GINOGRAF

user guide

version 6.0

BRADLY ASSOCIATES LTD

Manhattan House

140 High Street

Crowthorne

Berkshire RG45 7AY

England

Tel: +44 (1344) 779381 Y

Fax: +44 (1344) 773168 GINO“ wgraphics
support@gino-graphics.com

www.gino-graphics.com

Information in this manual is subject to change without notice.

While Bradly Associates Ltd. makes every endeavour to ensure the
accuracy of this document, it does not accept liability for any errors or
omissions, or for any consequences arising from the use of the program
or documentation.

GINOGRAF user guide version 6.0
© Copyright Bradly Associates Ltd. 2003

All rights reserved.

All trademarks where used are acknowledged.

Contents

The Scope of GINOGRAF -« + =+ = v v v e e e e e e e e e "
Graphs =« - v v "
Charts: =« - v v "
Vector Charts - =+« - v v v e "
Polar Charts: - « « -« v v s "
Pig Charts: « -+ v v v 12
TextCharts - -« - v v v e 12
Utility routings: -« =« v o e e e 12
Interfacing With GINO - = =+ = - o v v e e e 12
Colour, Line Attributes and Filling - = = - = =« oo oo e e 13
Characters and Fonts .. 13
Transformations, Windowing and Masking- = = = = = = =« o v 15
Initializing GINOGRAF: + + + « + + o v e 15
Drawing Arga - -« - - v s s s 16
Graphical Axis Coordinate System:- = = -« =« = oo s 17
INtroduction to AXES = = = = = = v s s 19
AXES DEiNItION: « + « © « © « ¢ e 20
AXis Positioning =+« v s s 20
AXiS Sca”ng ... 21
AXGS Position and Sca”ng Enquiry 23
Axis Sub-Intervals and Tick Mark Size = =+ = = - - oo 24
AXES Drawing « =+« v - v s 24
Sing|e AXES * + ¢ ¢t e e e 24
AXES Frames -« « « « ¢ o s e e e 25
Numeric Annotation Format Control - =« =« =« o v oe oo 27
AXeS THING « -+ v v 29
AxesLabelling: -+« -« v v 30

Axes Annotation Control- = = =« =+ v s 31

Annotation POSItION * + =« =« « s r e e 32
Sklpplng |abe|s ... 34
Adjusting Offsets, Angle and Justification = = =+« » =« v v 35
AXeS Annotation Enquiry .. 38
Date AXeS ... 38
Date AXeS SCaling « « = - - ¢ s 39
Date CONVEISION « =+« + + « oo 40
Date Axes Usage - - - - -+« v 4
Date AXeS ENquiry - - - - -+« v v 45
Default Restoration = =+« + - oo v v e e 45
Introduction to Graphs: = « « + « + « v v 47
Complete Graph Drawing « =« = = = v v v e e e e 48
GraphScaling - - = - - v s 51
Graph Drawing Components - - = =« =« - oo s s 52
Graph Axes Definition and Display« « = =+« = - oo 52
Data Representation « =+« « « v v v 52
LI Graphs « » « =+« v v e 54
Stralght Lines Graphs ... 54
SMOOth CUIVES + + = = =+« = o o v e e e e e e 54
CUrVe End Conditions ... 55
Symbol Graphs .. 56
EITOrBars « « « = =+« s v v e e 57
Square Wave Graphs 58
Popu|ati0n Graphs ... 59
Data Set F||||ng .. 60
F|"|ng to a Llne ... 61
F|"|ng Between TWO Data Sets .. 61
Displaying Data Valugs =+« + « + « v v v v s e e e 64
Graph Data Value Contr0| ... 64
Application Specific Missing Valugs: - = = =« - - - oo 69

Graph Titles .. 70

CHARTS 71
Introduction to Charts = = =+ =« v e 71
Complete Chart Drawing = =« » = = v v s e e e 72
Histograms ... 72
Bar Charts - « = = = =« c s e e e 76
Step Charts & Variable Width Histograms - = - = - = - = - oe e e e e 79
ArEA CRaMS « « « + + ¢t e 82
Chart Sca”ng .. 86
Chart Drawing Components:- « + = =« =+ v oo e e e 87
Chart Axes Definition and Display « - - = = = = = - - oo 87
Block Chart Attributes =+« « « « « oo 87
H|Stogram Components 88
BIOCk F|||ed HiStOgram ... 88
Histogram Qutling: - « -+« o v v oo 89
Histogram Filling « « « « « « « « oo 90
Annotating Height Values on Histograms = = =+« » = oo e v e 91
Histogram Data Value Control = =« « = = =« v o e 91
Example of Fully Annotated Histogram = - = = - = -« o e e 93
Bar Chart Components 95
Block Filled Bar Chart = =+« v o v v v e e 9
BarChart Qutling - « « + + « v v v v %
Bar Chart Filling: - = - -+« + e %
Annotating Bar Charts « = = =+« - oo 97
Example of Fully Annotated Bar Chart- - = = = =+« « oo 08
Step Chart Components 100
BIOCk F|||ed Step Chal’t .. 101
Step Chart Qutling: « =+« - - - o 101
Step Chart F||||ng ... 102
Annotating Step Charts = = =+« v v s 103
Example of Fully Annotated Step Chart = = - = - -« o v oe e 104
Area Chart Components « =+« = =« v v s s 107
Block Filled Area Chart = =+« = - v v v e e e 107
Area Chart Outling: « « « -« - oo v e 108
Area Chart Filling -+« « v v oo 108
Annotating Area Charts - = = =+« = - - o 109
Example of Fully Annotated Area Chart = = = = = =+« oo 110
Multi Data Set Histogram Components = - = = = =« oe v e e 112
Multi Data Set Block Filled Histogram = - = - =« - v oe e oo e 113

Multi Data Set Histogram F||||ng 118

VECTOR CHARTS 121

Introduction to Vector Charts - - - - = = - - o v s 121
Vector Chart Components « + + + « « « + - v s s e e 121
Vector Chart Axes Definition and Display » = =« = =« oo v e 122
Vector Chart Attributes: =+ » = = o« v v e 122
Vector Chart Mappmg ... 122
Vector C||pp|ng and Sca”ng .. 122
Resetting Attributes .. 123
Enquiring Attributes .. 123
Vector Chart Drawing = - - - - = v v v o 123
Introduction to Polar Charts - - - = =« v v v e 127
Complete Polar Chart = = = = = o oo 127
Polar Chart Components: =+« » = = =« v v v o 132
Positioning and Scaling = =+« + 1 v 133
Polar AXes Drawing « « =+« v v v 133
Polar Axes Annotation Control - = =+« - v v e e 134
Polar Axes Enquiry « « =« v v 135
Polar Chart Default Restoration = =+« = - o v e e e e 135
Polar Chart Drawing: « =+« « v v v v 135
PIE CHARTS 137
Introduction to Pie Charts « - - - - = o v v v e 137
Pie Chart Facilities = = = = = = v v oo 137
Pie Chart Size and Position .. 139
Pie Chart Drawing .. 140
Single Segment QULPUL + + « + = =+ = =« = oo 142
P|e Chan Annotation Control ... 142
Pie Chart Annotation BOX ... 147

Pie Chart Contro| ... 147

Start Angle DEfINiion « + « + + + + + 148

Pie CRAM BOUNGAIY « + -+« + ~ + + + o e e 148

Pie CRAM EXPIOSION + + « + + + ~ + + + e e e 148

Pl CRAMENQUITY « + + « + + + o+ o ot e 151

Pie Chart Default RESIOTation - « - -+ « « « « « <« <« o 151
TEXT CHARTS 153
Introduction to Text Charts: - =« =« - o v v e e 153
Text Chart Layout « - -+« -« =« oo 154
StiNG TeXt Chart - « =+« = o v o e 155
ValUe TEXECRAMS « « + « + - v o o e e 157
Graphic ltem Text Charts = - =« - = v oo e e e 160
UTILITIES 165
Introduction to Utilities - =« + = = - - o e e 165
Graph THING - = = = =« = o v o 165
Coordinate Conversion: « =« =« + o v o e e 166
LINE DIaWING « = = = = = v = s s 167
ATTOW DFAWING =+« = =+ = = @ r e e 167
REFEIENCE LINES =« + « « « = @ o e 168
Data FIing - + =+« -+ - v o 169
Example Program = « - =« - oo v o 170
GRAPH LAYOUT 175

Introduction to Graph Layout: = - =« = = v o s 175

Multiple Graph Layout =« =« =« v o s e 175

Using Complete Graph or Chart Routings = - =« = =« o v v e ee e e 175
Using Component ROULNES - =« + =+ + = =+ = v v e oo 177
Graphs with Multiple Data Sets = = -+ =« » oo v e e e 178
Mixing Graph Levels « « ¢« v v e 178
Mixing Graph Types .. 179
Graphs with Multiple Axes = = =« = = v o m e 179
Multiple Axes on Graph Frame = = =« = -« v v e 180
Axes with Multiple Scales - =« = =« - - e 182
CONVersion Scales « =+« v v s 189
ROUTINE SPECIFICATIONS 193
DEFAULTS 307
Default Parameters: =« = =+ =« v s 307
Axes Definition Defaults: = =« =+« o v 307
Data Value Display Defaults = -« =« oo v e e e 308
ChartDefaults - = =« v v v v 308
Vector Chart Defaults - - - =« = o v e v e e 309
Polar Chart Defaults: = - -« =« o v e e 309
Pie Chart Defaults - = = = -« = oo v e 309
TextChart Defaults - = -« = - v v v e e 310
Drawing Attributes ... 310
ERROR AND WARNING MESSAGES 313
GINOGRAF Errors and Warnings = = = = =+ = v v e s e e e e 313
Configuration File Errors + =« =« » o v e e e e 317
STRUCTURES 319
Structures in GINOGRAF =« + = v v e e e e e e e 319
GINO Structures Used By GINOGRAF =« =« » v ov e v e e e e e e e e 320

CROSS-REFERENCES 321

Cross-Reference Summary = =« - = v o v o s 321
F77-F90 Cross-Reference - - =« =« » o v v v e e e 321
FO0-F77 Cross-Reference -« =« =« v o v v v e 324
DEPRECATED ROUTINES 329

Deprecation Procedure =« =« + o e 329

Chapter

INTRODUCTION

This section covers the scope of the GINOGRAF library and its interface with
GINO.

The Scope of GINOGRAF

GINOGRAF is a routine library for displaying statistical data in a graphical form.
It is used in conjunction with GINO, which provides the device drivers and
graphical primitives required by GINOGRAF. Both packages are almost totally
machine independent.

GINOGRAF provides the following facilities :

Graphs

X-Y graphs (lines, splines, curves, symbols), area graphs, error bars, hi-lo graphs,
scatter diagrams, square wave graphs.

Charts

Histograms, bar charts, gantt charts, time planners, area charts, step charts,
stacked histograms.

Vector Charts

Air/fluid flow diagrams, stress flow, 5D data display.

Polar Charts

Circular axes, polar coordinates.

11

Interfacing With GINO INTRODUCTION

Pie Charts

Complete Pie Charts, individual segments.

Text Charts

Automated columns of strings, values, lines, symbols and fill styles.

Utility routines

Reference lines, data fitting, arrows, coordinate conversion.

Within most chapters, two levels of routines are provided. Complete drawing
routines to present your data in the required form in one easy call, and low level
component routines to allow the user to construct comprehensive graphs in a
modular way, giving much finer control over positioning and annotation.
Complete drawing routines are provided for Graphs, Bar Charts, Histograms,
Step Charts, Area Charts, Polar Charts and Pie Charts.

Interfacing With GINO

12

The GINOGRAF library uses GINO routines to carry out all its drawing and so
the availability of the GINO library is paramount to users of GINOGRAF. In
addition, any GINOGRAF application will require some GINO routines for
certain basic routines, such as device initialization and termination as this is not
carried out within GINOGRAF. The relationship between the components of a
GINOGRAF application is as follows:

Application

GINOGRAF

GINO Library

Device Driver

INTRODUCTION Interfacing With GINO

As the GINO library is required for any GINOGRAF application, it follows that
the complete functionality of GINO is also available to the GINOGRAF user and
the two sets of routines may be used without restriction. For the first-time user of
GINOGRAF only graphic device control will be required as described above, but
as the application develops, line, colour, character and window control may be
added. This chapter covers both the essential routines required by all
GINOGRAF applications as well as other areas which can be used to affect the
output from GINOGRAF.

Colour, Line Attributes and Filling

Most line drawing done within GINOGRAF is done using the current line and
colour attributes as set by GINO. The current colour and line attributes are
controlled by routines such as:

gSetLineColour (col) Line colour
gSetLineWidth (width) Line width
gSetLineEnd (end) Line end
gSetBrokenLine (brk) Broken line type

The exceptions are where line and fill indexes are supplied to a GINOGRAF
routine by argument, such as the Graph and Chart filling, Pie Chart filling and
some Text Chart routines. The default styles are shown in Appendix A of this
manual but these may be changed using the following GINO routines:

gDefineLineStyle(line,vis,brk,col,width,type,end)
gDefineBrokenLineStyle(brk,mode,repeat,dash,dot)
gDefineHatchStyle(fill,pitch,angle,xshift,yshift,xshear,xhatch)

Details of these and other routines controlling colour, line style and filling are
found in the Line Attributes and Area Filling sections in the GINO User Guide.

Characters and Fonts

By default GINOGRAF uses software-transformable characters to ensure that if
transformations (shift, rotate, scale and shear) have been applied within a
program using GINOGRAF, the annotation and titling are modified in the same
way as the graph itself. This is carried out by an internal call to
gSetCharTransformMode(GON) (a GINO routine) which prevents the output of
hardware characters by GINOGRAF. In addition, it may result in a different
appearance of GINO character strings due to the differences between software
characters and hardware characters produced on different devices.

13

Interfacing With GINO INTRODUCTION

14

If software characters are required throughout a GINO/GINOGRAF application
this can be achieved by calling gSetSoftChars() or gSetCharTransformMode() at
the start of the program. Alternatively, if the user requires hardware characters to
be output by GINOGRAF, it is possible to prevent the switch to
software-transformable characters by using the routine ggSetGraphCharMode():

ggSetGraphCharMode(sw)

where, if sw = GGINOMODE the current character mode will be used within
GINOGRAF. Users are warned that unpredictable result may occur if
ggSetGraphCharMode() is called while transformations are current.

GINOGRAF uses the current character, font and string attributes set by GINO
except for string angle (gSetStrAngle()) and justification (gSetStrJustify()) which
are always set as required by the relevant GINOGRAF routine. The following
GINO routines will however, affect the size and form of graph annotation and
labelling:

gSetCharSize (width, height) Character size
gSetItalicAngle (ang) Ttalic angle
gSetStrUnderscore (und) Underlining
gSetCharFont (font) Font
gSetFontWeight (weight) Font weight
gSetFontFillStyle (style) Font style and filling

In all cases however, the current GINO character mode and attributes are restored
at the end of a GINOGRAF routine which has changed them.

GINOGRAF fully caters for the use of all the GINO character string escape
facilities which provide for font changes, exponents and indices, italic angles,
emboldening and strings that contain more than one line of text. All these
features may therefore be used for graph and Pie Chart annotation and titling. A
summary of the features is listed below:

‘*Fnnn® Change to font nnn (ie: change to font 3: *F003)
VXN Move to next line of text block

VxRS Set exponent (0.6*height above baseline)
‘RIY Set Index (0.3*height below baseline)
‘xS Underline following characters

AN Set italic -15 deg

x| Set italic 0 deg

A4 Set italic +15 degrees

VEY Bold following characters

Nk Output the escape character

xS String terminator

INTRODUCTION Initializing GINOGRAF

Full details of all the character routines and features are given in the
CHARACTERS section of the GINO User Guide.

Transformations, Windowing and Masking

All output by GINOGRAF is subject to the current GINO transformation,
windowing and masking state. As indicated above, to ensure graph annotation is
correctly aligned with the graph itself, software-transformable characters are
output by default. The control of transformations in GINO allows graphs to be
shifted, rotated, scaled or sheared in 2D or 3D as required.

In the case of the complete drawing routines, the current windowing limits
affects the position of Graph axes, Pie and Polar Charts. If transformations are
also current, the graph can be transformed out of the clipping area resulting in
only part of or none of the graph being visible. Users must therefore be careful
when using any transformations with the complete drawing routines.

However, masking, whether it be rectangular or polygonal can be used to good
effect with GINOGRAF, masking out areas for the placement of text boxes or
other annotation. The output is suitable for all graphics devices as no
over-drawing is done.

Initializing GINOGRAF

GINOGRAF is automatically initialized when the first GINOGRAF routine is
called. This outputs the GINOGRAF banner, initializes all internal variables and
enquires the current GINO window limits and character attributes.

The GINOGRAF banner gives the version number of the library being used as
well as the copyright message. The banner cannot be suppressed, but it can be
forced to appear at a convenient place (for example, the very beginning of a
program run), by forcing initialization in a controlled way. This can be achieved
by calling the routine

ggRestoreAxesSettings().

ggRestoreAxesSettings() must however, be called after a GINO device is
nominated. ggRestoreAxesSettings() sets up the default position, size and scaling
for both axes; as this is done by the first GINOGRAF routine to be called in a
program, whatever it is, the call to ggRestoreAxesSettings() does not change the
operation of subsequent GINOGRAF routines.

Where graphical output is being produced on the same terminal that the program
is being run from, the code:

15

Initializing GINOGRAF INTRODUCTION

16

ggRestoreAxesSettings () ; call ggRestoreAxesSettings
gNewDrawing () ; call gNewDrawing

displays the GINOGRAF banner and leaves the screen clear for drawing graphs.

Drawing Area

By default the GINOGRAF drawing area is the same as the current GINO
window limits.

This is either the current deviceor — - -\ —— . ____ .
paper limits (as set by the GINO
routine gSetDrawingLimits()) or that °
set by the GINO routine ¢

gSetWindow2D() (although the 2D i

limits from the 3D window routine has *— 3} Iime

the same effect on GINOGRAF). As
the window routines also control

clipping limits, it may be desirable to e
set a different GINOGRAF drawing e i“ coTos 2w

Drawing fimits

area to be either larger or smaller than W= CharacterWidih K = Charate Hoigt
the clipping limits. This is achieved
through the routine ggSetPlotFrame(): ~ Default position and limits of

. the graphical axes
ggSetPlotFrame(limits)

where the structure limits defines the required limits.

The current drawing limits can be enquired using the routine ggEnqPlotFrame()
which also indicates if they were set by ggSetPlotFrame() or the GINO window
routines through the returned argument flg.

ggEngPlotFrame(flg,limits)

All the complete Graph and Chart routines use the current drawing area limits to
define the default position of the graph or chart. The default positions of graph
axes are shown above, where the space around the axes is calculated using the
current GINO character size. The default Polar or Pie Chart position is shown
above.

Multiple graphs or charts may be positioned on the device or paper area by
calling ggSetPlotFrame() with appropriate limits. This is explained in more detail
later.

INTRODUCTION Initializing GINOGRAF

These positions are only used for the complete Graph or Chart routines within
GINOGRAF and do not preclude the manual positioning of axes with the routine
ggSetAxesPos(), or Polar Charts with the routine ggSetPolarChartAttribs() or Pie
Charts with the routine ggSetPieChartFrame().

The drawing area limits can be reset to match the GINO window limits by calling
ggRestoreAxesSettings() or ggRestorePieChartSettings().

Graphical Axis Coordinate System

Once GINOGRAF is initialized, there are two coordinate systems available to the
GINOGRAF user, user space coordinates and graphical axis coordinates.

User space coordinates represent the picture coordinates, with the origin (0,0) at
the bottom left corner of the picture, whether on paper or screen. This coordinate
system is used by any GINO routine called directly by the user.

Graphical axis coordinates define points within a Graph, Chart or Polar Chart
according to the axis position and scaling that was defined using the axis
definition routines ggSetAxesPos() and ggSetAxesScaling(), or any of the
complete drawing routines ggPlotGraph(), ggPlotXYPolarChart(). This greatly
simplifies the plotting of graphs or charts as the user does not have to compensate
for the position of the graph on the paper, redefine the user space origin, or scale
values when using logarithmic axes.

Conversion between the two systems is provided by two utility routines
ggTransformGraphPoint() and ggTransformSpacePoint().

Both user space coordinates and graphical axis coordinates are affected by the
shift, rotate, scale and shear transformations that are provided by GINO. The
effect of these transformations may be switched off or on at any time (eg, for
outputting text). Full details of transformation and transformation control are
given in the WINDOWING & MASKING and TRANSFORMATION
CONTROL sections of the GINO User Guide.

17

Chapter

AXES

Introduction to Axes

This chapter concerns itself with the definition, display and labelling of standard
two dimensional graph axes. The definition of an axes system for the following
graph and chart chapters is required to set up an appropriate graphical coordinate
system in which to display the data. As well as the default numerical labelling of
axes, textual labelling is covered together with fine control of the position and

format of graphical annotation.

Summary of the functionality of the axes routines:

ggSetAxesPos ()
ggEngAxesPos ()

ggSetAxesScaling ()
ggEngAxesScaling ()

ggDrawAxes ()
ggAddGrid()

ggSetGridMarker ()
ggEngGridMarker ()

ggSetAxesAnnotation ()
ggEngAxesAnnotation ()

ggDrawAxesTitle ()
ggDrawAxesLabels

0
ggSetAxesAttribs ()
ggEngAxesAttribs ()

ggSetDateFormat ()
ggEngDateFormat ()

ggSetDateAxesScaling ()
ggEngDateAxesScaling ()

ggSetDateAxesAnnotation ()
ggEngDateAxesAnnotation ()

ggConvertDates ()

Set/enquire axis position
Set/enquire axes range and scaling type

Draws axes, tick marks and numeric annotation
Draws a stylized frame

Set/enquire grid intersection symbol
Set/enquire numeric format of axes annotation

Output an axis title
Axes labelling

Set/enquire axes annotation attributes
Set/enquire date input format
Set/enquire date axes scaling
Set/enquire date axes output format

Converts date data

19

Axes Definition AXES

ggConvertDateToGraph () Converts date into a real value representing a day
number
ggConvertGraphToDate () Converts a date value into a character string in the

current input date format

ggRestoreAxesSettings () Restore default axes settings

Axes Definition

20

The two routines for setting up the axes system are:

ggSetAxesPos () for positioning each axis
ggSetAxesScaling () for setting the ranges and scale type

There are default positions and data ranges for both axes, but these are only
provided for a fail safe situation. While the default position may be satisfactory,
it is essential to define the scale type and data ranges to both X and Y axes (using
ggSetAxesScaling()) before drawing any graph form. The drawing and titling of
axes is optional.

Axis Positioning

The routine call which positions each axis is ggSetAxesPos():
ggSetAxesPos(or,xor,yor,axlen,xory)

where xory determines which axis position is being defined (xory = GXAXIS for
X axis and xory = GYAXIS for Y axis). xor, yor determines the axis position in
user space coordinates and axlen determines the length in current units. The
position (xor, yor) is defined as either the point where the axis starts
(or=GAXISSTART) or the point where the natural origin of the data (the value
0.0) occurs on the axis (or=GDATAORIGIN).

AXES

Axes Definition

The relationship of the above arguments is illustrated below

or=GDATAORIGIN xory=GXAXIS

A

axlen >

-15 -10 5 0 5 10 15 20
1 1 h

i : : : S 4—— XAXIS

‘ DRAWING
AREA

USER SPACE
ORIGIN (0,0)

xor BOUNDARY

or=GAXISSTART xory=GXAXIS

axlen >

! 4—— X-AXIS

DRAWING
AREA

xor

USER SPACE
ORIGIN (0,0)

BOUNDARY

Relationship of ggSetAxesPos arguments

For the two axes to intersect at xor, yor then the values for or, xor and yor
should be constant for the calls of ggSetAxesPos() for each axis.

Successive calls to ggSetAxesPos() override earlier definitions for the same axis.

Axis Scaling

The routine to set the scaling type and range of either axis is ggSetAxesScaling():

ggSetAxesScaling(scale,nints,vbeg,vend,xory)

where xory determines which axis scaling is being defined (xory = GXAXIS for
X axis and xory = GYAXIS for Y axis). nints is the required number of intervals
and vbeg,vend specify the start and end of the axis range.

There are five different scaling types, three linear
(scale=GLINEARTYPEI-GLINEARTYPE3), one logarithmic (scale=GLOG10),
and one discrete (scale=GDISCRETE). The different scaling types are shown

below.

21

Axes Definition AXES

22

The three linear scaling types allow the user to specify either approximate or
precise information for the number of intervals or the range of data. For
scale=GLINEARTYPEI the user provides approximate information and
GINOGRAF will calculate new limits to include the range specified using
sensible values for the interval between major tick marks. For
scale=GLINEARTYPE2 the user provides approximate values for the range but a
precise number of intervals. Again GINOGRAF will calculate new limits to
include the range supplied. For scale=GLINEARTYPES3 the precise values for
axis range and number of intervals is used.

Where logarithmic scaling is requested (scale=GLOG10), GINOGRAF will
round up the axis range to the next power of 10 as shown below. The value of
nints is not used. Note that neither axis ranges or data supplied to Graph or Chart
routines can be less than or equal to zero if logarithmic axes are used.

ggSetAxesScaling(GLINEARTYPEL,7,10.3,99.5,GXAXIS)
T T T T T |
10 20 30 40 50 60 70 80 90 100

geSetAxesScaling(GLINEARTYPE2,7,10.3,99.5,GXAXIS)
20 0 20 40 60 80 100 120

ggSetAxesScaling(GLINEARTYPES,7,10.3,99.5,GXAXIS)
T T T T T T T !
10.30 23.04 35.79 48.53 61.27 74.01 86.76 99.50

ggSetAxesScaling(GLOG10,7,10.3,99.5,GXAXIS)
1 2
Logl0

geSetAxesScaling(GDISCRETE, 7,10.3,99.5,GXAXIS)
10.30 25.17 40.03 54.90 69.77 84.63 99.50

Various axis scaling types

Discrete axes are used for Histograms and Bar Charts and for this type of axes
nints sets the number of columns. The precise values of vbeg and vend are used
to calculate the values displayed at the tick mark in the centre of the column. In
terms of GINOGRAF, true graphs may only be drawn on the linear or
logarithmic scales as they are continuous, however, graph drawing may be added
to discrete axes (eg, a straight line fitted to a bar chart) without any adjustment
(see mixing different graph types).

Each axis has a default scale type and range as follows:

scale = GLINEARTYPE3
nints = 9

vbeg = 1.0

vend = 10.0

AXES

Axes Definition

These settings are unlikely to be satisfactory for any real data sets. Therefore of
all the axis definition routines that may be used, ggSetAxesScaling() is the most
necessary before drawing any graph form. The user should note also that these
defaults are restored after calling the routine

ggRestoreAxesSettings().

Successive calls to ggSetAxesScaling() for a particular axis override previous
calls for that axis. Once a position and scaling type has been defined, coordinates
defined in terms of these axes are referred to as graphical axes coordinates.

Axes Position and Scaling Enquiry

The user may enquire the current position of either axis at any time using the
routine ggEnqAxesPos():

ggEnqAxesPos(or,xor,yor,axlen,xory)

where xory determines which axis positions are being enquired (xory=GXAXIS
for X axis and xory=GYAXIS for Y axis). or, xor,yor and axlen return the
position and length in the same manner as supplied to ggSetAxesPos().

The default position for the X and Y axes is shown above (being the bottom and
left axes drawn in the box). These defaults are restored after calling the routine
ggRestoreAxesSettings().

As explained above, for certain types of scaling GINOGRAF will adjust the
requested number of intervals and increase the requested range of data values in
order to display an axis with sensible annotation. The user may enquire the actual
settings that GINOGRAF will use when it draws the axes with the routine
ggEnqAxesScaling():

ggEnqAxesScaling(scale,nints,vbeg,vend,xory)

where xory determines which axis scale parameters are being enquired
(xory=GXAXIS for X axis and xory = GYAXIS for Y axis). scale returns the
current type of scaling set for the axis; nints gives the actual number of intervals
or columns on the axis and vbeg and vend give the actual data range of the axis.

23

Axes Drawing AXES

Axis Sub-Intervals and Tick Mark Size

The number of sub-intervals (ie. minor tick marks between the major intervals)
on an axis is controlled by the amount of space available when drawing the axis.
This in turn is controlled by the current character size used for the annotation.
The character height controls the number of sub-intervals on the Y axis (and the
size of the tick marks on the X axis) and the character width controls the number
of sub-intervals on the X axis (and the size of the tick marks on the Y axis).

Axes Drawing

24

The two routines available for optionally drawing the axes are:

ggDrawAxes () for drawing the axes with or without numeric annotation and tick marks
ggAddGrid () for drawing a complete four sided axis frame

Single Axes

Once an axis position and scaling type have been defined the axes may be drawn
with the routine ggDrawAxes():

ggDrawAxes(tick,tickside,val,xory)

where xory determines which axis is required (xory = GXAXIS for X axis and
xory = GYAXIS for Y axis).

tick, tickside and val determine whether the major and/or minor tick marks are
to be drawn and whether values are drawn and on which side of the axis they are
to appear. If the tick marks and values are required on the same side of the axis
then tickside and val must be equal.

By default, the numeric annotation on a linearly scaled axis (scale<3) is written
in the form:

N
S =P * 10

where S is the true value of an axis tick mark, P is the actual number written by
the axis tick mark with up to two decimal places and *10 to the power N is a
multiplier written at the end of the axis, ensuring N is not in the range -2 to 2.

The numeric annotation on a logarithmically scaled axis is a set of consecutive
integers. N represents logl0. Intermediate tick marks may be drawn, depending
on the available space. The scale factor LOG10 is written at the end of the axis.

AXES Axes Drawing

An example of linear and logarithmic scaling is shown below.

Logl0
6.

X109

L T T N O = R ST T N N)

Linear and logarithmic axes with default scaling

Further control over axis annotation position and format is provided by the
annotation control routines ggSetAxesAnnotation() and ggSetAxesAttribs().

Axes Frames
A complete four sided frame may be drawn using the routine ggAddGrid():
2gAddGrid(stylel,style2,anx,any)

where stylel and style2 determines the grid style as shown below. anx and any
determine whether numeric annotation and/or grid lines or cross lines are drawn
for either the X or Y axes. If drawn, tick marks are drawn on the inside of the
frame and annotation is drawn on the outside of the frame. Grid positioning and
scaling is controlled by the current settings of ggSetAxesPos() and
ggSetAxesScaling().

25

Axes Drawing AXES

Six of the possible values for stylel and style2 produce the following frame

2
1 + + + + 1 + + + +
0 + + + + 9 + + + +
1 + + + + + + + +
2 2
1 0 1 2 3 4 1 0 1 2 4
style]=GCARDINAL style] =GINTERMEDIATE
style2=GTICKSANDCROSSES style2=GTICKSANDCROSSES
2
1 1
0 o
1
2 2
1 0 1 2 3 4 1 Q 1 2 4
style]l =GCARDINAL style]l =GINTERMEDIATE
Sle2=GTICKS Si}le2=GTICKS
2
1 1
0)
1
2 2
1 0 1 2 3 4 1 0 1 2 3 4
style] =GNONE stylel =GCARDINAL
Style2=GNONE style2=GGRIDLINES

Various axes frame types

As with ggDrawAxes(), further control over axis annotation position and format
is provided by the annotation control routines ggSetAxesAnnotation() and
ggSetAxesAttribs().

The default symbol drawn at the grid intersection points for styles using
GTICKSANDCROSSES is a cross as shown above. This symbol may be changed
to be any of the GINO symbols using the routine ggSetGridMarker():

ggSetGridMarker(sym)

where sym defines the symbol required. Any of GINO’s standard, software or
hardware symbols may be used as a grid intersection symbol, further details of
which are found in the GINO documentation for gDrawMarker().

26

Axes Drawing

The current grid intersection symbol can be enquired through the routine
ggEnqGridMarker():

ggEnqGridMarker(sym)

Numeric Annotation Format Control

The format of axes annotation can be altered with the routine
ggSetAxesAnnotation():

ggSetAxesAnnotation(ndp,npower,asty, xory)

The first two arguments, ndp and npower, control the format of the numeric
output, whereas asty sets the type of axis scale factor (in connection with
npower). xory is a flag that determines whether the format parameters refer to
the X or Y axis. If xory = GXAXIS, the format of the X axis is defined; if xory =
GYAXIS, the format of the Y axis is defined. For log axes, ndp and asty are not
used and the default annotation form is. (ie. where the value at a major tick mark
is 10 to the power n, ‘n’ is displayed). npower can be used to define an output
format at each major tick mark of either the actual values or values in the form 10
to the power n. Thus values less than 10 to the power npower are displayed as a
real value and values greater than or equal to 10 to the power npower are
displayed in exponential form.

For non-log axes, the number of decimal places displayed for each value is
determined using the parameter ndp. Positive values for ndp define the
maximum number of decimal places that will be output if required, whereas
negative values force that number of decimal places whether needed or not.
Values may also be output scaled by a power of ten determined by the value of
npower within the range -15 to 15; if npower is outside this range then
GINOGRAF calculates a suitable value.

asty sets the type of display for the axis scale factor when drawing axes, offering
a number of engineering and scientific forms for example:

asty for 10 to the power 3 for 10 to the power -3
GNOSCALE - -

3 -3
GSCALEPOWEROF10 10 10
GSCALEZEROS *000 0.00"
GSCALEWORD Thousand Thousandths
GSCALEPREFIX kilo- milli-

27

Axes Drawing AXES

28

N.B. for asty=GNOSCALE, no scale factor is displayed even though the values
displayed are divided by 10 to the power npower. For types GSCALEWORD or
GSCALEPREFIX, the scale factor npower is required to be a multiple of 3.

An example of the five types is shown below where ndp=-5 and npower=9.

asty=GNOSCALE

T T T T 1
0.00000 0.00005 0.00010 0.00015 0.00020

asty=GSCALEPOWEROF10
0.00000 0.00005 0.00010 0.00015 0.00020

x109
asty=GSCALEZEROS
0.00000 0.00005 0.00010 0.00015 0.00020
‘000000000
asty=GSCALEWORD
0.00000 0.00005 0.00010 0.00015 0.00020
Billion
asty=GSCALEPREFIX
0.06000 0,06005 0,06010 0.06015 0.06020

giga-

The five axes scaling types

ggSetAxesAnnotation() is also used to control the numeric format of other values
output by GINOGRAF. These include the output of Graph and Chart data values
from the ggAddxxxValues() routines and values output by the Text Chart
routines. In most cases the values will be associated with a particular axes and so
they will match those output on the axes itself, but in other cases (Pie Charts and
Text Charts) the format of the Y axis is used. Users should also note that all the
data values output will be scaled by 10 to the power npower and therefore
npower should only be set to non-zero values where axes are displayed (and
hence the relevant scale factor) or where the user displays the scale factor
manually.

Where a power factor is used on an axis and non scaled data values are required
for the Graph or Chart annotation, ggSetAxesAnnotation() must be called with
npower set to zero before the data values are output, eg,

C Code

/* SET REQUIRED FORMAT FOR AXIS */
ggSetAxesAnnotation (-2, 3, GSCALEZEROS, GXAXIS) ;
ggDrawAxes (GCARDINAL, GCLOCKWISE, GCLOCKWISE, GXAXIS) ;

/* SWITCH OFF SCALE FACTOR */
ggSetAxesAnnotation (-2, 0, GNOSCALE, GXAXIS) ;
ggAddxxxValues ()2

AXES

Axes Titling

F90 Code

! SET REQUIRED FORMAT FOR AXIS

call ggSetAxesAnnotation (-2, 3,GSCALEZEROS, GXAXIS)

call ggDrawAxes (GCARDINAL, GCLOCKWISE, GCLOCKWISE, GXAXIS)
! SWITCH OFF SCALE FACTOR

call ggSetAxesAnnotation (-2, 0,GNOSCALE, GXAXIS)

call ggAddxxxValues ()

The current attributes for numeric and axis format control for each axis are
returned through ggEnqAxesAnnotation():

ggEngAxesAnnotation(ndp,npower,nrfigs.asty,xory)

where xory is supplied to specify the required axis. The remaining arguments are
as set by the routine ggSetAxesAnnotation() except nrfigs which is an additional
argument giving the total field width of the annotation on the specified axis.

Axes Titling

The routine ggDrawAxesTitle() provides a means to output a justified title with
reference to either the X or Y axis:

ggDrawAxesTitle(string,yorx,xory,pos1,pos2)

where string is a character variable or constant holding the title. xory determines
the axis to which the title is related whereas pos1 & pos2 determines the vertical
and horizontal justification within the limits of the current position and length of
the specified axis.

For titles related to the X axis (xory = GXAXIS), yorx is the Y coordinate
position in user space coordinates. Conversely for Y axis titles (xory =
GYAXIS), yorx is the X coordinate position in user space coordinates. X axis
titles are written to be read from left to right, and Y axis titles are written with the
first character lowest.

As ggDrawAxesTitle() uses a user space coordinate to determine the position of
the title, its use is not restricted to axis titling, but may be used for more general
titling such as at the top of a graph or even to label a point of interest within a
graph. Where the position needs to be related to some point on the graphical
coordinate system it may be necessary to convert between a graphical and space
coordinates system in order to supply the value of yorx. This can be achieved
with the utility routine ggTransformGraphPoint().

An example of the use of ggDrawAxesTitle() is shown below, displaying the
interaction of yorx, xory, posl & pos2 with reference to the X axis.

29

Axes Labelling AXES

Axes Labelling

The routine to independently label an axis is ggDrawAxesLabels():
ggDrawAxesLabels(nstr,string,iv,xory)

where string is a character array of dimension nstr, containing labels to be
output at major tick marks and xory determines which axes is to be labelled. The
labels in string are cycled if there are greater than nstr tick marks on the axis.
The parameter iv determines whether the labels are output on the anticlockwise
(iv=GANTICLOCKWISE) or clockwise (iv=GCLOCKWISE) side of the axis.

Although ggDrawAxesLabels() provides the means to position the labels at any
position, in general these axes labelling routines are used as an alternative to
numeric labelling. Therefore the axis to which labelling is to be added should be
drawn without numeric labelling by setting the appropriate argument, ie, anx=0
or any=0 in ggAddGrid(), or val=0 in ggDrawAxes() if required.

The example below shows the use of ggDrawAxesLabels(). Note that, by default,
some of the labels are suppressed because the length is too long to fit between
tick marks. Further control of label output is given through the routine
ggSetAxesAttribs().

