » = = o v v s s 349
Dlrect AsSlgnment ... 350
Automatlc Generatlon ... 351
Environment Mappmg ... 353
3D Objects ... 353
Texture Mapping Attributes = = = = = = oo 354
Blending Textures = =+ =+« « v 354
Repeating and Clamping Images « « « = = = =+« « v 354
Filtering Textures - = - - - -+« v 355
Texture Border COlour- + + + « « o oo 357
Texture Mapping Enquiry: = = =+« s o e 358
3D Transformations Introduction: =+ = = =« v v v 359
Cun—ent Transformation .. 360
Simple 3D Transformations = - - - - = = s 360
BDSRIfting: « « «++ 360
BDRotation =« - v s 360
Permutating the AXes = = =+« + v s 362
BDScaling: - e 363
BDShearing - -« - v s s 364
Combining 3D Transformations - - = = = =+« v oo e 364
Using the Same 3D Transformation Type: = - = - =« =« - oo e e 364
Comb|n|ng 3_D Rotatlons ... 365
Using Different 3D Transformation Types: = - = - =« =« o oo e oo 367

14

3D Transformation Enquiry = - = - = s s e 368

Finding the Current Drawing Position: = =« =« = - v e e e 368
3D Untransforming = = =« v v s 368
Point Testing of Current 3D Transformation = - = =+« o v v e e 369
TRANSFORMATION CONTROL 371
Transformation Control Introduction = =+ =+ =« = v v e e e e e 371
View Transform Mode =« » = =« v ov s e e 371
Transformation State- =« = = - =« o 372
Reinitializing - - =+ =+ o v s 372
Transformations Matrix Control = - = = = = v oo e e e 375
Push and Pop Transformation Matrix« = = = =« oo vee oo e 376
Saving and Restoring Transformation Matrix- - = - = =« oo v oo e e 376
Getting and Setting Transformation Matrix = = - = - = =« oo e e e 377
Modlfy Transformation Matrix ... 377
Transformation Matrix Building = - = = = = v o v e 378
Example showing Building and Combining Transformation matrices - - - - - - - - -+ - o o v e e e e 379
Transformation Enquiry = = = = =« o s e e e 381
Transformation Mode = =+ =+ =« v s e 382
VIEWING 385
Viewing Introduction = = =« = s e e 385
Usefu| Concepts ... 386
From View Plane to Paper- - = = - - = - oo e e e 387
The Basic Viewing Routings - - =« =« = oo o v e e 388
Perspective Views of a Volume = =« = =« o v v e e e 388
Perspective View from a Point- - =« - =« o e e 393
Parallel Projection « =« » = v o v e 396

15

Setting Viewing Transformations - - = = - - - - - oo 398

Use of Superseded Routing: « = = =+ v v v v 399
Modifying the Drawing = = = = =« = oo v e e e 400
Re-specifying the View « - -« - - -« oo v 400
Positioning the |mage ... 402
Ol’lentatlon of the |mage ... 402
Moving Eye, View Plane or both« = = = = oo 404
ZOOMING * * « + + v vt 404
Moving Eye and View Plane « « + + « o v v 405
Moving the Eye Alone « =+« « r v v 407
Changing the Line of Sight- = = = = = = oo oo 410
Projections onto an Oblique Plane: = =+« » = = o v v oo 415
Saving and Restoring View Parameters- - - - - - - = oo 416
Modifying the View Matrix - = = = =« oo 417
Listings of the Routines used in this Chapter - - - = = - - - - = o oo e e e e e 417
PICTURE SEGMENTS 423
Picture Segments Introduction: = = =« = v v s 423
Software Display File Storage =+« « =+« o 426
Segment BU”dmg .. 426
Segment ANChOr: « « + v v s 427
Picture Segment Body .. 430
Segment Manipulation = = = =« v s 430
Picture Segment Transformations - - = - = - =« o v o 431
Segment Enquiry ... 432
Segment Redrawing and Repairing = = = =+« - - o 433
Segment Structures = = = = s 434
COPYING * « =+ v v v st 434
Hierarchical Segment Structures = =+« =+« v v 434
Use of Modelling Transformations within Segments - - =« = -« oo v oe e 435
Segment GroUPS « « + + 437
Implicit Segment Groups =« + « = =+ v 439

16

Light Pen Simulation - - - =« - - o v v e e 439

DIAGQING « =+ * = ¢ttt e 440
Software Display Files Across Devices « « = -+ = v n v r s 440
Archiving and Restoring Software Display File = -« = =+« = v oo e 442
ADVANCED INTERACTION 447
Advanced Interaction Introduction - =+ + = = s 447

Programming in @ windowing environment - = - =« <+ - s s 449
EVENETYPES = -+ -« o v o n e e 449
Requesting Event Types = = =+ » = oo v v v e e e 450
Deleting EVENt TYpes: = « « + = = =+« o s o ot 450
Getting NEXtEVENt - =« + = = v o e e 451
Reading EVeNtData « « -+ =+ =+ - s s 451
KBYS « « + vttt e 452
Event Generating Implements = = - - =« » - o 454
EVeNt PrOGramming « - =+« = = =« < oo r e 454
QUEBLBS - = = =+ o e 456
MOUSE POSIION - « « « « « « « « o e et 456
Keyboard State: « -+« =« - c s 457
SYSTEM UTILITIES 459
System Utilities Introduction - = -« = = -« = - s 459
File and Directory Handling = =+« « = = oo v v 460
Time and Date Utilities - - - - - - = = - - - e 463

17

Other System Utilities = - = - =« - = v oo 463

Command-ling arguments: = = =+« o s s 463
Enquire User Name = = =+« = v v e e 464
Environment Variable Settings = = =+ 0 c v 464
System Command EXeCUtion = = =+« =+ v v 465
Task Priority .. 466
Sound System Speaker .. 466
Random Number Generation ... 466
String Hand”ng .. 467
ROUTINE SPECIFICATIONS 469
MACHINE IMPLEMENTATIONS 735
GENERAL -« = =« v s e et e e e e 735
UNIX - 5 o o e e e e e 736
OPENVMS -+ v oo 737
MiCrosoft WINdOWS = = = = =« = =« = s vt e e e e 738
DEVICE DRIVERS 739
Device Drivers Introduction - = = = - = v o e e 739
Configuration File « =+« « - v v 741
DUMMY DEVICE + + + + + v o 741
SCREENS AND WORKSTATIONS = = = v v e e e e 742
Output Filenames and Unit Numbers (Fortranonly) - - - - - =+« « v e 742
Screen Driver Configuration Settings - = - = = = = - oo 743
GLX OpenGL Extension to X =« + = v v vvv e e e e 743
Regis Serigs Devices = = =+ =« v s 752
VGA and SVGA PC Screens (LFO0 only) =« = =+ v v vve e e e e e e e e 755
Windows (Microsoft) System: = = =+ =« v e e 759
Using Windows Driver in Windows Programming Environment = =« - - =« o ve e e e e e e 769

18

Windows OpenGL (Microsoft) System- = = - =« = v ee e e e e e 778

Using Windows OpenGL Driver in Windows Programming Environment « = =« = =« oo oee e e e 788
X WindOWS System .. 790
PRINTERS AND PLOTTERS -+ = = v v v v oo e e e 797
Output Filename and Unit Numbers (Fortran only)- = = = =« - v oo e e e e 797
Printer and Plotter Configuration Settings - = - = = - = = - oo oo 798
Intermediate Vector File - = -« =+ oo e e 799
B-bitdata: - - - 799
Calcomp 907 Serigs Plotters: =« - =« = oo v e o 799
Hewlett-Packard Series Plotters (HPGL) -« = - = = - o v v oo e e e e e 802
Hewlett-Packard Series Plotters (HPGL-2) = - = = - = - o v v e e e 806
Hewlett-Packard Laserjet Series Printers (HPLJ) =+ = - =« o e ee e e 809
Hewlett-Packard Paintjet and Deskjet Printers (HPPJ) -« = =+« = o v v e e 810
DEC LA100 andLNO3 Series Printers - =« =« = = v ovve e e e 812
Postscript Series Printers =+ = - - s o 813
METAF”_ES ... 81 8
Output Filename and Unit Numbers for Metafiles(Fortran only) « = =+ = =« o oo e e e 818
File Format « = - v e 819
Metafile Configuration Settings = = =+« = == oo e 819
Computer Graphics Metafile (CGM) - - = - = = - o v oe e e e e e e 819
Drawing Exchange Format (DXF) Metafile - - - - - = - o oee e e e 824
Image File Formats (BMP, XWD, SUNRAS): - = = - =« v v v e 825
JPEG File Interchange Format (JPG) - » =+ =« v v oe e e 827
PNG Portable Network Graphics (PNG): « + = = =« v v v e e e e e e e 829
SAVDRA and SAVPIC Metafile - - - = =« - v v oo 830
Windows Metafile (WMF) - = - =« oee e e e e e e 833

19

FONT TABLES 835

Font Tables Introduction = =+ =« = v oe e e 835
The FontTables - - - = -« - =« o v v v 836
DEFAULTS 859
Defaults Introduction = = = =+ =« v v s 859
ERROR AND WARNING MESSAGES 867
Error and Warning Introduction = -+ =« - o s e e e 867
GINO Errors and Warnings = =« = =« o n s e 867
CGOM EIrors: = =+« « v v v e e e e 881
System Input and Output Errors « = =+ =« o v v e e e 888
Configuration File Errors - = = =« » o v v e e e e e 889
GINO STRUCTURES 891
Structures Introduction = = = = = s 891
CROSS REFERENCES 901
Cross References Introduction: « = =+ =« v v e e e 901
F77-F90 Cross-Reference « « =« =« v o v v v e 901
FO0-F77 Cross-Reference - » =« =« v o v oo e 913
DEPRECATED ROUTINES 927
Deprecated Routines Introduction - - = =+ = = - v o e e e 927

20

TECHNICAL INFORMATION 931

Homogeneous Coordinate Transformations: -+« « = = = = v v 931
2-D Transformations - - -+ = = - v 931
Null transformation « « =+« v oo v e 931
Shifing: « « « v v 932
Rotating =+« = v v v v 932
Permutating « = =+« v o s 932
SCaling: « v 932
Shearing: « -+ v 932
DD MALFCES « « + + + » e 932
3-D Homogeneous Transformations: = = =+ =« o v v ee e 933
Combining Multiple Transformations: = = =+ =« « oo v e e e 934
2:-D Summary ... 935
Extending 2-D Operations - - - - = = =« v v s 935
Perspective Transformations: - - = =« =+ - oo e e 937

21

Chapter

INTRODUCTION

General Description

GINO stands for Graphical INput/Output. It is a graphics package that takes the
form of a library of 2D and 3D drawing and administrative routines and is
designed to offer implementation and device independent graphics facilities on a
wide range of machine platforms. GINO provides a common graphics interface to
all the widely available graphics hardware through its many device drivers, to
such an extent that in many cases changing one line of a GINO application is all
that is needed to enable the application to operate on a different graphics device.

GINO provides a base level of graphics functionality and associated with GINO
are a number of additional graphics libraries with specialist functionality in the
areas of graph drawing (GINOGRAF), surface and contour drawing
(GINOSURF) and the design of graphical user interfaces (GINOMENU). This
document details the use of the facilities available within GINO, and a full
specification of each routine available.

23

Facilities INTRODUCTION

The association between the user application, GINO and its associated libraries is
shown in the diagram below:

User Application

Associate Associate
GINO Library 1 GINO Library 2
GINO Library

Operating System Libraries

User Application and GINO Libraries

GINO has been written to be able to control a wide range of graphics devices
from a single off-line pen plotter to a sophisticated 24 bit, 3D multi-window
networked display through a common routine interface.

This enables large and complex graphical applications to be written in a device
independent manner, so that the only step required when switching to another
graphics device (possibly in a completely different environment) is to notify
GINO of the new device name.

Facilities

GINO provides facilities for producing graphical output that can range from
two-dimensional graphs to complex three-dimensional interactive systems with
shaded models. Facilities are provided for:

24

INTRODUCTION Initializing GINO

+ Nomination and device specific options

+ Basic drawing (2D and 3D) both to position and to draw straight lines,
circular arcs, curve drawing, and multiple drawing routines

 Character output: software fonts, hardware font access, 1000+ symbols,
attribute control (angle, justification, italic, fill style, underline, weight, etc)

« Attribute control: colour definition models, visibility, line and fill styles
« Area fill with default or user-defined hatch styles, and solid fill styles

+ Transforming and viewing objects, polygonal windowing and masking
 Picture segments: hierarchical structure and manipulation

+ Cursor or mouse interaction and event handling

+ CGM and proprietary metafiles

+ Pixel rectangle read, write, and transformation control

+ Surface Primitives and 3D objects

« Lighting, Shading and Texture mapping

Initializing GINO

The first call in a graphics application using the GINO library should always be
to initialize the library. This is performed by the routine:

gOpenGino()

This may occur anywhere in a user program but should precede all calls to other
GINO routines. If the call to gOpenGino() is omitted, what happens depends
largely on the computer system running the program but in most
implementations, the initialization will occur when the first GINO routine is
called, however GINO error 5 may be output, ‘GINO not initialized’.

The routine gOpenGino() should not be called after any other GINO routines
with the exception of gCloseGino(). When gOpenGino() is called, GINO is
re-initialized and all data previously defined is discarded.

25

GINO States INTRODUCTION

When GINO is initialized, one of the first steps carried out by the library is to
check for the existence of a legal Configuration File and if this file does not exist
or does not have the correct licence information encoded within it, GINO will
immediately stop with an appropriate error message. In order to provided a
cleaner check on the existence of the Configuration file, an alternative
initialization routine is provided, returning a status flag through its single
argument. The routine is gEnqConfigStatus():

status=gEnqConfigStatus([cfgdir])

where status returns a value of 0 if a legal Configuration File has been located
and 1 otherwise. This can be useful in providing a user controlled abort
mechanism if the Configuration File does not exist. The optional argument cfgdir
can be used to set the location of the GINO configuration file if it is known to be
in a non-standard location. The function gEnqConfigStatus() must only be used
in place of a call to gOpenGino as it will re-initialize GINO if called anywhere
else.

Closing Down GINO

At the end of an application, GINO should be properly closed down through the
routine gCloseGino(). This contains an implicit call to gCloseDevice() to close
down the currently opened device.

gCloseGino()

The routines gOpenGino() and gCloseGino() should be used to open and close
the GINO part of a user program.

GINO States

26

When GINO is first initialized, it enters a state where a small number of
operations can take place. These include setting error and tracer operation,
initializing gDebug() and nominating a graphics device. GINO can exist in fact in
one of five states as shown in the diagram below. An application can enquire
which state GINO is in through the routine gEnqGinoState():

gEnqGinoState(gstate)

where gstate returns the state of GINO and all its associated libraries. The
structure member .gino contains the GINO state, in the range 1 to 5, and other
members of the structure indicate whether associated libraries are active or not.

INTRODUCTION

GINO States

GINO will automatically move from one state to another through the calling of
certain routines, (eg. gCloseSeg() will move GINO from state 5 to state 4), while
some routines are only permitted while GINO is in a particular state (eg. Device
Qualifying routines are only permitted while GINO is in state 2). In some cases
GINO may move through a number of states by a single GINO routine (eg. a call
to gDrawLineTo2D() after device nomination will move GINO from state 2 to 5,
and a call to gCloseDevice() will move GINO to state 1 which ever state it was in

at the time).

Close GINO

Close Device

Close Segment

State 1
GINO Initialized

State 2
Device Nominated

State 3
Device initialized

State 4
Picture Started

State 5
Drawing

GINO States

Open GINO

Nominate Device

Open Segment

27

Use of External Files INTRODUCTION

Use of External Files

Several GINO routines need to reference external files in order to either direct
graphics commands to a file, reading or writing metafiles or directing diagnostics
information. For historical reasons many of these routines require an identifier of
an already opened file.

Two routines are provided to open and close such files in a language independent
way:

file=gFopen(name,mode)
gFclose()

In the C interface, the function gFopen() returns a pointer to a special file
structure called ‘GFILE’, which is required by all the file handling routines in
GINO. The routine has the same arguments as the standard C routine fopen. The
file can be closed with the routine gFclose(). If a NULL pointer is used, standard
input or standard output is used as appropriate to the GINO routine.

When using the Fortran 90 interface, the function gFopen() returns an integer file
unit number of a file opened by the GINO library. This prevents the possible
problem of a file being opened by a GINO application (using the OPEN
statement) being unknown to the GINO library which can occur if the GINO
library is being used as a DLL.

The following example shows how to direct error/tracer output and PostScript
output to two named files within a GINO program:

C code

#include <gino-c.h>
GFILE *erfile

main ()

{
gOpenGino () ;

/* open file for error and tracer output */
erfile = gFopen (“error.out”,"w");

gSetErrorFile(erfile);
/* nominate postscript driver */
gEps(1,0.0,0.0,297.0,210.0,297.0,210.0) ;
/* direct formatted output to file */
gSetDeviceFilename (“triangle.eps”,-1);
/* draw triangle */
triangle(20.0,20.0,25.0);
/* close device and file */
gCloseDevice () ;
gFclose (erfile);

28

INTRODUCTION Diagnostic Facilities

F90 Code

use gino_ £90
integer erunit
call gOpenGino
! open file for error and tracer output
erunit=gFopen (’'error.out’,GWRITE)
call gSetErrorFile (erunit)
! nominate postscript driver
call gEps(1,0.0,0.0,297.0,210.0,297.0,210.0)
! direct formatted output to file
call gSetDeviceFilename (‘triangle.eps’,-1)
! draw triangle
call triangle(20.0,20.0,25.0)
! close device and file
call gCloseDevice
call gFclose(erunit)
stop
end

Diagnostic Facilities
Output of Error and Warning Messages

GINO generates errors and warnings when it detects that something is wrong. A
fault is classed as an error if GINO is unable to perform some task or has to take
drastic action to remedy the situation, e.g. GINO error 1 - an attempt to output
something when no device is nominated, so GINO nominates DUMMY as the
default device-driver.

Warnings are displayed after less serious faults. GINO is able to carry on by
assuming a straightforward default and the warning is generated simply to inform
the user that this has happened, e.g.

GINO warning 46 - Negative colour index
Detected in call to gSetLineColour (LINCOL)

is generated when the colour index is set less than zero in a call to
gSetLineColour(), so GINO uses the absolute value. The message will specify the
GINO library within which the error was detected, the error/warning number,
some text to describe the fault, and an indication of the GINO routine that
detected the fault. The routine name listed is the F90 long name with the F77
short name in brackets. A complete list of GINO error and warning messages is
given in Appendix E.

29

Diagnostic Facilities INTRODUCTION

While error and warning messages are useful to indicate a possible problem in an
application, there may be reasons to switch off warnings and/or error messages
throughout, or at a particular place within an application. This can be achieved
through the following routine:

gSetErrorMode(switch)

where its argument sets the desired output state of either GON (the default) or
GOFF.

Error Limit

GINO keeps a count of errors and keeps a log of errors and warnings. When this
count exceeds a specified limit, GINO stops the program. The limit is set to 10
and the count is set to zero when GINO is initialized. A call to the following
routine allows the user to change the limit:

gSetMaxErrorLimit(n)

The limit can be disabled by setting n to -1. The count is reset to zero each time
gSetMaxErrorLimit() is called.

Trapping of Errors and Warnings

There is a straightforward way to trap the occurrence of any errors or warnings.
A call to gSetErrorTrap() enables or disables the trapping mechanism:

gSetErrorTrap(switch)

gEngNumberOfErrors() may then be called to return the number of errors and
warnings counted since enabling error trapping:

gEnqNumberOfErrors(n)

gEngNumberOfErrors() returns n = -1, if trapping is disabled. More information
about the errors and warnings that were trapped can be obtained by calling
gEnqLastErrors() (see below).

Enquiry of Errors and Warnings
GINO can store up to 12 error and warning numbers. If more than 12 have been

generated, GINO discards the oldest numbers. A call to gEnqLastErrors() will
return up to n numbers along with the total count of errors only:

gEnqLastErrors(list, n, count)

30

INTRODUCTION Diagnostic Facilities

The numbers are returned in integer array list, with the first element containing
the most recent one. Error numbers are positive and warning numbers are
negative. Any element of list that does not return a valid number is set to zero.

Routine Trace Facility

The routine trace facility outputs a message to identify each call made to a GINO
routine. It is switched on by calling the routine:

gSetTracerMode(switch)

with a non-zero argument. The argument allows different trace reporting, listing
the routine names of GINO and GINO’s application packages . The routine trace
facility is very useful for determining the exact sequence of calls to GINO
routines, or to any routines in the GINO application packages.

Output File for Error and Tracer Messages

By default, all error and trace messages are output on the systems default
standard output unit or standard error output unit for UNIX installations. Users
can direct error and tracer messages to a different external file using the routine:

gSetErrorFile(file)

where file is a pointer to a file opened through the gFopen() routine or a Fortran
90 file unit number.

DEBUG Utility

GINO provides a debug facility designed to assist the user in tracing bugs in
programs. It does not replace the actual device driver (MWIN, EPS, etc.) but sits
between the front-end and the device driver keeping track of the graphical
input/output generated by the user program. Nor does gDebug() affect the user
program in any way, it simply mirrors the calls to GINO routines in the user’s
program and outputs these to an external file.

gDebug(file, level)

where file is a pointer to a file opened through the gFopen() routine or a Fortran
file unit number and level controls the amount of information to output, i.e. the
level of trace.

31

Diagnostic Facilities INTRODUCTION

32

Debug output may be switched on and off during a program execution in order to
generate output at the desired section of code using:

gSetDebugSwitch(switch)

where switch = GOFF to switch Debug output off and GON (the default state) to
switch Debug output on.

The routine gDebug() must be called just before any device driver nomination
routine since a call to gCloseDevice() terminates the action of gDebug(). Note
that gDebug() itself also makes an implicit call to gCloseDevice().

This is demonstrated in the following example program:

C code

#include <gino-c.h>
int main ()
{
GFILE *file;
GLIMIT rect={10.0.20.0,10.0,20.0};

file=gFopen (“debug”, "w") ;
gOpenGino () ;

gDebug (file, GEXTRA) ;
gMwin () ;
gMoveTo2D(0.0,0.0) ;
gDrawLineTo2D(50.0,50.0);
gSetLineColour (GRED) ;
gSetFillMode (GSOFT) ;
gFillRect (GCURRENT, GSOLID, &rect) ;
gCloseGino () ;

gFclose (file) ;

F90 Code

program debug

use gino_ f90

integer :: file

type (GLIMIT) :: rect = GLIMIT(10.0,20.0,10.0,20.0)

file=gFopen (' debug’, GWRITE)
call gOpenGino
call gDebug(file, GEXTRA)
call gMwin
call gMoveTo2D(0.0,0.0)
call gDrawLineTo2D(50.0,50.0)
call gSetLineColour (GRED)
call gSetFillMode (GSOFT)
call gFillRect (GCURRENT,GSOLID, rect)
call gCloseGino
call gFclose(file)

stop

end

INTRODUCTION Workspaces

Note that the output produced from the DEBUG utility lists routine names as per
the F77 short-name convention. Use the F77-F90 cross reference table in
Appendix G for converting to the appropriate long names.

Workspaces

At various times GINO needs to store information in memory. Normally these are
of a known size and can therefore be declared internally as arrays.

However, there are facilities in GINO which possibly require large amounts of
memory depending on the complexity of the users application. In such cases it is
not sensible for GINO to pre-assign space as it is impossible to predict the
requirement. These areas include polygon storage, area filling, internal point
storage and the software display file.

GINO therefore provides a mechanism for the user to allocate a single block of
memory for such purposes of a size defined by the user as required by the
application. In fact such an area MUST be allocated by the user if these facilities
are being used by an application program. GINO then provides a handler to
manage this area, allocating a smaller amount of memory as and when required.

However, it should be noted that the mechanism for allocating this workspace
differs in each of the C/C++ and Fortran 90 versions of GINO as described
below.

Management of Workspace Area

While the same routine gSetWorkspaceLimit() is used to allocate the size of the
workspace area in both the C/C++ and Fortran 90 versions of the GINO library,
the location of the storage area and the number of arguments to this routine differ.

gSetWorkspaceLimit(n1[,n2])

In the C/C++ library the workspace area is allocated via the standard library
routine malloc when gSetWorkspaceLimit() is called. The routine therefore only
requires a single argument giving the total memory requirement for the
workspace area:

gSetWorkspaceLimit (nl) ;

where n1 is the required size of the total workspace area.

33

Workspaces INTRODUCTION

In the Fortran 90 library the workspace area is allocated in an allocatable real
array. For historical reasons, two arguments are required, but only the second is
used:

call gSetWorkspacelLimit (nl, n2)

where nl is ignored and n2 is the number of real words required in the
workspace area.

It is important to free (deallocate) this memory at the end of an application but
this is automatically achieved through the GINO routine gCloseGino().

Allocation of Workspace Area

For example:

C code

#include <gino-c.h>

main ()

{

/* Initialize GINO */
gOpenGino () ;

/* Define workspace area */
gSetWorkspaceLimit (6000) ;

/* Free allocated workspace */
gCloseGino () ;
}

F90 code

program work
use gino_£90

! Initialize GINO
call gOpenGino

! Define workspace area
call gSetWorkspaceLimit (1,6000)

! Free allocated workspace
call gCloseGino
stop

would define a workspace area of 6000 words.

34

INTRODUCTION Workspaces

As only a single block of memory can be allocated for the workspace area, its
total estimated size must be calculated before allocating the space. This can be
achieved through studying the following sections.

The space within gSetWorkspaceLimit() is used for a number of different
purposes and is allocated in continuous blocks as required and for as long as
required. Three routines are provided to the user for specific allocation of space
for polygon storage (gDefinePolygonWorkspace()), for internal point storage
(gDefinePointWorkspace()) and for the software display file
(gDefineSegWorkspace()) if this is required in memory. Other areas are allocated
and returned internally by GINO for temporary workspace for area filling.

The workspace handler does its addressing and word counting in real words. The
workspace area must be large enough for all the concurrent workspace needs of a
given program. For example, an application where polygons will be stored, a
software display file used and area filled, might have a workspace area which
would appear as shown below.

Total Workspace
Temporary
Workspace
Software for Hardware
Polygon Display or Software
Workspace File Area Fill

Example Organisation of the Workspace Area

The total size of the workspace area depends upon the individual workspace
needs found by consulting the sections given in the table below.

Space Reference Section

Polygon Workspace ADVANCED USE OF POLYGONS
Polygon List ADVANCED USE OF POLYGONS
Polygonal Area Filling ADVANCED USE OF POLYGONS
Software/Hardware Area Fill ADVANCED USE OF POLYGONS
Polygonal Windowing / Masking ADVANCED USE OF POLYGONS
Segment Workspace SEGMENTS

35

Internal Point Storage Workspace 2D and 3D DRAWING

Areas allocated within gSetWorkspaceLimit() may be returned to the workspace
by calling the appropriate routine gDefinePolygonWorkspace() or
gDefineSegWorkspace() with an argument of 0.

The workspace area may be enlarged during an application program by calling
gSetWorkspaceLimit() with a larger size. (i.e. no information is ever moved
within the workspace). The workspace area cannot be reduced except by freeing
the total area (in which case all information stored within it is lost) and allocating
a smaller area.

Any workspace that has been allocated will be freed when GINO is closed
through gCloseGino().

Enquiring about the Workspace Area

The routine gEnqWorkspaceLimit() may be called to enquire about the
workspace area:

gEnqWorkspaceLimit(n [,n2])

Where n (and n2 in Fortran 90) returns the size of the workspace area as defined
by the last call to gSetWorkspaceLimit(). If gSetWorkspaceLimit() has not been
called, this routine returns zero in its arguments(s).

GINO Coordinate System

When a graphics device is first nominated, GINO defines a default paper
coordinate system which consists of the default drawing area measured in
millimetres with its origin at the bottom left corner of the drawing area. At this
point, the user may alter the paper (or drawing) units and drawing limits before
drawing commences (see page 39). The transformation between paper
coordinates and device coordinates is defined within the current device driver and
cannot be changed by the GINO programmer.

INTRODUCTION GINO Coordinate System

Once a device has been initialized, the user may define a viewport, which will set
up a mapping between picture coordinates and the devices’ paper coordinates
(see page 219). All drawing operations will then operate in picture coordinates.
The mapping may define any range of picture coordinates which are to be
displayed over a portion of the drawing area defined in paper coordinates. All
windows and masks are defined in picture coordinates. The viewport mapping
may be redefined at any point within an application. At this point the user is still
operating in a 2D coordinate system (although a notional Z coordinate can exist,
but is effectively ignored) but the origin may exist on or off the drawing area.

In order to operate in a fully 3D coordinate system, a modelling and/or viewing
transformation may be defined, setting up a new space (or world) coordinate
system (see page 359). All output primitive coordinates are then mapped to
picture coordinates (2D) through the current modelling and viewing
transformation matrices and then clipped to the current window, mask or
viewport boundary before being transformed again according to the current
viewport mapping.

Picture segment transformations, where appropriate take place between clipping
and viewport transformation (see page 423).

The pixel input and output routines (see page 189) operate in device coordinates
and are therefore completely independent of the GINO pipeline.

37

GINO Coordinate System

INTRODUCTION

38

The figure below shows the GINO pipeline in a diagrammatic form.

Space Coordinates

Modelling
Transformation

Viewing
Transformation

Picture Coordinates

Windowing
and Masking

Picture Segment
Transformation

Viewport
Transformation

Paper Coordinates

Device
Transformation

Pixels ;'

Device Coordinates

GINO Pipeline

Chapter

GRAPHICS DEVICES

Graphics Devices Introduction

Before any input or output to a graphics device can take place the required
graphics device must be initialized. This chapter describes the means by which
this step is achieved and the various states in which a device can exist.

Device Drivers

GINO controls each graphics device by means of a common software interface
between the GINO library and a piece of software called a Device Driver.
Information is passed to and from the driver, which in turn carries out all
requested operations that it is able to achieve. Operations that the driver is unable
to perform are, in the majority of cases, carried out by the GINO library itself
through some form of emulation using a lower level graphics function. For
example, if a plotter driver is unable to hatch fill a complex polygon, GINO will
generate the required hatch lines and ask the driver to simply draw the lines in
2D. Equally if a 2D screen driver is asked to draw an object in 3D, GINO will
perform the transformations and pass the appropriate 2D coordinates to the
driver.

Each device driver is written as a separate piece of code which is either supplied
as a separate library from the GINO library itself or may be included within the
GINO library. They are also generally written to drive a number of devices
within a particular family of hardware devices (eg HPGL or POSTSCRIPT).

39

Graphics Devices Introduction

GRAPHICS DEVICES

40

While a large range of devices can be controlled with GINO, only one device can
be addressed at any one time and may only do so once the selected device is
nominated. The operation of calling the device nomination routine establishes a
link between the GINO library and the required device driver through a routine
address plugging mechanism as shown below.

User Program

—

£

v

User Interface

GINO

!

Link Address

v

Device Driver Interface

Device Driver

v

System Interface

Communication Process

]

Device Processor

Device Driver Interface

Device Class

There are four classes of output device that GINO is able to drive, each offering a
different level of sophistication and range of facilities:

Notional

One notional device driver is provided in the GINO library.

The DUMMY device driver provides the facility to run a GINO program without
generating any graphical output. It is useful for testing programs, for example,
when a graphics device is not available or when the non-graphical part of a

program is being developed.

GRAPHICS DEVICES Graphics Devices Introduction

Screens/Workstations

Screen and workstation device drivers provide the most sophisticated level of
facilities, all of which have input and output capabilities. Such devices include:

* OpenGL
* Windows API
« X-Windows

Plotters/Printers

Printer/Plotter device drivers only provide for output facilities which can be
directed to an on-line device or to a file for spooling later. Such device families
include:

« HPGL

« HPGL/2
« HPLJ

- HPPJ

» PostScript

Metafiles

Metafile device drivers also provide output only facilities but are stored in a
device independent format. Metafiles are further sub-divided into vector and
bitmap classes. Output from metafile formats can be read into many Word
Processing, DTP and Image Processing packages and many can also be read back
into GINO (see page). Metafile formats that can be produced by GINO include:

+ BMP (Bitmap)

+ CGM (Vector)

+ DXF (Vector)

« JPEG (Bitmap)

* PNG (Vector)

* SAVDRA (Vector) [GINO proprietary]
+ WMF (Vector)

M

Device Nomination GRAPHICS DEVICES

2D and 3D Devices

GINO device drivers are further categorized into either 2D or 3D, depending on
their capability to be able to handle 3D facilities directly or not.

At present the vast majority of device drivers are 2D drivers, which means that
they operate in device coordinates. In many cases these are known as pixels
(addressable screen units), but they may be any other units as appropriate to the
device or device interface software. All 3D work (transformations, viewing etc.)
is therefore emulated by the GINO library and passed to the device in its local
coordinate system.

A 3D device is able to handle 3D coordinates directly (as well as lighting and
shading facilities) using their own firmware/hardware to correctly place objects
on the screen. In such cases the GINO routines used to define the required
mapping and transformation state, pass information directly to the device driver
bypassing much of GINO’s internal processing. A 3D device is also able to
handle 2D coordinates and pixel information by by-passing the modelling and
viewing stages, in the same manner that GINO does.

Device Nomination

42

The nomination of a graphics device is carried out by calling a device nomination
routine. Within each device driver library there are usually a number of
nomination routines (often known by the name of the device being nominated -
eg HP7475 within the HPGL family). A list of nomination routines is given in
Appendix B at the beginning of each device driver family.

Examples of nomination calls are:

gXwin () ; call gXwin
gHpl33 () call gHplj3

which select the X Windows driver and the HPLaserJet III printer respectively.

It is essential that the correct nomination routine is called from within a family
device driver as each physical hardware device will require slightly different
control (ie. calling gHp7550() will not work correctly on an HP7475 etc.).

Some nomination routines require arguments which control various aspects of the
device which are outside the usual GINO control (resolution, position etc.).

GRAPHICS DEVICES Device Qualification

A device must be nominated before any input or output is carried out, otherwise
GINO error 1 will be output and no drawing takes place. With the absence of a
device nomination, a notional device called gDummy() is used by GINO.

Throughout this document, many example programs have ‘xxxxx()’ in place of
the device nomination routine. This should be replaced by a suitable nomination
routine as documented in Appendix B.

Device Defaults

Once a device has been nominated, GINO initializes two sets of attributes to their
default values. One set consists of GINO’s input and output attributes, such as
linestyle, hatch table, font style etc. and the second set consists of device specific
attributes, such as default paper size, drawing line thickness, character size etc.
Both sets are documented in Appendix D, with the device specific attributes
marked [DD]. A table at the start of each Appendix B document gives these
settings associated with the device driver or nomination routine as appropriate.
All of these settings can be enquired through the appropriate enquiry routine.

Device Attributes

Every device has a range of settings for many attributes or specific capabilities in
its feasible operation. These include maximum paper limits or number of colours
or whether it can do hardware thick lines, or polygon filling or dialogue areca
control etc. It is often useful to be able to enquire these device capabilities within
an application so that different operations can be performed as appropriate. This
is achieved through the routine gEnqDeviceState():

gEnqDeviceState(devstate)

This routine returns the complete device state in a structure of type
GDEVSTATE. Details of the information returned by this routine can be found in
the Reference Section. The routine may be called at any time within a GINO
application to enquire device capabilities as some of the settings may be changed
through device qualification or other GINO routine calls.

Device Qualification

Immediately after device nomination, but before any drawing has started, the
currently selected device is in a special state whereby certain device defaults can
be changed. The settings are those that relate to the actual initialization of the
device, such as the opening of the window or defining of file output formats and
therefore cannot be changed after drawing has commenced. They include:

43

Device Qualification GRAPHICS DEVICES

Destination of graphical output gSetDeviceFilename()
Setting drawing units gDefinePictureUnits()
Setting drawing limits gSetDrawingLimits()
Setting device colour capabilities gSetColourInfo()

This set of routines are known as device qualification routines and in all cases
(except gSetDrawingLimits()) cannot be called once drawing has started. A
GINO error 9 will be generated if these routines are called at any other time.

Device Output Filename

In many cases, graphical output is sent from the program to a file which has a
default file name or unit number associated with it. The file name may be
changed within a program by using:

gSetDeviceFilename(filename, ntype)

where filename is a system dependent filename or pathname to which the device
output will be directed using an internally generated file unit. The argument
ntype provides additional information but which is machine dependent. Users are
referred to the Reference Manual for more information on the specific use of
these variables.

Drawing Units

When a device is nominated, the device driver defines a default physical drawing
area as appropriate to the nomination routine and GINO sets up a default
coordinate system with the drawing units set to millimetres. This means that the
default drawing limits represent an area measured in millimetres with its origin in
the bottom left corner of the paper, screen or window. This is known as the
default paper coordinate system.

Specification of Physical Units

It is possible, at the device qualification state, to select different drawing units by
using the routine:

gDefinePictureUnits(umils)

44

GRAPHICS DEVICES Device Qualification

Its argument, umils, specifies the number of millimetres in the new drawing
units. For example:

+ To change units to metres - set umils to 1000.0.
+ To change units to inches - set umils to 25.4.

The new drawing units, and its associated paper coordinate system, then remain
current for all drawing operations until a viewport is defined or a modelling
transformation takes place, after which a new picture or space coordinate system
is defined. The current paper units are always used, however, for the defining of
drawing limits (see below) and viewport mappings. As with other device
qualification routines, gDefinePictureUnits() may not be called after drawing has
commenced.

Different drawing units, may be selected for different graphics devices within the
same application, but the routine gSetViewport2D() is the preferred method of
defining the required mapping between the user coordinate system and the device
(see page 219).

Drawing Limits

Where the device has the possibility of variable window sizes or multiple paper
sizes, it is possible to alter these limits at the device qualification state, before
drawing commences. The routine to alter the drawing limits is:

gSetDrawingLimits(dim, type)

where dim is a structure with two elements (xpap and ypap) which define the
dimensions of the required drawing area and type defines a paper or drawing
type as relevant to the currently nominated device. The actual drawing limits can
never be greater than the maximum limits for the device.

The specification for each device driver in Appendix B gives details of the
default and maximum drawing limits for each nomination routine as well as
details of drawing/paper types that are available. It is possible at any stage in a
program, to request the current and maximum drawing attributes through the
following routines:

gEngDrawingLimits(dim, type)

45

Device Qualification GRAPHICS DEVICES

46

and
gEnqMaxDrawingLimits(dim)

The default drawing orientation on printers and plotters is usually landscape
however this can be changed to portrait using the routines gEnqDrawingLimits()
and gSetDrawingLimits() setting the vertical dimension greater than the
horizontal:

C code

GDIM land dim,port dim;
gHpjlr () ;
gEngDrawingLimits (land dim, &type) ;
port dim.xpap=land dim.ypap;
port dim.ypap=land dim.xpap;
gSetDrawingLimits (port dim, type);

F90 code

type (GDIM) land dim,port dim
call gHpjlr
call gEngDrawingLimits (land dim, itype)
port dim%xpap=land dim%ypap
port dim%ypap=land dim$xpap
call gSetDrawingLimits (port dim, itype)

Obviously, immediately after device nomination, gEnqDrawingLimits() will
return the default drawing limits, whereas after a call to gSetDrawingLimits(),
gEngDrawingLimits() will return the new current drawing limits and
drawing/paper type.

Unlike the other device qualification routines, gSetDrawingLimits() can be called
at any point within a GINO program. However, it will only take effect after the
next call to clear the drawing area at which point the new drawing area will take
on the size requested by gSetDrawingLimits() (see below).

Colour Capabilities

GINO is able to output to a wide range of plotters, printers and screen devices.
Colour variations can only be achieved within the limitations of the device and to
examine a device’s capability, use the following routine:

gEnqColourInfo(ndc, ndt)

will return the number of independently selectable colours/greyscales (ndc), and
the display type (ndt) of the currently nominated device.

GRAPHICS DEVICES Device Qualification

If it is a monochrome device, ndc and ndt will return zero. Positive values of ndt
indicate a colour display and negative values of ndc indicate a greyscale display.
For a fixed colour/greyscale display (ndt = + 1), ndc returns the number of
colours that can be selected with gSetLineColour(), but these cannot be changed
with gDefineRGB() etc.

For a static colour/greyscale display (ndt = £ 2) or a dynamic colour/greyscale
display (ndt = + 3), the device has its own colour look-up table with nde entries.
Colours are selected by index with gSetLineColour(), the entries of which can be
modified by index with gDefineRGB() etc. When defining colours, the result
may not be exactly what the user requested but it will be the closest
approximation possible given the limitations of the device. Because of the nature
of the colour look-up table on a dynamic colour/greyscale display, when a change
is made to a particular colour definition it will result in a change to all output
drawn previously (and still displayed) in that colour. This gives the facility for
instant colour switching.

Some devices will operate in direct colour (24 bit) mode (ndt = £ 4), although
this is never the default mode of operation for GINO devices if more than one
mode is available. Under these circumstances there is no hardware colour
look-up table and colour is defined using specified red-green-blue components..
However, an application may continue to use colour indices as GINO maintains
its own colour look-up table which can be modified through gDefineRGB() etc.
(see page 205). Specific red-green-blue colour settings may also be defined using
the gTrueCol() function in conjunction with gSetLineColour() (see page 217). An
application can determine whether a device can operate in true colour mode by
enquiring the highest colour mode type through a call to gEnqDeviceState().

Note that all colour enquiries will return 24bit RGB triplets when operating in
direct colour mode.

GINO provides a facility to change the default device colour capabilities through
the routine gSetColourInfo():

gSetColourInfo(ndc, ndt)

This routine allows an application to increase or decrease the number of available
colour indices (ndc) within the devices maximum capabilities and/or increase or
decrease the colour mode (ndt) again within the devices maximum capabilities.
The limits being found through the routine gEngDeviceState(). For example, an
application may limit the number of colour table entries required, leaving more
system resources for other applications, or it may set the device into true colour
mode (ndt=4) for full 24bit colour work.

47

Device Initialization GRAPHICS DEVICES

Device Initialization

Once the device qualification steps have been performed (if necessary), the next
input or output operation requested by the GINO application will initiate an
initialization of the graphics device that has been nominated. This will involve
the opening the output stream to which the device is connected or opening the
output file to which the graphics commands are being sent and sending the
necessary commands to initialize the graphics device and set it to a known
initialized state. (Enquiry routines do not force device initialization).

It is not until this point that any communication takes place with the device or
file, or the graphics screen or window is activated. After the initialization of the
graphics device has taken place, the actual input or output operation is then
carried out, followed by the rest of the graphics operations of the application. The
current graphics device remains active until a request is made to close or suspend
it.

New Drawing

48

During the activation of a graphics device, output may be divided into a number
of ‘drawings’. Each one can be seen as a set of output primitives separated by a
request to start a new drawing. The routine to start a new drawing is:

gNewDrawing()

The effect of this routine depends on the type of device being used. On graphical
displays the screen is erased while on plotters or printers, fresh paper is loaded or
wound on.

The request to start a new picture is not actually carried out at the exact time the
routine is called within an application. In fact, on printing devices, if no drawing
has taken place prior to the call, no action is taken at all by this routine. The
delay also allows an application to redefine the drawing limits for the new picture
using the routine gSetDrawingLimits(). However, on window devices the action
at gNewDrawing() also takes into account any changes made by the user of the
application in resizing the active window. Thus, if the application user has
resized the window, this takes priority over a programming call to
gSetDrawingLimits(). It is therefore essential to always enquire the actual
drawing limits after a call to gNewDrawing() using the routine
gEngDrawingLimits() when using a window device.

GRAPHICS DEVICES Device Dependent Routines

In addition to possibly redefining the drawing limits, the routine gNewDrawing()
also resets the current drawing position to 0.0,0.0,0.0. All other drawing
attributes and states are maintained.

Device Dependent Routines

In addition to the standard device independent input and output facilities of
GINO, there are a number of device specific facilities available to the user of
GINO, such as batch modifications or access to auxiliary drawing areas. These
are provided through standard library routines, but the routines may have
different effects on different devices. Routines that are not applicable to the
currently selected device have no effect (e.g. the selection of alpha-numeric mode
is ignored on window devices).

Emptying the Graphics Buffer

GINO buffers the graphical information before transmission to the output device.
This has the effect that some output may not appear at the same time as the
generating routine is called. It may be desirable to force the emptying of this
buffer prior to some numerical processing to ensure the graphics display is
completely up to date. The routine gFlushGraphics() can be used for this purpose.

gFlushGraphics()

Auxiliary Drawing Areas

Where a device has the facility of multiple drawing areas in the form of memory
planes or display windows as in a windowing system, GINO provides device
independent routines for the opening, closing and selection of these as part of a
multi-windowing application. In most windowing systems, auxiliary drawing
areas are grouped in pairs as each visible drawing area or window usually has an
associated invisible memory copy or backing store of the same size. This area is
used to update the visible part of the drawing area or window if any portion
becomes exposed as a result of the re-sizing or re-positioning of other windows.
Therefore, a windowing device driver such as X Windows or Microsoft Windows
will automatically create two drawing areas which are identified as area zero (the
display) and one (the backing store).

Additional drawing areas may be opened using the following routine:
gOpenAuxDrawingArea(idn, title, xp, yp, width, height)

and depending on the value of the identifier idn, are deemed visible or invisible.

49

Device Dependent Routines GRAPHICS DEVICES

50

All new even numbered areas (2+) are deemed visible and will automatically
generate an invisible area of the same size with an identifier of idn+1. These will
operate in the same manner as the default drawing areas 0 and 1. All new odd
numbered areas (3+) are deemed invisible and will not have an associated visible
area. The title and origin arguments are only used for even numbered (visible)
drawing areas. You cannot open an invisible area if a visible one of identifier
(idn-1) already exists or vice-versa.

Auxiliary drawing areas may be closed and therefore removed using:
gCloseAuxDrawingArea(idn)

The closure of a visible drawing area (even numbered) will automatically remove
its associated backing store (idn+1).

The default drawing area for all devices is identifier 1, but GINO’s output may be
directed to any opened drawing areas through the routine:

gSelectDrawingArea(idn)

As with the default drawing area, it is recommended that all drawing is directed
to the backing store (invisible part) of a visible drawing area. This will ensure the
visible part of the display is kept up-to-date by the Window Manager. It is
possible, however, to direct output to the visible part only, which may offer faster
display speeds but suffer display loss if a portion of the drawing area becomes
covered and then exposed. The selection of the invisible part (backing store) only
is offered through the routines gStartBatchUpdate()/gEndBatchUpdate().

Where output is directed to an invisible drawing area (ie. with no visible part),
this can only become visible by copying rectangular regions from this area to
another drawing area using the routine gCopyPixelArea() (see page 189). This
facility may be useful for animation sequences where picture segments are stored
on an invisible drawing area, to be copied at speed to a visible drawing area.

Batch Modifications to Display

The routines gStartBatchUpdate() and gEndBatchUpdate() may be used on some
devices to begin and end a batch of modifications to the display surface or
hardware display file. Users should refer to Appendix B to see whether or not
these routines can be used on a particular device.

gStartBatchUpdate()

gEndBatchUpdate()

GRAPHICS DEVICES Device Dependent Routines

When gStartBatchUpdate() is called no further drawing primitives are sent to the
display surface, but are batched up in the display file or backing store. When
gEndBatchUpdate() is called the display surface is updated with the contents of
the display file or backing store. gStartBatchUpdate() contains an implicit call to
gEndBatchUpdate().

The process of storing and releasing drawing primitives from a backing store is
called double buffering. On certain devices the time to update the drawing
surface using gEndBatchUpdate() is noticeably shorter than the time it takes for
all the drawing primitives to be processed individually. The double buffering can,
therefore, improve real-time display.

Alphanumeric Mode

Many graphics devices have separate windows or planes for graphics and alpha
modes where GINO graphics is directed to the graphics area and standard C/C++
or Fortran I/O and GINO error and tracer messages are directed to the alpha area
or text window. While standard I/O is not recommended for a complete working
application, the user should switch to alphanumeric mode before using such
facilities. The routine to switch to alphanumeric mode is:

gSetAlphaMode()
GINO will switch to graphics automatically when required.
Window visibility

The visibility of the dialogue and graphics areas can be changed with the
routines:

gSetDialogueVis(diavis)
gSetGraphicsVis(gravis)

where diavis or gravis may be set to either GINVISIBLE or GVISIBLE. The
visibility state of a dialogue or graphics area may be used on some systems to
place the appropriate window to the front (GVISIBLE) or back(GINVISIBLE) of
the stack of visible windows.

51

Device Release and Suspension GRAPHICS DEVICES

Device Titles

The routine gSetDeviceTitle() provides a means to define a device title or banner
as appropriate to the currently nominated device.

gSetDeviceTitle(title)

This routine can for example be used to set a window title or banner.

Device Release and Suspension

When graphical output to a device is complete it should be terminated by
releasing the device. This is done by calling the routine:

gCloseDevice()

If a new device is nominated, any previously nominated device is first released.
A program should include at least one call to gCloseDevice() since its omission
may leave the device in an undesirable state. After a device has been released,
further pictures cannot be defined until another device is nominated.

Graphics output to a device can be suspended by the routine:
gSuspendDevice()

This allows an alternative device to be nominated without completely closing or
resetting the original device. If such a device is then re-nominated, the device
driver may omit part of the initialization phase (eg resetting hardware colour
tables etc) allowing output to continue to the same display area without affecting
visualization (see page 52).

Using Multiple Devices

52

Whilst it is not possible to draw to more than one device simultaneously, it is
often the case that an application will require to put graphical output onto more
than one device in a sequence. The most usual example of this is when a copy of
the graphics is required on a printer, plotter or metafile.

The process of exporting graphical output onto a secondary device involves the
following steps:

1) Nominate screen device

2) Draw objects

GRAPHICS DEVICES Using Multiple Devices

3) Close or suspend screen device

4) Nominate plotter, printer, metafile device
5) Set up appropriate mapping/scaling

6) Redraw required objects

7) Close printer, plotter, metafile device

8) Re-nominate screen device (if required)

Where a simple copy of the graphics is required on a printer, plotter or metafile,
it would be usual to close the screen device (using gCloseDevice()), nominate the
required hard copy device and then close this device at the end of the application
(again using gCloseDevice()).

In a more sophisticated application, the process of drawing to the screen,
selecting a print option and going back to the screen may be carried out a number
of times. In this case it would be usual to suspend the screen device (using
gSuspendDevice()) before nominating the plotter, closing the plotter device on
each cycle and closing the screen device at the end of the application.

Mapping to the Second Device

An important consideration when outputting to more than one device is the
mapping of your graphics to fit what may be different sized drawing areas on the
plotter, printer or metafile. This is especially true if the printer output may be
directed to A4 and/or A3 paper on different occasions. The situation may be
further complicated if the orientation of the plotter device does not match that of
the screen.

There are a number of different methods to cater for this situation:
1) Modify the drawing units (gDefinePictureUnits())
2) Set up an appropriate viewport (gSetViewport2D())

3) Manually scale/rotate the output using GINO transformations
(gScale2D()/gRotate2D())

Each method has its advantages and disadvantages.

53

Using Multiple Devices GRAPHICS DEVICES

54

Saving and Restoring GINO State

It should be noted that the process of nominating a new device has the effect of
resetting all current GINO and device attributes to their default settings.
Therefore if an application has set up various broken line and/or hatch styles etc.,
these are all lost when the new device is nominated. For the simple application
these can perhaps be re-defined for the secondary device, and again when
re-nominating the screen device. However, GINO, provides a means to save and
restore all these attributes through the following routines:

gSaveGinoState()
gRestoreGinoState(map)

When gSaveGinoState() is called, all the current attributes, and output tables are
saved in a temporary scratch file to be restored when gRestoreGinoState() is
called. The argument map in gRestoreGinoState() determines whether the saved
device limits are mapped to the current device limits. Multiple calls to
gSaveGinoState() will store the attributes on a stack to be restored in the reverse
order in which they were saved.

The following example shows the use of these routines and also shows the steps
required to output to a plotter, printer or metafile device.

C code

#include gino-c.h>

gOpenGino () ;
Screen () ;

/* Define line styles, hatch tables etc. */
gDefineLineStyle (...

/* Save gino state twice */
gSaveGinoState () ;
gSaveGinoState () ;

/* Output graphics */

Output () ;

/* Suspend screen device */
gSuspendDevice () ;

/* Nominate plotter */

Plotter () ;

/* Restore GINO state (mapped to plotter limits) */
gRestoreGinoState (GMAPPED) ;

/* Output graphics */

Output () ;

/* Re-nominate screen */
Screen () ;

/* Restore gino state */
gRestoreGinoState (GABSOLUTE) ;

/*

GRAPHICS DEVICES Using Multiple Devices

F90 Code
use gino_ £90

call gOpenGino
call Screen
Define line styles, hatch tables etc.
call gDefinelLineStyle (...
Save gino state twice
call gSaveGinoState
call gSaveGinoState
Output graphics
call Output
Suspend screen device
call gSuspendDevice
Nominate plotter
call Plotter
Restore GINO state (mapped to plotter limits)
call gRestoreGinoState (GMAPPED)
Output graphics
call Output
! Re-nominate screen
call Screen
! Restore gino state
call gRestoreGinoState (GABSOLUTE)

Note that gSaveGinoState() is called twice before nominating the plotter, in order
to save two copies of the current GINO state. The first restoration (carried out
after the plotter is nominated), specifies that the saved drawing limits are to be
mapped to the new plotter limits. This sets up an appropriate viewport which
ensures that the output on the plotter contains all the output on the screen. The
second restoration is carried out once the screen device is re-nominated to ensure
it is restored to the same state as before the plotter nomination.

Duplicating Output

There are no automatic procedures in GINO to duplicate the output generated on
a screen device to be sent to the desired printer/plotter. This is because it is
necessary, by some means or other, to re-issue the drawing commands on the
selected output device, and for the reasons stated above these may not be the
same dimension or orientation as that on the screen. It may also be desirable to
highlight parts of a drawing differently on monochrome output than on a colour
screen.

It is therefore the responsibility of the application writer to re-draw (with or
without modification) the required output onto the printer/plotter using GINO
drawing routines.

55

Using Multiple Devices GRAPHICS DEVICES

56

The simplest method of easing this task is to put all the drawing commands into a
separate routine, so that it may be called when the screen or plotter device is
nominated (as shown in the example above).

A more sophisticated method is to store the output into one or more picture
segments which can then be redrawn on the new device. This facility is described
later in the document (see page 423).

Chapter

IMPORTING AND EXPORTING

Importing and Exporting Introduction

An extension to the process of simply generating graphics using the GINO
library, is the issue of generating the right graphics for importing into Word
Processing, DTP or image processing packages and importing graphics into
GINO applications.

The wide range of metafile formats that are available often makes the selection of
the appropriate one even more difficult. This section outlines the different
formats that GINO can handle, their advantages and disadvantages, hopefully
making the choice easier.

This section also covers the necessary steps that need to be taken to duplicate
graphics that has been displayed on some interactive device or screen, out to an
appropriate metafile or printer device.

Overview

The process of importing and exporting graphics is achieved through metafiles.
These are files that store graphical information in a published format that are
generated and/or interpreted by graphics software such as Word Processing,
Image Processing packages or WEB browsers. The GINO library can generate a
number of different metafile formats and can interpret a smaller set. GINO does
not claim to handle large numbers of metafile formats as there are a number of
widely available packages that can read, convert and export a wide range of
formats that GINO users can use.

57

Metafile Formats IMPORTING AND EXPORTING

Metafiles are divided into two classes, those that store the graphical information
as a bitmap (i.e. A finite number of ‘pixels’ of information representing a
rectangular drawing area), or as a vector format (containing the lines and
characters etc. that make up the picture). Bitmap formats are often compressed to
save space but vector formats are usually the more complex and can store
additional information including data and images.

In addition to the external metafile formats that GINO can handle, GINO has its
own proprietary format called SAVDRA which is included in the summary
below.

Metafile Formats

58

There are many advantages and disadvantages for using a particular type of file
format when exporting GINO output to a word-processor or DTP package.
Choosing one format over another may result in smaller file sizes, better
capabilities such as a greater number of colours or fonts, or provide the ability to
‘edit’ the graphics once it has been imported.

BMP

BMP files are image files and are therefore more suited to image handling
packages. GINO only handles the uncompressed BMP format resulting in fairly
large files on creation, but GINO does generate and interpret both colour indexed
and true colour formats of BMP file. The size of the imported image is
determined by the call to gSetDrawingLimits(), so ensure that
gSetDrawingLimits() is called matching the size of the GINO picture. Keeping
gSetDrawingLimits() to the correct size, also keeps the file size to the minimum
possible.

Note that BMP files are created using the glmage() driver as detailed in
Appendix B, however shaded 3D images using OpenGL are exported to BMP via
the gWogl() driver.

CGM

The CGM standard provides for three encodings - character, binary and clear
text, the first two of which can be generated and interpreted within GINO.

Users of CGM are referred to the functional specification and encodings of the
standard as published by BSI or ISO. Four documents are available:

Functional Specification BSI 6945(1) 1SO 8632-1
Character Encoding BSI 6945(2) ISO 8632-2

IMPORTING AND EXPORTING Metafile Formats

Binary Encoding BSI 6945(3) 1SO 8632-3
Clear Text Encoding BSI 6945(4) 1SO 8632-4

CGM metafiles are acceptable to many other software systems and so pictures
may be transferred between different vendors’ packages, but as there are many
different encodings not many systems generate or interpret all of them. The
Binary encoding is more efficient for time and file space requirements on all
systems that use it.

CGM files are vector-format files. Up to 255 colours are supported but only one
font is available.

File size is quite small and most packages can only read Binary Integer format
(gCgmbi()). The size of the picture is automatically detected by the importing
program, so gSetDrawinglLimits() accuracy is not important.

DXF

DXF files are vector files originally developed for AutoCAD. File sizes are very
big and the format does not include many hardware features. DXF files include
an image size header calculated from the default paper size or a call to
gSetDrawingLimits(). Ensure that this matches the size of the GINO picture as
this is used to scale the image in the importing program.

EPS (Encapsulated Postscript)

EPS files generated from GINO are vector-format files. GINO does not include
an image header in the file but most packages do not now require one. (If one is
required, the image will not appear on the screen and the graphics will only print
on a Postscript-compatible printer. The recommended EPS routine to use is
gEpsexp() which provides a default orientation of portrait. (The other Postscript
nomination routines assume a default of landscape).

The GINO Postscript file contains the size of the image in a BoundingBox
comment and this is used in the importing program to display the correct size of
image. By default, the BoundingBox value is calculated automatically by the
GINO driver and is placed at the end of the file. Some filters however, require the
BoundingBox value to be at the start of the file and this can be achieved by
setting the iprop(3) parameter in gEpsexp() accordingly (See Page 816).

Postscript’s advantage is its universal acceptance and the availability of many
fonts, giving the most professional appearance in most cases.

59

Metafile Formats IMPORTING AND EXPORTING

60

ICO

Windows Icon files are a particular type of image file that is usually restricted to
16x16 or 32x32 pixels. GINO can import these files but not create them.

JPEG

JPEG is a standardized compression method for full-colour and grey-scale
images. JPEG is intended for compressing “real-world” scenes. Line drawing,
cartoons and other ‘non-realistic’ images are not its strong point. JPEG is lossy,
meaning that the output image is not exactly identical to the input image. The
amount of lossyness can be controlled by a quality setting, with low quality
giving very high levels of compression. JPEG files are accepted by all common
Web browsers.

PNG

PNG (Portable Network Graphics) is an extensible file format for the lossless,
portable, well-compressed storage of raster images. PNG provides a patent-free
replacement for GIF and can also replace many common uses of TIFF.
Indexed-colour, grayscale, and truecolor images are supported, plus an optional
alpha channel.

PNG is designed to work well in online viewing applications, such as the World
Wide Web, so it is fully streamable with a progressive display option. PNG is
robust, providing both full file integrity checking and fast, simple detection of
common transmission errors.

SAVDRA

SAVDRA is GINO’s proprietary metafile format and is designed to match the
functionality of GINO catering for all the features of the package. The format
consists of fixed length records of ASCII printable characters permitting easy file
transfer from one GINO system to another.

Two different forms of SAVDRA metafile exist, one for storing complete
drawings (gSavdra()) and one for storing graphical elements or components in
the form of a library (gSavpic()).

In general, gSavdra() is used for storing complete drawings that might be
subsequently exported to a number of different hard copy devices. Alternatively,
it can be used to enable drawings to be produced a number of times on different
devices. In addition, it may be used to generate a drawing on one machine and to
produce a graphic output on another.

IMPORTING AND EXPORTING Metafile Formats

The alternative form, gSavpic() is designed to store picture segments for
subsequent use as library objects (see page 423). In this form, global information
such as line and hatch styles are not stored in the file and the segments consist of
graphical primitives that can be adapted to the application that uses them.

WMF

WMF files are vector files and are amongst the smallest. Some fonts are available
but appearance may be a problem if fonts are substituted by the import program.
The size of the imported image is determined by the parameters in the
nomination routine therefore ensure that these match the size of the GINO
graphics as close as possible.

XWD

These are image dumps used on Unix systems supporting X windows. Normally
the files are created using the Unix command xwd and read in using the
corresponding command xwud (X Windows UnDump). GINO’s XWD metafiles
can be read into third party applications or displayed on the X terminal or screen.

Summary

Below is a summary of image file types:

Metafile Class GINO Export/Import
BMP Bitmap Export & Import
CGM Vector Export & Import
DXF Vector Export
EPS Vector Export
ICO Bitmap Import
JPEG Bitmap Export & Import
PNG Bitmap Export & Import

SAVDRA Vector Export & Import
WMF Vector Export
XWD Bitmap Export & Import

61

Exporting Metafiles from GINO

Exporting Metafiles from GINO

Metafiles are created in GINO in the same way that graphics is drawn to any
graphics device. In other words, the appropriate metafile driver is nominated
through the device nomination routine, an external file name is assigned, the
drawing is done and the device is closed (see page 39).

For example, to create a BMP file the following code would be used:

gBmp () ; call gBmp
gSetDeviceFilename call gSetDeviceFilename &
("example.bmp”,0) ; (" example.bmp’,0)
/* 1
Do Drawing ! Do Drawing
*/ !
gCloseDevice () ; call gCloseDevice

If a file name is not assigned, a default name of BMP.OUT is created, where the
prefix of the file name is the same as the nomination routine name. It is better
practice to assign a name with the appropriate suffix (e.g. example.bmp) as most
window systems will give the resulting file an appropriate icon and enable the
file to be viewed by any installed metafile viewing packages.

Details on the specifications of the GINO drivers for all the metafile formats can
be found in Appendix B.

Metafiles into External Packages

62

The following table indicates which packages can read metafiles generated from
GINO and gives hints on either how to read the file in, what to expect visually
and what can be done to the picture once read in. The packages that support
editing of the graphics handle editing in different ways; either the picture may
need to be read in as a drawing, the picture may need ‘ungrouping’ after being
read in or the picture may simply require double-clicking to go into edit mode.
Consult the package documentation for more details on this.

The table also lists the recommended GINO nomination routine together with a
rough guide on file size comparisons. The example filesizes were all generated
from exactly the same GINOGRAF program containing a mixture of polygon
fills, hardware text, software text, lines and arcs.

IMPORTING AND EXPORTING

Chapter 3:IMPORTING AND EXPORTING Metafiles into External Packages

BMP CGM DXF EPS WMF JPG PNG

Recommended routine: gBmp() gCgmbi() gDxf() gEpsexp(...) gWmfp(...) glpeg() gPng()
Example filesize: 692K 40K 745K 36K 30K 61K 14K
Package
Adobe PageMaker V5.0 v No v Y16 v v v
Adobe Photoshop V5.0 v No No v No v v
Borland Delphi v6.0 v No No No v v No
CorelDraw V9.0 \/ \/[10] \/ \/[2] \/ \/ \/
Corel Ventura V8.0 \/ \/[]0] \/ \/[2] \/ \/ \/
Corel WordPerfect V9.0 v v v v \/[7] v v
Lotus Freelance v9.6 ‘/ \/[3] \/ No \/ \/ No
Lotus WordPro v9.6 \/ No No \/[1 6] \/ \/ \/
Lotus 1-2-3 v9.6 v v'10) No No v v No
Microsoft Word V6.0 ‘/ \/[5][10] No ‘/[14,6] \/ No No
Microsoft Word 2000 v v 5101 No v'16] v v v
Microsoft Excel 2000 v v [5119] No V1.6 v v v
Microsoft Internet
Explorer 6.0 No No No No v v v
Microsoft Powerpoint
2000 v V591 No Vel v v v
Netscape Navigator
V3.03 (OpenVMS) No No No No No \/ No
Netscape Communicator
V4.5 (UNIX) No No No No No \/ \/
Netscape Communicator
V6.2 (Windows) No No No No No \/ \/
Paint Shop Pro V6.0 v v aji0] v v v v v
Quark Xpress V4.0 v No No /[1 6] v v No
Visual Basic V6.0 \/ No No No \/ \/ No
Visual Studio .NET 2002 v No No No v v v

[1] Picture doesn’t show up on screen but will print to a Postscript printer

[2] Loads using the interpreted EPS filter only

3] Multi-polygons are not drawn (This shows up with polygonally filled characters as well)

[4] Colours may be displayed wrongly due to a limited fixed palette

[5] The image does not appear if a gNewDrawing() is at the beginning of the GINO program

[6] Use iprop(3) in gEpsexp() to move the Bounding Box comment from the bottom to the top

[71 Hardware fonts may not show correctly

8] Must check box “Make Postscript Object” or “Create a Postscript Object” when importing

[91 Cell arrays (pixel data) only displayed if the cell has < 2048 pixels and when interpreting char. encoded files (gCgmchi)

[10] Cell array and pixel images are not displayed

63

Importing Metafiles into GINO IMPORTING AND EXPORTING

Importing Metafiles into GINO

64

GINO can handle the import of several types of metafile; its own proprietary
SAVDRA metafile, CGM character and binary encodings and a number of image
metafile formats.

In all enquiries and interpretations of SAVDRA and CGM metafiles, the
appropriate routines require a file unit or pointer which identifies the external file
itself. This is obtained through use of the gFopen() function which opens the
desired metafile (see page 28).

For example, where an enquiry is to be made on the SAVDRA metafile,
‘picture.sav’, the following code is required to open the file:

GFILE *file; integer file

file=gFopen (“picture.sav”,"r"); file=gFopen ('picture.sav’, GREAD)

SAVDRA Metafile

As described in the above section, the SAVDRA metafile can be used to store
complete drawings (using gSavdra()) or a library of picture elements (using

gSavpic()).

Being proprietary to the GINO library a number of facilities are available in the
GINO library to enquire information about a SAVDRA file and to interpret its
contents.

SAVDRA Enquiries

In order to find the drawing limits of an existing SAVDRA metafile, the routine
gEngSavdraDimension() is provided:

gEnqSavdraDimension(file, type, dim)

where file is a pointer to a GINO file unit opened by gFopen() (see above) from
which the file is read, type returns the type of metafile (1=SAVDRA, 2=SAVPIC)
and dim contains the limits of the positive quadrant of that file.

IMPORTING AND EXPORTING Importing Metafiles into GINO

In order to enquire information about segments within a SAVDRA metafile, two
routines are provided:

gEnqSavdraSegList(file, list, n, icount)
gEnqSavdraSegAttribs(file, nseg, att)

where file is the opened file unit. The routine gEnqSavdraSegList() returns a list
of segment numbers that are contained in the metafile and the routine
gEngSavdraSegAttribs() returns the segment attributes of an individual segment
nseg in the metafile. The information is returned in a structure of type GPICATT
which includes whether the segment exists, its anchor position and other
attributes.

In all cases, the file is then rewound ready for interpretation as required.

SAVDRA Interpretation
SAVDRA code is interpreted using the routine:
gGetDrawing(file, nseg, mode, paper)

where file is a pointer to a GINO file opened by gFopen() or a Fortran 90 file unit
(see page 28) from which the code is to be read and nseg specifies the picture to
be drawn. If nseg is -1, all the pictures in the file will be drawn. The values of
mode and paper enable the code to be interpreted in different ways to satisfy the
individual requirements.

For the ‘quick look’ facility, generally mode would be GMAPPED and paper
=GPROGRAM. The output would then be drawn to utilize as much of the
drawing area as possible. For the final production of the output, mode would be
GABSOLUTE and paper=GPROGRAM.

Similarly for exactly reproducing drawings on a number of devices and/or
machines, the combination of mode = GABSOLUTE and paper = GMETAFILE
would be used. If the code were to be used as part of a layer drawing and
combined with output from other programs mode = GTRANSFORMED and
paper = GPROGRAM would probably be used.

Modes GABSOLUTE, GMAPPED and GTRANSFORMED reproduce only
those parts of the drawing that were drawn on the positive quadrant of the
SAVDRA device. Mode GWHOLE reproduces the entire SAVDRA drawing (-ve
and +ve quadrants) uniformly scaled to fit within the current clipping limits.

65

Importing Metafiles into GINO

IMPORTING AND EXPORTING

66

Consider for example the following program for producing a file containing the
code for defining a 10mm square on a drawing area of 200mm x 200mm.

static GDIM paper =
{200.0,200.0};

gSavdra () ;

gSetDrawingLimits (&paper,0) ;
gOpenSeq (4) ;
gMoveTo2D(0.0,0.0) ;
gDrawLineTo2D(10.0,0.0) ;
gDrawLineTo2D(10.0,10.0) ;
gDrawLineTo2D(0.0,10.0) ;
gDrawLineTo2D(0.0,0.0) ;
gCloseDevice () ;

type (GDIM) paper = &

GDIM{200.0,200.0}

call gSavdra

call gSetDrawingLimits (paper,0)
call gOpenSeg (4)

call gMoveTo2D(0.0,0.0)

call gDrawLineTo2D(10.0,0.0)
call gDrawLineTo2D(10.0,10.0)
call gDrawLineTo2D(0.0,10.0)
call gDrawLineTo2D(0.0,0.0)
call gCloseDevice

For a ‘quick look’ on a PC Windows screen, the following program with

mode=GMAPPED could be used:

GFILE *file;

file=gFopen (“box.sav”,"r");

gMwin (Inst,hPrevInst);

gGetDrawing (file, 4, GMAPPED,
GPROGRAM) ;

gCloseDevice () ;

integer :: file = 11

file=gFopen ('box.sav’, GREAD)

call gMwin

call gGetDrawing(file, 4,GMAPPED, &
GPROGRAM)

call gCloseDevice

A scaling factor would be produced to ensure that the 200mm x 200mm drawing
area would fit onto the PC Window, whose size would vary according to the
resolution and monitor size. In other words the 10mm square would no longer be

10mm.

To reproduce the drawing on a plotter the following program with mode =

GABSOLUTE could be used:

GFILE *file;

file=gFopen (“box.sav”,"r") ;
gHp7475 () ;
gGetDrawing (file, 4, GABSOLUTE,

GMETAFILE) ;
gCloseDevice () ;

integer file

file=gFopen ('box.sav’, GREAD)

gHp7475

call gGetDrawing(file, 4, &
GABSOLUTE, GMETAFILE)

call gCloseDevice

This requests a drawing area of 200mm x 200mm and draws a 10mm square; in
other words it is exactly as specified in the generating program.

IMPORTING AND EXPORTING

Importing Metafiles into GINO

SAVPIC Interpretation

SAVPIC code is interpreted using the routine:

gGetPicture(file, nseg)

Since it is assumed that gGetPicture() will be used to recall picture segments as if
they were library objects, it is necessary for the routine to ensure that any
drawing qualifiers (e.g. line styles) set within an object do not affect the calling
program; thus gGetPicture() stores these on entry and then resets them on exit.

Consider, for instance, the following program to generate a metafile containing

definitions of two character strings.

gSavpic() ; call
gSetDeviceFilename call
("string.sav”,0)
gOpenSeg (1) ; call
gDisplayStr (“AB”) ; call
gSetCharSize (5.0,5.0); call
gDisplayStr (“CD”) ; call
gCloseDevice () ; call

gSavpic
SetDeviceFilename &
("string.sav’,0)
gOpensSeqg (1)
gDisplayStr (‘AB’)
gSetCharSize (5.0,5.0)
gDisplayStr (‘CD’)
gCloseDevice

The following interpreting program, displayed on a X Windows display should

produce the results indicated:

Setting a large character size would generate the characters shown below:

ABcoXY

GFILE *file; integer file

file=gFopen (”“string.sav”,”r”); file=gFopen (' string.sav’,GREAD)
gXwin () ; call gXwin

gSetCharSize (10.0,10.0); call gSetCharSize(10.0,10.0)
gGetPicture (file, 1) ; call gGetPicture(file, 1)
gDisplayStr (“XY"”) ; call gDisplayStr (’XY’)

Setting a small character size would generate the characters shown below:

AB(:[)XY

67

Importing Metafiles into GINO IMPORTING AND EXPORTING

68

GFILE *file; integer file

file=gFopen (”string.sav”,”r”); file=gFopen (' string.sav’, GREAD)
gXwin () ; call gXwin

gSetCharSize (2.5,2.5); call gSetCharSize(2.5,2.5)
gGetPicture (file, 1) ; call gGetPicture(file, 1)
gDisplayStr (”XY”) ; call gDisplayStr (’'XY’)

Note the characters ‘CD’ have their definition saved within the picture segment
and so remain the same in both cases.

When interpreting picture segments, gGetPicture() will always restore them in
the same units as when they were created, i.e. equivalent to mode =
GTRANSFORMED and paper = GPROGRAM in gGetDrawing(). However,
their form when displayed can be changed by using any of the GINO
transformation routines prior to calling gGetPicture().

Mixing SAVDRA Generators and Interpreters

In general the interpreting routine gGetDrawing() will always be used for code
that is generated using gSavdra() and routine gGetPicture() will be used for code
that is generated using gSavpic(). However, it is possible for code that is
generated using gSavdra() to be interpreted using the routine gGetPicture().
(Note: it is not possible to use gGetDrawing() for interpreting gSavpic() code). In
this case, the segment headers present in the gSavdra() code will not be decoded
by gGetPicture(), only the vector part of the segment will be interpreted. This
may mean that the resulting graphic output will not be the same as if the code has
been interpreted using gGetDrawing().

Workspace requirements for Drawing Interpretation

Both the gSavdra() and gSavpic() metafile generators can store complex
polygons within the file. Therefore, when interpreting any gSavdra() metafile that
may contain polygons, it is necessary to declare workspace for their retrieval (see
page 33). This includes polygons created with gStartPolygon() as well as
metafiles that contain gFillPolygonTo2D(), gFillPolygonBy2D() and gFillRect()
polygons since these are converted to complex polygons upon storage in the
metafile generators.

IMPORTING AND EXPORTING Importing Metafiles into GINO

CGM Metafiles

A CGM metafile consists of the following structure:

Metafile
BEGIN Descriptor Picture 1 Picture 2 nEn"él-:l)-AF“_E
METAFILE Elements
BEGIN ;::st::f tor EE;ISRE Picture Body END
PICTURE P PICTURE
Elements BODY

Graphical Primitive Elements
Attribute Elements
Control Elements

Each element having a unique identifier followed by a variable number of
parameters (possibly none).

Pictures are separated within a CGM file by using the GINO routine
gNewDrawing().

CGM Interpretation

CGM metafiles can be interpreted in one of two ways, either as a whole or
element by element. The first method corresponds closely to the gGetDrawing()
facility in the previous section where the whole file is read in and interpreted
onto the current output device (which may be another metafile). The alternative
method gives the user the opportunity to examine the file element by element and
interpret or skip over it as required.

To interpret a complete metafile the following routine is used:
gCGMlnterpreter(code, file, nseg, mode, errlev)

where code specifies the encoding (GCGMCHAR=character,
GCGMBINARY=binary), file is a pointer to a GINO file unit opened by
gFopen() from which the file will be read, (nseg is reserved for future use), mode
specifies the interpretation mode and errlev sets the error checking level (See
‘Error Handling within CGM”).

69

Importing Metafiles into GINO IMPORTING AND EXPORTING

For abstract scaled metafiles (ie. those in which the pictures have no scaling
information), the picture will be scaled to fit the current GINO window
irrespective of the interpretation mode. For metric scaled metafiles (the type
which GINO will always create), interpretation mode GABSOLUTE will draw
the encoded pictures to the same physical size that they were generated. Mode
GMAPPED will scale the pictures to fit the current GINO window as for abstract
metafiles. Mode GTRANSFORMED will restore the metafile to the same size
that it was generated, but subject to the current GINO transformation.

To interpret a character encoded CGM file onto an X Windows device the
following program could be used:

#include <gino-c.h> program cgm

main () use gino_ £90

{
GFILE *file; integer :: file
gXwin () ; call gXwin
file=gFopen (“file.cgm”,"xr"); file=gFopen (' file.cgm’, GREAD)
gCGMInterpreter (GCGMCHAR, file, call gCGMInterpreter (GCGMCHAR, &

GALL, GMAPPED, GFULL) ; file, GALL, GMAPPED, GFULL)

gCloseDevice () ; call gCloseDevice

} stop

In order to examine a CGM metafile element by element, five routines are
provided:

to open the file:
gOpenCGMFile(code, file, mode, errlev)

to get next element:
gGetCGMElement(element)

to skip over this element:
gSkipCGMElement(element)

to interpret this element:
glnterpretCGMElement(element)

to close the file:

gCloseCGMFile()

70

IMPORTING AND EXPORTING Importing Metafiles into GINO

To interpret a binary encoded CGM file onto an X Windows device but skipping
over all cell array primitives the following program could be used:

C code

#include <gino-c.h>
main ()

{

/*
/*

/*

GFILE *file;

int element;

gXwin () ;

file=gFopen (“file.cgm”,"r");

gOpenCGMFile (GCGMBINARY, file, GMAPPED, GFULL) ;
gGetCGMElement (&element) ;

Check for end of metafile */
while (element != 133) {
Check for cell array primitive */
if (element != 40)
gInterpretCGMElement (element) ;
else
Skip over cell array */

gSkipCGMElement (element) ;
gGetCGMElement (element) ;
}
gCloseCGMFile () ;
gCloseDevice () ;

F90 code

pr
us

ogram cgm
e gino_ f90

integer file
integer element
call gXwin
file=gFopen (' file.cgm’,GREAD)
call gOpenCGMFile (GCGMBINARY, file, GMAPPED, GFULL)
call gGetCGMElement (element)
Check for end of metafile
do while (element .ne. 133)
Check for cell array primitive
if (element .ne. 40) then
call gInterpretCGMElement (element)
else
Skip over cell array
call gSkipCGMElement (element)

end if
call gGetCGMElement (element)
end do

call gCloseCGMFile
call gCloseDevice
stop

CGM Elements

The full list of legal CGM element identifiers together with notes on their use by
the GINO generator and interpreter is found in Appendix B.

71

Importing Metafiles into GINO IMPORTING AND EXPORTING

Polygon Handling within CGM

All of CGM’s filled graphical primitives are handled by GINO using its polygon
definition and filling routines (see page 245). The CGM interpreter has a built in
polygon workspace of 2000 words but this may be increased by calling
gSetWorkspaceLimit() and gDefinePolygonWorkspace() prior to calling
gCGMilnterpreter() or gGetCGMElement() (see page 33).

e.g:
gSetWorkspaceLimit (20000) ; call gSetWorkspaceLimit (1,20000)
gbefinePolygonWorkspace (10000) ; call gDefinePolygonWorkspace &

(10000)

Note: Where polygon workspace is declared, users should be aware that polygon
identifiers 33000 upwards are used by CGM. The polygon workspace will also be
cleared after every polygon area unless the user has declared polygons (i.e. used
the GINO routine gSetPolygonldent()) before CGM fills the first polygon. If the
user has been using polygon identifiers before requiring filled polygons but still
requires CGM to clear the polygon workspace after every polygon, the user
should call gSetPolygonldent(0). This ensures that less polygon workspace is
required as only one polygon area is stored at a time.

Error Handling within CGM

All errors encountered by the CGM interpreter are handled in the same way as
other GINO errors except that they have been given a distinct range and are
therefore identified by the prefix ‘GINOCGM error/warning’. A full explanation
of CGM errors is given in Appendix E, but they are grouped in the following

sets:

Errors 1 to 19 Element found when interpreter in incorrect state

Errors 20 to 99 Unknown or illegal element found

Warnings 100 to 129 Invalid index

Warnings 130 to 150 Invalid colour definition

Warnings 200 to 250 Value has lost precision (ie. is outside range specified by
relevant precision)

Warnings 300 to 399 Invalid attribute

Warnings 400 to 499 Invalid descriptor or control element

Errors 700 to 800 Data handling error (I/O error, buffer error)

72

IMPORTING AND EXPORTING Importing Metafiles into GINO

For errors 1 to 19 the ‘state’ of the metafile refers to the stage of metafile
interpretation which may be one of the following:

State 1 KMFCL Metafile closed
State 2 KMFDS Metafile description
State 3 KPIDS Picture description
State 4 KPIOP Picture Open

State 5 KPICL Picture Closed
State 6 KPATX Partial Text

The error level setting used in both gCGMInterpreter() and gOpenCGMFile() can
be one of three values:

Errlev=0 No error checking
Errlev=1 Fast error checking - skip rest of element after first error

Errlev=2 Full error checking - continue processing element after error

CGM Limitations
The following limitations are imposed on the interpretation of CGM files:
The maximum number of points in a point list is 1024.
The maximum length of a character string is 256 characters.

The maximum number of colours interpreted is 2048 (this also applies to the
number of elements in a cell array primitive).

The maximum internal buffer size (for binary elements) is 4096 bytes.
All precisions are catered for except 64-bit precision within binary encodings.

Image Metafiles

The third type of metafile that can be imported into GINO is the image or bitmap
type. These are read in from the required metafile, into an integer array rather
than placing the image straight on the current output device. In this way they can
be manipulated and or processed by the application, and the (resulting) image can
be displayed using the full control of the GINO image handling routines (see
page 189).

73

Importing Metafiles into GINO IMPORTING AND EXPORTING

Two routines are provided to interpret image metafiles, one to enquire the type
and attributes and one to actually read the metafile into the integer work array. At
present these facilities handle Windows BMP files, Windows ICO files, X
Windows Dump files, JPEG and Portable Network Graphics (PNG) files.

The routine gEnqImageFile() can be used to enquire the type and attributes of an
external image file by examining the file header only.

gEnqImageFile(file, type, xgrid, ygrid, nbpp, ncols)

where type is the metafile type, xgrid and ygrid give the image dimensions and
nbpp and ncols return colour information. Once this information has been
gathered (if it is not already known), the actual image can be read using the
following routine:

gGetlmageFile(type, file, coldef, offset, collim, xgrid, ygrid, npix, pixbuf)

This routine will read in the contents of an external image file into the integer
array pixbuf ready for display by the routine gDrawPixelArea(). The
interpretation of the colour table held in the image file (if one is present) is
governed by the three colour definition arguments coldef, offset, collim. These
allow an application to ignore the image file colour table altogether, load it into a
specified colour range or map it to the existing GINO colour table.

The following program reads an image saved from Paintshop Pro. The image is
800 x 600 pixels and was saved with 256 colours. The GINO program first needs
to declare space of 800x600=48000 integer words in an array, then reads the
image with the routine gGetlmageFile(). coldef is set to 1 so that GINO will
define all the colours that are being used by the image.

The routine gDrawPixelArea() is then used to actually draw the image (in this
case to an MWIN window). It uses the xgrid,ygrid values returned by
gGetlmageFile() and if the full image is required, sets isx,isy to 1,1. The image is
positioned according to the first two values ix,iy which refer to the screen pixel
position starting from the top left corner of the screen. This example draws the
image starting at position 1,1.

C code
int pixbuf[48000],xgrid, ygrid;
gMwin () ;
gGetImageFile(1,’EGNS.BMP’,1,0,0, &xgrid, &ygrid,

48000, pixbuf)
gDrawPixelArea (1,1, xgrid,ygrid,1,1,xgrid, ygrid, pixbuf)

74

IMPORTING AND EXPORTING Importing Metafiles into GINO

F90 code

These routines handle 1, 4, 8, and 24 bit colour images.

75

Chapter

2D DRAWING

2D Drawing Introduction

Pen

GINO provides 2D line drawing facilities for:

Historically, computer graphics initiated in the days of pen plotters and whilst
today the drawing method can be a series of pixels on a raster screen, a plotter
pen or a light beam etc. depending on the output device, the term “pen” will be

Positioning

Single straight lines
Polylines

Polyline sets
Circular arcs
Parametric curves

B-spline curves

used throughout.

77

2D Drawing Introduction 2D DRAWING

Axes

The 2D coordinate system used is right-handed as shown below, with the X-axis
horizontal, the Y-axis vertical.

Y
A
f -Z
/
/
/
/
/
/

4« — — — — »
-X | (000000 X
\

\

\

\

z \
\
|
v Y

The Right Handed Coordinate System

Two-dimensional drawing can be anywhere within X,Y space, with the initial
origin being the bottom left-hand corner of the drawing area. Three-dimensional
drawing is covered separately, later in this document (see page 277).

78

2D DRAWING 2D Drawing Introduction

2D Start and End Pen Position

All drawing starts from the position at which the pen was left by the previous
drawing instruction - this is termed the start pen position. Initially, the position of
the pen is at (X,Y) = (0.0,0.0). The arguments for all 2D drawing routines define
the point at which the pen will be left after executing the routine. This is termed
the “end pen position”. The end position of one routine becomes the start position
for the next. The arguments can specify the absolute coordinates of the end pen
position, or the end pen position relative to the start position.

(X,Y) (X+DX,Y+DY)
End End

Start Start

v

Pen Position

2D Naming Conventions

The naming convention for the 2D drawing routines is as follows:

(a) The initial part indicates the routine:

gMove* - positioning

gDrawLine* - drawing straight lines
gDrawArc* - drawing circular arcs
gDrawPolyline* - drawing a series of straight lines

gDrawPolylineSet* - drawing a set of polylines

gDrawAkima* - drawing a curve using an averaging method due to Akima
gDrawCurve* - drawing a piecewise parametric cubic curve
gDrawSpline* - drawing a cubic spline curve

79

Positioning 2D DRAWING

(a) The latter part indicates the type of coordinates:

To - absolute

By - relative

(¢) The last part indicates dimension:

**2D - two dimensions
**3D - three dimensions (see page 277)
Positioning

The routines for “straight line movement” are:
gMoveTo2D(x, y)
gMoveBy2D(dx, dy)

Examples:

+ To position the pen at point (1.5,2.5) the following statement could be used:

gMoveTo2D(1.5,2.5) ; call gMoveTo2D(1.5,2.5)

+ To increment the start pen position by xa in the X-direction and ya in the
Y-direction the following statement could be used:

gMoveBy2D (xa, vya) ; call gMoveBy2D (xa,ya)

Straight Lines

The routines for drawing straight lines are:
gDrawLineTo2D(x, y)

gDrawLineBy2D(dx, dy)

80

2D DRAWING Straight Lines

For example - to draw a straight line from the point (50.0,20.0) to the point
(60.0,80.0) the following statements can be used:

gMoveTo2D (50.0,20.0) ; call gMoveTo2D(50.0,20.0)
gDrawLineTo2D (60.0,80.0) ; call gDrawLineTo2D(60.0,80.0)
Y
A
80 — End
20 + Start
— >
50 60 X

Straight Line Drawing

Alternatively, the following statements can be used:

gMoveTo2D (50.0,20.0) ; call gMoveTo2D(50.0,20.0)
gDrawLineBy2D (10.0,60.0) ; call gDrawLineBy2D(10.0,60.0)

The following sequence of statements would draw a square of side S, positioned
with the bottom left-hand corner at point (X,Y):

/* Position */ ! Position
gMoveTo2D (x, V); call gMoveTo2D(x, V)
/* Draw bottom line */ ! Draw bottom line
gDrawLineBy2D(s,0.0) ; call gDrawLineBy2D(s,0.0)
/* Draw right vertical */ ! Draw right vertical
gDrawLineBy2D(0.0,s) ; call gDrawLineBy2D(0.0,s)
/* Draw top line */ ! Draw top line
gDrawLineBy2D(-s,0.0) ; call gDrawLineBy2D(-s,0.0)
/* Draw left vertical */ ! Draw left vertical
gDrawLineBy2D (0.0, -s); call gDrawLineBy2D(0.0,-s)

81

Polylines 2D DRAWING

X.Y)

Straight Line Drawing

Polylines

The routines for drawing multiple straight lines are:
gDrawPolylineTo2D(npts, points2)
gDrawPolylineBy2D(npts, points2)

where points2 is an array of structures of type GPOINT containing two real
elements (points2.x and points2.y).

For example - to draw the six lines shown in the figure below, an array points of
type GPOINT is initialized with six coordinate pairs as appropriate to the
language:

C code

static GPOINT pt[6] = {2.0,1.0, 6.0,1.0, 8.0,3.0,
0.0,3.0, 4.0,7.0, 4.0,3.0};

’
’

/* Move to start */
gMoveTo2D(0.0,3.0) ;

/* Draw figure */
gDrawPolylineTo2D (6,pt) ;

82

2D DRAWING

F90 code

(End)
(4.0,3.0)

(Start)
(0.0,3.0)

Multiple Line Drawn by
gDrawPolylineTo2D()

The same figure could have been produced using the routine
gDrawPolylineBy2D() as follows:

C code

static GPOINT pt([6] = {2.0,-2.0, 4.0,0.0, 2.0,2.0,
-8.0,0.0, 4.0,4.0, 0.0,-4.0};

/* Move to start */
gMoveTo2D(0.0,3.0);

/* Draw figure */
gDrawPolylineBy2D (6,pt) ;

F90 code

Polyline Sets 2D DRAWING

Polyline Sets

84

Polyline Set Definition

A polyline set consists of an array of polylines each of which consists of an
integer number of vertices and a pointer to an array of 2D vertices.

Each polyline is complete within itself and does not make use of the current pen
position. For this reason polygon sets can only use absolute coordinates.

An example of a 2-D polyline set consisting of a trapezium and two triangles is
represented by the following coordinates and shown in the diagram below:

1 2 3 4 5 6 7 8 9 10 11 12 13
x: 40. 160. 340. 460. 40.0 120. 245. 245. 120. 250. 440. 250. 250.
y: 140. 40. 40. 140. 140. 145. 270. 145. 145. 145. 145. 335. 145.
< > < > < >

Polyline sizes

Polyline Set

2D DRAWING

Polyline Sets

Polyline Usage

Two dimensional polyline sets are drawn using the following routine.

gDrawPolylineSet2D(npol, polylines2)

where npol is the number of polylines contained in the GPOLYGON array

polylines2.

The example polyline sets described previously can be implemented as follows.

C code

static GPOLYGON poly[3] = {5, 0, 4,
static GPOINT points[13] = {

0

4y

40.0,140.0, 160.0,40.0, 340.0,40.0,

460.0,140.0, 40.0,140.0,

120.0,145.0, 245.0,270.0, 245.0,145.
250.0,145.0, 440.0,145.0, 250.0,335.

main ()

{
poly[0] .verts=&points([0];
poly[l].verts=&points[5];
poly[2].verts=&points([9];

gDrawPolylineSet2D(3,poly) ;

F90 code

type (GPOLYGON) :: poly(3)

type (GPOINT) :: points (13) = (/ &
GPOINT (40.0,140.0)
GPOINT (340.0,40.0)
GPOINT (40.0,140.0) &

)
)
)
)

GPOINT (120.0,145.0), GPOINT
GPOINT (245.0,145.0), GPOINT
GPOINT (250.0,145.0), GPOINT
GPOINT (250.0,335.0), GPOINT
poly(l) $nvert=5
poly(l)%verts=>points(1:5)
poly (2) $nvert=4
poly (2) $verts=>points (6:9)
poly (3) $nvert=4
poly (3) $verts=>points (10:13)

gDrawPolylineSet2D (3, poly)

245.
120.
440.

0};

GPOINT (160.0,40.0
GPOINT (460.0,140.

0,270.
0,145.
0,145.
.0,145.

)V &
0),

0, 120.0,145.0
0, 250.0,145.0};

85

Circular Arcs 2D DRAWING

Circular Arcs

The routines for drawing circular arcs are:
gDrawArcTo2D(xc, yc, xe, ye, sense)
gDrawArcBy2D(dxc, dyc, dxe, dye, sense)

All arcs are drawn from the start pen position. The radius of an arc is the distance
from the start point to the centre. The end pen position or any point on the
straight line from the centre through the end point of the arc may be specified.
The end pen position will then be calculated.

Two-Dimensional Arcs

Specifying the start pen position, end pen position and centre enables two
possible arcs to be drawn - the start and end points can be joined by either a
clockwise or an anticlockwise movement. The direction is indicated by sense.

End End

Start
+ Centre + Centre
Start

Clockwise/Anticlockwise

If the value of sense is GCLOCKWISE, then a clockwise arc is drawn, and if it is
GANTICLOCKWISE, an anticlockwise arc is drawn.

Examples:

« To draw an arc centre (100.0,100.0) and end point (50.0,100.0):

86

2D DRAWING Circular Arcs

(50.,100.)

End
+ Centre (100.,100.)

Start
Minor Chord

gMoveTo2D(70.0,60.0) ; call gMoveTo2D(70.0,60.0)
gDrawArcTo2D(100.0,100.0, call gDrawArcTo2D(100.0,100.0, &
50.0,100.0, GCLOCKWISE) ; 50.0,100.0, GCLOCKWISE)

» To draw a semicircle radius r:

gDrawArcBy2D(r, 0.0, call gDrawArcBy2D(r,0.0, &
r+r, 0.0, GCLOCKWISE) ; r+r, 0.0, GCLOCKWISE)

Start

Semicircular Arc

87

Circular Arcs 2D DRAWING

Drawing Circles

Circles can be drawn using the arc routines by specifying the end point of the arc
as being the start pen position. The value of sense is immaterial.

Examples:

» To draw a circle from the point (100.0,0.0) with centre (100.0,50.0):

gMoveTo2D (100.0,0.0) ; call gMoveTo2D(100.0,0.0)
gbDrawArcTo2D (100.0,50.0, call gDrawArcTo2D(100.0,50.0, &
100.0,0.0,GANTICLOCKWISE) ; 100.0,0.0,GANTICLOCKWISE)
Y

50.0 -

*
|
|
|
|
|
|
|
|
|

k

v

0.0 100.0 X
Start/End

Circular Arc

» To draw a circle centre (x,y) radius r:

/* Move to base of circle */ ! Move to base of circle
gMoveTo2D (x,y-r) ; call gMoveTo2D (x,y-1r)
/* Draw circle */ ! Draw circle
gDrawArcBy2D (0.0, r, call gDrawArcBy2D(0.0,r, &
0.0,0.0,GANTICLOCKWISE) ; 0.0,0.0,GANTICLOCKWISE)

88

2D DRAWING Circular Arcs

Hardware and Software Arcs

When using devices capable of drawing hardware arcs, software arcs may be
selected by using the routine:

gSetArcMode(swi)

The argument switches hardware arcs on (swi = GHARD) and off (swi =
GSOFT). Hardware arcs can be windowed and transformed and are subject to the
current line mode, but remain unaffected by the control routines
gSetArcIncrement() and gSetArcTolerance().

Software arcs should be selected for these routines to have effect.

Arc Control Routines

GINO arcs are drawn as a series of straight line chords. Enough chords are drawn
to produce relatively smooth arcs. The number of line segments per arc can be
controlled using one of the routines:
gSetArcIncrement(n)
gSetArcTolerance(tol)
Controlling the Number of Chords

The argument to routine gSetArcIncrement() specifies the number of straight line
segments (or chords) per full circle for all subsequent ARC routines.

Examples:

« To specify that subsequent arcs are to be part of an eight sided polygon:

gSetArcIncrement (8) ; call gSetArcIncrement (8)

In this case, for example, subsequent semicircles would consist of four chords.

« To draw a hexagon centre (x,y) and with radius r:

gMoveTo2D (x-r, Vy); call gMoveTo2D (x-r, V)

gSetArcIncrement (6) ; call gSetArcIncrement (6)

gbDrawArcBy2D(r,0.0,0.0,0.0, call gDrawArcBy2D(r,0.0, &
GANTICLOCKWISE) ; 0.0,0.0,GANTICLOCKWISE)

89

Circular Arcs 2D DRAWING

2R

Arc Increments

Note that calling gSetArcIncrement() will disable hardware generated arcs.

Controlling Tolerance

The tolerance is the maximum distance allowed between the approximating chord
and the true arc.

Tolerance

[) VU

Arc Tolerance

The default distance is dependent on the output device. This can be changed by
the use of gSetArcTolerance() to produce rougher or smoother arcs. The
smoothness of the arc is ultimately dependent on the accuracy of the device. For

example, to alter the tolerance to produce rough arcs, (i.e. set tolerance to 1mm)
use:

90

2D DRAWING Circular Arcs

gSetArcTolerance (1.0) ; call gSetArcTolerance (1.0)

Notes:

(a) The default settings of tolerance and number of chords can be reset by calling
gSetArcTolerance() or gSetArcIncrement() with zero arguments.

(b) The end position will always be on the circumference of the true arc.

(c) The most recently called of gSetArcTolerance() and gSetArcIncrement()
dictates the appearance of the chords.

(d) If the user specifies a finer tolerance than is permitted by the resolution of the
device, then gSetArcTolerance() reverts to half the minimum step size, that is to
say the smoothest arc possible on that device.

Arc Settings

The current settings of the arc control parameters may be obtained using the
routine:

gEnqArcState(swi, nincs, tol)

This returns the state of the hardware/software switch, the number of chords per
full circle, and the tolerance. nincs is returned zero if gSetArcTolerance() was
called more recently than gSetArcIncrement().

Use of Arc Routines

To draw an object a number of times, use a routine. By the use of routine
arguments, the position, size and orientation of the object may be varied either
locally from within the routine, or from the calling program.

For example, to draw a dumb-bell at position (100.0,100.0) width = 100.0, radius
=10.0, and length = 50.0:

dumb (100.,100.,10.,10.,50.) ; call dumb(100.,100.,10.,10.,50.)

To draw a dumb-bell at position (100.0,130.0) of half the size:

dumb (100.,130.,5.,5.,25.); call dumb(100.,130.,5.,5.,25.)

91

Circular Arcs 2D DRAWING

92

The following routine would draw the dumb-bell shown below:

C code

void dumb (float xc, float yc, float width, float radius,
float length)

{
/* Move to absolute origin of object */
gMoveTo2D (xc, VycC);
/* Move to start of drawing */
gMoveBy2D (-length/2.0,width/2.0) ;
/* Left-hand end */
gDrawArcBy2D (-radius, -width/2.0,0.0, -width, 1) ;
/* Bottom horizontal */
gDrawLineBy2D (length,0.0);
/* Right-hand end */
gDrawArcBy2D (radius, -width/2.0,0.0,-width, 1) ;
/* Top horizontal */
gbrawLineBy2D (-length,0.0);
}

F90 code

subroutine dumb (xc, yc, width, radius, length)
use gino £90
real xc, yc, width, radius, length
! Move to absolute origin of object
call gMoveTo2D(xc, yc)
! Move to start of drawing
call gMoveBy2D (-length/2.0,width/2.0)
! Left-hand end
call gDrawArcBy2D (-radius,-width/2.0,0.0,-width, 1)
! Bottom horizontal
call gDrawLineBy2D (length,0.0)
! Right-hand end
call gDrawArcBy2D (radius,-width/2.0,0.0,-width, 1)
! Top horizontal
call gDrawLineBy2D(-length,0.0)
return

2D DRAWING Parametric Curves

w * (X)Y)

_

Use of Arc Routines

Note the use of relative moves and lines within the routine.

Parametric Curves

A smooth curve can be drawn through a set of points using one of the routines:
gDrawAkimaTo2D(npts, points, beg, fin)
gDrawAkimaBy2D(npts, points, beg, fin)
gDrawCurveTo2D(npts, points, beg, fin)
gDrawCurveBy2D(npts, points, beg, fin)

Both sets of routines generate a piecewise parametric cubic curve drawn through
each pair of points supplied either as absolute or relative coordinates. The first
pair (gDrawAkimaTo2D()/ gDrawAkimaBy2D()) use an averaging method due to
Akima, which produces a tighter curve, but can be less accurate for
(single-valued) functional data. The second pair (gDrawCurveTo2D()/
gDrawCurveBy2D()) produce a looser curve, but is useful for contour drawing.
Both sets are very accurate at drawing an approximation to a circle. A
comparison of both methods can be seen in a later figure.

93

Parametric Curves 2D DRAWING

94

Curve End Conditions

By default, the end conditions of a curve are somewhat ill-defined as the
undefined slopes may need to be set by additional data. If end point conditions
are to be specified then beg and/or fin should be set to GXPOINT or GANGLE,
and the end point information given through the routine gSetCurveAttribs2D():

gSetCurveAttribs2D(cbeg, sbeg, cfin, sfin, xbeg, ybeg, xfin, yfin)

Similarly, the end conditions following the drawing of a curve may be enquired
by using the routine gEnqCurveAttribs2D(), which has the same arguments as
gSetCurveAttribs2D(). The values returned in gEnqCurveAttribs2D() will be
either those supplied by a previous call to gSetCurveAttribs2D() or those set by
the curve drawing routines if no call to gSetCurveAttribs2D() has been made.

Both start and finish angles are made with the positive x-axis, see below.

start angle - a
end angle - b

Curve Drawing

The curve is drawn using straight line segments in the same way as software arcs
are generated. As with arcs, the smoothness of the curve can be varied using
GSetArcIncrement()/ gSetArcTolerance(). Due to the nature of the different
algorithms GSetArcIncrement() controls the number of increments on the Akima
curves and gSetArcTolerance() controls the tolerance of the standard curve.

In all the following examples of curve drawings, the same set of data points is
used, and is set up as follows:

static GPOINT pt[6] = type (GPOINT) :: pt(6) = (/&
{3.0,3.0, 3.0,6.0, GPOINT{3.,3.),GPOINT{3.,6.), &
6.0,6.0, 4.5,4.5, GPOINT{6.,6.),GPOINT{4. 5, .5), &
7.0,2.0, 12.0,4.0}; GPOINT{7 ,2.) ,GPOINT{12.,4.} /)

2D DRAWING Parametric Curves

The data points are shown on the curves as asterisks. This is done by using the
following call in each case:

gDrawPolymarkerTo2D (6,pt,8) ; call gDrawPolymarkerTo2D(6,pt, 8)

Specifying No End Conditions

gbDrawAkimaTo2D (6, pt, call gDrawAkimaTo2D (6,pt, &
GNONE, GNONE) ; GNONE , GNONE)

gDrawCurveTo2D (6, pt, call gDrawCurveTo2D (6,pt, &
GNONE, GNONE) ; GNONE, GNONE)

Akima and Curve (dashed) Comparison

Specifying Beginning Conditions as COS and SIN

alpha = 45.0 *3.142/180.0; alpha = 45.0 *3.142/180.0

cosbeg = cos (alpha); cosbeg = cos (alpha)

sinbeg = sin(alpha); sinbeg = sin(alpha)

gSetCurveAttribs (cosbeg, sinbeg, call gSetCurveAttribs (cosbeg, &
0.0,0.0,0.0,0.0,0.0,0.0); sinbeg,0.0,0.0,0.0,0.0,0.0,0.0)

gbrawCurveTo2D (6, pt, call gDrawCurveTo2D(6,pt, &
GANGLE, GNONE) ; GANGLE, GNONE)

95

Parametric Curves 2D DRAWING

Curve with angular start conditions

Specifying End Conditions for Curve Finish Using an Extra Point

xf = 9.0; xf = 9.0

yf = 7.0; yE = 7.0

gSetCurveAttribs (0.0,0.0, call gSetCurveAttribs(0.0,0.0, &
0.0,0.0,0.0,0.0,x£,yf); 0.0,0.0,0.0,0.0,x£f,yf)

gbDrawCurveTo2D (6, pt, call gDrawCurveTo2D (6,pt, &
GNONE, GXPOINT) ; GNONE , GXPOINT)

Extra point at end of curve

96

2D DRAWING Parametric Curves

Specifying Both End Conditions

/* ANGLE = 180 degrees */ ! ANGLE = 180 degrees

alpha = 3.142; alpha = 3.142

cosfin = cos(alpha); cosfin = cos(alpha)

sinfin = sin(alpha); sinfin = sin(alpha)

xb = 3.0; xb = 3.0

yb = 4.0; yb = 4.0

gSetCurveAttribs (0.0,0.0, call gSetCurveAttribs(0.0,0.0, &
cosfin,sinfin,xb,yb,0.0,0.0); cosfin,sinfin,xb,yb,0.0,0.0)

gbDrawCurveTo2D (6, pt, call gDrawCurveTo2D(6,pt, &
GXPOINT, GANGLE) ; GXPOINT, GANGLE)

Example with both ends specified

97

Spline Curves 2D DRAWING

Highlighting the Effects of Different Values of IBEG and IFIN

Curve with no and both ends specified superimposed

Note that gDrawCurveBy2D() uses the values in the points array as relative
points, so data points in the previous example would become:

static GPOINT pt[6] = { type (GPOINT) i pt(6) = (/&
0.0,0.0, 0.0,3.0, GPOINT (0.,0.),GPOINT (0., 3.),&
3.0,0.0, =1,5,=1.5, GPOINT{3 ,0.),GPOINT (-1.5,-1.5),&
2:5,=2:5, 9.0,2,0}¢ GPOINT (2. 5 -2.5) ,GPOINT (5.,2.} /)

Note also that gDrawCurveTo2D() does an absolute move to the first X,Y
coordinate pair, whereas gDrawCurveBy2D() uses the current position as the first
X,Y coordinate pair.

Spline Curves

In addition to the piecewise cubic curve drawing routines, GINO provides two
routines to draw a smooth curve through a series of points using cubic splines:

gDrawSplineTo2D(npts, points2, beg, fin)

gDrawSplineBy2D(npts, points2, beg, fin)

98

2D DRAWING Spline Curves

In comparison to the piecewise cubic curve routines, the spline curves are
generally tighter than the gDrawCurveTo2D()/gDrawCurveBy2D() set and are
more accurate at fitting functional data than the gDrawAkimaTo2D()/
gDrawAkimaBy2D() set. For example, using the same six points set up in the
previous example, gDrawCurveTo2D() (in dotted line) and gDrawSplineTo2D()
(in solid line) give the following output with no end conditions set:

Comparison of spline with curve output

The routine gSetArcIncrement() controls the number of increments between each
supplied data point.

Spline Curve End Conditions

End conditions can also be set for spline curves in the same way as for piecewise
cubic curves, but it is usually necessary to set angular end conditions using scaled
derivatives instead of simply sines and cosines.

For monotonically increasing data in either X or Y or Z, these can easily be
calculated, or it is sufficient to set the X slope to 1.0 and the Y slope to y’(x) and
the drawing routines will compute the correct value. For parametric data,
estimates for the actual gradient (x’(t), y’(t)) are really required. End conditions
can alternatively be set using an extra point in 2 or 3 dimensions in the same
manner as the previous curve routines.

99

Spline Curves 2D DRAWING

The routines gSetCurveAttribs2D()/gEnqCurveAttribs2D() are used to set and
enquire the end conditions for 2D spline curves, and an additional pair of routines
are used for the 3D equivalent function. Thus:

gSetCurveAttribs2D(dxbeg,dybeg,dxfin,dyfin,xbeg,ybeg,xfin,yfin)

gEnqCurveAttribs2D(dxbeg,dybeg,dxfin,dyfin,xbeg,ybeg,xfin,yfin)

Spline Curve Tension Control

An alternative approach to smoothing is to use a spline in tension. The routines
gSetSplineTension() and gEnqSplineTension() are used to set and enquire the
current spline tension value which has a default of 0.0.

gSetSplineTension(ten)
gEnqSplineTension(ten)

As the value of ten increases, the curve moves closer to a polyline representing
the supplied data points, with ultimate loss of smoothness. Values in the range 0
to 10 give reasonable results and it is also possible to use negative values down
to -2 to give a more rounded shape to the curve. The curves in the diagram below
show the effect of applying tension to a circle generated from 3 data points.

Spline Curve Tension

100

2D DRAWING Bezier Curves

Bezier Curves

The Bezier curve routines offer a very different kind of curve control where the
data supplied represents control points rather than points on the curve itself.

This can be illustrated by looking at a simple Bezier curve of degree four (cubic).
As can be seen in the figure below, for each of the three Bezier curves, the points
2 & 3 deviate the line between the end points 1 and 4. Looking at the vectors
between these points, the greater the magnitude, the bigger the deviation whilst
their direction determines the tangent of the curve at the end points. Therefore,
with the three cases below, as all the vectors between the end points and their
adjacent control points are the same, the tangents at points A, Bj and Cj are the
same as are the tangents at the points A4, B4 and C4. This feature of Bezier
curves is important when considering the joining of two such curves (see below).

A3
e

Two routines are provided to generate this type of curve in 2D:
gDrawBezierTo2D(npts, points2)
gDrawBezierBy2D(npts, points2)

As with the previous curve drawing routines, points2 is an array of type
GPOINT and npts are the number of control points stored in the array.

101

Bezier Curves 2D DRAWING

Supplying a set of 6 control points (displayed as asterisks) the following curve
will be drawn. Note that the curve always starts at the first control point and ends
at the last control point, but in all probability will not pass through any other
supplied control point.

Bezier Curve (with Spline comparison)

End Conditions

There is no direct control over end conditions with Bezier curves, but the fact
that the position of the control point adjacent to the first (or last) data point
determines the tangent of the curve at that point (see above), curves can be
smoothly joined by taking account of this feature.

Therefore to join two Bezier curves, the joining point must obviously be at the
same coordinate position, and the distance and angle between the adjacent
control points must also be the same, such that these two control points lie in a
straight line. Thus in the figure below, points A4 and B must be the same and
points A3 and B2 must form a line that intersects A4 and Bj. This will give a
seamless join and forms a piecewise Bezier curve.

A3e,

B2 *B4

Joining two Bezier Curves

102

2D DRAWING Point Storage

Elevation and Reduction

Bezier curve drawing routines are most useful for interactive curve design where
the control points can be manipulated to produce the desired shape of curve.
Tighter curves can be produced where a greater number of control points are
clustered. To assist in the design of appropriate curves, two auxiliary routines are
also provided to increase and/or reduce the number of control points in a Bezier
curve definition.

gElevateBezier2D(npts, points2)
gReduceBezier2D(npts, points2)

Both routines only operate on absolute coordinates and the first of them takes a
set of control points as input and returns a new set with one more control point

than was input, but which represents the same curve. Users must ensure that the
points array is large enough to hold the additional point on return.

The second routine takes a set of control points and returns a new set with one
less control point. Users should be aware that reducing the number of control

points does not guarantee that the shape of the curve is maintained, but it will

always be a close approximation.

Point Storage

With the drawing of arcs and curves, GINO generates many internal points in
addition to those directly specified by the calling routine. There are cases where
an application needs to know the location of these points in order to define a
polygon boundary or carry out other graphical or mathematical manipulation on
them.

GINO provides facilities for both these options by storing all the points between
which vectors are drawn (whether it be for straight lines or the small vectors that
make up arcs and curves) in an internal storage buffer. Depending on the desired
use of the internal points, up to two separate buffer areas can be defined, one for
polygon definition and one for simple point storage. In both cases the buffers are
contained in the global GINO workspace area which should be defined at the
start of an application through the routine gSetWorkspaceLimit() (see page 33).

103

Point Storage 2D DRAWING

104

Once the global workspace has been defined, the two possible storage areas are
defined using one or both of the following routines:

gDefinePolygonWorkspace(nw)
gDefinePointWorkspace(nw)
where nw is the number of real words required for the appropriate bufter.

The routine gDefinePolygonWorkspace() is used to define polygon workspace
and the subsequent storage of points for the definition of polygons is fully
described later in this document (see page 245).

The routine gDefinePointWorkspace() defines a buffer for the simple storage of
points that can be returned to the application. Each point occupies 4 words of
storage, so allocating a workspace of 120 words will allow for the storage of 30
points. Note that the actual number of points generated by an arc or curve will
depend on tolerance or tension of the particular arc or curve.

Point storage is started, restarted or paused using the routine:
gSetPointMode(switch)

and enquired using:
gEnqPointMode(switch)

where switch can be GOFF, GSPACE, GPICTURE or GRESTART. When the
point storage mode is set to GSPACE or GPICTURE, points are stored as either
untransformed (i.e. as supplied by the user) or transformed (i.c. as they appear on
the drawing area with respect to the current viewport) coordinates respectively.
Storage is switched off using the GOFF setting and restarted (in the current
mode) when GSPACE or GPICTURE is used again.

If the point storage mode is changed from GSPACE to GPICTURE or vice-versa
or GCLEAR is used in gSetPointMode(), all previously stored points are thrown
away.

The stored points are returned to the user through the function:

nret=gReturnlnternalPoints2D(nn, points2, np, polylines2, npts, npol)

2D DRAWING Point Storage

where points2 is an array of type GPOINT and polylines2 is an array of type
GPOLYGON. The arguments nn and np should be set to the size of these arrays.
The arguments npts and npol return the number of points and polylines that
actually exist in the internal workspace which may be more than those returned if
the supplied arrays are not sufficiently large enough. The function itself returns
the actual number of complete polylines that have been placed in the user
supplied arrays.

In order to enquire how much data has been stored, gReturnInternalPoints2D()
can be called with nn and np set to 1, in which case the total space for all the
points and polylines can be allocated using the values of npts and npol. The
function can then be called a second time to return all the stored data.

The routine returns the stored points both as a set of vertices in the points2 array
and a set of polylines in the polylines2 array. This in fact represents the same
data but in two different formats with the latter being a more accurate definition
of the information stored. Note that the GPOLYGON structure contains pointers
into the GPOINT array and that any 3rd dimension (Z coordinate) is ignored in
the call to gReturnInternalPoints2D().

The following example shows a usage of the gReturnInternalPoints2D() routine:

C Code

#include <gino-c.h>
#define NN 300
#define NP 4

GPOINT pts[NN];
GPOLYGON pol [NP];

#i1if defined (MWIN) || defined (WOGL)

int PASCAL WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR lpszCmdParam, int nCmdShow)

#else

int main ()

#endif

{

int nret,npts,npol;

gOpenGino () ;
gMwin (hInstance, hPrevInstance) ;

/* Define global and point workspace */
gSetWorkspaceLimit (2000) ;
ghefinePointWorkspace (1000) ;

/* Set point storage mode */
gSetPointMode (GSPACE) ;

/* Draw some graphics */
gMoveTo2D (10.0,10.0) ;
gDrawLineBy2D(5.0,5.0) ;
gDrawLineBy2D (-5.0,5.0) ;
gDrawArcBy2D(0.0,-5.0,0.0,-10.0, GANTICLOCKWISE) ;
gMoveTo2D(0.0,10.0) ;
gMoveTo2D (30.0,10.0) ;
gDrawLineBy2D(5.0,5.0) ;

105

Point Storage 2D DRAWING

gDrawLineBy2D(-5.0,5.0) ;
gDrawArcBy2D(0.0,-5.0,0.0,-10.0, GANTICLOCKWISE) ;
gMoveTo2D(40.0,10.0) ;
gMoveTo2D (50.0,10.0) ;
gDrawLineBy2D(5.0,5.0) ;
gDrawLineBy2D (-5.0,5.0) ;
gDrawArcBy2D (0.0,-5.0,0.0,-10.0, GANTICLOCKWISE) ;
/* Switch point storage off */
gSetPointMode (GOFF) ;
/* Return internal storage */
nret=gReturnInternalPoints2D (NN, pts,NP,pol, &npts, &npol) ;
/* Fill polygon set */
gFillPolygonSet2D (6,1, GAREA, nret,pol) ;
gSuspendDevice () ;
gCloseGino () ;

F90 Code

106

2D DRAWING 2D Interpolation

Point Storage

The outline of each object is drawn with lines and arcs, then the points of each
polygon is retrieved with gReturnInternalPoints2D() and the polygon set is filled
with gFillPolygonSet2D().

2D Interpolation

GINO provides a facility to interpolate user suppled data or from previously
drawn curves, lines or arcs using the above point storage mechanism. Passing a
single data value with a set of 2D data points, the function glnterpolateData2D()
can return all the intersections of the two using linear interpolation.

The function has the following form:
nint=glnterpolateData2D(nopt, ptint, npts, points2, nptout, ptoutl)

where nopt can be GXDATA or GYDATA indicating the interpretation of the
argument ptint, the value to be interpreted. The argument npts specifies the
number of 2D data points supplied in the array points2 (which is of type
GPOINT) and nptout is the size of the output array ptoutl.

The function returns the number of intersection points returned in the array
ptoutl. Where nopt=GXDATA this array will contain Y values and where
nopt=GYDATA this array will contain X values. There may be zero, one or more
than one depending on the form of the data, but it will never exceed nptout even
though there may be more intersections possible from the supplied data.