January March May July September November
Axis labelling using ggDrawAxesLabels

C Code

/* AXIS LABELLING WITH ggDrawAxesLabels () */
#include <gino-c.h>
#include <graf-c.h>

int main (void) {
GDIM paper;
int papty;
char *mons[12]= { “January”,"February","March",
"April”,"May","June","July", "August", "September",
"October”, "November", "December" };

gOpenGino () ;

XXXXX () ;
gEngDrawingLimits (&paper, &papty) ;
ggSetGraphCharMode (GGINOMODE) ;

30

AXES

Axes Annotation Control

/* DEFINE AXIS POSITION */

ggSetAxesPos (GDATAORIGIN, 0.2*paper.xpap,
0.2*paper.ypap, 0.7*paper.xpap, GXAXIS) ;

/* DEFINE AXIS RANGE */

ggSetAxesScaling (GLINEARTYPE3,11,1.0,12.0,GXAXIS) ;

/* DRAW AXIS WITHOUT ANNOTATION */

ggDrawAxes (GCARDINAL, GCLOCKWISE, GNOVAL, GXAXIS) ;

/* LABEL AXIS */

ggDrawAxesLabels (12, mons, GCLOCKWISE, GXAXIS) ;

gSuspendDevice () ;
gCloseGino () ;
return (0) ;

F90 Code

AXIS LABELLING WITH ggDrawAxesLabels ()

use gino £90
use graf f£90

type (GDIM) paper

integer papty

character (len=9), dimension(l2) :: mons = &

(/" January’,’February’,’March’,’April’,'May’, &
"June’ , " July’,’August’,’September’,’October’, &
'November’ ,’ December’ /)

call gOpenGino

call xxxxx

call gEngDrawingLimits (paper, papty)
call ggSetGraphCharMode (GGINOMODE)

DEFINE AXIS POSITION

call ggSetAxesPos (GDATAORIGIN, 0.2*papersxpap, &
0.2*papersypap, 0.7*papersxpap, GXAXIS)

DEFINE AXIS RANGE

call ggSetAxesScaling (GLINEARTYPE3,11,1.0,12.0,GXAXIS)

DRAW AXIS WITHOUT ANNOTATION

call ggDrawAxes (GCARDINAL, GCLOCKWISE, GNOVAL, GXAXIS)
LABEL AXIS

call ggDrawAxesLabels (12, mons, GCLOCKWISE, GXAXIS)

call gSuspendDevice
call gCloseGino
stop

end

Axes Annotation Control

ggSetAxesAttribs() controls both numeric and textual annotation output by the
complete graph and chart routines and the routines ggAddGrid(), ggDrawAxes(),
and ggDrawAxesLabels():

ggSetAxesAttribs(swi,xy,nstart,nskip,aoff,angstr,jusver,jushor,reduc,xory)

31

Axes Annotation Control AXES

32

It controls the following attributes:

+ Position with respect to the axes (swi,xory)

« Start tick mark (nstart)

« Number of tick marks to skip (nskip)

+ Offset from control point (aoff)

« String angle of annotation (angstr)

« Justification of string or value (jusver,jushor)
+ Optional text size reduction (reduc)

+ with xory determining the X or Y axis.

Annotation Position

Annotation can be positioned at two places with respect to the axes. The default
position (swi=GONAXIS) is at a fixed distance either side of the axis alongside
the major tick marks. The second (swi=GOFFSET) is either side of a user
defined position in user space coordinates specified by the argument xory. This
second option is useful for either adding additional annotation or moving the
annotation out of the graph area where axes have been placed in the centre.

C Code

/* ANNOTATION POSITIONS SET BY ggSetAxesAttribs () */
#include <gino-c.h>
#include <graf-c.h>

int main (void) {
GDIM paper;
int papty;
char *mons[12] = { “Jan”,"Feb","Mar", "Apr", "May",
"Jun","Jul","Aug","Sep","OCt","NOV","DeC" },.

gOpenGino () ;

XXXXX () ;

gkEngDrawingLimits (&paper, &papty);
ggSetGraphCharMode (GGINOMODE) ;

/* DEFINE AXIS POSITIONS */
ggSetAxesPos (GAXISSTART, 0.1l*paper.xpap,
0.5*paper.ypap, 0.8*paper.xpap, GXAXIS) ;
ggSetAxesPos (GDATAORIGIN, 0.l*paper.xpap,
0.5*paper.ypap, 0.8*paper.ypap, GYAXIS) ;

AXES

Axes Annotation Control

/* DEFINE AXIS RANGES */

ggSetAxesScaling (GLINEARTYPE3,11,1.0,12.0,GXAXIS) ;
ggSetAxesScaling (GLINEARTYPE3,10,-5.0,5.0,GYAXIS) ;

/* DRAW Y AXIS WITH ANNOTATION */

ggDrawAxes (GCARDINAL, GANTICLOCKWISE,
GANTICLOCKWISE, GYAXIS) ;

/* LABEL X AXIS WITH MONTHS AT DEFAULT POSITION */

ggDrawAxesLabels (12, mons, GANTICLOCKWISE, GXAXIS) ;

/* DRAW X AXIS WITH VALUES AT BOTTOM OF Y AXIS */

ggSetAxesAttribs (GOFFSET, 0.1*paper.ypap,1,0,0.0,
0.0, GDEFAULTPOSITION, GDEFAULTPOSITION, GNOREDUCE,
GXAXIS) ;

ggDrawAxes (GCARDINAL, GCLOCKWISE, GCLOCKWISE, GXAXIS) ;

gSuspendDevice () ;
gCloseGino () ;
return (0) ;

F90 Code

! ANNOTATION POSITIONS SET BY
! ggSetAxesAttribs ()
use gino £90
use graf f£90

type (GDIM) paper
character (len=3), dimension(l2) :: mons = &
(/" Jan’,’Feb’,'Mar’,’Apr’,’'May’,’Jun’,
rJul’,’Aug’,’Sep’,’Oct’,’'Nov’,’'Dec’/)

call gOpenGino

call xxxxx

call gEngDrawingLimits (paper, ipapty)
call ggSetGraphCharMode (GGINOMODE)

DEFINE AXIS POSITIONS

call ggSetAxesPos (GAXISSTART,0.l*papersxpap, &
0.5*papersypap, 0.8*papersxpap, GXAXIS)

call ggSetAxesPos (GDATAORIGIN, 0.1l*papersxpap, &
0.5*papersypap, 0.8*papersypap, GYAXIS)

33

Axes Annotation Control AXES

! DEFINE AXIS RANGES
call ggSetAxesScaling (GLINEARTYPE3,11,1.0,12.0,GXAXIS)
call ggSetAxesScaling (GLINEARTYPE3,10,-5.0,5.0,GYAXIS)
! DRAW Y AXIS WITH ANNOTATION
call ggDrawAxes (GCARDINAL, GANTICLOCKWISE, &
GANTICLOCKWISE, GYAXIS)

! LABEL X AXIS WITH MONTHS AT DEFAULT POSITION
call ggDrawAxesLabels (12, mons, GANTICLOCKWISE, GXAXIS)

! DRAW X AXIS WITH VALUES AT BOTTOM OF Y AXIS
call ggSetAxesAttribs (GOFFSET,0.l*papersypap,1,0, &
0.0,0.0,GDEFAULTPOSITION, GDEFAULTPOSITION, GNOREDUCE, &
GXAXIS)
call ggDrawAxes (GCARDINAL, GCLOCKWISE, GCLOCKWISE, GXAXIS)

call gSuspendDevice
call gCloseGino
stop

end

T T T T T T T T |
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1 2 3 4 5 6 7 8 9 10 11 12

Annotation position set by ggSetAxesAttribs

Skipping labels

By default, as in the above example, all the axes labels, whether numeric or
textual are output, from the first to the last tick mark. There may be conditions
where labels need to be omitted, either for clarity or because they are too long.
ggSetAxesAttribs() can be used to control which tick mark is labelled first and
whether labels are to be skipped. The arguments nstart and nskip are used for
this purpose. Thus if nstart=2 and nskip=1 only the even numbered tick marks
would be labelled. The default condition exists when nskip is less than 0. Here
nskip is automatically calculated to skip sufficient labels so that they do not
overlap each other. If nskip=GNONE all the annotation values are output, which
may result in overlapping characters if there is insufficient space (see use of
reduc below).

34

AXES Axes Annotation Control

Adjusting Offsets, Angle and Justification

An offset, the string angle and justification of each label can also be adjusted
with ggSetAxesAttribs(). In order to appreciate this facility it is necessary to
know the position of the control points about which the adjustments are made.
Where the annotation is made on the axis itself (swi=GONAXIS) the control
points are twice the tick mark length away from the axis, either on the clockwise
or anti-clockwise side depending on the choice made in ggDrawAxes() or
ggDrawAxesLabels(). Where the annotation is at the defined position xory
(swi=GOFFSET) the control points are at the coordinate xory in line with the
major tick marks on the corresponding axis. The control points are shown below.

-_——— . — . — — — — —

Control points at Y = xory

= xory

.
Control points on clockwise side of Y-Axis
Control points at X

Control points on anti-clockwise side of Y-Axis
.

Control points on anti-clockwise side of X-Axis

Control points on clockwise side o X-Axis

Axes annotation control points

By default the offset, string angle and justifications are as shown in the following

table

Control Point Offset Angle | Vertical Horizontal
Justification Justification

Clockwise side of X axis or Y=xory 0.0 0.0 Top Centre

Anti-clockwise side of X axis or 0.0 0.0 Bottom Centre

Y=xory

Clockwise side of Y axis or X=xory 0.0 0.0 Bottom Left

Anti-clockwise side of Y axis or 0.0 0.0 Bottom Right

X=xory

Each of these settings can be changed for either the X axis or Y axis with the
arguments aoff, angstr, jusver, jushor respectively. The offset (aoff) is
measured as a proportion of the distance between major tick marks on the
specified axis. ie. where aoff=0.5, the annotation is drawn midway between the
major tick mark to which it refers and the next major tick mark as shown in the
example below. Altering the string angle of axes annotation is a useful method of
fitting in long labels to each major tick mark on the X axis.

35

Axes Annotation Control AXES

The final control offered by ggSetAxesAttribs() is an option to automatically
reduce the size of the annotation to ensure it fits within the major tick marks
without overlapping. The option is particularly useful where horizontal
annotation is preferred and all the labels need to be output. When reduc is set to
GREDUCE and nskip=0, the character size is reduced by the required amount
(equally in both directions) so that the longest label on the axis fits between the
specified number of annotated tick marks. An example showing the usage of axes
annotation attributes is shown below.

T T T T T T
January March May July September November

T T T T
N X X X X X
< S T N S 2 e J ¢
FF @ Ny ¢
0 NS xZ) Q' Q'
N) Q N\ C
« R AR
T T T T T T T T - T < T T N 1 .
N QO]
I SR B SIS I T S R N
O & Qe e 3 & < xS N
2 0 As <@ © & @
N @ Q o S &
23 9
T T T T T T T T T T T 1
January February March April May June July August September October November December

Axes annotation control

C Code

/* AXIS ANNOTATION CONTROL */
#include <gino-c.h>
#include <graf-c.h>

int main (void) {
GDIM ©paper;
int papty;
char *mons[12] = { “January”, "February","March",
"April”,"May", "June","July", "August", "September",
”"October”, "November", "December" };

gOpenGino () ;

xXXxXxX () ;
gEngDrawingLimits (&paper, &papty) ;
ggSetGraphCharMode (GGINOMODE) ;

/* DEFINE AXIS RANGE */
ggSetAxesScaling (GLINEAR3,11,1.0,12.0,GXAXIS);

36

AXES

Axes Annotation Control

/* DEFINE FIRST AXIS WITH DEFAULT ATTRIBUTES */
ggSetAxesPos (GAXISSTART, 0.2*paper.xpap,
0.8*paper.ypap, 0.7*paper.xpap, GXAXIS) ;
ggDrawAxes (GCARDINAL, GCLOCKWISE, GNOVAL, GXAXIS) ;
ggDrawAxesLabels (12, mons, GANTICLOCKWISE, GXAXIS) ;

/* DEFINE SECOND AXIS WITH ANGLED TEXT */
ggSetAxesPos (GAXISSTART, 0.2*paper.xpap,
0.6*paper.ypap, 0.7*paper.xpap, GXAXIS) ;
ggDrawAxes (GCARDINAL, GCLOCKWISE, GNOVAL, GXAXIS) ;
ggSetAxesAttribs (GONAXIS,0.0,1,GNONE,0.0,45.0,
GMIDDLE, GRIGHT, GNOREDUCE, GXAXIS) ;
ggDrawAxesLabels (12, mons, GANTICLOCKWISE, GXAXIS) ;

/* DEFINE THIRD AXIS WITH OFFSET ANGLED TEXT */
ggSetAxesPos (GAXISSTART, 0.2*paper.xpap,
0.4*paper.ypap, 0.7*paper.xpap, GXAXIS) ;
ggDrawAxes (GCARDINAL, GCLOCKWISE, GNOVAL, GXAXIS) ;
ggSetAxesAttribs (GONAXIS,0.0,1,GNONE, 0.5,45.0,
GMIDDLE, GRIGHT, GNOREDUCE, GXAXIS) ;
ggDrawAxesLabels (12, mons, GANTICLOCKWISE, GXAXIS) ;

/* DEFINE FOURTH AXIS WITH REDUCED TEXT */
ggSetAxesPos (GAXISSTART, 0.2*paper.xpap,
0.2*paper.ypap, 0.7*paper.xpap, GXAXIS) ;
ggDrawAxes (GCARDINAL, GCLOCKWISE, GNOVAL, GXAXIS) ;
ggSetAxesAttribs (GONAXIS,0.0,1,GNONE,0.0,0.0,
GDEFAULTPOSITION, GDEFAULTPOSITION, GREDUCE, GXAXIS) ;
ggDrawAxesLabels (12, mons, GANTICLOCKWISE, GXAXIS) ;

gSuspendDevice () ;
gCloseGino () ;
return (0) ;

F90 Code

! AXIS ANNOTATION CONTROL
use gino £90
use graf f£90

type (GDIM) paper
character (len=9), dimension(l2) :: mons = &
(/" January’,’February’,’March’,’April’,’May’,’June’, &
"July’,"August’,’ September’,’October’, ‘November’, &
’ December’ /)

call gOpenGino

call xxxxx

call gEngDrawingLimits (paper, ipapty)
call ggSetGraphCharMode (GGINOMODE)

! DEFINE AXIS RANGE
call ggSetAxesScaling (GLINEAR3,11,1.0,12.0,GXAXIS)

! DEFINE FIRST AXIS WITH DEFAULT ATTRIBUTES
call ggSetAxesPos (GAXISSTART, 0.2*papersxpap, &
0.8*papersypap, 0. 7*papersxpap, GXAXIS)
call ggDrawAxes (GCARDINAL, GCLOCKWISE, GNOVAL, GXAXIS)
call ggDrawAxesLabels (12, mons, GANTICLOCKWISE, GXAXIS)

37

Date Axes

AXES

! DEFINE SECOND AXIS WITH ANGLED TEXT
call ggSetAxesPos (GAXISSTART, 0.2*papersxpap, &
0.6*papersypap, 0.7*papersxpap, GXAXIS)
call ggDrawAxes (GCARDINAL, GCLOCKWISE, GNOVAL, GXAXIS)
call ggSetAxesAttribs (GONAXIS,0.0,1,GNONE,0.0,45.0, &
GMIDDLE, GRIGHT, GNOREDUCE, GXAXIS)
call ggDrawAxesLabels (12, mons, GANTICLOCKWISE, GXAXIS)

! DEFINE THIRD AXIS WITH OFFSET ANGLED TEXT
call ggSetAxesPos (GAXISSTART, 0.2*papersxpap, &
0.4*papersypap, 0.7*paper%xpap, GXAXIS)
call ggDrawAxes (GCARDINAL, GCLOCKWISE, GNOVAL, GXAXIS)
call ggSetAxesAttribs (GONAXIS,0.0,1,GNONE,0.5,45.0, &
GMIDDLE, GRIGHT, GNOREDUCE, GXAXIS)
call ggDrawAxesLabels (12, mons, GANTICLOCKWISE, GXAXIS)

! DEFINE FOURTH AXIS WITH REDUCED TEXT
call ggSetAxesPos (GAXISSTART, 0.2*papers$xpap, &
0.2*papersypap, 0.7*papersxpap, GXAXIS)
call ggDrawAxes (GCARDINAL, GCLOCKWISE, GNOVAL, GXAXIS)
call ggSetAxesAttribs (GONAXIS,0.0,1,GNONE,0.0,0.0, &
GDEFAULTPOSITION, GDEFAULTPOSITION, GREDUCE, GXAXIS)
call ggDrawAxesLabels (12, mons, GANTICLOCKWISE, GXAXIS)

call gSuspendDevice
call gCloseGino
stop

end

Axes Annotation Enquiry

The user may obtain the parameters used for annotation control set up by the
routine ggSetAxesAttribs() by calling ggEnqAxesAttribs():

ggEnqAxesAttribs(switch,xy,nstart,nskip,aoff,angstr,jusver,jushor,
reduc,xory)

The only parameter that the user needs to supply is xory, the number of the axis
being enquired. All other parameters are returned.

Date Axes

38

In addition to the standard numerical axes provided by GINOGRAF, the library
also provides a means of handling date data and displaying date axes of various
formats. In order to integrate date data into the graph displaying features of
GINOGRAF, dates are converted onto a numeric scale where the start of the
Gregorian calendar (September 9th 1752) is equivalent to 1.0.

AXES

Date Axes

Dates are input as a character string of up to 10 characters, the delimiter between
days, months and years is the forward oblique stroke “/”. Days and months can
be given as one or two digits, with an optional leading zero for values less than
10. Years are given as two or four digits. If only two digits are given, they are
assumed to apply to the range 1950 to 2049. ie. 05 is treated as 2005 and not
1905. Leading and trailing spaces are ignored. Examples of valid date forms are:

31/12/95
01/03/96
1/ 3/96
1/3/96
29/2/00
29/2/2000
28/02/1900

The default ordering of day, month, year is the British form, but the American
and reverse forms can be used by setting the date input format type using the
routine ggSetDateFormat():

ggSetDateFormat(inform,insep,ouform,ousep)

where inform and ouform are either GBRITISH, GAMERICAN or GLOGICAL.

Date Axes Scaling

The user can define either the X(horizontal) or Y(vertical) axis of a graph to be a
date axis using the routine ggSetDateAxesScaling():

ggSetDateAxesScaling(scale,dincr,dbeg,dend,xory)

Three scale types are permitted to cater for different end conditions required by
the user in conjunction with the specified increment type (as set in diner). Unlike
the numerical axes, the user specifies the type of increment required for the date
axes in terms of decade, year, month etc., rather than the number of increments.
The start and end points of the date axes are defined in the character strings dbeg
and dend as described above.

39

Date Axes

AXES

As with numerical axes, date axes are positioned using the routine
ggSetAxesPos() and displayed using the axes drawing routine ggDrawAxes().
They are also divided into a number of increments separated by major tick marks,
which for the date axes represents the specified increment type selected by
ggSetDateAxesScaling(). The axes may include minor tick marks representing
the next smaller increment type according to the argument of ggDrawAxes().
Labels are (optionally) drawn at each major tick mark according to the current
date output format as defined by the routine ggSetDateAxesAnnotation():

ggSetDateAxesAnnotation(fdow,fday, fmon,fyear,xory)

where the first four arguments specify the requirement and/or format of each
component of the date to be output. Each of the ‘day of the week’, day or months
may be output alphanumerically or numerically and different output formats may
be specified for each of the X or Y axes.

Examples of some of the different output formats are shown below.

! ggSetDateAxe§Ann0tat\on(GNONE,l,l 2 GXAX\§)
1/ 2/96 1/ 3/96 1/ 4/96

ggSetDateAxes/‘\nnotation(GNONE,»1,-3 4 GXAXI§)
‘©

© ©
S o S
S N N
& N <
. ggSetDateAxesA‘nnotation(-9 -1,-9,GNONE GXAXI§)
D S N
N X 3
& 5 ~
P ~
y N
& g §
I <& <
&

Date axes output formats

Date Conversion

40

Where either of the X or Y axis has been defined as a date axis using the routine
ggSetDateAxesScaling(), GINOGRAF defines an internal numerical scaling for
the range of dates used for the axes based on the Gregorian calendar as described
above.

AXES

Date Axes

It is necessary therefore to convert ‘date’ data to this numerical scale so that the
various graph and chart output forms described later in this manual can be used
with the date axes. A single routine is provided for this purpose, to convert an
array of date data into its equivalent numeric values.

ggConvertDates(ndates,dates,data)

where dates is a character array containing ndates dates in the current date input
format, returning the numerical values in data.

Single dates may be converted to and from their numerical values using the
following routines:

ggConvertDateToGraph(date,value)

ggConvertGraphToDate(value,date)

Date Axes Usage

Two examples show the usage of date axes:
Example 1 - The user has an array of dates and numeric values which need to be
plotted on date axes.

The following input data represents maximum and minimum temperature
readings:

01/01/96 3 -1
02/01/96 4 -1
03/01/96 5 0
04/01/96 2 -3
0 -6

05/01/96

The following code segment reads in the data, sets up the date axes and converts
the data ready for graph drawing:

C Code

#define MAX DATA 100
char *Dates[MAX DATA];
float X[MAX DATA];
FILE *ifp;
int n, stat, Max[MAX DATA],Min[MAX DATA];

/* Allocate space for dates MAX DATA times */

for (n=0; n<MAX DATA; n++)
Dates[n]=(char*)malloc (9*sizeof (char)) ;

M

Date Axes AXES
/* READ IN TEMPERATURE DATA */
if (! (ifp = fopen(“temps.dat”,"r"))) return 1;
n=0;
stat=fscanf (ifp, "$s%d%d", Dates[n], &Max[n],&Min[n]) ;
while (stat!=EOF) {
MAFaF 2
stat=fscanf (ifp, "$s%d%d\n",Dates[n], &Max[n], &Min[n]) ;
}
fclose (ifp);
/* DEFINE DATE AXES */
ggSetDateAxesScaling (1,GDAY,Dates[0],Dates[n-1],GXAXIS) ;
/* DRAW DATE AXES */
ggDrawAxes (GCARDINAL, GCLOCKWISE, GCLOCKWISE, GXAXIS) ;
/* CONVERT DATE DATA FOR PLOTTING AGAINST X AXIS */
ggConvertDates (n, Dates, X) ;
F90 Code
integer, parameter :: MAX DATA=100
character (len=8), dimension (MAX DATA) :: Dates

42

real X (MAX DATA)
integer n,Max (MAX DATA),Min (MAX DATA)

! READ IN TEMPERATURE DATA

open (unit=11,file="TEMPS.DAT’")

n=0
10 read(11,11,end=20) Dates(n+l),Max (n+1),Min (n+1)
11 format (A, 2I4)

! DEFINE DATE AXES
20 call ggSetDateAxesScaling(1l,GDAY,Dates (1), &
Dates (n) , GXAXIS)

! DRAW DATE AXES
call ggbrawAxes (GCARDINAL, GCLOCKWISE, GCLOCKWISE, GXAXIS)

! CONVERT DATE DATA FOR PLOTTING AGAINST X AXIS
call ggConvertDates (n,Dates, X)

Example 2 - The user has numeric data which actually represents date data and

needs to be displayed on date axes. This can be handled in one of two ways;

either all the data can be handled numerically superimposing a date axis over the
numeric axis, or you can convert the numeric data to the required date scale. For

example, if the following data represents 1996 monthly shoe sales:

AXES

Date Axes

OO Jo) Ul W

223
154
149
152
123
152
278
121
119

10 125
11 98
12 129

The following code segment sets up and draws a date axis and superimposes a
numeric axis with the same number of intervals over it to do the plotting of the
graph:

C Code

/*

/*

/*

/*

10

int month[12],sales[12];
FILE *ifp;
int n, stat;

READ IN SHOE SALES DATA */
if (! (ifp=fopen (“shoe.dat”,"r"))) return 1;
n=0;
stat=fscanf (ifp, "$d%d", &month[n], &sales[n]);
while (stat!=EOF) ({

MaFaF 2

stat=fscanf (ifp, "$d%d", &month[n], &sales[n]) ;
}
fclose (ifp);

DEFINE AND DRAW DATE AXES FOR SALES PERIOD */
ggSetDateAxesScaling (3,GMONTH,”01/01/96”,701/12/96"”,GXAXIS) ;
ggDrawAxes (GCARDINAL, GCLOCKWISE, GCLOCKWISE, GXAXIS) ;

RE-DEFINE NUMERIC SCALING FOR SALES PERIOD */
ggSetAxesScaling (GLINEARTYPE3,11,1.0,12.0, GXAXIS) ;

PLOT DATA ACCORDING TO NUMERIC SCALING */

F90 Code

integer month(12),sales(12)
integer n

READ IN SHOE SALES DATA

open (unit=11, file=' SHOE.DAT')

n=0

read (11, *,end=20) month (n+l),sales (n+1)
n=n+1

goto 10

43

Date Axes AXES

! DEFINE AND DRAW DATE AXES FOR SALES PERIOD
20 call ggSetDateAxesScaling(3,GMONTH,’01/01/96’,'01/12/96’ ,GXAXIS)
call ggDrawAxes (GCARDINAL, GCLOCKWISE, GCLOCKWISE, GXAXIS)

! RE-DEFINE NUMERIC SCALING FOR SALES PERIOD
call ggSetAxesScaling (GLINEARTYPE3,11,1.0,12.0,GXAXIS)

! PLOT DATA ACCORDING TO NUMERIC SCALING

And the following code would use date axes and convert the data appropriately:

C Code

int month[100],sales[100];
char *mon[100];
int n, i, stat, ml, m2;

/* Allocate space for dates */
for (n=0; n<100; n++)
Mons [n]=(char*)malloc (9*sizeof (char)) ;

/* READ IN SHOE SALES DATA */

if (! (ifp=fopen (“shoe.dat”,"r"))) return 1;
n=0;
stat=fscanf (ifp, "%d%d", &month[n], &sales[n]);
while (stat!=EOF) {

0 8

stat=fscanf (ifp, "%d%d", &month[n], &sales[n]);
}
fclose (ifp);

/* CONVERT MONTH NO. TO DATE SCALING */
for (i=0;i<n; i++) {
ml=(int) (month(i))/10;
m2=(int) (month(I))%10;
sprintf (mon (i), “01/%d%d/96", ml+48, m2+48);
}

ggConvertDates (n,mon, month) ;

/* DEFINE AND DRAW DATE AXES FOR SALES PERIOD */
ggSetDateAxesScaling (3,GMONTH,”01/01/96”,701/12/96”,GXAXIS) ;
ggDrawAxes (GCARDINAL, GCLOCKWISE, GCLOCKWISE, GXAXIS) ;

/* PLOT DATA ACCORDING TO DATE AXES SCALING */

F90 Code

integer month (100),sales (100)
character (len=8), dimension(100) :: mon
integer n, i

! READ IN SHOE SALES DATA
open (unit=11, file=' SHOE.DAT')
n=0
10 read(ll,*,end=20) month(n+l),sales(n+l)
n=n+1
goto 10

44

AXES Default Restoration

! CONVERT MONTH NO. TO DATE SCALING
20 DO 30 I=1,N
ml=int (month (i)) /10
m2=mod (int (month (i)), 10)
mon (i)="01/’ // char (ml+48) // char (m2+48)// ‘/96’
30 continue
call ggConvertDates (mon,month,n)

! DEFINE AND DRAW DATE AXES FOR SALES PERIOD
call ggSetDateAxesScaling (3,GMONTH,’01/01/96’,'01/12/96",GXAXIS)
call ggDrawAxes (GCARDINAL, GCLOCKWISE, GCLOCKWISE, GXAXIS)

! PLOT DATA ACCORDING TO DATE AXES SCALING

Both programs produce exactly the same output.

Note that GINOGRAF always draws axes with equally spaced tickmarks and
therefore date intervals of ‘month’ or ‘year’ are not drawn at exactly the correct
‘daily’ position because of the unequal number of days in each of those intervals.

Date Axes Enquiry

The current date axis settings can be enquired though the following three
routines:

ggEnqDateFormat(inform,insep,ouform,ousep)
ggEngDateAxesScaling(scale,dincr,dbeg,dend,xory)

ggEngDateAxesAnnotation(fdow,fday,fmon,fyear,xory)

Default Restoration

Axes parameters may be restored to their numeric defaults using the routine:
ggRestoreAxesSettings()

which resets the conditions set up using ggSetAxesPos(), ggSetAxesScaling()
and ggSetAxesAttribs() for both axes.

If some of the axes setup is to be retained, or if only one axis’ settings is to be
reset then the relevant enquiry routines must be called in order to save the
appropriate settings; these conditions may be set up again using ggSetAxesPos(),
ggSetAxesScaling() and ggSetAxesAttribs() after a call to
ggRestoreAxesSettings().

45

Chapter

GRAPHS

Introduction to Graphs

This chapter concerns itself with the production of Graphs. The GINOGRAF

definition of a graph is a two dimensional representation of coordinate data on
continuous axes. The graph displaying routines are split into two main groups:
Complete Graph Drawing routines which produce graphs with a single routine
call; and lower level component routines which build up a graph in a modular

fashion.

Summary of the Graph facilities available:

ggPlotGraph () Draws single data set on set of axes with automatic scaling
ggSetGraphScaling () Controls ggPlotGraph() data ranges and axes intervals
ggAddGraphPolyline () Draws polyline graph on current axes
ggAddGraphCurve () Draws curved graph on current axes
ggAddAkimaCurve () Draws Akima curved graph on current axes
ggAddGraphSpline () Draws spline curve graph on current axes

ggSetCurveStartConds ()

Sets start conditions of curve graph

ggSetCurveEndConds () Sets end conditions of curve graph
ggAddGraphMarkers () Draws set of symbols on current axes
ggAddErrorBars () Draws error bar graph on current axes
ggAddSquareWave () Draws square wave graph on current axes
ggAddPopulationGraph () Draws a population graph on current axes
ggFillBelowDataset () Fills area below polyline

ggFillBetweenDatasets ()

Fills area between two data sets

ggAddGraphValues () Annotates data points on current axes
ggSetValueAttribs () Sets data value display attributes
ggSetValueTags () Sets prefix and suffix strings for data value output

47

Complete Graph Drawing GRAPHS

Complete Graph Drawing

48

The routine described in this section is complete in itself. The user simply
provides a set of data in an array of type GPOINT and makes a single routine
call. The position and scaling of the graph is calculated automatically and output
is drawn to fit the current graph drawing area (see page 16). The complete graph
drawing routine provide by GINOGRAF is ggPlotGraph():

ggPlotGraph(npts,points,scx,scy,style,axis)

where npts of data are supplied in the array points. Axes can be represented by a
frame (axiss=GFRAME), or by two axes intersecting at the data origin (if present)
or at the bottom left of the graph (axis=GAXIS). Each may be linear or
logarithmically scaled depending on the value of scx and scy (GLINEAR =
Linear scale on axes, GLOG10 = Logarithmic scale on axes). The data set may be
represented in various ways depending on the value of style as follows:

style Lines Marker
-GAKIMA Akima Curve Asterisk
-GSPLINE Spline Curve Asterisk
-GCUBIC Curve Asterisk
-GSTRAIGHT Straight Line Asterisk
GSYMBOLS None Asterisk
GSTRAIGHT Straight Line None
GCUBIC Curve None
GSPLINE Spline Curve None
GAKIMA Akima Curve None

The axes are drawn to include at least the complete range of values in the points
array, possibly rounding up the limits in order to use reasonable intervals. The
numerical annotation on each axis is subject to the current settings of format and
annotation control set by ggSetAxesAnnotation() and ggSetAxesAttribs().

GRAPHS Complete Graph Drawing

An example of output produced by ggPlotGraph() is shown below.

1

1 2 3 4 5 6

Example output from ggPlotGraph routine

The following code shows the program that generated the figure above followed
by an equivalent program using the low-level component routines described in
the next chapters. While axis and graph titles can be added after the routine
ggPlotGraph() has been called, the full flexibility of layout and style can only be
achieved using these component routines as the routine ggPlotGraph() is
provided to present user data as quickly as possible with the minimum of effort.

C Code

/* USE OF COMPLETE GRAPH DRAWING ROUTINE
ggPlotGraph () */

#include <gino-c.h>

#include <graf-c.h>

int main (void) {

GPOINT pnts([6] = {1.0, 7.0,2.1, 8.5,3.1, 7.3,
4.2, 4.1,5.1, 5.2,6.0, 1.2};

gOpenGino () ;

XXXXX () ;

gNewDrawing () ;

ggSetGraphCharMode (GGINOMODE) ;
ggPlotGraph (6,pnts, GLINEAR, GLINEAR, ~-GSTRAIGHT, GFRAME)
gSuspendDbevice () ;

gCloseGino () ;
return 0;

49

Complete Graph Drawing GRAPHS

/* USING LOW LEVEL COMPONENT ROUTINES */
#include <gino-c.h>
#include graf-c.h>

int main (void) {
GPOINT pnts[6] = {1.0
4.2

int flg;
GLIMIT lims;
GCHASTY rep;

gOpenGino () ;
XXXXX () ;
ggSetGraphCharMode (GGINOMODE) ;

/* ENQUIRE GINOGRAF DRAWING LIMITS AND CHARACTER SIZE */
ggEngPlotFrame (&flg, &1ims) ;
gkEngCharAttribs (&rep) ;

/* SET UP AXES POSITIONS AND SCALES */
ggSetAxesPos (GAXISSTART, 9*rep.width,
S5*rep.height, lims.xmax-lims.xmin-12*rep.width, GXAXIS) ;
ggSetAxesScaling (GLINEARTYPEL,5,1.0,6.0,GXAXIS) ;
ggSetAxesPos (GAXISSTART, 9*rep.width,
S5*rep.height, lims.ymax-lims.ymin-10*rep.height, GYAXIS) ;
ggSetAxesScaling (GLINEARTYPEL,8,1.0,9.0,GYAXIS) ;

/* DRAW GRID */
ggAddGrid (GINTERMEDIATE, GTICKS, GANNOTATION, GANNOTATION) ;

/* DRAW POLYLINE AND ADD SYMBOLS */
ggAddGraphPolyline (6, pnts) ;
ggAddGraphMarkers (6, pnts, GSTAR, Q) ;

gSuspendDevice () ;
gCloseGino () ;
return 0;

F90 Code

! USE OF COMPLETE GRAPH DRAWING ROUTINE -
! ggPlotGraph ()

use gino £90

use graf f£90

type (GPOINT), dimension(6) :: pnts = &
(/GPOINT(1.0,7.0),GPOINT(2.1,8.5),GPOINT(3.1,7.3), &
GPOINT (4.2,4.1) ,GPOINT(5.1,5.2),GPOINT (6.0,1.2)/)

call gOpenGino

call xxxxx

call gNewDrawing

call ggSetGraphCharMode (GGINOMODE)

call ggPlotGraph (6,pnts, GLINEAR, GLINEAR, ~-GSTRAIGHT, &
GFRAME)

call gSuspendDevice
call gCloseGino
stop

end

50

GRAPHS Complete Graph Drawing

! USING LOW LEVEL COMPONENT ROUTINES
use gino_ f90
use graf £90

type (GPOINT), dimension(6) :: pnts = &
(/GPOINT(1.0,7.0),GPOINT(2.1,8.5),GPOINT(3.1,7.3), &
GPOINT (4.2,4.1) ,GPOINT (5.1,5.2),GPOINT(6.0,1.2)/)

integer flg

type (GLIMIT) lims

type (GCHASTY) rep

call gOpenGino
call xxxxx
call ggSetGraphCharMode (GGINOMODE)

ENQUIRE GINOGRAF DRAWING LIMITS AND CHARACTER SIZE
call ggEngPlotFrame (flg, lims)
call gEngCharAttribs (rep)

SET UP AXES POSITIONS AND SCALES

call ggSetAxesPos (GAXISSTART, 9.*repswidth, &
5.*rep%height, lims%$xmax-1lims$xmin-12.*rep%Sheight, GXAXIS)

call ggSetAxesScaling (GLINEARTYPE1,5,1.0,6.0,GXAXIS)

call ggSetAxesPos (GAXISSTART, 9.*repSwidth, &
5.*rep%height, lims$ymax-1ims$ymin-10.*rep%height, GYAXIS)

call ggSetAxesScaling (GLINEARTYPE1l,8,1.,9.,GYAXIS)

! DRAW GRID
call ggAddGrid (GINTERMEDIATE, GTICKS, GANNOTATION, GANNOTATION)

! DRAW POLYLINE AND ADD SYMBOLS
call ggAddGraphPolyline (6,pnts)
call ggAddGraphMarkers (6,pnts, GSTAR, 0)

call gSuspendDevice
call gCloseGino
stop

end

Graph Scaling

Under the default conditions, the ggPlotGraph() routine will draw a graph
representing the full range of the X and Y data, calculating sensible axes intervals
according to the current drawing area. The routine ggSetGraphScaling() can be
used to add control over the ranges and intervals of the X and Y axes for this type
of graph.

ggSetGraphScaling(mode)

where mode can be one of the following:

GDEFAULT set the default conditions

GEQUALLIMITS set both axes to have the same limits (to
include both data ranges)

51

Graph Drawing Components GRAPHS

GEQUALRANGES set both axes to have the same range of data

GEQUALGRAPHINTERVALS set both axes to have equal sized intervals
(in graph coordinates)

GEQUALSPACEINTERVALS set both axes to have equal sized intervals

(in space/physical coordinates)

The GEQUALSPACEINTERVALS mode will result in a square grid, but may
have the effect of reducing the length of one axis within the specified drawing
area in order to maintain sensible numerical intervals on the axes.

Graph Drawing Components

The following describes the low level routines provided by GINOGRAF for
drawing graphs. The routines provide the user with the tools to build up more
complex and sophisticated graphs than those produced by the Complete Graph
Drawing Routine described previously.

Each graph is built up in a modular fashion, making use of individual routines
to:-

 Position, scale, label and draw the axes

» Represent data sets with symbols, lines, curves, filled areas and error bars
on graphs

» Add further annotation and titles

Graph Axes Definition and Display

Axes definition is essential to graph drawing when creating a graph using the
component routines shown later. The axes may be defined using the Complete
Drawing routine described previously or through the individual axes definition
routines ggSetAxesPos() and ggSetAxesScaling(). A usual requirement for using
the individual routines is where the automatic calculation of position or ranges is
not sufficient for a complex graph display.

Full description of axes definition, display and titling is found in the Axes section
of this manual.

Data Representation

GINOGRAF offers seven forms of data representation on the currently defined
graphical axes coordinate system as set up by ggSetAxesPos() and
ggSetAxesScaling():

52

GRAPHS

Graph Drawing Components

« Straight lines between points

* Smooth curves through points

« Symbols at points

» Error bars at points

» Square wave about points

« Filled areas below sets of points

« Filled areas between two sets of points

If axes have not been defined, data will be plotted according to the default values
for axis position and scaling. This could result in points being outside the
available drawing area or current window.

All seven output forms obtained from these routines are shown below.
Combinations of these routines may be used to superimpose features on top of
other graphs, eg, symbols may be drawn at points which are connected by
straight lines.

30
27 |
Symbols
24 |
21 | Curve
18 Straight Line
15 |
Error Bars
12 |
9 Square Wave
6 Fill area between
two data sets
34 !
Fill area below
data set
O T T T T T T T 1
0 2 4 6 8 10 12 14 16

Various Data Representations

53

Line Graphs GRAPHS

Line Graphs

Straight Lines Graphs
ggAddGraphPolyline() is used to draw straight lines between data points.
ggAddGraphPolyline(npts,points)

where points is an array of type GPOINT containing the X and Y parts of the
graphical axes coordinates defining the points, while npts is the number of points
to be joined together.