The following example shows the interpolation of a 2D curve:

107

2D Interpolation 2D DRAWING

108

C Code

#include <gino-c.h>

#define NP 9

#define NVERT 1000

#define NPOLY 2

#define NPTOUT 4

GPOLYGON poly [NPOLY];

GPOINT points [NVERT] ;

GPOINT data[NP] = { 20.0, 20.0, 35.0,110.0, 50.0,115.0,
65.0,110.0, 80.0, 30.0, 95.0, 25.0,

110.0, 25.0, 140.0, 40.0, 170.0,120.0 };

float xmin = 10.0;

float xmax = 180.0;

float ptout [NPTOUT] ;

#if defined (MWIN) || defined (WOGL)
int PASCAL WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR lpszCmdParam, int nCmdShow)
#else
int main ()
#endif
{
float ptint;
int npt,npol,n,ninter,ntemp;

/* Initialise GINO and point storage */

gOpenGino () ;

XxXXxXX () ;
gSetWorkspaceLimit (2000) ;
gDefinePointWorkspace (1000) ;

/* Draw curve and store points internally */

gMoveTo2D (data[0] .x,data[0].y);
gSetLineColour (GRED) ;
gSetPointMode (GSPACE) ;
gDrawAkimaTo2D (NP, data, GNONE, GNONE) ;
gSetPointMode (GOFF) ;

/* Retrieve stored curve points */

n=gReturnInternalPoints2D (NVERT,points,NPOLY, poly, &npt, &npol) ;
/* Calculate intersections through interpolation */

ptint=45.0;
ninter=gInterpolateData2D (GYDATA,ptint,npt,points, NPTOUT,ptout) ;

/* Show intersection points on the curve */

gSetLineColour (GGREEN) ;

gMoveTo2D (xmin,ptint) ;

gDrawLineTo2D (xmax,ptint);

for (ntemp=0;ntemp<ninter;ntemp++) {
gMoveTo2D (ptout [ntemp],ptint);
gDrawMarker (GSTAR) ;

}

gSuspendDevice () ;
gCloseGino () ;

2D DRAWING 2D Interpolation

F90 Code

109

2D Interpolation 2D DRAWING

Data Interpolation

110

Chapter

LINE ATTRIBUTES

Line Attributes Introduction

The appearance or style of a line is described in GINO by six attributes:
- Visibility
« Broken line type
+ Colour
+ Width
* Pen type
+ Line end type

Together they define what is termed a line style. Lines are drawn subject to the
current line style, which may be varied by any of a number of GINO routines.
Line styles may be stored in a table for use later.

Routines Described in this Chapter
The routines described in this section are:

(a) For control of individual attributes of the current line

Line visibility gSetLineVis() gEnqLineVis()

Broken line type gSetBrokenLine() gEnqgBrokenLine()
Colour gSetLineColour() gEnqLineColour()
Thick line generation gSetLineWidthMode() gEnqLineWidthMode()
Line width gSetLineWidth() gEnqLineWidth()

11

Line Attributes Introduction

LINE ATTRIBUTES

Line width scale factor
Pen type

Line end type

Pen attributes

Broken line mode

gSetLineWidthScaling()
gSetPenType()
gSetLineEnd()

gSetBrokenLineMode()

gEnqLineWidthScaling()
gEngPenType()
gEnqLineEnd()
gEngSelectedPen()

(b) Specification of attributes in the definition tables

Broken line type table
Line definition table
Line style selection

Save current line style

gDefineBrokenLineStyle() gEngBrokenLineStyle()

gDefineLineStyle()
gSetLineStyle()
gSaveLineStyle()

For colour table definition see page 205.

Current Line Definition

and Enquiry

gEnqLineStyle()

The relationship of the current line attributes and the individual routines
controlling them are as follows:

Attribute Definition

gSetLine Vis(
gSetBrokenLine(
gSetLineColour(
gSetLineWidth(
gSetPenType(
gSetLineEnd(

[l e

Current Line Attributes

Attribute Enquiry

vis
brk
col
width
type

]
—>
o
o
o
— end

—» gEnqLineVis()
—» gEnqBrokenLine()
——» gEnqLineColour()
——» gEnqLineWidth()
—» gEnqPenType()
——» gEnqLineEnd()

GINO uses the absolute value of the parameter given to define a current attribute,
but GINO will issue a warning message if this value is negative. If a value falls
outside its valid range or the request cannot be met, a default value will be
provided.

112

LINE ATTRIBUTES Line Attributes Introduction

In the case of line colour, width and type, the enquiry routines which complement
each of the single attribute specifying routines return the attribute values
specified by the user. These may not be the same as those actually implemented
by an output device. The actual values of the hardware implementation are
returned by gEnqSelectedPen().

gEnqgSelectedPen(col, width, type)

Note that in the case of direct colour devices, the return value of col will contain
a 24bit RGB triplet irrespective of whether the line colour was selected using a
colour identifier, a colour table index or a 24bit RGB triplet.

Drawing Attribute Tables

Tables are used to store specifications for colour values, broken line types and
line styles. Definitions selected from these tables change the current line
attributes.

The tables relate to the current line attributes in the following way:

gDefineRGB()* gDefineBrokenLineStyle()

\ Colour »{ Current Line |« Broken Line /
/ Table Attributes Type Table \

gEngRGB()* 4 gEnqgBrokenLineStyle()

gSaveLineStyle() gSetLineStyle()
Y

gDefineLineStyle()
Line Styles /

Table
\ gEnqLineStyle()

*GINO also suppports the HLS and HSV colour co-ordinate systems

The colour and broken line type tables contain definitions of their respective
attributes. These definitions are implemented when selected by gSetLineColour()
or gSetBrokenLine(), or when a complete line style is selected from the table of
line definitions.

The line definitions table is different from the other two in that each entry defines
a complete set of line attributes. This definition includes the identifiers which
point to entries in the colour and broken line type tables.

113

Individual Attributes LINE ATTRIBUTES

Attribute definitions for colour and broken line type may be made and stored in
their respective tables without affecting the current line. The exception is when
the table entry to be changed was the one used to implement the current attribute
value. In this case a change to the entry causes a change to the attribute. This
effect happens only with the colour and broken line type tables.

Whenever a device is nominated these tables are initialized to a set of default
values.

Individual Attributes

114

Changing Individual Attributes of the Current Line

Each current line attribute may be changed independently of the others. In the
following example, the attributes are modified one by one and after each
modification a line is drawn.

Drawing starts in the centre and the resulting output is shown below.
C code

/* draw a line with the default attributes */
gMoveTo2D (50.0,130.0) ;
gDrawLineBy2D(0.0,-50.0) ;

/* specify a line of 10mm wide with round ends*/
gSetLineWidth (10.0) ;
gSetLineEnd (GROUND) ;
gDrawLineBy2D (90.0,0.0) ;

/* change line ends to no ends */
gSetLineEnd (GNONE) ;
gDrawLineBy2D (0.0, 90.0) ;

/* change pen type */
gSetPenType (3) ;
gDrawLineBy2D (-120.0,0.0) ;

/* change line width */
gSetLineWidth (0.5) ;
gDrawLineBy2D(0.0,-120.0) ;

/* change broken line type */
gSetBrokenLine (GSHORTCHAINED) ;
gDrawLineBy2D (150.0,0.0) ;

/* switch visibility off */
gSetLineVis (GOFF) ;
gDrawLineBy2D (0.0,150.0) ;

/* switch visibility on */
gSetLineVis (GON) ;
gSetBrokenLine (GSOLID) ;
gDrawLineBy2D(-150.0,0.0);

LINE ATTRIBUTES Individual Attributes

F90 code

draw a line with the default attributes

call gMoveTo2D(50.0,130.0)

call gDrawLineBy2D(0.0,-50.0)
specify a line of 10mm wide with round ends

call gSetLineWidth (10.0)

call gSetLineEnd (GROUND)

call gDrawLineBy2D(90.0,0.0)
change line ends to no ends

call gSetLineEnd (GNONE)

call gDrawLineBy2D(0.0,90.0)
change pen type

call gSetPenType (3)

call gDrawLineBy2D (-120.0,0.0)
change line width

call gSetLineWidth (0.5)

call gDrawLineBy2D(0.0,-120.0)
change broken line type

call gSetBrokenLine (GSHORTCHAINED)

call gDrawLineBy2D (150.0,0.0)
switch visibility off

call gSetLineVis (GOFF)

call gDrawLineBy2D(0.0,150.0)
switch visibility on

call gSetLineVis (GON)

call gSetBrokenLine (GSOLID)

call gDrawLineBy2D(-150.0,0.0)

The first gDrawLineBy2D() of this example draws a line with default attributes.
The default attributes depend on the output device but they generally produce a
line which is visible and solid. Colour, width and pen type defaults depend on the
output device. For a colour raster device the line would typically be white on a
black background and one scan line wide. The default line end type is no ends
(line ends are shapes added to each end of the line).

Modification of line attributes

115

Individual Attributes LINE ATTRIBUTES

116

Each single-attribute controlling routine has a corresponding enquiry routine
which returns the current value of the attribute as it was specified by the user.
Attributes which have not been changed since GINO was called return their
default values.

In the following pages each attribute is considered individually.

Line Visibility

gSetLineVis(vis)
gEnqLineVis(vis)

The current line may be drawn visible (default) or invisible. The routine
gSetLineVis() switches between these two states. For example:

gSetLineVis (GOFF) ; call gSetLineVis (GOFF)

switches line visibility off. Lines drawn subsequently will not appear on the
output device.

The statement:

gSetLineVis (GON) ; call gSetLineVis (GON)

will restore line visibility. The routine gSetLineVis() has no effect on any of the
invisible drawing routines (e.g.gMoveBy2D(), gMoveTo3D()); that is visibility
cannot be switched on for them.

The routine gEnqLineVis() returns the current state of line visibility.

Broken Line Type

gSetBrokenLine(brk)
gEnqBrokenLine(brk)
gSetBrokenLineMode(swi)

The broken pattern of the current line can be varied. The default pattern is a solid
line. Routine gSetBrokenLine() is used to select a line type definition from a
table of broken line types.

LINE ATTRIBUTES Individual Attributes

For example, the statement:

gSetBrokenLine (GLONGDASHED) ; call gSetBrokenLine (GLONGDASHED)

makes broken line type ‘longdashed’ the current line type.

The setting of gSetBrokenLineMode() determines whether the line type selection
is implemented from the software table (see gDefineBrokenLineStyle()) or from
an output device’s hardware table (assuming it has one).

The default setting of gSetBrokenLineMode() (i.e. swi=GHARD or 0) gives
hardware-implemented broken line types. The broken line types implemented
from hardware tables are device dependent. When swi is set to GSOFT or 1,
broken line types will be implemented from the software table. Up to 256
definitions (brk = 1 to 256) may be stored in this table.

If a device is incapable of generating its own broken lines, GINO will use
software.

The result of calling gSetBrokenLine(), with brk greater than 256, depends
entirely on the output device. If the hardware supports more than 256 definitions
one of these may be selected. Otherwise line type defaults to a solid line. The
identifier, brk, of the currently selected broken line type may be found by a call:

gEngBrokenLine (brk) ; call gEngBrokenLine (brk)

Line Colour

The current line colour may be set or enquired using the following routines:
gSetLineColour(col)
gEnqLineColour(col)

where col is a colour identifier. This may be a pen number, colour number or
index into a colour table depending on the current device (see page 46). In all
cases however, when a device is first initialised the following set of colours are
made available if possible:

Colour Identifier (col): Colour Constant: Colour:

0 GBACKGROUND Background (device dependent)

117

Individual Attributes LINE ATTRIBUTES

118

1 GBLACK Black

2 GRED Red

3 GORANGE Orange
4 GYELLOW Yellow
5 GGREEN Green

6 GCYAN Cyan

7 GBLUE Blue

8 GMAGENTA Magenta
9 GBROWN Brown
10 GWHITE White
Thus, the statement:

gSetLineColour (3); call gSetLineColour (3)

would select orange as the colour for the current line. Alternatively, the
predefined constant GORANGE can be used to select colour 3. Colour identifier
0 or GBACKGROUND selects the background colour, assuming the device
recognizes such a thing. This may be used as an erase facility by selecting the
background colour gSetLineColour(0), and then drawing over a previously drawn
line.

The actual colour displayed depends on the output device. Some devices (e.g.
Plotters and monochrome displays) may support fewer colours than the standard
GINO set in which case the selection of a colour identifier that is not available
will default to some default colour (usually black). The range of colour
identifiers and colour capabilities of the currently nominated device can be
enquired by using the routine gEnqColourlnfo() (see page 46).

On most devices the colour identifier is actually an index into a colour table
which has been initialized to the above settings. Again, depending on the colour
capabilities of the current device, these entries may be changed at any time
within an application or new entries set to the range of colours required (see page
205).

On direct colour devices, the current line drawing colour may also be set in terms
of a 24bit RGB triplet using the gTrueCol() function (see page 217).

The routine gEnqLineColour() returns the last requested colour identifier.

LINE ATTRIBUTES Individual Attributes

Line Width

By default, thick lines are generated using a mixture of hardware and software
facilities depending on the capabilities of the device and the type of thick line
being generated. In this mode, thick, broken lines with non-standard line ends are
generated by software emulation to ensure the correct output. However, the user
may opt to force either hardware of software generation to improve performance
or to ensure complete accuracy, using the routine:

gSetLineWidthMode(swi)

where swi can be GHARDWARE, GMIXWARE (the default) or GSOFTWARE.
Selecting hardware generation where no such capability exists will result in
single stroke lines for all thicknesses of line. The software emulation method is
determined by the device driver writer and is set according to the characteristics
of the device; ie. for pen plotters, parallel lines will be used to build up the thick
line, for raster devices, multiple horizontal/vertical lines are used or polygon fill
may be selected where available. The user can enquire the current line width
mode and the software emulation method through the routines
gEnqLineWidthMode() and gEnqDeviceState() respectively.

gEnqLineWidthMode(sw)

The routines to actually set or enquire the current line thickness are:
gSetLineWidth(width)
gEnqLineWidth(width)

The line thickness, width, is in current drawing units and is not subject to any
modelling or viewing transformation. The routine gEnqLineWidth() returns the
currently selected line width which may not match the actual hardware line width
appearing on the device due to hardware rounding or limitations. To determine
the actual width of lines appearing on the device use gEngSelectedPen().

As specified above, the line width is defined in current drawing units and not
subject to any modelling or viewing transformations. It is possible to set an
independent line width scaling factor through the routine:

gSetLineWidthScaling(s)

This provides the user with a method to scale the line width by a consistent
scaling factor which can match the GINO scaling transformation for picture
coordinates.

119

Individual Attributes LINE ATTRIBUTES

The current value of the scale factor can be inquired by the routine:
gEnqLineWidthScaling(s)

Drawing Mode

gSetPenType(type)

gEnqPenType(type)

gSetPenType() can be used to select a different drawing mode (see Appendix B
for available drawing modes for each particular device):

Pen Identifier (type): Constant: Pen Type:

0 GDEFAULT Undefined

6 GERASER Eraser

7 GNOT NOT mode }

8 GAND AND mode }Binary raster writing

9 GOR OR mode }modes for screen devices
10 GXOR XOR mode }

>10 Device dependent

The routine gEnqPenType() enquires the current drawing mode. This may be
used to determine the mode selected by the output device, or for routine
interrogation of the current mode selected by the user.

If the device does not recognize the drawing mode selected, and is therefore
unable to implement it, the actual drawing mode made available will not be the
same as that requested. What is actually used may be identified by calling
gEnqgSelectedPen().

Line Ends

gSetLineEnd(end)

gEnqLineEnd(end)

120

LINE ATTRIBUTES Individual Attributes

The appearance of the ends of a line may be changed by the routine
gSetLineEnd(). Line ends are shapes which are added onto the ends of a line.
This is particularly useful when used in conjunction with thick lines as line ends
help to give smooth and tidy joins between lines (see below). GINO offers three
types of line end:

» No ends end=GNONE (0)
» Square ends end=GSQUARE (1)
+ Round ends end=GROUND (2)

Line end types

For example:

C code

gSetLineWidth (10.0) ;
x=60.0;

y=150.0;

for (i=0; i<3; i++)

{

/* set line end type */
gSetLineEnd (i) ;

/* draw */
gMoveTo2D (x,V) ;
gDrawLineBy2D(-40.0,0.0) ;
gDrawLineBy2D (0.0,-70.0) ;
gDrawLineBy2D(40.0,-60.0) ;
x += 60.0;

121

Individual Attributes LINE ATTRIBUTES

122

F90 code

call gSetLineWidth (10.0)
x=60.0

y=150.0

do i=0,2

! set line end type
call gSetLineEnd (i)
! draw
call gMoveTo2D(x,VY)

call gDrawLineBy2D(-40.0,0.0)
call gDrawLineBy2D(0.0,-70.0)
call gDrawLineBy2D(40.0,-60.0)
x=x+60.0

end do

With no ends, line length is exactly as specified in the line drawing routines.
However, square ends and round ends are added to the line. The amount added is
calculated from the line width. For a square end this is a rectangle of WIDTH/2
by WIDTH, and for round ends it is a semicircle of radius WIDTH/2 as shown
below.

WIiTH / T

LINE DRAWN TO HERE r=WIDTH/2
WIDTH

3

Line end construction

The effect of end greater than 2 depends on the output device. If the device does
not support other end types, the line defaults to no ends.

The routine gEnqLineEnd() returns the current line end setting.

Use of Current Attribute Enquiry Routines

In addition to routine interrogation to see which values are selected for the
current line attribute, the enquiry routines may be usefully employed in other
ways.

Example 1 - a current line attribute may be saved and subsequently restored:

LINE ATTRIBUTES Individual Attributes

C code
/%
/%
/%
/%

Enquire, saving current line width as a variable */
gEngLineWidth (&saved width) ;

Set new current line width */
gSetLineWidth (1.0);

Draw line of the new width */
gDrawLineTo2D(20.00,20.00) ;

Restore saved line width */

F90 code

Enquire, saving current line width as a variable
call gEngLineWidth (saved width)

Set new current line width

call gSetLineWidth (1.0)

Draw line of the new width

call gDrawLineTo2D(20.00,20.00)

Restore saved line width

call gSetLineWidth (saved width)

Example 2 - finding the default value of an attribute. Note that the enquiry should
be made after device nomination and before any attempt to redefine the current

attributes:
C code
/* nominate device */

/*

gHp7475 () ;
enquire default (undefined) pen type */
gEngPenType (&type) ;

F90 code

nominate device

call gHp7475

enquire default (undefined) pen type
call gEngPenType (type)

These techniques are generally applicable to the single attribute routines.

123

Attribute Tables LINE ATTRIBUTES

Attribute Tables

Attribute Definition Tables

GINO uses three attribute definition tables. These contain definitions of colour
value, broken line settings, and complete line attribute sets. The tables are
initialized whenever device nomination occurs (see page 39). The contents of the
tables may be redefined, with values chosen by the user, by means of table
definition routines.

Colour definition and the colour table are dealt with later in this document (see
page 205).

Broken Line Types Table

Up to 256 different broken line definitions can be stored in the broken line type
table using the following two routines to define and enquire their settings:

gDefineBrokenLineStyle(brk, rep)
gEnqBrokenLineStyle(brk, rep)

where brk is the table entry and rep is a structure of type GBRKSTY which
contains the broken line definition. The definitions stored in this table are
implemented as the current broken line attribute when selected by calls to
gSetBrokenLine() or, indirectly, to gSetLineStyle().

124

LINE ATTRIBUTES Attribute Tables

When a device is nominated the table entries (brk =1 to 16) are initialized with
16 different broken line types as follows:

BRK=T -

These are repeated through the 256 entries in the complete table. Any attempt to
use broken line styles outside the range 1 to 256 will result in solid lines being
drawn.

The routine gDefineBrokenLineStyle() enables the user to redefine the line types
stored in the table.

For example, the statements:

static GBRKSTY rep = type (GBRKSTY) :: rep=GBRKSTY(&
{GDISCONTCHAIN,20.0,10.0,4.0}; GDISCONTCHAIN,20.0,10.0,4.0)

gbefineBrokenLineStyle (7, &rep) ; call
gbefineBrokenLineStyle (7, rep)

would define, and store in table entry 7, a line, which when selected, would cause
the current line to look like the following after calling this command:

gSetBrokenLine (7) ; call gSetBrokenLine (7)

125

Attribute Tables

126

Resulting in the following;

The arguments for the routine gDefineBrokenLineStyle() have the following
meanings:

brk is the broken line type identifier and is used by gEnqBrokenLine(),
gSetBrokenLine() and gDefineLineStyle(). It identifies entries in the table.

The structure GBRKSTY has four elements: rep.mode, rep.repeat, rep.dash
and rep.dot, where rep.mode describes the sort of broken style in this way:

=GSOLID defines a solid line

= GDISCONTDASH defines a dashed, discontinuously drawn line
= GCONTDASH defines a dashed, continuously drawn line

= GDISCONTCHAIN defines a chained, discontinuously drawn line
= GCONTCHAIN defines a chained, continuously drawn line

Discontinuously drawn lines are treated independently of each other so that any
pattern (defined by rep.repeat, rep.dash and rep.dot) is centred along the line;
the beginning and end dashes being made the same length. If the length of the
line to be drawn is less than the repeat length, the pattern is scaled down to give
one complete repeat sequence. In continuous mode the pattern simply carries on
from one line to the next from wherever it has got to. Discontinuous mode gives
clearly defined corners. Discontinuous mode scales down the pattern for small
line segments (as are drawn for arcs) and therefore continuous mode can give a
better result on curved lines. This effect can vary depending on the hardware
capabilities of the device. Illegal values of rep.mode result in GINO issuing a
warning message and a solid line being defined. rep.repeat specifies the pattern
repeat length. rep.dash and rep.dot specify the lengths of the drawn elements
which constitute the pattern.

LINE ATTRIBUTES

LINE ATTRIBUTES Attribute Tables

Chained, discontinuous,
MODE=GDISCONTCHAIN

Chained, continuous,
MODE=GCONTCHAIN

rep.dash is the length of the first drawn element. rep.dot is the length of the
second drawn element of a chained line. Space elements are made equal to
(repeat-dash-dot)/2. If rep.mode specifies a dashed line mode, any value given
for rep.dot will be ignored.

When a chained line is specified, rep.dash +rep.dot must not exceed repeat. If
they do, GINO outputs a warning message and defaults to a solid line.

In the following example, a dashed line is defined and stored in table entry 8.
This definition is then selected for the current line:

127

Attribute Tables LINE ATTRIBUTES

128

/* define line type 8 */ ! define line type 8

static GBRKSTY rep = type (GBRKSTY) :: rep = &
{GDISCONTDASH,18.0,13.0,0.0}; GBRKSTY (GDISCONTDASH, &

18.0,13.0,0.0)

gbhefineBrokenLineStyle (8, &rep); call gDefineBrokenLineStyle(8, &

/* select line type 8 */ rep)

gSetBrokenLine (8) ; ! select line type 8

/* draw a line */ call gSetBrokenLine (8)

gMoveTo2D (30.0,50.0) ; ! draw a line

gDrawLineBy2D (145.0,0.0) ; call gMoveTo2D(30.0,50.0)
. call gDrawLineBy2D(145.0,0.0)

This would produce a line that looks like this:

If a broken line definition is changed by gDefineBrokenLineStyle() while it is
implemented for the current line, the current line’s broken pattern will also be
modified to conform to the new definition.

The broken line type table may be examined by calls to gEnqBrokenLineStyle().
For example:

GBRKSTY rep5; type (GBRKSTY) repb5

gEngBrokenLineStyle (5, &repb) ; call gEngBrokenLineStyle (5, repb)

will return the values defining the line type of table entry 5 in rep5.mode,
rep5S.repeat, rep5.dash and rep5.dot.

Continuous v Discontinuous

By default all broken linestyles, defined when a device is initialized, are
discontinuous (i.e. either GDISCONTDASH or GDISCONTCHAIN). Where an
application uses a lot of small line segments (eg. arcs, curves etc.) it is often
preferable to use the continuous broken lines styles and it would be necessary to
redefine all the required broken linestyles to achieve the desired results. A
shortcut to this is provided in the following routine:

gSwitchBrokenLineStyles(switch)

LINE ATTRIBUTES Attribute Tables

where switch can be GCONTDASH or GDISTCONTDASH. When this routine
is called, ALL the entries in the broken line table are set to be either continuous
or discontinuous as requested. All other settings in the table (i.e. repeat length,
dash and dot lengths) are not affected by this call.

Line Definition Table

Up to 256 different line definitions can be stored in the line definition table using
the following two routines to define and enquire their settings:

gDefineLineStyle(line, rep)
gEnqLineStyle(line, rep)

where line is the table entry and rep is a structure of type GLINSTY which
contains the line definition. A complete line definition involves the specification
of values for each of the six line attributes.

Whenever a device is nominated, all 256 table entries are initialized with the
following values:

rep.vis rep.brk rep.col rep.width rep.type rep.end
1 0 line 0.2(mm) 0 0

The line styles table does not have the same default settings for each entry. An
entry may be redefined by calling routine gDefineLineStyle(). The valid range
for gDefineLineStyle’s arguments is the same as for the individual attribute
routines gSetLineVis(), gSetBrokenLine(), gSetLineColour(), gSetLineWidth(),
gSetPenType() and gSetLineEnd().

The statements:

static GLINSTY linel = { type (GLINSTY) :: 1inel=GLINSTY (
GVISIBLE, GLONGDASH, GYELLOW, GVISIBLE, GLONGDASH, GYELLOW, &
0.6, GDEFAULT, GROUND}; 0.6, GDEFAULT, GROUND)

gbhefinelLineStyle(1l,&linel); call gDefineLineStyle(1l,1linel)

129

Attribute Tables LINE ATTRIBUTES

130

would define a line, identified in the table as line=1, which was visible
(linel.vis=GVISIBLE), discontinuous dashed (linel.brk=GLONGDASH,
assuming GINO default broken types), yellow (linel.col=GYELLOW, assuming
standard GINO colours), 0.6mm wide (linel.width=0.6), drawn with a default
pen type (linel.type=GDEFAULT), and has round ends (linel.end=GROUND).
This example assumes that the values of the entries selected in the colour and
broken line tables have not been changed since device nomination. If entries in
these tables are ever redefined it is the new values that will be selected via the
line definition table.

Table entries may be examined by using gEnqLineStyle(). line identifies the
entry of interest and its parameter values are returned in rep.vis, rep.brk, etc. If
line=0, the current line attributes are returned.

The absolute value of line is used for gDefineLineStyle() and gEnqLineStyle(). If
the absolute value is greater than 256, a warning message is output and no further
action is taken.

Changing the Current Line Attributes

The routine gDefineLineStyle() can be used to redefine the current line attributes
by setting its first argument, the line style identifier line, to zero:

static GLINSTY rep={ type (GLINSTY) :: rep=GLINSTY (&
GVISIBLE, GLONGCHAINED, GBLUE, GVISIBLE, GLONGCHAINED, GBLUE, &
0.2, GDEFAULT, GNONE}; 0.2, GDEFAULT, GNONE)

gbefinelLineStyle (0, &rep) ; call gDefinelineStyle (0, rep)

This single call is equivalent to a call to each of the 6 individual attribute
controlling routines:

gSetLineVis (GVISIBLE) ; call gSetLineVis (GVISIBLE)
gSetBrokenLine (GLONGCHAINED) ; call gSetBrokenLine (GLONGCHAINED)
gSetLineColour (GBLUE) ; call gSetLineColour (GBLUE)
gSetLineWidth (0.2) ; call gSetLineWidth (0.2)
gSetPenType (GDEFAULT) ; call gSetPenType (GDEFAULT)
gSetLineEnd (GNONE) ; call gSetLineEnd (GNONE)

In the following example all the attributes of the current line are changed with the
exception of colour. These values are reported to the program by using
gEnqLineStyle() with line set to zero so that it points to the current line.

LINE ATTRIBUTES Attribute Tables

C code

int saved colour;
GBRKSTY def, newdef;

/* Save the current line colour */
gEngLineColour (&saved colour) ;

/* Redefine current line but using saved colour id. */

def.vis = GVISIBLE;
def.brk = GLONGCHAINED;
def.col = saved colour;

def.width = 0.6;
def.type = GDEFAULT;
def.end = GROUND;
gbefineLineStyle (0, &def) ;

/* enquire about new current line */
gEngLineStyle (0, &newdef) ;

F90 code

integer saved colour
type (GBRKSTY) def, newdef
! Save the current line colour
call gEngLineColour (saved colour)
! Redefine current line but using saved colour id.
def%vis GVISIBLE
defsbrk GLONGCHAINED
def%col = saved colour
def%width = 0.6
def$type = GDEFAULT
def%end = GROUND
call gDefinelLineStyle (0,def)
! enquire about new current line
call gEnglLineStyle (0, newdef)

Retrieving and Storing Current Line Attributes

Two routines are provided to set and save a line style definition:
gSetLineStyle(line)
gSaveLineStyle(line)

The routine gSetLineStyle() selects a complete line attribute specification
(identified by line) from the table of line definitions and implements this for the
current line. For example:

gSetLineStyle (5) ; call gSetLineStyle (5)

causes line definition 5 to be selected as the current line style. If the definition
identifier line is outside the range 1 to 256, no change is made to the current line
but a warning message is issued.

131

Attribute Tables LINE ATTRIBUTES

132

The routine gSaveLineStyle() saves the complete specification of the current line
attributes to the line definition table. For example:

gSaveLineStyle (10); call gSaveLineStyle (10)

copies the values of all the current line attributes into entry 10 of the line
definition table. This line specification can be reselected later. For example:

gSetLineStyle (10); call gSetLineStyle(10)

In the example below, entries are made in the line definition table in two ways.
First by using gDefineLineStyle() to assign values to entries 1 and 2, and second
by using gSaveLineStyle() to copy current line attribute values into entry 3.

C code

static GLINSTY linel = {1, 2, 2, 0.2
line2 = {1, 6, 2, 3.0

gDefineLineStyle (1, &linel);
gDefinelLineStyle (2, &line2);

/* select a set of line attributes */
gSetLineStyle(2);

/* draw a line */
gMoveTo2D (20.0, 100.0);
gDrawLineBy2D(200.0, 0.0);

/* change with line width and broken style */
gSetLineWidth (0.2) ;
gSetBrokenLine (GLONGCHAINED) ;

/* draw result */
gMoveTo2D (20.0, 80.0);
gDrawLineBy2D(200.0, 0.0);

/* save line to table entry 3 */
gSaveLineStyle (3);

/* select another line from table and draw it */
gSetLineStyle (1) ;
gMoveTo2D (20.0, 60.0);
gDrawLineBy2D(200.0, 0.0);

/* reselect saved line and draw */
gSetLineStyle (3);
gMoveTo2D(20.0, 40.0);
gDrawLineBy2D (200.0, 0.0);

LINE ATTRIBUTES Attribute Tables

F90 code

133

Chapter

CHARACTERS

Character Introduction

GINO provides the ability for drawing characters using hardware and software
fonts, and a large variety of symbols and special characters, together with
routines for specifying font, size, justification, shape, orientation and fill style.

The routines described in this section are:

a) For outputting:

ASCII characters gDisplayAsciiChar()
Character strings gDisplayStr()
gPrintf()

gDisplayStrPolylineTo2D()

gDisplayStrPolylineBy2D()

gFitCharStr()

Numbers gDisplayReal Exponent() gConvertReal Exponent()
gDisplayRealFixed() gConvertRealFixed()
gDisplayRealFloat() gConvertRealFloat()
gDisplaylnteger() gConvertInteger()

Special symbols gDrawMarker()

b) For specifying and enquiring:

135

Character Mode - Hardware v Software

CHARACTERS

Font availability

gEnqHardFontList()

Font style

gSetCharFont()

gEngqFontStyle()

gSetFontFillStyle()

gSetFontWeight()

gSetFontSpacing()

gSetFontForm()

Character attributes

gSetHardChars()

gEnqCharAttribs()

gSetMixedChars()

gSetSoftChars()

gSetHardCharSize()

gSetCharSize()

gSetCharSizePoint()

gSetStrAngle()

gSetltalicAngle()

gSetCharTransformMode()

Text blocks

gStartTextBlock()

gEnqTextBlockAttribs()

gMoveToNextLine()

gSetlnterlineSpace()

String attributes gSetStrlustify() gEngStr]ustify()
gSetStrUnderscore() gEnqStrUnderscore()
gSetStrExponent() gEngStrExponent()

Null character form gDefineNullChar()

Escape character gSetEscapeChar() gEnqEscapeChar()

Enquiry gEnqCharTransform()
gReturnStrInfo()

Character Mode - Hardware v Software

136

GINO provides the following modes for character output:

Hardware - Characters are entirely generated by the device. This produces the
most presentable output and is usually the quickest, but output may vary from

device to device.

CHARACTERS Output of Characters

Software Untransformable - Characters are generated by GINO using solid
straight lines and area filling, according to the requested character attributes. The
characters cannot be transformed.

Software Transformable - As above but generated with the current line style
(Dashed pattern and Thickness), transformed by the current transformation
(rotation, scale and shear - if any) and windowed/masked by the current window
or mask settings.

The quality of software characters are not as good as hardware, but the output on
all devices will be exactly the same.

By default, GINO starts up in an untransformable ‘mixed” mode
(gSetMixedChars()), whereby, characters will be output by hardware if the size is
available, otherwise will be output by software. On devices where only a limited
number of sizes are available, this will result in some strings being drawn with a
hardware font and some with a software font which may look untidy.

To change the mode, call one of the following routines:

gSetHardChars() Characters always generated by the device, but size may only be
the nearest available if hardware only supports limited sizes.

gSetMixedChars() Characters are generated by the device if within 10% of the size
requested, 1 degree of specified orientation and 5 degrees of
specified italic angle, otherwise software characters selected.

gSetSoftChars() Characters generated by GINO exactly as specified, but without
applying any GINO transformation.

gSetCharTransformMode() Characters generated by GINO exactly as specified and applying
current transformation.

Output of Characters
Single ASCII Characters

Any ASCII character may be output using:
gDisplayAsciiChar(code)

where code is an integer in the range 0 - 255, and is the decimal ASCII
representation of the required character. ASCII characters are shown in the font
tables in Appendix C.

Example:

137

Output of Numbers CHARACTERS

/* Output the character A */ ! Output the character A
gbisplayAsciiChar (65); call gDisplayAsciiChar (65)

The routine gDisplayAsciiChar() is useful for outputting non-printable
characters. Single ASCII characters are not affected by the string justification
routine but are affected by the character attribute routines gSetCharSize(),
gSetStrAngle(), gSetltalicAngle(), and gSetStrUnderscore().

Character Strings

Character strings may be output using one of the routines:
gDisplayStr(string)
gPrintf(char format, ...) [C/C++ only]

The routine gDisplayStr() passes the argument string to the output device. It may
include any combination of characters in the ASCII set, and any special
characters permitted by the system.

gbhisplayStr (”“Hello World”); call gDisplayStr (”Hello World”)

The routine gPrintf() passes a format string together with optional arguments and
expands it before passing it to the output device via. the former routine. gPrintf()
therefore provides the format control of printf() together with the character
control of gDisplayStr() for graphical character output.

gPrintf (“Command %s - Section %d.%d”,command, sect, subsect) ;

Output of Numbers

138

Integer and real numbers may be output using the character routines:
gDisplayInteger(number, nwidth)
gDisplayRealFloat(value, nwidth)
gDisplayRealFixed(value, nwidth, nplace)

gDisplayRealExponent(value, nwidth, nplace)

CHARACTERS Output of Numbers

The format of the output is controlled by the argument nwidth and, in the case of
gDisplayRealFixed() and gDisplayRealExponent(), nplace which is the number
of decimal places required. The character string attributes apply to the output of
numbers.

Field Width

nwidth specifies the character field width of the output. No output is generated if
nwidth is zero. If a number is too large for the specified field width, a string of
asterisks is output. The field width is limited to 32 characters.

The sign of nwidth determines whether a number is right- or left-justified within
the field width. Any spare character positions are filled with spaces. If nwidth is
greater than zero, the output is right-justified. If nwidth is less than zero, the
output is left-justified.

A leading zero, when appropriate, will be output before a decimal point, provided
there is room for it.

Example:
C code

/* Output nyear left-justified in a filed of 4 */
gDisplayInteger (nyear,-4);

/* Output rate in a fixed-point format with 2
decimal figures, right-justified in a field of 10*/
gbisplayRealFixed(rate,10,2);

/* Output fact in floating-point form with 8
decimal figures, left-justified in a field of 15. */
gDisplayRealExponent (fact,-15,8);

/* Output sales in floating-point form,
right-justified in a field of 12. */
gDisplayRealFloat (sales,12);

F90 code

! Output nyear left-justified in a filed of 4
call gDisplayInteger (nyear,-4)

! Output rate in a fixed-point format with 2

! decimal figures, right-justified in a field of 10
call gDisplayRealFixed(rate,10,2)

! Output fact in floating-point form with 8

! decimal figures, left-justified in a field of 15.
call gDisplayRealExponent (fact,-15,8)

! Output sales in floating-point form,

! right-justified in a field of 12.
call gDisplayRealFloat (sales,12)

139

Output of Numbers

CHARACTERS

140

gDisplayInteger(28282,10);

gDisplayInteger(28282,-10);

gDisplayRealFixed(28.282,10,3);

gDisplayRealFixed(28.282,10,1);

gDisplayRealExponent(28.282,10,2);

gDisplayRealExponent(28.282,-10,4);

gDisplayRealFloat(28.282,10);

gDisplayRealFloat(28.282,5);

= 28282

=28282

= 28.282

= 0.28E 2

=0.2828E 2

=0.2828E 2

Numeric output

Conversion of Numbers to Character Strings

The following routines convert numbers to character strings:

gConvertInteger(number, nwidth, string)

gConvertRealFloat(value, nwidth, string)

gConvertRealFixed(value, nwidth, nplace, string)

gConvertRealExponent(value, nwidth, nplace, string)

The numbers are stored as strings in the same format as the output produced by
the routines gDisplayInteger(), gDisplayRealFloat(), gDisplayRealFixed() and
gDisplayRealExponent(). The length of the resultant string is limited to 32
characters. If the format of the number exceeds this then it is truncated to 32

characters and a warning message is output.

The position of the number in the character array string is determined by the
value of nwidth. If nwidth is positive then the number is right justified. If
nwidth is less than zero then the number is left justified. Nothing is returned if

nwidth is zero for any of the routines.

CHARACTERS Character Fonts

The character string, once returned, may be used in other string handling
routines. For example, passing the string to the routine gReturnStrInfo() would
allow the size of the number, output in the current font, to be returned. The string
may be concatenated with other number strings, text strings, and escape
characters.

Character Fonts

Font styles

The default font (font 0) on all devices is a fixed width font. A fixed width font
may be produced by hardware if the device has the capability or GINO’s default
software font will be used.

The default font can be changed using the following routine:
gSetCharFont(font)

Values of font greater than zero determine the style of font to be used. Font
numbers 1 to 99 specify software font styles. Numbers between 100 and 108
specify a set of registered hardware fonts, if font numbers 101-108 are not
available a software equivalent font will be selected. Numbers greater than 108
access device specific hardware fonts.

The current character mode setting can affect the hardware or software accessing
of fonts. For all software fonts the software character mode applies (as if
gSetSoftChars() had been called). For the current registered hardware fonts the
character mode can be controlled by the gSetSoftChars() / gSetHardChars()
routines, with an approximate software equivalent addressing shortfalls in the
specific hardware capabilities. Non-registered hardware fonts (108+) operate in
the hardware character mode only (as if gSetHardChars() had been called).

The availability of hardware fonts on any particular device can be enquired with
the routine gEnqHardFontList (described later). Appendix B also details the font
styles available for a specific device.

141

Character Fonts CHARACTERS

142

Fonts 70 to 79 are primarily symbol characters which are provided for use with
the gDrawMarker() routine, which outputs a character centred upon the current
character position, however they can also be used with gDisplayStr() providing a
mapping between ASCII characters and symbols.

1:Roman Simplex 2 :Roman Duplex
3:Roman Complex 4:Roman Triplex
5:/talic Complex 6:1talic Triplex
T tbenipt bimplos 8 1 Foripl Complew
9:lpeek Ziumhey 10:Tpeex VYoumAey
11:Gothir English 12 :Gothic German
13 :60othir Ttalian 14 :Bmicunnus BomMmou
15:Swiss Solid 16 :Dutch Solid
17:WESTERN 18:Computers
19:Display 20 : Latin
101 : Helvetica 102 : Times
103 : Avant Garde 104 : Lublin Graph
105 :New Century 106 : Souvenir
107 : Palatino 108 : chancery

GINO Software and Hardware Fonts

IN ftware Fon

0 GDEFAULT

1 GRoman_Simplex
2 GRoman_Duplex

3 GRoman_Complex

CHARACTERS

Character Fonts

(DIN 6776)

4 GRoman_Triplex

5 Gltalic_Complex

6 Gltalic_Triplex

7 GScript_Simplex

8 GScript Complex

9 GGreek_Simplex

10 GGreek Complex

11 GGothic_English

12 GGothic_German

13 GGothic_Italian

14 GCyrillic_ Complex
15 GSwiss_Solid *

16 GDutch_Solid *

17 GWestern *

18 GComputer *

19 GDisplay *

20 GLatin *

21 GGreek Font 1

22 GGreek Font 2

23 GGreek Font 3

24 GGreek Font 4

25 GGreek Font 5
Symbol Fonts

70 GMaths_Symbols *
71 GHershey Maths Symbols
72 GHershey Symbols_1
73 GHershey Symbols 2
74 GSymboll_normal *
75 GSymboll _thick *
76 GSymboll_filled *
77 GSymbol2 normal *
78 GSymbol2 _filled *
79 GGINO_Dingbats *

143

Character Fonts CHARACTERS

144

Hardware and Software Fonts

100 GCourier [Hardware only]

101 GHelvetica

102 GTimes

103 GAvant_Garde

104 GLublin_Graph

105 GNew_ Century Schoolbook

106 GSouvenir

107 GPalatino

108 GChancery

>108 Device specific hardware fonts (see Appendix B)

Notes:
(1) * indicates the font is defined as a polygon and can be filled (see below).

(i1) All fonts are proportionally spaced except font numbers 0 and 100.

Font Fill Style

When hardware fonts or software fonts that are defined as polygons are used, the
default fill style is solid fill in the current pen colour. This can be varied by using
the following routine:

gSetFontFillStyle(style)

where the structure style contains the following integer elements: style.type,
style.ffill, style.fline, style.bfill, style.bline. style.type defines the type of filling
that is required. style.ffill and style.bfill define the foreground and background
filling style and style.fline and style.bline define the foreground and background
line style if a filled font style is selected. If either style.ffill or style.bfill =
GNOFILL the foreground or background filling respectively is omitted. The
default setting for style is {GFILLED, GSOLID, GCURRENT, GNOFILL,
GCURRENT}.

CHARACTERS Character Fonts

The font style parameters can be set for hardware fonts, but the number of
foreground and background fill and line styles may be limited, whereas other
styles may be provided. Refer to Appendix B for the particular device.

style {GOUTLINE};

style = {GFILLED GSOLID GCURRENT,GNOFILL};
B NN N N N

A R R SR

style = {GOUTFIL,3 GCURRENT GN@FHLL}

style & N {GOUTHD, 8 CCURRENTILGCUR!

Examples of Software Filled Text

I

Font Weight

Many hardware fonts have a weighting factor which increases or decreases either
the boldness of a font or the thickness of the vectors by which the font is drawn
(see Appendix B for the capability of the current device). This weight factor can
be set using:

gSetFontWeight(weight)

where weight is a positive or negative integer which will adjust the weight factor
of both hardware and software fonts. The following values are suggested for
standard weights:

Value Font weight
-6 Extra Thin
-3 Thin

0 Normal

+3 Bold

+6 Extra Bold

Other values of weight may have a corresponding effect, depending on the
resolution of the device. ‘Normal’ font weight refers to the default pen width.

145

Character Fonts CHARACTERS

For GINO’s software fonts, gSetFontWeight() adjusts the thickness of the vectors
used in drawing the characters or their boundary but it does not affect the shape
of any polygons, therefore gSetFontWeight() will not affect strings drawn with
font fill style type = GFILLED.

Fixed Pitch Control

It is possible to force the output of both hardware and software proportional fonts
to appear as if they were fixed pitch. This is achieved with the routine:

gSetFontSpacing(space)

If space = GNORMAL then the font is output as defined, either fixed pitch or
proportional. If space = GFIXEDPITCH then the font is forced to be fixed pitch.

Software Font Representation

As the display of software fonts can be time consuming, GINO provides a means
to simplify the representation of these fonts during program development.

gSetFontForm(rep)

The default setting for rep is zero, where the requested software font is output as
requested. Other settings of rep display either a box representing the character
width and height or a box and the same character but drawn in the default GINO
software font. Font weight is ignored when rep> 0. The variety of boxes cither
include or omit left and right bearings and other height limits of the current
software font. The routine gSetFontForm() has no effect on font 0. (Hardware,
Greek and Symbol fonts are not output in the GINO software font, for odd values
of rep).

rep=0 H,S0,
rep=1 H,504
rep=2 [0y
rep=3 HpB0y
rep=4 Dﬂ:]]
rep=5
rep=6 [|1][]3
rep=7 gillg

Various Font Representations

146

CHARACTERS Character Attributes

Font Enquiry

The routine gEnqFontStyle() is provided to enquire all of the above font
attributes.

gEnqFontStyle(font, style, weight, space, rep)

where font is set by gSetCharFont(), style is set by gSetFontFillStyle(), weight is
set by gSetFontWeight(), space is set by gSetFontSpacing() and rep is set by
gSetFontForm().

The routine gEnqHardFontList() returns a list of the hardware fonts available
with the current device.

gEnqHardFontList(list, n, count)

where list is an integer array of length n. gEnqHardFontList() returns a list of
hardware font numbers as used by gSetCharFont(). The total number of hardware
fonts available on the current device is returned in count.

Character Attributes

Default Character Settings

The default settings for the output of characters are:

« font 0 - (Fixed width hardware font if available, otherwise software)
« left justified

+ not underlined

+ size 3mm x 3mm or nearest hardware equivalent

+ angle 0 degrees

« italic 0 degrees

Character Size

The default width and height of characters depends on the output device and may
be altered using the routine:

gSetCharSize(width, height)

147

Character Attributes CHARACTERS

For fixed pitch software fonts the size of the character box is the same for all
characters, there is no left bearing and the right bearing is equivalent to one third
of the current GINO character width. For proportional fonts the character box
will vary for each character and the size relates approximately to the upper case
letter M. The specified width equates to the left and right bearing together with
the individual character width.

Char. Width

Left Bearing Right Bearing

777777777777

Character height
HEIGHT

4—— WIDTH ———Pp

Fixed Pitch Character Box Size

If lower case characters with tails or descenders are being drawn (i.e. g, j, p, q or
y), the box is extended as shown in the figure below. In this case the pen is left at
the right-hand corner of the box at baseline level.

Also note that other than for software characters, if any part of each character
box in a string (including ascenders or descenders) lies outside the current
clipping window, the whole character is not output. Therefore trying to output a
string that only contains upper-case letters along the Y=0.0 line, will still result
in no output because the character box extends below the clipping margin.

Ascender _ _ _ . _ . _ . _ . ____,
Top. - _ . . _. ..
Character Height(CH)
Baseline. /_ . _ _ _ -
N N Lo H/3 CH/2.5

Descender. _ . _ . _ . .. ___ . L

Underline

start

Character Box Dimensions

For example to specify the character box to be 20mm wide and 10mm high:

148

CHARACTERS Character Attributes

gSetCharSize (20.0,10.0); call gSetCharSize(20.0,10.0)

If gSetHardChars() has been called, the characters may not be drawn to the exact
size requested. If the device does not support all character sizes, the nearest
available hardware character size is selected. If the device cannot generate
characters at all, they will be generated by GINO to the exact size requested.

An alternative method of specifying a character size is to use the routine:
gSetCharSizePoint(points)

where points is the requested character size in printers points (1/72nd inch).
Using this routine is equivalent to setting a square character size using
gSetCharSize() with the same implications in terms of character mode as
documented above.

Character Orientation

The orientation of characters may be specified using the routine:
gSetStrAngle(angle)

angle specifies the angle in degrees between the characters to be drawn and the
horizontal (or the current X-axis if it has been transformed). The character strings
are rotated about the bottom left-hand corner of the character string. Positive
rotation is anti-clockwise as indicated in the figure below.

\ ANGLE

Character Orientation

The pen is left at the bottom right-hand corner of the rotated box to ensure that
consecutive character strings are concatenated.

Example:

149

Character Attributes CHARACTERS

gSetStrAngle (45.0) ; call gSetStrAngle (45.0)
gMoveTo2D (x,V) ; call gMoveTo2D (x,V)

gbhisplayStr (“Rotated by ”); call gDisplayStr (‘Rotated by V')
gDisplayStr (Y45 degrees”); call gDisplayStr (‘45 degrees?')

would produce the output shown below.

String Rotation

If gSetHardChars() has been called and angled character strings cannot be
produced on the device, an approximation is provided in the form of a stepped
character string.

Note that Characters strings can also be rotated if Software Transformable
character mode has been selected with gSetCharTransformMode(GON) and a
GINO transformation is currently active (see page 239).

Italic Characters

Italic characters may be selected using the routine:

gSetltalicAngle(slant)

150

CHARACTERS Character Attributes

slant specifies the angle in degrees between the slope of the characters and the
vertical (or the current Y-axis if transformable characters are switched on). A
positive angle represents a clockwise slope.

Italic Character

gSetCharSize (5.0,6.0) ; call gSetCharSize(5.0,6.0)
gSetItalicAngle (30.0); call gSetItalicAngle(30.0)
gDisplayStr (“Italics”); call gDisplayStr(‘Italics’)

would produce this output:

/28y

If gSetHardChars() has been called and the device cannot draw italicized
characters, then characters will be drawn non-italicized.

Current Character Settings Enquiry

The current character settings can be examined by calling the routine:
gEnqCharAttribs(rep)

where rep is a structure of type GCHASTY. The default character settings are set
up each time a device is nominated and gEnqCharAttribs() will return these if the
call is made before any of the character settings are changed. The default
character settings are device dependent (see Appendix B). If gSetHardChars() has
been called, the character settings returned by gEnqCharAttribs() may differ from
the requested settings.

151

Character Attributes CHARACTERS

152

To enquire the current angle and italic effects on a character string, the routine
gEnqCharTransform() requires the width and height of the character string and
returns the relative distance subject to the current angle and italic
transformations.

gEnqCharTransform(dx, dy, point)

This routine is useful for evaluating the area that a particular string will occupy.
By passing the length of the current string and the current character height, the
end position of the string is given relative to the start.

Underlining of Characters

Characters may be underlined with a solid line using the routine:
gSetStrUnderscore(swi)

Underlining is switched on for all subsequent character and string output when
swi is set to GON. The underlining occurs at 0.4 * the character height below the
characters baseline.

The current setting for underlining can be enquired using the routine:

gEnqStrUnderscore(swi)

Representation of Zero Character

The routine gDefineNullChar() offers alternative representations of the zero
character for the GINO default software font.

gDefineNullChar(nul)

where nul is in the range 0 - 2. The zero can be represented in the following

8 g §

Line Attributes affecting Characters

The Line attribute of colour always affects the drawing of characters, however
the visibility, dashed-line style, line thickness, pen-type and line-end type only
affect characters if Software Transformable Characters have been selected with
gSetCharTransformMode() (see page 239).

CHARACTERS Character String Attributes

Character String Attributes

There are a number of attributes which affect a complete character string:

+ Justification

 Text Blocks

« Exponent and Index Settings
» Escape Characters

Justification

Character strings may be left, right or centre justified.
gSetStrJustify(jus)
gEnqStrJustify(jus)

For left justified characters - jus = GLEFT (the default), the start position is at
the bottom left-hand corner of the character box, and the pen is left at the bottom
right-hand corner of the box for subsequent output.

For centre justified characters - jus = GCENTRE, the start position is at the
centre of the character box, and the pen is left at the centre of the box for
subsequent output.

For right justified characters - jus = GRIGHT, the start position is at the bottom
right-hand corner of the character box, and the pen is left at the bottom left-hand
corner of the box for subsequent output.

Left Justified,
Right Justified,
Centre Justified
X= Start Pos
+= End Pos

Justified Strings

153

Character String Attributes CHARACTERS

154

When outputting numeric output, take care not to confuse the justification of the
number within the field width (which is controlled with the sign of the field
width; <0 = left-justified, >0 = right-justified) and the justification about the
current point which is controlled by gSetStrJustify. Outputting centred numbers
with jus =GCENTRE will only work if the number is exactly the same length as
the indicated field width.

Text Blocks

Text blocks can be created by using the routines:
gStartTextBlock(xbeg, ybeg)
gMoveToNextLine()

The xbeg and ybeg coordinates define the position of the first line of a text block.
Subsequent line positions are set using the gMoveToNextLine() routine or by
using the *N escape sequence. The distance between the lines of a text block can
be set by changing the inter-line spacing with the routine:

gSetInterlineSpace(factor)

where factor is a factor of the current character height. The default setting of the
inter-line spacing is 2.0 * character height, but this may be set to any positive or
negative real value, allowing overwriting or lines to be placed above each other.

C code

gStartTextBlock (10.0,100.0) ;
gDrawMarker (42) ;
gDisplayStr (“The owl and the pussy cat”);

gMoveToNextLine () ;

gbisplayStr (“Went to sea, in a beautiful pea-green boat”);
gMoveToNextLine () ;

gDisplayStr (“"They sailed away for a night and a day”):
gMoveToNextLine () ;

gDisplayStr (“With a jar of honey, and plenty of money,”);
gMoveToNextLine () ;

gbisplayStr (“wrapped up in a five pound note”);
gMoveToNextLine () ;

CHARACTERS

Character String Attributes

F90 code

call
call
call
call
call
call
call
call
call
call
call
call

gStartTextBlock (10.0,100.0)

gbDrawMarker (42)

gDisplayStr (‘The owl and the pussy cat’)

gMoveToNextLine

gDisplayStr (‘Went to sea, in a beautiful pea-green boat’)
gMoveToNextLine

gDisplayStr (‘They sailed away for a night and a day’)
gMoveToNextLine

gDhisplayStr (‘With a jar of honey, and plenty of money,’)
gMoveToNextLine

gbisplayStr (‘wrapped up in a five pound note’)
gMoveToNextLine

A call to gMoveToNextLine() without initializing the start position through
gStartTextBlock() will generate a warning message. The start position of the text
block will be taken as the current pen position upon the call to
gMoveToNextLine().

Ihe owl and the pussy cat

Went to sea, in a beautiful pea-green boat
They sailed away for a night and a day
With a jar of honey, and plenty of money,

wrapped up in a five pound note

Use of Text Block Routines

The current text block settings can be obtained by calling the routine:

gEnqTextBlockAttribs(xbeg, ybeg, factor)

xbeg, ybeg return the current text line position within the text block.

Exponents and Indices

Exponents and indices can be drawn within character strings using the escape
sequences *E and *I as described. The position and size of exponents and indices
are set or enquired with the routines:

gSetStrExponent(relcw, relch, posexp, posind)

gEnqStrExponent(relcw, relch, posexp, posind)

155

Character String Attributes CHARACTERS

156

where relew and relch are the relative character width and height of both
exponents and indices. posexp is the relative character height above the baseline
at which the exponents are drawn and posind is the relative character height
below the baseline at which indices are drawn.

Escape Characters

An escape mechanism enables various control functions to be specified in
character strings. Initially, the escape character is an asterisk *. The following
controls are provided:

ok
o
e
“*Fnnn‘
HFS
SFR?
N?
g
s
Grp?
g
()
g
oy

o

o

EAWE

“k.q2

sk

String terminator

Shift to lowercase

Shift to upper-case

Change to font nnn (eg: change to font 3: *F003)

Sets the GINO font to the temporary string font

Restores the font which was current when the string routine was called
Move to next line of text block

Set exponent (0.6*height above baseline)

Set Index (0.3*height below baseline)

Align position (also resets exponents, indices, underline and weight)
Move back to last align position on baseline

Position next character over previous character at exponent size setting
Underline following characters

Set italic -15 deg

Set italic 0 deg

Set italic +15 degrees

Bold following characters

Umlaut facility (must be followed by an A,O,U, or S)

Displays German sz character if available in current font

Output the escape character

The functionality of these facilities are detailed in the reference document in the
description of gDisplayStr(). For all strings specified as character variables or
arrays, it is advisable that the string be terminated by *.’.

The following sequence of statements produces the characters shown in the
figure below:

CHARACTERS Character String Attributes

C code

gDisplayStr (“DATE OF BIRTH: ”);

gDisplayStr (“1*LST *UM*LAY 1988");

gMoveToNextLine () ;

gDisplayStr (“H*I2*ASO*I4*.");

gMoveToNextLine () ;

gDisplayStr (Ya*E2*A+b*E2*A=c*E2*.") ;

gMoveToNextLine () ;

gDisplayStr (“\m*B*E*F070T*."”) ;

gMoveToNextLine () ;

gDisplayStr (“*S*\Thames*.”) ;

gMoveToNextLine () ;

gDisplayStr (“*FOTOS*FS*BXI*I*I*T*/i*| =~
WI*B*E*E*E*E*/m*Ak*Iin*.”);

F90 code

call gDisplayStr (DATE OF BIRTH: ‘)

call gDisplayStr (‘1*LST *UM*LAY 1988’")

call gMoveToNextLine

call gDisplayStr (YH*I2*ASO*I4*.")

call gMoveToNextLine

call gDisplayStr (‘a*E2*A+b*E2*A=c*E2*.")

call gMoveToNextLine

call gDisplayStr (‘m*B*E*F070T*.")

call gMoveToNextLine

call gDisplayStr (**S*\Thames*.’)

call gMoveToNextLine

call gDisplayStr (‘*FO070S*FS*B*I*xI*IxI*/i*x| =’ // &
V1*B*E*E*E*E*/m*Ak*Iin*.’)

DATE OF BIRTH: 1st May 1988
H,SO,
a’+b?=c

m

2

Thames

Use of Escape Sequences

157

Character String Attributes CHARACTERS

Changing the Escape Character

When it is not convenient to use ‘*’ as the escape character, another character
(for example ‘!”) can be selected using:

gSetEscapeChar(cha)

The escape character may be set to any character in the ASCII set excepting
those used for escape sequences themselves.

gSetEscapeChar (“!”) ; call gSetEscapeChar(‘!’")

Escape Character Enquiry

The currently selected escape character may be obtained by using:
gEnqEscapeChar(cha)
Character Strings Adjusted to Fit a Specified Width

To output a string to fit between any two arbitrary points, the routine
gFitCharStr() can be used:

gFitCharStr(string, x1, y1, x2, y2, fit)

When fit = GB2P, the string angle is adjusted so that the string lies along the
arbitrary line between the two points. When fit = GSIZE the character size is also
adjusted so that the string exactly fits between the two points (other values of fit
are reserved for future development).

=
O,

—1

Strings adjusted to fit
between two points

158

CHARACTERS Character String Attributes

Character Strings Drawn Along a Curve

Two routines are provided to place character strings along the line of a curve:
gDisplayStrPolylineTo2D(npts, points, string)
gDisplayStrPolylineBy2D(npts, points, string)

The current character size and justification applies to the string which may result
in the string being clipped.