The routine ggAddGraphPolyline() only draws straight lines between the points,
the points themselves are not marked.

Smooth Curves

There are three forms of smooth curve that can be produced; piecewise cubics,
Akima piecewise cubics and piecewise cubic splines. The three routines are:

ggAddGraphCurve(npts,points)
ggAddAkimaCurve(npts, points)
ggAddGraphSpline(npts,points)

All routines will draw a smooth curve through the points defined in the array
points, in the order in which they are given (ie, the curve may go back on itself).
The three routines use different algorithms for calculating the curve and any may
be appropriate depending on the point distribution. In general,
ggAddGraphCurve() produces the loosest curve, ggAddAkimaCurve() gives a
tighter curve but is less accurate to the fitting function and ggAddGraphSpline()
also gives a tighter curve and in most cases is the more acceptable. The tension of
the spline curve can also be controlled through the GINO-F routine
gSetSplineTension().

A comparison of the different curve drawing routines is illustrated below

54

GRAPHS Line Graphs

3 ggAddGraphCurve()
_ _ _ _ ggAddGraphSpline()
_ _ ggAddGraphAkima()

0 1 2 3 4 5 6 7 8
Curve Drawing

Curve End Conditions

The two routines to determine the end conditions for all the curve drawing
routines are:

ggSetCurveStartConds(beg,cosbeg,sinbeg,xbeg,ybeg)
ggSetCurveEndConds(fin,cosfin,sinfin,xfin,yfin)

Each routine is used to set the slope at the beginning or the finish of the curve
using either the COSINE and SINE of the required angle or by specifying an
extra point in graph coordinates through which the curve would pass if continued.

beg and fin are integers determining which method is used. If either argument is
equal to GXPOINT, the extra point is used, if either is equal to GNONE, no end
conditions are set and if either is equal to GANGLE, the COSINE and SINE
arguments are used. cosbeg, sinbeg and cosfin, sinfin are the cosine and sine of
the required angle if beg or fin = GANGLE. xbeg, ybeg and xfin, yfin specify
the extra point if beg or fin = GXPOINT.

55

Symbol Graphs GRAPHS

The specified end conditions remain in effect for all curve drawing routines,
ggPlotGraph(), ggPlotXYPolarChart(), ggAddGraphCurve(),
ggAddAkimaCurve() and ggAddGraphSpline() until reset with beg or fin being
set to GNONE.

The effect of using curve end conditions is shown below.

ggAddGraphSpline() (With no end conditions)

0.064 — — — ggAddGraphSpline() (With end conditions)
(cosbeg=1.0,sinbeg=0.0)
(cosfin=1.0,sinfin=0.0)

0.10.

Use of curve end conditions

Symbol Graphs

56

The routine to plot a data set as symbols on a graph (or as a scatter graph) is:
ggAddGraphMarkers(npts,points,nsym,nspace)

ggAddGraphMarkers() considers the npts points defined in the array points, and
then draws the symbol nsym at the position of the first point. A symbol is drawn
at the first point and then nspace points are skipped and the next symbol is
drawn. Each successive symbol is then drawn after a further interval of nspace
points. For example: if nspace = 1, symbols will be drawn at points 1,3,5,7 etc.
The points are plotted in the order that they exist within the array passed to the
routine.

Any of the symbols available through the GINO routine gDrawMarker() are also
available to ggAddGraphMarkers(). The standard GINO symbols (0-8),
illustrated in Appendix A of this manual, are available to all GINOGRAF users
and a large number of additional symbols are also available using the symbol
fonts in GINO-F. The size of the symbols is subject to the current character size.

GRAPHS Error Bars

The type of output obtained from ggAddGraphMarkers() is illustrated below. The
upper row of symbols are plotted at each point, whereas the second row has
nspace set to one and so skips every other symbol.

9,
+ = ggAddGraphMarkers(15,points,GPLUS, 1)

8]
© = ggAddGraphMarkers(15,points,GDIAMOND,0)

73

14

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Example output from ggAddGraphMarkers

Error Bars

Rather than using a precise point to display a data position an error range (or
High-Low range) may be shown. This may be represented by either two symbols,
two symbols joined by a line, or just a line. This involves supplying the data
point itself and the distance from the data point to the extremes of the range.

The routine to plot Error Bars is:
ggAddErrorBars(npts,points,errors,type,line,xory)

where the arrays points (of type GPOINT) and errors (of type GERROR) are of
length npts. The routine ggAddErrorBars() will plot error bars at each of the
points stored in the array points, where the range of the errors for each point is
stored in the array errors (containing both the upper and lower deviation) as
relative values (both positive) to the data value. The error values are measured
against the axis specified by the argument xory, where xory=GXAXIS for errors
against the Y axis (perpendicular to X axis), and xory=GY AXIS for errors
against the X axis (perpendicular to Y axis).

57

Square Wave Graphs GRAPHS

The style of the error bars is set using type and line with the range of possible
combinations shown below. The size of the symbols is subject to the current
character width.

line = GNONE

line = GDRAWLINE

Examples of Error Bar representations

Square Wave Graphs

The routine ggAddSquareWave() draws a square wave about a set of npts points
stored in the array points.

ggAddSquareWave(npts,points,pos,xory)

58

GRAPHS Population Graphs

where xory determines which axis the steps are perpendicular to (xory=GXAXIS
for perpendicular to X axis and xory=GYAXIS for perpendicular to Y axis).
Control over where the square wave interpolation occurs is determined by pos
with the 3 possible positions shown below (the actual X and Y points are
highlighted by a symbol).

pos=GCHANGENEXT

pos=GCHANGEHALFWAY

pos=GCHANGECURRENT

0 2 4 6 8 10 12 14 16

Example of Square Wave Graph

Population Graphs

The routine ggAddPopulationGraph() draws a population graph with data at
intervals of dx at a position y on a discrete axis. A set of npts recordings are held
in the array points.

ggAddPopulationGraph(dx,y,npts,points,popmax)

The population data set is assumed to consist of a series of recordings points.x,
points.y for a species y, where points.x represents a sample recording point
along the non-discrete axis with a standard interval of dx and y represents a point
on the discrete axis. Missing data is represented where the values in the points.x
array do not follow the specified interval dx.

59

Data Set Filling GRAPHS

Population values of zero are represented by a point points.x,y, whereas positive
populations are represented by a pair of lines either side of the point points.x,y
joined to the previous recorded data. The value popmax controls the scaling of
the population graph by setting the maximum population that is to be displayed
between the intervals on the discrete axis.

The non-discrete axis can be specified as having date scaling as shown in the
example shown below. This graph consists of a series of population graphs with
data recorded at irregular daily intervals. The value of dx is therefore set at 1.0,
with popmax set at 40.0.

Butterfly Survey
Summer 1996

Maximum Population = 40
Meadow Brown _ —

Gatekeeper P —
Wall Brown — —

Speckled Wood — — - —

I
|
I
|
!
I

|
[N N
\/
8
Y
|
|

N

I

Holly Blue -

Common Blue

Small Copper —

Orange Tip

Green Veined W

Smallwite | — - == — — _ = —
Largo White —_ S
Brimstone. —_ _

S Skipper —_

Graph showing multiple population graphs

Data Set Filling

60

Two graph filling routines are provided. One fills the area between a data set and
a line perpendicular to a point on either the X or Y axis within the defined axes;
the second fills the area between two data sets.

GRAPHS

Data Set Filling

The fill style is determined by the combination of fill and line. Various hatches
and cross hatches as well as solid fill are available. If fill is negative the area is
not filled. The default line styles, hatch styles and fill styles appear in Appendix
A of this manual. Further information on line style definition (which includes
colour definition) and information on hatch and fill style definition appears in the
introduction.

Filling to a Line

The routine ggFillBelowDataset() fills the area between a data set and a line
perpendicular to a point on either the X or Y axis.

ggFillBelowDataset(npts,points,xylev,xory,fill,line)

The area filled is defined by the set of data points stored in the array points, the
line at xylev, and two lines from the first and last data points perpendicular to the
line at xylev. If xylev lies outside one of the graph boundaries then that boundary
is used as the edge to which the area is filled.

The area to be filled is made up of the coordinates in the data set in ascending
order followed by two points at xylev or graph limit. If the boundary crosses over
itself in any form, strict polygon filling rules apply and areas outside the two data
sets may get filled.

ggFillBelowDataset() may be used on its own to display single data sets, but is
also useful for displaying data sets in conjunction with the routine
ggFillBetweenDatasets() described below.

Filling Between Two Data Sets

The routine to fill between two data sets held in xy1 and xy2 is
ggFillBetweenDatasets():

ggFillBetweenDatasets(nl,xy1,n2,xy2,fill,line)

where n1 and n2 are the number of data points held in the arrays xy1 and xy2
respectively. n1 and n2 do not have to be equal.

The area to be filled is made up of the coordinates in the first data set in
ascending order followed by the coordinates in the second data set in descending
order. If the boundary crosses over itself in any form, strict polygon filling rules
apply and areas outside the two data sets may get filled.

61

Data Set Filling GRAPHS

62

An example of both ggFillBelowDataset() and ggFillBetweenDatasets() is shown
below. In this example ggFillBelowDataset() is used with the bounding line set
below the X axis, ggFillBetweenDatasets() is then called using a second set of
data points and the ones previously used by ggFillBelowDataset(). To emphasize
the polygons they are bounded using two calls to ggAddGraphPolyline().

C Code

/* EXAMPLE OF DATA SET FILLING */
#include <gino-c.h>
#include <graf-c.h>

int main (void) {
GPOINT pntsl[15] = {
5.0,4.2,6.0,3
2.0

.2,7.
11.0,6.1,1 7.7

g Yelly

GPOINT pnts2[15] = {
5.0,10.0,6.0,9.2,7.
11.0,9.1,12.0,11.0

gOpenGino () ;

XXXXX () ;

gNewDrawing () ;
ggSetGraphCharMode (GGINOMODE) ;

/* DEFINE AXES SCALING AND DRAW AXES */
ggSetAxesScaling (GLINEARTYPE3,8,0.0,16.0,GXAXIS) ;
ggSetAxesScaling (GLINEARTYPE3,16,0.0,16.0,GYAXIS) ;
ggDrawAxes (GCARDINAL, GCLOCKWISE, GLOCKWISE, GXAXIS) ;
ggDrawAxes (GCARDINAL, GANTICLOCKWISE, GANTICLOCKWISE, GYAXIS) ;

/* FILL TO BASE LINE */
ggFillBelowDataset (15,pntsl,0.0,GYAXIS, GFINELEFTDIAGONAL,
GCURRENT) ;
ggAddGraphPolyline (15,pntsl) ;

/* FILL BETWEEN DATA SETS */
ggFillBetweenDatasets (15,pntsl,15,pnts2, GFINERIGHTDIAGONAL,
GCURRENT) ;
ggAddGraphPolyline (15,pnts2) ;

gSuspendDevice () ;
gCloseDevice () ;
return (0) ;

GRAPHS Data Set Filling

F90 Code

63

Displaying Data Values GRAPHS

16
15
14 |
13
12
11
10

O =N w R oo N o
R

T T T T T T u J
0 2 4 6 8 10 12 14 16

Example of data set filling

Displaying Data Values

Data points may be annotated with either their X or Y values using the routine
ggAddGraphValues():

ggAddGraphValues(npts,points,xory)

where points is an array of type GPOINT containing npts coordinate positions
which are to be annotated. The argument xory determines which of the two
values are to be displayed (xory=GXAXIS for the X values and xory=GYAXIS
for the Y values).

By default the values selected are displayed centrally over the corresponding
coordinate position using the numeric format of the appropriate axis. Therefore if
X values are to be displayed they are output using the same format as values
displayed on the X axis. The format is controlled through the routine
ggSetAxesAnnotation().

Graph Data Value Control

The default position, orientation, justification of the value displayed can be
changed through the routine ggSetValueAttribs():

ggSetValueAttribs(xpos,ypos,xory,xoff,yoff,angstr,justmb,juslcr)

64

GRAPHS

Displaying Data Values

where xpos, ypos and xory determine the position of each values control point,
about which the remaining arguments refer. The control point can be positioned
at one of 9 positions around each data point as well as 3 positions at a specified X
coordinate (by setting xpos to GSPECIFIED), 3 positions at a specified Y
coordinate (by setting ypos to GSPECIFIED) and at a fixed position by setting
both xpos and ypos to GSPECIFIED. The specified coordinate position of xory
is measured in graphical coordinates and so refers to the current axes ranges (as
set up by ggSetAxesScaling()) for the appropriate axis.

All of the possible control points for a single data value are shown below using a
setting of xory of 9.0. Each of the data values are drawn centrally over each
control point. Note that if both xpos and ypos are set to GSPECIFIED all data
values will be output at the same position (X=xory,Y=xory).

10

ypos=GSPECIFIED 9 | 555 5

.

9 10
=

] a

w = [}

—uioc =

world [

[a1=ta) I+

252 &

ZoZ [

[Clor] &

P

p

pos
Xpos

Data value display control positions

The routine ggSetValueAttribs() can also be used to set an additional offset
(measured in user space coordinates) in the horizontal and/or vertical direction
(xoff,yoff), an annotation string angle (angstr) and a vertical and horizontal
justification (justmb,jusler). The offsets are measured in user space coordinates
and the string angle is measured in degrees (anticlockwise) from the 3 o’clock
position.

65

Displaying Data Values GRAPHS

66

If the data value is not required to be displayed centrally over the data coordinate
position, certain combinations of control point positioning and string justification
are required. For example, if data values are required to the right of the data point
- setting xpos to GOUTSIDERIGHT and setting jusler to left justification will
produce the desired effect. Alternatively, if the data values are required to the left
of the data point - setting xpos to GOUTSIDELEFT and setting jusler to right
justification will produce the desired effect. Further examples are shown below.

The current attributes for value charts can be enquired with the routine
ggEnqValueAttribs().

ggEngValueAttribs(xpos,ypos,xory,xoff,yoff,angstr,justmb,juslcr)

Each value in any of the value charts can have a prefix and/or suffix string using
the routine ggSetValueTags().

ggSetValueTags(prefix,suffix)

where prefix and suffix are strings of up to 30 characters that are appended to all
the values in one value chart output. The prefix and/or suffix strings are included
as part of the value when calculating the justified position of the total output.

An example showing the use of ggSetValueAttribs() and ggSetValueTags() is
shown below

C code

/* DATA VALUE ATTRIBUTE CONTROL */
#include <gino-c.h>

#include <graf-c.h>

#define N 10

int main(void) {

GDIM paper;

int papty:;

GPOINT pntsl[N] = {1056.78543,4.4,2000.0,2.34,
3210.9876,1.454,4000.0,2.7,5000.0,0.123456789012345,
6000.56,-1.0,7000.0,-1.01,8000.0,-0.4,9000.0,-2.99,
10000.0,-2.399983456789};

GPOINT pnts2[N] = {1056.2,9.9823,2100.0,9.0999,
3000.0,8.003,4000.0,7.365,5000.0,6.134,6000.0,5.4567,
7000.0,4.23,8000.0,3.345,9000.99,2.123,9999.99,
-0.9994};

/* SET UP GRID */
gOpenGino () ;
xxxxx () ;
gEngDrawingLimits (&paper, &papty) ;
gNewDrawing () ;

ggRestoreAxesSettings () ;
ggSetGraphCharMode (GGINOMODE) ;

GRAPHS

Displaying Data Values

/*

/*

/*

/*

/*

/*

SET UP GRAPH AXES */
ggSetAxesPos (GAXISSTART, 0.1l*paper.xpap, 0.1l*paper.ypap,
0.8*paper.xpap, GXAXIS) ;
ggSetAxesScaling (GLINEARTYPE3,10,0.0,9999.99, GXAXIS) ;
ggSetAxesPos (GAXISSTART, 0.1l*paper.xpap, 0.1l*paper.ypap,
0.8*paper.ypap, GYAXIS) ;
ggSetAxesScaling (GLINEARTYPE3,13,-3.0,10.0, GYAXIS) ;
ggAddGrid (GNONE, GNONE, GNOANNOTATION, GNOANNOTATION) ;
ggDrawAxes (GCARDINAL, GCLOCKWISE, GCLOCKWISE, GXAXIS) ;
ggDrawAxes (GINTERMEDIATE, GANTICLOCKWISE, GANTICLOCKWISE, GYAXIS) ;
DRAW FIRST GRAPH ANNOTATING Y VALUES */
ggAddGraphPolyline (N, pntsl) ;
ggAddGraphMarkers (N, pntsl, GSTAR,0) ;

Y VALUES - ABOVE DATA POINT, LEFT JUSTIFIED AT 45 DEGREES */

ggSetValueAttribs (GCENTRE, GINSIDETOP,0.0,0.0,0.0,45.0, GBOTTOM,
GLEFT) ;

ggSetValueTags (” (7, "m)”) ;

ggAddGraphValues (N, &pntsl, GYAXIS) ;

DRAW SECOND GRAPH ANNOTATING X AND Y VALUES
ggAddGraphMarkers (N, &pnts2, GCROSS, 0) ;

X VALUES - RIGHT JUSTIFIED WITH ‘(' PREFIX

AND ‘,’ SUFFIX OFFSET BY 2MM IN X DIRECTION */

ggSetValueAttribs (GCENTRE, GINSIDETOP,0.0,2.0,0.0,0.0,GBOTTOM,
GRIGHT) ;

ggSetValueTags (“ (”,"”,");

ggAddGraphValues (N, &pnts2, GXAXIS) ;

Y VALUES - LEFT JUSTIFIED WITH ‘)’ SUFFIX

ALSO OFFSET BY 2MM IN X DIRECTION */

ggSetValueAttribs (GCENTRE, GINSIDETOP,0.0,2.0,0.0,0.0,GBOTTOM,
GLEFT) ;

ggSetValueTags ("*.”,"”)");

ggAddGraphValues (N, &pnts2, GYAXIS) ;

gSuspendDevice () ;
gCloseGino () ;

F90 Code

i

us

DATA VALUE ATTRIBUTE CONTROL

use gino £f90

e graf £90
integer, parameter :: N = 10

type (GDIM) paper

integer papty

type (GPOINT), dimension(N) :: pntsl = &

(/GPOINT (1056.78543,4.4),GPOINT (2000.0,2.34), &
GPOINT (3210.9876,1.454),GPOINT (4000.0,2.7), &
GPOINT (5000.0,0.123456789012345) ,GPOINT (6000.56,-1.0), &
GPOINT (7000.0,-1.01),GPOINT (8000.0,-0.4), &
GPOINT (9000.0,-2.99), (10000.0,-2.399983456789) /)

type (GPOINT), dimension(N) :: pnts2 = &

(/GPOINT (1056.2,9.9823) ,GPOINT (2100.0,9.0999), &

GPOINT (3000.0,8.003),GPOINT (4000.0,7.365), &

GPOINT (5000.0,6.134),GPOINT (6000.0,5.4567), &

GPOINT (7000.0,4.23) ,GPOINT (8000.0,3.345), &

GPOINT (9000.99,2.123),GPOINT (9999.99,-0.9994) /)

67

Displaying Data Values GRAPHS

68

GRAPHS Application Specific Missing Values

(1.06,9.98)
(2.19.1)
X

8] (3,8.00)
] x (4,7.36)
X

] (5,6.13)
67 x (6,5.46)
X

(7,4.23)
X
(8,3.35)
X

(9.00,2.12)
X

Displaying data values with format control

Application Specific Missing Values

GINOGRAF provides a facility for catering for a single value or range of values
that represent missing or rogue data in an application’s data set. This facility is
provided through the routine ggDefineMissingValues().

ggDefineMissingValues(mode, vall,val2,xory)
where mode sets the missing value mode to one of the following:

0 - switches the facility off

1 - omits data that is equal to vall or val2
2 - omits data greater that vall

3 - omits data greater than or equal to vall
4 - omits data less than vall

5 - omits data less than or equal to vall

6 - omits data outside the range vall-val2
7 - omits data inside the range vall-val2

69

Graph Titles GRAPHS

This facility only affects polyline, marker and value graphs either drawn through
ggPlotGraph(), ggAddGraphPolyline(), ggAddGraphMarkers() or
ggAddGraphValues().

Graph Titles

The titling routine ggDrawGraphTitle() may be used to title a graph. Further
details of this routine and other graphing utilities can be found in the Utilities
chapter.

70

Chapter

CHARTS

Introduction to Charts

This chapter covers the production of Charts. The GINOGRAF definition of a
chart is a two or two-and-a-half dimensional (block-filled) representation of data
using rectangular columns, bars, steps or areas on a set of axes. This definition
covers five main types of chart: Multi-column and Single column Histograms and
Bar Charts (discrete values against continuous data); and Step Charts and Area
Charts (continuous data and values).

Data for the five chart types is represented by lengths, heights or areas as shown

below :
Column First data | Second data Data represented
Width position position by
Histograms Constant Zero Variable Height
Bar Charts Constant Variable Variable Length
Step Charts Variable Fixed Variable Height and width
Area Charts Variable Variable Variable Length and width
Multi-data Set Histograms | Constant Zero Variable Height

The chart drawing routines are split into two main groups: complete drawing
routines which produce a fully annotated chart with a single routine call; and
separate component routines which build up a chart in a modular fashion. The
routine names are shown in the tables below:

71

Complete Chart Drawing

CHARTS

Histogram
Bar Charts
Step Charts
Area Charts

Histogram
Bar Charts
Step Charts
Area Charts

Histogram

Bar Charts

Step Charts
Area Charts
Multi-Histogram

Complete
ggPlotHistogram
ggbPlotBarChart
ggPlotStepChart
ggPlotAreaChart

Outline
ggAddHistogramOutline
ggAddBarChartOutline
ggAddStepChartOutline
ggAddAreaChartOutline

Filling

ggFillHistogram
ggFillBarChart
ggFillStepChart
ggFillAreaChart
ggFillMultiHistogram

Value Display
ggAddHistogramValues
ggAddBarChartValues
ggAddStepChartValues
ggAddAreaChartValues

Block Filling
ggBlockFillHistogram
ggBlockFillBarChart
ggBlockFillStepChart
ggBlockFillAreaChart

ggBlockFillMultiHistogram

While axis and graph titles can be added after the complete drawing routines
have been called, the full flexibility of layout and style can only be achieved
using the component routines as the complete drawing routine is provided to
present user data as quickly as possible with the minimum of effort.

Complete Chart Drawing

72

Complete chart drawing routines provide the user with the simplest path to
obtaining output from GINOGRAF.

The routines described in this section are complete in themselves. The user
simply provides the data in the appropriate array and makes a single routine call.
The position and scaling of the chart is calculated automatically and output is
drawn to fit the current graph drawing area as described in the main introduction.
The numerical annotation on each axes is subject to the current settings of format
and annotation control set by ggSetAxesAnnotation() and ggSetAxesAttribs().

Histograms

The complete drawing routine to produce a 2D Histogram is:

ggPlotHistogram(ncols,yarray,frac,scy,vbeg,vend)

This routine displays a data set made up of ncols values in the array yarray as
ncols rectangular columns drawn between zero and the value in yarray.

CHARTS Complete Chart Drawing

The discrete axis is always drawn as the X axis having a range from vbeg to
vend divided into ncols intervals. The Y axis covers the extent of all the values
in the array yarray and may be drawn with linear or logarithmic scaling as
defined by the parameter scy(GLINEAR=linear, GLOG10=logarithmic).

The routine allows control over the width of the Histogram bars by specifying the
fraction frac of the largest possible bar width for the axis definition.

width of columns = ((length of discrete (X) axis)/ncols) * frac
The effect of various values of frac is shown under Histogram outline.

An example of output produced by ggPlotHistogram() is shown below:

500

450 3

400 3

350 4 g

300 3

250 g

200 E

150 3 E

100 E

50 3

-

T
1 2 3 4 5 6 7 8 9 10 11 12

Example of complete 2D Histogram

The following code shows the program that generated the above example
followed by an equivalent program using the low-level component routines
described in the following sections. The comparison is given because it is often
desirable to make changes to the layout of a basic Histogram, but this is only
possible by using the component routines, as the routine ggPlotHistogram() is
provided to present user data as quickly as possible with the minimum of effort.

73

Complete Chart Drawing

CHARTS

74

C Code

/* USE OF COMPLETE HISTOGRAM DRAWING ROUTINE -

ggPlotHistogram() */

#include <gino-c.h>
#include <graf-c.h>

int main (void) {

/*

float y[12] = {138.0,97.0,275.0,399.0,500.0,
341.0,430.0,232.0,216.0,113.0,34.0,55.0};

gOpenGino () ;

XXXXX () ;

ggSetGraphCharMode (GGINOMODE) ;
ggPlotHistogram(12,vy,0.9,GLINEAR,1.0,12.0);
gSuspendDevice () ;

gCloseGino () ;
return (0) ;

USING LOW LEVEL COMPONENT ROUTINES*/

#include <gino-c.h>
#include <graf-c.h>

int main (void) {

/*

/*

/*

/*

float y[12] {138.0,97.0,275.0,399.0,500.0,
341.0,430.0,232.0,216.0,113.0,34.0,55.0};

GCHASTY rep;

GLIMIT lims;

gOpenGino () ;
XXXxXX () ;
ggSetGraphCharMode (GGINOMODE) ;

ENQUIRE GINOGRAF DRAWING LIMITS AND CHARACTER SIZE */
ggEngPlotFrame (&flg, &lims) ;
gEngCharAttribs (&rep) ;

SET UP AXES POSITIONS AND SCALES */
ggSetAxesPos (GAXISSTART, 9.0*rep.cw,5.0*rep.ch,
lims.xmax-1lims.xmin-12.0*rep.cw, GXAXIS) ;
ggSetAxesScaling (GDISCRETE,12,1.0,12.0,GXAXIS);
ggSetAxesPos (GAXISSTART, 9.0*rep.cw,5.0*rep.ch,
lims.ymax-lims.ymin-10.*rep.ch, GYAXIS) ;
ggSetAxesScaling (GLINEARTYPE1,10,0.0,500.0,GYAXIS) ;

DRAW GRID */

ggAddGrid (GINTERMEDIATE, GTICKS, GANNOTATION, GANNOTATION) ;

DRAW HISTOGRAM */
ggAddHistogramOutline (12,y,0.9);

gSuspendDevice () ;
gCloseGino () ;
return (0) ;

CHARTS Complete Chart Drawing

F90 Code

Complete Chart Drawing CHARTS

76

Bar Charts

The complete drawing routine to produce a 2D Bar Chart is:
ggPlotBarChart(nbars,bars,frac,scx,scy,vbeg,vend)

where nbars is the number of data pairs contained in the array bars (of type
GBARCHART) which contain the start and finish values of each bar. The type of
scaling and the orientation of the continuous axis (axis defining bar length) is
defined by the parameters scx and scy. The discrete axis is annotated with nbars
intervals between vbeg and vend.

The width of the bars is determined by setting frac, the fraction of the widest
possible bar given the length of axis and the number of bars.

width of bars = ((length of discrete axis)/nbars) * frac

If frac = 1.0 then only the necessary lines are drawn (ie, lines common to two
bars are omitted).

An example of output produced by ggPlotBarChart() is shown below:

10] ‘

.]

& | |

. .

T T T T T T T
0 10 20 30 40 50 60 70 80 90 100

Example of complete 2D Bar Chart

The following code shows the program that generated the above example
followed by an equivalent program using the low-level component routines
described in the following sections. The comparison is given because it is often
desirable to make changes to the layout of a basic Bar Chart, but this is only
possible by using the low level routines, as the routine ggPlotBarChart() is
provided to present user data as quickly as possible with the minimum of effort.

CHARTS

Complete Chart Drawing

C Code

/*

USE OF COMPLETE BARCHART DRAWING ROUTINE -
ggPlotBarChart () */

#include <gino-c.h>
#include <graf-c.h>

int main (void) {

/*

GBARCHART bars([10] = {0.0,20.0,5.0,30.0,25.0,60.0,
30.0,45.0,40.0,75.0,50.0,80.0,55.0,70.0,45.0,85.0,
85.0,95.0,60.0,100.0};

gOpenGino () ;

XxXxX () ;

ggSetGraphCharMode (GGINOMODE) ;

ggPlotBarChart (10,bars,0.75,GLINEAR, GDISCRETE,1.0,10.0) ;
gSuspendDevice () ;

gCloseGino () ;
return (0) ;

USING LOW LEVEL COMPONENT ROUTINES */

#include <gino-c.h>
#include <graf-c.h>

int main (void) {

/*

/*

/*

/*

int flg;

GLIMIT lims;

GCHASTY rep;

GBARCHART bars[10] = {0.0,20.0,5.0,30.0,25.0,60.0,
30.0,45.0,40.0,75.0,50.0,80.0,55.0,70.0,45.0,85.0,
85.0,95.0,60.0,100.0};

gOpenGino () ;
XXXxXX () ;
ggSetGraphCharMode (GGINOMODE) ;

ENQUIRE GINOGRAF DRAWING LIMITS AND CHARACTER SIZE */
ggEngPlotFrame (&flg, &lims) ;
gEngCharAttribs (&rep) ;

SET UP AXES POSITIONS AND SCALES */

ggSetAxesPos (GAXISSTART, 9.0*rep.cw,
5.0*rep.ch,lims.xmax-lims.xmin-12.0*rep.cw, GXAXIS) ;

ggSetAxesScaling (GLINEARTYPE1,11,0.0,100.0,GXAXIS) ;

ggSetAxesPos (GAXISSTART, 9.0*rep.cw,
5.0*rep.ch,lims.ymax-1lims.ymin-10.0*rep.ch, GYAXIS) ;

ggSetAxesScaling (GDISCRETE,10,1.0,10.0,GYAXIS)

DRAW GRID */
ggAddGrid (GINTERMEDIATE, GTICKS, GANNOTATION, GANNOTATION) ;

DRAW BAR CHART */
ggAddBarChartOutline (10,bars, 0.75);

gSuspendDevice () ;
gCloseGino () ;
return (0) ;

77

Complete Chart Drawing CHARTS

F90 code

CHARTS

Complete Chart Drawing

! DRAW BAR CHART
call ggAddBarChartOutline (10,bars,0.75)

call gSuspendDevice
call gCloseGino
stop

end

Step Charts & Variable Width Histograms

The Complete Drawing routine to produce a Step Chart is:
ggPlotStepChart(nsteps,steps,base,scx,scy,drop)

This routine displays an annotated set of axes scaled automatically to include all
the data. The data set held in the array steps (of type GSTEPCHART) is
represented as a series of steps between corresponding values of steps.s and
steps.f on the X axis, at a height held in steps.h on the Y axis, or a series of
variable width columns between corresponding values of steps.s and steps.f on
the X axis with a height shown between a base value (base) and the
corresponding value held in steps.h on the Y axis.

The choice of step or column is determined by the parameter drop, where drop=
GDROPTYPEDQO displays only the step heights, drop=GDROPTYPEI displays
the vertical between adjacent steps (ie, steps.s(i) = steps.f(i)),
drop=GDROPTYPE?2 displays step edges except between adjacent steps
(steps.s(i) = steps.f(i)) and drops down to base at the edge of a set of adjacent
steps and drop=GDROPTYPE3 displays columns down to base for every height.

Linear or logarithmic scaling may be used on either axis depending on the value
of sex and scy, with sex/scy=GLINEAR producing linear scaling on both axes.

79

Complete Chart Drawing CHARTS

80

An example of output produced by ggPlotStepChart() (with drop =
GDROPTYPE2) is shown below:

180

160 ;\J—‘;

140 |

120 |

100 £

80 F

60 £

40 B

20 |

0

0 20 40 60 80 100 120 140 160 180 200

Example of complete 2D Step Chart

The following code shows the program that generated the above example
followed by an equivalent program using the low-level component routines
described in the following sections. The comparison is given because it is often
desirable to make changes to the layout of a basic Step Chart, but this is only
possible by using the low level routines, as the routine ggPlotStepChart() is
provided to present user data as quickly as possible with the minimum of effort.

C Code

/* USE OF COMPLETE STEPCHART DRAWING ROUTINE - ggPlotStepChart () */
#include <gino-c.h>
#include <graf-c.h>

int main (void) {

GSTEPCHART steps[7] = {0.0,20.0,153.0,
20.0,30.0,145.0,30.0,60.0,161.0,
60.0,80.0,154.0,80.0,100.0,130.0,
100.0,130.0,126.0,170.0,200.0,112.0};

gOpenGino () ;
XXXXX () ;
ggSetGraphCharMode (GGINOMODE) ;

ggPlotStepChart (7, steps, 0.0, GLINEAR, GLINEAR, GDROPTYPE?2) ;
gSuspendDevice () ;

gCloseGino () ;
return (0) ;

CHARTS Complete Chart Drawing

/* USING LOW LEVEL COMPONENT ROUTINES */
#include <gino-c.h>
#include <graf-c.h>

int main (void) {

GSTEPCHART steps[7] = {0.0,20.0,153.0,
20.0,30.0,145.0,30.0,60.0,161.0,
60.0,80.0,154.0,80.0,100.0,130.0,
100.0,130.0,126.0,170.0,200.0,112.0};

GLIMIT lims;

int flg;

gOpenGino () ;
XXXXX ()7
ggSetGraphCharMode (GGINOMODE) ;

/* ENQUIRE GINOGRAF DRAWING LIMITS AND CHARACTER SIZE */
ggEngPlotFrame (&flg, &1ims) ;
gEngCharAttribs (&rep) ;

/* SET UP AXES POSITIONS AND SCALES */
ggSetAxesPos (GAXISSTART, 9.0*rep.width,
5.0*rep.height, lims.xmax-1lims.xmin-12.0*rep.width, GXAXIS) ;
ggSetAxesScaling (GLINEARTYPEL,11,0.0,200.0,GXAXIS) ;
ggSetAxesPos (GAXISSTART, 9.0*rep.width,
5.0*rep.height, lims.ymax-1lims.ymin-10.0*rep.height, GYAXIS) ;

ggSetAxesScaling (GLINEARTYPE1,10,0.0,180.0, GYAXIS) ;

/* DRAW GRID */
ggAddGrid (GINTERMEDIATE, GTICKS, GANNOTATION, GANNOTATION) ;

/* DRAW STEP CHART */
ggAddStepChartOutline (7, steps, 0.0, GDROPTYPE2, GXAXIS) ;

gSuspendDevice () ;
gCloseGino () ;
return (0) ;

F90 Code

! USE OF COMPLETE STEPCHART DRAWING ROUTINE -
! ggPlotStepChart ()

use gino £90

use graf f£90

type (GSTEPCHART), dimension (7
(/GSTEPCHART (0.0,20.0,153.0)
GSTEPCHART (20.0,30.0,145.0

) steps = &

)
GSTEPCHART (30.0,60.0,161.0)

)

0

&
&

&
GSTEPCHART (60.0,80.0,154.0 &
GSTEPCHART

GSTEPCHART
GSTEPCHART

4
80.0,100.0,130.0),
100.0,130.0,126.0)
170.0,200.0,112.0)

&

, &
/)

call gOpenGino
call xxxxx
call ggSetGraphCharMode (GGINOMODE)

call ggPlotStepChart (7,steps,0.0,GLINEAR, GLINEAR, GDROPTYPE2)

81

Complete Chart Drawing CHARTS

Area Charts

The Complete Drawing routine to produce an Area Chart is:

ggPlotAreaChart(nareas,areas,scx,scy)

CHARTS

Complete Chart Drawing

This routine displays an annotated set of axes scaled automatically to include all
the data. The data set held in the array areas (of type GAREACHART) is
represented as nareas areas between the corresponding coordinates areas.s,
areas.hl and areas.f, areas.h2 where areas.s and areas.f are positions on the X
axis, and areas.hl and areas.h2 are on the Y axis.

Linear or logarithmic scaling may be used on either axis depending on the value
of sex and scy, with sex=scy=GLINEAR producing linear scaling on both axes.

An example of output produced by ggPlotAreaChart() is shown below:

100

N0 7

80 b 7

70 £ 7

60 | E

50 E

40 ¢ E

30 | E

20 | i

10 ottt ettt e koot ettt ket ettt bt et e e]
0 20 40 60 8 100 120 140 160 180 200

Example of complete 2D Area Chart

The following code shows the program that generated the above followed by an
equivalent program using the low-level component routines described in the
following sections. The comparison is given because it is often desirable to make
changes to the layout of a basic Area Chart, but this is only possible by using the
low level routines, as the routine ggPlotAreaChart() is provided to present user
data as quickly as possible with the minimum of effort.

83

Complete Chart Drawing CHARTS

84

C Code

/* USE OF COMPLETE AREA CHART DRAWING ROUTINE
ggPlotAreaChart () */

#include <gino-c.h>

#include <graf-c.h>

int main (void) {

GAREACHART areal[7] = {0.0,20.0,43.0,51.0,
20.0,30.0,14.0,45.0,30.0,60.0,31.0,76.0,
60.0,80.0,44.0,84.0,80.0,100.0,65.0,87.0,
100.0,130.0,71.0,93.0,170.0,200.0,87.0,96.0};

gOpenGino () ;
XXXXX () ;
ggSetGraphCharMode (GGINOMODE) ;

ggPlotAreaChart (7, area, GLINEAR, GLINEAR) ;

gSuspendDevice () ;
gCloseGino () ;
return (0) ;

/* USING LOW LEVEL COMPONENT ROUTINES */
#include <gino-c.h>
#include <graf-c.h>

int main (void) {

GAREACHART areal[7] = {0.0,20.0,43.0,51.0,
20.0,30.0,14.0,45.0,30.0,60.0,31.0,76.0,
60.0,80.0,44.0,84.0,80.0,100.0,65.0,87.0,
100.0,130.0,71.0,93.0,170.0,200.0,87.0,96.0};

int flg;
GLIMIT lims;
GCHASTY rep;

gOpenGino () ;
XxXXxXX () ;
ggSetGraphCharMode (GGINOMODE) ;

/* ENQUIRE GINOGRAF DRAWING LIMITS AND CHARACTER SIZE */
ggEngPlotFrame (&flg, &lims) ;
gEngCharAttribs (&rep) ;

/* SET UP AXES POSITIONS AND SCALES */
ggSetAxesPos (GAXISSTART, 9.0*rep.width,
5.0*rep.height, lims.xmax-lims.xmin-12.0*rep.width, GXAXIS) ;
ggSetAxesScaling (GLINEARTYPE1,11,0.0,200.0,GXAXIS) ;
ggSetAxesPos (GAXISSTART, 9.0*rep.width,
5.0*rep.height, lims.ymax-1lims.ymin-10.0*rep.height, GYAXIS) ;

ggSetAxesScaling (GLINEARTYPE1,10,10.0,100.0,GYAXIS) ;

/* DRAW GRID */
ggAddGrid (GINTERMEDIATE, GTICKS, GANNOTATION, GANNOTATION) ;

/* DRAW AREA CHART */
ggAddAreaChartOutline (7, area, GXAXIS) ;

CHARTS Complete Chart Drawing

gSuspendDevice () ;
gCloseGino () ;
return (0) ;

F90 Code

Complete Chart Drawing CHARTS

! SET UP AXES POSITIONS AND SCALES
call ggSetAxesPos (GAXISSTART, 9.*repSswidth, &
5.*rep%height, lims%$xmax-1lims$xmin-12.*repswidth, GXAXIS)
call ggSetAxesScaling (GLINEARTYPE1,11,0.,200.,GXAXIS)
call ggSetAxesPos (GAXISSTART, 9.*repswidth, &
5.*rep%height, lims$ymax-1ims%ymin-10.*rep%height, GYAXIS)
call ggSetAxesScaling (GLINEARTYPE1,10,10.,100.,GYAXIS)

! DRAW GRID
call ggAddGrid (GINTERMEDIATE, GTICKS, GANNOTATION, GANNOTATION)

! DRAW AREA CHART
call ggAddAreaChartOutline (7,area, GXAXIS)

call gSuspendDevice
call gCloseGino
stop

end

Chart Scaling

Under the default conditions, the ggPlotStepChart() and ggPlotAreaChart()
routines will draw a chart representing the full range of the X and Y data,
calculating sensible axes intervals according to the current drawing area. The
routine ggSetGraphScaling() can be used to add control over the ranges and
intervals of the X and Y axes for this type of chart.

ggSetGraphScaling(mode)

where mode can be one of the following:

GDEFAULT set the default conditions

GEQUALLIMITS set both axes to have the same limits (to include both data
ranges)

GEQUALRANGES set both axes to have the same range of data

GEQUALGRAPHINTERVALS set both axes to have equal sized intervals (in graph
coordinates)

GEQUALSPACEINTERVALS set both axes to have equal sized intervals (in space/physical

coordinates)

The GEQUALSPACEINTERVALS mode will result in a square grid, but may
have the effect of reducing the length of one axis within the specified drawing
area in order to maintain sensible numerical intervals on the axes.