Example of character string
drawn along a curve

Returning Information about a String

It is often useful to be able to determine the length of a character string before it
is output. With fixed pitch fonts this can be calculated by multiplying the number
of characters by the actual character width, but where the string contains
proportional fonts or a number of escape sequences it is very difficult to calculate
this value. The routine gReturnStrInfo() can be used to return the length and
other information relating to a character string.

gReturnStrInfo(string, rlen, nnl, tch, sch, nesc)

159

Character String Attributes CHARACTERS

where string is the input string to be enquired. rlen is the maximum length of
that string in current units. nnl returns the number of lines contained in the string
(which is normally 1 unless the *N escape sequence has been used). tch returns
the total character height, which always includes space for descenders and
underlining and can include space for indices and multiple lines if the string
contains them. sch returns the maximum height above the base line of the string.
nesc returns the number of characters discounting the escape sequences in the
string.

TCH

=~ H,S0,

RLEN

TCH | SCH

a’+b%=c?

RLEN

TCH

=| Thames

RLEN

m

L k&

j=qReEN

TCH | SCH

=/ =] A two lined
string™

Information returned by gReturnStrInfo()

Country Specific Characters

GINO provides provision for outputting certain non-standard ASCII characters in
either software or hardware character mode.

160

CHARACTERS Symbols

Euro Symbol

The Euro symbol has been added into software fonts 101 and 102 at position 127
and can be output either by inserting the character directly from the keyboard-key
or <alt><key> sequence into the source code or by selecting font 101/102 and
position 127 using the routines gSetCharFont() and gDisplayAsciiChar(). The
hardware symbol can be output using the mwin, wogl, xwin, glx and postscript
drivers by using fonts 100-108 and inserting the character directly from the
keyboard-key or <alt><key> sequence. Note that the hardware Euro symbol will
only appear on Windows 98 rel. 2 or later, with the DW-Motif Euro kit under
OpenVMS, or with Postscript Level III firmware.

German Umlaut characters

The German umlaut characters have been added into various software fonts at
positions 25-31 and can be output by inserting the character directly from the
keyboard-key or <alt><key> sequence into the source code or by selecting the
required font and character position using the routines gSetCharFont() and
gDisplayAsciiChar(). The hardware symbols can be output using the mwin, wogl,
xwin, glx and postscript drivers by using fonts 100-108 and inserting the
character directly from the keyboard-key or <alt><key> sequence. The umlaut
characters can also be output by using the GINO ‘escape’ character ‘*:” followed
by a,o,u or s and this will produce the correct character either in hardware or
software depending on the font and character mode selected.

Symbols

Any hardware or software character together with an additional 9 symbols may
be output as a centred symbol by using the routine gDrawMarker():

gDrawMarker(nsym)

where nsym is used to indicate the symbol number that is required. Apart from
the first nine symbols, numbered 0 - 8, indicated below, other characters may be
output with the gDrawMarker() routine using the symbol number printed in the
bottom left corner in the character tables in Appendix C.

Symbols are drawn the same size and shape as characters defined by the routines
gSetCharSize(), etc. However, if non-horizontal or italic symbols are required,
GINO transformations must be used with software transformable characters in
operation.

161

Symbols

CHARACTERS
These are the first nine GINO symbols:
GDOT GuUP GDOWN GPLUS GCROSS GBOX GDIAMOND GCIRCLE GSTAR
° A v + X m o o *

9 Pre-defined Symbols

Symbol 0 is a dot of radius half the character width.

Note that the mode setting routines gSetHardChars(), gSetSoftChars() and
gSetMixedChars() also affect the output of symbols.

Positioning Symbols
Symbols are centred about the start pen position, and the pen is left at the centre

of the symbol. For example - the following statements join the nine points held in

the arrays X and Y, drawing a different symbol at each point as shown in the
figure below.

gSetCharSize (6.0,6.0) ;

gMoveTo2D (x[0]1,vy[0]);

gDrawMarker (0) ;

for (n=1, n<9, n++) {
gDrawLineTo2D(x[n],y[nl);

call gSetCharSize(6.0,6.0)
call gMoveTo2D (x(1),y (1))
call gDrawMarker (0)

do n=2,9

call gDrawLineTo2D(x(n),y(n))
call gDrawMarker (n-1)
end do

gDrawMarker (n) ;

}

162

CHARACTERS Symbols

Multiple Symbols

Routines for drawing multiple symbols in 2D or 3D are:
gDrawPolymarkerTo2D(npts, points2, nsym)
gDrawPolymarkerBy2D(npts, points2, nsym)
gDrawPolymarkerTo3D(npts, points3, nsym)
gDrawPolymarkerBy3D(npts, points3, nsym)

The following example draws an asterisk (symbol number 8) at each of 6 points
stored in the pt array and joins them with an Akima curve:

gDrawPolymarkerTo2D (6, pt, 8) ; call gDrawPolymarkerTo2D(6,pt, 8)
gDrawAkimaTo2D (6, pt, GNONE, GNONE) ; call gDrawAkimaTo2D(6,pt, &
GNONE , GNONE)

A

Multiple Symbol Drawing

163

Chapter

AREA FILLING

Area Filling Introduction

GINO provides area filling facilities for simple and complex polygons using solid
fill or various hatch styles. Simple polygons are defined as a series of points,
either singly or in sets, in 2D space, Up to a limit of 2048 points. These are
described in this chapter. Complex polygons are constructed using the 2D or 3D
drawing routines (lines, curves etc.)and stored in internal workspaces. They can
be given identifiers for selective filling and picking and can be used for defining
polygonal windows and/or masks. These are described later in this document (see
page 245).

The appearance of the fill for all these routines depends on the hatching style and
the line style in which it is drawn. GINO offers 16 default hatch styles (out of a
possible 256), all of which may be redefined by the user.

A third type of polygon, called a facet, is also available in GINO for use with
lighting and shading options (see page 295).

Filling a Rectangle

The routine for filling rectangles is :

gFillRect(fill, line, limit)

165

Filling a Rectangle AREA FILLING

The fill style determines how the rectangular area is filled. If fill = GSOLID, the
area is solid filled by hardware or by horizontal lines drawn touching each other.
If fill = GBOUNDARY, only the boundary outline is drawn. Other default hatch
fill styles are shown later in this section. The style of the hatch line is selected by
line from the line definition table. If line = GCURRENT, the current line style is
selected. Line styles can modify the appearance of a hatch style. This is
particularly apparent with the attributes broken line type and colour.

For example, a solid fill by software (fill = GSOLID) is changed if a broken line
type is selected. If line is set out of range (i.e. greater than 256), the filling line
style defaults to the current line. A solid fill also results if fill is set out of range
(i.e. greater than 256).

The diagonally opposite corners of the rectangle are specified by the structure
limit. These are picture space coordinates. limit.xmin may be greater than
limit.xmax and limit.ymin may be greater than limit.ymax.

For example, the statements:

static GLIMIT limit = type (GLIMIT) :: limit = &
{50.0,130.0,50.0,100.0}; GLIMIT(50.0,130.0,50.0,100.0)
gFillRect (6, GCURRENT, &1limit) ; call gFillRect (6, GCURRENT, limit)

would produce a rectangle filled with hatch style 6 (see default hatch styles table)
in the current line style.

SO 00005020 20207050 OO L0020 20003,
RIS
SRR

%5
255
S8
KK
3RS
258
55
XK
3258
12020
00
100

SRLRRS
JOSesesesesess
S
5%
K
3
3
0

<
.0

<
53

35
3
2R

XX
KK
S8

KKK
XXX
<>
< >
LS
XX

%
35S
LERE
bt
<5

3RS
35S
58S
5
SIS
35S
55
DOSessogasets
%S
&

<
KL
9a0e%

RIS
KRS
%
3RS

35
29588
%
K5

%
’:
K5

K2

fogeses
bogeses
3RS

o
o
o
o
o
o
o
o
o
o
o
%

%5
%
o
10
258
23258585
25
35S
%

%
3%

<

A Filled Rectangle

The rectangle, like other output primitives, is subject to the current
transformation, which if any rotations of scales are present, will result in a
non-rectangular shape. For example, if a call to gFillRect() is made when a
rotation of -30.0 degrees is the current transformation, the area shown in the
figure below will be filled thus:

166

AREAFILLING

Filling Single Polygons

static GLIMIT limit =

{0.0,80.0,100.0,160.0};

gRotate2D(-30.0) ;
gFillRect (GHOLLOW, 3, &limit) ;
gFillRect (2, GCURRENT, &limit)

type (GLIMIT) :: limit = &
GLIMIT(0.0,80.0,100.0,160.0)

call gRotate2D(-30.0)

call gFillRect (GHOLLOW,3,limit)
call gFillRect (2, GCURRENT, limit)

p

The Effect of Transformation on gFillRect

Filling Single Polygons

The routines for filling single polygons are:

gFillPolygonTo2D(fill, line, inv, npts, points)

gFillPolygonBy2D(fill, line, inv, npts, points)

The routines gFillPolygonTo2D() and gFillPolygonBy2D() fill a single polygon
with npts vertices. Each polygon includes the current pen position and either the
absolute or relative points in the array of points being structures of GPOINT. An
extra point is added if necessary to ensure the polygon is closed before filling.
The fill style and line style are defined in the same way as gFillRect(), using fill

and line arguments.

inv specifies which area is to be filled. When inv=GAREA the interior of the
polygon is filled and when inv=GINVERSE the exterior area up to the current
window limits is filled, leaving the interior empty. If the polygon is self
intersecting, unfilled areas can be created within a polygon.

167

Filling Single Polygons

AREAFILLING

168

The following examples show the application of 2-D polygon filling:

static GPOINT pts[6] = type
{300.0,200.0, 180.0,150.0
210.0,220.0, 240.0,200.0
210.0,180.0, 180.0,250.0

gMoveTo2D (180.0,250.0) ;
gDrawPolylineTo2D (6, pts) ;

gFillPolygonTo2D (1,4, GAREA, call
6,pts) ; call
call

(GPOINT)
GPOINT
GPOINT
GPOINT
GPOINT
GPOINT
GPOINT

:: pts(6) = (/ &
300.0,200.0), &
180.0,150.0), &
210.0,220.0), &
240.0,200.0), &
210.0,180.0), &
180.0,250.0} /)

gMoveTo2D(180.0,250.0)

gDrawPolylineTo2D (6, pts)

gFillPolygonTo2D (1,4, GAREA, &
6,pts)

Polygon Fill with Normal Fill

gMoveTo2D(180.0, 250.0);

gbDrawPolylineTo2D (6, pts) ;

gFillPolygonTo2D (1,4, GINVERSE,
6,pts) ;

call gMoveTo2D(180.0, 250.0)
call gDrawPolylineTo2D (6,pts)
call gFillPolygonTo2D (1,4, &

GINVERSE, 6, pts)

AREA FILLING Filling Polygon Sets

Polygon Fill with Inverse Fill

Filling Polygon Sets

Polygon Set Definition

A polygon set consists of an array of polygons each of which consists of an
integer number of vertices and a pointer to an array of 2D vertices. The storage of
such a 2D polygon set requires the following data structure in either C/C++ or

Fortran 90.
typedef struct { type GPOLYGON
int nvert; sequence
GPOINT *verts; int :: nvert
} GPOLYGON; type (GPOINT),dimension(:), &
pointer :: verts
end type

Each polygon is complete within itself and does not make use of the current pen
position. For this reason polygon sets can only use absolute coordinates. GINO
ensures that every polygon is closed by adding the first point to the end of each
polygon if it is not contained in the definition supplied by the application
program.

An example of a 2-D polygon set consisting of a trapezium and two triangles is
shown in the diagram below:

169

Filling Polygon Sets AREA FILLING

x: 40. 160. 340. 460. 120. 245. 245. 250. 440. 250.
y: 140. 40. 40. 140. 145. 270. 145. 145. 145. 335.
< > < > < >

Polygon sizes

Polygon Usage

Two dimensional polygon sets are filled using the following routine:
gFillPolygonSet2D(fill, line, inv, npol, polygons)

GINO applies the current viewing transformations to the polygon to create a
single polygon which is filled the same way as normal 2-D filling. Therefore if
any polygon within the set overlaps any other, or itself, then the generated
polygon could be windowed.

The fill style and line style are defined in the same way as gFillRect(), using fill
and line arguments.

The argument inv specifies which areas are to be filled once the single polygon
has been generated. When inv = GAREA the interior of the polygon is filled, and
when inv = GINVERSE the exterior area up to the current window limits is
filled, leaving the interior empty.

The example polygon sets described previously can be implemented as follows.

Filled polygon set

170

AREAFILLING Filling Modes

C code

#include gino-c.h

GPOLYGON poly[3]

GPOINT points[10] = {
40.0,140.0, 160.0,40.0, 340.0,40.0, 460.0,140.0,
120.0,145.0, 245.0,270.0, 245.0,145.0,
250.0,145.0, 440.0,145.0, 250.0,335.0};

= {4, 0, 3, 0, 3, 0};

poly[0].verts=&points[0];
poly[l].verts=&points([4];
poly([2].verts=&points([7];

gFillPolygonSet2D (6, 1, GAREA, 3,poly) ;

F90 code
use gino £90

type (GPOLYGON) :: poly(3)
type (GPOINT) :: points(10) = {/ &
GPOINT (40.0,140.0), GPOINT(160.0,40.0), &
GPOINT (340.0,40.0), GPOINT(460.0,140.0), &
GPOINT (120.0,145.0) ,GPOINT (245.0,270.0), &
GPOINT (245.0,145.0), GPOINT(250.0,145.0), &
GPOINT (440.0,145.0), GPOINT(250.0,335.0) /)
poly (1) $nvert=4
poly(l) %verts=>points (1:4)
poly(2) $nvert=3
poly (2)S$verts=>points (5:7)
poly (3) $nvert=3
poly (3) $verts=>points (8:10)

gFillPolygonSet2D (6,1, GAREA,3,poly)

Filling Modes

Depending on capabilities of the graphics device the filling mode can be
switched between hardware and software with the following routine:

gSetFillMode(sw)

By default the device is requested to execute the fill in hardware (because
hardware is more efficient) but if it cannot, GINO will fill the polygon with a
series of lines. This default case corresponds to a call to gSetFillMode(GHARD)
and the results may depend on the device. To force a software fill every time, a
call to gSetFillMode(GSOFT) should be made.

171

Hatch Style Definition AREA FILLING

Hatch Style Definition

172

gDefineHatchStyle(fill, rep)
gEnqHatchStyle(fill, rep)

Up to 256 hatch styles (fill=1 to 256) may be defined and stored in GINO’s hatch
style table. This table is initialized with the set of 16 values shown in the table
below (repeated throughout the 256 entries) each time an output device is
nominated. These styles, when drawn with a solid line, appear as in the figure
below the table which displays the hatch styles.

no. name pitch | angle | xshift | yshift xshear |xhatch
1 |GFINEHORIZONTAL 2.0 0.0 0.0 0.0 0.0 0
2 |GFINEVERTICAL 2.0 90.0 0.0 0.0 0.0 0
3 |GFINELEFTDIAGONAL 2.0 | -45.0 0.0 0.0 -45.0 0
4 |GFINERIGHTDIAGONAL 2.0 45.0 0.0 0.0 45.0 0
5 |GFINEHORIZONTALGRID 2.0 0.0 0.0 0.0 0.0 1
6 |GFINEDIAGONALGRID 2.0 45.0 0.0 0.0 0.0 1
7 |GFINEHORIZONTALMESH 2.0 | -30.0 0.0 0.0 30.0 1
8 |GFINEDIAGONALMESH 2.0 60.0 0.0 0.0 30.0 1
9 |GCOARSEHORIZONTAL 4.0 0.0 0.0 0.0 0.0 0
10 | GCOARSEVERTICAL 4.0 90.0 0.0 0.0 0.0 0
11 |GCOARSELEFTDIAGONAL 4.0 | -45.0 0.0 0.0 -45.0 0
12 | GCOARSERIGHTDIAGONAL 4.0 45.0 0.0 0.0 45.0 0
13 |GCOARSEHORIZONTALGRID | 4.0 0.0 0.0 0.0 0.0 1
14 | GCOARSEDIAGONALGRID 4.0 45.0 0.0 0.0 0.0 1
15 |GCOARSEHORIZONTALMESH | 4.0 | -30.0 0.0 0.0 30.0 1
16 | GCOARSEDIAGONALMESH 4.0 60.0 0.0 0.0 30.0 1

AREAFILLING

Hatch Style Definition

GFINEHORIZONTAL

GFINEVERTICAL

GFINELEFTDIAGONAL

GFINERIGHTDIAGONAL

GFINEHORIZONTALGRID

GFINEDIAGONALGRID

GFINEHORIZONTALMESH

GFINEDIAGONALMESH

GCOARSEHORIZONTAL

GCOARSEVERTICAL

GCOARSELEFTDIAGONAL

GCOARSERIGHTDIAGONAL

GCOARSEHORIZONTALGRID

The user may redefine entries in the hatch styles table by calling
gDefineHatchStyle(). For example:

GCOARSEDIAGONALGRID

GCOARSEHORIZONTALMESH

Default hatch styles

static GHATSTY rep =

{6.0,0.0,0.0,0.0,450.0,1};

gbefineHatchStyle (2, &rep) ;

type (GHATSTY)

GCOARSEDIAGONALMESH

rep = &

GBRKSTR (6.0,0.0,0.0,0.0,450.0,1)

call gDefineHatchStyle (2, rep)

173

Hatch Style Definition AREA FILLING

174

would redefine table entry 2. If this hatch style was then selected by a polygon
fill routine, using a solid line, the resulting fill would look like that shown in the
figure below.

Hatch Style Definition

The structure GHATSTY has six elements which fully define hatch style:
rep.pitch, rep.angle, rep.xshift, rep.yshift, rep.xshear and rep.xhatch. The
elements are best understood in terms of the hatch origin and the local axes. The
hatch origin is the origin of the local axes and the local axes are the picture axes
rotated and shifted. See the figures below. In the following descriptions of the
parameters, examples are drawn from the default values set in the hatch style
table by GINO.

rep.pitch specifies the distance between hatch lines.

rep.angle is the rotation of the local axes about the picture origin. Positive
rotation is anticlockwise.

rep.xshift moves the hatch origin in the direction of the local X axis. The effect
of rep.xshift is apparent if cross hatching is selected.

rep.yshift moves the hatch origin in a direction perpendicular to the X axis.

rep.xshift and rep.yshift may be used to align the hatching pattern within a
polygon.

AREA FILLING Hatch Style Definition

Y Picture Axis

Hatch Origin

X Picture Axis

Picture Origin

The effect of Angle and Shift

rep.xshear (see figure below) is the angle by which the local Y axis is sheared.
rep.yshift remains perpendicular to the local X axis. Positive shear is clockwise.
Shear is apparent only if cross hatching or a broken fill line is selected. When the
broken line has continuous mode selected, the dashes will be centred about the
local axes.

Local X Axis

Hatch Origin XSHEAR

v

Local X Axis

The effect of Shear

175

Hatch Style Definition AREA FILLING

rep.xhatch switches cross hatching on and off. Hatch lines are drawn parallel to
the local axes and start at the hatch origin.

Single hatch lines (rep.xhatch=GOFF) are drawn parallel to the local X axis.

Local Y Axis

REPEAT

Hatch Origin / Local X Axis

Single Hatch lines (continuous broken lines)

Cross hatching (rep.xhatch=GON) is drawn parallel to both local X and Y axes.

Local Y Axis

+ A+ f T
+ + +

/ / /

Hatch Origin / Local X Axis

Cross Hatch lines (continuous broken lines)

176

AREA FILLING Hatch Style Definition

When rep.xhatch=GON both sets of hatch lines are drawn a distance rep.pitch
apart. rep.pitch is the distance between hatch lines.

Local Y Axis

PITCH A—PITCH —,

Local X Axis

Pitch for cross hatching

A hatch pattern is generated with a hatch line coinciding with the local X axis.
Subsequent lines are drawn parallel to the local X axis at a distance rep.pitch
apart. If rep.xhatch =GON a second set of hatch lines are drawn parallel to the
local Y axis (which may be sheared) with one of them coincident with the axis
itself. Both sets of hatch lines may be thought to extend to infinity in both
directions though in practice GINO stops where there are no more polygons to be
filled or when clipping limits are reached.

When cross hatching with continuous mode broken lines (i.e. brk.mode =
GCONTDASH or GCONTCHALIN, see gDefineBrokenLineStyle()), the repeat
length is adjusted so that dashes bisect where the hatch lines cross each other.
Dash and dot lengths are adjusted proportionally. See the figures below.

/ / /
%%%%%

A A S
e
74

A A
Cross hatching with broken line (mode=GCONTDASH)

177

Hatch Style Definition AREA FILLING

178

Cross hatching with broken line (mode=GCONTCHAIN)

Compound hatching effects may be produced by several polygon fills of the same
polygonal area. The hatch definition and line style may be changed for each fill.
The two examples of GINO code at the end of this section produce the compound
hatching effects in the figures below. Notice the following points:

a. Repeat and dash lengths of gDefineBrokenLineStyle() are related to the pitch
distance to give horizontal and vertical symmetry to the patterns.

b. The bottom left hand corner of each polygon is a whole number of repeat
lengths from the X and Y picture axis. The hatch pattern therefore appears to
have its origin in this corner of the polygon. To change this, alter rep.xshft and
rep.yshft.

c. The broken lines specified by gDefineBrokenLineStyle() are continuous. This
means that the fill pattern is generated without reference to the edges of the
polygon. If discontinuous mode is chosen, for example, change the contents of
brk.mode from GCONTDASH to GDISCONTDASH in the broken line structure
brk in Example 1 code; the fill would appear as in the figure below.

Example 1

C code

#include <gino-c.h>
#include <math.h>
#ifndef PI

#define PI 3.141592654
#endif

AREAFILLING

Hatch Style Definition

main ()

{

static GPOINT pts[13]= {
30.0,80.0, 80.0,80.0, 90.0,90.0, 120.0,90.0,
120.0,80.0, 95.0,80.0, 85.0,70.0, 95.0, 60.0,
120.0,60.0, 120.0,50.0, 90.0,50.0, 80.0,60.0,
30.0,60.0};

GBRKSTY brk
GHATSTY hat

{ GCONTDASH, 8.0, 4.0, 0.0};
{ 4.0, 0.0, 0.0, 0.0, 0.0, 0},

gOpenGino () ;
/* Nominate device */
XXXXX () ;
gNewDrawing () ;
/* Set software fill and broken line generation modes */
gSetFillMode (GSOFT) ;
gSetBrokenLineMode (GSOFT) ;
/* Define broken line style */
gDefineBrokenLineStyle (7, &brk);
/* Redefine shear angle to match broken line repeat length */
hat.xshear=(atan2 (brk.repeat,2.0*hat.pitch))*180.0/PI;
/* Define 2 hatch styles */
gDefineHatchStyle (1, &hat);
hat.angle=90.0;
gDefineHatchStyle (2, &hat);
/* Draw boundary and fill polygon */
gMoveTo2D (30.,60.);
gDrawPolylineTo2D (13, pts);
gSetBrokenLine (7) ;
gFillPolygonTo2D (1, GCURRENT, GAREA, 13, pts);
gFillPolygonTo2D (2, GCURRENT, GAREA, 13, pts);
/* Close down device and GINO */
gCloseDevice () ;
gCloseGino() ;

F90 code

program hatchl
user gino_ £90

type (GPOINT) :: pts(1l3)= (/ &

GPOINT (30.0,80.0), GPOINT(80.0,80.0), GPOINT(90.0,90.0),&
GPOINT (120.0,90.0), GPOINT(120.0,80.0), GPOINT(95.0,80.0),&
GPOINT(85.0,70.0), GPOINT(95.0,60.0), GPOINT(120.0,60.0),&
GPOINT (120.0,50.0), GPOINT(90.0,50.0), GPOINT(80.0,60.0),&
GPOINT (30.0,60.0} /)

type (GBRKSTY) :: brk = GBRKSTY(GCONTDASH, 8.0, 4.0, 0.0)
type (GHATSTY) :: hat = GHATSTY(4.0, 0.0, 0.0, 0.0, 0.0, 0)

integer :: PI = 3.141592654
call gOpenGino
! Nominate device
call xxxxx
call gNewDrawing
! Set software fill and broken line generation modes
call gSetFillMode (GSOFT)
call gSetBrokenLineMode (GSOFT)
! Define broken line style
call gDhefineBrokenLineStyle (7, brk)
! Redefine shear angle to match broken line repeat length
hat%$xshear=(atan2 (brk%repeat,2.0*hat%$pitch))*180.0/PI

179

Hatch Style Definition AREA FILLING

180

|

1

1

Define 2 hatch styles
call gDefineHatchStyle (1, hat)
hat%angle=90.0
call gDefineHatchStyle (2, hat)
Draw boundary and fill polygon
call gMoveTo2D (30.,60.)
call gDrawPolylineTo2D (13, pts)
call gSetBrokenLine (7)
call gFillPolygonTo2D (1, GCURRENT, GAREA, 13, pts)
call gFillPolygonTo2D (2, GCURRENT, GAREA, 13, pts)
Close down device and GINO
call gCloseDevice
call gCloseGino
stop
end

/]

Compound fill of example 1

Example 2

C code

GBRKSTY brk
GHATSTY hat

/*

/*
/*

/*

{ GCONTDASH, 8.0, 4.0, 0.0];
{ 4.0, 0.0, 0.0, 0.0, 0.0, 0};

gDefineBrokenLineStyle (7, &brk);

redefine shear angle to match broken line repeat
length */

hat.xshear=(atan2 (brk.repeat,2.0*hat.pitch))*180.0/PI;
define first hatch style */

ghefineHatchStyle (1, &hat);

define second broken line style */
brk.repeat=sqrt ((brk.repeat**2.0)/2.0)
brk.dash=brk.repeat/2.0;
ghefineBrokenLineStyle (8, &rep);

define second hatch style */
hat.pitch=brk.repeat;

hat.angle=45.0;

hat.xshear=0.0;

gbefineHatchStyle (2, &hat);

AREAFILLING Hatch Style Definition

/* draw boundary and fill polygon */
gMoveTo2D (30.,60.);
gDrawPolylineTo2D (13, pts);
gSetBrokenLine (7) ;
gFillPolygonTo2D (1, GCURRENT, GAREA, 13, pts);
gSetBrokenLine (8) ;
gFillPolygonTo2D (2, GCURRENT, GAREA, 13, pts);

F90 code

- =
- A
7.L
e e e
i il
el e e
A A A A e e e 8
4 A
A

~

Compound fill of example 2

181

Hatch Style Definition AREA FILLING

GBRKSTY brk { type (GBRKSTY) :: brk
GDISCONTDASH, 8.0, 4.0, 0.0]; GDISCONTDASH, 8.0

MV

GBRKSTY(&
4.0,

N A I
I D
T\T\T\T\T\T\T

.
\f\f\f\

Compound Fill of example 1 (discontinuous mode)

Hatch Style Enquiry

The routine gEnqHatchStyle() returns hatch style definitions from the software
table of hatch styles.

The particular table entry of interest is identified by fill.
gEnqHatchStyle(fill,_rep)
E.g:

GHATSTY hat; type (GHATSTY) hat

gEngHatchStyle (7, &hat) ; call gEngHatchStyle (7,hat)

returns the hatch style specified by entry 7.

182

AREAFILLING

Multiple Hatch Styles

Multiple Hatch Styles

Complex hatch patterns may be defined using multiple hatch styles and filling the
area the same number of times as the number of hatch styles, as shown in the
examples below:

Box Hatch style

C Code

GHATSTY hatchl =
GHATSTY hatch2 = {2.5,135.0,1.25,0.0,0
GBRKSTY brkl = {GCONTDASH,5.0,2.5,0.0}

F90 Code

type
type
type

{2.5,45.0,1.25,0.0,0.0,0

0}
20,072

’

gDefineHatchStyle (1, &hatchl);
gDefineHatchStyle (2, &hatch2) ;
ghDefineBrokenLineStyle (1, &brkl) ;

gMoveTo2D (30.,60.);
gDrawPolylineTo2D (13, pts) ;
gSetBrokenLine (1) ;
gFillPolygonTo2D (1, GCURRENT, GAREA, 13, pts) ;
gFillPolygonTo2D (2, GCURRENT, GAREA, 13, pts) ;

(GHATSTY) :: hatchl = GHATSTY(2.5,45.0,1.25,0.0,0.0,0)
(GHATSTY) :: hatch2 = GHATSTY(2.5,135.0,1.25,0.0,0.0,0)
(GBRKSTY) :: brkl = GBRKSTY (GCONTDASH,5.0,2.5,0.0)

call gDefineHatchStyle (1,hatchl)

call
call

call
call
call
call
call

gbhefineHatchStyle (2,hatch2)
gbefineBrokenLineStyle (1,brkl)

gMoveTo2D (30.,60.)
gDrawPolylineTo2D (13, pts)
gSetBrokenLine (1)
gFillPolygonTo2D (1, GCURRENT, GAREA, 13, pts)
gFillPolygonTo2D (2, GCURRENT, GAREA, 13, pts)

183

Multiple Hatch Styles AREA FILLING

<
<><>2<><><><><><><>
Oi@i@i@g@i@i@ <><>
OO0 00000
<><><> <
CIRIREIREIN

& O

&

Box Hatch Style

Brick Hatch Style

C Code

GHATSTY hatchl = {3.0,0.0,0.0,0.0,0.0,0};
GHATSTY hatch2 = {2.5,90.0,1.5,0.0,0.0,0};
GBRKSTY brkl = {GCONTDASH,6.0,3.0,0.0};

dr=0.017453293;

/* Brick shear */
hatch?2.xshear=atan(3.0/2.5) /dr;
gDefineHatchStyle (1, &shatchl);
gbefineHatchStyle (2, &hatch2);
ghefineBrokenLineStyle (1, &brkl) ;

gMoveTo2D (30.,60.);
gDrawPolylineTo2D (13, pts);
gFillPolygonTo2D (1, GCURRENT, GAREA, 13, pts) ;
gSetBrokenLine (1)
gFillPolygonTo2D (2, GCURRENT, GAREA, 13, pts) ;

F90 Code
type (GHATSTY) :: hatchl = GHATSTY(3.0,0.0,0.0,0.0,0.0,0)
type (GHATSTY) :: hatch2 = GHATSTY(2.5,90.0,1.5,0.0,0.0,0)

type (GBRKSTY) :: brkl = GBRKSTY (GCONTDASH,6.0,3.0,0.0)

dr=0.017453293

! Brick shear
hatch2%xshear=atan (3.0/2.5) /dr
call gDefineHatchStyle (1,hatchl)
call gDefineHatchStyle (2,hatch?2)
call gDefineBrokenLineStyle(1l,brkl)

184

AREAFILLING

Multiple Hatch Styles

call
call
call
call
call

gMoveTo2D (30.,60.)
gDrawPolylineTo2D (13, pts)
gFillPolygonTo2D (1, GCURRENT, GAREA,13,pts)
gSetBrokenLine (1)
gFillPolygonTo2D (2, GCURRENT, GAREA, 13, pts)

Brick Hatch Style

Honeycomb Hatch Style
C Code
GHATSTY hatchl = {1.732,30.0,1.0,0.0,0.0,0};
GHATSTY hatch2 = {1.732,-30.0,-1.0,0.0,0.0,0};
GHATSTY hatch3 = {1.732,90.0,-1.0,0.0,0.0,0};
GBRKSTY brkl = {GCONTDASH,6.0,2.0,0.0};

185

Multiple Hatch Styles AREA FILLING

dr=0.017453293;

/*! Honeycomb shear */
hatchl.xshear=atan(1.732) /dr;
hatch?2.xshear=atan(1.732)/dr;
hatch3.xshear=atan(1.732) /dr;

call gDefineHatchStyle (1, &hatchl);
call gDefineHatchStyle (2, &hatch?2);;
call gDefineHatchStyle (3, &hatch3)
call gDefineBrokenLineStyle (1, &brkl);

call gMoveTo2D(30.,60.);

call gDrawPolylineTo2D(13,pts);

call gSetBrokenLine (1) ;

call gFillPolygonTo2D (1, GCURRENT, GAREA,13,pts);
call gFillPolygonTo2D (2, GCURRENT, GAREA,13,pts);
call gFillPolygonTo2D (3, GCURRENT, GAREA, 13, pts) ;

F90 Code
type (GHATSTY) hatchl = GHATSTY (1.732,30.0,1.0,0.0,0.0,0)
type (GHATSTY) :: hatch2 = GHATSTY(1.732,-30.0,-1.0,0.0,0.0,0)
type (GHATSTY) :: hatch3 = GHATSTY(1.732,90.0,-1.0,0.0,0.0,0)
) :: brkl = GBRKSTY (GCONTDASH,6.0,2.0,0.0)

type (GBRKSTY

1
dr=0.017453293

! Honeycomb shear
hatchl%$xshear=atan (1.732) /dr
hatch2%xshear=atan (1.732) /dr
hatch3%xshear=atan (1.732) /dr

call gDefineHatchStyle (1,hatchl)
call gDefineHatchStyle (2,hatch?2)
call gDefineHatchStyle (3,hatch3)
call gDefineBrokenLineStyle (1l,brkl)

call gMoveTo2D (30.,60.)

call gDrawPolylineTo2D (13, pts)

call gSetBrokenLine (1)

call gFillPolygonTo2D (1, GCURRENT, GAREA,13,pts)
call gFillPolygonTo2D (2, GCURRENT, GAREA,13,pts)
call gFillPolygonTo2D (3, GCURRENT, GAREA, 13, pts)

186

AREAFILLING

Multiple Hatch Styles

Honeycomb Hatch Style

Trellis Hatch Style

C Code

GHATSTY hatchl
GHATSTY hatch2
GHATSTY hatch3
GHATSTY hatch4

{2.5,45.0,0.0,-0.4,45.0,0};
{2.5,45.0,0.0,0.4,45.0,0};
{2.5,135.0,2.5,-0.4,45.0,0};
{2.5,135.0,2.5,0.4,45.0,0};
0,3.3

GBRKSTY brkl = {GCONTDASH,5.0, 5,0,0% ¢

F90 Code

type
type
type
type
type

gbefineHatchStyle (1, &hatchl);
gDefineHatchStyle (2, shatch?2);
gbefineHatchStyle (3, &hatch3);
gDefineHatchStyle (4, &shatch4);
gDefineBrokenLineStyle (1, &brkl) ;

gMoveTo2D (30.,60.);
gDrawPolylineTo2D (13, pts);
gSetBrokenLine (1) ;
gFillPolygonTo2D (1, GCURRENT, GAREA, 13, pts)
gFillPolygonTo2D (2, GCURRENT, GAREA, 13, pts) ;
gFillPolygonTo2D (3, GCURRENT, GAREA, 13, pts) ;
gFillPolygonTo2D (4, GCURRENT, GAREA, 13, pts) ;

’

(GHATSTY) :: hatchl = GHATSTY(2.5,45.0,0.0,-0.4,45.0,0)
(GHATSTY) :: hatch2 = GHATSTY(2.5,45.0,0.0,0.4,45.0,0)
(GHATSTY) :: hatch3 = GHATSTY(2.5,135.0,2.5,-0.4,45.0,0)
(GHATSTY) :: hatch4 = GHATSTY(2.5,135.0,2.5,0.4,45.0,0)
(GBRKSTY) : brkl = GBRKSTY (GCONTDASH,5.0,3.35,0.0)

187

Complex Polygonal Definition, Drawing and Filling

AREAFILLING

call gDefineHatchStyle (1,hatchl)
call gDefineHatchStyle (2,hatch?2)
call gDefineHatchStyle (3,hatch3)
call gDefineHatchStyle (4,hatch4)
call gDefineBrokenLineStyle(1l,brkl)

call gMoveTo2D(30.,60.)

call gDrawPolylineTo2D(13,pts)

call gSetBrokenLine (1)

call gFillPolygonTo2D (1, GCURRENT, GAREA,13,pts)
call gFillPolygonTo2D (2, GCURRENT, GAREA,13,pts)
call gFillPolygonTo2D (3, GCURRENT, GAREA, 13, pts)
call gFillPolygonTo2D (4, GCURRENT, GAREA, 13, pts)

STIITTTTA
N
SEEBEEABBEK
LR LRI
SARKS N

SEEEEAEAELELLLLAR
BEEEELELLLEELEEBRR

S

Trellis Hatch Style

Complex Polygonal Definition, Drawing and Filling

Complex multi-polygons with no limits to the number of vertices may be drawn
and filled. The definition of these polygons, there use and other facilities are

described later in this document (see page 245).

188

Chapter

IMAGE HANDLING

Image Handling Introduction

This section will describe the use and control of images within GINO. An image
is a picture described by a two-dimensional array of colour values that is to be
displayed in a rectangular area on the device. Routines are provided to address
the device at the device dependent, pixel level (ie. the smallest addressable unit
on the currently nominated device) or at the device independent cell array level.

Images may be written to or read from the device, copied from one area to
another or read in from a number of external image metafile types (see page 73).
Users should however refer to Appendix B to see if such image facilities are
available on the device being used as not all facilities are available on all devices.

The following routines are described in this section:

Read/Write single pixels

Read/Write images

Draw cell array

Define pixel data characteristics

Return picture coordinate of pixel position
Return pixel coordinate of picture position
Define image transformation

Replicate image rectangle

Return pixel resolution of device

Enquire pixel scaling attributes

Enquire pixel data characteristics

Switch image display characteristics

gGetPixel()/gDrawPixel()
gGetPixelArea()/gDrawPixel Area()
gDrawCellArray()
gDefinePixelPacking()
gEnqPosOfPixel()
gEnqPixelPos()
gSetPixelTransform()
gSetPixelReplication()
gEnqgPixelResolution()
gEnqPixelAttribs()
gEngPixelPacking()
gSetPixelDisplayMode()

189

Image Handling Introduction IMAGE HANDLING

Copy pixel areas gCopyPixelArea()

Pixel Coordinate System

The GINO pixel coordinate system has its origin in the upper left corner of the
available drawing area. This means that the Y value is reversed in comparison to
the regular GINO picture coordinate system. Values for pixel coordinates range
from 0 to the maximum X value minus one and the maximum Y value minus one,
for the resolution of the current device.

0

XRES is the X resolution
YRES is the Y resolution

YRES-1

XRES-1

Image Coordinate System

The pixel resolution of the current device can be found using the routine:
gEnqgPixelResolution(nxpix, nypix)

Pixel coordinate values are not affected by GINO transformations or window
limits, and the display of images will be clipped to the current device limits. The
drawing of pixel information will not affect the current pen position for GINO’s
drawing in picture coordinates.

190

IMAGE HANDLING Reading and Writing Single Pixels

Reading and Writing Single Pixels

Two basic routines are provided for the reading and writing of single pixels on a
screen or printer:

gGetPixel(ix,iy,pix)
gDrawPixel(ix,iy,pix)

where ix,iy is the pixel coordinate to be read or written to, and pix is the pixel
data. This may be a colour index value or, if the device is in direct colour mode
(see page 46), a 24bit packed true colour value containing the required red, green
and blue components.

Image Display
The two routines to display images are:
gDrawCellArray(x1, y1, x2, y2, npixx, npixy, isc, isr, idx, idy, pixbuf)
gDrawPixelArea(ix, iy, npixx, npixy, isx, isy, idx, idy, pixbuf)

The routine gDrawCellArray() draws the supplied image in a rectangular area
where x1,y1 and x2,y2 specify the bottom left and top right corners in the current
drawing units, whereas the routine gDrawPixelArea() draws the supplied image
at the specified pixel position ix,iy.

Therefore in the former case the corner points represent two points in picture
space which are transformed according to the current GINO transformation and
viewing state to generate the corresponding points in pixel coordinates. The
image is then scaled to fit the transformed points. Note that the image is always
displayed in a rectangle with its sides parallel to the drawing area - the image is
never skewed. This routine offers a simple way to display an image that fits a
defined rectangle in a device independent way, at the expense of possible image
distortion or loss of data.

In the latter case(gDrawPixelArea()) the point ix, iy represents the top left corner
of the image and the image is displayed relative to this anchor point according to
the current pixel transformation settings (see below). In the default case, each
data value represents the colour of a single pixel and is displayed as such.
However, unless special steps are taken the image will cover different sized areas
on different devices according to its resolution.

191

Image Display IMAGE HANDLING

192

Image Data

Image data is passed in a single-dimension 32 bit integer array, pixbuf,
containing npixx * npixy words which may contain data in a variety of forms:

24 bit packed RGB values (one per word)
» Unpacked colour indices (one per word)
« Packed colour indices

In the case of 24bit RGB triplets and unpacked colour indices, the pixbuf array
will contain npixx * npixy data values, which when output using
gDrawPixelArea() represent npixx * npixy pixels on the drawing area. Note that
24bit RGB triplets can only be used on devices operating in Direct Colour mode
(see page 46) and are therefore not device independent.

Colour indices are pointers into the current GINO colour table and are usually up
to 8bits in size. Whilst passing one index per word is rather wasteful in terms of
storage, it if often the simplest way of handling image data. However, GINO also
handles images containing packed colour indices of virtually any format (see
below).

In all three cases the data is assumed to be passed row by row starting with the
top left data value.

Sub Images

If only a subset of the image data is required then isx and isy are defined to be the
start position of the subset within the image with idx and idy being the size of the
subset. If the full image is required then isx and isy must be one, with idx and idy
being equal to npixx and npixy respectively.

IMAGE HANDLING Image Display

NPIXX

A 3 NPIXXis the width of the image file
NPIXY is the height of the image file
IsY ISX is the X origin of the sub-image
ISY is the Y origin of the sub-image
< » IDX is the width of the sub-image
ISX IDY is the height of the sub-image

IDX
NPIXY

IDY

Coordinate System within an Image

C code

int pixbuf[64440];
gbrawPixelArea(0,0,358,180,1,1,358,180,pixbuf);

gDrawPixelArea (60,210,358,180,60,30,50,50,pixbuf) ;
gDrawPixelArea (230,240,358,180,230,60,128,100,pixbuf) ;

F90 code

integer pixbuf (64440)
call gDrawPixelArea(0,0,358,180,1,1,358,180,pixbuf)

call gDrawPixelArea (60,210,358,180,60,30,50,50,pixbuf)
call gDrawPixelArea (230,240,358,180,230,60,128,100,pixbuf)

193

Image Display IMAGE HANDLING

The complete image and two sub images

Pixel Packing
Where colour indices are being used, the image may contain packed data or data
stored in a non standard ordering. The required format is specified using the

following routine:

gDefinePixelPacking(nbp, nrp, npw, ndir, dir)

194

IMAGE HANDLING

Image Display

The first four parameters determine how the pixel data bit information is packed
within the integer array. nbp is the number of bits per pixel which is also known
as the image depth. nrb is the number of relevant bits which represents how
many bits within each pixel is to be used for displaying the image. npw
represents the number of pixels that are represented within each integer word.
Finally ndir specifies the direction that the bit information is oriented. The value
+1 indicates a normal direction while -1 indicates the reverse direction. An
example of these values is represented in the figure below which uses 4 byte
words, giving a maximum of 32 bits that can be used within each integer.

00101100 | 00100111 | 00110101 | 00110011 00011101 | 00110011 | 00001110 | 00101101 NBP=8
44 39 53 \ 51 29 | 51 | 14 | 45 NRB=6
First Word Second Word NPW=4

740767027 489885229 NDIR=1

Storage of pixel data within integer words

The values represent a format where there are four pixel values stored in each
integer word. Each pixel has eight data bits but only the six least significant bits
are to be used.

The variable dir specifies the order that the pixel data is to be accessed within the
array to correctly display the image. It can take the value 1 to 8 which determines
the start position and whether the data has been stored row by row or column by

column.

dir=1
dir=2
dir=3
dir=4
dir=5
dir=6
dir=7
dir=38

Start top left with data accessed row by row (default)
Start top left with data accessed column by column
Start top right with data accessed row by row

Start top right with data accessed column by column
Start bottom left with data accessed row by row

Start bottom left with data accessed column by column
Start bottom right with data accessed row by row

Start bottom right with data accessed column by column

The figure below shows the output of dir on a square image file. Care should be
taken when using this variable with non-square images, if the value of npixx,
npixy is inappropriate then the image will become incomprehensible.

195

Image Display IMAGE HANDLING

C code
int pixbuf[10000];

gbefinePixelPacking (8, 8, 1, 1, dir);
gDrawPixelArea(0,0,100,100,1,1,100,100,pixbuf);

F90 code
integer pixbuf (10000)

éall gbefinePixelPacking(8, 8, 1, 1, dir)
call gDrawPixelArea(0,0,100,100,1,1,100,100,pixbuf)

The value of dir that the user should use for scanned data depends on the
scanning characteristics of the equipment used. The output effect of dir shown
below only indicates what happens to a data file stored in the default format,
when output with different values of dir. If the scanning equipment uses scans
and stores the data in a format other than, “first pixel top left with subsequent
pixels following along the row’, then the correct value of dir will need to be
selected.

DIR=3(left) DIR=4(right)

196

IMAGE HANDLING Image Display
Ty . - ‘1-‘ i gt
DIR=5(left) DIR=6(right)
DIR=7(left) DIR=8(right)
Image Display Mode

On some devices image operations can be slow. The following command will

allow pixel images to be hidden:

gSetPixelDisplayMode(mode)

This routine is for use during the development of applications where the layout is
initially more important than the actual image itself. The default value for mode
is GON which will display the image if the device is capable of displaying it. A
value of GOFF will turn off the image so that nothing will be displayed and a
value of GBOUNDARY will also turn off the image but will draw a bounding
rectangle to represent the image size and position. The output of errors and
warnings applicable to the displaying of an image are not affected by this switch.

197

Pixel Coordinate Conversion IMAGE HANDLING

Pixel Coordinate Conversion

Whilst cell arrays are transformed and scaled according to the current GINO
transformation, pixel areas are not. It is useful however to be able to convert
between GINO’s picture coordinate system and the device’s pixel coordinate
system in order to integrate the two image styles with each other and with other
GINO graphics.

In order to convert values in the pixel coordinate system to the GINO picture
coordinate system and vice versa, the routines gEnqPosOfPixel() and
gEngPixelPos() need to be used. Note that as the pixel coordinate system has its
origin at the top left of the drawing area, there is not a direct scaling factor
between the two coordinate systems.

gEnqPosOfPixel(ix, iy, point)
gEnqgPixelPos(xsc, ysc, pix)

The routine gEnqPosOfPixel() accepts two integer pixel values in ix and iy and
returns the corresponding picture coordinate in the structure point, while
gEngPixelPos() accepts two real values in xsc and yse, representing a picture
coordinate and returns the corresponding integer pixel coordinate in the structure
pix. As pixel coordinates are integer values, pix.ix and pix.iy are integers and
returned as rounded values. This will cause a rounding of values if
gEnqPosOfPixel() is consequently called with the values returned from
gEngPixelPos().

Pixel Transformations

The following routines allow greater control of pixel images drawn using the
routine gDrawPixelArea(). They do not affect images drawn using
gDrawCellArray().

Pixel Rotation and Scaling

Where simple scaling and rotation of pixel images is required, the following
routine can be used:

gSetPixelTransform(ori, xsca, ysca)

198

IMAGE HANDLING Pixel Transformations

The variable ori will change the orientation of the image about the anchor point
in steps of 90 degrees in an anti-clockwise direction. If a rectangular image is
rotated by 90 or 270 degrees the X and Y dimensions are swapped (see figure
below).

C code
int pixbuf[10000];

gSetPixelTransform(rot,1.0,1.0);
gbrawPixelArea(0,0,100,100,1,1,100,100,pixbuf);

F90 code
integer pixbuf (10000)

call gSetPixelTransform(rot,1.0,1.0)
call gDrawPixelArea(0,0,100,100,1,1,100,100,pixbuf)

Image Rotation

199

Pixel Transformations IMAGE HANDLING

200

The variables xsca and ysca are scaling factors. The default is 1.0 for both giving
a 1 to 1 mapping. A value of 2.0 will double the size of the image in the specified
direction by duplicating each pixel value. Real equivalents of integer scaling
values will create a true scaled up image but it is possible to scale up by
non-integer values or reduce the size of the image. Increasing the size of the
image by non-integer scale values will create an image with added rows or
columns at even intervals. If reducing the image, rows or column will be
removed at even intervals and consequently information will be lost (see below).

C code

int pixbuf[10000];

gSetPixelTransform(0,0.5,0.5);
gbrawPixelArea(0,100,100,100,1,1,100,100,pixbuf) ;
gSetPixelTransform(0,1.0,1.0);
gDrawPixelArea(100,50,100,100,1,1,100,100,pixbuf) ;
gSetPixelTransform(0,1.5,1.5);

gDrawPixelArea (250,0,100,100,1,1,100,100,pixbuf) ;
gSetPixelTransform(0,1.0,1.5);

gbrawPixelArea (450,0,100,100,1,1,100,100,pixbuf) ;
gSetPixelTransform(0,11.0,1.0);

gDrawPixelArea (0,250,100,100,1,1,100,100,pixbuf) ;

F90 code

int pixbuf (10000)

call gSetPixelTransform(0,0.5,0.5)

call gDrawPixelArea(0,100,100,100,1,1,100,100,pixbuf)

call gSetPixelTransform(0,1.0,1.0)

call gDrawPixelArea(100,50,100,100,1,1,100,100,pixbuf)
call gSetPixelTransform(0,1.5,1.5)

call gDrawPixelArea (250,0,100,100,1,1,100,100,pixbuf)

call gSetPixelTransform(0,1.0,1.5)

call gDrawPixelArea (450,0,100,100,1,1,100,100,pixbuf)

call gSetPixelTransform(0,11.0,1.0)

call gDrawPixelArea(0,250,100,100,1,1,100,100,pixbuf)

IMAGE HANDLING Pixel Transformations

Image Scaling

Pixel Replication

An area can be defined to be filled with pixel data made up of multiple
rectangular images. If the defined area is larger than the image rectangle output
by gDrawPixelArea(), the image will be repeated to fill the space. If the defined
area is smaller, the image will be appropriately clipped.

gSetPixelReplication(xrep, yrep)

where xrep and yrep are values in pixel coordinates which set the area that the
image is to take up. If either of these values is zero then replication is switched
off. This command will also change the direction of the image drawing relative to
the anchor point depending on whether the values are positive or negative.
Negative values result in the image display characteristics remaining unchanged,
but the image is replicated in the opposite direction. Note that the images are not
mirrored in any way.

C code

int pixbuf[10000];

gSetPixelReplication (250,250);
gbDrawPixelArea(0,0,100,100,1,1,100,100,pixbuf);
gSetPixelReplication (100,-250) ;

gbrawPixelArea (300,250,100,100,1,1,100,100,pixbuf) ;
gSetPixelReplication (100,-200) ;
gDrawPixelArea (450, 250,100,100,1,1,100,100, pixbuf) ;
gSetPixelReplication (100,-150);

gbDrawPixelArea (600,250,100,100,1,1,100,100,pixbuf) ;

201

Pixel Enquiry Routines IMAGE HANDLING

F90 code
integer pixbuf (10000)

call gSetPixelReplication (250,250)

call gDrawPixelArea(0,0,100,100,1,1,100,100,pixbuf)
call gSetPixelReplication (100,-250)

call gDrawPixelArea (300,250,100,100,1,1,100,100,pixbuf)
call gSetPixelReplication(100,-200)

call gDrawPixelArea (450,250,100,100,1,1,100,100,pixbuf)
call gSetPixelReplication(100,-150)

call gDrawPixelArea (600,250,100,100,1,1,100,100,pixbuf)

Image Replication

Pixel Enquiry Routines

The current pixel scaling attributes (as set by gSetPixelTransform() and
gSetPixelReplication()) can be enquired through the following routine:

gEnqPixelAttribs(ori, xsca, ysca , xrep, yrep)

and the current pixel packing definition (as set by gDefinePixelPacking()) can be
enquired through the following routine:

gEnqPixelPacking(nbp, nrp, npw, ndir, dir)

202

IMAGE HANDLING Reading Pixel Data

Reading Pixel Data

On some screen devices (see Appendix B), there is the facility to read images that
are currently displayed on the screen. This is done with a command that is similar
to gDrawPixelArea() but operates in reverse.

gGetPixelArea(ix, iy, npixx, npixy, isx, isy, idx, idy, pixbuf)

The variables ix and iy define the anchor point of a screen image that has a size
represented by npixx and npixy. This is the image size that will be represented
within the array pixbuf. The actual range of the image that is read is defined by
isx and isy which is the start position of the subset within the image, with idx,
idy being the size of the subset. This method will allow the selective overwriting
of part of pixbuf which contains the full image.

The pixel rectangle must be defined within the device limits of the device or an
error will occur and no reading will take place. The pixel transformation routines
have no effect on the values passed to gGetPixelArea() (ie. replication and
rotation settings do not apply).

Copying Pixel Images

Many devices that provide pixel facilities also include a facility to copy one pixel
area to another. This facility can be accessed in GINO through the following
routine:

gCopyPixelArea(source, dest, ix, iy, width, height, ixd, iyd)

where source and dest are the source and destination display identifiers. For
copying areas on the primary display surface these should be set to 1, but in
association with displays that provide multiple drawing areas (i.e. backing
stores), pixel areas may be copied from any one to any other (see page 49).

The arguments ix,iy and width, height define the origin and dimensions of the
area to be copied and ixd, iyd supply the final position of the origin. Pixel areas
may be clipped if the copied region extends beyond the display limits.

203

Chapter

COLOUR DEFINITION

Colour Definition Introduction

The specification and use of colour in a GINO application varies significantly
depending on the colour capabilities of the current device (i.e. whether the device
is monochrome, has a static or dynamic colour table or operates in true colour
mode (see page 46)). In order to provide a common interface across all these
devices, GINO maintains a colour table which is initialized with a standard set of
colours whenever a device is nominated. The colour of all graphical primitives
may then be specified using indices into this colour table on any type of device.

Information in this section describes how GINO’s colour table may be modified
and the effect this has on the device as well as facilities for setting colour directly
without going through the colour table (on devices that support this).

Colour Table

When a device is nominated a default colour table is initialized in GINO and the
device itself (if possible). This table contains at least the following 11 entries:

Colour Table Index Colour Constant Colour

0 GBACKGROUND Background (device dependent)
1 GBLACK Black

2 GRED Red

3 GORANGE Orange

4 GYELLOW Yellow

205

Colour Table COLOUR DEFINITION
5 GGREEN Green
6 GCYAN Cyan
7 GBLUE Blue
8 GMAGENTA Magenta
9 GBROWN Brown
10 GWHITE White

Where a device has very few colours (i.e. some plotters and monochrome
displays), the number of entries may be less than those defined above. Where a
device has many more colours, these may or may not be initialized depending on
the device driver (see Appendix B for information). Where a device does not
have a colour table (i.e. true colour devices), GINO still maintains a colour table
(of 1024 entries) which can be used in a GINO application.

In all cases the number of colour entries available on the currently nominated
device can be obtained through the following routine:

gEnqColourInfo(ndc, ndt)

where ndc is the number of colour table entries available.

Display Types

206

The value of ndt returned by gEnqColourInfo() gives the type of colour device
being used (see page 46) which also determines the effect of changing the
contents of a colour table entry.

On fixed colour devices, (ndt=1) changes to the colour table are ignored as only
a predefined number of colours are available through their colour number.

On static (ndt=2) and direct (ndt=4) colour devices, a colour table entry may be
modified using the routines described below. When the particular colour index is
re-used, graphical items will be drawn in the redefined colour.

On dynamic colour devices (ndt=3), changes to the colour table affect all
graphical primitives that had been and will be drawn using the relevant colour
index.

COLOUR DEFINITION Colour Coordinate Systems

Colour Resolution

When entries in the colour table are modified (using the routines described
below), both the GINO colour table and the devices’ colour table (if present) are
modified. However it should be noted that the values in both tables may not be
exactly those requested depending on the colour resolution of the device.

The colour resolution is the range of colour values that can be stored on a
particular device. For example, a colour device may only provide 4, 8 or 16 bits
for storing colour values (whereas GINO uses real values in the range 0.0 to 1.0).
This will restrict the range of colours that can be stored (and displayed).

When a change of colour is made to any device the actual colour used is returned
to the GINO colour table so that these values may be enquired.

Colour Coordinate Systems

When a change is required in the colour table, generally three values are needed.
These values are called the colour coordinates.

GINO supports three colour coordinate systems. These are RGB (red, green,
blue), HSV (hue, saturation, value), and HLS (hue, lightness, saturation). GINO
uses RGB as the standard system for communicating colour values to an output
device. All colour values are converted to RGB. Any user-defined colour systems
should be converted to RGB coordinates and call gDefineRGB().

The RGB system defines colour by the relative intensities of the red, green and
blue primaries. However, people tend to perceive colour more in terms of
intensity, strength and position in the colour spectrum, rather than as a mixture of
primary colours.

Hue defines a colour’s position in the spectrum. The spectrum is mapped onto an
angular scale, 0.0 to 360.0 degrees, where red is at 0.0, green at 120.0 and blue at
240.0 degrees (see figure below). Angles outside the range 0.0 to 360.0 are
treated modulo 360.0.

207

Colour Coordinate Systems COLOUR DEFINITION

208

GREEN 120.0 60.0 YELLOW

CYAN 180.0 0.0 RED

BLUE 240.0 300.0 MAGENTA

The Hue Spectrum

Saturation defines the strength or brightness of a colour (i.e. bright or pale tints).
Saturation is expressed on a linear scale of 0.0 to 1.0 where 0.0 gives the palest
hue and 1.0 the strongest.

Value and lightness describe the intensity or lightness of a colour (i.e. light or
dark shades). Value and lightness are both expressed on a linear scale of 0.0 to
1.0 but work in slightly different ways (see below). An attempt to define the
coordinates saturation, lightness and value outside the range 0.0 to 1.0 causes the
coordinates to be clipped so that values less than 0.0 become 0.0, and those
greater than 1.0 become 1.0. GINO issues a warning message if this happens. The
same applies for R,G, and B intensities. These are also defined on a linear scale
0f 0.0 to 1.0.

The differences between value (V) and lightness (L) is that with the HSV system,
value gives the most intense hue when equal to 1.0. whereas with HLS, lightness
gives the most intense hue when equal to 0.5 and gives white when equal to 1.0
regardless of any hue or saturation values (compare the figures below).

COLOUR DEFINITION Colour Coordinate Systems

Each colour coordinate system also defines a greyscale.

>

WHITE s

TINTS

0.0 0.5 1.0

A 1.0 PURE HUE

GREYS
\
[\y

%,

/
/
/

0.0 BLACK

Tints, Tones and Shades

209

Colour Coordinate Systems

COLOUR DEFINITION

210

1.0, WHITE

Y

\
0.5/0.0 0.5

0.0 BLACK

The Lightness Scale

Conversion Between Coordinate Systems

o=
co

The way colour values are transmitted, makes it possible to convert values from
one coordinate system to another. Essentially this is a matter of defining a colour

value in one system, and enquiring about it in another.