86

CHARTS Chart Drawing Components

Chart Drawing Components

The following sections describes the component routines provided by
GINOGRAF for drawing charts. These routines provide the user with the tools to
build up more complex and sophisticated charts than those produced by the
Complete Chart Drawing routines described in the previous section.

Each chart is built up in a modular fashion, making use of individual routines to:

 Position, scale, label and draw the axes
+ Represent data sets in outline or filled areas
« Annotate data sets

Chart Axes Definition and Display

Axes definition is essential to chart drawing when creating a chart using the
component routines in the following section. The axes may be defined using the
Complete Drawing Routines described previously or through the individual axes
definition routines ggSetAxesPos() and ggSetAxesScaling(). A usual requirement
for using the individual routines is where the automatic calculation of position or
ranges is not sufficient for a complex chart display.

Full description of axes definition, display and titling is found elsewhere (see
page 19).

Block Chart Attributes

The format of the two-and-a-half dimensional block charts is subject to the
current Block Chart attributes. These are set and enquired using the following
two routines:

ggSetBlockChartAttribs(coloff,azim,elev,depth,top,side)

ggEngBlockChartAttribs(coloff,azim,elev,depth,top,side)

where coloff is the colour index offset used to define the block shading colours.
The argument azim and elev define the azimuth and elevation of the block and
depth is the depth as a fraction of the block width. The variables top and side
define the relative lightness of the top and side of each block. The colour of the
front of the block is defined in the block filling routine itself for each chart type.

87

Histogram Components CHARTS

The default Block Chart attributes may be restored using the routine:

ggRestoreBlockChartAttribs

Histogram Components

There are four components available for the building of a fully annotated, filled

Histogram:
ggBlockFillHistogram() Drawing block filled columns
ggAddHistogramOutline () Drawing column outline
ggFillHistogram() Drawing filled columns
ggAddHistogramValues () Displaying height values

All four routines may be used independently of each other or on the same chart
although it is usual to use a combination of block filling and values, or simple
filling, outline and values. It is necessary to define both X and Y axis positions
and data ranges before calling any of these routines either by the axis definition
routines or the Complete Chart Drawing routine ggPlotHistogram(). One of the
axes should be defined as a discrete axis (scale=GDISCRETE) whereupon the
heights are measured against the remaining non-discrete axis.

Users should note that if ggFillHistogram() is called after ggPlotHistogram() or
ggAddHistogramOutline() the Histogram outline will be overwritten by the
filling. If the outline is required, the solution is to always draw the outline with
ggAddHistogramOutline() after the filling. The block filling routine fills the
appropriate areas and follows this with drawing the histogram outline in the
current GINO line colour.

Block Filled Histogram
The routine to display a block filled histogram is:
ggBlockFillHistogram(ncols,yarray,frac,line)

This routine displays a set of data values as block filled columns on the last
defined set of axes. The columns are plotted about the centre of the tick marks
along the discrete axis according to the current block chart attributes. All the
columns are solid filled with the specified line style with the extrusions filled
with a darker (or lighter) shade of this line style again according to the current
block chart attributes (using ggSetBlockChartAttribs()).

88

CHARTS

Histogram Components

The following shows an example of a block filled histogram.

550 -

500 4

450 4

400 -

350 -

300 |

250

200 4

150

100

50

0

-50

-100

Block Filled Histogram

Histogram Outline

The routine to display a set of columns is:

ggAddHistogramOutline(ncols,yarray,frac)

This routine displays a set of data values as columns on the last defined set of
axes. The columns are plotted about the centre of the tick marks along the
discrete axis in the order that they are presented within the array.

The representation of the columns depends on the width of the columns which is
determined using the parameter frac, the fraction of the widest possible column

given the axis length and number of columns.

89

Histogram Components CHARTS

90

The effects of changing frac within ggAddHistogramOutline() are shown below:

le frac = 1.0

frac = 0.99

24 frac = 0.0

. =

o O
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Effect of frac on ggAddHistogramOutline

If a height defined in array yarray is negative, the column is drawn on the
negative side of the discrete axis.

Histogram Filling

The routine to display a set of filled columns is:
ggFillHistogram(ncols,yarray,frac,fill,line)

This routine displays a set of data values as filled columns on the last defined set
of axes. The columns are plotted about the centre of the tick marks along the
discrete axis in the order that they are presented within the array.

The width of the columns is determined using the parameter frac, the fraction of
the widest possible column given the axis length and number of columns.

The hatch or fill style for each column is held in the array fill. Various hatches
and cross hatches as well as solid fill are available. If an element of fill contains a
number less than -1(GHOLLOW), the corresponding column is not filled and the
boundary not drawn. The line styles used to fill the columns are held in the array
line. The default line styles, hatch styles and fill styles appear in Appendix A of
this manual. Further information on line style definition (which includes colour
definition) and information on hatch and fill style definition appears in the main
introduction.

If a height defined in array yarray is negative, the column is filled on the
negative side of the discrete axis.

CHARTS Histogram Components

The column outlines are not drawn with this routine. Users should use
ggPlotHistogram() or ggAddHistogramOutline() to draw the outline.

Annotating Height Values on Histograms
The routine to output Histogram height values is:
ggAddHistogramValues(ncols,yarray,frac)

where ggAddHistogramValues() will display ncols values in the array yarray
associated with the Histogram columns drawn by ggPlotHistogram() or
ggAddHistogramOutline(). The argument frac is required to ensure correct
positioning of the values when they are placed at the edge of each column as
shown below, it should therefore be set to the same value as that used in a
corresponding call to ggPlotHistogram() or ggAddHistogramOutline(). By
default, the values are positioned at the centre of the associated column in the
same numerical format as the current non-discrete axes. The numerical format of
the data values can be changed through the routine ggSetAxesAnnotation() with
xory set to which ever is the non-discrete axis.

Histogram Data Value Control
The position and orientation of each value can be changed with the routine:
ggSetValueAttribs(xpos,ypos,xory,xoff,yoff,angstr,justmb,juslcr)

where xpos, ypos and xory determine the position of each values control point,
about which the remaining arguments refer. The control point can be positioned
at one of 15 positions around each column as well as 3 positions at a specified X
or Y coordinate by setting yorx and either xpos or ypos to GSPECIFIED. The
value of xory is measured in graphical coordinates and so refers to the current
axes ranges (as set up by ggSetAxesScaling()) for the appropriate axis.

91

Histogram Components CHARTS

92

The control points are shown below with height values drawn centrally over each
one and xory set to 9.0.

ypos=GSPECIFIED 9455 5 55 77 7 77r

ypos=GOUTSIDETOP 5/55 5 55
ypos=GINSIDETOP 5[5 5 5|5

ypos=GCENTRE 5|5 5 5/5
2]

ypos=GINSIDEBOTTOM o | 5|5
ypos=GOUTSIDEBOTTOM

o
o
oo
o

GOUTSIDELEFT
GINSIDELEFT
GINSIDERIGHT
GOUTSIDERIGHT o |on

GCENTRE

Xpos
Xpos:
Xpos
Xpos
Xpos

Chart annotation control positions

The routine ggSetValueAttribs() can also be used to set an additional offset
(measured in user space coordinates) in the horizontal and/or vertical direction
(xoff,yoff), an annotation string angle (angstr) and a vertical and/or horizontal
justification (justmb,jushor). The default setting of centre justification is
sufficient for centrally placed control positions (xpes = GCENTRE), but the
appropriate left or right justification would usually be required for control
positions set at the edges of the column limits.

Where Histogram data values are negative, the position of the control point on
the non-discrete axis is placed in the matching position corresponding to the
column height but below the zero axis.

Appended to each value in any of the the value charts can be added a prefix
and/or suffix string using the routine.

ggSetValueTags(prefix,suffix)

where prefix and suffix are strings of up to 30 characters that are appended to all
the values in one value chart output. The prefix and/or suffix strings are included
as part of the value when calculating the justified position of the total output.

CHARTS

Histogram Components

Example of Fully Annotated Histogram

The following example shows the use of all the Histogram component routines:

550

500] 500
4501
4001 399
350] 341
300

275
2504

-50 3

-100

232 o
2001 b
1507 138 b
100 97 3 £

0 [T
il

-55

6 7

8 9 10 11 12

Example of fully annotated Histogram

C Code

/* FULLY ANNOTATED HISTOGRAM */
#include <gino-c.h>
#include <graf-c.h>

int main (void) {

/*

/*

float yarray[l12] = {138.0,97.0,275.0,399.0,
500.0,341.0,430.0,232.0,216.0,113.0,34.0,-55.0};
GCHASTY rep;
GLIMIT lims;
int i, flg, £i11[12], linel[l2];
for (i=0; i<12; i++) {
fill[i]=2;
line[i]=1;

}

gOpenGino () ;
Xxxxx () ;
ggSetGraphCharMode (GGINOMODE) ;

ENQUIRE GINOGRAF DRAWING LIMITS AND CHARACTER SIZE */
ggEngPlotFrame (&flg, &1lims) ;
gEngCharAttribs (&rep) ;

SET UP AXES POSITIONS AND SCALES */
ggSetAxesPos (GAXISSTART, 9.0*rep.width,

5.0*rep.height, lims.xmax-1lims.xmin-12.0*rep.width, GXAXIS) ;

ggSetAxesScaling (GDISCRETE,12,1.0,12.0, GXAXIS) ;
ggSetAxesPos (GAXISSTART, 9.0*rep.width,

5.0*rep.height, lims.ymax-1lims.ymin-10.*rep.height, GYAXIS) ;

ggSetAxesScaling (GLINEARTYPE1,12,-100.0,550.0, GYAXIS) ;

93

Histogram Components CHARTS

94

/* DRAW HISTOGRAM */
ggFillHistogram(12, yarray,0.9,£fill,line);
ggAddHistogramOutline (12, yarray,0.9);

/* POSITION HEIGHT VALUES ABOVE COLUMNS */
ggSetValueAttribs (GCENTRE, GOUTSIDETOP, 0.0,

0.0,0.0,0.0,GCENTRE, GCENTRE) ;

ggAddHistogramValues (12, yarray,0.9);

/* DRAW GRID */
ggAddGrid (GINTERMEDIATE, GTICKS, GANNOTATION, GANNOTATION) ;
gSuspendDevice () ;
gCloseGino() ;
return (0) ;

}

F90 Code

! FULLY ANNOTATED HISTOGRAM

use gino £90

use graf f£90
real, dimension(12) :: yarray = (/138.0,97.0,275.0, &

399.0,500.0,341.0,430.0,232.0,216.0,113.0,34.0,-55.0/)
type (GCHASTY) rep
type (GLIMIT) lims
integer flg
integer, dimension(12) :: fill=(/12*2/)
integer, dimension(12) :: line=(/12*1/)

call gOpenGino

call xxxxx

call ggSetGraphCharMode (GGINOMODE)

ENQUIRE GINOGRAF DRAWING LIMITS AND CHARACTER SIZE
call ggEngPlotFrame (flg,lims)

call gEngCharAttribs (rep)

SET UP AXES POSITIONS AND SCALES
call ggSetAxesPos (GAXISSTART,9.0*rep%%Swidth, &

5.0*rep%height, lims%$xmax-1lims%xmin-12.0*rep%Swidth, GXAXIS)
call ggSetAxesScaling (GDISCRETE,12,1.0,12.0,GXAXIS)
call ggSetAxesPos (GAXISSTART, 9.0*rep%swidth, &

5.0*rep%height, lims%ymax-1lims%ymin-10.*rep%$height, GYAXIS)
call ggSetAxesScaling (GLINEARTYPE1,12,-100.0,550.0,GYAXIS)

DRAW HISTOGRAM
call ggFillHistogram(l2,yarray,0.9,fil11l,1ine)
call ggAddHistogramOutline (12,yarray,0.9)

POSITION HEIGHT VALUES ABOVE COLUMNS

call ggSetValueAttribs (GCENTRE, GOUTSIDETOP,0.0, &
0.0,0.0,0.0,GCENTRE, GCENTRE)

call ggAddHistogramValues (12,yarray,0.9)

DRAW GRID
call ggAddGrid (GINTERMEDIATE, GTICKS, GANNOTATION, GANNOTATION)

call gSuspendDevice
call gCloseGino
stop

end

CHARTS

Bar Chart Components

Bar Chart Components

There are four components available for the building of a fully annotated, filled
Bar Chart:

ggBlockFillBarChart () Drawing block filled barchart
ggAddBarChartOutline () Drawing bar outline
ggFillBarChart () Drawing filled bars
ggAddBarChartValues () Displaying start, finish or length values

All four routines may be used independently of each other or on the same chart
although it is usual to use a combination of block filling and values, or simple
filling, outline and values. It is necessary to define both X and Y axis positions
and data ranges before calling any of these routines either by the axis definition
routines or the Complete Chart Drawing routine ggPlotBarChart(). One of the
axes should be defined as a discrete axis (scale=GDISCRETE) where upon the
bars are measured against the remaining non-discrete axis.

Users should note that if ggFillBarChart() is called after ggPlotBarChart() or
ggAddBarChartOutline() the Bar Chart outline will be overwritten by the filling.
If the outline is required, the solution is to always draw the outline with
ggAddBarChartOutline() after the filling. The block filling routine fills the
appropriate areas and follows this with drawing the bar chart outline in the
current GINO line colour.

Block Filled Bar Chart

The routine to display a block filled bar chart is:
ggBlockFillBarChart(nbars,bars,frac,line)

This routine displays a set of data values as block filled bars on the last defined
set of axes. The bars are plotted about the centre of the tick marks along the
discrete axis according to the current block chart attributes. Each bar starts at the
corresponding value of bars.s and finishes at the corresponding value of bars.f.
Start and finish values may be positive or negative.

All the bars are solid filled with the specified line style with the extrusions filled
with a darker (or lighter) shade of this line style according to the current block
chart attributes (using ggSetBlockChartAttribs()).

95

Bar Chart Components CHARTS

The following shows an example of a block filled bar chart.

100 Length=40
Length=10
Length=40
Length=15
Length=30
Length=35
Length=15
Length=35

Length=25

Length=20

110 120 130

Block Filled Bar Chart

Bar Chart Outline

The routine to display a set of bars is:
ggAddBarChartOutline(nbars,bars,frac)

This routine displays a set of data values as bars on the last defined set of axes.
The bars are plotted about the centre of the tick marks along the discrete axis in
the order that they are presented within the array. Each bar starts at the
corresponding value of bars.s and finishes at the corresponding value of bars.f.
Start and finish values may be positive or negative.

The representation of the bar depends on the width of the bars which is
determined using the parameter frac, the fraction of the widest possible bar given
the axis length and number of bars. The effects of changing frac are the same as
with the Histogram routine ggAddHistogramOutline().

Bar Chart Filling

The routine to display a set of filled bars is:

ggFillBarChart(nbars,bars,frac,fill,line)

96

CHARTS

Bar Chart Components

This routine displays a set of data values as filled bars on the last defined set of
axes. The bars are plotted about the centre of the tick marks along the discrete
axis in the order that they are presented within the array.

The width of the bars is determined using the parameter frac, the fraction of the
widest possible bar given the axis length and number of bars.

The hatch or fill style for each bar is held in the array fill. Various hatches and
cross hatches as well as solid fill are available. If an element of fill contains a
number less than -1 (GHOLLOW), the corresponding bar is not filled and the
boundary not drawn. The line styles used to fill the bars are held in the array line.
The default line styles, hatch styles and fill styles appear in Appendix A of this
manual. Further information on line style definition (which includes colour
definition) and information on hatch and fill style definition appears in the main
introduction.

The bar outlines are not drawn with this routine. Users should use
ggPlotBarChart() or ggAddBarChartOutline() to draw the outline.

Annotating Bar Charts

The routine to annotate a Bar Chart is:
ggAddBarChartValues(nbars,bars,frac,sfl)

where ggAddBarChartValues() will display nbars values associated with the Bar
Chart bars drawn by ggPlotBarChart(), ggFillBarChart() or
ggAddBarChartOutline(). The argument sfl provides the choice of displaying
start values (sfl=GSTART), finish values (sfl=GFINISH) or bar lengths
(sfl=GLENGTH). By default, the values are positioned at the centre of the
associated bar in the same numerical format as the current non-discrete axes. The
numerical format of the data values can be changed through the routine
ggSetAxesAnnotation() with xory set to whichever is the non-discrete axis.

The argument frac supplied to ggAddBarChartValues() is required to ensure
correct positioning of the values when they are placed at the edge of each bar, it
should therefore be set to the same value as that used in a corresponding call to
ggPlotBarChart(), ggFillBarChart() or ggAddBarChartOutline().

Alternative positions and formatting options can be set by using the annotation
control routines (see page 88). The 15 control point positions around the Bar
Chart areas are located in the same logical position irrespective of the data limits
or the axis direction. These routines provide for string angle and justification
control as well as prefix and/or suffix strings added to each value.

97

Bar Chart Components

CHARTS

98

Example of Fully Annotated Bar Chart

The following example shows the use of all the Bar Chart component routines:

L L L L L L I L
10] RSB 100 Length=40
RERHKHKRERRIHKRRIIHRKA

9 85 E 95 Length=10 [
P STTTTY
3 | RO OO a0 L
45 KRR 85 Length=40

Length=15

Length=30

Length=35

Length=15

Length=35

Length=25 -

Length=20

T T T T T
40 50 60 70 80 90 100 110 120 130

-10

Example of fully annotated Bar Chart

C Code

/*

FULLY ANNOTATED BARCHART */

#include <gino-c.h>
#include <graf-c.h>

int main (void) {

/*

/*

/*

GBARCHART bars[10] = {0.0,20.0,5.0,30.0,25.0,60.0,
30.0,45.0,40.0,75.0,50.0,80.0,55.0,70.0,45.0,85.0,
85.0,95.0,60.0,100.0};

GLIMIT lims;

GCHASTY rep;

int i, flg, line[10],
£111[10] = {5,6,7

for (i=0; i<10; i++)

gOpenGino () ;
XXXXX () ;
ggSetGraphCharMode (GGINOMODE) ;

ENQUIRE GINOGRAF DRAWING LIMITS AND CHARACTER SIZE */
ggEngPlotFrame (&flg, &1lims) ;
gEngCharAttribs (&rep) ;

SET UP AXES POSITIONS AND SCALES */
ggSetAxesPos (GAXISSTART, 9.0*rep.width,

5.0*rep.height, lims.xmax-1ims.xmin-12.0*rep.width, GXAXIS) ;

ggSetAxesScaling (GLINEARTYPE1l,12,-10.0,130.0, GXAXIS) ;
ggSetAxesPos (GAXISSTART, 9.0*rep.width,

5.0*rep.height, lims.ymax-1ims.ymin-10.0*rep.height, GYAXIS) ;

ggSetAxesScaling (GDISCRETE,10,1.0,10.0,GYAXIS);

DRAW BAR CHART */
ggFillBarChart (10,bars,0.75,£fill, line);
ggAddBarChartOutline (10,bars, 0.75);

CHARTS Bar Chart Components
/* POSITION START VALUE LEFT OF BAR, RIGHT JUSTIFIED */
ggSetValueAttribs (GOUTSIDELEFT, GCENTRE, 0.0,
0.0,0.0,0.0,GCENTRE, GRIGHT) ;
ggAddBarChartValues (10,bars, 0.75,GSTART) ;
/* POSITION FINISH VALUE RIGHT OF BAR, LEFT JUSTIFIED */
ggSetValueAttribs (GOUTSIDERIGHT, GCENTRE, 0.0,
0.0,0.0,0.0,GCENTRE, GLEFT) ;
ggAddBarChartValues (10,bars,0.75,GFINISH) ;
/* POSITION LENGTH VALUE AT 110.0 LEFT JUSTIFIED */
ggSetValueAttribs (GSPECIFIED, GCENTRE, 110.0,
0.0,0.0,0.0,GCENTRE, GLEFT) ;
ggSetValueTags (“Length="," “);
ggAddBarChartValues (10,bars,0.75, GLENGTH) ;
/* DRAW GRID */
ggAddGrid (GINTERMEDIATE, GTICKS, GANNOTATION, GANNOTATION) ;
gSuspendDevice () ;
gCloseGino () ;
return (0) ;
}
F90 Code
! FULLY ANNOTATED BARCHART
use gino_£90
use graf £90

1
I

type (GBARCHART), dimension(10) :: bars = &
(/GBARCHART (0.0,20.0) , GBARCHART (5.0, 30.0)

4

GBARCHART (25.0, 60.0) , GBARCHART (30.0,45.0), &
GBARCHART (40.0,75.0) , GBARCHART (50.0,80.0), &
GBARCHART (55.0,70.0) , GBARCHART (45.0,85.0), &
GBARCHART (85.0,95.0) , GBARCHART (60.0,100.0) /)

type (GLIMIT) lims

type (GCHASTY) rep

integer i, flg

integer, dimension(10) :: line = (/10*1/)

integer, dimension(10) :: fill = (/5,6,7,8,5,6,7,8,5,6/)

call gOpenGino
call xxxxx
call ggSetGraphCharMode (GGINOMODE)

ENQUIRE GINOGRAF DRAWING LIMITS
AND CHARACTER SIZE

call ggEngPlotFrame (flg,lims)
call gEngCharAttribs (rep)

SET UP AXES POSITIONS AND SCALES
call ggSetAxesPos (GAXISSTART, 9.0*rep%width, &

5.0*rep%height, lims$xmax-lims%xmin-12.0*repswidth, GXAXIS)
call ggSetAxesScaling (GLINEARTYPE1,12,-10.0,130.0,GXAXIS)
call ggSetAxesPos (GAXISSTART, 9.0*rep%width, &

5.0*rep%height, lims%ymax-1lims%ymin-10.0*rep%height, GYAXIS)
call ggSetAxesScaling (GDISCRETE,10,1.0,10.0,GYAXIS)

99

Step Chart Components CHARTS

! DRAW BAR CHART
call ggFillBarChart (10,bars,0.75,£f1i11,1line)
call ggAddBarChartOutline (10,bars,0.75)

! POSITION START VALUE LEFT OF BAR, RIGHT JUSTIFIED
call ggSetValueAttribs (GOUTSIDELEFT,GCENTRE, 0.0, &
0.0,0.0,0.0,GCENTRE, GRIGHT)
call ggAddBarChartValues (10,bars,0.75,GSTART)

! POSITION FINISH VALUE RIGHT OF BAR, LEFT JUSTIFIED
call ggSetValueAttribs (GOUTSIDERIGHT, GCENTRE, 0.0, &
0.0,0.0,0.0,GCENTRE, GLEFT)
call ggAddBarChartValues (10,bars,0.75,GFINISH)

! POSITION LENGTH VALUE AT 110.0 LEFT JUSTIFIED
call ggSetValueAttribs (GSPECIFIED,GCENTRE,110.0, &
0.0,0.0,0.0,GCENTRE, GLEFT)
call ggSetValueTags (' Length="," V)
call ggAddBarChartValues (10,bars,0.75, GLENGTH)

! DRAW GRID */
call ggAddGrid (GINTERMEDIATE, GTICKS, GANNOTATION, GANNOTATION)

call gSuspendDevice
call gCloseGino
stop

end

Step Chart Components

100

There are four components available for the building of a fully annotated, filled
Step Chart:

ggBlockFillStepChart () Drawing block filled step chart
ggAddStepChartOutline () Drawing step or column outline
ggFillStepChart () Drawing filled steps
ggAddStepChartValues () Displaying step values

All four routines may be used independently of each other or on the same chart
although it is usual to use a combination of block filling and values, or simple
filling, outline and values. It is necessary to define both X and Y axis positions
and data ranges before calling any of these routines either by the axis definition
routines or the Complete Chart Drawing routine ggPlotStepChart().

Users should note that if ggFillStepChart() is called after ggPlotStepChart() or
ggAddStepChartOutline() the Step Chart outline will be overwritten by the
filling. If the outline is required, the solution is to always draw the outline with
ggAddStepChartOutline() after the filling. The block filling routine fills the
appropriate areas and follows this with drawing the bar chart outline in the
current GINO line colour.

CHARTS Step Chart Components

Block Filled Step Chart
The routine to display a block filled step chart is:
ggBlockFillStepChart(nsteps,steps,base,xory,line)

This routine displays a set of data values as block filled columns on the last
defined set of axes. The columns are of various widths being between the values
supplied in the array steps. Each column is filled between the height value in the
same array and the constant value base. The argument xory determines whether
the columns are oriented with the heights against the vertical (xory=GXAXIS) or
horizontal (xory=GY AXIS) axis.

All the blocks are solid filled with the specified line style with the extrusions
filled with a darker (or lighter) shade of this line style according to the current
block chart attributes (using ggSetBlockChartAttribs()).

The following shows an example of a block filled step chart.

180
160
140

120

40 60 80 100 120 140

Block Filled Step Chart

Step Chart Outline
The routine to display a set of steps is:

ggAddStepChartOutline(nsteps,steps,base,drop,xory)

101

Step Chart Components CHARTS

This routine displays a set of data values as steps or columns on the last defined
set of axes. The start, finish and height values of each step are held in the array
steps (of type GSTEPCHART). The argument xory determines whether the
heights are plotted against the vertical (xory=GXAXIS) or horizontal
(xory=GY AXIS) axis.

An optional base value can also be supplied where the steps are required to
descend to a fixed value. The use of base is in conjunction with the argument
drop which determines the form of the Step Chart display such that where
drop=GDROPTYPEO or GDROPTYPEI, base is not required, but where
drop=GDROPTYPE2 or GDROPTYPES3, base is required.

The four Step Chart forms are shown below:

180 et 180 e
60F E 160 £
140f - E 140 ,“J—L
120 | T 120 |]
100 | I 100 £ I
80 E E 80 F

60 E E 60 |

40 £] 40 £

20 E E 20 |

0 0

T T ST ST ST T T T I T ST SRR T
0 20 40 60 80 100120 140 160 180 200 0 20 40 60 80 100120140 160 180200

drop=GDROPTYPEQ drop=GDROPTYPE1
180 T T T T 180 S
160 | 160 £ —
140 & 140 &
120 £ 120 £
100 £ 100 £
80 E 80 £
60 £ 60 £

40 £
20 |
0

40 £
20 |
0

I EUUOE U I A DOUOTIN A . I
0 20 40 60 80 100120 140 160 180 200 0 20 40 60 80 100120 140 160 180 200
drop=GDROPTYPE2 drop=GDROPTYPE3

Four different Step Chart forms

Step Chart Filling
The routine to display a set of filled steps is:

ggFillStepChart(nsteps,steps,base,xory,fill,line)

102

CHARTS

Step Chart Components

This routine displays a set of data values as filled columns on the last defined set
of axes. The columns are of various widths being between the values supplied in
the array steps (of type GSTEPCHART). Each column is filled between the
height value in the same array and the constant value base. The argument xory
determines whether the columns are oriented with the heights against the vertical
(xory=GXAXIS) or horizontal (xory=GYAXIS) axis. When using
ggFillStepChart() in conjunction with ggPlotStepChart(), xory should be set to
GXAXIS.

The hatch or fill style for each column is held in the array fill. Various hatches
and cross hatches as well as solid fill are available. If an element of fill contains a
number less than -1 (GHOLLOW), the corresponding column is not filled and the
boundary not drawn. The line styles used to fill the columns are held in the array
line. The default line styles, hatch styles and fill styles appear in Appendix A of
this manual. Further information on line style definition (which includes colour
definition) and information on hatch and fill style definition appears in the main
introduction.

The step outlines are not drawn with this routine. Users should use
ggPlotStepChart() or ggAddStepChartOutline() to draw the outline.

Annotating Step Charts

The routine to annotate a Step Chart is:
ggAddStepChartValues(nsteps,steps,base,sfl,xory)

where ggAddStepChartValues() will display nsteps values associated with the
Step Chart drawn by ggPlotStepChart() or ggAddStepChartOutline(). The
argument sfl provides the choice of displaying five different values:

sfl= GSTART start value of each step
GFINISH finish value of each step
GHEIGHT height value of each step
GWIDTH width of each step
GHEIGHTABOVEBASE height above base of each step

By default, the values are positioned at the centre of the associated column (e,
between the height in steps and the base value) in the same numerical format as
their associated axis. The numerical format of the data values can be changed
through the routine ggSetAxesAnnotation() with xory set appropriately.

103

Step Chart Components CHARTS

104

The user can select alternative positions and formatting options by using the
annotation control routines (see page 88). The 15 control point positions around
the Step Chart areas are located in the same logical position irrespective of the
data limits or the axis direction. These routines also provide for string angle and
justification control as well as prefix and/or suffix strings added to each value.

Although the step outline is not drawn with this routine is it necessary to set the
correct orientation of the columns to ensure the values are correctly positioned.
This is determined by the argument xory such that when xory=GXAXIS the
height of the column is oriented against the vertical axis and when
xory=GYAXIS the height of the column is oriented against the horizontal axis.
When using ggAddStepChartValues() in conjunction with ggPlotStepChart(),
xory should be set to GXAXIS.

Example of Fully Annotated Step Chart

The following example shows the use of all the Step Chart component routines:

180

o o
o™ ()
160 o 8 8 8
aD
oM
140 g 28 8
o o
120 = &
100
80
60
40
20
0
0 20 40 60 8 100 120 140 160 180 200

Example of fully annotated Step Chart

CHARTS Step Chart Components

C Code

/* FULLY ANNOTATED STEP CHART */
#include <gino-c.h>
#include <graf-c.h>

int main (void) {

GSTEPCHART steps[7] = {0.0,20.0,153.0,20.0,30.0,145.0,
30.0,60.0,161.0,60.0,80.0,154.0,80.0,100.0,130.0,
100.0,130.0,126.0,170.0,200.0,112.0};

GCHASTY rep;

GLIMIT lims;

int i, flg, £i11[7], linel[7];

for (i=0; i<7; i++) {

£i11[i]=4;
line[i]=1;

}

gOpenGino () ;
XxXxX () ;
ggSetGraphCharMode (GGINOMODE) ;

/* ENQUIRE GINOGRAF DRAWING LIMITS AND CHARACTER SIZE */
ggEngPlotFrame (&flg, &lims) ;
gEngCharAttribs (&rep) ;

/* SET UP AXES POSITIONS AND SCALES */
ggSetAxesPos (GAXISSTART, 9.0*rep.width,
5.0*rep.height, lims.xmax-lims.xmin-12.0*rep.width, GXAXIS) ;
ggSetAxesScaling (GLINEARTYPE1,11,0.0,200.0,GXAXIS);
ggSetAxesPos (GAXISSTART, 9.0*rep.width,
5.0*rep.height, lims.ymax-1lims.ymin-10.0*rep.height, GYAXIS) ;

ggSetAxesScaling (GLINEARTYPE1,10,0.0,180.0,GYAXIS) ;

/* DRAW STEP CHART */
ggFillStepChart (7,steps, 0.0,GXAXIS, fill,line);
ggAddStepChartOutline (7, steps, 0.0, GDROPTYPE3, GXAXIS) ;

/* POSITION START VALUES AT LEFT EDGE OF COLUMN AT 90 DEGREES */
ggSetValueAttribs (GINSIDELEFT, GOUTSIDETOP,
0.0,0.0,0.0,90.0,GCENTRE, GLEFT) ;
ggAddStepChartValues (7,steps, 0.0, GSTART, GXAXIS) ;

/* POSITION FINISH VALUES AT RIGHT EDGE OF COLUMN AT 90 DEGREES */
ggSetValueAttribs (GINSIDERIGHT, GOUTSIDETOP,
0.0,0.0,0.0,90.0,GCENTRE, GLEFT) ;
ggAddStepChartValues (7,steps, 0.0, GFINISH, GXAXIS) ;

/* DRAW GRID */
ggAddGrid (GNONE, GNONE, GANNOTATION, GANNOTATION) ;

gSuspendDevice () ;
gCloseGino () ;
return (0) ;

105

Step Chart Components CHARTS

F90 Code

106

CHARTS Area Chart Components

Area Chart Components

There are four components available for the building of a fully annotated, filled

Area Chart:
ggBlockFillAreaChart () Drawing block filled area chart
ggAddAreaChartOutline () Drawing area or column outline
ggFillAreaChart () Drawing filled areas
ggAddAreaChartValues () Displaying area values

All four routines may be used independently of each other or on the same chart
although it is usual to use a combination of block filling and values, or simple
filling, outline and values. It is necessary to define both X and Y axis positions
and data ranges before calling any of these routines either by the axis definition
routines or the Complete Chart Drawing routine ggPlotAreaChart().

Users should note that if ggFillAreaChart() is called after ggPlotAreaChart() or
ggAddAreaChartOutline() the Area Chart outline will be overwritten by the
filling. If the outline is required, the solution is to always draw the outline with
ggAddAreaChartOutline() after the filling. The block filling routine fills the
appropriate areas and follows this with drawing the area chart outline in the
current GINO line colour.

Block Filled Area Chart

The routine to display a block filled area chart is:
ggBlockFillAreaChart(nareas,areas,xory,line)

This routine displays a set of data values as filled areas on the last defined set of
axes. The width of each area is defined to be between the values supplied in the
elements areas.s and areas.f and the height of each area is defined to be between
the values supplied in the elements areas.hl and areas.h2. The argument xory
determines whether the areas are oriented with the heights against the vertical
(xory=GXAXIS) or horizontal (xory=GYAXIS) axis.

All the blocks are solid filled with the specified line style with the extrusions

filled with a darker (or lighter) shade of this line style according to the current
block chart attributes (using ggSetBlockChartAttribs()).

107

Area Chart Components CHARTS

The following shows an example of a block filled area chart.

0 20 40 60 80 100 120 140 160 180 200

Block Filled Area Chart

Area Chart Outline
The routine to display a set of areas is:
ggAddAreaChartOutline(nareas,areas,xory)

This routine displays a set of data values as areas on the last defined set of axes.
The start and finish values of each area are held in the elements areas.s and
areas.f, with the lower and upper values in the corresponding elements of the
areas.hl and areas.h2. The argument xory determines whether the heights are
plotted against the vertical (xory=GXAXIS) or horizontal (xory=GY AXIS) axis.

Area Chart Filling
The routine to display a set of filled areas is:

ggFillAreaChart(nareas,areas,xory,fill,line)

108

CHARTS

Area Chart Components

This routine displays a set of data values as filled areas on the last defined set of
axes. The width of each area is defined to be between the values supplied in the
elements areas.s and areas.f and the height of each area is defined to be between
the values supplied in the elements areas.h1 and areas.h2. The argument xory
determines whether the areas are oriented with the heights against the vertical
(xory=GXAXIS) or horizontal (xory=GYAXIS) axis. When using
ggFillAreaChart() in conjunction with ggPlotAreaChart(), xory should be set to
GXAXIS.

The hatch or fill style for each area is held in the array fill. Various hatches and
cross hatches as well as solid fill are available. If an element of fill contains a
number less than -1 (GHOLLOW), the corresponding area is not filled and the
boundary not drawn. The line styles used to fill the areas are held in the array
line. The default line styles, hatch styles and fill styles appear in Appendix A of
this manual. Further information on line style definition (which includes colour
definition) and information on hatch and fill style definition appears in the main
introduction.

The area outlines are not drawn with this routine. Users should use
ggPlotAreaChart() or ggAddAreaChartOutline() to draw the outline.

Annotating Area Charts

The routine to annotate an Area Chart is:
ggAddAreaChartValues(nareas,areas,sfl,xory)

where ggAddAreaChartValues() will display nareas values associated with the
Area Chart drawn by ggPlotAreaChart() or ggAddAreaChartOutline(). The
argument sfl provides the choice of displaying seven different values:

sfl = GSTART start value of each area
GFINISH finish value of each area
GLOWER lower height value of each area
GUPPER upper height value of each area
GWIDTH width of each area
GHEIGHT height of each area
GAREA area of each area

By default, the values are positioned at the centre of the associated area in the
same numerical format as their associated axis. The numerical format of the data
values can be changed through the routine ggSetAxesAnnotation() with xory set
appropriately.

109

Area Chart Components CHARTS

110

The user can select alternative positions and formatting options by using the
annotation control routines (see page 88). The 15 control point positions around
the Area Chart areas are located in the same logical position irrespective of the
data limits or the axis direction. These routines also provide for string angle and
justification control as well as prefix and/or suffix strings added to each value.

Although the area outline is not drawn with this routine it is necessary to set the
correct orientation of the areas to ensure the values are correctly positioned. This
is determined by the argument xory such that when xory=GXAXIS the height of
the area is oriented against the vertical axis and when xory=GYAXIS the height
of the area is oriented against the horizontal axis. When using
ggAddAreaChartValues() in conjunction with ggPlotAreaChart(), xory should be
set to GXAXIS.

Example of Fully Annotated Area Chart

The following example shows the use of all the Area Chart component routines:

100

9 |

80 L i

70 L / i
0)

60 | / 4

50 £ i

40 | i

30 L 310l i

20 L i

10 I I I I I I I I I
0 20 40 60 80 100 120 140 160 180 200

Example of fully annotated Area Chart

CHARTS

Area Chart Components

C Code

/*

FULLY ANNOTATED AREA CHART */

#include <gino-c.h>
#include <graf-c.h>

int main (void) {

/*

/*

/*

/*

/*

GAREACHART areas[7]={0.0,20.0,43.0,51.0,
20.0,30.0,14.0,45.0,30.0,60.0,31.0,76.0,
60.0,80.0,44.0,84.0,80.0,100.0,65.0,87.0,
100.0,130.0,71.0,93.0,170.0,200.0,87.0,96.0};

GCHASTY rep;

GLIMIT lims;

int i, flg, £i11[71={9,10,11,12,13,14,15},1inel[7];
for (i=0; i<7; i++) line[i]=1;

gOpenGino () ;
XXXXX () ;
ggSetGraphCharMode (GGINOMODE) ;

ENQUIRE GINOGRAF DRAWING LIMITS AND CHARACTER SIZE */
ggEngPlotFrame (&flg, &1lims) ;
gEngCharAttribs (&rep) ;

SET UP AXES POSITIONS AND SCALES */
ggSetAxesPos (GAXISSTART, 9.0*rep.width,

5.0*rep.height, lims.xmax-1lims.xmin-12.0*rep.width, GXAXIS) ;
ggSetAxesScaling (GLINEARTYPE1,11,0.0,200.0, GXAXIS) ;
ggSetAxesPos (GAXISSTART, 9.0*rep.width,

5.0*rep.height, lims.ymax-1lims.ymin-10.0*rep.height, GXAXIS) ;

ggSetAxesScaling (GLINEARTYPE1,10,10.0,100.0,GYAXIS) ;
DRAW AREA CHART */
ggFillAreaChart (7,areas, GXAXIS,fill,line);
ggAddAreaChartOutline (7, areas, GXAXIS) ;

LEAVE DEFAULT CENTRAL POSITION OF AREA VALUES */
ggAddAreaChartValues (7, areas, GAREA, GXAXIS) ;

DRAW GRID */
ggAddGrid (GCARDINAL, GTICKS, GANNOTATION, GANNOTATION) ;

gSuspendDevice () ;

gCloseGino () ;
return (0) ;

11

Multi Data Set Histogram Components CHARTS

F90 Code

FULLY ANNOTATED AREA CHART

use gino £90
use graf f£90

type (GAREACHART), dimension(7) :: areas= &
(/GAREACHART (0.0,20.0,43.0,51.0), &

GAREACHART (20.0,30.0,14.0,45.0),
GAREACHART (30.0,60.0,31.0,76.0),
GAREACHART (60.0,80.0,44.0,84.0),
GAREACHART (80.0,100.0,65.0,87.0),
GAREACHART (100.0,130.0,71.0,93.0)
GAREACHART (170.0,200.0,87.0,96.0)

type (GCHASTY) rep

type (GLIMIT) lims

integer i, flg

integer, dimension(7) :: fill=(/9,10,11,12,13,14,15/)

integer, dimension(7) :: line=(/7*1/)

&
&
&
&
&

7)

call gOpenGino
call xxxxx
call ggSetGraphCharMode (GGINOMODE)

ENQUIRE GINOGRAF DRAWING LIMITS AND CHARACTER SIZE
call ggEngPlotFrame (flg,lims)
call gEngCharAttribs (rep)

SET UP AXES POSITIONS AND SCALES
call ggSetAxesPos (GAXISSTART, 9.0*rep%width, &

5.0*rep%height, lims$xmax-lims%xmin-12.0*repswidth, GXAXIS)
call ggSetAxesScaling (GLINEARTYPE1,11,0.0,200.0,GXAXIS)
call ggSetAxesPos (GAXISSTART, 9.0*rep%width, &

5.0*rep%height, lims%ymax-lims$ymin-10.0*rep%height, GXAXIS)
call ggSetAxesScaling (GLINEARTYPE1,10,10.0,100.0,GYAXIS)

DRAW AREA CHART
call ggFillAreaChart (7,areas,GXAXIS,fill, line)
call ggAddAreaChartOutline (7, areas,GXAXIS)

LEAVE DEFAULT CENTRAL POSITION OF AREA VALUES
call ggAddAreaChartValues (7,areas, GAREA, GXAXIS)

DRAW GRID
call ggAddGrid (GCARDINAL,GTICKS, GANNOTATION, GANNOTATION)

call gSuspendDevice
call gCloseGino
stop

end

Multi Data Set Histogram Components

112

Multi data set histogram component routines can be used to display stacked or
clustered column charts representing a grid of data from a two dimensional data
array. Any contiguous data block can be extracted where the first dimension
represents the number of columns and the second dimension represents the
number of data sets.

CHARTS

Multi Data Set Histogram Components

There are two components available for the drawing of a stacked or clustered
histograms:

ggBlockFillMultiHistogram() Drawing block filled columns
ggFillMultiHistogram/() Drawing filled columns

In both cases it is necessary to define both X and Y axis positions and data ranges
before calling any of these routines using the axis definition routines. One of the
axes should be defined as a discrete axis (scale=GDISCRETE) whereupon the
heights are measured against the remaining non-discrete axis.

Users should note that the block filling routine fills the appropriate areas and
follows this with drawing the column outline in the current GINO line colour.

Multi Data Set Block Filled Histogram

The routine to display a block filled, multi-data set histogram is:

ggBlockFillMultiHistogram(type,rdata,ndim1,ncols,ndata,frac,gap,
line,is1,is2)

Where type can be GSTACKED or GCLUSTERED depending on the type of
display required. The data array rdata should contain ndata sets cach with ncols
of data, with an optional offset from the start of the array set by is1,is2. The
argument ndim1 represents the primary dimension of the two dimensional array.

The argument frac determines the width of the stacked/clustered column and gap
determines the gap between each clustered column for type = GCLUSTERED.

The columns of each data set [i] are solid filled with the line style specified in
line[i] with the extrusions filled with a darker (or lighter) shade of this line style
according to the current block chart attributes (using ggSetBlockChartAttribs()).

113

Multi Data Set Histogram Components CHARTS

114

The following shows an example of a block filled multi-data set histogram.

Average Weekly Household Expenditure

Pounds

4970 Aot 1918 191 4980 408t 082 1983 498* 498 1980

Source : Family Expenditure Survey and DTI

Block Filled Multi-Data Set Histogram

C Code

#include <gino-c.h>
#include <graf-c.h>

#define NSET 7 /* Number of data sets */
#define NDATA 11 /* Number of data components */

#define MIN(x,vy) ((x) < (y) 2 (x) : (y))

/* Date Data */
char *dates[] = {("1976","1977","1978","1979","1980","1981",
"1982","1983","1984","1985","1986"};

/* data to be plotted. */

float rdatal[] [NDATA] = {

{15.36,17.74,19.31,21.83,25.15,27.2, 28.19,29.56,31.43,32.7, 34.97},
{ 9.21,10.31,11.87,13.72,16.56,19.76,22.29,23.99,24.06,26.63,29.92},
{ 8.14, 9.71,10.9, 13.13,16.15,18.7, 19.79,20.96,22.77,24.56,25.43},
{ 6.19, 6.93, 7.66, 9.74,11.96,13.84,15.37,16.09,17.41,19.48,22.67},
i 5.5, 6.11, 6.064, 7.14, 8.66, 9.8, 9.98,11.12,12.62,12.38,12.26},
{ 4.99, 5.78, 6.78, 7.79, 8.99, 9.23, 9.69,10.0, 11.1, 11.92,13.46},
{3.53, 4.38, 4.76, 5.25, 6.15, 7.46, 8.35, 9.22, 9.42, 9.95,10.43}};
/* Filling and line styles */

int fil1ll[NSET] = {GSOLID,GSOLID,GSOLID,GSOLID,GSOLID,GSOLID,GSOLID};
int 1ine[NSET]= {GRED,GORANGE, GYELLOW, GCYAN, GGREEN, GBROWN, GMAGENTA} ;

/* title */

CHARTS

Multi Data Set Histogram Components

char titlel[] = "Average Weekly Household Expenditure";
GDIM paper;

int main ()
{
int ipapty;
float factor,cw,ch,xlen, ylen, xgap, ygap;
float ffrac=0.9,gap=0.0;
int coloff;
float azim,elev,depth, top,side;
/* Enter GINO & initialise device. */

gOpenGino () ;
/* Nominate the device */
XXxXxX () ;

/* Scale output to paper size. */
gEngDrawingLimits (&paper, &ipapty);
factor = MIN (paper.xpap/1000.0, paper.ypap/750.0);
gDefinePictureUnits (factor) ;
gNewDrawing () ;
ggRestoreAxesSettings () ;
cw = 7.5;
ch = 7.5;
gSetCharSize (cw, ch);

/* Set up size of graph. */
xlen = 1000.0*2.0/3.0;
ylen = 750.0*2.0/3.0;
xgap = xlen/4.0;
ygap = ylen/4.0;

/* Position & scale the X-axis. */

ggSetAxesPos (GAXISSTART, xgap, ygap, xlen, GXAXIS):;
ggSetAxesScaling (GDISCRETE, NDATA, 1.0, 11.0, GXAXIS):;

/* Position & scale the Y-axis. */

ggSetAxesPos (GAXISSTART, xgap, ygap, ylen, GYAXIS);
ggSetAxesScaling (GLINEARTYPE3, 4, 0.0, 200.0, GYAXIS);

/* Plot data sets. */

ggBlockFillMultiHistogram (GSTACKED, (float *)rdata,NDATA,
NDATA,NSET, ffrac,gap,line,1,1);

/* Draw & title X-axis. */

ggSetAxesAttribs (GOFFSET, ygap-2.0*ch, 1, -1, 0.0, 20.0,
GDEFAULTPOSITION, GDEFAULTPOSITION, GNOREDUCE, GXAXIS);

ggDrawAxes (GCARDINAL, GCLOCKWISE, GNOVAL, GXAXIS);
ggDrawAxesLabels (NDATA, dates, GCLOCKWISE, GXAXIS)

/* Draw & title Y-axis. */

ggDrawAxes (GINTERMEDIATE, GANTICLOCKWISE, GANTICLOCKWISE, GYAXIS) ;
ggDrawAxesTitle ("Pounds", xgap-6.0*cw, GYAXIS, GLEFT, GTOP);

/* Write title. */

gSetCharSize (2.0*ch, 2.0*cw);

115

Multi Data Set Histogram Components CHARTS

ggDrawAxesTitle (titlel, 650.0, GXAXIS, GBOTTOM, GCENTRE) ;
/* Credit. */

gSetCharSize (8.0, 8.0);

gMoveTo2D (600.0, 65.0);

gDisplayStr ("Source : Family Expenditure Survey and DTI");

/* Close down device & leave GINO. */

gSuspendDevice () ;
gCloseGino () ;

F90 Code

116

CHARTS Multi Data Set Histogram Components

Multi Data Set Histogram Components CHARTS

Multi Data Set Histogram Filling
The routine to display a filled, multi-data set histogram is:
ggFillMultiHistogram(type,rdata,ndim1,ncols,ndata,frac,gap,fill,line,is1,is2)

Where type can be GSTACKED or GCLUSTERED depending on the type of
display required. The data array rdata should contain ndata sets each with ncols
of data, with an optional offset from the start of the array set by is1,is2. The
argument ndim1 represents the primary dimension of the two dimensional array.

The argument frac determines the width of the stacked/clustered column and gap
determines the gap between each clustered column for type = GCLUSTERED.

The columns of each data set [i] are filled with fill style fill[i] and line style
line[i]. Various hatches and cross hatches as well as solid fill are available. If an
element of fill contains a number less than -1(GHOLLOW), the corresponding
column is not filled and the boundary not drawn. The line styles used to fill the
columns are held in the array line. The default line styles, hatch styles and fill
styles appear in Appendix A of this manual. Further information on line style
definition (which includes colour definition) and information on hatch and fill
style definition appears in the main introduction.

N.B. Note that the outline of the columns drawn by ggFillMultiHistogram() DO
NOT match those drawn by ggBlockFillMultiHistogram() due to the extra width
required by the extrusions in the latter routine.

Average Weekly Household Expenditure

e 40T® 401 4080 498t 4082 408 A0t 4985 4080

Source : Family Expenditure Survey and DI

Filled Multi-Data Set Histogram

118

CHARTS

Multi Data Set Histogram Components

The above chart can be displayed with similar code to the block filled example
shown above with the following changes:

C Code

/* Position & scale the Y-axis. */

ggSetAxesPos (GAXISSTART, xgap, vdgap, ylen, GYAXIS):;
ggSetAxesScaling (GLINEARTYPE3, 4, 0.0, 40.0, GYAXIS);

/* Plot data sets. */

ggFillMultiHistogram (GCLUSTERED, (float *)rdata,NDATA,
NDATA,NSET, ffrac,gap, fill, line,1,1);

F90 Code

! Position & scale the Y-axis.

call ggSetAxesPos (GAXISSTART, xgap, ygap, ylen, GYAXIS)
call ggSetAxesScaling (GLINEARTYPE3, 4, 0.0, 40.0, GYAXIS)

! Plot data sets.

call ggFillMultiHistogram (GCLUSTERED, data, NDATA, &
NDATA,NSET,0.9,0.0,fill,1ine,1,1)

119

Chapter

VECTOR CHARTS

Introduction to Vector Charts

This chapter describes a special form of chart containing vectors (or scalars)
representing a grid of directions, strengths and colours providing a means of
displaying 5 sets of information on one chart. Vector Charts are drawn with
reference to the current graphical axes system as set up with the axis definition
routines. Facilities are provided to map the Vector Chart onto different areas
within the axis coordinate system and to clip and scale the vectors that are drawn.
There is no complete Vector Chart routine as with the previous chart types.

Summary of Vector Chart facilities:

ggSetVectorChartFrame () Set/enquire boundary limits of Vector Chart
ggEngVectorChartFrame ()

ggSetVectorLimits () Set/enquire vector strength clipping limits
ggEngVectorLimits ()

ggSetVectorAttribs () Set/enquire vector scaling factor
ggEngVectorAttribs ()

ggRestoreVectorSettings () Restores Vector Chart default attributes
ggAddVectors () Draws grid of vectors

Vector Chart Components

The following describes the low level routines provided by GINOGRAF for the
drawing of Vector Charts. The following steps are required to set up the required
mapping between vector data and drawing units as well as drawing the chart
itself:

« Position, scale and optionally label and draw graphical axes
» Optionally define Vector Chart scaling and/or mapping
» Draw grid of vectors

121

Vector Chart Attributes VECTOR CHARTS

Vector Chart Axes Definition and Display

Vector Charts are drawn with reference to the currently defined graphical axes
system in that the grid of vectors is mapped onto either the complete area defined
by the intersection of the horizontal (X) and vertical (Y) axes physical limits or a
sub-area defined in graphical coordinates. The scaling of axes may also be
required to define vector position information for each chart.

The default area and scaling of the graphical axes system may be altered using
the axis definition routines ggSetAxesPos() and ggSetAxesScaling(). Equally the
actual display and labelling of these axes is also under the control of the user.

Full description of axes definition, display and titling is found elsewhere (see
page 19).

Vector Chart Attributes

Vector Chart Mapping

By default the Vector Chart occupies the area defined by the intersection of the
horizontal (X) and vertical (Y) axes physical limits. The routine
ggSetVectorChartFrame() can be used to define an alternative area onto which
the Vector Chart will be mapped:

ggSetVectorChartFrame(limits)

where limits defines the required area in graphical coordinates. The graphical
coordinate system is that set up by the most recent calls to ggSetAxesScaling().

Vector Clipping and Scaling

122

By default all vectors with absolute strength greater than zero are drawn and
vectors are scaled so that the maximum strength is represented by a vector which
occupies one unit square on the Vector Chart (that is the largest length possible
without vectors overlapping). Two routines are provided to change these defaults:

ggSetVectorLimits(smin,smax)

ggSetVectorLimits() defines an upper and lower limit of absolute vector strength,
outside which vectors are not drawn.

ggSetVectorAttribs(pos,vecmin,vecmax,factor)

VECTOR CHARTS Vector Chart Drawing

The routine ggSetVectorAttribs() sets an additional scaling factor by specifying
the lower (vecmin) and upper (vecmax) absolute vector strengths which will be
represented by a zero length vector (not drawn) and a unit length vector
respectively. An additional overall vector scaling factor can also be applied
through the argument factor. Thus, if vector strengths range from 0.0 to 10.0 the
following settings have the described effect on the length of vectors:

Limit below Strength Length of
which represented vector for
vectors are by unit strength 10.0
not drawn | length vector
Default settings 0.0 10.0 1 * unit length
geSetVectorAttribs(GCENTRE,2.0,5.0,1.0) 2.0 5.0 8/3 * unit length
geSetVectorAttribs(GCENTRE,2.0,5.0,2.0) 2.0 2.5 16/3 * unit length

The argument pos determines whether the vector tail (pos=GTAIL), centre
(pos=GCENTRE) or head (pos=GHEAD) is positioned at the grid intersection.

Resetting Attributes

The routine ggRestoreVectorSettings() resets the mapping, scaling and clipping
Vector Chart attributes to their default settings:

ggRestoreVectorSettings()

Enquiring Attributes

Three enquiry routines are provided to enquire the current setting of the Vector
Chart attributes. These routines match the above setting routines and can be used
at any time within a GINOGRAF application. The routines are:

ggEnqVectorChartFrame(limits)
ggEnqVectorLimits(smin,smax)

ggEnqVectorAttribs(pos,vecmin,vecmax,factor)

Vector Chart Drawing

The routine to draw the Vector Chart is:

ggAddVectors(nx,ny,vecarray,head)

123

Vector Chart Drawing VECTOR CHARTS

124

where vecarray is a two dimensional array of dimension nx by ny and type
GVECTOR. The element vecarray.direc contains a grid of vector directions in
degrees measured from the 3 o’clock (positive X axis) position; vecarray.stren
contains a grid of vector strengths and vecarray.col contains a grid of colour
index numbers. Negative strength values reverse the corresponding direction held
in vecarray.direc.

The argument head determines whether the vector has an open (head=GOPEN)),
closed (head=GCLOSED) or filled (head=GSOLID) arrow head at the end of
each vector.

The Vector Chart is mapped onto either the area defined by the latest call to
ggSetVectorChartFrame() or the area defined by the intersection of the horizontal
and vertical graphical axes if ggSetVectorChartFrame() has not been called. This
area is divided into nx by ny grid points onto which each vector is drawn. The
vector representing the element (1,1) is located at lower left corner of this area.

The following example shows a program using the routine ggAddVectors() (this
example does not use the vecarray.col element to best effect because of the
monochrome output).

C Code

/* VECTOR CHART EXAMPLE */
#include <gino-c.h>
#include <graf-c.h>

int main (void) {
int i, J;
GVECTOR vecs[30][20];
GLIMIT 1ims={1.0,30.0,1.0,20.0};

/* ENTER GINO & INITIALIZE DEVICE */
gOpenGino () ;
XXXXX () ;
ggSetGraphCharMode (GGINOMODE) ;

/* SET AXES RANGES FROM 0 TO 31/21 */
ggSetAxesScaling (GLINEARTYPE3,31,0.0,31.0,GXAXIS) ;
ggSetAxesScaling (GLINEARTYPE3,21,0.0,21.0, GYAXIS) ;
ggAddGrid (GNONE, GNONE, GANNOTATION, GANNOTAION) ;

for (i=0; 1<30; i++) {
for (3=0; j<20; j++) {
vecs[i] [j].direc=asin((float) ((j-10)*(i-15))/150.0)
*57.296;
vecs[i] [j].stren=max (abs (i-15),abs(j-10))*10.0;
vecs[i][j].col=1;
}
}

/* SET BOUNDARY */
ggSetVectorChartFrame (&lims) ;

VECTOR CHARTS Vector Chart Drawing

/* DRAW VECTOR CHART */
ggAddVectors (30,20, vecs, GOPEN) ;

gSuspendDevice () ;
gCloseGino () ;
return (0) ;

F90 Code

125

Vector Chart Drawing VECTOR CHARTS
2
N T T T R i

20 VNV NN NS 2272777
19 NNNNNSNS NS SsSssss s a7
BINNNNNS S S S A F]
A IR i T T P A A
T I I - TAAAT
15 A e e e e - a7 T T T
14 I e T e T T e T A e P e e 4
RIS T T e e el
PR =>—=—>>—> > > > > - - - B e e
N >—=—=—>>m> > = = - - - e e
N >————> > - - - - - - B e e S
9| 5> > . - e e s s sy
| w0 > - - - - B N
T e e N R S SN
6| 777> e e e e e L e e s S R W
5| 77 7 7 5 5 5 5 5 = = 5 % o o a e a o S s e e SNy
4| A7 7.7 9 5 2 5 o 2 5 o s s m ma m mww S S S N NI N NNy
KR T T N NN AN
A A e N I N N N N
1 VA A R e e e R R Y N VR VR Y
0

126

01234567891011121314151617 181920 2122 23 24 25 26 27 28 29 30 31
Example Vector Chart Qutput

Chapter

POLAR CHARTS

Introduction to Polar Charts

The production of Polar Charts is outlined in this chapter. The GINOGRAF
definition of a Polar Chart is a two dimensional discrete axis graph showing
points at a distance R from the origin at an angle theta (from the 3 o’clock
position - anti clockwise). The routines are split up into two sections, the
complete drawing routine displays a Polar Chart with a single routine call; and
component routines which build up Polar Charts in a modular fashion.

Summary of the Polar Chart facilities:

ggPlotXYPolarChart () Draws complete Polar Chart and axes with automatically
scaled data

ggSetPolarChartAttribs () Sets position, radius and scaling of Polar Chart

ggDrawPolarAxes () Draws individual polar axis

Complete Polar Chart

The routine described in this section is complete in itself. The user simply
provides a set of data in an array of type GPOINT and makes a single routine
call. The position and scaling of the Polar Chart is calculated automatically and
output is drawn to fit the current graph drawing area.

The Complete Polar Chart routine is:
ggPlotXYPolarChart(npts,points,style)

The data coordinates, passed to the routine via the array points (of type
GPOINT), must be converted from polar values to linear values within the
graphical axes coordinates as follows :

127

Complete Polar Chart POLAR CHARTS

128

points.x = radius * COS (theta)
points.y = radius * SIN (theta)

where radius and theta are the radius and angle in radians of the polar
coordinates.

The data points may be represented in various ways depending on the value of
style as follows :

style Lines Marker
-GAKIMA Akima Curve Asterisk
-GSPLINE Spline Curve Asterisk
-GCUBIC Curve Asterisk
-GSTRAIGHT Straight Line Asterisk
GSYMBOLS None Asterisk
GSTRAIGHT Straight Line None
GCUBIC Curve None
GSPLINE Spline Curve None
GAKIMA Akima Curve None

The Polar Chart is automatically scaled and annotated to fit centrally within the
available drawing area, giving the full 360° radius and containing all the points in
the data array. The numerical annotation on the radial axis is subject to the
current settings of format and annotation control set by ggSetAxesAnnotation()
and ggSetAxesAttribs().

POLAR CHARTS Complete Polar Chart

An example of output produced by ggPlotXYPolarChart() is shown in the figure
below.

270
Use of Complete Chart Routine ggPlotXYPolarChart

The following code shows the program that generated it followed by an
equivalent program using the low-level component routines described in the next
section. While axis and graph titles can be added after the routine
ggPlotXYPolarChart() has been called, the full flexibility of layout and style can
only be achieved using these component routines as the routine
ggPlotXYPolarChart() is provided to present user data as quickly as possible with
the minimum of effort.

C Code

/* USE OF COMPLETE POLAR CHART ROUTINE -
ggPlotXYPolarChart () */

#include <gino-c.h>

#include <graf-c.h>

/* DEFINE CONSTANTS */
#define N 48

#define PI 3.1415926
#define RAD 2.0*PI/ (N-1)

129

Complete Polar Chart POLAR CHARTS

int main (void) {
GPOINT pnts[N];
float r, theta;
int I;

/* CALCULATE FUNCTION VALUES */
for (i=0; i<N; i++) {
theta=(i-1) *RAD;
r=4*cos (2*theta) ;
pnts[I].x=r*cos (theta) ;
pnts[I].y=r*sin(theta);
}

/* DRAW POLAR CHART */
gOpenGino () ;
XxXxX () ;
ggSetGraphCharMode (GGINOMODE) ;

ggPlotXYPolarChart (N, pnts, -GCUBIC) ;

gSuspendDevice () ;
gCloseGino () ;
return (0) ;

/* USING LOW LEVEL COMPONENT ROUTINES */
#include <gino-c.h>
#include <graf-c.h>

/*DEFINE CONSTANTS */
#define N 48

#define PI 3.1415926
#define RAD 2.0*PI/(N-1)

int main (void) {
GPOINT pnts[N];
float r, theta, polrad;
int i, flg;
GLIMIT lims;

/* CALCULATE FUNCTION VALUES */
for (i=0; i<N; i++) {
theta=(i-1) *RAD;
r=4*cos (2*theta) ;
pnts.x[i]=r*cos (theta);
pnts.y[i]l=r*sin(theta);
}

/* DRAW POLAR CHART */
gOpenGino () ;
XxXxX () ;
ggSetGraphCharMode (GGINOMODE) ;

/* ENQUIRE GINOGRAF DRAWING LIMITS AND CHARACTER SIZE */
ggEngPlotFrame (&flg, &lims) ;

polrad=0.375%abs (min(lims.xmax-1lims.xmin, lim.ymax-lims.ymin)) ;
/* SET UP AXIS POSITION AND SCALES */

ggSetPolarChartAttribs ((lims.xmin+lims.xmax) /2.0,
(lims.ymin+lims.ymax)/2.0,polrad, GLINEARTYPE3) ;

130

POLAR CHARTS Complete Polar Chart

/* DRAW AXES */
ggDrawPolarAxes (GCARDINAL, GTICKSANDCIRCLES, GANNOTATION,
10,4.0,GRAXIS) ;
ggDrawPolarAxes (GINTERMEDIATE, GTICKSANDRADII, GANNOTATION,
8,360.0, GTHETAAXIS) ;

/* DRAW CURVE THROUGH POINTS AND ADD SYMBOLS */
ggAddGraphCurve (N, pnts) ;
ggAddGraphMarkers (N, pnts, GSTAR, 0) ;

gSuspendDevice () ;
gCloseGino () ;
return (0) ;

F90 Code

131

Polar Chart Components

POLAR CHARTS

USING LOW LEVEL COMPONENT ROUTINES

use gino f90
use graf £90

!DEFINE CONSTANTS

integer, parameter :: N=48
real, parameter :: PI=3.1415926
real, parameter :: type (GPOINT), dimension (N)

real r, theta, polrad
integer i, flg
type (GLIMIT) lims

CALCULATE FUNCTION VALUES
RAD=2.0*PI/ (N-1)
do i=1, N
theta=(i-1) *RAD;
r=4*cos (2*theta);
pnts (i) %$x=r*cos (theta);
pnts (i) $y=r*sin (theta) ;
end do

DRAW POLAR CHART

call gOpenGino

call xxxxx

call ggSetGraphCharMode (GGINOMODE)

ENQUIRE GINOGRAF DRAWING LIMITS AND CHARACTER SIZE

call ggEngPlotFrame (flg, lims)

polrad=0.375* abs (min(lims%xmax-lims%$xmin, &
lims%ymax-lims$ymin))

SET UP AXIS POSITION AND SCALES

pnts

call ggSetPolarChartAttribs ((lims$xmin+lims%xmax) /2.0, &

(lims$ymin+lims$ymax) /2.0,polrad, GLINEARTYPE3)

DRAW AXES
call ggDrawPolarAxes (GCARDINAL, GTICKSANDCIRCLES,
GANNOTATION, 10,4.0,GRAXIS)

call ggDrawPolarAxes (GINTERMEDIATE, GTICKSANDRADII,

GANNOTATION, 8,360.0, GTHETAAXIS)

DRAW CURVE THROUGH POINTS AND ADD SYMBOLS
call ggAddGraphCurve (N,pnts)
call ggAddGraphMarkers (N, pnts,GSTAR, 0)

call gSuspendDevice
call gCloseGino
stop

end

Polar Chart Components

132

This section describes the component routines provided by GINOGRAF for
drawing Polar Charts. The routines provide the user with the tools to build up
more complex and sophisticated Polar Charts than those created using the
complete drawing routine.

Each Polar Chart is built up in a modular fashion, making use of individual
routines to:

POLAR CHARTS Polar Chart Components

* Position and scale axes
* Draw axes
» Represent polar data sets with symbols, lines, and curves

Polar Chart axes use a special form of graphical axes which consists of a pair of
axes crossing at a centre point. The centre point represents the origin of the polar
axis coordinate system (radius = 0.0).

Positioning and Scaling

The routine ggSetPolarChartAttribs() defines the centre, radius, and the type of
scaling of polar axes:

ggSetPolarChartAttribs(xorp,yorp,radlen,scale)

The centre of the Polar Chart (xorp, yorp) which represents the origin of the
axes, and the radius of the Polar Chart radlen are defined in user space
coordinates.

The Polar Chart may be scaled in three ways, all linear, depending on the value

of scale. The styles vary in the way that the number of intervals (nints) and the

end range of values (vendp) are represented in the annotation when the axes are
drawn using ggDrawPolarAxes().

The annotation for theta extends beyond the circumference of the largest circular
axis. It is advisable, therefore, that there is enough room around the Polar Chart if
theta annotation is to be displayed.

If the positioning and scaling of the axes is omitted the default position and scale
takes effect (see page 16).

Polar Axes Drawing
The routine ggDrawPolarAxes() is used to draw either the radial or theta axes:
ggDrawPolarAxes(tick1,tick2,val,nintp,vendp,rorth)

where rorth determines which axes is to be drawn. rorth=GRAXIS draws the
radial axis and rorth=GTHETAAXIS draws the theta axis. ggDrawPolarAxes()
draws the requested axes at the position and size set by the last call to
ggSetPolarChartAttribs(), or at the centre of the current drawing area if this has
not been called.

133

Polar Chart Components POLAR CHARTS

134

vendp sets the numeric limit of either axis which is measured in current units for
the radial axis and degrees for the theta axis. The minimum limit is zero for both
axes. nintp sets the number of intervals on either axis. How closely the routine
ggDrawPolarAxes() adheres to the setting of nintp and vendp, is determined by
the scale type set by the most recent call to ggSetPolarChartAttribs(). Radial
annotation is shown along the axis representing zero degrees in the theta
direction, and angular annotation is shown anticlockwise starting from zero
degrees in the three o’clock position.

tick]1=GINTERMEDIATE tick1=GINTERMEDIATE
tick2=GTICKS tick2=GTICKSANDCIRCLES

ZN
&

tick1=GCARDINAL tick1=GINTERMEDIATE
tick2=GTICKS tick2=GTICKSANDCIRCLES

5
N

Polar Axes

tickl and val determine whether tick marks and annotation are displayed on
either axis. tick2 controls the display of radial lines and circles at major tick
mark intervals.

Polar Axes Annotation Control

As Polar Chart axes are a special form of graphical axes (see page 19), the same
annotation control routines described in that section also affect Polar Chart axes.

Therefore ggSetAxesAnnotation() can be used to set the numeric format and
scale type display and ggSetAxesAttribs() can be used to control the position,
angle and justification of Polar Chart annotation.

The axes titling and labelling routines ggDrawAxesTitle() and
ggDrawAxesLabels() can also be used with Polar Chart axes.

POLAR CHARTS Polar Chart Components

Polar Axes Enquiry

Both the Complete Drawing routine ggPlotXYPolarChart() and the component
routine ggDrawPolarAxes() redefine the current settings for the position and
scaling of graphical axes. The routines ggEnqAxesPos() and ggEnqAxesScaling()
will therefore return the current axes settings for either type of graph.

If Polar Charts are to be used in conjunction with normal graphs, it should be
realised that the Polar Chart drawing routines will redefine the position and
scaling of graphical axes as set up with the routines ggSetAxesPos() and
ggSetAxesScaling(). If particular settings need to be saved and restored, the axis
enquiry routines ggEnqAxesPos() and ggEnqAxesScaling() can be used for this
purpose.

Polar Chart Default Restoration

The routine used to restore the default polar axis definition is:
ggRestoreAxesSettings()

ggRestoreAxesSettings() has no arguments. It restores to their default values the
polar axis positioning and scaling set using ggSetPolarChartAttribs().

Polar Chart Drawing

The data sets are drawn on the most recently defined polar axes, therefore many
data sets may be displayed on a set of axes that have been defined once.
Consequently, data sets may be added to a Polar Chart set up using the complete
Polar Chart routine ggPlotXYPolarChart()

Data sets are represented on polar axes using the component graph drawing
routines ggAddGraphPolyline(), ggAddGraphCurve(), ggAddGraphSpline(),
ggAddGraphMarkers() or ggFillBelowDataset().

The data coordinates, passed to the routine via the array points.x and points.y of
npts points, must be converted from polar values to linear values within the
graphical axes coordinates as follows:

points.x = radius * COS (theta)
points.y = radius * SIN (theta)

where radius and theta are the radius and angle in radians of each polar
coordinate.

135

Polar Chart Components POLAR CHARTS

An example of the way in which the values are converted is shown in the
previous coding example.

136

Chapter

PIE CHARTS

Introduction to Pie Charts

The production of Pie Charts is covered in this chapter. GINOGRAF can display
two-dimensional filled Pie Charts with centred or exploded segments containing

text and numerical annotation.

When using the word “segment”, GINOGRAF refers to an individual Pie Chart

slice.

Summary of the Pie Chart facilities:

ggSetPieChartFrame ()
ggPlotPieChart ()
ggAddPieChartSegment ()
ggSetPieChartAnnotation ()
ggSetPieChartBoxType ()
ggSetPieChartStartAngle ()
ggSetPieChartBoundSwitch ()
ggSetPieChartExplosion ()
ggEngPieChartSettings ()
ggEngPieChartAnnotation ()
ggRestorePieChartSettings ()

Defines non-default Pie Chart position

Draws annotated, filled Pie Chart

Draws annotated, filled Pie Chart segment
Sets Pie Chart annotation type

Sets internal annotation box type

Defines start angle for Pie Chart display

Sets Pie Chart boundary switch

Defines explosion factors for Pie Chart segments
Returns Pie Chart position and start angle
Returns Pie Chart annotation type

Restores default settings for Pie Chart display

Pie Chart Facilities

Two routines are provided to draw either complete Pie Charts or individual
segments. The routines are tabled below showing the various facilities of each:

137

Pie Chart Facilities PIE CHARTS

138

Routine Boundary | Filling Annotation Output

ggPlotPieChart () yes yes radial, text, percentage,
internal, value
external

ggAddPieChartSegment () yes yes radial, text, percentage,
internal, value
external

All the Pie Chart routines are affected by the Pie Chart control routines, the
defaults of which are found in Appendix A.

Three forms of Pie Chart annotation are provided:

+ Radial annotation (type GRADIAL) is printed along the bisecting angle of
a segment in such a way that it is readable from left to right when viewed
from the 6 o’clock position (Y-axis negative direction). The start position is
adjusted to ensure the first character fits between the edges of the segment.
For small segments the character size may be reduced to half the current
size in order to fit within the segment. However, for very small segments or
long text strings the annotation may extend or even start outside the
segment boundary.

« Internal annotation (type GINTERNAL) is printed horizontally within the
segment. Combinations of text string, percentage, and/or value are printed
above one another. If there is enough room the strings are positioned
centrally within the segment, otherwise adjustments are made so that they
still fit inside the segment. However, if the required strings cannot be
satisfactorily fitted by this means then they are automatically printed
outside the segment (as for external annotation).

 External annotation (type GEXTERNAL) prints the required output as a
single string consisting of the required data items horizontally outside each
segment with a connecting line.

The algorithms for the above annotation types have been created to work on any
data, though, because each segment is annotated without any knowledge of other
segments, sometimes external annotation may overlap. This may be avoided by
altering one of the following :

PIE CHARTS Pie Chart Facilities

 Character size
» Type of annotation (radial annotation can never overlap)

« Minimum percentage tolerance of annotated segments (See
ggSetPieChartAnnotation())

+ Length of strings being output

 Output format control of values (see - ggSetAxesAnnotation())
« Length of values prefixes and suffixes (see - ggSetValueTags())
+ Ordering of data sets

A maximum of 50 segments is permitted in all the Pie Chart routines.

Pie Chart Size and Position

The default size (ie, radius) and position of Pie Charts and segments are
determined by the current GINOGRAF drawing area. They are not affected by
the axis definition routines ggSetAxesPos() and ggSetAxesScaling().

ggSetPieChartFrame() can be used to define an alternative Pie Chart size and
position as follows:

ggSetPieChartFrame(rad,xcen,ycen)

where rad is the radius of the Pie Chart or segment in current units and
xcen,ycen is the coordinate position of the centre of the Pie Chart in user space
coordinates. Calls to ggSetPieChartFrame() provide control for calls to all the Pie
Chart and segment routines. Successive calls to ggSetPieChartFrame() override
previous Pie Chart definitions.

The current Pie Chart size and position, whether set by default or by
ggSetPieChartFrame() can be enquired through the routine
ggEnqPieChartSettings().

139

Pie Chart Drawing PIE CHARTS

If ggSetPieChartFrame() has been used, the default sizing and positioning can be
restored using the routine ggRestorePieChartSettings().

|
\
_ +
~ \
- 9
v I
/ \
/ \
// |
\
! +180 | Default
(ycen) ——F—————— I | StartAngle
| (xcen,ycen) ‘47 rad 47 ©)
L | /
\ ! /
| /
h s
N 270 | ~
~ \('90a) } = -
— - _
|
(xcen)

User Space
Origin (0,0)

Relationship of xcen, ycen & rad to drawing area

The relationship of xcen, ycen and rad to the drawing area / window is shown
above.

Pie Chart Drawing

The Pie Chart routine for drawing, annotating and filling a Pie Chart is:
ggPlotPieChart(nsegs,value,string,fill,line)

The Pie Chart consists of nsegs segments with the data, annotation and fill styles
taken from the arrays value, string, fill, and line each of which should contain
nsegs elements. The segments sizes are automatically calculated by assigning
each value in the array value a proportion of the complete circle in relation to its
proportion of the sum of all the nsegs values in the array value, ie:

segment angle / 360° = value / total of values

140

PIE CHARTS Pie Chart Drawing

Each segment is filled with the corresponding fill style and line style index
contained in the fill and line arrays. Solid fill and various hatches and cross
hatches are available. The default styles are shown in Appendix A, but they can
be changed using the GINO line attribute routines. If an element of fill contains
a number less than -1 (GHOLLOW), the corresponding Pie Chart segment is not
filled.

The default annotation type is GINTERNAL - printed horizontally within the
segment.