The conversion need not involve the colour values stored in the device driver (i.e.
the values which drive the output device). By setting icol less than zero during
definition, the conversion to RGB is made but it only gets stored internally and
not passed to the device. If an enquiry is now made with the same (negative) icol,
the enquiry routine will look at the internal storage and return the values it finds

there.

For example:

C code

GHSVSTY hsv;
gDefineRGB(-7,0.6,0.6,0.3);
gEngHSV (-7, &hsv) ;
gDisplayStr (“Coordinates in HSV:”);
gDisplayRealFloat (hsv.hue,10) ;
gDisplayRealFloat (hsv.sat,10) ;
gDisplayRealFloat (hsv.value, 10);

COLOUR DEFINITION RGB Colour Coordinate System

F90 code

type (GHSVSTY) hsv
gDefineRGB(-7,0.6,0.6,0.3)
gEngHSV (=7, hsv)
gDisplayStr (‘Coordinates in HSV:’)
gDisplayRealFloat (hsv$hue, 10)
gDisplayRealFloat (hsv$sat,10)
gDisplayRealFloat (hsv&%value, 10)

Colour 7 is defined in the RGB system and examined in the HSV system. The
values returned by gEnqHSV() are output to the device. In this example,
hsv.hue=60.0, hsv.sat=0.5, hsv.value=0.6.

If an enquiry is made with a negative col after device nomination but before any
user redefinition, all coordinates return zero because the internal values have not
yet been set to anything.

RGB Colour Coordinate System

The RGB (red, green, blue) colour coordinate system defines colours by
specifying the relative intensities of the red, green and blue primaries. The
resulting colour is therefore a mixture of the three primaries.

RGB colour space takes the form of a cube (see below).

CYAN

GREEN

BLUE

YELLOW

MAGENTA

Key: p the ic (grey)
scale where R=G=B. For white,
R=G=B=1.0. for black, R=G=B=0.0.

RGB Colour Cube

211

HSV Colour Coordinate System COLOUR DEFINITION

Using the RGB System

gDefineRGB(col, red, green, blue)

gEnqRGB(col, rgb)
Routine gDefineRGB() defines colours by specifying their red, green and blue
intensities. An intensity of 0.0 means that none of the primary is present, and an

intensity of 1.0 gives saturation. For example:

gDefineRGB (13,0.0,0.0,1.0); call gDefineRGB(13,0.0,0.0,1.0)

would define colour 13 (col=13) as pure primary blue.

gDefineRGB (14,0.5,0.0,0.8); call gDefineRGB(14,0.5,0.0,0.8)

would define colour 14 (col=14) as a light purple.

Whether or not these particular colours will actually be output (when selected by
gSetLineColour() or gSetLineStyle()) depends upon the capabilities of the output
device.

The routine gEnqRGB() returns the colour definition for the particular colour
identified by col in the GRGBSTY structure.

HSV Colour Coordinate System

212

The HSV (hue, saturation, value) system defines a colour by specifying its hue,
saturation and value.

Value is a measure of the intensity or lightness of a colour. The brightest most
intense hue occurs when saturation and value both equal 1.0.

HSV colour space may be considered as a single hexcone (see figures below).

COLOUR DEFINITION HSV Colour Coordinate System

It is instructive to compare the HSV (and the HLS) system with the RGB colour
cube when this cube is viewed along its principal diagonal (compare the figures
below).

BLUE MAGENTA

CYAN - RED

GREEN YELLOW

RGB Colour Cube viewed along principal
diagonal

Key: — - — Represents the achromatic
scale where S=0.0.

Single Hexcone HSV Colour Model

213

HSV Colour Coordinate System COLOUR DEFINITION

Using the HSV System
gDefineHSV(col, hue, sat, value)
gEnqHSV(col, hsv)

The routine gDefineHSV() defines a colour by specifying its hue, saturation and
value. The series of statements:

gDefineHSV(1,120.0,1.0,1.0); call gDhefineHSV(1,120.0,1.0,1.0)
gbefineHSV(2,140.0,1.0,1.0); call gDefineHSV(2,140.0,1.0,1.0)
gbefineHSV(3,160.0,1.0,1.0); call gDefineHSV(3,160.0,1.0,1.0)
gDefineHSV(4,180.0,1.0,1.0); call ghefineHSV (4,180.0,1.0,1.0)

give a set of colour definitions which range from primary green through to cyan
(i.e. a sequence of greens which become increasingly blue).

Saturation and value are both normalized onto a scale of 0.0 to 1.0. Maximum
saturation occurs when sat=1.0. Thus the statement:

gbefineHSV(5,120.0,1.0,1.0); call gDefineHSV(5,120.0,1.0,1.0)

would define colour 5 (col=5) as the brightest, most saturated primary green. The
statement:

gDefineHSV (6,120.0,0.0,1.0); call gDefineHSV(6,120.0,0.0,1.0)

would define colour 6 as white. Notice that when saturation is zero, hue is
ignored.

The statements:

gbefineHSV(7,60.0,1.0,1.0); call gDefineHSvV(7,60.0,1.0,1.0)
gbefineHSV(8,60.0,0.8,1.0); call gDefineHSV(8,60.0,0.8,1.0)
gbefineHSV(9,60.0,0.6,1.0); call gbhefineHSV (9,60.0,0.6,1.0)
gDefineHSV(10,60.0,0.4,1.0); call gDefineHSV (10,60.0,0.4,1.0)
gbDefineHSV(11,60.0,0.2,1.0); call gDhefineHSV(11,60.0,0.2,1.0)

give a series of colour definitions ranging from the brightest yellow through
increasingly pale yellow tints.

214

COLOUR DEFINITION HLS Colour Coordinate System

The parameter value changes colour’s position on the achromatic scale. Thus

gbefineHSV(12,120.0,1.0,0.8); call gbhefineHSV(12,120.0,1.0,0.8)

would give a dark primary green. If value is set at 0.0, the colour defined is
black, regardless of the other parameter values.

The stored colour definition may be examined by gEnqHSV() to return colour
values converted to the HSV coordinate system.

HLS Colour Coordinate System

The HLS (hue, lightness, saturation) system defines colour in terms of its hue,
lightness and saturation. Hue and saturation are the same as for the HSV system
and lightness describes the intensity of a hue.

The lightness scale gives pure, most saturated hue when light=0.5 and sat=1.0.
light=1.0 results in white, regardless of the settings of hue or sat. This should be
contrasted with value in the HSV system.

215

HLS Colour Coordinate System COLOUR DEFINITION

HLS colour space may be represented as a double hexcone (see figure below).

L

Key: — -— Represents the achromatic
scale where $=0.0.

HLS Double Hexcone

Using the HLS System

gDefineHLS(col, hue, light, sat)
gEnqHLS(col, hls)

The routine gDefineHLS() allows the user to define a colour in terms of its hue,
lightness and saturation. At light=0.0 all colours merge into black and at

light=1.0 all colours merge into white. With zero saturation, lightness describes
an achromatic (grey) scale irrespective of any angle of hue which may be given.

In the following examples, lightness only is varied to give differing lightness of
primary blue.

The statements

gDefineHLS (7,240.0,0.5,1.0); call gDefineHLS (7,240.0,0.5,1.0)
gSetLineColour (7) ; call gSetLineColour (7)
gMoveTo2D (200.0,0.0) ; call gMoveTo2D(200.0,0.0)
gDrawLineTo2D (200.0,250.0) ; call gDrawLineTo2D(200.0,250.0)

216

COLOUR DEFINITION Direct Colour Control

would define colour 7 as a pure, saturated primary blue, select it and draw a
visible line to absolute coordinate position (200.0,250.0).

gbDefineHLS(8,240.0,0.2,1.0); call gDefineHLS(8,240.0,0.2,1.0)

would give a dark, saturated primary blue (analogous to mixing black and
primary blue). The statement:

gbefineHLS (9,240.0,0.8,1.0); call gDefineHLS(9,240.0,0.8,1.0)

would give a light saturated primary blue (analogous to mixing white with
primary blue).

Direct Colour Control

On Direct Colour devices (which do not have a colour table) it is possible to
define the colour of graphical primitives directly using a 24bit RGB triplet. This
value contains the required quantities of Red Green and Blue in the one integer
which is passed to the device through the gSetLineColour() routine. The function
which generates the required value is:

col=gTrueCol(red, green, blue)

where red, green and blue are the required quantities of these colours. The
function returns the 24bit RGB triplet containing 8 bits of data for each primary
colour.

The following code shows how these two routines are used:

gSetLineColour (call gSetLineColour(&
gTrueCol(0.8,0.2,0.5)); gTrueCol(0.8,0.2,0.5))

Here the current drawing colour is set to a bright shade of pink with 80% red,
20% green and 50% blue.

217

Chapter

MAPPING, WINDOWING AND MASKING

Mapping, Windowing and Masking Introduction

By default, all drawing is performed in the current device’s paper coordinate
system. This will usually be in millimetres (unless this has been altered by using
gDefinePictureUnits() - see page 39). In the majority of cases, the user will want
to specify a different coordinate system for two reasons. Firstly, because an
application needs to be written to run on a number of different output devices
(with different drawing limits) and secondly, the items or models in any
application will rarely be limited to the physical limits of any one device. The
method by which this mismatch is overcome is to set up an application dependent
mapping from the users own coordinate system to that of the physical device on
which the application is running.

Whether a mapping is required or not, an application will often require to restrict
the drawing to within a particular subsection of the complete drawing area, or
even mask the output from another area that is used by a menu or key.

This section of the document describes the specification and use of simple
rectangular clipping areas or windows and rectangular masks. GINO also
provides for the definition of polygonal windows and masks (see page 245).

Viewport Mapping
A viewport mapping can be specified between the users picture coordinates and

the viewport limits in paper coordinates. This mapping can be altered at any time
throughout a GINO program using the routine:

gSetViewport2D(piclim, viewlim)

219

Viewport Mapping MAPPING, WINDOWING AND MASKING

220

where piclim and viewlim are structures of type GLIMIT, the first of which
specifies the users own picture coordinate limits within which all drawing
dimensions should be contained. These will be mapped to the viewport limits
specified by the second structure, which should lie within the current paper
limits. Any viewport limits outside of the paper limits will be clipped
accordingly.

Device Limits

Viewport Limits (viewlim)

Picture Limits (piclim) — |

Viewport Mapping

The aspect ratio of a viewport can be controlled by the routine:
gSetViewportMode(sw)

If the aspect ratio of the picture coordinates is retained the drawing can be
centred in the viewport (sw=GCENTRAL), or placed at the bottom left of the
viewport (sw=GBOTTOMLEFT). For sw= DEFORMED the aspect ratio is
altered and the drawing will be scaled to fit the viewport.

The routine gEnqViewportMode() returns the current viewport mode.

gEnqViewportMode(sw)

MAPPING, WINDOWING AND MASKING Viewport Mapping

By default, the setting of a viewport defines a clipping rectangle outside which
no drawing can take place. In this default mode, the viewport limits effectively
re-define the device limits of the current device. However, it is possible to use the
viewport setting simply to define a convenient mapping without affecting the
clipping in any way. The routine to switch between these two modes is:

gSetViewportClipSwitch(clp)

Both gSetViewportMode() and gSetViewportClipSwitch() must be called before
gSetViewport2D() for either to take effect.

Viewport Enquiry
The current viewport state can be enquired using the following routines:
gEnqViewport2D(piclim, viewlim)
gEnqViewportState(sw, clp, limit)

where gEnqViewport2D() returns the requested viewport limits and
gEnqViewportState() returns all viewport switches and actual viewport limits in
paper units. This may vary from the requested paper limits depending on the
current viewport mapping switch.

Clearing the Viewport

The current viewport area, as defined by gSetViewport2D() and
gSetViewportMode(), can be cleared by filling with the background colour with
the routine:

gClearViewport()

The area cleared by gClearViewport() represents the complete viewport limits in
picture units as specified by gSetViewport2D() (excluding parts outside the
device limits). Depending on the viewport mapping switch this may not represent
the complete viewport in paper units set by gSetViewport2D(), but rather, those
limits as returned by gEnqViewportState(). If the larger area needs to be cleared,
this should be done prior to setting the viewport.

221

Clipping

MAPPING, WINDOWING AND MASKING

Clipping

The default clipping limits are defined to be the current drawing limits as defined
by a call to gSetDrawingLimits() or the current viewport limits as set by
gSetViewport2D() as long as viewport clipping is not switched off with
gSetViewportClipSwitch() (see above).

The clipping is carried out by the device driver where possible as this is usually
the most efficient and accurate method possible. It is possible to specify that the
clipping is to be performed by GINO itself or that clipping be disabled
completely. These options are set using the routine:

gSetClippingMode(mode)

where mode may be GHARD (the default) for hardware clipping, GSOFT for
software clipping or GNOCLIP to disable clipping completely. The last mode
should only be used where output is known to be limited to the physical limits of
the device as unpredictable results may occur otherwise.

The routine gEnqClippingMode() returns the current clipping mode.
gEnqClippingMode(mode)

Note that the windowing and masking limits are in picture coordinates. Any calls
to scaling or transformation routines have no effect on the resulting window size.

Window Mode

222

The routine for specifying the current clipping/windowing mode is:
gSetWindowMode(swi)

This routine switches the windowing mechanism off (swi=GOFF) or on
(swi=GON or GON2D).

Switching windowing off effectively sets a window to the default clipping limits
but GINO will generate warning messages if an attempt is made to draw outside
the device limits while in this state. When swi=GON, the previous window limits
prior to switching windowing off are restored. When swi = GON2D, the function
switches 2-D windowing on and sets the window to the default 2D clipping
limits.

To switch on basic 2-D windowing and set the window to the viewport limits:

MAPPING, WINDOWING AND MASKING Clipping

gSetWindowMode (GON2D) ; call gSetWindowMode (GON2D)

Rectangular Window

The routine for defining a 2-D rectangular window is:
gSetWindow2D(window)

The structure window contains four elements representing the limits of a
rectangular window: window.xmin, window.xmax, window.ymin,
window.ymax. If the user specifies a window larger than the default clipping
limits, GINO clips it to those limits, but combines and retains the window.

For example:

Routine man() defines a gingerbread man in a 50mm square box. To draw the top
half of the picture only (as in the figure below):

static GLIMIT window = type (GLIMIT) :: window = &
{0.0,50.0,25.0,50.0}; GLIMIT{0.0,50.0,25.0,50.0}

gSetWindow2D (&window) ; call gSetWindow2D (window)

man () ; call man

2-D Windowing

223

Rectangular Masks

MAPPING, WINDOWING AND MASKING

Enquiring Window Limits

The current state of windowing may be obtained by using the routine:

gEnqWindowState(swi, bounds)

The current setting of the window switch is returned in swi and the complete 3D
limits are returned in the structure bounds. Note that if no Z limits have been set
using gSetWindow3D(), these are returned as arbitrary large numbers.

For example:

GLIMIT3 window; type (GLIMIT3) window

gEngWindowState (&swi, &window) ; call gEngWindowState (swi,window)

Rectangular Masks

224

The routine to define a rectangular mask and switch masking on is:

gSetMask2D(limit)

The argument of type GLIMIT defines a rectangular area, inside which no
drawing will occur until the mask is switched off or redefined. For example:

static GLIMIT mask =

type (GLIMIT) :: mask = &
{150.0,25.5,17.75,39.75};

GLIMIT (150.0,25.5,17.75,39.75)

gSetMask2D (&mask) ;

call gSetMask2D (mask)
man () ;

call man

MAPPING, WINDOWING AND MASKING Rectangular Masks

Example of rectangular mask

The routine to switch the current mask on or off is:
gSetMaskMode(swi)

where swi=GOFF switches masking off and swi=GON restores the previous
mask as defined by gSetMask2D(). The routine gSetMaskMode() has no effect if
a mask has not previously been defined.

Mask Enquiry

To enquire the current mask limits and its switch, the routine gEnqMaskState() is
used:

gEnqMaskState(swi, bounds)

swi returns the current setting of gSetMaskMode() and the remaining arguments
are the same as gEnqWindowState() except that a maximum of four limits are
available.

225

Chapter

2D TRANSFORMATIONS

2D Transformations Introduction

Routines are provided in GINO to enable the geometric transformations: shift,
rotate, scale and shear to be applied to definitions of 2D objects. A simple
definition may be transformed to produce objects of differing shape, size,
orientation or position.

When a transformations routine is called, a new axis system (termed ‘space
axes’) is created and subsequent drawing and positioning coordinates are
considered in relation to this new axis system. When transformations are being
combined, each transformation is relative to the axis system set up by the
previous transformation.

To apply transformation to an object, the transformation routines must be called
before the drawing routines. Once a transformation routine is called, the
transformation that has been set up affects all subsequent drawing. Transforming
can be switched on or off at any stage in a program or can be reset or modified.

To illustrate transformations a routine man(), which defines a gingerbread man, is
used. The original axes are drawn as solid lines and denotes X and Y. The space
axes set up as a result of the transformations are denoted in the diagrams by X1
and Y1 and are shown as dashed lines.

Simple 2D Transformations
2D Shifting

Shifting specifies the vector increments through which the origin is shifted from
the origin of the previous axis system.

227

Simple 2D Transformations 2D TRANSFORMATIONS

Shifting enables objects to be repositioned anywhere in the drawing area. The
routines for shifting are:

gShift2D(dx, dy)

For example - to draw a gingerbread man shifted by 50.0mm in the X direction
and 30.0mm in the Y direction:

gShift2D(50.0,30.0); call gShift2D(50.0,30.0)
man () ; call man

30.0

—— 500 ——m

Shifting

2D Rotation
The routine for 2-D rotation is:

gRotate2D(angle)

Where angle specifies the angle in degrees through which the X and Y axes are
rotated about the Z axis. Positive rotation is anticlockwise. Note that rotation
always takes place about the origin of the current axis system.

Example:

To draw a gingerbread man rotated through 45°:

228

2D TRANSFORMATIONS Simple 2D Transformations

gRotate2D (45.0) ; call gRotate2D(45.0)
man () ; call man

2-D Rotation

2D Scaling

The routine for scaling is:
gScale2D(sx, sy)

The arguments specify the amount by which the axes are to be scaled. Values of
greater than 1.0 give magnification and values between 0.0 and 1.0 give
reduction. If one or more arguments are negative, then a mirror image is
produced.

Examples:

» To draw a gingerbread man uniformly scaled by 0.5 in both directions:

/* Scale all axes */ ! Scale all axes
gScale2D(0.5,0.5); call gScale2D(0.5,0.5)
man () ; call man

229

Simple 2D Transformations 2D TRANSFORMATIONS

Uniform Scaling

+ To draw a fat gingerbread man scaled in X by 2:

gScale2D(2.0,1.0); call gScale2D(2.0,1.0)
man () ; call man

Differential Scaling

Mirror Images

Mirror images can be produced by using the scaling routines with negative
arguments. For example:

230

2D TRANSFORMATIONS

Simple 2D Transformations

To draw a gingerbread man upside down:

gScale2D(1.0,-1.0); call gScale2D(1

man () ; call man

&

\
\
v

Mirror Image

2D Shearing

The routines for shearing are:

gShear2D(dep, a)

-0,=1.0)

In 2-D the value of dep can be GXAXIS or GYAXIS and indicates which of the

X or Y axes is to be sheared (the dependent axis).

The argument a gives the tangent of the angle through which the axis dep is

sheared. For example:

+ To draw a sheared gingerbread man such that the shear factor is 1.0:

gShear2D (GYAXIS,1.0); call gShear2D(GYAXIS,1.0)

man () ; call man

231

Combining Transformations 2D TRANSFORMATIONS

2-D Shearing

Combining Transformations

Using the Same Transformation Type

When combining transformations of the same type, the general result is not
dependent on the order in which the routines are called.

Example:
gScalez2D(10.0,10.0) ; call gScale2D(10.0,10.0)
gScale2D(3.0,3.0); call gScale2D(3.0,3.0)

has the same effect as:

gScale2D(3.0,3.0); call gScale2D(3.0,3.0)
gScale2D(10.0,10.0) ; call gScale2D(10.0,10.0)

The above sequence of routines is equivalent to a single call to the routine with
an arguments of 30.0, i.e. the combined effect is obtained by multiplying the
arguments. In the case of transformation routines other than the scale routines,
the cumulative effect is obtained by adding the arguments.

Example:

232

2D TRANSFORMATIONS Combining Transformations

gRotate2D (alpha) ; call gRotate2D (alpha)
gRotate2D (beta) ; call gRotate2D (beta)

is equivalent to:

gRotate2D (alpha+tbeta) ; call gRotate2D (alphatbeta)

Using Different Transformation Types

When combining transformations of different types, the effect obtained depends
on the order in which the routines are called. The following examples show the
effect of applying combinations of transformations in different orders.

In general the order in which transformations should be used to set up
straightforward effects is:

Shift
Rotate

Scale

Combining Shift with Scale

The figure below illustrates the following sequence:

gShift2D(50.0,50.0) ; call gShift2D(50.0,50.0)
gScale2D(0.5,0.5); call gScale2D(0.5,0.5)
man () ; call man

233

Combining Transformations

2D TRANSFORMATIONS

50.0 4

With the order reversed, i.e.:

gScale2D(0.5,0.5); call gScale2D(0.5,0.5)
gShift2D(50.0,50.0);

call gShift2D(50.0,50.0)
man () ; call man

The effect is as shown in the figure below:

Y
A

25.0 A

25.0

234

2D TRANSFORMATIONS

Combining Transformations

Combining Shift and Rotation

The figure below illustrates the following sequence:

gShift2D(50.0,0.0); call gShift2D(50.0,0.0)
gRotate2D(20.0) ;

call gRotate2D(20.0)
call man

man () ;

With the order reversed i.e.:

gRotate2D (20.0) ; call gRotate2D(20.0)
gShift2D(50.0,0.0);

call gShift2D(50.0,0.0)
call man

man () ;

The result is as shown below:

Y1

K

Y \
A \

235

Combining Transformations 2D TRANSFORMATIONS

Combining Rotation with Uniform Scaling

Where rotation is combined with non-differential scaling, the order of calling the
routines does not effect the result.

Example, the sequence:

gScale2D(2.0,2.0);
gRotate2D (-30.0) ;
man () ;

call gScale2D(2.0,2.0)
call gRotate2D(-30.0)
call man

gives the same result as:

gRotate2D(-30.0) ;
gScale2(2.0,2.0);
man () ;

call gRotate2D(-30.0)
call gScale2D(2.0,2.0)
call man

The result is shown below:

Combining Rotation with Differential Scaling

The effect of combining rotation with differential scaling is dependent on the
order in which routines are called. For example:

gRotate2D(30.0) ;
gScale2D(2.0,1.0);
man () ;

call gRotate2D(30.0)
call gScale2D(2.0,1.0)
call man

236

2D TRANSFORMATIONS

Combining Transformations

gives the result shown below:

However, the sequence:

gScale2D(2.0,1.0);
gRotate2D(30.0) ;
man () ;

call gScale2D(2.0,1.0)
call gRotate2D(30.0)
call man ()

gives a different result as shown below:

Note: The axes are no longer at right-angles.

237

2D Transformation Enquiry 2D TRANSFORMATIONS

2D Transformation Enquiry

Current Drawing Position

The position of the ‘pen’ at any given time can be described in terms of its
coordinates relative to the origin of the drawing area; these are termed ‘picture
coordinates’. The pen position can also be given in terms of its coordinates
relative to the current local axis system; these are the space coordinates. In
general, objects are specified in terms of space coordinates and are drawn in
terms of picture coordinates; that is space coordinates are transformed into
picture coordinates.

At any stage in a program, the pen position can be obtained (in either picture or
space coordinates) by using one of the following routines:

gEnqPicturePos(point)

gEnqSpacePos(point)

Each of which returns a structure of type GPOINT3 structure, the elements of
which are set to the current X,Y,Z coordinates expressed in current units.

2D Untransforming

The space coordinates of any point of which the picture coordinates are known,
can be obtained using one of the routines:

gUntransformPoint2D(xp, yp, point)

The routine gUntransformPoint2D() sets point.x and point.y to zero if the
current transformation contains 3-D terms or perspective and a warning message
is output.

Point Testing of Current 2D Transformation

The routine gTransformPoint2D() enable the user to see what would happen to a
point if it were subject to the current transformation.

gTransformPoint2D(xs, ys, point)

transforms the space coordinate position (xs, ys) into picture coordinates and
returns the value of the picture coordinates in (point.x, point.y).

238

2D TRANSFORMATIONS 2D Transformation Control

In the case where no current transformation exists, (xs, ys) and (point.x, point.y)
will have the same value.

2D Transformation Control

There are many addition facilities to switch on/off, save, combine or reinitialize
the current 2D transformation state. These are described along with their 3D
counterparts later in this document (see page 371).

The most useful routine for basic 2D transformation work is:
gSetTransformMode(swi)

which can be used to switch the current transformation on or off or reinitialize it
to its initial null (or unit) state.

Transforming Characters and Symbols

By default, GINO starts up in an untransformed character mode. If hardware
characters are required, these cannot be affected by GINO transformations, but
the transforming of software characters can be switched on by calling:

gSetCharTransformMode(GON)

Characters and symbols will be generated in software by GINO using straight
lines which are transformed and windowed and then output using the current line
style (Broken, Thickness and End type). The size, orientation and italic angle
with respect to the current space axes are exactly as specified, but the characters
are also affected by the current transformation set by gRotate2D(), gShift2D(),
gShear2D() or any of the transformation matrix routines.

For example - If a mirrored image is required, a call to gShift2D(1.0,-1.0) will
only mirror the characters if gSetTransformMode(GON) has been called.

C code

/* Set up mirror image transformation */
gScale2D(1.0,-1.0);
gmanandtext () ;

/* Select transformable software characters */
gSetCharTransformMode (GON) ;
gmanandtext () ;

239

Transforming Characters and Symbols 2D TRANSFORMATIONS

F90 code

! Set up mirror image transformation
call gScale2D(1.0,-1.0)
call gmanandtext
! Select transformable software characters
call gSetCharTransformMode (GON)
call gmanandtext

X, X1
CHARACTERS

Software Transformable Characters

The transforming of characters and symbols can be switched off by calling
gSetCharTransformMode(GOFF). In this case, the character mode reverts to the
one set by the last call to gSetHardChars(), gSetMixedChars() or
gSetSoftChars(), or failing that it reverts to the default character mode
gSetMixedChars().

240

Chapter

BASIC INTERACTION

Basic Interaction Introduction

GINO provides a simple facility to input information from a graphics device.
This is the cursor or mouse input facility and is supported by the majority of
graphics terminals and workstations. Cursor input provides a way of
communicating or interacting with a GINO program. There are, of course, other
ways to input information, e.g. standard C or Fortran I/O or using a GUI interface
such as GINOMENU.

Advanced interaction ‘events’ are described later in this document (see page
447).

Cursor Input

A graphics device that supports cursor input will be able to indicate a position on
the drawing surface by means of a graphics cursor or pointer. It will also provide
some means for the user to move the cursor around either with a mouse, arrow
keys, joystick or other device. When the cursor has been appropriately
positioned, the user presses a key or button to cause the cursor’s position to be
returned to GINO. An ASCII character code to identify which key was pressed is
also returned.

The routine to call for cursor input is:

gGetCursorEvent(key, point)

241

Defining Cursor Shapes BASIC INTERACTION

When gGetCursorEvent() is called, the graphics cursor or pointer is switched on
or changed to a graphics cursor shape. As soon as input has been triggered by the
user, gGetCursorEvent() returns in point the cursor’s position in picture
coordinates. Cursor input is usually triggered by pressing a key on a keyboard or
a button on a mouse. key returns the key’s ASCII code as an integer number. If
something other than a keyboard key was pressed, key returns an ASCII code
which identifies the trigger. (See page 447 for more details on the returned ASCII
values.)

On non-windowing graphics devices, a routine is provided to enable the user to
set the cursor position:

gSetCursorPos(x, y)

The position (X,y) is specified in picture coordinates. The default for the cursor
start position is usually the centre of the device limits and it is reset to this after a
call to gNewDrawing(). When gGetCursorEvent() is called, the cursor should
appear at or move to the specified position. If the call to gGetCursorEvent() is
successful, the cursor start position is automatically updated to the position
returned by gGetCursorEvent(). Therefore the call to gSetCursorPos() can only
affect the next call to gGetCursorEvent().

On windowing devices the pointer is always present but its position can be
enquired or set using the mouse position routines (See page 456)

Defining Cursor Shapes

For the devices that offer a cursor or mouse input device it is often possible to
alter the shape of the cursor. The routine gSetCursorType() changes the cursor
type and gEnqCursorType() returns the current setting.

gSetCursorType(type, forcol, bakcol)

gEnqCursorType(type, forcol, bakcol)

Where type is a positive integer that defines the type of cursor. A choice of a
small or large cross is often available on raster terminals, whereas a larger
selection is available on window machines where the cursor represents the
current pointer position and the shape is defined as a small bit pattern. The
number of cursor types available on the current device can be obtained through
the routine gEngDeviceState() (see page 39) and users are referred to the relevant
Appendix B document for further details.

242

BASIC INTERACTION Defining Cursor Action Types

The arguments forcol and bakcol define the foreground and background colours
of the cursor if these can be set.

Defining Cursor Action Types

As well as setting the cursor shape, some devices can provide additional
functionality in the form of ‘rubber’ shapes that are continually updated while the
cursor or pointer device is moved. Typical shapes are rubber bands, rubber boxes
and rubber ellipses. Where such functionality is provided, the routine
gSetCursorAction() will set the desired cursor action type and
gEnqCursorAction() returns the current setting.

gSetCursorAction(action, lverts, points)

gEnqCursorAction(action, lverts, points)

where action defines a number of ‘rubber’ shapes that indicate both the current
pen position when gGetCursorEvent() is called and the current pointer position.
For example, when action = GRUBBERBOX, a ‘rubber’ box is drawn with one
static corner at the current pen position and a variable corner at the current
pointer position.

It is also possible to define fixed polyline shapes which can be used as a cursor or
pointer. To use this facility action is set to GPOLYLINE and the vertices of the
polyline in picture coordinates are placed in the array points. The number of
vertices is set in Iverts. A maximum of 200 vertices is permitted in this facility.
The coordinates are absolute coordinates and may be positive and/or negative
such that the position (0.0,0.0) is located at the cursor or pointer position as it is
moved around the screen.

Application

Although the input facility provided by gGetCursorEvent() is apparently very
basic, it can be used in a variety of powerful ways. For example, a light pen
mechanism can be simulated by dividing part of the screen into areas so that a
cursor ‘hit’ inside an area indicates a particular function. It is also possible to
identify items on the screen by performing a similar area check. In this case,
however, it is necessary to have some sort of data structure to record where each
item is drawn. This is achieved by using segment handling software described
later (see page 423).

243

Chapter

ADVANCED USE OF 2D POLYGONS

Advanced Use of 2D Polygons Introduction

Polygonal boundaries may be defined and stored for subsequent use, e.g. filling,
and the definitions are stored in a workspace which is part of the
gSetWorkspaceLimit() workspace area maintained by GINO (see page 33). The
boundaries of a polygon are lines which join its vertices and the vertices are
stored as the polygon definition. The vertices are generated by GINO drawing
routines and the first and last vertices are connected, meaning that polygons are
always closed.

Allocating Workspace for the Storage of Polygons

Polygon definitions need a workspace within which they may be stored. The
routine gDefinePolygonWorkspace() is used to define such a workspace within
the gSetWorkspaceLimit() workspace (see page 33).

gDefinePolygonWorkspace(nw)

Polygon workspace size depends on the size and number of the polygons to be
stored. Each polygon has a number of vertices which define its edges. Each
vertex needs two real words of storage space. Each polygon also requires a
header of eight real words. So, if NP polygons with a combined total of NV
vertices are to be stored, the amount of space required, NW (number of real
words) is:

NW =2*NV + 8*NP

For example, if a 25 sided and a 12 sided polygon are stored,

245

Allocating Workspace for the Storage of Polygons ADVANCED USE OF 2D POLYGONS

246

NV =25+12
NP =2
So,

NW = (2*37) + (8*2)
=90
The call:

gDefinePolygonWorkspace (90) ; call gDefinePolygonWorkspace (90)

would allocate just sufficient space within the workspace area to store the two
polygons.

The call to gDefinePolygonWorkspace() must be preceded by a call to
gSetWorkspaceLimit() to define the global workspace. This must include at least
sufficient space for gDefinePolygonWorkspace’s needs; i.e. nw must not be
larger than the space delimited by gSetWorkspaceLimit() .

Example:

#include <gino-c.h> program polygon

main () use gino f90

{
gOpenGino () ; call gOpenGino ()
gSetWorkspaceLimit (3000) ; call gSetWorkspaceLimit (1,3000)
gbefinePolygonWorkspace (1200) ; call gDefinePolygonWorkspace &
. (1200)
gCloseGino() ; .

} call gCloseGino

stop

A polygon definition which uses arcs or curves can generate many vertices. The
user must either allow sufficient space in the polygon workspace, or modify the
resolution of the currently nominated output device. The greater the device
resolution, the more vertices are used to describe a curve. The default tolerance
set for each device generally gives a reasonable result. However, this may be
controlled by GINO software by using the gSetArcTolerance() routine (see page
77).

ADVANCED USE OF 2D POLYGONS Polygon Definition

Polygon Definition

gStartPolygon()
gEndPolygon()
gSetPolygonMode(sw)

Polygons are defined by a series of lines, moves, etc. The coordinates supplied by
the user are transformed, if there is a current transformation, and the resulting X
and Y picture coordinates can be stored as polygon vertices.

The storage of the vertices is controlled by gStartPolygon() and gEndPolygon().
gStartPolygon() starts a new polygon and gEndPolygon() closes the current
polygon. The sequence of calls would be as follows:

gMoveTo2D(20.0,50.0) ; call gMoveTo2D(20.0,50.0)
gStartPolygon () ; call gStartPolygon

/* define a triangle */ ! define a triangle
gDrawLineBy2D(20.0,30.0) ; call gDrawLineBy2D(20.0,30.0)
gDrawLineBy2D (20.0,-30.0) ; call gDrawLineBy2D(20.0,-30.0)
gMoveTo2D (20.0,50.0) ; call gMoveTo2D (20.0,50.0)
gEndPolygon () ; call gEndPolygon

Once gStartPolygon() is called, vertices defined by subsequent drawing routines
are stored in the polygon workspace. gEndPolygon() stops this storage of vertices
and closes the polygon definition. A polygon cannot be changed in any way once
it is closed. The gStartPolygon/gEndPolygon() pair delimit a polygon definition.
gStartPolygon() contains an implicit call to gEndPolygon() so in a sequence of
polygon definitions it is possible to omit the calls to gEndPolygon(). However,
remember not to leave a gEndPolygon() outstanding on completion of such a
sequence.

gSetPolygonMode() operates two independent switches one of which functions
outside gStartPolygon/gEndPolygon() and the other inside
gStartPolygon/gEndPolygon().

Outside gStartPolygon/gEndPolygon():

gSetPolygonMode (GOFF) Disables all polygon storage and reinitializes the
gDefinePolygonWorkspace() workspace (see
gClearPolygonWorkspace()).

247

Polygon Definition

ADVANCED USE OF 2D POLYGONS

248

gSetPolygonMode (GON)

Inside gStartPolygon()/gEndPolygon():

gSetPolygonMode (GOFF)
gSetPolygonMode (GON)

Enables polygon storage and
gClearPolygonWorkspace(). This is the default
state.

Suppresses the vertex storage

Enables vertex storage (set to on by
gStartPolygon())

The DART shape in the figure below is produced by the following code:

C Code

/* *kkk*x DART ***** */
float %x,vy,z,x1,vy1l,zl;

/* Move to start point */
gMoveTo2D(180.0,250.0) ;

/* Switch on polygon storage */
gStartPolygon () ;

/* Start defining polygon */
gDrawLineBy2D(120.0,-50.0) ;

/* Switch off vertex storage */
gSetPolygonMode (GOFF) ;

/* Record where you are */
gEngSpacePos (&x, &y, &2) ;

/* Move to start of write position */

gMoveBy2D (-60.0,10.0) ;
/* and output text */
gDisplayStr (“Area 1");

/* Move back to recorded position */

gMoveTo2D (x,V) ;
gSetPolygonMode (GON) ;
gDrawLineBy2D(-120.0,-50.0) ;
gDrawLineBy2D (30.0,70.0) ;
gDrawLineBy2D(30.0,-20.0);
gDrawLineBy2D(-30.0,-20.0) ;
gSetPolygonMode (GOFF) ;
gEngSpacePos (&x1, &yl, &z1) ;
gMoveBy2D(-5.0,18.0) ;
gDisplayStr (”“Area 2");
gMoveTo2D (yl,vyl);
gSetPolygonMode (GON) ;
gDrawLineTo2D(180.0,250.0) ;
/* Close polygon */
gEndPolygon () ;

ADVANCED USE OF 2D POLYGONS Polygon Definition

F90 code

DART: An Annotated Polygon

Polygon Identity

gSetPolygonldent(ident)

249

Clearing Polygon Workspace ADVANCED USE OF 2D POLYGONS

Each polygon in the polygon workspace may be given an identifier. When a
polygon is closed (gEndPolygon()), it is given the current identifier, which must
be a positive integer number. The current polygon identifier is the last identifier
defined by gSetPolygonldent(). The default identifier is zero and if no calls are
made to gSetPolygonldent() all polygons will have an identifier of zero.

Polygons sharing a common identifier will be grouped together and the whole
group will be selected by the one identifier. Identifiers cannot be changed once
the polygon is closed.

For example:

gStartPolygon () ; call gStartPolygon

/* Define a polygon */ ! Define a polygon

/* Define polygon identifier */ ! Define polygon identifier
gSetPolygonIdent (ident) ; call gSetPolygonIdent (ident)
gEndPolygon () ; call gEndPolygon

A polygon must be given a unique identifier if it is to be distinguished from all
other polygons.

Clearing Polygon Workspace

By calling gClearPolygonWorkspace() the gDefinePolygonWorkspace() storage
space is reinitialized.

gClearPolygonWorkspace()

This deletes all polygons in the gDefinePolygonWorkspace() workspace. The
routine gClearPolygonWorkspace() is ignored if gSetPolygonMode(GOFF) is
called outside gStartPolygon()/gEndPolygon(); that is for
gClearPolygonWorkspace() to re-initialize the workspace, gSetPolygonMode()
must be set to GON (default).

Status of Polygon Workspace

The routine gEnqPolygonWorkspace() returns information about the state of
gDefinePolygonWorkspace() workspace, and the value of the current polygon
identifier.

gEnqPolygonWorkspace(npoly, nvert, nfree, ident)

250

ADVANCED USE OF 2D POLYGONS Drawing Polygon Boundaries

npoly Returns the total number of completed polygons with one or more vertices.
nvert Returns the total number of vertices defined so far.

nfree Returns the amount of remaining free space (real words).

ident Returns the current polygon identifier.

If gEnqPolygonWorkspace() is called after the polygon DART has been defined,
and assuming gDefinePolygonWorkspace() was set up as in the example in the
‘Allocating Workspace for the Storage of Polygons’ section, the following results
will be returned:

npoly=1

nvert=7

nfree=1178

These three quantities are related to gDefinePolygonWorkspace() size in this way
(8 * npoly) + (2 * nvert) + nfree = nw

where nw is the number of words allocated in gDefinePolygonWorkspace().

If gEnqPolygonWorkspace() is called before any polygons are defined, npoly and
nvert return zero and nfree returns nw, the number of words declared in
gDefinePolygonWorkspace(). If no gDefinePolygonWorkspace() storage space
has been assigned, nfree will also return zero.

Drawing Polygon Boundaries

Polygon boundaries may be drawn by a call to the routine:
gDrawPolygonBound(line)

where line selects the line style for the boundary from the line definitions table.
If line is set to GCURRENT the edges are drawn in the current line style.

For example, if the drawing area is cleared by a call to gNewDrawing(), a
polygon may be redrawn by a call to gDrawPolygonBound(). The statements:

gNewDrawing () ; call gNewDrawing
gbrawPolygonBound (GCURRENT) ; call gDrawPolygonBound (GCURRENT)

251

Polygon Filling Workspace Requirements ADVANCED USE OF 2D POLYGONS

would have this effect if appended to the code for DART. The routine
gDrawPolygonBound() draws all edges of all selected polygons, including those
edges that were originally drawn with invisible lines. In the DART example the
annotations ‘Area 1°, ‘Area 2’ will not be drawn by gDrawPolygonBound() since
they were not stored as part of the definition.

Polygon Filling Workspace Requirements

252

Before complex polygons can be filled, a temporary workspace must also be
provided. The space this workspace needs is in addition to the space needed for
polygon storage (see page 33). The following sections detail how to calculate the
size of the temporary workspace depending whether hardware or software fill is
in operation.

If software filling is forced using gSetFillMode(GSOFT) then only the space
required for software filling needs to be calculated. Clearly if hardware and
software fill occur in the same program through user selection or the device
capabilities the maximum size must be catered for, however, allowances for
windowed and masked filled areas are described under ‘Polygon Windowing and
Masking’ later in the section.

Hardware Fill Workspace Requirements

GINO ensures that all polygonal boundaries presented to the output device
remain within device limits. A temporary workspace is required to hold this data.

No specific rule can be given for the size of this temporary workspace. In the
extreme case, the clipping process can generate up to twice the original number
of vertices in any polygon. In normal circumstances, clipping reduces the amount
of data that needs to be stored.

The following formula should provide sufficient additional space NWHEF, for
hardware area fill:

NWHF = NP*8 + NV*2 (words)

Where,

NP = number of polygons selected for fill

NV = total number of vertices in all selected polygons

This is equivalent to NW as defined previously if all defined polygons are
selected for fill simultaneously.

ADVANCED USE OF 2D POLYGONS Polygon Filling Workspace Requirements

Software Fill Workspace Requirements

The area-filling software in GINO needs temporary workspaces to hold extra
information that is necessary for generating hatch lines.

The size of the workspace depends on the total number of vertices, NV,
describing the polygons selected for area fill.

Size = 5*NV (words)
Example Calculations of Workspace Requirements

Suppose it were necessary to store and fill a maximum of 21 polygons
containing, at maximum, 200 vertices. All polygons are capable of being filled at
one time; there is no section of polygons involved; hardware fill is always
available and used.

What is the total workspace requirement?

Step 1. Calculate the size of the polygon storage area
Size = 2*200 + 8*21

=568

Step 2. Calculate size of the selection list workspace
Size =0

Step 3. Calculate size of the hardware fill workspace
Size = that found in step 1 (in general)

=568

Total = 568 + 0 + 568 = 1136 (words)

This total is only approximate. In practice the sequence of program calls would

look like this:
gSetWorkspaceLimit (1200) ; call gSetWorkspaceLimit (1,1200)
gbefinePolygonWorkspace (568) ; call gDefinePolygonWorkspace (568)

253

Polygon Selection ADVANCED USE OF 2D POLYGONS

Supposing that only 11 polygons out of the 21 are to be selected for filling and it
has been estimated that these polygons contain, at most, 100 vertices and
software area fill is to be used. What would be the new workspace size?

Step 1. As before

Size = 2*200 + 8*21

=568

Step 2. The selection list workspace size is given by
Size =11

Step 3. Calculate size of the software fill workspace
Size = 5*100

=500

Total = 568 + 11 + 500 = 1079 (words)

In practice the sequence of program calls would look like this:

int list[1]; integer list (1)
gSetWorkspaceLimit (1100) ; call gSetWorkspaceLimit (1,1100)
gbefinePolygonWorkspace (568) ; call gDefinePolygonWorkspace (568)
gSetFillMode (GSOFT) ; call gSetFillMode (GSOFT)

gSelectPolygons (list, 11) ; call gSelectPolygons (list,11)

Polygon Selection

By default GINO will use all polygons currently defined in the polygon
workspace. However, a subset of the currently defined polygons may be selected
by a call to the routine:

gSelectPolygons(list, n)

Polygons are selected by their identifiers. The user integer array list should
contain the list of identifiers to be selected. The statement:

254

ADVANCED USE OF 2D POLYGONS Polygon Selection

int 1list[N]; integer list (N)

gSelectPolygons (list, n); call gSelectPolygons (list, n)

then causes n identifiers to be copied from array list into the workspace area.
This becomes the current list of polygon identifiers - For example:

C code

#include <gino-c.h>
main ()
{
int list[2];
float x,y;

gOpenGino () ;

gSetWorkspaceLimit (3000) ;
gbefinePolygonWorkspace (1200) ;

x=20.0;
y=230.0;
gSetArcIncrement (6) ;
/* Define and store polygons */
for (i=1; i<=4; i++) {
gStartPolygon () ;
gMoveTo2D (x, VY);
gDrawArcBy2D(20.0,0.0,0.0,0.0, GCLOCKWISE) ;
/* Give polygon an identification */
gSetPolygonIdent (i) ;
gEndPolygon () ;
y -= 50.0;
}
gNewDrawing () ;
/* Write identifiers 2 and 3 into list */
list[0]=2;
list[1]=3;
/* Copy LIST to workspace */
gSelectPolygons (list,2);
/* Draw boundaries of selected polygons wRWE @/
gDrawPolygonBound (GCURRENT) ;

gCloseGino () ;

F90 code

program poly

use gino_ £90
integer list (2)
real x,y

call gOpenGino

255

Polygon Selection ADVANCED USE OF 2D POLYGONS

256

call gSetWorkspaceLimit (1,3000)
call gDefinePolygonWorkspace (1200)

x=20.0
y=230.0
call gSetArcIncrement (6)
! Define and store polygons
do i=1,4
call gStartPolygon
call gMoveTo2D (x, V)
call gDrawArcBy2D(20.0,0.0,0.0,0.0,GCLOCKWISE)
! Give polygon an identification
call gSetPolygonIdent (i)
call gEndPolygon
y=y-50.0
end do
call gNewDrawing
! Write identifiers 2 and 3 into list
list(l)=2
list(2)=3
! Copy LIST to workspace
call gSelectPolygons (list,2)
! Draw boundaries of selected polygons B
call gDrawPolygonBound (GCURRENT)

call gCloseGino

Only those polygons identified in the current list are considered by
gDrawPolygonBound().

The routine gSelectPolygons() may be called repeatedly. Each time the list is
redefined, the old one is first deleted.

The routine gSelectPolygons() uses a small amount of space within the
workspace area and this should be included in the calculation of
gSetWorkspaceLimit()’s size. The space needed is equal to the maximum number
of identifiers to be selected at any one time. For example, seven identifiers gives
a space requirement of seven words.

To cancel the gSelectPolygons() list, set n to 0:
gSelectPolygons(list,0);

This deletes the list from the workspace areca and GINO reverts to using all
currently defined polygons.

ADVANCED USE OF 2D POLYGONS Filling a Polygon

Polygon Selection Enquiry

An enquiry may be made to establish which polygons are currently selected for
filling using:

gEnqPolygonList(list, n, count)

This routine returns the number of polygon identifiers in the last call to
gSelectPolygons() as count and the polygon identifiers in the array list. The
actual number of returned identifiers is between zero and count up to a maximum
of n. If n is less than zero then a warning is given.

Filling a Polygon

GINO allows general polygonal areas to be filled. Polygonal boundaries must be
defined prior to filling. These definitions should be stored in the
gDefinePolygonWorkspace() workspace unless the output device’s hardware is
capable of storing polygons.

The following points should be considered for area filling:

1. Boundaries may be defined anywhere in picture space and are independent of
any window or clipping limits.

2. Polygonal boundaries are by definition closed. There is an edge between the
first and last vertex.

3. Boundaries may be of any shape and may self-intersect.

4. An area’s boundary may be formed from several polygons which may
intersect each other.

5. Polygons stored in gDefinePolygonWorkspace() workspace each have an
identifier and therefore a subset of the currently defined polygons may be
selected (gSelectPolygons()) for filling.

The routine for filling a general polygon area is:
gFillSelectedPolygons(fill, line, inv)
This is a global filling routine which can fill any general polygonal area.

The routine gFillSelectedPolygons() allows the user to choose the hatch and line
styles with which the fill is to be drawn. For example:

257

Filling a Polygon ADVANCED USE OF 2D POLYGONS

258

gFillSelectedPolygons (2,3,GAREA); call gFillSelectedPolygons (2,3, &
GARER)

will implement hatch style 2 (fill=2) and line style 3 (line=3). The actual
appearance of the style depends on whether they are implemented by hardware or
software. For inv=GAREA causes areas to be filled with an odd number of
boundaries between them and the background area.

The arguments fill and line behave in the same way as for gFillRect() (see AREA
FILLING), namely, they identify the hatch and line styles to be used for the fill.
If fill=0 or out of range, it gives a solid fill and line=0 or out of range gives the
current line style. The routine gSetFillMode() (see AREA FILLING) may be
used to select between hardware and software fill styles.

The argument inv specifies which areas are filled. With simple polygons, that is
those that do not intersect or enclose each other, when inv = GAREA the polygon
interiors are filled as in the figure below:

ACTI

Simple Polygons, Area fill

When inv = GINVERSE the background area is filled as shown in the figure
below:

/C |

7

Simple Polygons Inverse fill

ADVANCED USE OF 2D POLYGONS Filling a Polygon

With complex polygons, that is those that intersect themselves or intersect or
enclose each other, when inv = GAREA, all areas which have an odd number of
edges between them and infinity are filled, as in the figure below:

b [LE

Complex polygons Area fill

When inv = GINVERSE all areas with an even number of edges between them
and infinity are filled, as in the figure below:

A,

2

M _

Complex Polygons, Inverse fill

Notice that the whole of picture space is considered when deciding which areas
are to be filled. However, the actual fill is always clipped to the current window
or device limits.

The polygons that are filled by gFillSelectedPolygons() are those stored in
polygon workspace and selected by gSelectPolygons(). If no polygon selection
has occurred, all polygons whose definitions are in the polygon workspace will
be filled.

An example of this mechanism can be shown by modifying the previous program

example. If the call to gDrawPolygonBound() (marked by four asterisks) is
replaced by a call to gFillSelectedPolygons(), that is:

259

Filling a Polygon ADVANCED USE OF 2D POLYGONS

GFillSelectedPolygons (8, call gFillSelectedPolygons(&
GCURRENT, GAREA) ; 8, GCURRENT, GAREA)

the two polygons identified as 2 and 3 will be filled according to hatch style 8,
drawn with the current line style.

Note that it is not necessary to use the line definition table to specify the style of
the filling line. By setting line = GCURRENT, the current line style is selected.
Current line style may be modified by redefining the current line attributes. For
example, adding the following code to the previous program example:

C code

int list([1];

/* Reselect polygons */
list[0]=4;
gSelectPolygons (list,1);

/* Change current line colour and fill */
gSetLineColour (GYELLOW) ;
gFillSelectedPolygons (5, GCURRENT, GAREA) ;

F90 code

integer list (1)

! Reselect polygons
list (1)=4
call gSelectPolygons (list,1)
! Change current line colour and fill
call gSetLineColour (GYELLOW)
call gFillSelectedPolygons (5, GCURRENT, GAREA)

will cause polygon 4 to be filled in yellow with hatch style 5.

The routine gSetFillMode() may be used to select between hardware and
software fill styles (see page 165).

260

ADVANCED USE OF 2D POLYGONS Interaction with Polygons

Interaction with Polygons

The routine gPolygonHit() allows the user to specify and search an area of
picture space for polygons which overlap the area.

gPolygonHit(ident, x, y, r)

If any are found, the identifiers of the polygon whose edge comes closest to the
centre of the area is returned in ident.

The search area (or ‘hit area’) is bounded by a circle of radius r whose centre, the
‘hit centre’, is X,y in picture coordinates.

The routine gPolygonHit() is useful in interactive applications and the
coordinates for the hit centre would typically derive from a call to the routine
gGetCursorEvent() (see page 241). This routine only examines those polygons
which are currently selected. If no polygon overlaps the hit area, -1 is returned in
ident.

Polygon Windowing and Masking
Polygons Suitable for Windowing and Masking

GINO allows general polygonal areas to be used as windows or masks. Polygonal
boundaries must be defined prior to use. These definitions should be stored in the
polygon workspace.

The following points should be considered for polygonal windowing and
masking:

1. Boundaries may be defined anywhere in picture space and are independent of
any window or clipping limits.

2. Polygonal boundaries are by definition closed. There is an edge between the
first and last vertex.

3. Multi-polygonal windows cannot be used, only the first polygon in a set of
polygons may be used.

261

Polygon Windowing and Masking ADVANCED USE OF 2D POLYGONS

262

Workspace Requirements for Windowing and Masking of Filled Areas

In order to utilize polygonal windowing and masking of filled areas enough space
must be allocated. The space for windowing and masking is in addition to the
space needed for polygon storage (see page 33). The following notes give
guidelines on the amounts of space required for combinations of windowing and
masking. The actual amounts required ultimately depend on the window, mask
and object definitions.

Windowing Requirements

The following formula should provide sufficient temporary space (NWHW) to
create the new clipped polygon which is sufficient for software and hardware
filling, and should, therefore, be used instead.

NWHW = 7*(NV + IW + NW) + 2*NVW

where,

IW= number of intersections between the object and window
NV= number of vertices in the object being clipped
NW=number of vertices in the window

NVW= number of vertices in the windowed object

Masking Requirements

The following formula should provide sufficient temporary space (NWHM) to
create the new masked polygon which is sufficient for software and hardware
filling, and, therefore, should be used instead.

NWHM = 7#(NV + IM + NM) + 2*NVM

where,

IM= number of intersections between the object and mask
NV= number of vertices in the object being masked

NM= number of vertices in the mask

NVM= number of vertices in the masked object

ADVANCED USE OF 2D POLYGONS Polygon Windowing and Masking

Requirements for Simultaneous Windowing and Masking

The following formula should provide sufficient space (NWM) for
simultaneously windowed and masked hardware filling:

NWM = 7*MAX((NV + IW + NW),(NV + IM + NM)) + 2*NVW + 2*NVM
where,

IW= number of intersections between the object and window

IM= number of intersections between the object and mask

NV=number of vertices in the object being clipped and masked
NW=number of vertices in the window

NM= number of vertices in the mask

NVW= number of vertices in the windowed object

NVM= number of vertices in the masked object

Example - Calculation of Fill Workspace Requirements

The following calculations are for the simultaneous windowing and masking of a
triangle as shown below:

WINDOW

MASK

LRI IR %
TSIV OO 99000 0000000,
R R A=

A Simultaneously Masked and Windowed Triangle

NV=3
NM =4

NW=4 NWM = 7*MAX ((3+4+4), (3+2+4)) + 2%5 + 2*4

263

Polygon Windowing and Masking ADVANCED USE OF 2D POLYGONS

264

IW=4

IM=2=7*MAX (11,9) + 10 +8
NVW=5

NVM=4=95

The total workspace required for storing and filling the triangle above is
calculated in the following steps.

Step 1. Polygon workspace
Size =2*3 + 8*1

=14

Step 2. Fill workspace

Size =95

Total = 95 + 14 = 109 (words)

The sequence of program calls would look like this:

int 1listl[1l],1ins2[1]; integer list(1l),list2(1)
gSetWorkspaceLimit (109) ; call gSetWorkspaceLimit (1,109)
gbefinePolygonWorkspace (14) ; call gDefinePolygonWorkspace (14)
gSetFillMode (GSOFT) ; call gSetFillMode (GSOFT)
gSetPolygonWindow (1listl,1); call gSetPolygonWindow (listl,1)

gSetPolygonMask (1list2,1); call gSetPolygonMask(list2,1)

Polygonal Windowing

gSetPolygonWindow(list, n)

The routine gSetPolygonWindow() selects n polygon identifiers from the array of
identifiers in list. The boundaries of these polygons are then used as the current

window until a different set of polygons is selected or the windowing is turned
off.

ADVANCED USE OF 2D POLYGONS Polygon Windowing and Masking

The following code generates a three sided window, and then draws a
gingerbread man using the routine man(), as shown in the figure below.

int list[1]:; integer list (1)

/* Store polygon */ ! Store polygon
gMoveTo2D(5.,0.); call gMoveTo2D(5.,0.)
gStartPolygon () ; call gStartPolygon

gSetPolygonIdent (101) ; call gSetPolygonIdent (101)

gDrawLineTo2D(85.,10.); call gDrawLineTo2D(85.,10.)

gDrawLineTo2D (45.,70.) ; call gDrawLineTo2D (45.,70.)

gDrawLineTo2D(5., 0.); call gDrawLineTo2D(5., 0.)
gEndPolygon () ; call gEndPolygon

/* Store polygon identity */ ! Store polygon identity
list[0] = 101; list(l) = 101

/* Set window */ ! Set window
gSetPolygonWindow (list, 1) ; call gSetPolygonWindow (list, 1)
man () ; call man

O
O
O

Three Sided Polygonal Windowing

Polygonal Masking

gSetPolygonMask(list, n)

The routine gSetPolygonMask() selects n polygon identifiers from the array of
identifiers in list. The boundaries of these polygons are then used as the current
mask until a different set of polygons is selected or the masking is turned off.

The following code generates a three sided mask, and then draws a gingerbread
man using the routine man, as shown in the figure below.

265

Polygon Windowing and Masking ADVANCED USE OF 2D POLYGONS

int list[1]:; integer list (1)

/* Store polygon */ ! Store polygon
gMoveTo2D(5.,0.); call gMoveTo2D(5.,0.)
gStartPolygon () ; call gStartPolygon

gSetPolygonIdent (101) ; call gSetPolygonIdent (101)

gDrawLineTo2D(85.,10.); call gDrawLineTo2D(85.,10.)

gDrawLineTo2D (45.,70.) ; call gDrawLineTo2D (45.,70.)

gDrawLineTo2D(5., 0.); call gDrawLineTo2D(5., 0.)
gEndPolygon () ; call gEndPolygon

/* Store polygon identity */ ! Store polygon identity
list[0] = 101; list (1) = 101

/* Set mask */ ! Set mask
gSetPolygonMask (list, 1) ; call gSetPolygonMask (list,1)
man () ; call man

W

Three Sided Polygonal Masking

Windowing and Masking Polygon List Enquiry
The routines gEnqPolygonMaskList() and gEnqPolygonWindowList() each

return a list of currently selected polygon identifiers for masking and windowing
respectively.

gEnqPolygonMaskList(list, n, count)

gEnqPolygonWindowList(list, n, count

266

ADVANCED USE OF 2D POLYGONS Polygon Windowing and Masking

Each routine returns up to n polygon identifiers. The actual number of currently
selected polygons is returned as count. If n is greater than count then only count
identifiers are returned; if n is less than count then only n identifiers are
returned. The identifiers are returned in the array list which should be defined to
hold n integers. If n is equal to or less than zero then no identifiers are returned;
if n is less than zero then a warning message is output.

Windowing and Masking Control

Basic windowing and masking provides rectangular windows and masks only
(see page 219). However, the following basic control features are also applicable
to polygonal windowing and masking.