Vodka Brandy Ny

High Level Complete PieChart

C Code

/* HIGH LEVEL PIECHART */
#include <gino-c.h>
#include <graf-c.h>

#define nsegs 5
int main (void) {

float value[nsegs] = {81.0,77.0,54.0,35.0,28.0};
int fill[nsegs] = {1,2,3,4,5};

int line[nsegs] = {1,1,1,1,1};

char string[nsegs] = {“gin”,"whisky", "vodka",

“brandy”, "rum"};

gOpenGino () ;

XXxXXX () ;

ggSetGraphCharMode (GGINOMODE) ;
ggPlotPieChart (nsegs, &value, &string, &fill, &line);
gSuspendDevice () ;

return (0) ;

141

Pie Chart Drawing

PIE CHARTS

F90 Code

! HIGH LEVEL PIECHART
use gino £90
use graf f£90

integer,

real,

(/'

call
call
call
call
call
stop
end

(/81.0,77.0,54.0,35.0,28.0/)
integer,
integer,
character

parameter :: nsegs = 5

gl

dimension (nsegs) : value =

fill
:: line

dimension (nsegs)
dimension (nsegs)

(len=6),
gin’,’"whisky’,’vodka’,’brandy

gOpenGino
XXXXX
ggSetGraphCharMode (GGINOMODE)

dimension (nsegs) ::
’

(/1,2,3,4,5

(/1,1,1,1,1
string =

,"rum’ /)

/)
/)
&

ggPlotPieChart (nsegs,value,string, £ill, line)

gSuspendDevice

Single Segment Output

Where a single segment is required rather than a complete Pie Chart, the routine
ggAddPieChartSegment() provides the same facilities as ggPlotPieChart():

ggAddPieChartSegment(angfro,angto,value,string,fill,line)

where angfro and angto are the start
and finish angles (measured
anticlockwise from the three o’clock
position) of the segment. value and
string are the single data value and
annotation string corresponding to
the segment. While there may not be
any data relevant to the single
segment, a dummy value must be

supplied. fill and line are the fill and
line style indices for the segment as
with ggPlotPieChart(). The segment
is centred at the current Pie Chart
centre.

Pie Chart Annotation Control

(xcen,ycen)

Pie Chart Segment

Control of the annotation for Pie Charts and segments is made with the routine:

ggSetPieChartAnnotation(type,txt,per,val,tol)

PIE CHARTS Pie Chart Drawing

where type sets the annotation type. The choices are GRADIAL, GINTERNAL
(default) and GEXTERNAL. The three arguments txt, per and val determine
which of the three annotation data items are printed with each segment, the text
string (in string), the calculated percentage value of the segment and the data
value itself (in value). The data item is included if the corresponding flag is equal
to GTEXT, GPERCENT and GDATA respectively, and omitted if equal to
GNOTEXT, GNOPERCENT and GNODATA. tol is a tolerance value (in
percentage terms) below which segments are not annotated at all. This is useful
to control annotation of very small segments where data is insignificant.

The following example shows radial and external annotation types with just the
percentage value printed:

C Code

/* RADIAL AND EXTERNAL ANNOTATION TYPES */
#include <gino-c.h>
#include <graf-c.h>

#define nsegs=5

int main (void) {
int papty
GDIM paper
GLIMIT lims
float value[nsegs] = {81.0,77.0,54.0,35.0,28.0};

int fill[nsegs]
int line[nsegs]
char string[nsegs]

“brandy”, "rum"};

{11213l
{1,1,1,
= {“gi

4,5};
1,1};
n”,"whisky", "vodka",

gOpenGino () ;

XXXxXX () ;
gkEngDrawingLimits (&paper, &papty) ;
gSetWindowMode (GON2D) ;
ggSetGraphCharMode (GGINOMODE) ;

lims.xmin=0.0;

lims.xmax=0.4*paper.xpap;

lims.ymin=0.0;

lims.ymax=paper.ypap;

ggSetPlotFrame (&1lims) ;

ggSetPieChartAnnotation (GRADIAL, GNOTEXT,
GPERCENT, GNODATA, 0.0) ;

ggPlotPieChart (nsegs, &value, &string, &fill, &line);

lims.xmin=0.5*paper.xpap;

lims.xmax=0.9*paper.xpap;

lims.ymin=0.0;

lims.ymax=paper.ypap;

ggSetPlotFrame (&1lims) ;

ggSetPieChartAnnotation (GEXTERNAL, GNOTEXT,
GPERCENT, GNODATA, 0.0) ;

ggPlotPieChart (nsegs, &value, &string, &fill, &line);

143

Pie Chart Drawing PIE CHARTS

gSuspendDevice () ;
return (0) ;

}

F90 Code

144

PIE CHARTS Pie Chart Drawing

29.45%

ge 28.00%

10.18%

19.64% 12.73%

Example of Radial and External annotation

The format of the data values printed as part of Pie Chart annotation is controlled
with the axis annotation control routine ggSetAxesAnnotation() (N.B. the value
of xory must be set to GYAXIS to control Pie Chart annotation):

ggSetAxesAnnotation(ndp,npower,axty, GY AXIS)

By default, values are output with up to two decimal places, but ndp may be set
to adjust this if required. The use of ggSetAxesAnnotation() for Pie Charts is to
enable values output in the chart to match values displayed on the Y axis of a
graph or chart if required. But it should be noted that axty has no effect on Pie
Charts and if npower is non zero no scale factor is output with the Pie Chart even
though the values are multiplied by the appropriate power of 10. Again this can
be used to match axes output if required.

All the data values output by ggPlotPieChart() may by augmented by a common
prefix and/or suffix string of up to 30 characters as defined by the utility routine:

ggSetValueTags(prefix,suffix)

By default, both strings are null and if either string needs to be set to null, the
string **.” should be used as shown in the example below. Percentage values are
always followed by a "%’ sign and cannot have a prefix or suffix string appended
to them.

The example below shows the use of format control and a common suffix string
appended to data values output within a Pie Chart.

145

Pie Chart Drawing

PIE CHARTS

C Code

/*

ANNOTATION CONTROL WITHIN PIECHART */

#include <gino-c.h>
#include <graf-c.h>

#define nsegs 5
int main(void) {

/*

/*

/*

/*

float value[nsegs] = {81.0,77.0,54.0,35.0,28.0};
int fill[nsegs] = {1,2,3,4,5};
int line[nsegs] = {1,1,1,1,1};

char string[nsegs

gOpenGino () ;
XXXXX () ;
ggSetGraphCharMode (GGINOMODE) ;

4
4
{”gin”, ”"whisky”, ”vodka”, “brandy”, "rum”};

SET ANNOTATION TYPE GINTERNAL WITH STRING AND DATA VALUE OUTPUT

ggSetPieChartAnnotation (GINTERNAL, GTEXT, GNOPERCENT, GDATA,0.0) ;

FORCE ONE DECIMAL PLACE ON VALUE OUTPUT */
ggSetAxesAnnotation (-1, 0, GNOSCALE, GYAXIS) ;

ADD SUFFIX STRING TO VALUE OUTPUT */
ggSetValueTags (“*.”,"gal") ;

OUTPUT PIECHART */
ggPlotPieChart (nsegs, &value, &string, &fill, &line);

gSuspendDevice () ;
return (0) ;

F90 Code

i

ANNOTATION CONTROL WITHIN PIECHART

use gino f90
use graf f90

146

integer, parameter :: nsegs = 5

real, dimension (nsegs) :: value = &
(/81.0,77.0,54.0,35.0,28.0/)

integer, dimension(nsegs) :: fill = (/1,2,3,4,5/)

integer, dimension(nsegs) :: line = (/1,1,1,1,1/)

character (len=6), dimension(nsegs) :: string = &
(/"gin’, "whisky’,’vodka’,’brandy’,’ rum’/)

call gOpenGino
call xxxxx
call ggSetGraphCharMode (GGINOMODE)

SET ANNOTATION TYPE GINTERNAL WITH STRING AND

DATA VALUE OUTPUT

call ggSetPieChartAnnotation (GINTERNAL,GTEXT, &
GNOPERCENT, GDATA,0.0)

FORCE ONE DECIMAL PLACE ON VALUE OUTPUT
call ggSetAxesAnnotation(-1,0,GNOSCALE,GYAXIS)

PIE CHARTS

Pie Chart Control

! ADD SUFFIX STRING TO VALUE OUTPUT

call ggSetValueTags (‘*.’,

! OUTPUT PIECHART

"gal’)

call ggPlotPieChart (nsegs,value,string,fill, line)

call gSuspendDevice
stop
end

Pie Chart Annotation Box

By default, the internal
Pie Chart annotation
(type GINTERNAL) is
outlined by a series of
boxes around each data
item and masked against
any segment filling.
These options can be
changed with the routine:

Kk
Gin|
81.0gal|

[77.0gal]

Annotation control within piechart

ggSetPieChartBoxType(type,fill,line)

The following settings of type are permitted:

= GNONE

= GBOXED

= GFILLED

= GFILLED & GBOXED

No filling/masking or boxes drawn
No filling/masking but boxes are drawn
Filling/masking done but no boxes draw

Filling/masking done and boxes drawn

(default)

!
H

FH28.0gal
=

Where type = GNONE or BOXED, the box areas are not filled/masked and the

annotation is drawn over any segment filling. Where type = GFILLED or

(GFILLED & GBOXED), the box areas are filled with the specified fill and line
styles, fill and line, and the annotation is drawn over this. The box area may be
left unfilled (ie, masked) by setting fill to a negative number.

Pie Chart Control

The following routines control the position and form of all the Pie Chart routines

in this Section:

147

Pie Chart Control PIE CHARTS

148

« Start Angle Definition
 Pie Chart Boundary
 Pie Chart Explosion
 Pie Chart Enquiry

* Restoration of Defaults

Start Angle Definition

The routine ggSetPieChartStartAngle() defines the start angle of the first segment
when drawing a Pie Chart using the routine ggPlotPieChart().

ggSetPieChartStartAngle(angle)

ggSetPieChartStartAngle() sets the start angle of the Pie Chart measured in
degrees anticlockwise from the three o’clock (X-axis positive) position. The
default angle is 0.0.

Pie Chart Boundary

The routine ggSetPieChartBoundSwitch() can be used to switch off the drawing
of segment boundaries if required:

ggSetPieChartBoundSwitch(switch)

switch is a flag to determine the state of the Pie Chart boundary drawing. If
switch = GOFF, future segments drawn by ggPlotPieChart() or
ggAddPieChartSegment() will not include boundaries. Setting switch = GON
restores the drawing of boundaries.

Pie Chart Explosion

Pie chart explosion can be used on Pie Charts using the routine ggPlotPieChart().
The routine ggSetPieChartExplosion() extracts some or all of the segments of a
whole Pie Chart as follows:

ggSetPieChartExplosion(num,list,factor)

PIE CHARTS Pie Chart Control

list is an array of dimension num containing the drawing sequence numbers of
the segments to be extracted (ie, if list contains the numbers 1, 3 and 4, the first,
third and fourth segments going anticlockwise from the start angle will be
extracted).

factor is an array of dimension num

giving the explosion factor for each

of the segments identified in list.

Each segment is extracted from the

centre of the Pie Chart by a distance s
factor * radius, where radius is the
current radius of the Pie Chart (ie, if
list contains 1,3 and 4, and factor
contains 0.1, 0.1, 0.25, the first and
third segments would be extracted by
one tenth of their radius, and the
fourth segment would be extracted by
one quarter of its radius as shown in
the example below).

> Start Angle
at0.0

Pie Chart Segment numbering

C Code

/* PIE CHART EXPLOSION */
#include <gino-c.h>
#include <graf-c.h>

#define nsegs=5
int main (void) {
float value[nsegs]

= {81.0,77.0,54.0,35.0,28.0};
int fill[nsegs] = {1,2,3,4,5};
int line = {1,1,1,1,1};
char string[nsegs] = {”gin”,”whisky”,”vodka”, "brandy”,”rum”};
int 1ist([3] = {1,3,4};
float factor([3] = {0.1,0.1,0.25};

gOpenGino () ;
XxXxX () ;
ggSetGraphCharMode (GGINOMODE) ;

/* SET EXPLOSION FACTORS */
ggSetPieChartExplosion (3, &list, &factor) ;

/* DRAW PIECHART */
ggPlotPieChart (nsegs, &value, &string, &fill, &line) ;

gSuspendDevice () ;
gCloseGino () ;
return (0) ;

149

Pie Chart Control PIE CHARTS

F Code

! PIE CHART EXPLOSION
use gino £90
use graf f£90

integer, parameter :: nsegs=5

real, dimension (nsegs) :: value = &
(/81.0,77.0,54.0,35.0,28.0/)

integer, dimension(nsegs) :: fill = (/1,2,3,4,5/)

integer, dimension(nsegs) :: line = (/1,1,1,1,1/)

character (len=6), dimension(nsegs) :: string = &
(/"gin’, "whisky’,’vodka’,’brandy’,’ rum’/)

integer, dimension(3) :: list = (/1,3,4/)

real, dimension(3) :: factor = (/0.1,0.1,0.25/)

call gOpenGino
call xxXXxXx
call ggSetGraphCharMode (GGINOMODE)

SET EXPLOSION FACTORS
call ggSetPieChartExplosion(3,1list, factor)

DRAW PIECHART
call ggPlotPieChart (nsegs,value,string,fill,line)

call gSuspendDevice
call gCloseGino
stop

end

If the radius is defined by default, sufficient space will be allowed for the
extracted segments. However, if ggSetPieChartFrame() is called, the user should
ensure that the radius is sufficiently small to allow for the explosion factors.

Calls to ggSetPieChartExplosion()
require the user to establish a separate list
of exploded segments. One way of LGin}
avoiding this is to always define the size
of list and factor as the number of \
segments in the Pie Chart, and assign
factor = 0.0 for any segment which is not
exploded.

Once called, ggSetPieChartExplosion()
remains active until called again with
num = 0. This resets the explosion list so
that further calls to ggPlotPieChart() Example of Pie Chart
produce no exploded segments. explosion

150

PIE CHARTS Pie Chart Control

Pie Chart Enquiry

Two enquiry routines are provided to return the current Pie Chart settings,
ggEngPieChartSettings() and ggEnqPieChartAnnotation():

ggEnqgPieChartSettings(radius,origin,angle)

where radius gives the current radius of the Pie Chart in current drawing units
and origin.x, origin.y give the X and Y coordinates of the Pie Chart centre
expressed in user space coordinates angle gives the current start angle of the Pie
Chart in degrees. These arguments are set by the routines ggSetPieChartFrame()
and ggSetPieChartStartAngle().

ggEngPieChartAnnotation(type,txt,per,val,tol)

ggEnqPieChartAnnotation() returns the current Pie Chart annotation settings as
set by ggSetPieChartAnnotation().

Pie Chart Default Restoration
The routine to restore all Pie Chart settings to their defaults is:
ggRestorePieChartSettings()

which has no arguments. The routine resets the default Pie Chart position and
size setting to that based on the current GINO window limits. It also restores the
default Pie Chart annotation settings, Pie Chart annotation box, Pie Chart
boundary, Pie Chart start angle and explosion factors to their respective defaults.

151

Chapter

TEXT CHARTS

Introduction to Text Charts

The routines described in this chapter provide facilities to present text strings,
various forms of data and graphical items in related columns. They can be used to
annotate other graph forms, for example, adding a key or legend, or to present
data in tabular form in their own right. There are seven forms of Text Charts.

Summary of the Text Chart facilities:

ggSetTextChartAttribs () Sets/enquires Text Chart size, annotation and
ggEngTextChartAttribs () header attributes
ggDisplayStringColumn () Displays column of strings
ggDisplayValueColumn () Displays column of values
ggDisplayGeneratedColumn () Displays column of generated values
ggDisplayPercentageColumn () Displays column of percentage values
ggDisplayMarkerColumn () Displays column of symbols
ggDisplayLineColumn () Displays column of boxes with line styles
ggDisplayFillColumn () Displays column of boxes with fill styles

153

Text Chart Layout TEXT CHARTS

Text Chart Layout

When planning the layout of a Text Chart it is necessary to know the space
available and decide a number of general points concerned with the form of the
Text Chart. For example, if an area of 120mm x100mm is available and 4
columns are required, the dimensions of each column can easily be calculated.
Each column is divided into a number of cells equal to the number of items to be
output plus one extra cell if a header box is also required. Other attributes of the
chart include the string and/or value justification and line style of the frame box
itself. The routine ggSetTextChartAttribs() is used to set these attributes and
ggEnqTextChartAttribs() returns the current settings.

ggSetTextChartAttribs(width,height,jushor,head,line)
ggEnqTextChartAttribs(width,height,jushor,head,line)

where width and height are the column dimensions and jushor is the string
and/or value justification within the cell. head controls whether a header box is
required within the column, the header string itself being provided in the output
routine and is always centrally justified within the header box. line is the line
style of the frame box outline (which is optional).

120mm

v

If the same attributes are i WIDTH —»
required for a Py
multi-column Text Chart,
ggSetTextChartAttribs()

would only be called once
before each of the output

routines, but if a different

— N o <
column size or E £ £ £ HEIGHT
justification is required 3 3 3 3 100mm

for a new column
ggSetTextChartAttribs()
must be called before
outputting the column. It
would be desirable, but
not obligatory, to keep the
height and the header
(head) the same.

Text Chart Layout

154

TEXT CHARTS String Text Chart

All the Text Chart routines use the current GINO character attributes for their
text output, for both the header and the chart itself . The character size is not
adjusted to fit the cell size and so it is the users’ responsibility to set an
appropriate size along with the setting of the chart attributes as this is obviously
related to the cell size. The user should allow space for at least one extra
character in the width of string, value or symbol charts and whatever space is
required above and below in the height. If an insufficient cell size is set or the
character size is too large, the string or value may overlap an adjacent cell or
column depending on the justification setting. In the case of fill style and line
style charts, these are always drawn to fit the current cell size with an appropriate
spacing.

Even though the column size is set with the above routine, each output routine
requires a start position allowing each column to be positioned anywhere in the
drawing area, irrespective of the column size. Therefore if columns are required
to be adjacent, the column width will also be required for updating the horizontal
position for each column in turn. All sizes and positions in the Text Chart
routines are in user space coordinates, not current graph coordinates.

String Text Chart

The routine ggDisplayStringColumn() is used to output a column of text strings:

ggDisplayStringColumn(x,y,nstr,string,header)

where X,y is the position of the top left Month

corner of the column and string is a January

character array containing nstr strings. February

header is an optional header string which March

is output if headers are switched on with April

ggSetTextChartAttribs(). The following pri

example shows how a single column Text May

Chart can be generated: June
July
August
September
October
November
December

Single Column Text
Chart

155

String Text Chart

TEXT CHARTS

156

C Code

/* SINGLE COLUMN TEXT CHART */
#include <gino-c.h>
#include <graf-c.h>

int main (void) {
int papty, nrow;
float cw, ch, rcolh, colh, x, y;
GDIM paper;

char *mons[12] = {”January”,”February”,”March”,”April”,

“May”,”June”, ”July”,”August”, "September”, “October”,
”"November”, ”"December”};

gOpenGino () ;

XXXXX () ;
gEngDrawingLimits (&paper, &papty) ;
ggSetGraphCharMode (GGINOMODE) ;

/* SET UP TEXT CHART ATTRIBUTES */

nrow = 12;
cw = 5.0;
ch = 5.0;

gSetCharSize (cw,ch) ;

/* ENSURE COLUMN HEIGHT FITS IN DRAWING AREA */
rcolh = (float) (nrow+l)*2.0*ch;
colh = min (0.8*paper.ypap,rcolh);
ggSetTextChartAttribs (10.0*cw,colh, GLEFT, GHEAD, 1) ;

* DRAW CHART */
x = 0.l*paper.xpap;
y = 0.9*paper.ypap;
ggDisplayStringColumn (x, y,nrow,mons, “Month”) ;

gSuspendDevice () ;
gCloseGino() ;
return (0) ;

F90 Code

! SINGLE COLUMN TEXT CHART
use gino £90
use graf f£90

integer papty
type (GDIM) paper
character (len=9), dimension(l2) :: mons = &
(/" January’,’February’,’March’,’April’,’'May’,’June’,
"July’,"August’,’ September’,’October’,'November’,
’ December’ /)

call gOpenGino

call xxxxx

call gEngDrawingLimits (paper,papty)
call ggSetGraphCharMode (GGINOMODE)

&
&

TEXT CHARTS Value Text Charts

! SET UP TEXT CHART ATTRIBUTES

nrow = 12
cw = 5.0
ch = 5.0

call gSetCharSize (cw,ch)

ENSURE COLUMN HEIGHT FITS IN DRAWING AREA

rcolh = real (nrow+l)*2.0*ch

colh = min(0.8*papersypap, rcolh)

call ggSetTextChartAttribs (10.0*cw,colh, GLEFT, &
GHEAD, 1)

DRAW CHART

x = 0.l*paperSsxpap

y = 0.9*paperSypap

ggDhisplayStringColumn (x,y,nrow,mons,’'Month’)

call gSuspendDevice
call gCloseGino
stop

end

Value Text Charts

Three routines are provided to output a column of values:
ggDisplayValueColumn(x,y,nval,values,header)
ggDisplayGeneratedColumn(x,y,nval,vbeg,vend,header)
ggDisplayPercentageColumn(x,y,nval,values,header)

ggDisplayValueColumn() is used to output a supplied set of real numbers held in
the array values, ggDisplayGeneratedColumn() will output a set of nval
generated values between vbeg and vend and ggDisplayPercentageColumn() will
output the values held in the array values but re-calculated as a percentage of the
total value of all the array locations. In each case the position x,y is the top left
corner of the column and an optional header cell and the string header, is added
if headers are switched on with ggSetTextChartAttribs().

These routines are provided to match the possible forms of numeric data that
have been used with other graph forms, whether they be actual data, a data range
or data supplied to a pie chart routine.

All the values are output using the current numerical format for the Y axis as set
by the annotation control routine ggSetAxesAnnotation() (ie, xory = GYAXIS):

ggSetAxesAnnotation(ndp,npower,axty, GY AXIS)

157

Value Text Charts TEXT CHARTS

158

By default, values are output with up to two decimal places, but ndp may be set
to adjust this if required. The use of ggSetAxesAnnotation() for Text Charts is to
enable values output in the chart to match values displayed on the Y axis of a
graph or chart. But it should be noted that axty has no effect on Text Charts and
if npower is non-zero no scale factor is output with the Text Chart even though
the values are multiplied by the appropriate power of 10. Again this can be used
to match axes output if required.

All the values output by a call to ggDisplayValueColumn() and
ggDisplayGeneratedColumn() may by augmented by a common prefix and/or
suffix string of up to 30 characters as defined by the utility routine:

ggSetValueTags(prefix,suffix)

By default, both strings are
null and if either string needs
to be set to null, the string **.’
should be used as shown in the
example below. Values output
by
ggDisplayPercentageColumn()
are always followed by a "%’
sign and cannot have a prefix
or suffix string appended to
them.

Data %
1.5mm 2.13%
3.0mm 4.26%
2.1mm 2.98%
4.4mm 6.24%

56.3mm 79.86%
3.2mm 4.54%

OOk WN -~

Multi-column value text chart
The following example shows
the use of the three output
routines and the two controlling routines in generating a multi-column Text
Chart.

C Code

/* MULTI-COLUMN VALUE TEXT CHART */
#include <gino-c.h>
#include <graf-c.h>

int main(void)
int papty, nval;

GDIM paper;
float cw, ch, colwid, cellh, colhig, xp, yp:
float values[6] = {1.5,3.0,2.1,4.4,56.3,3.2};

gOpenGino () ;

XXXXX () ;
gkEngDrawingLimits (&paper, &papty) ;
ggSetGraphCharMode (GGINOMODE) ;

TEXT CHARTS Value Text Charts

/* SET UP TEXT CHART ATTRIBUTES */

nval = 6;

cw = 4.0;

ch = 4.0;

gSetCharSize (cw,ch) ;

colwid = 7.0%*cw;

cellh = 2.0*ch;

colhig = nval*cellh;

ggSetTextChartAttribs (colwid, colhig, GCENTRE, GHEAD, 1) ;
xp =0.l*paper.xpap;

yp =0.9*paper.ypap;

ggDisplayGeneratedColumn (xp,yp,6,1.0,6.0," “);

/* CHANGE TEXT JUSTIFICATION FOR ACTUAL DATA */
ggSetTextChartAttribs (colwid, colhig, GRIGHT, GHEAD, 1) ;

/* ADD SUFFIX STRING */
ggSetValueTags (”*.", "mm") ;

/* SET NUMBER FORMAT TO FORCE ONE DECIMAL PLACE */
ggSetAxesAnnotation (-1, 0, GNOSCALE, GYAXIS) ;
xp=xptcolwid;
ggDisplayValueColumn (xp, yp,nval,values, "Data");
xp=xptcolwid;
ggDisplayPercentageColumn (xp, yp,nval,values,"$") ;

gSuspendDevice () ;
gCloseGino() ;
return (0) ;

F90 Code

! MULTI-COLUMN VALUE TEXT CHART
use gino £90
use graf f£90

integer papty, nval

type (GDIM) paper

real cw, ch, colwid, cellh, colhig, xp, yp

real, dimension(6) :: values = (/1.5,3.0,2.1,4.4,56.3,3.2/)

call gOpenGino

call xxxxx

call gEngDrawingLimits (paper,papty)
call ggSetGraphCharMode (GGINOMODE)

! SET UP TEXT CHART ATTRIBUTES
nval = 6
cw = 4.0
ch = 4.0
call gSetCharSize (cw,ch)
colwid = 7.0*cw
cellh = 2.0*ch
colhig = nval*cellh

call ggSetTextChartAttribs (colwid, colhig, GCENTRE, GHEAD, 1)
xp =0.1*xpap

yp =0.9*ypap

call ggDisplayGeneratedColumn (xp,yp,6,1.0,6.0, " V)

159

Graphic Item Text Charts TEXT CHARTS

! CHANGE TEXT JUSTIFICATION FOR ACTUAL DATA
call ggSetTextChartAttribs (colwid,colhig, GRIGHT,GHEAD, 1)

! ADD SUFFIX STRING
call ggSetValueTags('*.’, 'mm’)

! SET NUMBER FORMAT TO FORCE ONE DECIMAL PLACE
call ggSetAxesAnnotation (-1, 0,GNOSCALE, GYAXIS)
xp=xp+colwid
call ggDisplayValueColumn (xp, yp,nval,values,’data’)
xp=xptcolwid
call ggDisplayPercentageColumn (xp,yp,nval,values,’$’)

call gSuspendDevice
call gCloseGino
stop

end

Graphic Item Text Charts

160

Three routines are provided to link the graphical output on other graph forms
with multi-column Text Charts:

ggDisplayMarkerColumn(x,y,nsym,sym,line,header)
ggDisplayLineColumn(x,y,nline,line,ang, header)
ggDisplayFillColumn(x,y,nfill,fill,line,header)

ggDisplayMarkerColumn() outputs a column of different symbols;
ggDisplayLineColumn() outputs a column of lines drawn at various angles; and
ggDisplayFillColumn() outputs a column of small rectangles filled with different
fill styles. Each routine has an array of line styles (line) with which the item is
drawn or filled. In each case the position x,y is the top left corner of the column
and an optional header cell and the string header is added if headers are switched
on with ggSetTextChartAttribs().

Where an application is presenting multiple data sets using graphs with different
line styles or symbols, ggDisplayLineColumn() and ggDisplayMarkerColumn()
can be simply used to annotate the different sets. Similarly, the fill style and line
style arrays used with any of the chart or pie chart routines can be passed directly
to ggDisplayFillColumn() again to annotate the data.

The fill styles and line styles used in these routines are set using the GINO line
attribute routines.

The following example shows the various forms of output from these routines.

TEXT CHARTS Graphic Item Text Charts

C Code

/* GRAPHIC ITEM CHART */
#include <gino-c.h>
#include <graf-c.h>

int main (void) {
int papty, nval, ncol, I;
float colwid, colhig, cw, xp, yp;
GDIM paper;
GLIMIT lims;
GLINSTY linrep;
int 1ine[8], linel[8], £il1l[8], sym[8];

gOpenGino () ;

/* CALCULATE REQUIRED CHARACTER SIZE */
cw = colwid/9.0;
gSetCharSize (cw, cw) ;
linrep.vis=GVISIBLE;

XXXXX () ;
gEngDrawingLimits (&paper, &papty) ;
gSetBrokenLineMode (GSOFT) ;
lims.xmin=0.0;
lims.xmax=paper.xpap;
lims.ymin=0.0;
lims.ymax=paper.ypap;
gFillRect (GHOLLOW, GCURRENT, &paper) ;
ggSetGraphCharMode (GGINOMODE) ;

/* SET UP TEXT CHART SIZE */
ncol = 7;
nval = 8;

/* CALCULATE COLUMN WIDTH AND HEIGHT */
colwid = (0.8*paper.xpap)/ (float)ncol;
colhig = (0.6*paper.ypap);
linrep.brk=GSOLID;
linrep.col=GBLACK;
linrep.width=0.0;
linrep.type=GDEFAULT;
linrep.end=GNONE;
gDefineLineStyle (9, &linrep);
ggSetTextChartAttribs (colwid, colhig, GCENTRE, GHEAD, 9) ;

/* SET UP FILL,LINE AND SYMBOL NUMBERS */
for (1i=0; i<nval; i++) {

line[i]=1i; linel[i]=1;
fill[il=1;
sym[i]=1i;

}

/* DISPLAY CHARTS */
xp =0.l*paper.xpap;
yp =0.8*paper.ypap;
ggDisplayMarkerColumn (xp, yp,nval, &sym, &linel, "Symbols”) ;
xp = xp + colwid;

161

Graphic Item Text Charts TEXT CHARTS

/* SET UP LINE STYLES FOR LINE CHARTS - BROKEN, THICK AND ROUND ENDS
*
/
linrep.vis=GVISIBLE;
linrep.type=GDEFAULT;
linrep.end=GROUND;
for (i=0; i<nval; i++) {
linrep.brk=i;
linrep.col=i;
linrep.width=(float)i/3.0;
gDefinelLineStyle (i, &linrep) ;
}
ggDisplayLineColumn (xp, yp,nval,line, GHORIZONTAL, "lines-1");
Xp = xp + colwid;
ggDisplayLineColumn (xp, yp,nval, line, GVERTICAL, "lines-2") ;
Xp = xp + colwid;
ggDisplayLineColumn (xp, yp,nval,line, GRIGHTDIAGONAL, "lines-3") ;
xp = xp + colwid;
ggDisplayLineColumn (xp, yp,nval,line, GLEFTDIAGONAL, "lines-4") ;
Xp = xp + colwid;

/* RESET LINE STYLES FOR FILL CHART */
linrep.vis=GVISIBLE;
linrep.type=GDEFAULT;
linrep.end=GROUND;
linrep.brk=GSOLID;
linrep.width=0.0;
for (i=0; i<nval; i++) {

linrep.col=i;

gDhefinelLineStyle (i, &linrep);
}
ggDisplayFillColumn (xp, yp,nval, &fill, &linel,”fills-1");
xp = xp + colwid;

ggDisplayFillColumn (xp, yp,nval, &fill, &line, “fills-2");

gSuspendDevice () ;
gCloseGino () ;
return (0) ;

F90 Code

! GRAPHIC ITEM CHART
use gino_£90
use graf £90

integer papty, nval, ncol, i

real colwid, colhig, cw, xp, yp

type (GDIM) paper

type (GLIMIT) lims

type (GLINSTY) linrep

integer line(8), linel(8), £il1l(8), sym(8)

162

TEXT CHARTS

Graphic Item Text Charts

TEXT CHARTS

164

Symbols Lines-1 Lines-2 Lines-3 Lines-4 Fills-1 Fills-2

] <

- T -
I e ~o
1 e~
1 - ~

R ——— ! . -
[-~ ~

x -—— . |~ -
] - ~

a - L] » . L
. - »
M Phdn |

- 1 = -

o ¥ " .~
e \e | @y,

o Qe z ‘“\\\\\‘ ”Iu,,,.
a \ 2K/

Graphic Item Chart

Chapter

UTILITIES

Introduction to Utilities

There are several utility routines supplied by GINOGRAF to provide useful
enhancements to the diagrams. They perform the following routines:

ggDrawGraphTitle ()
ggTransformGraphPoint ()
ggTransformSpacePoint ()
ggMoveToGraphPoint ()
ggAddGraphLine ()
ggDrawArrow ()
ggAddReferencelLine ()
ggReturnLineCoeffs ()

Graph titling

Graph to space coordinate conversion
Space to graph coordinate conversion
Positioning

Line drawing

Arrow drawing

Reference lines

Line Fitting

Graph

Titling

The routine ggDrawGraphTitle() displays a title string at one of nine positions
within the current graph drawing limits:

ggDrawGraphTitle(string,xpos,ypos)

165

Coordinate Conversion UTILITIES

This routine is provided to simplify the titling of graphs or charts where axes are
positioned centrally within the drawing area. It does not check for any form of
clashing with the graph or chart already drawn. xpos and ypos specify a
justification in both the horizontal and vertical directions giving the following
title positions with respect to the current GINOGRAF drawing limits.

Top-Left Top-Centre Top-Right

Centre-Left Centre-Centre Centre-Rigft
Default axes position

Bottom-Left Bottom-Centre Bottom-Right

Drawing limits

Graph Title Positions

The title strings are output using the current GINO character and font settings.

Where ggDrawGraphTitle() does not provide enough positioning control it may
be necessary to use the character and string routines within GINO to generate a
suitable graph title. These are described in the Character Section of the GINO
User Guide.

Coordinate Conversion

GINOGRAF provides two coordinate conversion routines. These convert from
graphical axes coordinates to user space coordinates and vice versa.

ggTransformGraphPoint() converts a point from graphical axes coordinates
(defined by ggSetAxesPos() and ggSetAxesScaling() or by one of the axis
dependent high level routines) to user space coordinates as follows:

ggTransformGraphPoint(xgr,ygr,point)

xgr and ygr are the X and Y parts of the graphical axes coordinates to be
converted. The user space coordinates are returned in point.x and point.y.

166

UTILITIES Line Drawing

ggTransformSpacePoint() converts a point from user space coordinates to
graphical axes coordinates as follows:

ggTransformSpacePoint(xsp,ysp,point)

xsp and ysp are the X and Y parts of the user space coordinates to be converted.
The graphical axes coordinates are returned in point.x and point.y.

Line Drawing

There are two aspects to drawing a line:

 Positioning the pen

« Drawing the line

ggMoveToGraphPoint() positions the pen with respect to the graphical axes
coordinates as follows:

ggMoveToGraphPoint(x,y)

x and y are the coordinates of a point in the coordinate system defined by
ggSetAxesPos() and ggSetAxesScaling() or by one of the axis dependent high
level routines. The point need not be within the area defined by the axes. The pen
is moved to the position (x, y) without drawing a line.

ggAddGraphLine() draws a line with respect to the graphical axes coordinates as
follows:

ggAddGraphLine(x,y)

ggAddGraphLine() draws a line from the current pen position set up by
ggMoveToGraphPoint() to the position (x,y).

Arrow Drawing

There are two aspects to drawing an arrow:

 Positioning the pen

* Drawing the arrow

167

Reference Lines UTILITIES

If graphical axes are being used, the GINOGRAF routine
ggMoveToGraphPoint() can be used to position the pen with respect to the
graphical axes coordinates as follows:

ggMoveToGraphPoint(x,y)

x and y are coordinates of a point in the coordinate system defined by
ggSetAxesPos() and ggSetAxesScaling() or one of the axis-dependent high level
routines. The point need not be within the area defined by the axes.

The pen is moved to the position (x, y) without drawing a line. If pie chart or text
chart routines are being used, the GINO routine gMoveTo2D() can be used to
position the pen in user space coordinates as follows:

gMoveTo2D(xsp,ysp)

xsp and ysp are the user space coordinates of the point. The pen is moved to the
position (xsp, ysp) without drawing a line.

ggDrawArrow() draws the line and the arrowhead as follows:
ggDrawArrow(xhead, yhead, head, mode)

ggDrawArrow() draws a line from the current pen position (set up by
ggMoveToGraphPoint() or gMoveTo2D()) to the position (xhead, yhead) and
draws an arrowhead there. The position can be specified either in graphical
coordinates (with mode = GGRAPH) or in user space coordinates (with mode =
GSPACE).

head specifies the type of arrowhead. If head = GOPEN, the arrowhead is open
and if head = GCLOSED, it is closed. If head = GSOLID, the arrowhead is filled
using solid colour in the current GINO colour.

Reference Lines

A reference or target value may be indicated on a graph using
ggAddReferenceLine() which draws a labelled line horizontally or vertically
across a set of axes.

ggAddReferenceLine(string,xyval,labjus,labclock,hv,xory)

168

UTILITIES Data Fitting

The routine draws a line at a value indicated by xyval, on either the X or Y axis
across the full length of the opposite axis. xyval is measured in graphical axes
coordinates, according to the current axes position and scaling set by
ggSetAxesPos() and ggSetAxesScaling(). If the value selected lies outside of the
axes limits then the reference line is not drawn.

A text string may be output in one of eight positions according to the value of
labjus and labclock around the reference line as shown below:

labjus labclock
REF-1 GFARLEFT NA
REF-2 GLEFT GANTICLOCKWISE
REF-3 GCENTRE GANTICLOCKWISE
REF-4 GRIGHT GANTICLOCKWISE
REF-5| GFARRIGHT NA
REF-6 GRIGHT GCLOCKWISE
REF-7 GCENTRE GCLOCKWISE
REF-8 GLEFT GCLOCKWISE
Positions for xory=GYAXIS Positions for xory=GXAXIS
0
]
REF-5 &
"REF-4[REF6 <o
v
it
&
PN o <
]]]
3 & &|e
&|w ~ o g
i i r
e & & r ol
REF-3 | REF-7 15(15
L &|E
REF-2 REF-3 REF-4
REF1 Rers REF-7 REF6| N0
auloo
frrf
_REF-2 |REF-8 &|&

REF-1
Reference line annotation positions

The orientation of the text string can be parallel with the X or Y axes using hv,
where hv=GXAXIS displays the text parallel with the X axes, and hv=GYAXIS
displays the text parallel with the Y axes as shown above.

Data Fitting

The routine ggReturnLineCoeffs() provides some basic data fitting facilities:

ggReturnLineCoeffs(type,npts,points,ncoef,coeffs,nmax,err)

where npts data points are provided in points.x and points.y and the routine
returns the corresponding coefficients of the fitted line or curve in coeffs. No
graphics output is generated by this routine.

169

Example Program UTILITIES

The required number of coefficients is set in ncoef which should also be the size
of the array coeffs in which they are placed. nmax returns the actual number of
coefficients calculated which may be more or less than ncoef depending on the
algorithm. err is set to GSUCCESS if a successful fit has been made. If a fit is
not possible err is set to GFAIL and no coefficients are returned.

At present only least squares straight line fitting is provided
(type=GLEASTSQUARE) and so only two coefficients are calculated; "a’ and
b’ where the line y=ax + b best fits the supplied data.