Windows and masks may be switched on and off using the routines
gSetWindowMode() and gSetMaskMode() respectively.

gSetWindowMode(GOFF) Switches current windowing off
gSetWindowMode(GON) Switches most recently defined windowing on
gSetMaskMode(GOFF) Switches current masking off
gSetMaskMode(GON) Switches most recently defined masking on

Calls to gEngqWindowState() and gEnqMaskState(), return the bounding boxes of
currently defined windows and masks. For example, the call

GLIMIT bounds; type (GLIMIT) bounds

gEngMaskState (&swi, &bounds); call gEngMaskState (swi, bounds)

to enquire the X and Y limits of the currently defined mask applied to the
polygonal mask shown in the previous figure will return the following limits
(100.0, 190.0, 100.0, 170.0)

267

Chapter

3D GRAPHICS

3D Graphics Introduction

The move from 2D graphics, covered in the earlier sections of this document to
3D graphics, is essentially the addition of the 3rd coordinate and the ability of
defining and displaying objects in 3D space. However, the reality persists that at
the end of the day, the objects are still being displayed on a flat 2D screen and the
applications’ desire is to create an illusion of a 3D scene. This can be done using
a number of techniques available to the GINO user:

1) Perspective — Using a transformation of the 3D coordinates, objects further
away from the viewer appear smaller than those closer to them.

2) Hidden surface removal — Sorting objects into depth order, irrespective of
drawing order so that those hidden by closer objects are not displayed.

3) Shading — Calculating the effect of lights shining on objects to alter their
perceived colour.

4) Depth cueing — Reducing the colour intensity of objects further away from
the viewer.

All these affects are observed naturally in the real world and so give the
impression of reality.

269

3D Graphics Introduction 3D GRAPHICS

270

Shaded Objects

Whilst 3D scenes can be built up from lines, curves and symbols in 3D space, the
primary component of realistic objects is the facet primitive. This simple
polygonal shape has a number of additional attributes that enable the effect of
complex lighting conditions to be displayed on the surface. The material
attributes which indicate the facet’s absorptive, reflective and translucent
properties, together with the angle the facet makes with the viewer provide
information needed to calculate the visual cues for this primitive. When the
effects of multiple lights are added into the calculations, the final colour of the
facet can be displayed. These calculations can be performed for each facet (flat
shading) or for each vertex within a facet (smooth shading) where more realistic
images are required.

The Scene

As well as the basic facet primitive, GINO also provides a set of 3D objects, such
as boxes, cones, cylinders and Bezier surfaces, each of which are composed of
separate facets. These provide a simple ways to start building much more
complex scenes which have the same lighting and shading principles as the basic
primitive.

Additional object complexity or realism can also be performed by adding texture
to an object. This is achieved by mapping the contents of a 2D pixel array to the
surface of an object which may consist of a single facet or a collection, such as
provided in the 3D objects. The texture can also be made subject to the lighting
conditions (see page 345).

The process of building up and manipulating 3D models is performed by
translating and/or rotating individual components and possibly storing them in
hierarchical segment structures for efficient retrieval (see page 423).

GINO also provides the ability to animate 3D objects or complete scenes in 3D
space using event based interaction methods (see page 447).

3D GRAPHICS 3D Graphics Introduction

3D Device Drivers

It should be pointed out, that whilst it is possible to display 3D graphics on all
GINO output devices, the lighting and shading facilities are only available on
devices driving 3D ‘hardware’. At the present time , there are two graphics
drivers that provide these facilities, namely gWogl (for use under Microsoft
Windows and Windows printers) and gGlIx (for use under X-Windows). On all
other devices, objects will be displayed in the appropriate solid colour, in the
order they are drawn, and irrespective of any lighting or special effects that have
been defined.

BMP files can also be created from 3D shaded pictures using the gWoglpp()
nomination routine.

Performance

There are an increasing number of graphics cards that offer performance
acceleration for 3D graphics, either generally or specifically for OpenGL,
Direct3D or Glide. It should be noted, however, that unless certain programming
guidelines are adopted in a 3D application, a graphics card operating at full
acceleration can in fact perform slower than operating without acceleration.

The following guidelines should therefore be adopted in order to achieve
maximum performance on any graphics card.

« Use as few light sources as possible
« Store objects in segments and redraw using gDrawSeg()

 In animated objects, only use the facet primitive - most cards are tuned to
draw only triangular facets at high speed

» Use as few changes to material properties within an object as possible - i.e.
group together facets with the same material

+ Cull back facing facets if possible - see gSetShadingMode()
« Switch off back surface lighting - see gSetMateriallndex()

+ Try changing to a lower resolution (some graphics cards do not perform
well at very high resolutions such as 1600 x 1200)

+ Check the Depth Buffer capabilities of the graphics card and if not 32-bit
(GINO’s default), change GINO’s value by setting the config or
environment variable WOGLDEPTH

These points are repeated in the relevant sections in the following chapters.

271

The 3D World 3D GRAPHICS

The 3D World

272

When a 3D device is initialised, a default 3D coordinate system or ‘world’ is set
up. As has been said, 3D drawing can be performed on any device, whether it
drives a simple pen plotter, a monochrome printer or sophisticated 3D graphics
card. The initial 3D world that is set up represents a cube with the following
layout.

Initial 3D World

Note that the default 3D origin (0.0,0.0,0.0) lies on the surface of the screen or
paper, in the bottom left corner.

The limits of these physical dimensions in the X-Y direction can be enquired at
any time using the routine gEnqDrawingLimits() which by default will return its
measurements in millimetres:

gEnqDrawingLimits(dim,type)

It is possible to both change the default units, and in some instances, the physical
drawing limits of the current device (see page 39).

3D GRAPHICS 3D Viewport Mapping

Note that the Z coordinate range is purely notional and in most cases extends
from the least to the greatest numerical value possible on the particular
hardware/implementation being used. On devices that drive 3D graphics
hardware, a range of twice the screen or window width is used so as to define a
fitting 3D drawing volume.

3D Viewport Mapping

Whilst drawing to these physical limits may be satisfactory for basic programs, it
should be noted that the physical limits will vary from device to device. For
example, the limits of a window on a 15” screen will obviously be different on a
larger screen and on an A4 piece of paper. Developing a program to cater for
these varying limits can be cumbersome and it is therefore useful to be able to
map a predefined, application dependent range onto all or part of the physical
limits that are available on the current device. This is called viewport mapping
and is achieved using the following routine:

gSetViewport3D(piclim,viewlim)

The first argument piclim is a structure of type GLIMIT3 containing limits in all
three directions (X,Y and Z) that define the users’ 3D picture coordinate area or
volume. Whereas viewlim is a structure of type GLIMIT which defines the area
on the device onto which the user limits are to be mapped. These are measured in
the current drawing limits as returned by gEnqDrawingLimits(). Any viewport
limits outside the device limits will be clipped accordingly.

in

ymax

ymax

min ymin

xmin Xxmax

piclim xmax viewlim

3D Viewport

273

3D Viewport Mapping 3D GRAPHICS

274

Example: The following code maps a 3D volume defined in picture units, on to
the available drawing area of the nominated device:

C code

#Include <gino-c.h>

GDIM paper;

GLIMIT3 picture = {0.0,1000.0,0.0,750.0,-2000.0,2000.0};
GLIMIT viewport = {0.0,1.0,0.0,1.0};

gOpenGino () ;

XXXXX () ;

gkEngDrawingLimits (paper, ipapty) ;
/* Define viewport */

viewport.xmax=paper.xpap;

viewport.ymax=paper.ypap;

gSetViewport3D (picture, viewport) ;

F90 code

use gino £90
type (GDIM) paper

type (GLIMIT3) :: picture = &
GLIMIT3(0.0,1000.0,0.0,750.0,-2000.0,2000.0)

type (GLIMIT) :: viewport = GLIMIT(0.0,1.0,0.0,1.0)
|

call gOpenGino

call xxxxx

call gEngDrawingLimits (paper, ipapty)
! Define viewport

viewport¥xmax=paper$xpap

viewport$ymax=papersypap

call gSetViewport3D(picture,viewport)

Note that, by default, the aspect ratio in X-Y is maintained, and the viewport is
centrally placed in the area defined, possibly leaving gaps on the left and right, or
top and bottom in which no drawing will take place. This viewport setting can be
controlled by the routine:

gSetViewportMode(sw)

In addition to the default setting described above (sw=GCENTRAL), the
viewport can be placed at the bottom left of the viewport limits
(sw=GBOTTOMLEFT), or the aspect ratio may be deformed (sw=
DEFORMED) so that the picture limits are scaled to fit the viewport limits.

The current 3D viewport can be enquired using the following routine:
gEnqViewport3D(piclim,viewlim)

where piclim and viewlim are of the same type as the setting routine.

3D GRAPHICS 3D Clipping

When setting up a 3D viewport, the depth (Z) range can affect the accuracy of
any depth sorting or clipping so it is advisable not to set this to an arbitrary depth
range, but one that suits the application and the objects being drawn
appropriately (see page 327).

3D Clipping

The action of defining a viewport will, by default also define a clipping volume,
outside which no drawing will take place (unless the routine
gSetViewportClipSwitch() has been called). It may be necessary to set up a
different or separate clipping volume within the picture limits to control the
visible part of the drawing or model. This is achieved using the following
routine:

gSetWindow3D(window)

where window is a structure of type GLIMIT3 containing limits in all three axes
measured in picture units. Note that the limits of the clipping volume will always
lie parallel to untransformed X,Y and Z axes.

As in 2-D, user-defined 3-D windows may be switched off/on by using
gSetWindowMode().

Enquiring 3D Window Limits
The current state of windowing may be obtained by using the routine:
gEnqWindowState(swi, bounds)

The current setting of the window switch is returned in swi and the complete 3D
limits are returned in the structure bounds.

For example:

GLIMIT3 window; type (GLIMIT3) window

gEngWindowState (&swi, &window) ; call gEngWindowState (swi, window)

275

Chapter

3D DRAWING

3D Drawing Introduction

GINO provides 3D drawing facilities for:

+ Positioning

+ Single straight lines
 Polylines
 Polyline sets

+ Circular arcs

+ B-spline curves

» Bezier curves

277

3D Drawing Introduction 3D DRAWING

3D Axes

The 3D coordinate system used is right-handed as shown below, with the X-axis
horizontal, the Y-axis vertical and the Z-axis coming out of the page.

| (000000)
|
|
|
|
I
I

vy
Right Handed Coordinate System

Three-dimensional drawing can be anywhere within X,Y,Z space, with the initial
origin being the bottom back left-hand corner of the drawing cube.

3D Start and End Pen Position

All drawing starts from the position at which the pen was left by the previous
drawing instruction - this is termed the start pen position. Initially, the position of
the pen is at (X,Y,Z) = (0.0,0.0,0.0). The arguments for all 3D drawing routines
define the point at which the pen will be left after executing the routine. This is
termed the “end pen position”. The end position of one routine becomes the start
position for the next. The arguments can specify the absolute coordinates of the
end pen position, or the end pen position relative to the start position.

3D Naming Conventions

The naming convention for 3D drawing routines is as follows:

(a) The initial part indicates the routine:

278

3D DRAWING 3D Positioning

gMove* - positioning

gDrawLine* - drawing straight lines
gDrawArc* - drawing circular arcs
gDrawPolyline* - drawing series of straight lines

gDrawPolylineSet* - drawing a set of polylines
gDrawSpline* - drawing a cubic spline curve

gFillPolygon* - fill a polygon

(a) The latter part indicates the type of coordinates:

To - absolute

By - relative

(¢) The last part indicates dimension:

**2D - two dimensions (see page 77)

**3D - three dimensions

3D Positioning

The routines for “straight line movement” are:
gMoveTo3D(x, y, z)
gMoveBy3D(dx, dy, dz)

Examples:

+ To position the pen at point (1.5,2.5,3.5) the following statement could be
used:

gMoveTo3D(1.5,2.5,3.5); call gMoveTo3D(1.5,2.5,3.5)

279

3D Straight Lines 3D DRAWING

» To increment the start pen position by xa in the X-direction, ya in the
Y-direction and za in the Z direction the following statement could be
used:

gMoveBy3D (xa, ya, za) ; call gMoveBy3D (xa,ya, za)

3D Straight Lines

The routines for drawing straight lines are:
gDrawLineTo3D(x, y, z)
gDrawLineBy3D(dx, dy, dz)

For example - to draw a straight line from the point (50.0,20.0,-10.0) to the point
(60.0,80.0,200.0) the following statements can be used:

gMoveTo3D (50.0,20.0,-10.0) ; call gMoveTo3D(50.0,20.0,-10.0)
gDrawLineTo3D(60.0,80.0,200.0); call gDrawLineTo3D(60.,80.,200.)

3D Polylines

The routines for drawing 3D multiple straight lines from the current pen position
are:

gDrawPolylineTo3D(npts, points3)
gDrawPolylineBy3D(npts, points3)

where points3 is an array of structures of type GPOINT3 each containing three
real elements representing the x, y and z coordinates in either absolute or relative
terms.

For example - to draw the 3D arrow head shown below, an array points3 of type
GPOINTS3 is initialized with four coordinate as shown below:

C Code

GPOINT3 arrow[4] = {7.07,10.0,7.07, 7.65,8.0,3.65,
3.65,8.0,7.65, 7.07,10.0,7.07};

gMoveTo3D(0.0,0.0,0.0) ;

280

3D DRAWING 3D Polylines

F90 Code

3D Polyline

The same figure could have been produced using the routine
gDrawPolylineBy3D() as follows:

C Code

F90 Code

Shaded Polylines

To draw a polyline that is affected by lighting and shading users are referred to
the section on 3D objects (see page 305).

281

3D Polyline Sets 3D DRAWING

3D Polyline Sets
3D Polyline Set Definition

A polyline set consists of an array of polylines each of which consists of an
integer number of vertices and a pointer to an array of 3D vertices.

Each polyline is complete within itself and does not make use of the current pen
position. For this reason polygon sets can only use absolute coordinates.

An example of a 3-D polyline set consisting of a trapezium and two triangles is
represented by the following coordinates and shown in the diagram below:

1 2 3 4 5 6 7 8 9 10 11 12 13
x: 40. 160. 340. 460. 40. 120. 245. 245. 120. 250. 440. 250. 250.
y: 140. 40. 40. 140. 140. 145. 270. 145. 145. 145. 145. 335. 145.
zz 00 00 00 00 0.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
< > < > e >

Polyline sizes

282

3D DRAWING 3D Polyline Sets

3D Polyline Set

3D Polyline Usage
Three dimensional polyline sets are filled using the following routine.
gDrawPolylineSet3D(npol, polylines3)

where npol is the number of polylines contained in the GPOLYGON3 array
polylines3.

The example polyline sets described previously can be implemented as follows.

C code

static GPOLYGON3 poly[3] = {5
static GPOINT3 points[13] = {
40.0,140.0,0.0, 160.0,4
340.0,40.0,0.0, 460.0,1

, 0, 4, 0, 4, 0};

0.0,0.0,
40.0,0.0, 40.0,140.0,0.0,

120.0,145.0,10.

245.0,145.0,10.

250.0,145.0,10.

250.0,335.0,10.
main ()

{

245.0,270.0,10.0
120.0,145.0,10.0
440.0,145.0,10.0
250.0,145.0,10.0

lololoNe)

~ S~~~

poly[0].verts=&points[0];
poly[l].verts=&points[5];
poly[2].verts=&points([9];

gDrawPolylineSet3D(3,poly);

283

3D Arcs 3D DRAWING

F90 code
type (GPOLYGON3) :: poly(3)
type (GPOINT3) :: points (13) {/ &

GPOINT3 (40.0,140.0,0.0), GPOINT3(160.0,40.0,0.0), &
GPOINT3 (340.0,40.0,0.0), GPOINT3(460.0,140.0,0.0), &
GPOINT (40.0,140.0,0.0), &

GPOINT3(120.0,145.0,10.0),GPOINT3 (245.0,270.0,10.0), &
GPOINT3 (245.0,145.0,10.0),GPOINT (120.0,145.0,10.0), &
GPOINT3 (250.0,145.0,10.0),GPOINT3 (440.0,145.0,10.0),
GPOINT3 (250.0,335.0,10.0),GPOINT (250.0,145.0,10.0) /)

&

poly (1) $nvert=5
poly(l)%$verts=>points (1:5)
poly (2) $nvert=4

poly (2) $verts=>points (6:9)
poly (3) $nvert=4

poly (3) $verts=>points (10:13)

call gDrawPolylineSet3D(3,poly)

3D Arcs

The routines for drawing 3D circular arcs are:
gDrawArcTo3D(xc, yc, zc, Xe, ye, dze, dxt, dyt, dzt)
gDrawArcBy3D(dxc, dyc, dzc, dxe, dye, dze, dxt, dyt, dzt)

All arcs are drawn from the start pen position. The radius of an arc is the distance
from the start point to the centre. The end pen position or any point on the
straight line from the centre through the end point of the arc may be specified.
The end pen position will then be calculated.

In 3-D the direction of the arc is indicated by specifying a “direction vector”. If a
circle or semicircle is being drawn this vector is used to specify the plane in
which the arc lies and the direction in which it has to be drawn.

284

3D DRAWING 3D Arcs

Example:

» To draw a horizontal semicircle from point (1.0,2.0,2.0), centre
(2.0,2.0,3.0) and end point (3.0,2.0,4.0):

Y
4

1.0,2.0,2.0)

X
3-D Semicircle

/* Move to start */ ! Move to start

gMoveTo3D(1.0,2.0,2.0); call gMoveTo3D(1.0,2.0,2.0)
/* Direction vector */ ! Direction vector

dtx = 0.0; dtx = 0.0

dty = 0.0; dty = 0.0

dtz = 10.0; dtz = 10.0

gbrawArcTo3D(2.0,2.0,3.0, call gDrawArcTo3D(2.0,2.0, &

3.0,2.0,4.0,dtx,dty,dtz); 3.0,3.0,2.0,4.0,dtx,dty,dtz)

If the arc to be drawn is not a circle or semicircle, then the start and end point
together with the centre point specify the plane in which the arc is to lie. In this
case the direction vector merely indicates whether a major or minor arc is
required.

285

3D Arcs 3D DRAWING

Example:

» To draw an arc from point (1.0,2.0,2.0) with centre (2.0,2.0,3.0) and end
point on the line from the centre (2.0,3.0,2.0). If the direction vector is
(0.0,-1.0,0.0) then the major arc is drawn and if the direction vector is
(0.0,1.0,0.0) the minor arc is drawn (see below).

gMoveTo3D(1.0,2.0,2.0); call gMoveTo3D(1.0,2.0,2.0)
gbDrawArcTo3D(2.0,2.0,3.0, call gDrawArcTo3D(2.0,2.0,3.0, &
2:,0,3,0,2.0, 0.,0,=1,0,0,0) ¢ 2.0,3.0,2.0, 0.0,-1.0,0.0)
Y
I
z | X
I
3-D Direction Vector (Major arc)
gMoveTo3D(1.0,2.0,2.0); call gMoveTo3D(1.0,2.0,2.0)
gDrawArcTo3D(2.0,2.0,3.0, call gDrawArcTo3D(2.0,2.0,3.0, &
2.0,3.0,2.0, 0.0,1.0,0.0); 2.0,3.0,2.0, 0.0,1.0,0.0)

286

3D DRAWING 3D Arcs

z X
3-D Direction Vector (Minor arc)

The same arcs can be drawn using the gDrawArcBy3D() routine using vector
increments as shown below:

For the major arc:

gMoveTo3D(1.0,2.0,2.0); call gMoveTo3D(1.0,2.0,2.0)
gDrawArcBy3D(1.0,0.0,1.0, call gDrawArcBy3D(1.0,0.0,1.0, &
1.0,1.0,0.0, 0.0,-1.0,0.0); 1.0,1.0,0.0, 0.0,-1.0,0.0)

For the minor arc:

gMoveTo3D(1.0,2.0,2.0); call gMoveTo3D(1.0,2.0,2.0)
gbDrawArcBy3D(1.0,0.0,1.0, call gDrawArcBy3D(1.0,0.0,1.0, &
1.0,1.0,0.0, 0.0,1.0,0.0); 1.0,1.0,0.0,0.0,1.0,0.0)

287

3D Spline Curves 3D DRAWING

Direction Vector

Identical 3D arcs can be obtained using different direction vectors.
For Example:

 The direction vector in the major-arc example above could have been

specified as (0.0,-100.0,0.0) showing that the magnitude is not significant.

* The minor arc could have been produced if the direction vector had been
(0.0,0.0,-10.0) showing the plane is not significant (see below).

z X

3-D Direction Vector

3D Spline Curves

GINO provides two routines to draw a smooth curve through a series of 3D
points using cubic splines:

gDrawSplineTo3D(npts, points3, beg, fin)
gDrawSplineBy3D(npts, points3, beg, fin)

Where points3 is an array of type GPOINTS3 containing the three components
of the point in space.

288

3D DRAWING 3D Spline Curves

An example of a 3D spline curve is shown below, indicating the fitting of a curve
to a 20 point helix.

Spline curve using 20 data points

3D Spline Curve Control

End conditions, increments and tension for 3D spline curves are set in the same
manner as for 2D splines curves (see page 77).

The routines gSetCurveAttribs3D()/gEnqCurveAttribs3D() are used to set and
enquire the end conditions for 3D spline curves. Thus:

gSetCurveAttribs3D(dxbeg, dybeg, dzbeg, dxfin, dyfin, dzfin, xbeg, ybeg,
zbeg, xfin, yfin, zfin)

gEnqCurveAttribs3D(dxbeg, dybeg, dzbeg, dxfin, dyfin, dzfin, xbeg, ybeg,
zbeg, xfin, yfin, zfin)

289

3D Polygons 3D DRAWING

3D Bezier Curves

The Bezier curve routines offer a very different kind of curve control where the
data supplied represents control points rather than points on the curve itself. Two
routines are provided for this kind of curve drawing in 3D:

gDrawBezierTo3D(npts, points3)
gDrawBezierBy3D(npts, points3)

where points3 is an array of type GPOINT3 and npts are the number of control
points stored in the array.

3D Elevation and Reduction

As in the case of 2D Bezier curves, two routines are also provided to elevate and
reduce a 3D Bezier curve definition:

gElevateBezier3D(npts, points3)
gReduceBezier3D(npts, points3)

Users are referred to the section on 2D Bezier curves for additional information
on the usage of all these routines (see page 101)

3D Polygons

The routines for filling 3D polygons are:
gFillPolygonTo3D(fill, line, inv, npts, points3)
gFillPolygonBy3D(fill, line, inv, npts, points3)
gFillPolygonSet3D({ill, line, inv, npol, polygons3)

The routines gFillPolygonTo3D(), and gFillPolygonBy3D() fill a single polygon,
starting at the current pen position, containing npts vertices of either absolute or
relative points of type GPOINT3 in the array of points3.

290

3D DRAWING 3D Polygons

The routine gFillPolygonSet3D() fills a set of npol polygons contained in the
array polygons3 of type GPOLYGON3. Each polygon is self contained without
making reference to the current pen position. An example of filling and using an
array of type GPOLYGON3 is described above with the description of
gDrawPolylineSet3D().

In all three cases, an extra point is added if necessary to ensure the polygon is
closed before filling. The fill style and line style are defined in the same way as
gFillRect(), using fill and line arguments (see page 165).

The argument inv specifies which area is to be filled. When inv=GAREA the
interior of the polygon is filled and when inv=GINVERSE the exterior area up to
the current window limits is filled, leaving the interior empty. If the polygon is
self intersecting, unfilled areas can be created within a polygon.

Overlapping Polygons

GINO applies all the current modelling and viewing transformations to the points
in the polygon or polygon set to create a set of points in 2-D (see page 385). This
polygon set is filled in the same way that a 2-D polygon would be filled.
Therefore, if any parts of the 3-D polygon overlap when viewed using the current
settings, unfilled areas can be created within the filling.

The following example shows two views of the same object displayed using 3-D
polygon filling. In the first view none of the shape’s faces overlap any other, in
the second view overlapping takes place and causes an unfilled area to be created
within the generated 2-D polygon:

291

3D Polygons 3D DRAWING

C code

static GPOINT3 pts[8] =
{80.0, 0.0,60.0, 80.0, 0.0, 0.0,
80.0,80.0, 0.0, 0.0,80.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0,60.0,
0.0,80.0,60.0, 80.0,08.0,60.0};

gbhefinePerspView (665.,405.,90.,-6.65,-4.05,0.,784.);
gGenerateView () ;

gMoveTo3D (pts[7].x,pts[7].y,pts[7].2);
gFillPolygonTo3D (1,0, GAREA, 8, &pts) ;

gSetTransform(-1) ;
gbefinePerspView (475.,405.,475.,-4.75,-4.05,-4.75,784.);
gGenerateView () ;

éMoveToSD(pts[7].x,pts[7].y,pts[7].z);
gFillPolygonTo3D (1,0, GAREA, 8,pts) ;

F90 code

292

3D DRAWING 3D Point Storage

Two views of the same 3-D polygon

The shapes’ edges are added using gMoveTo3D() and gDrawLineTo3D().

Users are referred to the Facet primitive for true 3D polygon display (see page
295).

3D Point Storage

In a similar manner as the 2D drawing routines, all the vertices generated by the
3D drawing routines are stored when point or polygon storage is switched on and
can be used for the definition of polygons or returning to the application. These
facilities are described in the 2D Drawing section of the document (see page

103).

The routine to return all 3 coordinates of the stored points is:
nret=gReturnInternalPoints3D(nn, points3, np, polylines3, npts, npol)

where points3 is an array of type GPOINT3 and polylines3 is an array of type
GPOLYGON3. The arguments nn and np should be set to the size of these
arrays. The arguments npts and npol return the number of points and polylines
that actually exist in the internal workspace which may be more than those
returned if the supplied arrays are not sufficiently large enough. The function
itself returns the actual number of complete polylines that have been placed in

the user supplied arrays.

Further details can be found in the above referenced section of this document.

293

3D Interpolation 3D DRAWING

3D Interpolation

294

GINO provides a facility to interpolate user suppled 3D data or from previously
drawn 3D curves, lines or arcs using the above point storage mechanism. Passing
a single data value with a set of 3D data points, the function
glnterpolateData3D() can return all the intersections using linear interpolation.

The function has the following form:
nint=gInterpolateData3D(nopt, ptint, npts, points3, nptout, ptoutl, ptout2)

where nopt can be GXDATA, GYDATA or GZDATA indicating the
interpretation of the argument ptint, the value to be interpreted. The argument
npts specifies the number of 3D data points supplied in the array points3 (which
is of type GPOINT3) and nptout is the size of the output arrays ptoutl and
ptout2.

The function returns the number of intersection points returned in the arrays
ptoutl and ptout2. Where nopt=GXDATA these arrays will contain Y and Z
values, where nopt=GYDATA they will contain X and Z values and where
nopt=GZDATA they will contain X and Y values respectively. There may be
zero, one or more than one depending on the form of the data, but it will never
exceed nptout even though there may be more intersections possible from the
supplied data.

Chapter

FACETS

Facets Introduction

A facet is a special kind of polygon that can be made subject to the current
lighting and shading environment (see page 325). Without lighting and shading,
the facet is displayed in the current colour as either a filled polygon or its
boundary depending on its fill style. The facets reaction to light is defined in
terms of its material properties which are used instead of its colour when lighting
and shading is enabled (see page 339).

In the same way as a normal polygon, a facet is defined by a set of vertices in 3D
space, but because of its association with lighting and shading the facet should be
defined as either triangular (3 vertices) or quadrilateral (4 vertices). The
primitive is not actually limited to this number or vertices, but in order to be able
to correctly calculate the true effect of light shining on the facet, the vertices
should be planar (i.e. All the vertices lie in one plane), hence the preference for
triangular and quadrilateral facets. It is also often true that graphics hardware is
also tuned to the display of these simpler facets, giving a much improved
performance when objects are limited to them.

In addition to the facet vertices, this primitive can have additional information
associated with the vertices which determine the actual appearance of the facet in
the current lighting and shading environment. These include non-planar normals,
texture coordinates or vertex colours. These are described in the following
sections.

295

Facet Definition FACETS

Facet Definition

In its simplest form, a facet is defined as an array of 3D vertices stored in an
array of structures of type GPOINT3 using the following routine:

gDrawFacet(npts, points, [gNormals, gTextCoords, gColours].)

where points is an array of 3D vertices and npts is the number of vertices in the
array. The arguments gNormals, gTextCoords and gColours are all optional and
are described below.

Facet Faces

Before describing the additional facet forms, it is important to note that unlike
normal polygons, facets have two faces, a front and back face, each of which can
be given different material attributes and therefore appear differently when
viewed from either direction. The order of the vertices as viewed by the viewer is
used to determine which face is which. By default, vertices lying in an
anti-clockwise order are deemed to be showing the front face, and therefore if
you move round to the other side, the vertices will lie in a clockwise order, and
so you will be looking at the back of the facet. This is known as the winding rule.
Therefore the order in which the vertices are passed to the facet drawing routine
are important in determining the ‘structure’ of a single or a group of facets.

Y

v2 v3
vi |
v3 v2
X
Anti-clockwise Clockwise
Front facing Back facing

Facet Faces

296

FACETS

Facet Definition

Note the default winding rule can be reversed when setting up the lighting and
shading environment (see page 325).

Normals

The method used to calculate the correct shade of a facet in any lighting
environment uses the angle that the facet lies in relation to the direction the light
is shining. In actual fact, the underlying mathematics uses a vector which is
perpendicular to the plane of the facet, known as its normal. GINO will
automatically calculate this vector (unless alternative vectors are supplied) based
on the position of the first 2 and last vertices in each facet. This single normal is
called a planar normal because it applies to the whole plane of the facet.

This single vector is sufficient when flat shading is being used or where the facet
represents a flat surface. If, however, curved surfaces are being constructed, and
smooth shading is required, a more accurate definition of the facet is required to
give an accurate visual appearance. Under these circumstances normals need to
be calculated for each vertex by averaging planar normals of adjacent facets and
then supplied to the gDrawFacet() routine in the gNormals optional array
argument.

GINO provides a routine to return the planar normal of a set of vertices that may
then be manipulated as required by the application.

gReturnPlanarNormal(npts, vertices, normal)

where vertices is an array of npts points of type GPOINT3 and the planar
normal is returned similarly in a structure of type GPOINT3. The following
example shows the smoothing of two adjoining facets by averaging their planar
normals:

C Code

/* Averages planar normals for smooth surface */
include <gino-c.h>

GPOINT3 facetl[] = {60.0,30.0,20.0 ,60.0,30.0,10.0 ,20.0,10.0,5.0 1},
facet2[] = {110.0,10.0,5.0 ,60.0,30.0,10.0 ,60.0,30.0,20.0};
GPOINT3 normall (3),normal2(3),nl,n2,na;

main ()

{
gOpenGino () ;
XXXXX () ;

297

Facet Definition

FACETS

298

/*

/*

/*

/*

Get planar normals */
gReturnPlanarNormal (3, facetl,nl);
gReturnPlanarNormal (3, facet2,n2);

Average normal */

na.x=(nl.x + n2.x)/2.0;
na%$y=(nl.y + n2.y)/2.0;
na%z=(nl.z + n2.z)/2.0;

Generate facet with user supplied normals */
normall[0]=na;
normall[l]=na;
normall[2]=nl;

normal2[0]=n2;
normal2[2]=na;
normal2[3]=na;

Draw facets */
gDrawFacet (3, facetl,gNormals,normall,0);
gDrawFacet (3, facet2,gNormals,normal2,0);

gSuspendDevice () ;
gCloseGino () ;

F90 Code

FACETS

Facet Definition

! Draw facets
call gDrawFacet (3, facetl,gNormals=normall)
call gDrawFacet (3, facet2,gNormals=normal2)

call gSuspendDevice
call gCloseGino
stop

end

Averaging Normals

Textured Facet

In addition, or as an alternative, to the lighting effects on a facet, one or more
facets may be ‘covered’ with a texture. This powerful technique can be used to
‘drape’ a predefined image over a series of facets to add a textured appearance to
an object. The image may represent some abstract pattern, some additional 4D
data or a photo realistic image, but in all cases the data is supplied in the same
form as for a pixel image described earlier in this document (see page 189).

In these circumstances, the facet definition may need to define its location in
relation to the image and this is achieved by supplying texture coordinates in the
optional gTextCoord array argument to the gDrawFacet() routine. The texture
mapping facility is fully described later in this document (see page 345).

Coloured Facet

A third type of facet is provided by the GINO library, that is not affected by
lighting or texture mapping. If the gDrawFacet() routine is supplied with specific
colours for each vertex in the optional gColours array, the facet will be drawn
with its interior (or boundary) with graduated colours between those specified.

Therefore, along one edge, if one vertex is specified as red, and the other as
yellow, the edge will be drawn with each displayable point along the edge
changing from red through orange to yellow. The same applies to the interior of
the facet where three or more vertices are defined.

299

Facet Definition FACETS

300

Colours may be supplied as indices in the current colour table or as 24bit RGB
triplets using the gTrueCol() function.

An example of drawing a coloured facet is shown below:

C Code

/* draws coloured facets */
include <gino-c.h>

GPOINT3 facetl[] = {60.0,30.0,20.0 ,60.0,30.0,10.0 ,20.0,10.0,5.0 },
facet2[] = {110.0,10.0,5.0 ,60.0,30.0,10.0 ,60.0,30.0,20.0};

int colsl[] = { 2,4,5 };

int cols2[] = { 7,4,2 };

main ()

{
gOpenGino () ;
XXXXX () 7

/* Set up view */
xeye=60.0;
yeye=300.0;
zeye=100.0;
gDefinePerspView (xeye, yeye,zeye, 0.0, -yeye, -zeye, 800.0) ;
gGenerateView () ;

/* Define smooth shading */
gSetShadingMode (GGOURAUD, 0) ;

/* Draw two coloured facets */
gbrawFacet (3, facetl,gColours,colsl,0) ;
gDrawFacet (3, facet2,gColours,cols2,0);

gSuspendDevice () ;
gCloseGino () ;

F90 Code

! draws coloured facets
use gino_ f90
1

type (GPOINT3) :: facetl(3) = &

(/ GPOINT3(60.0,30.0,20.0),
GPOINT3 (60.0,30.0,10.0),
GPOINT3(20.0,10.0,5.0) /)

type (GPOINT3) :: facet2(3) = &

(/ GPOINT3(110.0,10.0,5.0), &
GPOINT3(60.0,30.0,10.0), &
GPOINT3(60.0,30.0,20.0) /)

integer :: colsl(3) = (/ 2,4,
integer :: cols2(3) = (/ 7,4,

&
&

5 /)
2./)

FACETS

Facet Attributes

call
call

gOpenGino
XXXXX

! Set up view

xeye=
yeye=
zeye=

call
call

60.0

300.0

100.0
gbefinePerspView (xeye, yeye, zeye, 0.0, -yeye, -zeye, 800.0)
gGenerateView

! Define smooth shading

call

! Draw
call
call

call
call
stop
end

gSetShadingMode (GGOURAUD)

two coloured facets
gDrawFacet (3, facetl,gColours=colsl)
gDrawFacet (3, facet2,gColours=cols2)

gSuspendDevice
gCloseGino

Coloured facets

Note that smooth colour graduations between vertices will only occur if
GGOURAUD shading is set in gSetShadingMode().

Facet Attributes
Facet Fill Style

Facets can be drawn in two different styles, either solid filled or a series of lines
linking the vertices (the boundary). This attribute is set using the routine:

gSetFacetFillStyle(fill)

301

Facet Attributes FACETS

302

where fill can be either GSOLID (default) or GHOLLOW. In both cases, the facet
is drawn using the current colour or material properties.

The current facet fill style can be enquired using the following routine:
gEnqFacetFillStyle(fill)

As it is not possible to define a different coloured boundary to that of the centre,
if two such colours are required then the facet needs to be drawn twice with
different colour attributes (but see below).

Facet Offset

Where a facet boundary needs to be displayed as well as its interior, or some
additional detail needs to be added to the ‘surface’ of an object, care needs to be
taken as to the hidden surface mechanism used in GINO. Full details of the depth
buffering technique used to display 3D objects is given later in this document
(see page 327), suffice to say that the default is to only display information that is
nearer to the viewer. This has the effect of removing detail at the same distance
from the viewer (unless the default depth buffering mode is changed) subject to
the accuracy of the Z buffer.

A useful alternative to the modification of the depth buffer, is to specify a
nominal offset to either the facet’s interior or its boundary as necessary. This can
be achieved using the following routine:

gSetFacetOffsetMode(mode)

where mode can be any of the following:

GOFF Switch off all offsets
GBOUNDARYAWAY Shift boundary away from viewer
GINTERIORAWAY Shift interior away from viewer
GINTERIORNEAR Shift interior nearer viewer
GBOUNDARYNEAR Shift boundary nearer viewer

In the simple case of requiring the visibility of both the facet and its boundary,
the boundary can be ‘shifted’ nearer the viewer by setting the offset mode to
GBOUNDARYNEAR. Where additional surface detail is required, possibly
drawn using gDrawPolylineTo3D(), shifting the interior away from the viewer
would be the preferred option (mode = GINTERIORAWAY).

FACETS Facet Attributes

The current facet fill style can be enquired using the following routine:

gEnqFacetOffsetMode(mode)

303

Chapter

3D OBJECTS

3D Obijects Introduction

GINO provides facilities to draw a set of 3D objects which (apart from the
shaded polyline) are generated from facets positioned in 3D space. Such objects
may be used to construct complex models according to the current viewing and
modelling transformations.

Shaded Polyline:
Solid 3D primitives:

* Box

+ Wedge
« Cone

+ Cylinder
* Sphere
* Volume

Surface primitives:

 Spline Surface

 Bezier surface

» Ruled Bezier surface

+ Tabulated Bezier surfaces
« Swept Bezier surface

+ Bezier sphere

» Bezier volume

305

3D Objects Introduction 3D OBJECTS

306

Local Axes System

All objects and surfaces (except those mentioned below) are defined in a local
axes system U,V and W. For 3D primitives these are aligned along the current
X,Y and Z axes, whereas for Bezier surfaces, the U axis is aligned along the
major curve and the V axis is aligned along the extrusion.

All the solid object routines require a set of obligatory arguments to define their
position in 3D space, together with certain dimensions (some of which default to
1.0). Alternative dimensions and orientations are specified using optional
arguments for width, height, depth or radii together with local rotations about the
U, V and or W axes, or as absolute or relative vectors in the local axis system.

Shaded polylines, Spline and Bezier surfaces are fully defined in 3D space by
their data/control points, but the Bezier sphere and volumes of rotation can have
optional local rotations.

Object Complexity

Objects of rotation and surfaces are built up from a number of quadrilateral facets
in each of the U and V axes (representing the circumferential and vertical
dimensions for volumes of rotation). This can be altered using optional
arguments in the appropriate routines to increase or decrease the smoothness of
the object as required. The exception to this is for normal volumes of rotation
where the vertical complexity is determined by the number of points in the
supplied outline.

Object Shading

All 3D objects are shaded according to the current lighting/shading environment
with automatic generation of planar or averaged normals as required by the
current shading mode (see page 325). Objects are drawn using the current facet
attributes (see page 301) and colour or material properties (see page 339).

Object Texture Mapping

Individual objects are assigned texture mapping coordinates in the range 0.0 to
1.0 where texture mapping has been switched on prior to the drawing of the
object (see page 345). This allows the draping of complete image files over each
object with ease. Where images are required to be replicated over one object or to
cover several objects, it is the responsibility of the application writer to generate
appropriate texture coordinates using the texture coordinate generation routines
(see page 349).

3D OBJECTS Shaded Polyline

Shaded Polyline

The shaded polyline is a special 3D object that is fully defined through its
arguments. It is distinct from the normal polyline in that it is subject to the
current lighting, material and texture mapping settings and is distinct from the
other objects in this section in that it is not constructed from facets.

The routine to draw such a polyline is:
gDrawShadedPolylineTo3D(npts, points, normals, [gTextCoords])

where npts are the number of vertices defining the polyline and points and
normals are arrays of type GPOINT3 which define the coordinates and the
normals at each vertex. An optional argument gTextCoords can also be supplied
if texture mapping is to be applied to the polyline.

The shaded polyline is useful where linear detail needs to be added to a scene
with objects and/or surfaces and where the detail needs to respond to the current
lighting conditions. It is important that the correct normals are supplied with this
routine, usually indicating the normals of the associated facets on which the
detail is being added.

Note that all other polylines, polygons and rectangles are drawn with lighting and
texture mapping switched off and thus appear in their specified colour.

3D Primitives

The following sections describe the drawing of each of the solid 3D primitives.

Boxes

Three forms of a box primitive are provided:
gDrawRect3D(xmin, xmax, ymin, ymax, zmin, zmax)

gDrawCube(xc, yc¢, zc, dim, [gURot, gVRot, gWRot, gUComp, gVComp,
gWComp])

gDrawBox(xp, yp, zp, [gUDim, gVDim, gWDim, gURot, gVRot, gWRot,
gUVec, gVVec, gWVec, gAbs, gUComp, gVComp, gWComp])

307

3D Primitives 3D OBJECTS

The gDrawRect3D() routine draws a box whose edges are aligned along the
current axes and does not have a local orientation. The gDrawCube() routine
draws a cube centred at the specified position, whereas gDrawBox() is a
generalised box routine, the dimension and orientation of which can be specified
in one of three different ways.

» Dimensions and rotations — using optional arguments gUDim, gVDim,
gWDim together with optional local rotations set about the U, V or W axes
using arguments gURot, gVRot and gWRot

+ Absolute vectors — using optional arguments gUVec, gVVec, gWVec with
gAbs set to GABSOLUTE

+ Relative vectors — using optional arguments gUVee, gV Vec, gW Vec with
gAbs set to GRELATIVE

Where absolute or relative vectors are used, these must be mutually
perpendicular in order to maintain the cuboid shape.

Each of the obligatory and optional arguments are shown in the figure below.

gVVec

Box Primitive

The optional arguments gUComp, gVComp and gWComp determine the
number of sub-divisions of each face in the U,V or W directions respectively.
The default in each case is 1.

308

3D OBJECTS 3D Primitives

Wedges

A wedge is similar to a box except that one corner is cut between the upper left
and lower right corners as shown below:

gDrawWedge(xp, yp, zp, [gUDim, gVDim, gWDim, gURot, gVRot, gWRot,
gUVec, gVVec, gWVec, gAbs])

gVVec

Wedge Primitive

Cylinders and Cones

Cones and cylinders can be drawn using the following routines:

gDrawCylinder(xp, yp, zp, radius, [gHeight, gURot, gVRot, gWRot,
gVVec, gAbs, gUComp, gVComp])

gDrawCone(xp, yp, zp, radl, rad2, [gHeight, gURot, gVRot, gWRot,
gVVec, gAbs, gUComp, gVComp])

309

3D Primitives

3D OBJECTS

where xp, yp, zp is the centre of the base of each object and the radii are
specified as shown below.

gVRot

e e
AT

'?
/K
i
:-“f
N
Wk

Vi
\
!
N

l

i
s
N
!
N\

A
7

/|

Cone and Cylinder Primitives

Note that the height of either object may be specified using the optional argument
gHeight together with optional local rotations set about the U, V or W axes using
arguments gURot, gVRot and gWRaot, or by using gVVec as an absolute or

relative vector from the object’s origin (i.e. the centre of the base).

The optional arguments gUComp and gVComp determine the number of facets

in the circumferential and vertical directions respectively. In the above figures,
the values of 18 and 3 are used.

Spheres

A simple faceted sphere may be drawn using the following routine:

gDrawSphere(xe, yc, zc, radius, [gURot, gVRot, gWRot, gUComp,
gVComp])

3D OBJECTS 3D Primitives

Where x¢, ye and zc specify the centre position of the sphere as shown below.

Y

[2.
gVRot

Sphere Primitive

The optional angular rotations gURot, gVRot, gWRot, do not affect the visual
appearance of the sphere, but may be used to control the alignment of a texture
map that is added to the surface of the sphere.

The optional arguments gUComp and gVComp determine the number of facets
in the horizontal and vertical directions respectively controlling the smoothness
of the sphere.

Volumes of Rotation
Volumes of rotation can be constructed using the following routine:

gDrawVolume(xp, yp, zp, npts, points, [gV Vec, gAbs, gURot, gVRot,
gWRot, gUComp])

311

Surface Primitives 3D OBJECTS

where xp, yp, zp is the bottom centre of rotation of a set of points in the X-Y
plane.

Volume of Rotation

The axis of rotation by default extends from the base centre vertically upwards in
the Y direction, but this may be altered by specifying an absolute or relative
vector (using gVVec and gAbs) or local axes of rotation (using gURot, gVRot
and/or gWRot).

Surface Primitives

312

Two basic forms of surface primitive are provided for in the GINO library, the
Spline surface and the Bezier surface. The basic difference between the two
forms is the interpretation of the supplied data points. In the same way as the
corresponding curve types, Spline surfaces pass through all the supplied data
points, whereas the Bezier surface only aligns with the supplied data at the start
and end of the surface. The supplied data can therefore be seen as control points
affecting the shape of the surface only.

Both forms of surface are constructed using one or more sets of user supplied 3D
data/control points from which are interpolated a smooth set of points that
represent the interior/edges of the surface.

3D OBJECTS Surface Primitives

In other words, the complexity of the surface is not determined by the number of
points supplied in the data arrays, but the values set in the optional arguments
gUComp and gVComp.

The following sections describe the drawing of each of the surface primitives.

Spline surface

The basic Spline surface is constructed from a grid of 3D data points, with an
optional complexity specification of the final surface:

gDrawSplineSurface(nx, ny, mesh, [gUComp, gVComp])

Where nx and ny are the dimensions of the 2 dimensional array of data points of
type GPOINT3 passed in mesh.

The setting of gUComp and gVComp define the complexity of the surface in
terms of the number of facets generated across the complete surface in each
direction. The values of gUComp and gVComp may however be rounded down
internally as the actual number of facets must be a multiple of the number of data
points so that the surface passes through each of them as supplied. The default
setting for these arguments is 4*(nx-1) and 4*(ny-1) respectively

No end conditions can be set for spline surfaces but special attention is given to
data that is closed in the ‘U’ direction such that a smooth join is automatically
maintained at the junction. The routine gSetSplineTension() can also be used to
control the tension of the spline surface in the same manner as for curves (see
page 100).

313

Surface Primitives 3D OBJECTS

A closed spline surface generated from 25 data points is shown in the figure
below with the code following:

Spline Surface

C Code

#include <math.h>
#include <gino-c.h>

#define NX 5
#define NY 5
#define CLOSED 1

int main ()

{
GDIM paper;
GLIMIT3 viewport = {-100.0,100.0,-100.0,200.0,0.0,5000.0};
GLIMIT limits = {0.0,0.0,0.0,0.0};

/* Define control points */
GPOINT3 pxyz[NX] [NY];

int 1i,3j,ip;
float s,x,y,z;
float spten=0.0;

/* Initialise Gino and Device */
gOpenGino () ;
XXXXX () ;

/* Set up 3D Viewport to fit whole drawing area */
gEngDrawingLimits (&paper, &ip) ;
limits.xmax = paper.xpap;
limits.ymax = paper.ypap;
gSetViewport3D (&viewport, &limits) ;

314

3D OBJECTS Surface Primitives

/* Define View */
gbefinePerspView(100.0,200.0,800.0,-0.1,-0.2,-0.8,1200.0) ;
gUpdateView () ;

/* Compute surface grid */
/* Define the elliptic cylinder - to show the difference a closed
and */
/* open surface choose exact or approximate values of Pi below */
for (i=0; i<NX; i++) {
if (CLOSED)
s = 2.0%3.1415926*1/ (NX-1) ;
else
s = 2.0%3.14*1/ (NY-1);

X sin(s);
z 2.0*cos (s);
for (3=0; J<NY; J++) {

y = -1.0 + 2.0%3/ (NY-1);
pxyz[i][j].x = x*50;
pxyz[i][]J].y = y*50;
pxyz[i][j].z = (z+1.0)*50;

}

/* Set Hollow Fill Style */
gSetFacetFillStyle (GHOLLOW) ;

/* Compute spline surface after setting the spline tension */
gSetSplineTension (spten);
gSetLineColour (GRED) ;
gDrawSplineSurface (NX,NY, (GPOINT3 *)pxyz);

/* Draw control points mesh */

gSetLineColour (GBLACK) ;

gSetLineWidth (1.0);

for (i=0; i<NX; i++) {
gMoveTo3D (pxyz [1]1[0].x,pxyz[1]1[0].y,pxyz[1i]1[0].2);
gDrawPolylineTo3D(NY,pxyz[i]);

}

for (i=0; i<NY; i++) {
gMoveTo3D (pxyz [0] [1].%,pxyz[0] [i].y,pxyz[0][i].z2);
for (j=1; Jj<NX-1; j++)

: gDrawLineTo3D (pxyz[J][i].x,pxyz[J]1[1i].yv,pxyz[J]([i].2);

gFlushGraphics () ;

/* Close down */

gSuspendDevice () ;
gCloseGino () ;

F90 Code

use gino £90
parameter (nx=5,ny=5)

type (GDIM) :: paper

type (GLIMIT3) :: viewport =
GLIMIT3(-100.0,100.0,-100.0,200.0,0.0,5000.0)
type (GLIMIT) :: limits = GLIMIT(0.0,0.0,0.0,0.0)
! Define control points

type (GPOINT3) :: pxyz(nx,ny)

315

Surface Primitives 3D OBJECTS

3D OBJECTS Surface Primitives

Bezier surface

The basic Bezier surface is constructed from a grid of 3D control points, with an
optional complexity specification of the final surface:

gDrawBezierSurface(nx, ny, mesh, [gUComp, gVComp])

Where nx and ny are the dimensions of the 2 dimensional array of control points
of type GPOINT3 passed in mesh.

Y

Bezier Surface

Note that whilst only 16 control points are passed to the gDrawBezierSurface()
routine, the surface consists of 100 (10x10) facets due to the default settings of
gUComp and gVComp. This example is produced using the following code:

C Code

#include <gino-c.h>
#define NX 4
#define NY 4
GDIM paper;
GLIMIT3 viewport
GLIMIT limits

{-200.0,200.0,-200.0,200.0,0.0,1000.0};
{0.0,0.0,0.0,0.0};

317

Surface Primitives 3D OBJECTS

/* Define control points */
GPOINT3 pxyz[NX][NY] = {
0.0, 0.0 0.0,
0

’ 0.0, 0.0, 50.0,
.0, 0.0,100.0, 0.0, O 0

.0,150.

50.0,30.0, 0.0, 50.0,30.0, 50.0,
50.0,30.0,100.0, 50.0,30.0,150.0

75.0,30.0, 0.0, 75.0,30.0, 50.0,
75.0,30.0,100.0, 75.0,30.0,150.0,

-0, 50,

100.0, 0.0, 0.0,100.0,
0, O .0,150.

100. .0,100.0,100.0,

main ()
{

int ip,i,3;

/* Initialize GINO and device */
gOpenGino () ;
XXXXX () ;

/* Set up 3D Viewport to fit whole drawing area */
gEngDrawingLimits (&paper, &ip) ;
limits.xmax=paper.xpap;
limits.ymax=paper.ypap;
gSetViewport3D (&viewport, &limits) ;

/* Define Lighting and shading */
gSetShadingMode (GFLAT, Q) ;
gSetLightSwitch (1,GON) ;

/* Define view */
gbefinePerspView(300.0,300.0,600.0,-0.3,-0.3,-0.6,800.0) ;
gUpdateView () ;

/* Set hollow fill style */
gSetFacetFillStyle (GHOLLOW) ;

/* Set material and draw surface */
gSetMaterialIndex (GDEFAULT, GDEFAULT) ;
gSetLineColour (GBLACK) ;
gbDrawBezierSurface (NX,NY, &pxyz[0] [0]) ;

/* Draw control points mesh */
gSetLineWidth(1.0);
for (i=0; i<NX; i++) {
gMoveTo3D (pxyz [1] [0] .x,pxyz[1] [0] .y, pxyz[1] [0].z);
gDrawPolylineTo3D (NY, pxyz[i]);
}
for (i=0; i<NY; i++) {
gMoveTo3D (pxyz [0] [1].x,pxyz[0] [1].y,pxyz[0][1].z);
for (j=1; J<NX; J++)
gDrawLineTo3D (pxyz[Jj] [1] .x,pxyz [J] [1].y,pxyz[]] [1].2);
}

/* Close down */

gSuspendDevice () ;
gCloseGino() ;

318

3D OBJECTS urface Primitives

F90 Code

Surface Primitives 3D OBJECTS

! Close down
call gSuspendDevice
call gCloseGino
stop
end

Tabulated Bezier surface

The tabulated Bezier surface is generated from a set of 3D control points and a
vector. An intermediate Bezier curve is computed from the control points and the
surface is constructed by extending the curve along the specified vector.

gDrawTabulatedBezierSurface(np, points, vector, [gUComp, gVComp])
Y

Vector

Tabulated Surface

Swept Bezier surface

A swept Bezier surface is similar to the tabulated surface except that the surface
is constructed along the curve computed from a second set of control points:

320

3D OBJECTS Surface Primitives

gDrawSweptBezierSurface(npl, pointsl, np2, points2, [gUComp,
gVComp))

Swept Surface

Ruled Bezier surface

The ruled Bezier surface is also generated from two sets of 3D control points
except that the surface is generated by constructing a grid of patches between

each computed curve. The number of points in each set of control points need not
be the same.

321

Surface Primitives 3D OBJECTS

gDrawRuledBezierSurface(npl, points1, np2, points2, [gUComp,
gVComp))

Ruled Surface

Bezier sphere
A Bezier sphere is internally constructed by rotating a semi-circular Bezier curve

around a central axis. The user needs only to specify the centre, radius and
optionally its complexity and local orientation.

322

3D OBJECTS Surface Primitives

gDrawBezierSphere(xc, yc, zc, radius, [gUComp, gVComp, gURot, gVRot,
gWRot])

[Z.
gVRot

adius
gURot

gWR

Bezier Sphere

Bezier volume

A Bezier volume of rotation is constructed from a user supplied set of 2D control
points rotated round a central axis. The control points are used to generate a
smooth Bezier curve which is rotated about a vector (0.0,1.0,0.0) starting at the
position specified in xp,yp,zp. The optional arguments can be used to alter the
complexity and local orientation.

323

Surface Primitives

3D OBJECTS

gDrawBezier Volume(xp, yp, zp ,npts, points, [gURot, gVRot, gWRot,
gUComp, gVcomp])

VY

Vs

Bezier Volume

324

Chapter

LIGHTING AND SHADING

Lighting and Shading Introduction

The routine that sets up the lighting and shading environment is:
gSetShadingMode(mode, [gCulling, gBlending, gWinding])

which also sets up other lighting parameters as described below.

Shading

By default shading is switched off, under which circumstances objects are
displayed in their defined colour, ignoring any lights and not sorted according to
their distance from the viewer. Therefore new objects will hide objects already on
the display if they occupy the same space.

When shading is switched on, objects further away from the viewer are
automatically hidden from those closer. This is also known as depth buffering
(see below) in which data is only placed on the output device if it represents an
object which is closer to the view point than the data already displayed at that
point. At the same time, the correct colour of the object is calculated using the
current lighting and the objects material properties.

325

Lighting and Shading Introduction LIGHTING AND SHADING

326

This shading can be performed in a number of different ways, requiring different
amount of processing, and giving different levels of realism.

+ Flat shading (mode = GFLAT) uses a single facet normal to calculate the
lighting values of each facet.

* Smooth or Gouraud shading (mode = GGOURAUD) uses normals at each
vertex if available and can give much smoother surfaces as long as the
correct data is supplied with the facets.

* Phong shading (mode = GPHONG) gives the best results as this method
interpolates normals at each pixel of each facet and is only available on
certain systems.

To take full advantage of lighting and shading facilities, it is advisable to use the
facet primitive, as these primitives contain all the necessary material attributes to
calculate their correct appearance under different lighting conditions (see page
295).

Culling

One of the features of a facet is that it has a front and back face which allows
different material properties to be defined for the inside and the outside of objects
using a single ‘skin’. However, it is obviously more expensive, in computing
terms, to calculate the lighting values on both sides of every facet. It is possible
therefore to save time by ignoring either all of the front or all of the back facing
facets using the optional argument gCulling to the gSetShadingMode() routine.

This feature is useful if the scene is composed of solid objects and you are never
interested in the inside or back of these objects.

Blending

Where any of the 3D objects in a scene are required to be transparent, using the
appropriate material property, it is necessary to enable an additional shading
function called blending. This adds another level of complexity to the lighting
calculation as the colours of existing pixels need to be multiplied by the new
objects colour to obtain the correct values. This feature is switched on using the
optional argument gBlending to gSetShadingMode().

LIGHTING AND SHADING Depth Buffering

Winding Rule

By default, GINO interprets the coordinates of facets and polygons such that
vertices defined in an anti-clockwise order are understood to be facing the
viewer. Conversely, where vertices are defined as being in an anti-clockwise
order as seen from the current viewing point, the surface is interpreted as facing
away from the viewer. This is known as the facet winding and can be reversed
using the optional argument gWinding argument where an application requires
its vertices to be interpreted in the opposite way.

Shading Enquiry
The current lighting and shading settings may be enquired using the routine:
gEnqShadingMode(att)

where att is a structure of type GSHADING which contains the four aspects of
the lighting and shading environment.

Depth Buffering

Once the depth buffer has been enabled using one of the shading modes
described above, the decision to display an object is based on two things. 1) The
distance of the object in relation to other objects already on the screen or window
and 2) the logical depth test to be applied. By default these are calculated as
follows:

The distance of an object from the viewer is mapped on to a value between 0.0
and 1.0 which represents the total range of the viewing volume as set up by
gSetViewport3D(). Therefore objects at the back of the volume (i.e. furthest
away from the viewer) are said to have a depth of 1.0 and objects closes to the
viewer are said to have a depth of 0.0. When the screen or window is cleared the
depth buffer is set to 1.0 for each pixel. Whenever a new object is displayed, its
distance from the viewer is mapped onto the depth range (0.0 to 1.0) and for each
pixel, if the depth is less than the depth in the depth buffer, the pixel is displayed
and the buffer is updated. Otherwise if the depth is greater than or equal to the
value in the depth buffer the pixel is not displayed (because it is deemed to
behind an existing object).

327

Depth Buffering LIGHTING AND SHADING

328

In most systems, this depth range (0.0 to 1.0) is further mapped onto a 32bit or 16
bit integer to speed up the calculation and so there are in fact only 2**16 or
2*#*32 different depth values that can be tested against. This trade off of
performance against accuracy enhances the importance of the correct setting of
the viewing volume as set up by gSetViewport3D(), because too large a range
will decrease the accuracy of the depth buffering algorithms. This can result in
small objects which lie in front of existing objects not being displayed because
their depth (as a 16/32bit integer) is calculated as being the same as the existing
object.

It is possible to change these default settings using the following routine:
gSetDepthMode(mode,dinit)

where mode is the test that is applied to each pixel to be displayed, against the
value in the depth buffer. The list of possible modes is given in the table below,
together with its normal setting of the depth buffer initial value, dinit:

Mode Initial Value
GNEVER n/a
GLESSTHAN (default) 1.0
GLESSTHANOREQUALTO 1.0
GEQUALTO As required
GNOTEQUALTO As required
GGREATERTHANOREQUALTO 0.0
GGREATERTHAN 0.0
GALWAYS n/a

As explained above, the default mode is GLESSTHAN and most of the
alternative settings would only be required when special effects are required.
Setting the mode to GLESSTHANOREQUAL can be useful for adding detail
onto the surface of an existing object as this sets the logical test so that pixels less
than or equal to the existing objects are still displayed. However this technique
depends on the accuracy of the Z range set in the current 3D viewport (see also
gSetFacetOffsetMode() for an alternative method).

Note that the depth buffer is only initialized to the value set in dinit when the
screen is next cleared (gNewDrawing()) and mode is activated when
gSetShadingMode() is next called.

LIGHTING AND SHADING Lighting

The current depth buffer mode settings can be enquired using the following
routine:

gEnqDepthMode(mode,dinit)

where the arguments return the values last set by gSetDepthMode() or the default
ones.

Lighting

Light exists in three forms, ambient, diffuse and specular, and objects will absorb
or reflect different amounts of these different kinds of light giving a different
visual appearance.

Ambient light is background light that doesn’t have a particular source and is
shining in all directions.

Diffuse light has a particular source and is reflected off a surface evenly. A
surface will be brighter if it lies perpendicular to the direction of the light source.

Specular light is also directional, but it is reflected sharply in a particular
direction. A surface will be brighter if the angle of the surface reflects the light
source towards the viewer.

Thus, in a simple example, a blue object is one which reflects blue ambient and
diffuse light, and is shiny if it reflects specular light.

In the real world, things are a little more complex, with objects reflecting some
kinds of light and absorbing others, letting some colours pass through all together
(transparency) or even emitting light. All of these features will be dealt with later
when an object’s material properties are described (see page 339).

Light Sources

GINO provides a single routine that is used to define up to 8 independent light
sources of 4 different types:

gDefineLightSource(light, colour, ...)

where light is the light number (1-8) and colour is the colour of the light source
(which may be defined in terms of a colour index number or a 24bit RGB triplet
(see page 205)). The setting of additional optional arguments to this routine
define the different types of light source.

329

Lighting LIGHTING AND SHADING

Ambient light

With no extra arguments, the type of light defined is an ambient light, ie. one that
has no specific source or direction.

For example:

amb=gTrueCol (0.3,0.3,0.3); amb=gTrueCol (0.3,0.3,0.3)
gDefineLightSource (1, amb,0) ; call gDefineLightSource (1, amb)

defines light number one to be an ambient light with 30% white light.

Directional Light

Adding a direction vector using the optional argument gDir, specifies a
directional light source. This is one where the source of light is said to be an
infinite distance away in the direction of the vector specified. The rays of light
are parallel to each other travelling from the source along the vector (in the
opposite direction to the vector itself). A directional light source will only
illuminate the side of objects in some way facing the light source, which in any
one scene will always be the same side.

For example:

GPOINT3 vector = {100.0,0.0,0.0); type (GPOINT3) :: vector = &
GPOINT3(100.0,0.0,0.0)
gDefineLightSource (1,5, call gDefineLightSource (1,5, &
gbir,vector,0); gbir=vector)

specifies a green directional light source at an infinite distance away along the X
axis which will illuminate the right hand side of all objects in a scene..

Point Light Source

Adding a 3D coordinate using the optional argument gPos, specifies a point light
source at the specified position. Here the light is said to radiate out in all
directions from the position of the light source and will therefore illuminate all
objects with sides facing this position.

For example:

330

LIGHTING AND SHADING Lighting

GPOINT3 pos = {10.0,10.0,-10.0); type (GPOINT3) :: pos = &
GPOINT3(10.0,10.0,-10.0)
gbefineLightSource (1,10, call gDefineLightSource (1,10, &
gPos,pos,0) ; gPos=pos)

specifies a white light located at (10.0,10.0,-10.0), which will illuminate all
object surrounding this position.

A point light may also have two additional attenuation factors gAttenl and
gAtten2, which specify its constant and linear attenuation over distance from its
source. These factors affect the light’s strength according to the following
formulae:

Attenuation factor = 1.0 / (gAttenl + distance * gAtten2)

Unless specified otherwise, gAttenl = 1.0 and gAtten2 = 0.0 which implies full
strength and no fade over distance.

Spot Light

A spot light is one which has a narrower focus than a point light, and so needs
both the gPos (to specify its position) and gDir (to specify its direction) optional
arguments. Two additional optional arguments specify the concentration and
spread angle of the spot light.

gPos,

N\

gSpread

gDir

Spot light definition

331

Lighting LIGHTING AND SHADING
For example:
GPOINT3 pos = {0.0,0.0,10.0), type (GPOINT3) :: &
dir = (0.0,0.0,-1.0); pos = GPOINT3(0.0,0.0,10.0),&
dir = GPOINT3(0.0,0.0,-1.0)
gbefineLightSource (1,10, call gDefineLightSource (1,10, &
gbPos,pos,gbir,dir, gPos=pos,gbhir=dir, &
gConc,100.0,gSpread=40.0,0) ; gConc,100.0,gSpread, 40.0)

332

specifies a point light source at (0.0,0.0,10.0) shining along the Z axis. The
concentration is set at 100% which is at full strength and the spread angle of the
light source is set at 40 degrees. This means that there is no light emanating from
this source outside a notional cone with a 40% internal angle.

Specular Light Component

Under normal circumstances, ambient lights emit ambient light whilst directional,
point and spot lights emit diffuse light. It is possible, however, to add a specular
colour component to any light source using the optional argument gSpec. This
may be necessary to define a light source which contains high levels of specular
light, for instance in a spot light.

Light Switch

In order to light up a scene, it is not enough to simply specify the required light
sources. They have to be switched on as well! The routine to control the state of
each of the defined light sources is:

gSetLightSwitch(light,switch)

where light is the number and switch may be GON or GOFF. Note that, by
default, all lights are switched off, so all objects will appear black until at least
one light is switched on.

Default Lights

When GINO is initialised, two light sources are predefined. These may simply be
switched on using gSetLightSwitch() or re-defined using gDefineLightSource().
The two lights are:

Lightl: A white ambient light

Light2: A white directional light shining from 0.0,0.0,ZMAX

LIGHTING AND SHADING Lighting

Light Source Enquiry

The complete set of attributes of any of the eight lights sources, including their
state, may be enquired using the routine:

gEnqLightAttribs(light,attribs)
where light is the light number and attribs is a structure of type GLITATT.

Light Usage

An example using material and lighting is shown below:

C Code

#include <gino-c.h>

GDIM paper;

GLIMIT3 picture = {0.0,300.0,0.0,200.0,-1600.0,1600.0};

GLIMIT viewport = {0.0,1.0,0.0,1.0};

GPOINT3 position = {0.0,500.0,100.0};

GPOINT3 direction = {0.0,-0.6,-1.0};

GMATATT material2;

GPOINT3 table[4] = {400.0,-25.0,-200.0, -400.0,-25.0,-200.0,
-400.0,-25.0,2000.0, 400.0,-25.0,2000.0};

#1if defined (MWIN) || defined (WOGL)
int PASCAL WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR lpszCmdParam, int nCmdShow)
felse
int main ()
#endif
{
int ip;
gOpenGino () ;
gWogl (hInstance, hPrevInstance) ;

/* Set up viewport */

gEngDrawingLimits (&paper, &ip) ;
picture.xmax=paper.xpap;
picture.ymax=paper.ypap;
viewport.xmax=paper.xpap;
viewport.ymax=paper.ypap;
gSetViewport3D (&picture, &viewport) ;

/* Define view */

gDefineSphericalView(-50.0,50.0,100.0,350.0,0.5,-0.5,-1.0,200.0) ;
gUpdateView () ;

/* Define lights */

gSetShadingMode (GGOURAUD, gCulling, GRACK, 0) ;

gbefineLightSource (2, GWHITE, gPos,position,gbir,direction,
gConc,80.0,gSpread, 100.0,0) ;

gSetLightSwitch (1, GON) ;

gSetLightSwitch (2, GON) ;

333

Lighting LIGHTING AND SHADING

/* Define material */

material2.ambient=0.3;
material2.diffuse=0.6;
material2.specular=1.0;
material2.shine=80.0;
material2.trans=1.0;
gbefineMaterial (2, &material?2) ;

/* Plot table */

gSetMateriallIndex(1,1);
gSetMaterialColour (gTrueCol (0.0,0.5,0.0),0);
gDrawFacet (4, table,0) ;

/* Plot reds */

gSetMaterialIndex (2,0);

gSetMaterialColour (GRED, 0) ;

gDrawSphere (0.0,0.0,0.0,30.0,gUComp, 25, gVComp, 25,0) ;
gbrawSphere (-60.0,0.0,0.0,30.0,gUComp, 25, gVComp, 25, 0) ;
gDrawSphere (-120.0,0.0,0.0,30.0, gUComp, 25, gVComp, 25,0) ;
gDrawSphere (60.0,0.0,0.0,30.0,gUComp, 25, gVComp, 25, 0) ;
gDrawSphere (120.0,0.0,0.0,30.0,gUComp, 25, gVComp, 25, 0) ;
gDrawSphere (-90.0,0.0,52.0,30.0,gUComp, 25, gVComp, 25,0) ;
gDrawSphere (-30.0,0.0,52.0,30.0,gUComp, 25, gVComp, 25,0) ;
gbrawSphere (30.0,0.0,52.0,30.0,gUComp, 25, gVComp, 25, 0) ;
gDrawSphere (90.0,0.0,52.0,30.0,gUComp, 25, gVComp, 25, 0) ;
gDrawSphere (-60.0,0.0,104.0,30.0, gUComp, 25, gVComp, 25,0) ;
gDrawSphere (60.0,0.0,104.0,30.0,gUComp, 25, gVComp, 25,0) ;
gDrawSphere (0.0,0.0,104.0,30.0,gUComp, 25, gVComp, 25, 0) ;
gDrawSphere (-30.0,0.0,156.0,30.0,gUComp, 25, gVComp, 25,0) ;
gDrawSphere (30.0,0.0,156.0,30.0,gUComp, 25, gVComp, 25, 0) ;
gDrawSphere (0.0,0.0,208.0,30.0,gUComp, 25, gVComp, 25, 0) ;

0
0
0
0

/* Plot pink */

gSetMaterialColour (gTrueCol (1.0,0.8,0.8),0);
gDrawSphere (0.0,0.0,268.0,30.0,gUComp, 25, gVComp, 25, 0) ;

/* Plot black */

gSetMaterialColour (GBLACK, Q) ;
gDrawSphere (0.0,0.0,-60.0,30.0,gUComp, 25, gVComp, 25, 0) ;

/* Plot blue */

gSetMaterialColour (GBLUE, Q) ;
gDrawSphere (0.0,0.0,460.0,30.0,gUComp, 25, gVComp, 25, 0) ;

/* Close down */

gSuspendDevice () ;
gCloseGino();

F90 Code

Program snooker
use gino f£90
type (GDIM) paper

334

LIGHTING AND SHADING

Lighting LIGHTING AND SHADING

call gDrawSphere (30.0,0.0,156.0,30.0,gUComp=25, gVComp=25)
call gDrawSphere(0.0,0.0,208.0,30.0,gUComp=25, gVComp=25)

! Plot pink

call gSetMaterialColour (gTrueCol (1.0,0.8,0.8),0)
call gDrawSphere(0.0,0.0,268.0,30.0,gUComp=25, gVComp=25)

! Plot black

call gSetMaterialColour (GBLACK, 0)
call gDrawSphere(0.0,0.0,-60.0,30.0,gUComp=25, gVComp=25)

! Plot blue

call gSetMaterialColour (GBLUE, 0)
call gDrawSphere(0.0,0.0,460.0,30.0,gUComp=25, gVComp=25)

! Close down
call gSuspendDevice
call gCloseGino
stop
end

Snooker Balls

It should also be noted that, increasing the number of lights that are used (i.e.
switched on), increases the time taken to calculate the correct colour of the
objects being displayed.

336

LIGHTING AND SHADING Fog

Fog

Fog simulation is available on devices that provide 3D lighting and shading
facilities and can be useful for added visual realism in a scene. This special effect
mixes a user defined colour into the scene based on the distance from the viewer
that each object is drawn. The same routine can either add the colour based
linearly on the distance from the viewer (which is essentially depth-cueing), or
more realistically on an exponential function of the distance.

The routine to define the required fog attributes is:
gDefineFog(mode, colour, [gStart,gEnd,gDensity])
where mode can be one of:

* GNONE - No fog simulation

* GLINEAR - Linear fade used for depth-cueing

* GEXP1 - Exponential fade used for simulating cloud or heavy fog

» GEXP2 - Exponential fade used for simulating smoke or weather haze

For most fog applications, the fog colour would be white, although any colour
can be used, passed either as a colour index or a 24bit RGB triplet.

The optional arguments to the gDefineFog() routine specify the arguments to
various fog modes.

The GLINEAR fog mode can be used for depth-cueing, where objects are
obscured according to their distance from the viewer. In this mode the start and
end distances (gStart and gEnd) specify the viewing range over which the fog
should be applied. For example, in a perspective view drawn within a viewing
volume with a depth of 1000.0, specifying start and end values of 500.0 and
1000.0 will cause the fog to start half way through the volume and be at full
density (i.e. the fog colour) at the back of the viewing volume.

337

Fog LIGHTING AND SHADING

For GEXP1 and GEXP2 fog modes, the gDensity setting controls the exponential
calculations. Density values of around 0.0025 give realistic effects.

Adding Fog to a Scene
Fog Enquiry
The current fog settings can be enquired using the routine:

gEnqFog(attribs)

where attribs is a structure of type GFOGATT containing values that are the
default settings or those set by the last call to gDefineFog().

338

Chapter

MATERIAL PROPERTIES

Material Properties Introduction

The facet primitive and all objects built up of facets (cubes, cylinder, bezier
surfaces etc.) may use the current drawing colour to define their colour, but in
order to fully describe their appearance under different lighting conditions, a
facet has a material property.

In its full form, a material property describes the facets reaction to the different
types of light described in the previous chapter, namely ambient, diffuse and
specular. In addition to this, a material may be defined as having a certain level
of translucence (i.e. allowing light to pass through it), or even emit light itself.
Due to the complexity of specifying material properties, GINO provides a
number of levels of definition so that lighting effects can be quickly introduced
as well as providing sophisticated facilities for photo realistic effects.

It should be remembered that unlike other primitives, a facet has two surfaces, a
front and back and different material properties can be assigned to each.

Material Property Definition

Three different levels of material definition are provided by GINO, each with
increasing sophistication and complexity. These are described in the following
sections.

339

Material Property Definition MATERIAL PROPERTIES

340

Colour Matching

The simplest way of defining the colour of facets (and objects) is to use the
current line colour (gSetLineColour()) to automatically set both the ambient and
diffuse material properties of the surface. This is in fact the default state of
material definition and so no special calls are needed if this method is required.

Under these circumstances, facets (and objects) appear in a shade of the specified
colour according to the angle of the light(s) shining on the surface. If no lights
are switched on, the facets will appear in the colour selected without shading.

To return to this mode from a different material mode, the following use of the
routine gSetMateriallndex() is required:

gSetMaterialIndex (GOFF,GOFF) ; call gSetMaterialIndex (GOFF, GOFF)

Material Table

The second alternative is to use a material table to define a set of material
properties that can be used for many facets or objects independently of their
actual colour. Therefore if a scene has many objects of different colours but made
of the same ‘substance’, a single table entry would be defined to represent that
material. Examples include matt or shiny surfaces.

The material table stores coefficients of ambient, diffuse and specular light,
which are multiplied by the object colour to give the actual material properties of
the facets when drawn. The material table can contain up to 256 entries defining
different material types. Each entry is set using the routine:

gDefineMaterial(mat, rep)

where mat is the material table index and rep is a structure of type GMATATT
containing the material table attributes.

When GINO is initialized, three entries of the table are set to the following
values:

mat ambient diffuse specular shine trans description
1 0.3 0.6 0.0 30.0 1.0 normal
2 0.3 0.6 1.0 30.0 1.0 plastic
3 0.3 0.6 1.0 100.0 1.0 shiny

MATERIAL PROPERTIES Material Property Definition

The settings for any entry in the material table may be enquired through the
routine:

gEnqMaterial(mat, rep)

Material Index and Colour
The current material coefficients are set using the following routine:
gSetMateriallndex(fmat,bmat)

where fmat and bmat are the material table indices required for all the front and
back faces of subsequently drawn facets.

The current facet material colour is then set using the routine:
gSetMaterialColour(fcol, beol)

where feol and beol are the required colour setting for all the front and back
faces. These may be indices into GINO’s colour table or 24-bit true colour values
returned through the function gTrueCol()(see page 205).

Example:

Two special cases of material index values to the routine gSetMateriallndex()
should be noted. If either fmat or bmat are negative, the current index setting for
the front or back face (as appropriate) is not changed. If the back face material
index, bmat is set to GOFF, then no lighting calculations are performed on the
back facing surfaces. This operation is separate from the culling of back faces
performed by gSetShadingMode(), but by applying the two together can
dramatically improve performance on some graphics cards if back faces are not
required in a scene.

The current material index and colour settings are returned using the following
routine:

gEnqMaterialAttribs(fcol,bcol,fmat,bmat)

where fcol and bcol are the current material colours for the front and back faces
and fmat and bmat are the current material table indices.

This method is sufficient for the majority of lighting scenes, but does not provide
for objects that reflect different colours of ambient and diffuse light, or objects
that emit light.

341

Translucence MATERIAL PROPERTIES

Facet Material Properties

The final method sets the current material property in terms of the actual colours
required for all the possible attributes including emission. This is achieved using
the routine:

gSetFacetMaterialProps(side, amb, diff, spec, emit, shine, trans)

where side is either GFRONT or GBACK, representing the facet face being
defined. The arguments amb, diff, spec and emit are all integer colour values
which may be indices into GINO’s colour table or 24-bit true colour values
returned through the function gTrueCol(). The materials shininess is set as a
percentage using shine and its translucence, in the range 0.0 to 1.0, is set in
trans.

This method overrides the use of the material table as the setting routine
gSetFacetMaterialProps() sets the material properties directly.

The current facet material properties can be enquired using the routine:

gEnqFacetMaterialProps(side, amb, diff, spec, emit, shine, trans)

Translucence

One of the material properties of facets that can be defined in conjunction with its
reflectivity and shininess, is its translucence. A solid object is said to be opaque
(trans=1.0) if you cannot see any object through it and transparent (trans=0.0) if
you can see right through it. In reality, glass and Perspex objects have varying
levels of translucence which can be emulated using this property of the material
being defined. However, it is important to note that translucence is only correctly
calculated if blending is switched on in the gSetShadingMode() routine.

Shadows

342

Simple (planar) shadows can be generated with the aid of the two following
routines:

gCreatePlanarShadowMatrix(plane,light,matrix)
gModifyView(matrix)

where plane is a set of three (GPOINT3) points representing the plane on which
the shadow is to be drawn, light is the position of the light source and matrix is a
16 element (4x4) array containing a modification to the current view.

MATERIAL PROPERTIES Shadows

The steps required to generate a shadow of one or more objects on a planar
surface are as follows:

1) Switch the depth mode to be GLESSTHANOREQUAL. This is required
because the shadow needs to be drawn at the same depth as a surface object on
which it lies and must not be omitted from the depth buffer.

2) Define a suitable (black) shadow material. GMATSTY(0.0,0.0,0.0,0.0,0.8)
defines one which has no colour components and a little transparency. Remember
to switch blending on if you want the transparency to be realised.

3) Set up the lighting conditions and draw the required surface and objects.

4) Set up the shadow matrix and modify the current view using the above
routines.

5) Redraw the objects using the shadow material for each of them.

The source of GINO Example program 10 shows the generation of shadows
whilst moving the light source and/or spinning the objects.

343

Chapter

TEXTURE MAPPING

Texture Mapping Introduction

Texture mapping is the ‘draping’ of images over objects and is used to give
objects texture or to map complex pictures over a multi-faceted surface. The
process is achieved by mapping the pixels of a pixel array onto the pixels of
either a single facet (polygon) or a set of facets. More and more graphics cards
now provide hardware facilities to do texture mapping, so the process can be
relatively quick although on the older or more basic hardware the addition of
textures will dramatically slow down an application.

Texture mapping is not the same as ray-tracing which is another technique to map
images onto a surface. Ray tracing is however limited to mapping images onto a
surface after it has been transformed onto a 2D plane where as texture mapping is
done at the 3D level and is therefore much more useful to 3D scenes.

Texture Mapping Modes

Texture data can be ‘draped’ over an object in two different ways, either to
replace or merge with other details of the surface. The required mode is selected
using the routines:

gSetTextureMappingMode(mode, ...)

where mode can be one of the following:

345

Texture Mapping Data TEXTURE MAPPING

* GOFF - switch texture mapping off (the default state).

*+ GOVERLAY - where the texture is placed directly on the surface with no
modification.

* GMODULATE - where the texture is merged with the colour of the
surface. This is used where you want to merge a texture with the defined
colour (and lighting effects) of an object.

* GBLEND - where the texture is merged with the object’s colour (as above)
and a constant blend colour.

The remaining optional arguments to gSetTextureMappingMode() are described
below (see page 354).

Texture Mapping Data

346

GINO uses the same pixel data that is used for the display of 2D images for
texture mapping, i.e. an integer array containing colour index values or 24 bit
packed RGB values (see page 205). These can be generated within an application
or read into an appropriately sized integer array from a BMP or JPEG files using

gGetlmageFile(type, file, coldef, offset, collim, xgrid, ygrid, npix, pixbuf)

This routine should be used in conjunction with gEnqlmageFile() to check the
image type and dimensions of the external file being read, as well as defining any
colour mapping that is required (see page 73).

It should be noted however, that it is usually not possible to use any sized pixel
array for texture mapping. In order for the process to be as efficient as possible,
texture mapping software requires the texture map to be dimensioned in terms of
a power of 2 (up to a total limit of the equivalent of 1024x1024 pixels). The
image doesn’t have to be square, but it has to be a power of 2 in both directions.
e.g. 8x16, 64x64, 512x256 or 2048x512.

The texture map may contain an additional optional border of 1 pixel around each
edge increasing the image size by 2 pixels in each direction. Thus a 64x64 pixel
image becomes 66x66. The border is used for the correct tiling of large images
(see page 349) or where a separate repeated colour is used when the image is
smaller than the object it is being draped over (see page 354).

Once the data has been read into memory, the pixel array is assigned to be the
current texture map using the following routine:

gDefineTexture(level, xgrid, ygrid, border, nbyte, pixbuf)

TEXTURE MAPPING Texture Mapping Data

where level is the level of a possible multi-level texture map (see page 348),
xgrid and ygrid define the dimensions of the pixel array with the data itself
passed in the integer array pixbuf. The argument border is set to GON of GOFF
depending on whether the image has an extra border of 1 pixel around each edge.

The value of nbyte should be set to the number of relevant bytes in the pixel data
that are to be used for the texture map. The following table illustrates the possible

settings:
nbyte Bits 31-24 Bits 23-16 Bits 15-8 Bits 7-0
1 1 Luminance
2 1 Alpha Luminance
3 (default) 1 Red Green Blue
4 Alpha OR 1 Red Green Blue

Note that byte values of 1 and 2 are only relevant to texture modes
GMODULATE and GBLEND and byte values of 3 and 4 are only relevant to
texture modes GMODULATE and GOVERLAY. Where colour indices or data
returned from gGetlmageFile() are used for texture maps, nbyte should be set to
3. Other values can only be used where the texture map data is manually
constructed or special significance is to be interpreted into data read from
alternative sources. In all these cases bit 24 of the texture map data should be set
to 1.

The following code shows the steps required to read in a texture image and
assign a texture mapping mode:

C Code

include <gino-c.h>
int *image;

int type,xgrid, ygrid,nbpp,ncols,nn;
/* Initialize GINO and device */

gOpenGino () ;

XXXXX ()7

/* Enquire image file dimensions */
gEngImageFile ("ball.ico”, &type, &xgrid, &ygrid, &nbpp, &ncols) ;

/* Allocate memory for image file */
nn = xgrid*ygrid;
image = malloc (nn * sizeof (int));
if (image != NULL) {

/* Read in image file */

gGetImageFile (type, “ball.ico”,1,0,0,
&xgrid, &ygrid, nn, image) ;

347

Texture Mapping Data TEXTURE MAPPING

/* Assign image to texture map */
gDefineTexture (0, xgrid, ygrid, GOFF, 3, image) ;

/* Define Texture mapping mode */
gSetTextureMappingMode (GOVERLAY, 0) ;

F90 Code

use gino £90
integer, dimension(:), allocatable :: image

! Initialize GINO and device
call gOpenGino
call xxXXXX

! Enquire image file dimensions
call gEngImageFile(’ball.ico’,itype,ixgrid,iygrid, nbpp,ncols)

Allocate memory for image file
nn = ixgrid*iygrid
allocate (image(l:nn),stat=ier)
if (ier.eq.0) then

! Read in image file
call gGetImageFile(itype,’ball.ico’,1,0,0, &
ixgrid,iygrid, nn, image)

Assign image to texture map
call gDefineTexture (0, ixgrid,iygrid, GOFF, 3, image)

Define Texture mapping mode
call gSetTextureMappingMode (GOVERLAY)

end if

Note that while a texture map is currently defined and either GOVERLAY,
GMODULATE or GBLEND modes are current, texture mapping is applied to
every object (apart from hardware text) that is subsequently drawn. Users should
therefore switch off texture mapping when objects are required to be drawn
without texture mapping applied.

Multiple Texture Maps

GINO provides a facility to define multiple texture map images for an object or
objects, so that when the object is viewed from a distance, a less detailed texture
map may be applied. This feature can give improved image quality and save
display time at the expense of greater memory usage. These are known as
mipmapped textures.

348

TEXTURE MAPPING Texture Mapping Coordinates

In addition to the ‘primary’ texture (level = 0) a series of secondary images need
to be supplied (level = 1, 2, etc.) with each one a power of 2 smaller in each
dimension. Thus if the primary image was 256x128 pixels, the second image
would be 128x64 and the third 64x32 and so on down to a Ix1 image to complete
all the necessary levels.

The mechanism used to determine which image is used when, is controlled by the
routine gSetTextureMappingMode() described below.

Tiling Images

Where a texture map, larger than that supported by GINO is required, it is
necessary to divide the object and texture image into sections so that the larger
object can be dealt with. Taking a simple example of a large flat surface requiring
a texture map of 2048x2048 pixels. It is necessary to divide both the surface and
the texture map into four quarters and deal with each one in turn.

In order to correctly blend the four images together in 3D space, it is also
advisable to add a border to each quarter image, representing the adjacent row or
column from the adjoining image. Where the border represents the border of the
complete image, the last row/column can be repeated in the border for
consistency.

Texture Mapping Coordinates

Irrespective of the dimensions of the texture map data in terms of pixels, the
currently assigned array is given an arbitrary range of 1 unit by 1 unit in what are
known as’ texture coordinates’. Thus the width of the texture map has a range of
0.0 to 1.0 in a locally horizontal direction (referred to as S), and the height of the
texture map in pixels is mapped onto a range of 0.0 to 1.0 in a locally vertical
direction (referred to as T). Note that the origin (0.0,0.0) of a pixel image is in
the top left corner.

In order to map this texture data onto a surface or object, the surface or object is
also assigned texture coordinates (in addition to its physical, 3D space
coordinates and its surface normals (if these are used)). Under normal
circumstances, these surface or object texture coordinates would also lie in the
range 0.0 to 1.0, but this is not obligatory (see page 354). However when the
image and the surface has texture coordinates lying in the range 0.0 to 1.0 there is
obviously a simple 1:1 mapping.

349

Texture Mapping Coordinates TEXTURE MAPPING

350

An important consideration in the assignment of texture coordinates to any
object, is the possible distortion of the texture map. Mapping a square texture
onto an object twice as high as it is wide will obviously distort the image if the
default range of 0.0 to 1.0 is assigned in both directions.

If an appropriately dimensioned image is not available, texture coordinates
should be assigned to maintain the aspect ratio of the image that is available. This
may mean the setting of texture coordinates that do not extend to the whole range
of 0.0 to 1.0 thus omitting parts of the image, or setting of coordinates that go
outside the range, with the decision as to whether the image is repeated or
clamped (see page 354).

The allocation of texture coordinates for an object can be done in one of two
ways.

+ Direct assignment with object definition

» Automatic generation using a transformation of the objects’ physical
coordinates or some other arbitrary system

Direct Assignment

Texture coordinates can be assigned to facets when they are defined using the
optional texture coordinate data, gTextCoords, in the routine gDrawFacet(). The
data is supplied in an array of type GPOINT3, but only the X and Y coordinates
are currently used for mapping the current texture map.

The following code (added to the previous example) defines a rectangle with
texture coordinates in the range 0.0 to 2.0 vertically and 0.0 to 2.5 horizontally.
This means that, by default, the image will be repeated twice vertically and two
and a half times across the rectangle (see Repeating and Clamping Images
below).

C Code

GPOINT3 rect[4] = { 0.0, 0.0,0.0, 75.0, 0.0,0.0,
75.0,60.0,0.0, 0.0,60.0,0.0};
GPOINT3 text[4] = { 0.0, 2.0,0.0, 2.5, 2.0,0.0,
2.5, 0.0,0.0, 0.0, 0.0,0.0};

/* Draw facet with texture coordinates */
gDrawFacet (4, rect,gTextCoords, text,0) ;

TEXTURE MAPPING Texture Mapping Coordinates

F90 Code
type (GPOINT3) :: rect(4) = (/ &
GPOINT3(0.0, 0.0,0.0), GPOINT3(75.0, 0.0,0.0), &
GPOINT3(75.0,60.0,0.0), GPOINT3(0.0,60.0,0.0) /)
type (GPOINT3) :: text(4) = (/ &
GPOINT3(0.0, 2.0,0.0), GPOINT3(2.5, 2.0,0.0), &
GPOINT3(2.5, 0.0,0.0), GPOINT3(0.0, 0.0,0.0) /)

! Draw facet with texture coordinates
call gDrawFacet (4, rect,gTextCoords=text)

Note that the vertices start at the bottom left corner, going anti-clockwise, whilst
the origin of the texture coordinates are at the top left corner. This rectangle
could be viewed from any angle with the texture map correctly adjusted to fit the
skewed surface.

Texture Map

Automatic Generation

The alternative method is to automatically generate texture coordinates by
transforming the objects physical coordinates. The current generation method is
set up and enquired using the following routines:

gSetTextureCoordGeneration(mode,|[gSVec, gTVec])
gEnqTextureCoordGeneration(mode,[gSVec, gTVec])

where mode is the coordinate generation mode and may be one of the following:

351

Texture Mapping Coordinates TEXTURE MAPPING

* GOFF - switch texture coordinate generation off (default)
* GOBIJECT - use object coordinates

* GSPHERICAL - coordinates are generated in a sphere around the viewing
position

The optional arguments gSVec and gT Vec are structures of type GTEXVEC
containing the required modes and multiplication factors to be applied to the
objects coordinates when GOBJECT mode is used. Each argument is used to
automatically calculate the horizontal (S) and vertical (T) texture coordinates
respectively for every vertex of the object based on its transformed (GPICTURE)
or untransformed (GSPACE) coordinates.

S = svec.xfactor * x + svec.yfactor * y + svec.zfactor * z + svec.wfactor * w
T = tvec.xfactor * x + tvec.yfactor * y + tvec.zfactor * z + tvec.wfactor * w

Therefore, to calculate texture coordinates based on a scale factor of 1/30 of the
rectangles untransformed coordinates, the following code is used:

Replacing the above additions with the code below gives the same result.

C Code
GPOINT3 rect[4] = { 0.0, 0.0,0.0, 75.0, 0.0,0.0,
75.0,60.0,0.0, 0.0,60.0,0.0};
GTEXVEC svec = {GSPACE, 0.033, 0.0, 0.0, 0.0},
tvec = {GSPACE, 0.0, -0.033, 0.0, 0.0} ;

/* Define automatic texture coordinate generation */
gSetTextureCoordGeneration (GOBJECT, gSVec=&svec,glVec=&tvec,0) ;

/* Draw facet*/
gDrawFacet (4, rect,0) ;

F90 Code
type (GPOINT3) :: rect(4) = (/ &
GPOINT3(0.0, 0.0,0.0), GPOINT3(75.0, 0.0,0.0 &
GPOINT3(75.0,60.0,0.0), GPOINT3(0.0,60.0,0.0) /)
type (GTEXVEC) :: svec = GTEXVEC (GSPACE,O. 033,0 0,0.0,0.0)
type (GTEXVEC) :: tvec = GTEXVEC (GSPACE,0.0,-0.033,0.0,0.0)

! Define automatic texture coordinate generation
call gSetTextureCoordGeneration (GOBJECT,gSVec, svec,gTVec, tvec)

! Draw facet
call gDrawFacet (4, rect)

352

TEXTURE MAPPING Texture Mapping Coordinates

There are several things to note from this example.

Firstly, the value 0.033 represents 1/30 which is the factor needed to scale the
object coordinates so that the vertices map to whole integer values. Thus the
bottom left vertex (at 0,0) has a texture coordinate of (0.0,0.0) and the top right
vertex (at 75,60) has a texture coordinate of (2.5,-2.0). By default the image is
repeated, so the image lies on the rectangle correctly.

Secondly, the value of -0.033 used to calculate the vertical (T) texture coordinate,
is negative to ensure the image is the right way up. Remember that image
coordinates start at the top left and Y +ve is downwards, so the texture
coordinates at the bottom of the rectangle should be higher than the texture
coordinates at the top of the rectangle.

A combination of transformed or untransformed generated coordinates may be
used, by the appropriate setting of gSVee and/or gT Vec. In addition, if either
transformation vector is omitted, the corresponding coordinate is taken from
those directly assigned using the gTextCoords argument to gDrawFacet().

Environment Mapping

The texture generation mode GSPHERICAL can be used to wrap the image of a
scene over one of more objects to give the impression that they reflect the
environment in which they lie. In other words, it can be used to display a series
of objects which appear as is they were perfectly reflective of their surroundings.

In order to correctly use this mode, it is necessary to have an appropriate texture
map which ideally should be one taken by a camera with an extremely wide angle
(fish-eye) lens.

3D Objects

In order to ease the task of ‘draping’ textures over GINO’s standard 3D objects,
texture coordinates in the range of 0.0 to 1.0 are automatically generated for each
complete primitive if a texture mapping mode has been set prior to drawing the
object. If a different set of texture coordinates is required, then these must be
generated by calling gSetTextureCoordGeneration() before the object is drawn.

353

Texture Mapping Attributes TEXTURE MAPPING

Texture Mapping Attributes

In most cases the default texture mapping attributes will be sufficient for the
majority of users. However, some finer controls may be needed by some
applications in which case the optional arguments to the routine
gSetTextureMappingMode() can be used, the full description of which is:

gSetTextureMappingMode(mode, [gBlendCol, gWraps, gWrapt, gMaxfil,
gMinfil, gBorderCol])

The attributes are described in the following sections:

Blending Textures

The optional argument gBlendCol is used in conjunction with GBLEND texture
mapping mode to set a texture environment colour. This can be used for cloud
textures where the constant colour would be off-white.

Repeating and Clamping Images

The arguments gWraps and gWrapt control the effects of supplying or
calculating texture coordinates outside the range 0.0 to 1.0 in the horizontal (S)
and vertical (T) directions respectively. By default, if the texture coordinate range
exceeds these limits, then the image is automatically repeated over the object in
both directions. By setting either gWraps and/or gWraps to GCLAMP the image
is clamped to limits of the texture map. In this case the texture border colour (see
below) is extended to the limits of the facet in the clamped direction.

Modifying the call to gSetTextureMappingMode() in the above example shows
the effect of clamping in the horizontal (S) direction:

C Code

gSetTextureMappingMode (GOVERLAY, gWraps, GCLAMP, 0) ;

F90 Code

call gSetTextureMappingMode (GOVERLAY, gWraps=GCLAMP)

354

TEXTURE MAPPING Texture Mapping Attributes

Clamping a Texture

Filtering Textures

It is fairly obvious that the process of displaying textures over any object
involves a decision as to which pixel of the texture map (or texel) is placed at
which pixel of the screen in relation to the position of the object. This will almost
never be a one-to-one mapping as some form of enlargement or reduction will
almost always be required. The process of selecting which pixel is used is called
filtering.

The optional arguments gMaxfil and gMinfil control the selection of which texel
is displayed when this enlargement or reduction, respectively, occurs. By default
both filters are set to GNEAREST which means that the texel with its centre
nearest the required pixel is displayed. This option is quick but can result in
aliasing artifacts in the image.

The alternative option, GLINEAR uses a weighted average of a 2x2 square of
texels that lie nearest the screen pixel, often giving much improved results. Note
that the 2x2 square will include texels that lie outside the actual texture map
when dealing with the edges. When the texture map is repeated (gWraps or
gWrapt = GREPEAT), the 2x2 square includes texels from the opposite edge of
the texture map, whereas when the texture map is clamped (gWraps or gWrapt
= GCLAMP), the 2x2 square includes the border colour as described below.

Changing the filters to GLINEAR in the previous example (without setting a

border colour) causes the clamped edge to be merged with the default
background grey causing the following effect:

355

Texture Mapping Attributes TEXTURE MAPPING

C Code
gSetTextureMappingMode (GOVERLAY, gWraps, GCLAMP,
gMaxfil, GLINEAR,gMinfil=GLINEAR,O) ;
F90 Code

call gSetTextureMappingMode (GOVERLAY, gWraps=GCLAMP, &
gMaxfil=GLINEAR, gMinfil=GLINEAR)

Use of GLINEAR Filter

Where a texture map has additional mipmaps supplied with it (see Multiple
Texture Maps above), four additional options for gMinfil are used to determine
which mipmap and which texel is used when reducing the texture map to wrap
ever smaller copies of the object. These are:

* GNEARESTNEAREST - Nearest mipmap using nearest texel filter
+ GNEARESTLINEAR - Nearest mipmap using linear texel filter

* GLINEARNEAREST - Linear interpolated mipmap using nearest texel
filter

+ GLINEARLINEAR- Linear interpolated mipmap using linear texel filter

The smoothest results are obtained using the GLINEARLINEAR method, but at
the expense of greater computational requirements.

Note that all mipmaps are ignored if gMinfil is set to GNEAREST or GLINEAR.

356

TEXTURE MAPPING Texture Mapping Attributes

Texture Border Colour

When a texture map is clamped and the reduction or enlargement texture filter is
set to GLINEAR, or linear texel filtering is used with mipmaps, the weighted
linear average of 2x2 texels will include texels outside the actual texture map
when calculating values at the edges. In these cases the border colour of the
texture map is significant in these calculations.

The border colour is set in one of two ways; either the texture map can have an
extra row/column of pixels along all its four edges (see page 346), or a fixed
colour can be assigned using the optional argument gBorderCol to the routine
gSetTextureMappingMode(). This value may be a colour index or a 24bit RGB
triplet returned from the gTrueCol() function.

Setting the border colour to white in the above example gives the following
effect:

C Code

gSetTextureMappingMode (GOVERLAY, gWraps, GCLAMP,
gMaxfil, GLINEAR,gMinfil=GLINEAR, gBorderCol=GWHITE,0) ;

F90 Code

call gSetTextureMappingMode (GOVERLAY, gWraps=GCLAMP, &
gMaxfil=GLINEAR,gMinfil=GLINEAR, gBorderCol=GWHITE)

Texture Border Colour

357

Texture Mapping Enquiry TEXTURE MAPPING

Texture Mapping Enquiry

358

The current setting of the texture mapping mode and all its attributes can be
enquired using the routine:

gEnqTextureMappingMode(attribs)

where attribs is a structure of type GTEXATT containing the current texture
mode and each of the elements described above.

Chapter

3D TRANSFORMATIONS

3D Transformations Introduction

As with 2D, routines are also provided in GINO to enable 3D geometric
transformations: shift, rotate, scale and shear to be applied to definitions of lines
and objects. These are commonly called modelling transformations as they are
used to position and/or place various components of a complex model.

Modelling transformations are distinct from defining the overall ‘view’ of the
mode which might apply perspective or non-perspective transformations (see
page 385).

When a transformation routine is called, a new axis system (termed ‘space axes’)
is created and subsequent drawing and positioning coordinates are considered in
relation to this new axis system. When transformations are being combined, each
transformation is relative to the axis system set up by the previous
transformation.

To apply transformation to an object, the transformation routines must be called
before the drawing routines. Once a transformation routine is called, the
transformation that has been set up affects all subsequent drawing. Transforming
can be switched on or off at any stage in a program or can be reset or modified
(see page 371).

Great care should be exercised when using compounded transformations. Users
are recommended to avoid mixing 2-D and 3-D routines, as this leaves the
Z-plane undefined.

359

Simple 3D Transformations 3D TRANSFORMATIONS

To illustrate transformations a routine man(), which defines a gingerbread man, is
used. The original axes are drawn as solid lines and denoted X and Y. The space
axes set up as a result of the transformations are denoted in the diagrams by X1,
Y1 and Z1 and are shown as dashed lines.

Current Transformation

When using transformations, each point drawn is operated on by the total
combined effect of previously called transformation routines. This effect is
termed the current transformation. It is updated each time a transformation
routine is called. A mathematical explanation of the transformation mechanism is
given in Technical Information.

Simple 3D Transformations

3D Shifting

360

Shifting specifies the vector increments through which the origin is shifted from
the origin of the previous axis system.

Shifting enables objects to be repositioned anywhere in the drawing area. The
routine for shifting is:

gShift3D(dx, dy, dz)

For example - to draw an object shifted by 50.0mm in the X direction, 30.0mm in
the Y direction and 60.0mm in the Z direction:

gShift3D(50.0,30.0,60.0); call gShift3D(50.0,30.0,60.0)
object () ; call object

3D Rotation

The routine for 3-D rotation is:
gRotate3D(axis, angle)

The first argument specifies the axis about which the other two are rotated. The
angle is specified in degrees and positive rotation is as shown below. (This is
best remembered using the right-hand rule as follows. Holding out your right
hand, palm towards you and the thumb extended, your thumb points in the
direction of positive X, your fingers in positive Y, and your palm pushes along
positive Z).

3D TRANSFORMATIONS Simple 3D Transformations

Example:

3-D Right-hand rule

« To draw a gingerbread man rotated through 120° about the X axis:

/* Rotate XY plane about X axis*/ ! Rotate XY plane about X axis
gRotate3D (GXAXIS,120.0); call gRotate3D(GXAXIS,120.0)
man () ; call man

» Then negatively rotate about the Y axis by 10°. Note the new Y axis is

where the original Z axis was before any transformations (compare the
examples in the figure below):

gRotate3D (GYAXIS,-10.0); call gRotate3D(GYAXIS,-10.0)
man () ; call man

361

Simple 3D Transformations 3D TRANSFORMATIONS

X, X1

Rotation

Permutating the Axes

The user can specify the axes which are to be vertical and horizontal. The
routine is:

gSetViewAxis(nh, nv)
The arguments specify which two axes are to be horizontal and vertical.
Example:

 To specify that the Z axis is to be horizontal and the Y axis is to be vertical:

gSetViewAxis (GZAXIS, GYAXIS); call gSetViewAxis (GZAXIS, GYAXIS)

362

3D TRANSFORMATIONS Simple 3D Transformations

The resulting axis system is shown below:

N

\

\

\

\

\

\

\
v
N

\
\
\
\
\
\
\
v
Y
Modified Axis system

The position of the third axis is such that a right-handed system is preserved.
3D Scaling

The routine for scaling is:
gScale3D(sx, sy, sz)

The arguments specify the amount by which the axes are to be scaled. Values of
greater than 1.0 give magnification and values between 0.0 and 1.0 give
reduction. If one or more arguments are negative, then a mirror image is
produced.

Examples:

« To draw a gingerbread man uniformly scaled by 0.5 in all directions:

/* Scale all axes */ ! Scale all axes
gScale3D(0.5,0.5,0.5); call gScale3D(0.5,0.5,0.5)
man () ; call man

363

Combining 3D Transformations 3D TRANSFORMATIONS

« To draw a fat gingerbread man scaled in X by 2:

gScale3D(2.0,1.0,1.0); call gScale3D(2.0,1.0,1.0)
man () ; call man
3D Shearing

The routine for shearing is:

gShear3D(dep, dir, a)
The value of dep and dir can be GXAXIS, GYAXIS or GZAXIS where dep
indicates which of the X,Y or Z axes is to be sheared (the dependent axis)

parallel to the axis dir, the third axis being unaffected.

The argument a gives the tangent of the angle through which the axis dep is
sheared.

Example:

« To draw a sheared gingerbread man such that the shear factor is 1.0 along
the X axis parallel to the Y axis:

gShear3D (GXAXIS,GYAXIS,1.0); call gShear3D(GXAXIS,GYAXIS,1.0)
man () ; call man

Combining 3D Transformations

364

Using the Same 3D Transformation Type

When combining transformations of the same type, the general result is not
dependent on the order in which the routines are called.

Example:
gScale3D(10.0,10.0,10.0); call gScale3D(10.0,10.0,10.0)
gScale3D(3.0,3.0,3.0); call gScale3D(3.0,3.0,3.0)

3D TRANSFORMATIONS Combining 3D Transformations

has the same effect as:

gScale3D(3.0,3.0,3.0); call gScale3D(3.0,3.0,3.0)
gScale3D(10.0,10.0,10.0); call gScale3D(10.0,10.0,10.0)

The above sequence of routines is equivalent to a single call to the routine with
an arguments of 30.0, i.e. the combined effect is obtained by multiplying the
arguments. In the case of transformation routines other than the scale routines,
the cumulative effect is obtained by adding the arguments.

Example:

gRotate3D (GXAXIS, alpha) ;

call gRotate3D (GXAXIS,alpha)
gRotate3D (GXAXIS, beta);

call gRotate3D (GXAXIS,beta)

is equivalent to:

gRotate3D (GXAXIS, alphatbeta) ; call gRotate3D (GXAXIS,alpha+beta)

Combining 3-D Rotations

3-D rotations about different axes are the exception to the above generalization.

Example:

gRotate3D (GXAXIS, 70.0) ;

call gRotate3D (GXAXIS,70.0)
man () ;

call man

365

Combining 3D Transformations 3D TRANSFORMATIONS

70°
X, X1
Z1
/* Make man edge on */ ! Make man edge on
gRotate3D (GXAXIS,20.0); call gRotate3D(GXAXIS,20.0)
/* Rotate through Y 90 degrees */ ! Rotate through Y 90 degrees
gRotate3D (GYAXIS, 90.0) ; call gRotate3D (GYAXIS, 90.0)
gRotate3D (GXAXIS,-10.0); call gRotate3D(GXAXIS,-10.0)
man () ; call man
A
X2
0
i
f
Y2 o » 72
whereas:
gRotate3D (GYAXIS, 70.0) ; call gRotate3D (GYAXIS,70.0)
man () ; call man

366

3D TRANSFORMATIONS Combining 3D Transformations

Y, Y1

=
=

—
cooC

X
X1 Z1
/* Make man sideways on */ ! Make man sideways on
gRotate3D (GYAXIS,20.0); call gRotate3D(GYAXIS,20.0)
/* Rotate though X 90 degrees */ ! Rotate though X 90 degrees
gRotate3D (GXAXIS, 90.0) ; call gRotate3D (GXAXIS, 90.0)
gRotate3D (GYAXIS,10.0); call gRotate3D(GYAXIS,10.0)
man () ; call man

[
[
|
[
:

2

Using Different 3D Transformation Types

When combining transformations of different types, the effect obtained depends
on the order in which the routines are called. Examples are shown in the chapter
on 2D Transformations which show the principles that apply (see page 227).
Again, the order in which transformations should be used to set up
straightforward effects is:

Shift

367

3D Transformation Enquiry 3D TRANSFORMATIONS

Rotate

Scale

3D Transformation Enquiry

Finding the Current Drawing Position

The position of the pen at any given time can be described in terms of its
coordinates relative to the origin of the drawing area; these are termed ‘picture
coordinates’. The pen position can also be given in terms of its coordinates
relative to the current local axis system; these are the space coordinates. In
general, objects are specified in terms of space coordinates and are drawn in
terms of picture coordinates; that is space coordinates are transformed into
picture coordinates.

At any stage in a program, the pen position can be obtained (in either picture or
space coordinates) by using one of the following routines:

gEnqPicturePos(point)
gEnqSpacePos(point)

Each of which returns a structure of type GPOINT3 structure, the elements of
which are set to the current X,Y,Z coordinates expressed in current units.

3D Untransforming

The space coordinates of any point of which the picture coordinates are known,
can be obtained using routine:

gUntransformPoint3D(xp, yp, zp, point)

where all elements of point are set to zero if the transformation contains
perspective.

The routine gUntransformHomogPoint3D() is provided to convert from
four-dimensional homogeneous coordinates to space coordinates:

gUntransformHomogPoint3D(xh, yh, zh, wh, point)

Homogeneous coordinates are normally obtained by calling
gTransformHomogPoint3D(). They are related to picture coordinates in the
following way:

368

3D TRANSFORMATIONS 3D Transformation Enquiry

xp = xh/wh
yp = yh/wh
zp = zh/wh

If the current transformation contains perspective,
gUntransformHomogPoint3D() checks to see that the supplied position is
consistent with the transformation and if not, outputs a warning message.

Point Testing of Current 3D Transformation

The routine gTransformPoint3D() enables the user to see what would happen to a
point if it were subject to the current transformation.

gTransformPoint3D(xs, ys, zs, point)

transforms the space coordinate position (xs, ys, zs) into picture coordinates and
returns the value of the picture coordinates in (point.x, point.y, point.z).

In the case where no current transformation exists, (xs, ys, zs) and (point.x,
point.y, point.z) will have the same value.

When a perspective transformation is current, gTransformPoint3D() may not
always be able to produce a valid result and in this case it would output GINO
warning 15 - point lies behind the eye plane and does not transform.
gTransformHomogPoint3D() is provided to cater for this sort of situation:

gTransformHomogPoint3D(xs, ys, zs, point, wh)

The transformed position is returned in four-dimensional homogeneous
coordinates which are related to picture coordinates in the following way:

xp = xh/wh
yp = yh/wh
zp = zh/wh

The relationship obviously breaks down when wh = 0.0. This occurs when the
point lies on the eye plane. When wh is less than zero, the point lies behind the
eye plane. In both cases, the point (xs,ys,zs) does not project onto the view plane
in any meaningful way. Note that wh = 1.0 when the point lies on the view plane.

369

Chapter

TRANSFORMATION CONTROL

Transformation Control Introduction

To enable transformations to be used effectively and to facilitate the organization
of programs using them, routines are provided for:

« Setting transformation modes
» Switching transformations off and on
+ Reinitializing

+ Saving and re-using transformation sequences

View Transform Mode

GINO will, by default, use the most efficient method of defining the required
transformation state to the currently nominated device. On 3D devices, this
means that transformation and viewing information will be passed to the device
allowing 3D Space coordinates to be handled directly through the devices 3D
pipeline. On 2D devices, 3D Space coordinates are transformed through the
current transformation, viewing and viewport settings to 2D Device Coordinates
through the GINO pipeline (see page 36).

There may be instances where an application may wish to use a consistent
method across 2D and 3D devices or switch off the 3D hardware pipeline for a
particular operation. Two routines are provided to set and enquire the current
view transform mode:

gSetViewTransformMode(mode)

gEnqViewTransformMode(mode)

371

Transformation State TRANSFORMATION CONTROL

where mode is either GHARDWARE or GSOFTWARE as appropriate. It is
obviously not possible to switch 2D devices to use a hardware view transform
mode.

Transformation State

372

The current transformation state can be switched off and on again by using the
routine:

gSetTransform(sw)

When sw is GOFF or GRESET, transformations previously set up have no effect
on subsequent drawing. If sw is GOFF, the state of the current transformation is
preserved and can be restored by a call to gSetTransform(GON). The ability to
switch transformations off enables items, such as the title of a drawing, to be
positioned directly on the drawing area, i.e. in terms of the original (picture)
axes.

Transformations are automatically switched off when a device nomination
routine is called. They are switched on by the first transformation routine that is
executed after a device has been nominated or when transformations have been
switched off.

Reinitializing

The current transformation may be reset to its original, null state by calling
gSetTransform() with sw=GINIT or GRESET. Until another transformation is set
up, (after a call to gSetTransform(GINIT)) subsequent drawing is operated on by
a null transformation. However, it is more efficient to draw with transforming
switched off, although the result is the same.

For example the following program draws the picture shown in the figure below
and illustrates the use of the transformation control routines:

TRANSFORMATION CONTROL Transformation State

C code

#include <gino-c.h>
main ()
{

void box (void) ;

gOpenGino () ;

/* Nominate device */
XXXXX () 7
gNewDrawing () ;
gShift2D(10.0,30.0) ;
gScale2D(4.0,-2.0);

/* Draw walls */
box () ;

/* Reinitialize */
gSetTransform (GRESET) ;

/* Draw roof */
gbDrawLineTo2D(30.0,40.0);
gDrawLineTo2D(50.0,30.0);
gShift2D(30.0,20.0) ;
gScale2D(0.5,0.5);

/* Draw LH window */
box () ;

/* Shift in scaled system */
gShift2D(20.0,0.0) ;

/* Draw RH window */
box () ;

/* Reinitialize */
gSetTransform (GINIT) ;
gShift2D(15.0,10.0) ;
gScale2D(1.0,1.5);

/* Draw door */
box () ;

/* Select picture axes */
gSetTransform (GOFF) ;
gMoveTo2D(10.0,5.0) ;
gDisplayStr ("HOUSE”) ;

/* Select space axes - ie. (shift (15.0,10.0),

scale (1.0,1.5)) */
gSetTransform (GON) ;
gScale2D(0.5,0.5);
gShift2D(40.0,100.0/3.0) ;

/* Draw chimney */
box () ;

gCloseGino () ;
}

void box (void)

{

GLIMIT rect = {0.0,10.0,0.0,10.0) };
gFillRect (-1,0, &rect);

}

373

Transformation State TRANSFORMATION CONTROL

F90 code

374

TRANSFORMATION CONTROL Transformations Matrix Control

HOUSE

Transformations Matrix Control

The data representing the current transformation is held internally as an array
which can be copied, reset and modified using the following sets of routines:

gPushTransform()

gPopTransform()

gSaveTransform()

gRestoreTransform()

gGetTransform2D()

gSetTransform2D()
gModifyTransform2D()

gGetTransform3D()

gSetTransform3D()
gModifyTransform3D()

Routines from different sets are not compatible with each other, e.g.
gPopTransform() can only restore the effect saved by gPushTransform().

375

Transformations Matrix Control TRANSFORMATION CONTROL

376

Push and Pop Transformation Matrix

These routines provide the easiest and most convenient way of saving and
restoring a sequence of transformations.

gPushTransform()
gPopTransform()

The routine gPushTransform() has no effect on the current transformation itself;
thus copies made in this way are stored internally. Up to ten different
transformation sequences can be held simultaneously by successive calls to
gPushTransform(). A sequence that has been saved using gPushTransform() is
retrieved by a matching call to gPopTransform(). This causes the current
transformation to be reset and the saved copy to be removed; thus each copy can
only be used once.

It is only possible to restore copies in the order in which they were saved. In
addition to saving and restoring transformations, gPushTransform() and
gPopTransform() can be used on entry to, and exit from, a routine in which
transformations are used locally. This ensures that the state of the current
transformation in the calling program is unchanged by the routine.

Saving and Restoring Transformation Matrix

The routines gSaveTransform()/gRestoreTransform() make a copy (in an internal
storage area) of the total state of transformation.

gSaveTransform()
gRestoreTransform()

That is the space axis system together with the indication of whether or not it is
current. Since the picture axis system never changes, the information saved by
gSaveTransform() is sufficient to enable gRestoreTransform() to reset the state at
a subsequent point in the program. Any modifications made by calling a
transformation routine or by calling gSetTransform() between the call to
gSaveTransform() and the call to gRestoreTransform() will be lost when
gRestoreTransform() is called. Only one copy of the axis system may be stored,
and so a call to gSaveTransform() will overwrite information stored by any
previous calls to the routine.

TRANSFORMATION CONTROL Transformations Matrix Control

Getting and Setting Transformation Matrix

gGetTransform2D(a)
gGetTransform3D(b)
gSetTransform2D(a)
gSetTransform3D(b)

These routines perform the same routine as gPushTransform() and
gPopTransform(), but give the user more control. The basic difference is that
sequences of transformations are saved by gGetTransform2D() and
gGetTransform3D() in user arrays, instead of in internal GINO arrays. In 2-D
applications only the part of the array representing the current transformation is
used. Any number of transformation sequences can be stored by giving different
structures as arguments. These may be recalled any number of times and in any
order using gSetTransform2D() or gSetTransform3D(), which set the current
transformation (or part of it) to the state represented by the specified array.

Modify Transformation Matrix

gModifyTransform2D(a)
gModifyTransform3D(b)

Using these routines, transformation matrices that have been saved by
gGetTransform2D() and gGetTransform3D() can be updated instead of replaced.