Example Program

170

The following example program shows usage of most of the above utility
routines together with its output:

C Code

/* EXAMPLE PROGRAM USING UTILITY ROUTINES */
#include <gino-c.h>
#include <graf-c.h>

int main(void) {
#define NPT 19

int i, papty,nc,er;

float ch, col2], v1, vy2;

GLIMIT lims; GDIM paper;

GPOINT spcpnt;

GPOINT pnts[NPT] = {70.0,454.3,71.0,1025.9,
72.0,163.8,75.0,804.2,76.0,575.0,77.0,1035.0,
78.0,597.0,79.0,509.0,80.0,575.0,81.0,650.0,
82.0,554.0,83.0,662.8,84.0,280.0,85.0,239.6,
86.0,372.3,87.0,410.8,88.0,430.0,89.0,321.2,
90.0,409.8};

for (i=0; i<NPT; i++) {
pnts[i] .x=pnts[i] .x+1900;
}

gOpenGino () ;

XXXXX () 7
gEngDrawingLimits (&paper, &papty) ;
ch=2.0;

gSetCharSize (ch, ch) ;
ggSetGraphCharMode (GGINOMODE) ;

/* SET NEW DRAWING LIMITS */
lims.xmin=0.1*paper.xpap;
lims.xmax=0.9*paper.xpap;
lims.ymin=0.1l*paper.ypap;
lims.ymax=0.9*paper.ypap;
ggSetPlotFrame (&1ims) ;

/* DRAW GRAPH */
ggPlotGraph (NPT, pnts, GLINEAR, GLINEAR, —-GSTRAIGHT, GAXES) ;
ggDrawAxesTitle (“mm”, 0.1*paper.ypap, GYAXIS, GTOP,GRIGHT) ;

UTILITIES

Example Program

/*

/*

/*

/*

/*

F90 Co

i
us
us

FIT DATA AND DRAW TREND LINE */
ggReturnLineCoeffs (GLEASTSQUARE, NPT, pnts, 2, co, &nc, &er) ;
y1l=co[1]*1970.0+co[0];

y2=co[1]1*1990.0+co[0];

gSetBrokenLine (GSHORTDASHED) ;

ggMoveToGraphPoint (1970.0,y1);

ggAddGraphLine (1990.0,y2) ;

gSetBrokenLine (GSOLID) ;

ADD REFERENCE LINE */

ggAddReferenceline (“Annual Average (1970-1984)"”,623.0,
GRIGHT, GANTICLOCKWISE, GXAXIS, GYAXIS) ;

ggAddReferenceline (“Annual Average (1984-1989)”,342.0,
GCENTRE, GANTICLOCKWISE, GXAXIS, GYAXIS) ;

ADD ARROW AND TEXT */

ggMoveToGraphPoint (1987.0,200.0) ;
ggDrawArrow (1984.0,200.0,GSOLID, GGRAPH) ;
ggMoveToGraphPoint (1987.0,200.0) ;
ggDrawArrow (1989.0,200.0, GSOLID, GGRAPH) ;

CONVERT GRAPHICAL COORDINATES INTO SPACE COORDINATES */
ggTransformGraphPoint (1986.5,200.0, &spcpnt) ;

gMoveTo2D (spcpnt.x, spcpnt.y) ;

gSetStrJustify (GCENTRE) ;

gDisplayStr (“Drought Period”);

ADD GRAPH TITLE */

ch=3.0;

gSetCharSize (ch,ch);

ggDrawGraphTitle
("Total Annual Rainfall in Dudu Block*N1970-1990",
GCENTRE, GTOP) ;

gSuspendDevice () ;
de
EXAMPLE PROGRAM USING UTILITY ROUTINES
e gino f90
e graf f90
integer, parameter :: NPT = 19

integer papty, nc, er

real ch, co(2), yl, y2

type (GLIMIT) lims

type (GDIM) paper

type (GPOINT) spcpnt

type (GPOINT), dimension(NPT) :: pnts = &
(/GPOINT (70.0,454.3) ,GPOINT(71.0,1025.9), &

GPOINT (72.0,163.8),GPOINT (75.0,804.2), &

)

GPOINT (76.0,575.0),GPOINT (77.0,1035.0), &
GPOINT (78.0,597.0),GPOINT (79.0,509.0), &
GPOINT (80.0,575.0) ,GPOINT (81.0,650.0), &
GPOINT (82.0,554.0) ,GPOINT (83.0,662.8), &
GPOINT (84.0,280.0),GPOINT (85.0,239.6), &
GPOINT (86.0,372.3),GPOINT (87.0,410.8), &
GPOINT (88.0,430.0),GPOINT (89.0,321.2), &
GPOINT (90.0,409.8) /)

171

UTILITIES

UTILITIES

Example Program

mm

1100

10004

9004

8004

7007

Total Annual Rainfall in Dudu Block
1970-1990

Annual Average (1970-1983)

6004

5004

4004

AN
RN

—

3004

2004

100

4

—
—
Annual Average (1984-1989)

Drought Period

1970

19‘72 1é74 19‘76 19‘78 19‘80 1582 19‘84 19‘86 19‘88 19‘90
Example output using utility routines

173

Chapter

GRAPH LAYOUT

Introduction to Graph Layout

Most of the examples in the previous chapters of this manual show a single data
representation on a single set of axes. It is of course possible with GINOGRAF to
place multiple graphs or charts on one page, place multiple data sets on a single
set of axes and multiple data sets on multiple sets of axes. This chapter does not
introduce any new routines but describes how to obtain complex graphical output
by means of sample coding.

Multiple Graph Layout

There are two ways in which to layout more than one graph onto a single sheet of
paper or screen:

Using Complete Graph or Chart Routines

If the Complete Graph or Chart drawing routines are being used, different graph
drawing areas can be defined using the routine ggSetPlotFrame(). These can be
as proportions of paper/screen dimensions as shown below or using physical
dimensions as appropriate. The Complete Drawing routine automatically
calculates the size and position of the graph or chart to fit within the new area.

C Code

#include <gino-c.h>
#include <graf-c.h>

int main (void) {
GLIMIT lims;
GDIM paper;
int papty;

175

Multiple Graph Layout GRAPH LAYOUT

F90 Code

GRAPH LAYOUT Multiple Graph Layout

A complete example using ggSetPlotFrame() can be seen in the code that
accompanies the chapter entitled Pie Chart Annotation control . Remember, that
it may be necessary to reduce the default GINO character size when laying out
multiple graphs as the current dimensions are used in the layout calculations, if
not for purely aesthetic reasons.

Using Component Routines

If the low-level component routines are being used, the relevant axes or chart
position routines are used with the appropriate positions, lengths and/or radii. For
example, ggSetAxesPos() would be used for normal graphs and charts,
ggSetPolarChartAttribs() for polar charts and ggSetPieChartFrame() for pie
charts. Again proportions of paper/screen dimensions or physical dimensions can
be used as appropriate.

C Code

#include <gino-c.h>
#include <graf-c.h>

int main (void) {
GLIMIT lims;
GDIM paper;
int papty;

gOpenGino () ;
XXXXX () ;
gkEngDrawingLimits (&paper, &papty) ;

/* POSITION AXES IN RIGHT HALF OF PAGE */
ggSetAxesPos (GAXISSTART, 0.1l*paper.xpap,
0.l*paper.ypap,0.4*paper.xpap, GXAXIS) ;
ggSetAxesPos (GAXISSTART, 0.1*paper.xpap,
0.l*paper.ypap, 0.8*paper.ypap, GYAXIS) ;

/* POSITION AXES IN LEFT HALF OF PAGE */

ggSetAxesPos (GAXISSTART, 0.6*paper.xpap,
0.l*paper.ypap,0.4*paper.xpap, GXAXIS) ;
ggSetAxesPos (GAXISSTART, 0.6*paper.xpap,
0.l*paper.ypap,0.8*paper.ypap, GYAXIS) ;

gSuspendDevice () ;

gCloseGino () ;
return 0;

177

Graphs with Multiple Data Sets GRAPH LAYOUT

F90 Code

use gino_ f90
use graf f90

type (GLIMIT) lims
type (GDIM) paper
integer papty

call gOpenGino
call xxxxx
call gEngDrawingLimits (paper, papty)

! POSITION AXES IN RIGHT HALF OF PAGE
call ggSetAxesPos (GAXISSTART,0.l*paper.xpap, &
0.l*paper.ypap, 0.4*paper.xpap, GXAXIS)
call ggSetAxesPos (GAXISSTART,0.l*paper.xpap, &
0.1l*paper.ypap, 0.8*paper.ypap, GYAXIS)

! POSITION AXES IN LEFT HALF OF PAGE
call ggSetAxesPos (GAXISSTART, 0.6*paper.xpap, &
0.l*paper.ypap,0.4*paper.xpap, GXAXIS)
call ggSetAxesPos (GAXISSTART,0.6*paper.xpap, &
0.1l*paper.ypap, 0.8*paper.ypap, GYAXIS)

call gSuspendDevice
call gCloseGino
stop

end

Graphs with Multiple Data Sets

178

Once both axes have been defined and the graphical axes coordinate system has
been set up, there is no limit on the number of data sets that may be drawn in that
system.

Mixing Graph Levels

The availability of the Complete Graph or Chart routines provide a quick and
easy route to obtain a graph or chart with the minimum of effort. As explained in
the relevant chapters, the Complete Drawing routines use the default axes
positions and calculate appropriate axes ranges to include all the supplied data.
Once a Complete Drawing routine has been used a graphical coordinate system
has been set up and any of the component drawing routines may be used on the
same set of axes.

For example, after a graph has been drawn using ggPlotGraph(), error bars may
be added with ggAddErrorBars() and data values annotated with
ggAddGraphValues(), or after a chart outline has been drawn with
ggPlotBarChart(), the same bars may be filled with ggFillBarChart().

GRAPH LAYOUT Graphs with Multiple Axes

However, when mixing a Complete Drawing routine with Component routines,
the following points should be noted:

« If additional data sets are to be added after using a Complete Drawing
routine, ensure that the data set with the largest data range was supplied to
that routine. This is because the Complete Drawing routine calculates the
data limits of the data set it was supplied with and sets up the axes ranges
to match. Therefore any data set added to these axes should lie within these
limits.

« If filling is done after a Complete Drawing routine, Graph and Chart
outlines will be overdrawn by the filling. If the filling extends to the axis,
the line of the axis may also be overdrawn. In such circumstances, the
Graph or Chart boundary or the relevant axis may be redrawn if required.

Mixing Graph Types

If both X and Y axes are defined as having continuous scaling types (linear or
logarithmic), there is no restriction on using any of the graph forms, Step or Area
Chart forms on those axes.

If one of the axes has been defined with discrete scaling as required for
Histograms and Bar Charts, there is also no restriction on adding any other Graph
or Chart form except in its interpretation.

If both axes are defined as having continuous scaling and a Histogram or Bar
Chart is added, an error message is output. The chart is still output, however,
with the major tick marks of the X axis assumed to be the discrete intervals.

If Polar Charts are to be used in conjunction with normal graphs, it should be
realised that the Polar Chart drawing routines will redefine the position and
scaling of graphical axes as set up with the routines ggSetAxesPos() and
ggSetAxesScaling(). If particular settings need to be saved and restored, the axis
enquiry routines ggEnqAxesPos() and ggEnqAxesScaling() can be used.

Graphs with Multiple Axes

As the GINOGRAF user has complete control over the position and scaling of
graphical axes it is possible to layout a graph with multiple axes in many
different forms. These include:

* Multiple axes on graph frame
» Axes with multiple scales

« Conversion scales

179

Graphs with Multiple Axes GRAPH LAYOUT

180

Examples of each of the above are given in the following code examples:

Multiple Axes on Graph Frame

The default axis frame format, using the routine ggAddGrid(), only annotates the
bottom and left axes. If all four sides of the frame require annotation it is
necessary to use the individual axis positioning, scaling and drawing routines
(see page 19). The example below positions the new frame centrally within the
paper/screen area whereas the routine ggAddGrid() uses the default axis
positions.

C Code

/* GRAPH FRAME WITH MULTIPLE AXES */
#include <gino-c.h>
#include <graf-c.h>

int main (void) {
GDIM paper;
int papty;

gOpenGino () ;

XXXXX () ;
gEngDrawingLimits (&paper, &papty) ;
ggSetGraphCharMode (GGINOMODE) ;

/* POSITION AND SCALE LEFT AXIS */
ggSetAxesPos (GAXISSTART, 0.1*paper.xpap,
0.l*paper.ypap, 0.8*paper.ypap, GYAXIS) ;
ggSetAxesScaling (GLINEARTYPE3,10,0.0,10.0, GYAXIS) ;
ggDrawAxes (GINTERMEDIATE, GANTICLOCKWISE,
GANTICLOCKWISE, GYAXIS) ;
/* POSITION AND SCALE LOWER AXIS */
ggSetAxesPos (GAXISSTART, 0.1*paper.xpap,
0.1l*paper.ypap, 0.8*paper.xpap, GXAXIS) ;
ggSetAxesScaling (GLINEARTYPE3,10,0.0,10.0,GXAXIS) ;
ggDrawAxes (GINTERMEDIATE, GCLOCKWISE, GCLOCKWISE,
GXAXIS) ;
/* POSITION AND SCALE RIGHT AXIS */
ggSetAxesPos (GAXISSTART, 0. 9*paper.xpap,
0.1l*paper.ypap, 0.8*paper.ypap, GYAXIS) ;
ggSetAxesScaling (GLINEARTYPE3,10,0.0,10.0, GYAXIS) ;
ggDrawAxes (GINTERMEDIATE, GCLOCKWISE, GCLOCKWISE,
GYAXIS) ;
/* POSITION AND SCALE UPPER AXIS */
ggSetAxesPos (GAXISSTART, 0.1*paper.xpap,
0.9*paper.ypap, 0.8*paper.xpap, GXAXIS) ;
ggSetAxesScaling (GLINEARTYPE3,10,0.0,10.0,GXAXIS) ;
ggDrawAxes (GINTERMEDIATE, GANTICLOCKWISE,
GANTICLOCKWISE, GXAXIS) ;

/* DRAW INTERNAL GRID WITH NO ANNOTATION */
ggAddGrid (GCARDINAL, GGRIDLINES, GNOANNOTATION,
GNOANNOTATION) ;

gSuspendDevice () ;
gCloseGino () ;
return 0;

GRAPH LAYOUT Graphs with Multiple Axes

F90 Code

181

Graphs with Multiple Axes GRAPH LAYOUT

1OO 1 2 3 4 5 6 7 8 9 1010
9 9
8 8
7 7
6 6
5 5
4 4
3 3
2 2
1 1
0 0
0 1 2 3 4 5 6 7 8 9 10

Graph Frame with Multiple Axes

Axes with Multiple Scales

On many occasions it is necessary to display multiple data sets which have one
common axis but require different ranges or scales on the other axis. As it is
possible in GINOGRAF to define axes scales separately it is possible to define
the X axis once and subsequently define the Y axis several times for the different
data sets. The point to note is that any data set will be displayed with reference to
the last call to ggSetAxesPos()/ggSetAxesScaling(), therefore a program which
requires multiple scales must set the appropriate axis scaling before displaying
the relevant data set.

The different scales for the Y axis may be displayed in one of three ways:

At different heights
+ Adjacent axes
* On the same physical axis

182

GRAPH LAYOUT Graphs with Multiple Axes

In the first and second cases, both the position (ggSetAxesPos()) and scale
(ggSetAxesScaling()) is defined for each data set. In the third case two different
scales can be displayed on different sides of the same axis (using ggDrawAxes()),
therefore the position is defined once but the scale is defined for each data set.
Obviously, where the different data sets occupy the same drawing area, as with
the second and third cases, it is more important to label the data sets
appropriately.

Note that an axis may be positioned anywhere on the drawing area as long as it is
in line with the other axis without affecting the graphical axes coordinate system
it defines. In other words, a Y axis may be placed at any X coordinate on the
screen or paper, as long as the base is at the correct Y position in relation to the X
axis position.

The example below shows the three cases of multiple axes definitions.

C Code

/* VARIOUS LAYOUTS OF GRAPHS WITH MULTIPLE
SCALES */

#include <gino-c.h>

#include <graf-c.h>

#define NPTS 10

void timeax (GDIM paper, float txp,float yp,int n);

void dtemp (GDIM paper, float xp,float yp,float *time,
float *temp,int n,int tick,int tickside);

void dpres (GDIM paper, float xp, float yp,float *time,
float *pres,int n,int tick,int tickside);

int main (void) {
float time[NPTS],
temp [NPTS]={0.0,5.0,11.0,15.0,25.0,28.0,
31.0,32.0,33.0,33.0},
pres [NPTS]={82.0,80.0,78.0,75.0,71.0,66.0,
60.0,55.0,54.0,51.0};
GDIM paper;
int i, papty:

for (i=0; i<NPTS; i++) {
time[i]=(float) (i+1);
}

void timeax (GDIM paper, float xp,float yp,int n) {
/* POSITION, SCALE AND DRAW TIME AXIS */

ggSetAxesPos (GAXISSTART, xp, yp, 0.4*paper. xpap,
GXAXIS) ;
ggSetAxesScaling (GLINEARTYPE3,n-1,1.0, (float)n,
GXAXIS) ;
ggDrawAxes (GCARDINAL, GCLOCKWISE, GCLOCKWISE, GXAXIS) ;
ggDrawAxesTitle (“Time”, yp-5.0,GXAXIS, GTOP, GRIGHT) ;
}

183

Graphs with Multiple Axes

GRAPH LAYOUT

gOpenGino () ;

XXXXX () ;
gEngDrawingLimits (&paper, &papty) ;
gSetCharSize (2.0,2.0);
ggRestoreAxesSettings () ;
ggSetGraphCharMode (GGINOMODE) ;

/* DIVIDE AREA INTO THREE */
gMoveTo2D (0.5*paper.xpap,0.0) ;
gDrawLineBy2D (0.0, paper.ypap) ;
gMoveTo2D (0.5*paper.xpap, 0.5*paper.ypap) ;
gDrawLineBy2D (0.5*paper.xpap,0.0) ;

/* 1) DATA SETS PLACED AT DIFFERENT HEIGHTS */

timeax (paper,0.05*paper.xpap, 0.1l*paper.ypap,NPTS) ;

dtemp (paper, 0.05*paper.xpap, 0.2*paper.ypap, time, temp,
NPTS, GCARDINAL, GANTICLOCKWISE) ;

dpres (paper, 0.05*paper.xpap, 0.6*paper.ypap, time,pres,
NPTS, GCARDINAL, GANTICLOCKWISE) ;

ggDrawAxesTitle (“separate axes”,0.95*paper.ypap,
GXAXIS, GTOP, GCENTRE) ;

/* 2) SINGLE AXIS WITH MULTIPLE SCALES */

timeax (paper,0.55*paper.xpap, 0. 6*paper.ypap,NPTS) ;

dtemp (paper, 0.55*paper.xpap, 0.6*paper.ypap, time, temp,
NPTS, GCARDINAL, GANTICLOCKWISE) ;

dpres (paper, 0.55*paper.xpap, 0.6*paper.ypap, time,pres,
NPTS, GCARDINAL, GCLOCKWISE) ;

ggDrawAxesTitle (“composite axis”,0.95*paper.ypap,
GXAXIS, GTOP, GCENTRE) ;

/* 3) ADJACENT AXES */

timeax (paper,0.55*paper.xpap, 0.1l*paper.ypap,NPTS) ;

dtemp (paper, 0.95*paper.xpap, 0.1*paper.ypap, time, temp,
NPTS, GCARDINAL, GCLOCKWISE) ;

dpres (paper, 0.55*paper.xpap, 0.1*paper.ypap, time,pres,
NPTS, GCARDINAL, GANTICLOCKWISE) ;

ggDrawAxesTitle (Yadjacent axes”,0.45*paper.ypap,
GXAXIS,GTOP,GCENTRE) ;

gSuspendDevice () ;

gCloseGino () ;
return 0;

184

GRAPH LAYOUT Graphs with Multiple Axes

void dtemp (GDIM paper, float xp, float yp,float *time,
float *temp,int n,int tick,int tickside) {

/* POSITION, SCALE AND DRAW TEMPERATURE AXIS */

/* DRAW AND LABEL DATA SET */

int i, side;
float xpa;
GPOINT pline[NPTS];

for (i=0; i<NPTS; i++) {
pline([i].x=time[i];
pline[i].y=temp[i];
}
ggSetAxesPos (GAXISSTART, xp, VP,
0.3*paper.ypap, GYAXIS) ;
ggSetAxesScaling (GLINEARTYPE3,8,0.0,40.0, GYAXIS) ;
ggDrawAxes (tick, tickside, tickside, GYAXIS) ;
if (tickside==GANTICLOCKWISE) {
xpa=xp-7.0;
side=GBROTTOM;
} else {
xpa=xp+7.0;
side=GTOP;
}
ggDrawAxesTitle (“Temp”, xpa, GYAXIS, side, GTOP) ;
ggAddGraphPolyline (n,pline) ;
}
void dpres (GDIM paper, float xp, float yp,float *time,
float *pres,int n,int tick,int tickside) {
/* POSITION, SCALE AND DRAW PRESSURE AXIS */
/* DRAW AND LABEL DATA SET */
int i, side;
float xpa;
GPOINT pline[NPTS];

for (i=0; i<NPTS; i++) {
pline[i] .x=time[i];
pline[i] .y=pres[i];
}
ggSetAxesPos (GAXISSTART, xp, yp,
0.3*paper.ypap, GYAXIS) ;
ggSetAxesScaling (GLINEARTYPE3,10,50.0,100.0,GYAXIS) ;
ggDrawAxes (tick, tickside, tickside, GYAXIS) ;
if (tickside==GANTICLOCKWISE) {
xpa=xp-7.0;
s1de=GBOTTOM;
} else {
xpa=xp+7.0;
si1de=GTOP;
}
ggDrawAxesTitle (“Pressure”, xpa, GYAXIS, side,GTOP) ;
ggAddGraphPolyline (n,pline) ;

185

GRAPH LAYOUT

F90 Code

GRAPH LAYOUT Graphs with Multiple Axes

Graphs with Multiple Axes GRAPH LAYOUT

Separate Ares Composite Axis
100 40100
e e
395 £3519 3
g9 %0 &
& &
85 e
80 2
75 20175
70 15470
65 65
60 60
55 5155
50 0
2 3 4 5 6 7 8 9 10
Time
40
s
53
» Adjacent Ares
25 10 40
29 55
20 £ 90
15 * g5 30
0 0 25
: : -
15
0
65
10
60
55 5
50
12 3 a4 5 6 7 8 9_10 2 3 4 5 6 7 8 9 _10
Time Time

Various layouts of multiple scale axis

188

GRAPH LAYOUT Graphs with Multiple Axes

Conversion Scales

OC OF
100

Celsius/Fahrenheit
Conversion Scale

A special case of different scales on the same physical axis is where precise and
accurate association of the ranges and appropriate annotation is required as in the
case of conversion scales. Special consideration is required in this situation
because ggSetAxesScaling() does not provide a suitable scaling type which will
‘nicely’ annotate an axis given a precise range. The example below shows the
steps required to display a suitably annotated temperature conversion scale on the
same axis. In this example it is necessary to define a different length for the
second axis in order to obtain the required annotation.

189

Graphs with Multiple Axes GRAPH LAYOUT

C Code

/* FAHRENHEIT/CENTIGRADE CONVERSION SCALE */
#include <gino-c.h>
#include <graf-c.h>

int main (void) {
GDIM paper;
int papty;
float axlen, zerof, topf;
GPOINT pnt;

gOpenGino () ;

xXxxX () ;
gkEngDrawingLimits (&paper, &papty) ;
ggSetGraphCharMode (GGINOMODE) ;

/* POSITION CENTIGRADE AXES */
ggSetAxesPos (GDATAORIGIN, 0.5*paper.xpap,
0.3*paper.ypap, 0.8*paper.ypap, GYAXIS) ;

/* SET UP CENTIGRADE SCALE FOR Y AXIS AND ANNOTATE ON

ANTI-CLOCKWISE SIDE */

ggSetAxesScaling (GLINEARTYPE3,14,-40.0,100.0,
GYAXIS) ;

ggDrawAxes (GINTERMEDIATE, GANTICLOCKWISE,
GANTICLOCKWISE, GYAXIS) ;

gSetStrJustify (GRIGHT) ;

gMoveTo2D (0.5*paper.xpap, 0.9*paper.ypap) ;

gDisplayStr (“*Eo*AC *.”);

/* CALCULATE ORIGIN OF FAHRENHEIT AXIS */
zerof=-32.0*5.0/9.0;
ggTransformGraphPoint (0.0, zerof, &pnt) ;

/* CALCULATE LENGTH OF FAHRENHEIT AXES

(FROM -40 TO 200) */
topf=(200.0-32.0)*5.0/9.0;
axlen=0.8*paper.ypap* (topf+40.0)/140.0;

/* POSITION FAHRENHEIT AXES WITH NEW CALCULATED LENGTH */
ggSetAxesPos (GDATAORIGIN, 0.5*paper.xpap,
pnt.y,axlen, GYAXIS) ;

/* POSITION FAHRENHEIT AXES WITH NEW CALCULATED LENGTH */
ggSetAxesPos (GDATAORIGIN, 0.5*paper.xpap,
pnt.y,axlen, GYAXIS) ;

/* SET UP SECOND SCALE AND ANNOTATE ON CLOCKWISE SIDE */
ggSetAxesScaling (GLINEARTYPE3,24,-40.0,200.0,
GYAXIS) ;
ggDrawAxes (GINTERMEDIATE, GCLOCKWISE, GCLOCKWISE,
GYAXIS) ;
gSetStrJustify (GLEFT) ;
gMoveTo2D (0.5*paper.xpap, 0.9*paper.ypap) ;
gDisplayStr (Y *Eo*AF*.”);

gSuspendDevice () ;

gCloseGino () ;
return O0;

190

GRAPH LAYOUT Graphs with Multiple Axes

F90 Code

Chapter

ROUTINE SPECIFICATIONS

An Introduction to Routine Specifications

This chapter of the manual includes a detailed description of all the available
routines in GINOGRAF listed alphabetically.

Where return variables can be used for arguments that are changeable within a
routine, these are indicated by being underlined thus.

Each routine specification provides the following information:

« An example call showing the specification of the routine
A definition of each of the arguments
A description of the task the routine performs

A reference to the relevant pages of this manual (and to any other
appropriate documentation) which discuss the use of the routine

193

ggAddAkimaCurve ROUTINE SPECIFICATIONS

ggAddAkimaCurve

Syntax
‘ C/C++: void ggAddAkimaCurve(int npts, GPOINT *points);
F90: subroutine ggAddAkimaCurve(npts, points)

integer, intent(in) :: npts
type(GPOINT), intent(in) :: points(*)

Arguments npts
The number of points to be plotted

points
Array of points through which a curve is to be drawn on the graph

Description The routine ggAddAkimaCurve() draws a smooth Akima curve through the points defined in
array points, with respect to the current axes as set up by the last axis definition calls. The
points are not marked on the graph. If axes have not been defined, the points will be read and
plotted according to the default values for axis positioning and scaling. This could result in
points being outside the available drawing area or current window.

The end conditions of the curve may be set using the routines ggSetCurveStartConds() and/or
ggSetCurveEndConds().

See Also Page 54
ggSetCurveStartConds
ggSetCurveEndConds

ggAddAreaChartOutline

Syntax
‘ C/C++: void ggAddAreaChartOutline(int nareas, GAREACHART *areas,int xory);
F90: subroutine ggAddAreaChartOutline(nareas, areas, xory)

integer, intent(in) :: nareas, xory
type(GAREACHART), intent(in) :: areas(*)

Arguments nareas
The number of areas to be plotted

areas
Array of structures giving data for the Area Chart

xory

Specified axis on which the data widths are represented

= GXAXIS Data on X axis, heights on Y axis
=GYAXIS Data on Y axis, heights on X axis

194

ROUTINE SPECIFICATIONS ggAddAreaChartValues

Description

See Also

The routine ggAddAreaChartOutline() draws rectangles defined by the data held in the array of
structures areas. The four components represent the start and finish widths and the lower and
upper heights with respect to either the current axes as set up by ggSetAxesPos() and
ggSetAxesScaling(), or the default axes used by one of the high level routines. The widths of
the areas, held in areas.s and areas.f, are shown on the X-axis if xory=GXAXIS, and on the
Y-axis if xory=GYAXIS.

Page 108
ggPlotAreaChart
ggFillAreaChart
ggAddAreaChartValues

ggAddAreaChartValues

Syntax
‘ C/C++: void ggAddAreaChartValues(int nareas, GAREACHART *areas, int sfl, int xory); ‘
F90: subroutine ggAddAreaChartValues(nareas, areas, sfl, xory)
integer, intent(in) :: nareas, sfl, xory
type(GAREACHART), intent(in) :: areas(*)
Arguments nareas
The number of areas to be annotated
areas
Array of structures giving data for the Area Chart
sfl
Flag determining which aspect of each area is output
= GSTART Value of areas.s is output
= GFINISH Value of areas.f is output
= GLOWER Value of areas.hl is output
= GUPPER Value of areas.h2 is output
=GWIDTH Area width is output (ie, areas.f - areas.s)
= GHEIGHT Area height is output (ie, areas.h2 - areas.hl)
= GAREA Area of rectangle is output
(ie, (areas.f-areas.s)*(areas.h2-areas.hl))
xory
Specified axis on which the data widths are represented
= GXAXIS X axis
= GYAXIS Y axis
Description The routine ggAddAreaChartValues() displays the area coordinates, widths, heights, or areas,

with respect to the current axes as set up by the last axis definition calls or through a previous
call to ggPlotAreaChart(). xory determines which direction the areas are displayed, thus if
xory=GXAXIS the areas.s and areas.f values are displayed on the X axis and areas.h1 and
areas.h2 values are displayed on the Y axis. If ggAddAreaChartValues() follows a call to
ggPlotAreaChart(), xory should be set to GXAXIS.

195

ggAddBarChartOutline ROUTINE SPECIFICATIONS

See Also

The most recent call to ggSetValueAttribs() determines the position of the annotation about
each area as well as the angle, justification and offset of the value string. The default is to
position the required value at the centre of each area. Start, finish, width and area values are
output according to the format of the xory axis, whereas lower, upper and area height values
are output according to the format of the other axis. The format is set by the most recent call to
ggSetAxesAnnotation(). Prefix and suffix strings defined by the most recent call to
ggSetValueTags() are appended to the numerical output.

If sfl is out or range, a warning message is output and the area of the rectangles are displayed.

Page 109
ggSetAxesAnnotation
ggPlotAreaChart
ggFillAreaChart
ggAddAreaChartOutline
ggSetValueAttribs
ggSetValueTags

ggAddBarChartOutline

Syntax
‘ C/C++: void ggAddBarChartOutline(int nbars, GBARCHART *bars, float frac);
F90: subroutine ggAddBarChartOutline(nbars, bars, frac)

type(GBARCHART), intent(in) :: bars(*)
integer, intent(in) :: nbars
real, intent(in) :: frac

Arguments nbars
The number of bars to be plotted
bars
Array of structures giving data for the Bar Chart outline
frac
Value between 0.0 and 1.0 inclusive which specifies the fraction of an interval to be occupied
by each bar. If frac = 1.0, only the necessary lines are drawn, ie, lines common to two bars are
omitted. If frac = 0.0, two coincident lines are drawn centred on the tick mark

Description The routine ggAddBarChartOutline() draws a Bar Chart of nbars bars defined in array of

196

structures bars, where bars.s and bars.f represent the start and finish values with respect to the
current axes as set up by the last axis definition calls. The bars on the Bar Chart have the width
((length of discrete axis)/nbars) * frac.

The bars are centred on the tick marks on the discrete axis. If a discrete axis has not been
defined using ggSetAxesScaling() (ie, scale = GDISCRETE), or both axes have been defined
as discrete axes, the discrete axis is assumed to be the X axis. Linear scaling is assumed as the
default for the Y axis.

ROUTINE SPECIFICATIONS ggAddBarChartValues

See Also Page 96
ggSetAxesScaling
ggPlotBarChart
ggFillBarChart
ggAddBarChartValues

ggAddBarChartValues

Syntax
‘ C/C++: void ggAddBarChartValues(int nbars, GBARCHART *bars, float frac, int sfl);
F90: subroutine ggAddBarChartValues(nbars, bars, frac, sfl)

type(GBARCHART), intent(in) :: bars(*)
integer, intent(in) :: nbars, sfl
real, intent(in) :: frac

Arguments nbars
The number of bars

bars
Array of structures giving data for the Bar Chart values

frac

Value between 0.0 and 1.0 inclusive which specifies the fraction of the interval occupied by
each column for compatibility with Bar Chart outline

sfl
Flag determining which value is to be output

= GSTART Start value
= GFINISH Finish value
= GLENGTH Length of bar

Description The routine ggAddBarChartValues() annotates a Bar Chart data set with start, finish or length
values as defined in array of structures bars, with respect to the current axes. The routine
requires one of the axes to be defined as a discrete axis. This can be done by using
ggSetAxesScaling() (with scale=GDISCRETE) or through a previous call to ggPlotBarChart().
If no discrete axis has been defined or both axes have been defined as discrete axes, the
discrete axis is assumed to be the X axis. Linear scaling is assumed as the default for the Y
axis.

The most recent call to ggSetValueAttribs() determines the position of the annotation about
each bar as well as the angle, justification and offset of the value string. The default is to
position the required value at the centre of each bar. The format of the numerical output is
determined by the settings for the current non-discrete axis annotation set by the most recent
call to ggSetAxesAnnotation(). Prefix and suffix strings defined by the most recent call to
ggSetValueTags() are appended to the numerical output.

If sfl is out of range, a warning message is output and the length of the bar is displayed.

197

ggAddErrorBars

ROUTINE SPECIFICATIONS

See Also

Page 97
ggSetAxesAnnotation
ggSetAxesScaling
ggPlotBarChart
ggSetValueAttribs
ggSetValueTags

ggAddErrorBars

Syntax
C/C++: void ggAddErrorBars(int npts, GPOINT *points, GERROR *errors, int type, int line,
int xory);
F90: subroutine ggAddErrorBars(npts, points, errors, type, line, xory)
integer, intent(in) :: npts, type, line, xory
type(GPOINT), intent(in) :: points(*)
type(GERROR), intent(in) :: errors(*)
Arguments npts

198

The number of error bars to be plotted

points
Array of data points to be defined on the graph

errors
Array of relative error values below and above each corresponding value on the graph

ppe

Error bar symbol end type

= GNONE No end

=GBAR Horizontal bar

= GARROWSIN Arrows pointing inwards

= GTRIANGLESIN Triangles pointing inwards

= GSOLIDTRIANGLESIN Filled triangles pointing inwards
= GARROWSOUT Arrows pointing outwards

= GTRIANGLESOUT Triangles pointing outwards

= GSOLIDTRIANGLESOUT Filled triangles pointing outwards
line

Flag determining whether or not a line is drawn between error limits

= GNONE No line

= GDRAWLINE Line is drawn

xory

Specified axis

= GXAXIS Error bars shown perpendicular to X axis
= GYAXIS Error bars shown perpendicular to Y axis

ROUTINE SPECIFICATIONS ggAddGraphCurve

Description

See Also

The routine ggAddErrorBars() plots an error bar at each of the points on a graph within the
defined axes. The bars are displayed as absolute distances above and below the values stored in
the array points. The relative distances above the values are stored in error.upper, the relative
distances below are stored in error.lower. The ends of the error bars may be displayed in one
of eight different forms depending on the value of type. The symbol size being subject to the
current GINO character width.

The bar ends may be joined by a line depending on the value of line.

If axes have not been defined, the points will be read and plotted according to the default
values for axis positioning and scaling.

Page 57

ggAddGraphCurve

Syntax
‘ C/C++: void ggAddGraphCurve(int npts, GPOINT *points);
F90: subroutine ggAddGraphCurve(npts, points)

integer, intent(in) :: npts
type(GPOINT), intent(in) :: points(*)

Arguments npts
The number of points to be plotted
points
Array of points through which a curve is to be drawn on the graph

Description The routine ggAddGraphCurve() draws a smooth curve through the points defined in array
points, with respect to the current axes as set up by the last axis definition calls. The points are
not marked on the graph. If axes have not been defined, the points will be read and plotted
according to the default values for axis positioning and scaling. This could result in points
being outside the available drawing area or current window.
The end conditions of the curve may be set using the routines ggSetCurveStartConds() and/or
ggSetCurveEndConds().

See Also Page 54
ggSetCurveStartConds
ggSetCurveEndConds

ggAddGraphLine

Syntax
‘ C/C++: void ggAddGraphLine(float x, float y);
F90: subroutines ggAddGraphLine(x, y)

real, intent(in) :: x, y

199

ggAddGraphMarkers ROUTINE SPECIFICATIONS

Arguments

Description

See Also

X
Value giving the X part of the graphical axes coordinate to which the line will be drawn

Value giving the Y part of the graphical axes coordinate to which the line will be drawn

The routine ggAddGraphLine() draws a line from the current pen position to the point (X, y),
either inside or outside the graph limits, in the graphical axes system set up by the last axis
definition calls or by one of the axis control routines.

Page 167
ggMoveToGraphPoint

ggAddGraphMarkers

Syntax
‘ C/C++: void ggAddGraphMarkers(int npts, GPOINT *points, int sym, int nspace);
F90: subroutine ggAddGraphMarkers(npts, points, sym, nspace)
integer, intent(in) :: npts, sym, nspace
type(GPOINT), intent(in) :: points(*)
Arguments npts

200

The number of points to be plotted

points
Array of dimension npts, giving the X and Y axis values of the points to be defined on the
graph

sym
Symbol number to be drawn
= GSPOT

=GUP

= GDOWN

= GPLUS

= GCROSS

=GBOX

= GDIAMOND

= GCIRCLE

= GSTAR }

=9t023 Optional hardware symbol

>23 Character from GINO font table

Standard GINO symbols

[N N)

nspace
Integer, positive or zero, giving the number of points to be left unmarked between each point at
which a symbol is drawn

ROUTINE SPECIFICATIONS ggAddGraphPolyline

Description

See Also

The routine ggAddGraphMarkers() plots a symbol at some or all of the points on a graph
within the defined axes. ggAddGraphMarkers() can be used to superimpose symbols on
straight line or smooth curve graphs.

The npts points defined in array points are considered, and the symbol sym is drawn at the
first point. Each successive symbol is then drawn after an interval of nspace points, eg: if
nspace = 3, symbols are drawn at points 1,5,9,13 etc. If nspace is negative, a default of 0 is
assumed.

sym is the symbol number that will be drawn at each requested point. The standard nine
symbols (0-8) that are available are shown in Appendix A. However, other symbols are
available through access to hardware symbols or the GINO font file. Details of this is found in
the GINO Manual, Appendix C and the routine gDrawMarker() in the Subroutine Specification
chapter. The symbol size is subject to the current GINO character size. If sym is negative a
default of GUP is assumed.

Graphs drawn by the routine ggAddGraphMarkers() can be affected by the current missing
value mode as set by the routine ggDefineMissingValues().