For example - the following statements show how gSetTransform2D() and

gModifyTransform2D() can be used to reproduce an effect (saved in structure t)
in different circumstances:

377

Transformation Matrix Building

TRANSFORMATION CONTROL

#include <gino-c.h>

/*

/*

/*

/*

/*

/*

/*

GMAT2D t;

gSetCharTransformMode (GSOFT) ;
Set up effect */
gScale2D(3.0,3.0);
gShear2D (GYAXIS,0.5);
Save effect */
gGetTransform2D (&t) ;
Switch transformation off */
gSetTransform (GOFF) ;
gMoveTo2D (15.0,30.0) ;
Restore */
gSetTransform2D (&t) ;
gDisplayStr (“PUSH”) ;
Reinitialize */
gSetTransform (GINIT) ;
Apply transformations */
gShift2D(45.0,10.0);
gScalez2D(-1.0,1.0);

Add effect */
gModifyTransform2D (&t) ;
gMoveTo2D(0.0,0.0) ;
gbisplayStr (“PULL”) ;

use gino £90
type (GMAT2D) :: t

gSetCharTransformMode (GSOFT)

! Set up effect
gScale2D(3.0,3.0)
gShear2D (GYAXIS,0.5)

! Save effect
gGetTransform2D (t)

! Switch transformation off
gSetTransform (GOFF)
gMoveTo2D (15.0,30.0)

! Restore
gSetTransform2D (t)
gDisplayStr (‘PUSH')

! Reinitialize
gSetTransform (GINIT)

! Apply transformations
gShift2D(45.0,10.0)
gScale2D(-1.0,1.0)

! Add effect
gModifyTransform2D (t)
gMoveTo2D (0.0,0.0)
gDhisplayStr (‘PULL’)

PUSH
AN

Transformation Matrix Building

378

The following routines are available for creating and storing transformation
sequences without affecting the current transformation set up.

gBuildMatrix2D(x0, y0, dx, dy, angle, sx, sy, t)

gBuildMatrix3D(x0, y0, z0, dx, dy, dz, angx, angy, angz, sx, sy, Sz, t)

gCombineMatrix2D(a, x0, y0, dx, dy, angle, sx, sy, t)

gCombineMatrix3D(a, x0, y0, z0, dx, dy, dz, angx, angy, angz, sx, sy, Sz, t)

TRANSFORMATION CONTROL Transformation Matrix Building

The routines gBuildMatrix2D() and gBuildMatrix3D() create a new
transformation matrix as a combination of scaling factors, a rotation and
translation in that order about a fixed point. The variables determining these
values are as follows :

2D Matrix 3D Matrix
Scaling Factors: SX,Sy SX,SY,SZ
Rotation: angle angx,angy,angz
Translation: dx,dy dx,dy,dz
Fixed Point: x0,y0 x0,y0,z0

The routines gBuildMatrix2D() and gBuildMatrix3D() create a new
transformation matrix and return it as t.

An existing transformation matrix array may have further transformations applied
to it using the routines gCombineMatrix2D() and gCombineMatrix3D(). A
combination of a shift followed by the application of scaling factors and a
rotation about a fixed point may be combined with the input matrix array.

The existing transformation matrix is passed to the routines
gCombineMatrix2D() and gCombineMatrix3D() as the parameter a. The new
transformations are combined with a in accordance with the current
transformation mode (as set gSetTransformMode()), the resulting transformations
are returned as t.

The resulting sequence, stored in the transformation matrix array t, may be
implemented using gSetTransform2D() or gSetTransform3D() depending on
whether two or three dimensions are used.

Example showing Building and Combining Transformation matrices

The following program outputs the shape of a house as shown previously by
calling the routine ‘house’ three times, the first without any transformations, the
second with a shift and rotation, and the third with a scale, shift and rotation. The
routine ‘house’ draws a house of width 400.0 and height 300.0 with the origin at
the bottom left-hand corner.

C code

#include <gino-c.h>
main ()

{

void house (int number) ;
GMAT2D a,t;

379

Transformation Matrix Building TRANSFORMATION CONTROL

/* Build first transformation in a */
gBuildMatrix2D(0.,0.,350.,250.,30.,1.,1.,&a);

/* Draw house number 1 - No transformations */
house (1) ;

/* Set first transformation and draw house number 2 */
gSetTransform2D (&a) ;
house (2) ;

/* Add second transformation to first
and draw house number 3 */
gCombineMatrix2D(&a,200.,100.,300.,0.,270.,0.5,1.,&t);
gSetTransform2D (&t) ;
house (3) ;

void house (int number)

{

gMoveTo2D(0., 0.);

gDrawLineTo2D (400., 0.);
gDrawLineTo2D (400.,200.) ;
gDrawLineTo2D(0.,200.);
gDrawLineTo2D(0., 0.);
gDrawLineTo2D (400.,200.) ;
gDrawLineTo2D(200.,300.);
gDrawLineTo2D(0.,200.);
gDrawLineTo2D (400., 0.);

gMoveTo2D (190.,230.);
gDisplayInteger (number, 1) ;

F90 code

program build house
use gino £90

type (GMAT2D) :: a,t

! Build first transformation in a
call gBuildMatrix2D(0.,0.,350.,250.,30.,1.,1.,a)

! Draw house number 1 - No transformations
call house (1)

! Set first transformation and draw house number 2
call gSetTransform2D (a)
call house (2)

! Add second transformation to first
! and draw house number 3
call gCombineMatrix2D(a,200.,100.,300.,0.,270.,0.5,1.,t)
call gSetTransform2D(t)
call house (3)
stop
end

380

Chapter 22: TRANSFORMATION CONTROL Transformation Enquiry

subroutine house (number)

integer number
call gMoveTo2D(O., 0.)
call gDrawLineTo2D (400., 0.
call gDrawLineTo2D(400.,200.
call gDrawLineTo2D(0.,200.
call gDrawLineTo2D(O., 0.
call gDrawLineTo2D(400.,200.
call gDrawLineTo2D(200.,300.
call gDrawLineTo2D(0.,200.
call gDrawLineTo2D (400., 0.

call gMoveTo2D(190.,230.)
call gDisplayInteger (number, 1)
end

The first transformation shifts the origin (bottom left hand corner) of the house
by (350.0, 250.0) in the current units. The house is then rotated about the fixed
point (0.0,0.0) by 30.0° and drawn without any scaling.

The second transformation shifts the house by 300.0 along the line of the current
rotation angle. Using the fixed point as the centre of the house (200.0,100.0) the
house is rotated by 270.0°. The house is scaled by 0.5 parallel to the floor of the
house; the scaling is relative to the fixed point position, and therefore reduces the
width of the house towards the centre.

Transformation Enquiry

To enquire about the state of transformation the user should use the
transformation enquiry routine:

gEnqTransformState(ntran, dim, mode)

where:

381

Transformation Mode Chapter 22: TRANSFORMATION CONTROL

ntran indicates transformations off (= GOFF) or on (= GON)
dim indicates transformations off (= GOFF)
2-D transformations (= GON2D)
3-D transformations (= GON3D) with no perspective

3-D transformations (= -3) with perspective

and mode indicates space mode (GSPACE) or picture mode (GPICTURE).

Settings of mode are described below. The default when transformations are
switched off is: ntran= GOFF, dim= GON2D and mode= GSPACE.

Transformation Mode

382

There are two possible methods of using transformations in GINO:

* In picture mode

 In space mode

Space mode is the default.

In space mode, each transformation is relative to the current space axis, that is it
is executed with reference to the previously set up transformation. In picture
mode, transformations are always relative to the original axis system - the picture
axis. This is useful when viewing whole pictures since the whole picture can be
shifted or rotated with reference to the original axis.

The routine for switching from one mode to the other is:

gSetTransformMode(mode)

The argument mode may take the value GSPACE or GPICTURE. The value
GSPACE switches to space mode and GPICTURE switches to picture mode.

When working in picture mode, transformations must be applied in reverse order
to that followed in space mode if the same effect is to be achieved. To produce,
for example, the transformed gingerbread man in the figure below in picture
mode, it would be necessary to call the routines in the following order:

gRotate2D(20.0) ; call gRotate2D(20.0)
gShift2D(50.0,0.0); call gShift2D(50.0,0.0)
man () ; call man

TRANSFORMATION CONTROL

Transformation Mode

However, in space mode the order must be:

gShift2D(50.0,0.0) ;

call gShift2D(50.0,0.0)
gRotate2D(20.0) ; call gRotate2D(20.0)
man () ; call man

If the sequence gShift2D(), gRotate2D() were used in picture mode the result

would be as shown below. This would produce the same result as the sequence
gRotate2D(), gShift2D() when used in space mode.

383

Transformation Mode TRANSFORMATION CONTROL

384

Chapter

VIEWING

Viewing Introduction

Models drawn in 3-D in GINO exist in a user-defined world with its own axes
and dimensions. The viewing routines provide a window into that world and offer
extensive control over the images ultimately seen. A model in the 3-D world is
mapped onto a 2-D plane. Parallel or perspective views of the model can be set
up. The routines allow a user to change his point of view of a model in respect of
direction and distance. When the resulting image is displayed, it often appears as
if a rotation or positioning has occurred. This is useful for many types of
visualization, from engineering drawings to stereoscopic projection.

Parallel (isometric) views are suitable for technical work where dimensions may
need to be attached to, or read from, a drawing. Perspective views give a better
impression of how the model will actually appear. The figure below illustrates
the difference.

Parallel View Perspective View

Comparison of Parallel and Perspective
Views

385

Useful Concepts VIEWING

Useful Concepts

Viewing essentially involves taking a model’s three dimensional coordinates and
operating on them in some way to produce a two dimensional image on a screen
or piece of paper. If perspective is involved, the routines need to know three
things:

+ The point from which the object is viewed - the eye position
 The direction of viewing - the line of sight

» The position of a plane in the model’s world onto which the coordinates are
to be projected. This plane is known as the view plane. Points on the view
plane can be mapped directly onto a screen or paper.

The view plane is perpendicular to the line of sight. The distance between the eye
and the view plane is known as the perspective distance. The point where the
line of sight meets the view plane is the view centre.

N . ﬁ EYE POSITION

Perspective distance

S

|
|
|
b

VIEW CENTRE

(/0'0
o

Definitions for Viewing Routines

386

VIEWING

From View Plane to Paper

The previous diagram illustrates these definitions, while the effects of different
eye positions are illustrated in the next figure.

VIEW PLANE

Image size

Image size

| =
|

Image size

Varying Eye Position and Viewing Directions

From View Plane to Paper

The two-dimensional image projected onto the view plane is closely related to
what appears on the screen. The mapping of points may be controlled by using
the routines described later in the section, however, GINO assumes sensible
defaults. For example, by default the view centre is positioned at the centre of the
current window or drawing area. If no window has been explicitly defined the
device limits are used.

Similarly, the image is oriented to make the Y-axis of the model’s world parallel
with that of the drawing device. In the exceptional case where the line of sight is
parallel to the Y axis, world and picture X axes are aligned.

387

The Basic Viewing Routines VIEWING

The Basic Viewing Routines

Initially viewing parameters are supplied to one of three routines,
gDefinePerspView(), gDefineSpherical View() or gDefineParallelView(). One of
these must be set up before the model can be viewed. The first two deal with
perspective drawing, while gDefineParallelView() establishes a parallel view.
The viewing transformation itself is then created by a call to the routine:

gUpdateView()

The following sections describe the three basic routines in full and show exactly
how to use them. In each case, one of the objects drawn is a box with sides 30, 40
and 50mm with one vertex at the origin of the world space (a listing of the
routine CUBOID appears later).

Relating what happens on the output device to what is happening in world space
may require some thought - working through the examples and altering the
parameters will shed more light on the whole subject.

Perspective Views of a Volume

388

Routine gDefineSpherical View() provides a straightforward means of drawing an
object whose coordinates are readily available. gDefineSpherical View() uses the
fact that a sphere viewed from any direction is circular.

The user describes a sphere which completely encloses his model, and defines a
viewing direction and a perspective distance (see the figure below). GINO can
then calculate an eye point which causes the circular projection to fill the current
window or drawing area as completely as possible.

gDefineSphericalView(xe, ye, zc, r, dx, dy, dz, d)

The sphere’s centre is at a point (xe, yc, zc) in space coordinates and its radius on
the view plane in picture coordinates is r. The line of sight is in direction (dx, dy,
dz) and the perspective distance is d.

Thus to use gDefineSpherical View(), the statements:

gbefineSphericalView(xc,yc,zc,r, call gDefineSphericalView(&
dx,dy,dz,d) ; xc,yc,zc,r,dx,dy,dz,d)
gUpdateView () ; call gUpdateView

VIEWING Perspective Views of a Volume

are all that is required.

Sphere radius : R

View Plane Eye Position
o T —
"
-
. — D
+—r
Sphere centre : (XC,YC,ZC) Perspective Distance

The viewing direction is defined by a vector
(DX,DY,DZz)

<
<4

The Viewing Sphere

The figure below illustrates the use of gDefineSpherical View() by looking at a
box, using the device limits as a window.

Notice that the line of sight is always towards the view centre; to look from a
point in positive X, Y and Z towards a point near the origin, the direction vector

requires negative components. The line of sight passes through the enclosing
sphere’s centre.

Code for a box viewed using a spherical view, as shown in the figure below,
follows:

C code

#include <math.h>

#include <gino-c.h>

#include “subs.h”

main ()

{
GLIMIT window = {0.0, 180.0, 0.0, 140.0};
float xmin,xmax,ymin, ymax, zmin, zmax;
float xc,yc,zc,delx,dely,delz, radius,dpersp;

gOpenGino () ;
gMwin () ;

gSetWindow2D (&window) ;

389

Perspective Views of a Volume VIEWING

/* Define Max dimensions for the volume to be viewed */
xmax=50.0;
ymax=40.0;
zmax=30.0;
xmin=0.0;
ymin=0.0;
zmin=0.0;
/* Calculate coordinates of volume’s centre */
xc=0.5* (xmax+xmin) ;
yc=0.5* (ymax+ymin) ;
zc=0.5* (zmax+zmin) ;
/* Find radius of sphere */
delx=xmax-xc;
dely=ymax-yc;
delz=zmax-zc;
radius=sqgrt (delx*delx+dely*dely+delz*delz) ;
dpersp=200.0;
/* Establish view */
gbefineSphericalView (xc,yc, zc, radius,
-1.0,-1.0,-0.9,dpersp) ;
gUpdateView () ;
/* Draw box */
cuboid (xmax, ymax, zmax) ;
gSuspendDevice () ;
gCloseGino () ;
}

#include “subs.c”

F90 code

390

VIEWING

Perspective Views of a Volume

! Draw box
call cuboid(xmax, ymax,zmax)
call gSuspendDevice
call gCloseGino

stop

end

include ‘subs.£f90’

A box viewed using a Spherical View

The figure below shows two different views of a large letter ‘G’ in user-defined
windows. This object is drawn inside a box (in effect a three-dimensional
window) of defined dimensions. The routine biggee() is listed later in the section.

Code for the figure below follows:

#include <math.h>
#include <gino-c.h>
#include “subs.h”
main ()
{

GLIMIT windowl =

{ 0.0, 90.0, 0.0, 140.0},
window2 =
{90.0,180.0, 0.0, 140.0};

float xmin,xmax,ymin, ymax;
float zmin, zmax, xc,yc,zc,delx;
float dely,delz,radius,dpersp;

gOpenGino () ;
gMwin () ;

gSetWindow2D (&windowl) ;

program figl2 6
use gino £90

type (GLIMIT) windowl = &
GLIMIT(0.0, 90.0, 0.0, 140.0)
type (GLIMIT) window2 = &

GLIMIT(90.0,180.0, 0.0,
real xmin,xmax,ymin, ymax
real zmin, zmax,xc,yc, zcC
real delx,dely,delz,radius,dpersp

140.0)

call gOpenGino
call gMwin

call gSetWindow2D (windowl)

(As precious code up to the comment line ‘/* Establish view’ */°

391

Perspective Views of a Volume

VIEWING

392

/*

/*

/*

/*

}

Establish view */

gDefineSphericalView (
xc,yc,zc, radius,
-1.0,-1.0,-0.9,dpersp) ;

gUpdateView () ;

Draw letter G */

biggee (xmax, ymax, zmax) ;

Set up new window */

gSetWindow2D (&window2) ;

dpersp=150.0;

Establish new view */
gSetTransform (GRESET) ;
gbefineSphericalView (

xc,yc,zc,radius,
1.5,-1.2,-0.9,dpersp) ;
gUpdateView () ;
Draw letter G */
biggee (xmax, ymax, zmax) ;
gSuspendDevice () ;
gCloseGino () ;

#include “subs.c”

Establish view */

call gDefineSphericalView(&
xc,yc,zc,radius, &
-1.0,-1.0,-0.9,dpersp)

call gUpdateView

Draw letter G

call biggee (xmax, ymax,zmax)

Set up new window

call gSetWindow2D (window?2)

dpersp=150.0

Establish new view

call gSetTransform (GRESET)

call gDefineSphericalvView(&
xc,yc,zc,radius, &
1.5,-1.2,-0.9,dpersp)

call gUpdateView

Draw letter G

call biggee (xmax, ymax, zmax)

call gSuspendDevice

call gCloseGino

stop
end

include

“subs.f90"

Spherical Views with user defined windows

In the general case, given the coordinates of a box which could surround a
particular object, the details of an enclosing sphere can be calculated easily. The
code for the original box shows this happening. If the ‘most negative’ corner is
(xmin,ymin,zmin), and the ‘most positive’ corner is (xmax,ymax,zmax), as in the
figure below, the centre of the sphere is (xc,yc,zc) where:

xc = (xmax+xmin)/2.0

yc = (ymax+ymin)/2.0

xC = (zmax+zmin)/2.0

VIEWING

Perspective View from a Point

and its radius is:

r = sqrt((xmax-xc)**2 +(ymax-yc)**2 +(zmax-zc)**2)

Y

(XMAX,YMAX ZMAX)

(XMIN,YMIN,ZMIN)

Calculating viewing sphere from enclosing box

Perspective View from a Point

Routine gDefinePerspView() offers an alternative approach to perspective
viewing. Here, the user chooses an eye position, a viewing direction and the
perspective distance.

gDefinePerspView(xe, ye, ze, dx, dy, dz, d)

Selecting an eye position seems quite natural, but it is not always easy to make
full use of the current window, something at which gDefineSpherical View() is
very good. However, for visualization purposes gDefinePerspView() is more
appropriate than gDefineSpherical View(). For example, it can be used to create a
view of a model of an oil refinery as though standing on a particular walkway.

The figure below illustrates the parameters supplied to gDefinePerspView(). The
eye is at (xe,ye,ze) and the viewing direction is along a vector (dx,dy,dz). The
perspective distance is D.

gbefinePerspView (xe, ye, ze, call gDefinePerspView(xe,ye,ze, &
dx,dy,dz,d) ; dx,dy,dz,d)
gUpdateView () ; call gUpdateView

393

Perspective View from a Point VIEWING

EYE POSITION
(XE,YE,ZE)

RN S

Perspective
distance

The viewing vector
is (DX,DY,DZ)

Perspective Viewing from a Point

In the following examples, the first of the figures below shows the familiar box,
and the second shows the large letter ‘G’.

The code for the box shown below follows:

gDefinePerspView (call gDefinePerspView(&
100.0,90.0,80.0, 100.0,90.0,80.0, &
=10.0,=9,0,=8,0,150.0) ¢ L0 (05 =) (0) 7 =8 o (0) 7 LS (0 5 (0))

gUpdateView () ; call gUpdateView

cuboid(50.0,40.0,30.0) ; call cuboid(50.0,40.0,30.0)

394

VIEWING Perspective View from a Point

A Box viewed using Perspective View

Code for the big ‘G’ is shown here:

gDhefinePerspView (call gDefinePerspView(&
120.0,90.0,80.0, 120.0,90.0,80.0, &
-12.0,-9.0,-12.0,150.0) ; -12.0,-9.0,-12.0,150.0)

gUpdateView () ; all gUpdateView

biggee (60.0,80.0,20.0); all biggee(60.0,80.0,20.0)

Perspective View of G

395

Parallel Projection VIEWING

In the common case where a point on the line of sight is known, e.g. the centre of
the object, the viewing direction is straightforward to calculate. If the view centre
is also chosen to be this point the perspective distance can be easily calculated.
Thus, given a point (xp,yp,zp) on the line of sight, the direction is given by:

dx=xp-xe
dy=yp-ye
dz=zp-ze

If the view plane is to pass through this point, the perspective distance, is given
by:

d = sqrt(dx**2 + dy**2 + dz**2)

Parallel Projection

396

For parallel projection the eye position is irrelevant. All that needs to be supplied
is a view direction and a view centre. (In this case the view centre is simply a
point in the model’s world which is mapped to the centre of the drawing
window). Thus routine gDefineParallelView() is easy to use. The figure below
shows what is involved.

gDefineParallelView(dx, dy, dz, xv, yv, zv)

If the viewing direction is a vector (dx,dy,dz) and the view centre (xv,yv,zv)
then:

gbefineParallelView (dx,dy,dz, call gDefineParallelView(&
XV, YV, 2ZV); dx,dy,dz,xv,yv, zv)
gUpdateView () call gUpdateView

VIEWING Parallel Projection

sets up the required view.

VIEW PLANE View centre (XV,YV,ZV)

P — at centre of object

.

View direction
(DX,DY,DZ)

Parallel Viewing

The figure below illustrates a parallel view of a box, the code for which follows:

gDefineParallelView (call gDefineParallelView(&
-1.0,-1.0,-0.9,0.0,0.0,0.0) ; -1.0,-1.0,-0.9,0.0,0.0,0.0)

gUpdateView () ; call gUpdateView

cuboid (50.0,40.0,30.0) ; call

cuboid (50.0,40.0,30.0)

Box Viewed using Parallel Projection

The figure below illustrates the big ‘G’, the code for which follows:

As above, but:

biggee (45.0,60.0,15.0); call biggee (45.0,60.0,15.0)

397

Setting Viewing Transformations VIEWING

Parallel view of G

Setting Viewing Transformations

398

Viewing involves taking coordinates from a model’s world and operating on them
in some way to produce a two-dimensional image.

The operations depend on factors such as eye position, viewing direction and
where the view plane falls. The three basic routines gDefineSpherical View(),
gDefinePerspView() and gDefineParallelView() are a means of supplying these
parameters. To create the final viewing transformation, gUpdateView() is then
called.

If gSetTransform() is called with GRESET as its argument the current
transformation is initialized. To re-establish a view, one of the three basic
routines must be called prior to a call to gUpdateView(). However, if
gSetTransform() is called with GOFF, GON or GINIT as an argument, the view
parameters remain unaltered and the viewing transformation can be recreated by
calling gUpdateView() only.

VIEWING

Setting Viewing Transformations

If one model is drawn which involves modelling transformations, e.g. rotations, a
second can be drawn with the same view after a call to gSetTransform(GINIT).
gSetTransform(GINIT) resets the transformation matrix but leaves the view
parameters intact. The next call to gUpdateView() can then build a view from a
known state rather than from an evolved, and therefore possibly unknown, state.

e.g:

/* Set up a perspective view */ ! Set up a perspective view
gbhefinePerspView(...); call gDefinePerspView(...)
gUpdateView () ; call gUpdateView

/* Draw first model */ ! Draw first model
modell () ; call modell

/* Throw this view away */ ! Throw this view away
gSetTransform (GRESET) ; call gSetTransform (GRESET)

/* Set up parallel view */ ! Set up parallel view
gbefineParallelView(...); call gDefineParallelView(...)
gUpdateView () ; call gUpdateView

/* Redraw first model with ! Redraw first model with
the new view */ ! the new view
modell () ; call modell

/* Reinitialize transformation ! Reinitialize transformation
but leave view parameters ! but leave view parameters
intact */ ! intact
gSetTransform (GINIT) ; call gSetTransform (GINIT)

/* Regenerate view transform */ ! Regenerate view transform
gUpdateView () ; call gUpdateView

/* Draw a second model */ ! Draw a second model
model2 () ; call model2

To reset the viewing parameters but leave the current transformation intact, use
glnitView(). This has the converse effect to gSetTransform(GINIT).

glnitView()

Use of Superseded Routine

The user should be warned about successive calls to gGenerateView() without
resetting the GINO transformation as explained above. It is stressed that each
time gGenerateView() is called, the viewing parameters are added to the
CURRENT transformation matrix to create a new matrix; thus a second call to
gGenerateView() without resetting the matrix will effectively add the viewing
parameters twice, with unpredictable results.

gGenerateView()

399

Modifying the Drawing VIEWING

Modifying the Drawing

400

The image of the user model (i.e. that image which is projected onto the screen or
paper etc.) may be modified by changing the viewing transformation. The model
itself need not be redefined.

Re-specifying the View

The most obvious means of changing the view parameters is to re-specify the
view completely, separating calls to gDefinePerspView(),

gDefineSpherical View(), or gDefineParallelView() and gUpdateView() by
nullifying calls to gSetTransform(GRESET). The code example for the next
figure shows this. However, it is often more economical to adjust a parameter
individually. If transforming is switched on, and the user wishes to preserve the
current transformation outside of reinitializing the view parameters, then a call to
glnitView() would effect this, as opposed to gSetTransform(GRESET) which
would discard it.

C code

/*

/*

/*

/*

GLIMIT top left = {0.0,90.0,70.0,140.0},
top right = {90.0,180.0,70.0,140.0},
bottom right = {90.0,180.0,0.0,70.0},
bottom left = {0.0,90.0,0.0,70.0};

Top left view */

gSetWindow2D (&top left);

gbefineParallelView(1.0,0.0,0.0,25.0,30.0,15.0);

gUpdateView () ;

biggee (50.0,60.0,30.0) ;

gSetTransform (GRESET) ;

Top right view */

gSetWindow2D (&top right);

gbefineParallelView(0.0,-1.0,0.0,25.0,30.0,15.0);

gUpdateView () ;

biggee (50.0,60.0,30.0) ;

gSetTransform (GRESET) ;

Bottom right view */

gSetWindow2D (&bottom right) ;

gbefineParallelView(0.0,-1.0,0.0,25.0,30.0,15.0);

gUpdateView () ;

biggee (50.0,60.0,30.0) ;

gSetTransform (GRESET) ;

Bottom left view (perspective) */

gSetWindow2D (&bottom left);

r=sqrt (25.0*25.0+30.0+15.0*15.0) ;

gDefineSphericalView (25.0,30.0,15.0,,
-1.0,-1.0,-0.9,200.0);

gUpdateView () ;

biggee (50.0,60.0,30.0);

Modifying the Drawing

VIEWING

F90 code

L1

Re-specifying Views

401

Modifying the Drawing VIEWING

402

Positioning the Image

By default, the image is positioned so that the view centre and the centre of the
current window coincide. A call to:

gPosViewCentre(xp, yp)

maps the view centre onto the point (xp, yp) which is supplied in picture (screen)
coordinates. The next figure, and its code, illustrates the use of
gPosViewCentre(). Notice that one of the basic routines is called first, followed
by any qualifying routines, such as gPosViewCentre(). Finally the transformation
is defined by a call to gUpdateView().

Orientation of the Image

The default orientation, which aligns world and picture Y axes, can be changed
using routine

gSetViewUpDirection(dx, dy, dz)

Where (dx, dy, dz) specify a vector direction in the model’s world which will be
mapped as parallel to the picture Y axis. The figure below shows how
gSetViewUpDirection() can be used to change the orientation of a cube. Like
gPosViewCentre() it is called after one of the basic routines and before
gUpdateView().

C code

GLIMIT window = {0.0,180.0,0.0,140.0};

gSetWindow2D (&window) ;
cside=40.0;
sside=38.0;

/* Enable gSetTransform() characters */
gSetCharTransformMode (GON) ;

/* First perspective view */
gbhefineSphericalvView(0.0,0.0,0.0,60.0,

-1.0,-0.9,-0.7,100.0) ;

/* Position using gPosViewCentre () */
gPosViewCentre (60.0,70.0) ;
gUpdateView () ;
cube (cside, sside,0.0,0.0,0.0) ;
gSetTransform (GRESET) ;

/* Respecify view */
gbDefineSphericalview(0.0,0.0,0.0,60.0,

-1.0,-0.9,-0.7,100.0);
gPosViewCentre (120.0,70.0) ;

/* Re-orientate view */
gSetViewUpDirection(0.0,0.0,1.0);
gUpdateView () ;
cube (cside, sside,0.0,0.0,0.0) ;

VIEWING Modifying the Drawing

F90 code
type (GLIMIT) :: window = GLIMIT(0.0,180.0,0.0,140.0)
call gSetWindow2D (window)
cside=40.0
sside=38.0

! Enable gSetTransform() characters
call gSetCharTransformMode (GON)
! First perspective view
call gDefineSphericalvView(0.0,0.0,0.0,60.0, &
-1.0,-0.9,-0.7,100.0)
! Position using gPosViewCentre
call gPosViewCentre (60.0,70.0)
call gUpdateView
call cube(cside,sside,0.0,0.0,0.0)
call gSetTransform (GRESET)
! Respecify view
call gDefineSphericalView(0.0,0.0,0.0,60.0, &
-1.0,-0.9,-0.7,100.0)
call gPosViewCentre (120.0,70.0)
! Re-orientate view
call gSetViewUpDirection(0.0,0.0,1.0)
call gUpdateView
call cube(cside,sside,0.0,0.0,0.0)

Changing Position and Orientation of View

403

Moving Eye, View Plane or both VIEWING

Moving Eye, View Plane or both

This section describes three routines:
gSetViewPlaneDistance(d)
gMoveViewCentre(s)
gSetViewEyeDistance(d)

A clear mental picture of the spatial relationship between eye, object and view
plane is useful in understanding their effects. A quick glance at the following
figure will suggest what is involved. Note the changes in image size with respect
to changes in the perspective distance.

A more detailed description of each routine follows.

Zooming

Zooming changes the size of the image without affecting the extent to which it is
distorted by perspective. The figure below illustrates what happens; the view
plane alone moves and thus the perspective distance changes. Routine
gSetViewPlaneDistance() alters this distance to d. The size of the image changes
proportionally with d.

VIEW PLANE
) old image size ; EYE POSITION
new size

D

\

<
<

Perspective distance

Zooming by Setting View Plane Distance

404

VIEWING Moving Eye, View Plane or both

Moving Eye and View Plane

If both eye and view plane are moved, so as to keep the perspective distance
fixed, the image size changes. The effect is as if you are moving in relation to the
object and thus the perspective distortion changes due to the alteration of the
viewing angle. Routine gMoveViewCentre() is used to achieve this, where s is
the distance moved along the line of sight.

Note the viewing angle O changes

View Plane

/N

~ the distance moved

Both eye and view plane move
in relation to the object

Effect of Moving View Centre

The figure above illustrates this point, and the figure below with its associated
code offers an example:

C code

/* Set up initial view
gbefinePerspView(100.0,90.0,80.0,-1.0,-0.9,-0.8,100.0) ;
gUpdateView () ;

/* Draw object */
cuboid(50.0,40.0,30.0) ;
gSetTransform (GRESET) ;

/* Re-establish view */
gbefinePerspView(100.0,90.0,80.0,-1.0,-0.9,-0.8,100.0) ;

/* Move eye and view plane 50mm closer to object */
gMoveViewCentre (50.0) ;
gUpdateView () ;

/* Redraw */
cuboid (50.0,40.0,30.0) ;

405

Moving Eye, View Plane or both VIEWING

F90 code

Example of Moving View Centre

406

VIEWING Moving Eye, View Plane or both

Moving the Eye Alone

Moving the eye without moving the view plane changes the perspective distance.
The figure below illustrates this. The routine used is gSetViewEyeDistance()
where d is the new perspective distance.

View Plane

<+— P> new perspective distance

i
v

old perspective distance

Effect of Setting New Eye Distance

The figure below shows gSetViewEyeDistance() in use. (Note that if a negative
value for d is supplied the viewing direction is reversed).

C code

/* Original view - note perspective distance is
chosen to position view plane through the
origin */
gbefinePerspView(100.0,90.0,80.0,-1.0,-0.9,-0.8,156.0) ;
gPosViewCentre (45.0,105.0);
gUpdateView () ;
cuboid(25.0,20.0,15.0) ;
gSetTransform (GRESET) ;
gbefinePerspView(100.0,90.0,80.0,-1.0
/* Change perspective distance to 65mm *
gSetViewEyeDistance (65.0) ;
gPosViewCentre (135.0,105.0) ;
gUpdateView () ;
cuboid(25.0,20.0,15.0) ;
gSetTransform (GRESET) ;
gbefinePerspView (100.0,90.0,80.0,-1.0,-0.9,-0.8,156.0) ;
/* Reduce perspective distance to 45mm
note the view plane is fixed - only the
eye position can be varied using gSetViewEyeDistance () */
gSetViewEyeDistance (45.0) ;
gPosViewCentre (85.0,50.0);
gUpdateView () ;
cuboid(25.0,20.0,15.0) ;

7 =0:9,=0,8,156,0) 7
/

407

Moving Eye, View Plane or both VIEWING

F90 code

Example of Altering Eye Position

408

VIEWING Moving Eye, View Plane or both

The figure below compares the effects of gMoveViewCentre(),
gSetViewEyeDistance() and gSetViewPlaneDistance():

Three ways of enlarging the image :

[1] Move closer to the object - gMoveViewCentre

I

‘ e e
7

L

[3] Move the eye only - gSetViewEyeDistance

Comparison of Altering Eye/Plane positions

The routine gSetViewEyeDistance() is a tricky routine to use because both
viewing angle and the distance from the object change, and without some
forethought the effects may be surprising. Generally gSetViewPlaneDistance() or
gMoveViewCentre() are to be recommended instead, except in two particular
circumstances.

Firstly if the view plane passes through or near the object it is possible to adjust
the extent to which a drawing is distorted by perspective. Reducing the
perspective distance D increases the distortion. The earlier example shows this.

409

Changing the Line of Sight

VIEWING

A second use of gSetViewEyeDistance() is to provide a perspective distance after
setting up a parallel view. Remember that gDefineParallelView() takes the view
centre and view direction as arguments. If gSetViewEyeDistance() is then called,

enough information is available to draw a perspective view. In particular,

if the

view centre is a point within the object then the view plane will intersect the

model and the situation described above arises.

This approach has all the advantages of using gDefineSpherical View() but
without being tied to the current window. The figure below illustrates this point,

but the user should experiment with this technique.

gbhefineParallelView (call gDefineParallelView(&
-1.0,-0.9,-0.8,0.0,0.0,0.0); -1.0,-0.9,-0.8,0.0,0.0,0.0)
gSetViewEyeDistance (100.0) ; call gSetViewEyeDistance (100.0)
gUpdateView () ; call gUpdateView
cuboid(50.0,40.0,30.0) ; call cuboid(50.0,40.0,30.0)

Setting Eye position with Parallel View

Changing the Line of Sight

The line of sight can be shifted using gViewShift(), rotated using gViewRotate()

or for parallel views gViewTurn() can be used.

gViewTurn(xr, yr, zr, dx, dy, dz, angle)

The routine gViewShift() moves the line of sight incrementally, and thus both

view centre and eye position change (see below).

gViewShift(dx, dy, dz)

410

VIEWING Changing the Line of Sight

Generally the effect is as if the model were moved in space along a vector
(-dx,-dy,-dz).

N

I
***** -7

Lo \

| (DX,DY,DZ)

\
ﬂ | >
Vector along which the line of sight moves is

(DX,DY,DZ)

Effect of a View Shift

The figure below illustrates this and demonstrates the usefulness of gViewShift().

gSetCharTransformMode (GSOFT) ;
for (i=1; 1i<=5; i++) {

call gSetCharTransformMode (GSOFT)
do i=1,5

gSetTransform (GRESET) ;
gDefineSphericalView (
0.0,0.0,0.0,40.0,
=1,0,=0,9,=0,6,150,0) ¢

delta = (float) 1 * 1.5;

gViewShift (0.3*delta, 0.0,
delta) ;

gUpdateView () ;

cube (40.0,40.0,0.0,0.0,0.0) ;

call gSetTransform (GRESET)

call gDefineSphericalvView(&
0.0,0.0,0.0,40.0, &

=1.0,=0,9,=0.6,150,0)

delta = real(i) * 1.5

call gViewShift (0.3*delta, &
0.0, delta)

call gUpdateView

call cube(40.0,40.0,0.,0.,0.)

end do

Example of Shifting View

The routine:

gViewRotate(plane, angle, dist)

411

Changing the Line of Sight VIEWING

allows the line of sight to be rotated such that the angle it makes with a plane is
constant. The rotation is about a point dist current units from the eye, along the
line of sight. It is often difficult to maintain an accurate mental picture of what is
happening with gViewRotate(). The figure immediately below shows the basic
idea and the figure following that illustrates the numbering and sign conventions.
The axes and planes are right handed. Plane number 1 is orthogonal to the X axis,
plane 2 to the Y axis and plane 3 to the Z axis.

N v
\ ~
N

~
RN

\/"‘“ge ﬂ -

/

Distance DIST
Effect of Rotating View

\%4

pal
<

Looking from the positive side of a plane anti-clockwise rotation is positive. (If
plane 1 passes through the origin and is viewed from a position 100 units along
the X axis, then the view point is on the plane’s positive side).

Y
PLANE 1 PLANE 3

=N

PLANE 2

Positive rotation shown

Plane Numbering Convention

412

VIEWING

Changing the Line of Sight

The routine gViewRotate() can be very useful. If the view centre is defined to lie
within the model and the distance S is set equal to the perspective distance then
the effect is as if the model were being rotated in space. The next figure shows
this.

for (i=1; i<=6; i++) { do i=1,6
gSetTransform (GRESET) ; call gSetTransform (GRESET)
/* Perspective distance is chosen ! Perspective distance is chosen
to put view c plane ! to put view ¢ plane
through the origin */ ! through the origin
gDefinePerspView (call gDefinePerspView(&
100.0,100.0,100.0, 100.0,100.0,100.0, &
-1.0,-1.0,-1.0,173.2); -1.0,-1.0,-1.0,173.2)
delta = (float) (i-3)*5.0; delta = real(i-3)*5.0
gViewRotate (2,delta,173.2); call gViewRotate (2,delta,173.2)
gUpdateView () ; call gUpdateView
cuboid (40.0,40.0,40.0); call cuboid(40.0,40.0,40.0)
} end do

Example of Rotating View

Note that the distance about which the view is rotated is equal to the distance
between the eye and the back edge of the cube.

i.e. dist = sqrt(xeye*xeye + yeye*yeye + zeye*zeye)

Other values can be used if the view is required to be rotated about a different
point.

The next figure shows two projections of a lettered cube, one drawn using

gViewRotate(). They are a stereoscopic pair and the figure following them shows
how to look at them. It may take a while to bring the 3-D image into focus.

413

Changing the Line of Sight

VIEWING

gSetCharTransformMode (GSOFT) ;
gDefinePerspView (0.0,0.0,70.0,
0.0,0.0,-1.0,70.0);
gPosViewCentre (55.0,70.0) ;
gUpdateView () ;
cube (40.0,40.0,0.0,0.0,0.0) ;
gSetTransform (GRESET) ;
gDefinePerspView (0.0,0.0,70.0,
0.0,0.0,-1.0,70.0);
gPosViewCentre (125.0,70.0);
gViewRotate (2,3.0,70.0);
gUpdateView () ;
cube (40.0,40.0,0.0,0.0,0.0) ;

v

call
call

call
call
call
call
call

call
call
call
call

gSetCharTransformMode (GSOFT)
gDefinePerspView (0.0,0.0, &
70.0,0.0,0.0,-1.0,70.0)
gPosViewCentre (55.0,70.0)
gUpdateView
cube3(40.0,40.0,0.0,0.0,0.0)
gSetTransform (GRESET)
gDefinePerspView (0.0,0.0, &
70.0,0.0,0.0,-1.0,70.0)
gPosViewCentre (125.0,70.0)
gViewRotate (2,3.0,70.0)
gUpdateView
cube3(40.0,40.0,0.0,0.0,0.0)

v

Stereoscopic Pair

Left hand view

Right hand view

Use right hand to
prevent right eye
from seeing RH view

How to View Previous Figure

414

VIEWING Projections onto an Oblique Plane

Projections onto an Oblique Plane

By definition, the line of sight is orthogonal to the view plane. Nevertheless
projections onto angled planes can be set up. The following figure illustrates how
this is done. Although the line of sight does not pass through the object, an image
is generated on the view plane which can be brought into the current window
using gPosViewCentre().

VIEW PLANE

Line of sight
e 7>’
7/
7/
7/
7/
7/
The image can be moved v 7
into view using gPosViewCentre() p The view plane i ot
normal to a line of sight
7 through the object
7/
7/
7/
7/
7/
7/
7/
X
Oblique Viewing

The figure below shows an oblique projection. Notice that gPosViewCentre()
positions the view centre, which is defined to be on a line orthogonal to the view
plane - some calculation may be necessary to place the drawing exactly where it
is required.

gbhefinePerspView (call gDefinePerspView(&
100.0,100.0,100.0, 100.0,100.0,100.0, &
=1,0,=1,0,0,0,125.0) ¢ =1.,0,=1.0,0.0,125,0)

/* gPosViewCentre () places the ! gPosViewCentre () places the
view centre at the quoted ! view centre at the
point */ ! quoted point

gPosViewCentre (0.0,70.0) ; call gPosViewCentre (0.0,70.0)

gUpdateView () ; call gUpdateView

cuboid (50.0,40.0,30.0) ; call cuboid(50.0,40.0,30.0)

415

Saving and Restoring View Parameters VIEWING

Example of an Oblique View

Saving and Restoring View Parameters

There are two pairs of routines for saving and setting the view parameters. These
are:

gGetViewParams(vdata)
gGetViewState(vstate)
gSetViewParams(vdata)
gSetViewState(vstate)

where vdata is an array of 15 values and vstate is a structure of type
GVIEWSTATE. Both contain the same data, but the structure is more accessible
through its various elements as described in the reference section.

These routines can be used to extract information about the current view, save
and restore a particular view setting, or even modify the current viewing
parameters. Note that after calling either of gSetViewParams() or
gSetViewState(), the actual values passed are not activated until the current view
is updated using gUpdateView().

416

VIEWING

Modifying the View Matrix

These routines do not affect the current modelling transformation which can be
saved and reset independently of the viewing parameters using
gGetTransform3D() and gSetTransform3D(), gSaveTransform() and
gRestoreTransform() or gPushTransform() and gPopTransform() (see page 371).

Modifying the View Matrix

The following routine can be used to modify the current view by applying a
modification matrix:

gModifyView(a)

where a is a 16 element (4x4) real array containing the modification matrix. This
routine is useful for advanced applications including the generation of shadows
(see page 342).

Listings of the Routines used in this Chapter

C code

void cube3 (float cside, float sside,

{

/* Characters

}

float x,float y,float z)

L2 X

4 y
int i,asc[6] = {32,89,90,32,32,88};

gPushTransform () ;

gShift3D(x,v,2z);

for (i=0; i<=3; i++) {
squar3 (sside,cside,asc[i]) ;
gRotate3D (GXAXIS, 90.0);

}

gRotate3D (GYAXIS, 90.0) ;

squar3 (sside,cside,ascl4]);

gRotate3D (GYAXIS, 180.0);

squar3 (sside,cside,asc[5]) ;

gPopTransform() ;

void squar3(float a,float cside,int nlettr)

{

float del;

del=a/2.0;

gMoveTo3D (del,del,cside/2.0) ;
gDrawLineBy3D(0.0,-a,0.0);
gDrawLineBy3D(-a,0.0,0.0);
gDrawLineBy3D(0.0,a,0.0) ;
gbrawLineBy3D(a,0.0,0.0);
gMoveTo3D(-0.6*del,-0.6*del,-cside/2.0) ;
gSetCharSize (a*0.82,0.6%a);
gDhisplayAsciiChar (nlettr);

417

Listings of the Routines used in this Chapter

VIEWING

418

void biggee (float gwide, float ghigh, float gdeep)

/*
{

/*

/*
/*

/*

/*

/*

/*

/*

/*

/*

}

Draw a 3D letter G which fits in a box
gwide by ghigh by gdeep */

float thickn,gbarht,gbarwd;

gSaveTransform() ;

Thickness of bars arbitrary multiple of depth
thickn=0.25*gdeep;

Lower horizontal bar */

cuboid ((gwide-2.0*thickn),thickn, gdeep) ;
Upper horizontal bar */
gShift2D(0.0,ghigh-thickn) ;

cuboid ((gwide-thickn), thickn, gdeep) ;

Left hand vertical bar */
gShift2D(-thickn,0.0);

gRotate2D(-90.0) ;

cuboid ((ghigh-2.0*thickn),thickn, gdeep) ;
gRestoreTransform() ;

Horizontal insert */

gbarht=(9.0/20.0) *ghigh;
gbarwd=0.8*gbarht;
gShift2D((gwide-2.0*thickn),gbarht-thickn);
cuboid (- (gbarwd-2.0*thickn), thickn, gdeep) ;
Vertical insert */

gRotate2D(-90.0) ;

cuboid ((gbarht-2.0*thickn), thickn, gdeep) ;
gRestoreTransform() ;

Bottom left corner */
gShift2D(-thickn,0.0);

filler (thickn, gdeep) ;

Top left corner */

gShift2D(0.0,ghigh) ;

gRotate2D(-90.0);

filler (thickn, gdeep);

Bottom right */

gShift2D (ghigh,gwide) ;

gRotate2D(180.0) ;

filler (thickn, gdeep) ;

Corner of insert */

gShift2D (gbarht,0.0);

gRotate2D(90.0) ;

filler (thickn, gdeep) ;
gRestoreTransform() ;

void filler (float fwidth,float fdepth)

/*
{

Draw a quarter cylinder radius fwidth,
depth fdepth */

gMoveTo3D (0.0, fwidth, fdepth) ;

gDrawArcTo2D (fwidth, fwidth, fwidth, 0.0, GANTICLOCKWISE) ;
gMoveBy3D(0.0,0.0,-fdepth) ;

gDrawArcTo2D (fwidth, fwidth, 0.0, fwidth, GCLOCKWISE) ;

VIEWING Listings of the Routines used in this Chapter

void cuboid(float alengt, float height, float depth)

/* Draw box of dimensions alengt,height,depth in xyz */

{
gMoveTo3D (alengt, height, depth) ;

/* Front edges */
gDrawLineBy3D(-alengt,0.0,0.0);
gDrawLineBy3D (0.0, -height,0.0) ;
gDrawLineBy3D(alengt,0.0,0.0);
gDrawLineBy3D(0.0,height,0.0);

/* Side edges */
gDrawLineBy3D(0.0,0.0,-depth) ;
gDrawLineBy3D (0.0, -height,0.0);
gDrawLineBy3D(0.0,0.0,depth) ;

/* Top edges */
gMoveTo2D (0.0, height) ;
gDrawLineBy3D(0.0,0.0, -depth) ;
gDrawLineBy3D(alengt,0.0,0.0);
gMoveBy3D (-alengt, 0.0,0.0);

/* Rear edges */
gDrawLineBy3D (0.0, -height,0.0);
gDrawLineBy3D(0.0,0.0,depth) ;
gMoveBy3D(0.0,0.0, -depth) ;
gDrawLineBy3D(alengt,0.0,0.0);

}

file : subs.h

void cube3 (float cside, float sside, float x,float y,float z);
void squar3(float a,float cside,int nlettr);

void biggee (float gwide, float ghigh, float gdeep);

void filler (float fwidth, float fdepth);

void cuboid(float alengt, float height, float depth);

F90 code

subroutine cube3(cside, sside, x,v,z)
use gino £90
real cside,sside,x,vy,z
! Characters v Yo Zg 0 P
integer :: asc(6) = (/ 32,89,90,32,32,88 /)

call gPushTransform
call gShift3D(x,vy,z)
do i=1,4
call squar3(sside,cside,asc (1))
call gRotate3D (GXAXIS,90.0)
end do
call gRotate3D (GYAXIS,90.0)
call squar3(sside,cside,asc(5))
call gRotate3D(GYAXIS,180.0)
call squar3(sside,cside,asc(6))
call gPopTransform
return
end

419

Listings of the Routines used in this Chapter VIEWING

420

VIEWING Listings of the Routines used in this Chapter

421

Chapter

PICTURE SEGMENTS

Picture Segments Introduction

Picture Segments provide a means of ‘labelling’ parts of a picture as well as
building structures that can be manipulated in their entirety without redrawing
the elements that make them up. Their use is very varied, but the following types
of application can take advantage of segment facilities:

+ Creating designs from components

« Component or menu option selection

3D hierarchical structure creation and manipulation
» Hardcopy of drawing to printer or plotter

» Progressive interactive design package

GINO provides the following segment facilities:

« Hardware and/or software segment operation

« Segment creation, extension, deletion, rename

+ Visibility, Sensitivity, Highlighting attributes

+ Segment transformation at device level

+ Segment structures; copies, references and groups
 Editing of modelling transformations within segments
+ Light pen simulation

+ Archiving and restoring segment store

423

Picture Segments Introduction PICTURE SEGMENTS

424

In the development of graphics devices, segment facilities were not initially
provided in the terminal as it required an on-board processor and memory to
control and store the information. Later on, some devices did add these facilities
and GINO was one of the first packages to provide access through its segment
routines. With the development of workstations, again different models exist with
and without segment facilities. Some segment facilities are included with the
GINO OpenGL drivers (WOGL and GLX) but note that these drivers do not
provide all the facilities documented below (see page 271 and Appendix B).

GINO provides the facility to use segments whether or not the device has its own
hardware segment facilities by providing a store of segment information which is
maintained on the host computer. (In the case of workstations the host is the
workstation itself). This file is called the Software Display File or SDF and it can
be held in memory or on disk at the discretion of the user.

In spite of GINO’s philosophy of emulating hardware facilities in software, the
complexity of segments and the wide variation of hardware facilities that are
available, means that a slightly different approach has been adopted in this area.
Where an application is run on a device without segment facilities, a warning
message will be output when the first segment is opened, and GINO will open a
disk based Software Display File to handle all segment facilities in software.
However, it is advisable, where an application uses segments to study the
following sections carefully and specifically set up segment handling as required
by the application. This will remove the warning message being generated.

The main routine used to control the segment handling mode is:
gSetSegMode(sw)

sw=GHARDWARE (default) disables software emulation and segment handling
will be done by the hardware only, if the device has segment facilities. The user
should check in Appendix B under the required device to see if such facilities
exist.

sw=GMIXWARE switches on software emulation and a display file is maintained
by GINO. GINO will attempt to use hardware facilities wherever possible to
ensure optimum speed of operation, however, all segment information is stored in
the display file. Where a particular segment facility is not available in the
hardware, the software display file will be used.

sw=GSOFTWARE switches on software emulation and ignores any hardware
segment facilities.

PICTURE SEGMENTS Picture Segments Introduction

It should be noted that hardware segment facilities may differ from those
provided through GINO’s software display file. This is largely due to the
evolving nature and complexity of segment facilities and where no standard
hardware method exists.

In order to cater for the widest possible scope of segment facilities, GINO has
adopted the highest level of sophistication with regard to its display file by
storing untransformed, unclipped 3D coordinates together with user changes to
modelling transformations. However, most of the graphics devices that provide
hardware segment facilities store only 2D picture coordinates after
transformations and clipping to device limits. In addition, some segment facilities
listed above such as references and editing may not be provided in hardware.

Therefore, when developing an application using segments the following
suggestions should be taken into consideration:

 If hardware segments are available, check which facilities are actually
provided against those required by the application. If all the required
facilities are provided on all the devices on which the application is to be
run then the most efficient operation will be provided using
sw=GHARDWARE (the default).

« If the application is to be used on a variety of devices, some with hardware
segment facilities and some without, or the application requires some
facilities not provided by the hardware, it is advisable to set
sw=GMIXWARE. The setting of sw can, of course, be made dependent on
the device selected.

* Where segment facilities provided by hardware are inconsistent with those
provided by GINO, for example where the application requires segment
structures defined in a 3D coordinate system and the hardware segment
facilities are only at the 2D level, it is necessary to use sw=GSOFTWARE.

+ If segment information is required to be carried over to a secondary output
device for hard copy purposes or required for archiving and restoring, sw
should normally be set to GSOFTWARE to ensure a copy of the
information is held by GINO and any hardware segment facilities are not
used.

425

Segment Building PICTURE SEGMENTS

Software Display File Storage

The software display file (SDF) maintained by GINO can be held in program
memory or on a direct-access scratch file according to available resources. The
routine to declare a workspace area in memory is gDefineSegWorkspace(), which
is described below. If no such area is declared, GINO will open and use a disk
file when the first segment is opened. The amount of space required for such a
display file is very difficult to establish but it can very easily be extensive.

gDefineSegWorkspace(nw)

The routine gDefineSegWorkspace() declares an area within the total workspace
areca and therefore must be preceded by a call to gSetWorkspaceLimit() (see page
33). The total workspace area must obviously include at least sufficient space for
the requirements of gDefineSegWorkspace.

gOpenGino () ; call gOpenGino
gSetWorkspaceLimit (10000) ; call gSetWorkspaceLimit (1,10000)
gDefineSegWorkspace (10000) ; call gDefineSegWorkspace (10000)

Note that the workspace is freed with the routine gCloseGino(). The routine
gEnqSegWorkspace() can be used to enquire how much space has been allocated

for segment storage within the total workspace area and how much free space is
left.

gEnqSegWorkspace(nw, nfree)

Segment Building

426

Picture segments are opened and closed using the following routines:
gOpenSeg(nseg)
gCloseSeg()

Picture segments are created by calls to gOpenSeg() with different values of
nseg. Segment names are defined by the positive integer number nseg between
the range 1 and 32767. All drawing between a gOpenSeg()/gCloseSeg() pair is
included within the named picture segment. If gOpenSeg() is called from within a
picture segment, this first segment is automatically closed by GINO with a call to
gCloseSeg(). If gOpenSeg() is called with an existing segment number, the
segment is first deleted before a new one is opened.

PICTURE SEGMENTS Segment Building

If any drawing routines are called outside a picture segment, GINO extends
segment 0 (the same as gOpenSeg(0)). Segment 0 is a dustbin segment for
everything that is drawn and not sent to a specific segment. It cannot be
manipulated, redrawn or retained in any way.

The routine gExtendSeg() reopens nseg so that more drawing can be added to it.
gExtendSeg(nseg)

The routine gEnqOpenSeg() can be used to enquire which segment number is
currently opened for drawing. This may return zero indicating that the dustbin
segment is open.

gEnqOpenSeg(nseg)

A segment can be renamed using the routine gRenameSeg(), where the segment
nseg becomes newseg. If a segment called newseg already exists, it is deleted
from the display file before nseg is renamed.

gRenameSeg(nseg, newseg)

Segments can be removed from the display file and screen using gDeleteSeg().
Where software segments are being used, segments are removed from the screen
by re-drawing them in the current background colour. This may leave holes in
other segments which may need to be repaired by the application at a suitable
time as described in ‘Segment Redrawing and Repairing’.

gDeleteSeg(nseg)

Note that while the routine gNewDrawing() may clear the screen of segments as
part of its operation, segments are not actually deleted from any software or
hardware display file by this routine, but are simply marked as invisible. If all
current segments are required to be deleted, gDeleteSeg(GALL) should be called.

Segment Anchor

The segment anchor is a reference point from which all segment elements can be
seen as relative to. It is important to set the correct anchor point when segment
transformations are required (see page 431). If the first drawing statement within
a segment is visible, the segment anchor will be at the pen position when
gOpenSeg() is called;

For example:

427

Segment Building

PICTURE SEGMENTS

428

/* DRAW CIRCLE WITH ANCHOR AT
(0.0,0.0) */

xanc=0.0;

yanc=0.0;

rad=20.0;

gMoveTo2D (xanc, yanc) ;

gOpenSeg (100) ;

gDrawArcBy2D(0.0,rad,0.0,0.0,0);

gClosesSeg() ;

(0.,0.)

! DRAW CIRCLE WITH ANCHOR AT

! (0.0,0.0)

xanc=0.0

yanc=0.0

rad=20.0

call gMoveTo2D (xanc, yanc)

call gOpenSeg(100)

call gDrawArcBy2D(0.,rad,0.,0.,0)
call gCloseSeg

Otherwise, the segment anchor is fixed to the end of the first invisible vector

within the picture segment:

/* DRAW CIRCLE WITH ANCHOR AT
(40.0,40.0) */

xanc=40.0;

yanc=40.0;

rad=20.0;

gMoveTo2D(0.0,0.0) ;

gOpenSeg (100) ;

gMoveTo2D (xanc, yanc) ;

gDrawArcBy2D(0.0,rad,0.0,0.0,0);

gClosesSeg() ;

! DRAW CIRCLE WITH ANCHOR AT

! (40.0,40.0)

xanc=40.0

yanc=40.0

rad=20.0

call gMoveTo2D(0.0,0.0)

call gOpenSeg(100)

call gMoveTo2D (xanc, yanc)

call gDrawArcBy2D(0.,rad,0.,0.,0)
call gCloseSeg

PICTURE SEGMENTS Segment Building

(40.,40.)
X‘//(OHOJ

An additional move can be included in order to start the visible part of the
segment away from the anchor.

/* DRAW CIRCLE WITH ANCHOR AT ! DRAW CIRCLE WITH ANCHOR AT
CENTRE OF CIRCLE */ ! CENTRE OF CIRCLE

xanc=40.0; xanc=40.0

yanc=40.0; yanc=40.0

rad=20.0; rad=20.0

gMoveTo2D(0.0,0.0) ; call gMoveTo2D(0.0,0.0)

gOpenSeg (100) ; call gOpenSeg(100)

gMoveTo2D (xanc, yanc) ; call gMoveTo2D (xanc,yanc)

gMoveBy2D (0.0, -rad) ; call gMoveBy2D (0.0, -rad)

gDrawArcBy2D(0.0,rad,0.0,0.0,0); call gDrawArcBy2D(0.,rad,0.,0.,0)

gClosesSeg() ; call gCloseSeg

(40:,40.)

/ (0.,0.)

429

Segment Manipulation PICTURE SEGMENTS

Picture Segment Body

Picture segments contain all drawing elements that are generated between calls to
gOpenSeg() (or gExtendSeg()) and gCloseSeg(). These include all lines, arcs,
characters, polygons and filling elements as well as the selection of attributes
associated with these elements. Changes to modelling transformations are also
stored.

The picture segment does not include changes to line, filling and colour tables or
windowing and masking information.

If polygon definition and picture segments are used together, the user should
remember that a polygon definition is fixed in picture space, whereas picture
segments, given suitable output hardware (see page 447), may be dragged. The
dragging operation does not modify the definition. Thus subsequent output based
on the polygon, e.g. boundary drawing or area fill, will be drawn where it was
originally defined in picture space.

In addition, in order to ensure that a polygon definition does not cross a picture
segment boundary, gCloseSeg() forces an internal call to gEndPolygon(). This
closes any polygon definition that may be open.

Segment Manipulation

430

Picture segments have a number of attributes. When first created a segment is
visible, but not sensitive or highlighted (flashing). Any of the following picture
segment attributes can be altered by using the routines below.

When a change is made to a segment using the routines in this section its effect is
immediate. If the software emulation of segments is active and the device is
unable to effect the change, GINO will update the display possibly by erasing the
segment and redrawing it according to its new attribute settings.

Visibility:

gSetSegVis(nseg, vis)

Visibility can be switched off (vis=GINVISIBLE) or on (vis=GVISIBLE),
without deleting the segment from the display file. The software emulation of
this action is to redraw the segment in colour zero (background colour) to make
the segment invisible and in its correct colours when making it visible. Making a
segment invisible may leave holes in underlying graphics which can be repaired
using the routine gDrawSeg().

PICTURE SEGMENTS Segment Manipulation

Sensitivity:
gSetSegHit(nseg, sens)

Hit-sensitivity is the capacity of a segment to be detected in any search of the
display file. Such searches are carried out by gEnqSegHit() (see page 439) or
events utilizing light-pens or cursor selection (see page 447). As the default
setting of this attribute is for a segment not to be sensitive, the user must make
the segments that are to be detected sensitive with this routine.

Highlighting