Page 56
ggDefineMissing Values

ggAddGraphPolyline

Syntax

| ClC++:

void ggAddGraphPolyline(int npts, GPOINT *points);

F90:

subroutine ggAddGraphPolyline(npts, points)
integer, intent(in) :: npts
type(GPOINT), intent(in) :: points

Arguments

Description

See Also

npts
The number of points to be plotted

points
Array of dimension npts, giving the X and Y axis values of the points to be defined on the
graph

The routine ggAddGraphPolyline() draws straight line segments between the points defined in
array points, with respect to the current axes as set up by the last axis definition calls. The
points are not marked on the graph. If axes have not been defined, the points will be read and
plotted according to the default values for axis positioning and scaling. This could result in
points being outside the available drawing area or current window.

Graphs drawn by the routine ggAddGraphPolyline() can be affected by the current missing
value mode as set by the routine ggDefineMissing Values().

Page 54
ggDefineMissing Values

201

ggAddGraphSpline ROUTINE SPECIFICATIONS

ggAddGraphSpline

Syntax
‘ C/C++: void ggAddGraphSpline(int npts, GPOINT *points);
F90: subroutine ggAddGraphSpline(npts, points)

integer, intent(in) :: npts
type(GPOINT), intent(in) :: points(*)

Arguments npts
The number of points to be plotted
points
Array of dimension npts, giving the X and Y axis values of the points to be defined on the
graph

Description The routine ggAddGraphSpline() fits a cubic spline through the points defined in array points,
with respect to the current axes as set up by the last axis definition calls. The points are not
marked on the graph. If axes have not been defined, the points will be read and plotted
according to the default values for axis positioning and scaling. This could result in points
being outside the available drawing area or current window.
The end conditions may be set by using the routines ggSetCurveStartConds() and/or
ggSetCurveEndConds().

See Also Page 54
ggSetCurveStartConds
ggSetCurveEndConds

ggAddGraphValues

Syntax
‘ C/C++: void ggAddGraphValues(int npts, GPOINT *points, int xory);
F90: subroutine ggAddGraphValues(npts, points, xory)
integer, intent(in) :: npts, xory
type(GPOINT), intent(in) :: points(*)
Arguments npts

202

The number of points to be annotated

points
Array of dimension npts, giving the X and Y axis values of the points defined on the graph

xory
Flag determining whether X or Y values are output

ROUTINE SPECIFICATIONS 9gAddGrid

Description

See Also

= GXAXIS X values are output
= GYAXIS Y values are output

The routine ggAddGraphValues() displays the values held in either the points.x or points.y
components, depending on the value of xory.

The most recent call to ggSetValueAttribs() determines the angle, justification, offset, and the
position of the annotation about the data points, the default being centrally over the point being
annotated. ggSetValueAttribs() offers 16 different positions about each data point for the
output.

The format of the numerical output is determined by the settings for the appropriate axis
annotation set by the most recent call to ggSetAxesAnnotation(). Prefix and suffix strings
defined by the most recent call to ggSetValueTags() are output either side of the numerical
output.

Graphs drawn by the routine ggAddGraphValues() can be affected by the current missing value
mode as set by the routine ggDefineMissingValues().

Page 64
ggDefineMissing Values
ggSetAxesAnnotation
ggSetValueAttribs
ggSetValueTags

ggAddGrid

Syntax
‘ C/C++: void ggAddGrid(int style1, int style2, int anx, int any);
F90: subroutine ggAddGrid(style1, style2, anx, any)
integer, intent(in) :: style1, style2, anx, any
Arguments stylel
The style of frame to be drawn
= GNONE Draws a plain frame
= GCARDINAL Draws a frame with markings at only the cardinal
points
= GINTERMEDIATE Draws a frame with markings at the cardinal and
intermediate points
style2
The style of grid (and frame) to be drawn
= GNONE Draws a plain frame
= GTICKS Draws a frame with only tick marks
= GTICKSANDCROSSES Draws a frame with tick marks and grid markers
= GGRIDLINES Draws a grid made up of lines
= GGRIDLINES2 Draws a grid made up of lines but forces any
intermediate lines to be drawn using the default line
thickness

203

ggAddGrid

ROUTINE SPECIFICATIONS

Description

See Also

204

anx
Flag determining whether annotation and/or grid lines are drawn with the X axis

= GNOGRID Suppresses X axis and grid lines perpendicular to the X
axis

= GNOANNOTATION Suppresses annotation on the X axis

= GANNOTATION Annotation values written outside the frame on the X
axis

any

Flag determining whether annotation and/or grid lines are drawn with the Y axis

= GNOGRID Suppresses Y axis and grid lines perpendicular to the Y
axis

= GNOANNOTATION Suppresses annotation on the Y axis

= GANNOTATION Annotation values written outside the frame on the Y
axis

The routine ggAddGrid() draws a frame and/or a grid for a Graph, Histogram or Bar Chart.
Grid positioning and scaling are controlled by ggSetAxesPos() and ggSetAxesScaling(). No
intermediate tick marks are drawn on a discrete axis, irrespective of the value of stylel &
style2. If either axis is discrete, tick marks on both axes are drawn outside the frame. X and/or
Y zero coordinate lines are drawn if they occur within the data range and linear scaling is being
used.

If either of anx or any is set to GNOANNOTATION, the annotation of the respective axis is
suppressed. If either anx or any is set to GNOGRID, the annotation, major (and minor) tick
marks are suppressed as well as the components of the grid lines perpendicular to that axis. The
grid intersection symbols are unaffected.

The annotation is displayed with the attributes set with the most recent call to
ggSetAxesAnnotation() and ggSetAxesAttribs(). The grid intersection marker for style2 set to
GTICKSANDCROSSES is set by the routine ggSetGridMarker(), the default being a small
Cross.

The grid is drawn using the current GINO line thickness and style except when
style1=GINTERMEDIATE and style2=GGRIDLINES2 where the intermediate lines are drawn
using the default line thickness.

Page 25
ggSetAxesPos
ggSetAxesScaling
ggSetAxesAnnotation
ggSetAxesAttribs
ggSetGridMarker

ROUTINE SPECIFICATIONS ggAddHistogramOutline

ggAddHistogramOutline

Syntax
‘ C/C++: void ggAddHistogramOutline(int ncols, float *yarray, float frac);
F90: subroutine ggAddHistogramOutline(ncols, yarray, frac)

integer, intent(in) :: ncols
real, intent(in) :: yarray(*), frac

Arguments ncols
The number of columns to be plotted
yarray
Array, of dimension ncols, giving the heights of the columns to be plotted on the Histogram
frac
Fraction of an interval to be occupied by each column

Description The routine ggAddHistogramOutline() draws a Histogram of ncols columns, with heights
defined in array yarray, with respect to the current axes, as set up by the last axis definition
calls. The columns in the Histogram have the width:
((length of X axis)/ncols) * frac
If frac = 1.0, only the necessary verticals are drawn, ie, lines common to two columns are
omitted. If frac = 0.0, two coincident vertical lines are drawn centred on the tick mark. If frac
< 0.0, the default value is 0.0 and if frac > 1.0, the default value is 1.0.
The columns are centred on the tick marks on the discrete axis. If a discrete axis has not been
defined using ggSetAxesScaling() (ie, scale = GDISCRETE), or both axes have been defined
as discrete axes, the discrete axis is assumed to be the X axis. Linear scaling is assumed as the
default for the Y axis.
If a height defined in array yarray is negative, the column is drawn on the negative side of the
discrete axis.

See Also Page 89
ggPlotHistogram
ggFillHistogram
ggAddHistogramValues

205

ggAddHistogramValues ROUTINE SPECIFICATIONS

ggAddHistogramValues

Syntax
‘ C/C++: void ggAddHistogramValues(int ncols, float *yarray, float frac);
F90: subroutine ggAddHistogramValues(ncols, yarray, frac)

integer, intent(in) :: ncols
real, intent(in) :: yarray(*), frac

Arguments ncols
The number of columns in the Histogram
yarray
Array, of dimension ncols, giving the heights of all the columns in the Histogram
frac
Fraction of an interval occupied by each column

Description The routine ggAddHistogramValues() annotates a Histogram with height values defined in
array yarray, with respect to the current axes as set up by the last axis definition calls.
ggAddHistogramValues() requires one of the axes to be defined as a discrete axis. This can be
done by using ggSetAxesScaling() (with scale=GDISCRETE) or through a previous call to
ggPlotHistogram(). If no discrete axis has been defined or both axes have been defined as
discrete axes, the discrete axis is assumed to be the X axis. Linear scaling is assumed as the
default for the Y axis.
The most recent call to ggSetValueAttribs() determines the position of the annotation about
each column as well as the angle, justification and offset of the value string. The default is to
position the required value at the centre of each column. Where Histogram data values are
negative, the position of the control point on the non-discrete axis is placed in the matching
position corresponding to the column height but below the zero axis.
The format of the numerical output is determined by the settings for the current non-discrete
axis annotation set by the most recent call to ggSetAxesAnnotation(). Prefix and suffix strings
defined by the most recent call to ggSetValueTags() are appended to the numerical output.

See Also Page 91
ggSetAxesAnnotation

206

ggSetAxesScaling
ggPlotHistogram
ggSetValueAttribs
ggSetValueTags

ROUTINE SPECIFICATIONS ggAddPieChartSegment

ggAddPieChartSegment

Syntax
C/C++: void ggAddPieChartSegment(float angfro, float angto, float value,char string[], int
fill, int line);
F90: subroutine ggAddPieChartSegment(angfro, angto, value, string, fill, line)
real, intent(in) :: angfro, angto, value
character*(*), intent(in) :: string
integer, intent(in) :: fill, line
Arguments angfro

Number giving the angle (in degrees), measured anticlockwise from the three o’clock position,
which defines the start of the segment

angto
Number giving the angle (in degrees), measured anticlockwise from the three o’clock position,
which defines the end of the segment

value

Data value associated with segment. The value need not be a percentage as
ggAddPieChartSegment() automatically calculates the percentage of the whole pie chart that
the segment occupies

string
Text string containing segment label

fill

Fill style to be used to fill the segment

<-1 Specifies no fill and no boundary
= GHOLLOW Specifies boundary only

= GSOLID Specifies a solid fill

= GFINEHORIZONTAL

= GFINEVERTICAL

= GFINELEFTDIAGONAL

= GFINERIGHTDIAGONAL
= GFINEHORIZONTALGRID
= GFINEDIAGONALGRID

= GFINEHORIZONTALMESH } Specifies the hatch
= GFINEDIAGONALMESH } style index

= GCOARSEHORIZONTAL }

= GCOARSEVERTICAL

= GCOARSELEFTDIAGONAL

= GCOARSERIGHTDIAGONAL
= GCOARSEHORIZONTALGRID
= GCOARSEDIAGONALGRID

= GCOARSEHORIZONTALMESH
= GCOARSEDIAGONALMESH

[N N N

[N N N)

207

ggAddPieChartSegment ROUTINE SPECIFICATIONS

Description

See Also

208

> 256 Specifies a solid fill for software fill, or the fill style
index for hardware fill

line
Integer determining the line style to be used to fill the segment. The value of line is irrelevant
where fill has a value less than -1

= GCURRENT Specifies the current line style
=1t0 256 Specifies the line style index
>256 Specifies the current line style

The routine ggAddPieChartSegment() draws a single annotated, filled Pie Chart segment
anticlockwise between the angles angfro and angto, and with a radius and centre to fit the
available drawing window or with respect to the Pie Chart frame defined by the most recent
call to ggSetPieChartFrame().

The segment consists of the following elements; the background filling, the annotation and
associated box and the segment boundary.

The segment is filled in the style determined by the combination of the fill and line style
indices fill and line. Where fill is equal to GHOLLOW, only the boundary of the segment is
drawn. The segment may be left unfilled by setting fill to -2 or less. Negative values of line
cause a warning to be output and the absolute value is used. The default line styles, hatch styles
and fill styles appear in Appendix A of this manual. The current line style is left unchanged.

The default annotation for the Pie Chart is to print the segment label horizontally in a masked
box within the segment boundary. Other forms of annotation are available including radial and
external, each of which may include a combination of the segment label, the percentage value
of the segment and the data value itself. All these options are set with the Pie Chart annotation
routine ggSetPieChartAnnotation(). The routine ggSetPieChartBoxType() controls the
filling/masking and drawing of the annotation box for internal segment annotation.

By default the segment boundary is drawn in the current pen colour, this can be switched off
using ggSetPieChartBoundSwitch().

Page 142
ggSetPieChartStartAngle
ggSetPieChartAnnotation
ggSetPieChartBoxType
ggSetPieChartBoundSwitch
ggSetPieChartExplosion
ggSetPieChartFrame

ROUTINE SPECIFICATIONS ggAddPopulationGraph

ggAddPopulationGraph

Syntax
C/C++: void ggAddPopulationGraph(float dx, float y, int npts, GPOINT *points, float
popmax);
F90: subroutine ggAddPopulationGraph(dx, y, npts, points, popmax)

real, intent(in) :: dx, y, popmax
integer, intent(in) :: npts
type(GPOINT), intent(in) :: points

Arguments dx
Population sample interval
Population
npts
The number of points to be plotted
points
Array of dimension npts, giving the sample point and population counts to be defined on the
graph
popmax
Maximum population

Description The routine ggAddPopulationGraph() draws a double line population graph on the currently
specified set of axes, one of which should be of a discrete scaling type using
ggSetAxesScaling(). The graph represents a single set of population sample data (y) on the
discrete axis which has a regular recording interval dx along the non-discrete axis.
The data suppled in the array points consist of a set of population recordings points.y at the
specified sample point points.x. Missing recordings in the points array are represented by gaps
in the double line graph.
The value popmax is supplied to control the scaling of the graph such that the range 0.0 -
popmax lies between two points of the discrete axis (y).

See Also Page 59
ggSetAxesScaling

209

ggAddReferenceLine ROUTINE SPECIFICATIONS

ggAddReferenceLine

Syntax
C/C++: void ggAddReferenceLine(char string[], float xyval, int labjus, int labclock, int hv, int
xory):
F90: subroutine ggAddReferenceLine(string, xyval, labjus, labclock, hv, xory)

character*(*), intent(in) :: string
real, intent(in) :: xyval
integer, intent(in) :: labjus, labclock, hv, xory

Arguments string
Variable or constant holding the title
xyval
X or Y axis intercept value in graphical axes coordinates
labjus
Position of text string around reference line
= GFARLEFT Beyond lower limit, labelock is ignored
= GLEFT Left justified at lower limit
= GCENTRE Central
= GRIGHT Right justified at upper limit
= GFARRIGHT Beyond upper limit, labelock is ignored
labclock
Side of reference line to position text string
= GCLOCKWISE Position the text string on the clockwise side of the

reference line
= GANTICLOCKWISE Position the text string on the anti-clockwise side of the
reference line

hy
Flag determining the orientation of the annotation
= GXAXIS Parallel to X axis (zero degrees)
= GYAXIS Parallel to Y axis (90 degrees)
xory
Specified axis
= GXAXIS X axis
= GYAXIS Y axis

Description The routine ggAddReferenceLine() draws a reference line across a graph at a specified value

210

and labels it with a supplied text string.

ROUTINE SPECIFICATIONS ggAddSquareWave

See Also

The argument xory determines which axes the specified value xyval refers to and the reference
line is drawn parallel to the opposite axes according to its current position and length. The
supplied text string is then placed at one of the eight positions determined by the value of
labjus and oriented according to the value of hv.

If the value xyval does not occur within the limits of the selected axes, neither the reference
line or the text label is output. If the text position is out of range, a warning message is output
and the default position is used.

Page 168

ggAddSquareWave

Syntax

| ClC++:

void ggAddSquareWave(int npts, GPOINT *points, int pos, int xory);

F90:

subroutine ggAddSquareWave(npts, points, pos, xory)

integer, intent(in) :: npts, pos, xory
type(GPOINT), intent(in) :: points(*)

Arguments

Description

See Also

npts
The number of points in the points array

points
Array of dimension npts, giving the X and Y axis values of the points that the square wave is
fitted to

pos
Flag controlling the square wave interpolation. The value determines the position of the change
in height from one point to the next

= GCURRENT Change occurs at current point held in points.x and
points.y

= GHALFWAY Change occurs half way between current and next point

= GNEXT Change occurs at next point

Xxory
The direction in which the square wave is fitted to the data set. The value of xory represents the
axis to which the height change in the square wave is perpendicular to:

= GXAXIS X axis
= GYAXIS Y axis

The routine ggAddSquareWave() takes the points held in the points array and fits a square
wave to them. The square wave passes through all the given points. The changes in height can

occur at one of three positions about the given points, depending on the value of pos.

Page 58

211

ggAddStepChartOutline ROUTINE SPECIFICATIONS

ggAddStepChartOutline

Syntax
C/C++: void ggAddStepChartOutline(int nsteps, GSTEPCHART *steps, float base, int drop,
int xory);
F90: subroutine ggAddStepChartOutline(nsteps, steps, base, drop, xory)

integer, intent(in) :: nsteps, drop, xory
type(GSTEPCHART), intent(in) :: steps
real, intent(in) :: base

Arguments nsteps
The number of steps to be plotted
steps
Array of dimension nsteps, giving the start and finish width and height values of all the
columns in the Step Chart
base
Base value in graphical coordinates which step widths are drawn to depending on the value of
drop
drop
Flag determining how step edges are drawn
= GDROPTYPEO Step heights only are drawn
= GDROPTYPEI1 Link adjacent steps
= GDROPTYPE2 Link adjacent steps and draw non-adjacent edges to

base

= GDROPTYPE3 Draw all step edges to base
xory
Flag determining which axis the data ranges are shown on, and on which axis the heights are
shown
= GXAXIS Data on X axis, heights on Y axis
=GYAXIS Data on Y axis, heights on X axis

Description The routine ggAddStepChartOutline() draws steps defined by the data ranges held in the
components steps.s and steps.f and height values held in the component steps.h, with respect
to either the current axes as set up by ggSetAxesPos() and ggSetAxesScaling(), or the default
axes used by one of the high level routines. The changes in step height are displayed in the
style determined by the value of drop.

See Also Page 101

212

ROUTINE SPECIFICATIONS

ggAddStepChartValues

ggAddStepChartValues

Syntax
C/C++: void ggAddStepChartValues(int nsteps, GSTEPCHART *steps, float base, int sfl, int
Xory);
F90: subroutine ggAddStepChartValues(nsteps, steps, base, sfl, xory)

integer, intent(in) :: nsteps, sfl, xory
type(GSTEPCHART), intent(in) :: steps
real, intent(in) :: base

Arguments nsteps
The number of steps to be annotated
steps
Array of dimension nsteps, giving the start and finish width and height values of all the
columns in the Step Chart
base
The base value of all steps
sfl
Flag determining the value being output
= GSTART Start of step (ie, steps.s)
= GFINISH End of step (ie, steps.f)
=GWIDTH Step width (ie, steps.f - steps.s)
= GHEIGHT Step height (ie, steps.h)
= GHEIGHTABOVEBASE Step height above base

(ie, steps.h - base)

xory
Flag determining on which axis the values are plotted
= GXAXIS X axis
= GYAXIS Y axis

Description The routine ggAddStepChartValues() displays the step, widths or heights, with respect to the

current axes as set up by the last axis definition calls or through a previous call to
ggPlotStepChart(). xory determines which direction the steps are displayed, thus if

xory=GXAXIS the steps.s and steps.f values are displayed on the X axis and steps.h values
are displayed on the Y axis. If ggAddStepChartValues() follows a call to ggPlotStepChart(),

xory should be set to GXAXIS. Annotation of individual points about a Step Chart can be

achieved using ggAddGraphValues().

213

ggAddVectors ROUTINE SPECIFICATIONS

The most recent call to ggSetValueAttribs() determines the position of the annotation about
each area as well as the angle, justification and offset of the value string. The default is to
position the required value at the centre of each area represented by the step, that is between
steps.s and steps.f and between steps.h and the base. steps.s, steps.f and width values are
output according to the format of the xory axis, where as height values are output according to
the format of the other axis. The format is set by the most recent call to
ggSetAxesAnnotation(). Prefix and suffix strings defined by the most recent call to
ggSetValueTags() are appended to the numerical output.

If sfl is out or range, a warning message is output and the step heights values are displayed.

See Also Page 103
ggAddGraphValues
ggPlotStepChart
ggSetValueAttribs
ggSetValueTags

ggAddVectors

Syntax
‘ C/C++: void ggAddVectors(int nx, int ny, GVECTOR *vectors, int head);
F90: subroutine ggAddVectors(nx, ny, vectors, head)

type(GVECTOR), intent(in) :: vectors(nx, ny)
integer, intent(in) :: nx, ny, head

Arguments nx
Number of vectors in the X direction

ny
Number of vectors in the Y direction

vectors
Two dimensional array of dimension nx,ny containing the directions, strengths and colours of
each vector

head

Type of arrowhead drawn at each vector

= GCLOSED Arrowhead closed (drawn as a triangle)
= GSOLID Arrowhead filled using colour vectors.col
= GOPEN Arrowhead open (drawn with two lines only)

Description The routine ggAddVectors() draws a Vector Chart consisting of a grid of nx times ny arrows;
each arrow having an individual strength, direction, and colour attribute determined by the
corresponding values within the components vectors.stren, vectors.direc, and vectors.col
respectively. The directions (in vectors.direc) are measured anticlockwise from the three
o’clock (positive X axis) position.

214

ROUTINE SPECIFICATIONS ggBlockFillAreaChart

See Also

No axes are drawn with this routine but the Vector Chart is mapped onto the area defined by
the intersection of the current graphical axes as set up by the routines ggSetAxesPos() and
ggSetAxesScaling() (or their defaults). The axes ranges and number of tick marks should be set
appropriately for the Vector Chart data being displayed. The Vector Chart may be mapped onto
a different area of the current axes system by using the routine ggSetVectorChartFrame().

The vectors are displayed as equally spaced arrows. The length of the arrows is linearly
proportional to the strength values in vectors.stren and scaled using the current settings
defined using ggSetVectorAttribs(). Arrows are not drawn if their strength is zero or if it lies
outside the clipping limits defined by ggSetVectorLimits(). The arrows point in the
corresponding directions held in the component vectors.direc (or that +180° if the strength is
negative) and are displayed in the colour of the corresponding colour values held in
vectors.col.

Three types of arrowhead, determined by the value of head, are available. If the type is out of
range, a warning message is output and the default is used.

Page 123

ggSetAxesPos
ggSetAxesScaling
ggSetVectorChartFrame
ggSetVectorLimits
ggSetVectorAttribs

ggBlockFillAreaChart

Syntax
‘ C/C++: void ggBlockFillAreaChart(int nareas, GAREACHART *areas, int xory, int line); ‘
F90: subroutine ggBlockFillAreaChart(nareas, areas, xory, line)
integer, intent(in) :: nareas, xory, line
type(GAREACHART), intent(in) :: areas(*)
Arguments nareas

The number of areas to be plotted

areas
Array of structures giving data for the Area Chart

xory
Flag determining which axis the data ranges are shown on, and on which axis the heights are
shown

= GXAXIS Data on X axis, heights on Y axis
= GYAXIS Data on Y axis, heights on X axis
line

Line style to be used to fill each column

= GCURRENT Specifies the current line style
=1-256 Specifies the line style index
>256 Specifies the current line style

215

ggBlockFillBarChart ROUTINE SPECIFICATIONS

Description

See Also

The routine ggBlockFillAreaChart() draws block filled rectangles defined by the data ranges
held in the components areas.s and areas.f and height values held in the components areas.h1
and areas.h2, with respect to either the current axes, as set up by ggSetAxesPos() and
ggSetAxesScaling(), or the default axes used by one of the high level routines. The widths of
the areas, held in areas.s and areas.f, are shown on the X axis if xory=GXAXIS, and on the Y
axis if xory=GYAXIS.

All the areas are solid filled in the line style specified by line whereas the colour, depth and
angle of the extrusions are determined by the current block fill settings as set by
ggSetBlockChartAttribs(). The outline of each area is drawn in the current GINO line style.

Page 107
ggPlotAreaChart
ggSetBlockChartAttribs

ggBlockFillBarChart

Syntax
‘ C/C++: void ggBlockFillBarChart(int nbars, GBARCHART *bars, float frac, int line);
F90: subroutine ggBlockFillBarChart(nbars, bars, frac, line)

type(GBARCHART), intent(in) :: bars(*)
integer, intent(in) :: nbars, line
real, intent(in) :: frac

Arguments nbars
The number of bars in the Bar Chart
bars
Array of dimension nbars, giving the start and finish values of all the bars in the Bar Chart
frac
Fraction of an interval to be filled for each bar
line
Line style to be used to fill each column
= GCURRENT Specifies the current line style
=110 256 Specifies the line style index
>256 Specifies the current line style

Description The routine ggBlockFillBarChart() block fills the bars of a Bar Chart, with respect to either the

216

current axes, as set up by ggSetAxesPos() and ggSetAxesScaling(), or the default axes used by
ggPlotBarChart(). If a discrete axis has not been defined (using ggSetAxesScaling() with
scale=GDISCRETE) or both axes have been defined as discrete axes, the discrete axis is
assumed to be the X axis. Linear scaling is assumed as the default for the Y axis.

The area filled for each bar has the start and finish values defined in the components bars.s and
bars.f and the width ((length of discrete axis)/nbars) * frac. If frac = 1.0, the fill occupies the
whole interval.

The bars are centred on the tick marks on the discrete axis.

ROUTINE SPECIFICATIONS ggBlockFillHistogram

See Also

All the bars are solid filled in the line style specified by line whereas the colour, depth and
angle of the extrusions are determined by the current block fill settings as set by
ggSetBlockChartAttribs(). The outline of each area is drawn in the current GINO line style.

Page 95
ggPlotBarChart
ggSetBlockChartAttribs

ggBlockFillHistogram

Syntax
‘ C/C++: void ggBlockFillHistogram(int ncols, float *yarray, float frac, int line);
F90: subroutine ggBlockFillHistogram(ncols, yarray, frac, line)

integer, intent(in) :: ncols, line
real, intent(in) :: yarray(*), frac

Arguments yarray
Array, of dimension ncols, giving the heights of all the columns in the Histogram
ncols
The number of columns in the Histogram
frac
Fraction of an interval to be filled for each column
line
Line style to be used to fill each column
= GCURRENT Specifies the current line style
=110 256 Specifies the line style index
>256 Specifies the current line style

Description The routine ggBlockFillHistogram() block fills the columns of a Histogram with respect to
either the current axes, as set up by ggSetAxesPos() and ggSetAxesScaling(), or the default
Histogram axes used by ggPlotHistogram(). If a discrete axis has not been defined using
ggSetAxesScaling(), or both axes have been defined as discrete axes, the discrete axis is
assumed to be the X axis. Linear scaling is assumed as the default for the Y axis.
The area filled for the front of each column has the height defined in the array yarray and the
width = ((length of X axis)/ncols) * frac. If frac = 1.0, the fill occupies the whole interval. The
columns are centred on the tick marks on the discrete axis.
All the columns are solid filled in the line style specified by line whereas the colour, depth and
angle of the extrusions are determined by the current block fill settings as set by
ggSetBlockChartAttribs(). The outline of each area is drawn in the current GINO line style.

See Also Page 88

ggPlotHistogram
ggSetBlockChartAttribs

217

ggBlockFillMultiHistogram ROUTINE SPECIFICATIONS

ggBlockFillMultiHistogram

Syntax
C/C++: void ggBlockFillMultiHistogram(int type, float *rdata, int ndim1, int ncols, int
ndata,float frac, float gap, int line[], int is1, int is2);
F90: subroutine ggBlockFillMultiHistogram(type, rdata, ndim1, ncols, ndata, frac, gap,
line, is1, is2)
integer, intent(in) :: type,ndim1,ncols,ndata
real, intent(in) :: rdata(ndim1,*), frac,gap
integer, intent(in) :: line(*),is1,is2
Arguments type
Type of multi-histogram chart
= GSTACKED Data sets stacked in single column
= GCLUSTERED Data sets displayed as multiple columns
rdata

218

Two dimensional array giving the heights of the columns in each of the data sets

ndiml
The primary dimension of the data array rdata

ncols
The number of compound columns, or clusters of columns to be drawn. This can be from 1 to
ndim1

ndata
The number of data sets for each column or column cluster to be drawn. This can be from 1 to
the second dimension of the data array rdata

frac

Fraction of an interval to be filled for each column or column cluster

gap
Size of gap between members of the cluster, as a fraction of the width of a single member of
the cluster. Range 0.0 to 1.0 (only used for type GCLUSTERED)

line
Integer array, of dimension ndata, determining the line style to be used to fill each data set.
The corresponding component of each column will be drawn with the same line style

= GCURRENT Specifies the current line style
=1 to 256 Specifies the line style index
>256 Specifies the current line style
isl

The start position in the first dimension of the data array to be used as the first item (category)
on the discrete axis

ROUTINE SPECIFICATIONS ggBlockFillStepChart

Description

See Also

is2
The start position in the second dimension of the data array to be used as the first component
on the continuous axis (or first column of cluster)

The routine ggBlockFillMultiHistogram() block fills the columns of a multi-data set Histogram
with respect to the current axes as set up by ggSetAxesPos() and ggSetAxesScaling(). If a
discrete axis has not been defined using ggSetAxesScaling(), or both axes have been defined as
discrete axes, the discrete axis is assumed to be the X axis. Linear scaling is assumed as the
default for the Y axis.

The routine is designed to display a stacked or clustered histogram representing a block of data
from an arbitrarily sized two dimensional array - rdata. Where ndim1 is the primary
dimension of the array and is1 and is2 specify the starting offset of the required data block. The
dimensions of the data being represented is ncols by ndata, where ncols is the number of data
items in each set and ndata is the number of data sets.

In C the array rdata should be declared: float rdata[][ndim1];
In Fortran 90 the array rdata should be declared: real rdata(ndim1,*)

The width of each stacked or clustered column = ((length of the discrete axis)/ncols) * frac
where a frac = 0.99 will cause either the stacked or clustered column to nearly touch the
adjacent column. Values of frac outside the range 0.0 to 1.0 are clipped to 0.1 and 0.9
respectively with values between 0.5 and 0.9 giving the most satisfactory results. Unlike the
single data set histogram plot, the width of each column includes any extrusions due to the
current block chart filling attributes, thus reducing the width of the front face of the column.
This is required to ensure that each stacked or clustered column does not overlap with an
adjacent column.

All the columns of each data set [i] are solid filled in the line style specified by line[i] whereas
the colour, depth and angle of the extrusions are determined by the current block fill settings as
set by ggSetBlockChartAttribs(). The outline of each column is drawn in the current GINO line
style.

Page 113
ggBlockFillHistogram
ggSetBlockChartAttribs

ggBlockFillStepChart

Syntax
C/C++: void ggBlockFillStepChart(int nsteps, GSTEPCHART *steps, float base, int xory, int
line);
F90: subroutine ggBlockFillStepChart(nsteps, steps, base, xory, line)
integer, intent(in) :: nsteps, xory, line
type(GSTEPCHART), intent(in) :: steps(*)
real, intent(in) :: base
Arguments nsteps

The number of steps to be plotted

219

ggConvertDates

ROUTINE SPECIFICATIONS

Description

See Also

steps
Array of dimension nsteps, giving the start and finish widths and height values of all the steps
in the Step Chart

base
Base value in graphical coordinates which steps are filled to

xory
Flag determining which axis the data ranges are shown on, and on which axis the heights are
shown

= GXAXIS Data on X axis, heights on Y axis
= GYAXIS Data on Y axis, heights on X axis
line

Line style to be used to fill each column

= GCURRENT Specifies the current line style
=110 256 Specifies the line style index
>256 Specifies the current line style

The routine ggBlockFillStepChart() draws block filled rectangles defined by the data ranges
held in the components steps.s and steps.f and between the base value on the axis on which the
steps.h values are measured and the height values held in the component steps.h. The display
of the rectangles is drawn with respect to either the current axes, as set up by ggSetAxesPos()
and ggSetAxesScaling(), or the default axes used by one of the high level routines. The widths
of the columns, held in steps.s and steps.f, are shown on the X axis if xory=GXAXIS, and on
the Y axis if xory=GYAXIS.

All the steps are solid filled in the line style specified by line whereas the colour, depth and
angle of the extrusions are determined by the current block fill settings as set by
ggSetBlockChartAttribs(). The outline of each area is drawn in the current GINO line style.

Page 101
ggSetBlockChartAttribs

ggConvertDates

Syntax
‘ C/C++: void ggConvertDates(int ndates, char *dates|], float data[]);
F90: subroutine ggConvertDates(ndates, dates, data)
integer, intent(in) :: ndates
character*(*), intent(in) :: dates(*)
real, intent(out) :: data(*)
Arguments ndates

220

Number of dates to be converted

dates
Character array of dimension ndates, holding the dates in the current date input format

ROUTINE SPECIFICATIONS ggConvertDateToGraph

Description

See Also

data
Returned date values for dates

Converts a character array of dates into an array of day numbers. These can then be used for
plotting data in any of the graph display routines against an axis that has been set to have date
scaling as set up by ggSetDateAxesScaling().

The dates are supplied as an array of character strings of up to 10 characters, formatted
according to the current date input format type as set up by ggSetDateFormat(). Dates which
are incorrectly formatted are returned as representing the date of January 1st 1900.

Page 41
ggSetDateFormat
ggSetDateAxesScaling

ggConvertDateToGraph

Syntax
‘ C/C++: void ggConvertDateToGraph(char date[], float *value);
F90: subroutine ggConvertDateToGraph(date, value)

character*(*), intent(in) :: date
real, intent(out) :: value

Arguments date
Character string containing a single date in the current date input format
value
Returned day value

Description Converts a single date string into a real value representing the day number since September
13th 1752.
The date should be supplied as a string of up to 10 characters, formatted according to the
current input date format type as set by ggSetDateFormat(). Dates which are incorrectly
formatted are returned as representing the date of January 1st 1900.

See Also Page 41
ggSetDateFormat

ggConvertGraphToDate

Syntax
‘ C/C++: void ggConvertGraphToDate(float value, char date[]);
F90: subroutine ggConvertGraphToDate(value, date)

real, intent(in) :: value
character*(*), intent(out) :: date

221

ggDefineMissingValues

ROUTINE SPECIFICATIONS

Arguments

Description

See Also

value
Date value

date
Returned date string

Converts a date data value into a character string representing its date in the current input date

format.

The date is returned as a string of 10 characters, formatted according to the current input date
type as set by ggSetDateFormat(). Such dates can be converted back to date values through the

routine ggConvertDateToGraph().

Page 41
ggSetDateFormat
ggConvertDateToGraph

ggDefineMissingValues

Syntax
‘ C/C++: void ggDefineMissingValues(int mode, float val1, float val2, int xory);
F90: subroutine ggDefineMissingValues(mode, val1, val2, xory)
integer, intent(in) :: mode, xory
real, intent(in) :: val1, val2
Arguments mode
Missing value mode
= GOFF, Switch off missing values
= GEQUALTO, Omit data equal to vall or equal to val2
= GGREATERTHAN, Omit data greater than vall

222

= GGREATERTHANOREQUALTO,
= GLESSTHAN,

= GLESSTHANOREQUALTO,

= GOUTSIDERANGE,

= GINSIDERANGE,

vall

First value

val2

Second value

xory

Omit data greater than or equal to vall

Omit data less than vall

Omit data less than or equal to vall

Omit data outside the range vall to val2

Omit data equal to and inside the range vall to val2

Flag determining whether ggDefineMissingValues() refers to data on the X or the Y axis

= GXAXIS
= GYAXIS

X axis
Y axis

ROUTINE SPECIFICATIONS ggDisplayFillColumn

Description The routine ggDefineMissingValues() defines one, two or a range of values that are omitted
from some of the graph drawing routines. The values or range set in vall,val2 may represent
missing or rogue data within an application and are omitted from the graph according to the
missing value mode. The specified values are checked against the graph data for either the X or
the Y axis according to the xory setting.
ggDefineMissingValues() only affects polyline graphs, marker graphs and value graphs.

See Also Page 69
ggPlotGraph
ggPlotXYPolarChart
ggAddGraphPolyline
ggAddGraphMarkers
ggAddGraphValues

ggDisplayFillColumn

Syntax

‘ C/C++: void ggDisplayFillColumn(float x, float y, int nfill, int *fill, int *line, char header][]); ‘

F90: subroutine ggDisplayFillColumn(x, y, nfill, fill, line, header)
real, intent(in) :: x, y
integer, intent(in) :: nfill, fill(*), line(*)
character*(*), intent(in) :: header
Arguments X

X coordinate of the top left hand corner of the column in the current units (default units are
millimetres)

Y coordinate of the top left hand corner of the column in the current units

nfill

The number of filled rectangles

fill

Integer array, of dimension nfill, determining the fill styles to be used in each cell
<-1 Specifies no fill and no boundary
= GHOLLOW Specifies boundary only

= GSOLID Specifies a solid fill

= GFINEHORIZONTAL }

= GFINEVERTICAL }

= GFINELEFTDIAGONAL }

= GFINERIGHTDIAGONAL }

= GFINEHORIZONTALGRID }

= GFINEDIAGONALGRID }

= GFINEHORIZONTALMESH } Specifies the hatch

= GFINEDIAGONALMESH } style index

= GCOARSEHORIZONTAL }

223

ggDisplayGeneratedColumn ROUTINE SPECIFICATIONS

Description

See Also

= GCOARSEVERTICAL

= GCOARSELEFTDIAGONAL

= GCOARSERIGHTDIAGONAL

= GCOARSEHORIZONTALGRID

= GCOARSEDIAGONALGRID

= GCOARSEHORIZONTALMESH

= GCOARSEDIAGONALMESH }

> 256, Specifies a solid fill for software fill, or the fill style
index for hardware fill

line

Integer array, of dimension nfill, determining the line style to be used to fill the rectangle

The value of line is irrelevant where fill has a value less than -1

= GCURRENT Specifies the current line style
=1 to 256 Specifies the line style index
>256 Specifies the current line style
header

Column header.

The routine ggDisplayFillColumn() outputs a set of rectangles in an optionally headed column
with its top left corner positioned at x,y in user space coordinates. The column is divided into
nfill or nfill+1 cells (depending on the header switch) into which the rectangles are drawn. A
column frame is also drawn using the Text Chart frame line style index set by
ggSetTextChartAttribs().

The rectangle in each cell is filled in the style determined by the combination of the
corresponding elements of fill and line. Where a fill element is equal to GHOLLOW, only the
boundary of the rectangle is drawn. One or more of the cells may be left unfilled by giving the
corresponding element(s) of fill a value of -2 or less. Negative values of line cause a warning
to be output and the absolute value is used. The default line styles, hatch styles and fill styles
appear in Appendix A of this manual. The current line style is left unchanged.

The string header is output in an additional header cell if headers are switched on in the
previous call to ggSetTextChartAttribs(). If displayed, the string is output centrally in the cell
using the current GINO text and line attributes.

Page 160
ggSetTextChartAttribs

ggDisplayGeneratedColumn

Syntax
C/C++: void ggDisplayGeneratedColumn(float x, float y, int nval, float vbeg, float vend, char
header[]);
F90: subroutine ggDisplayGeneratedColumn(x, y, nval, vbeg, vend, header)

real, intent(in) :: x, y, vbeg, vend
integer, intent(in) :: nval
character*(*), intent(in) :: header

224

ROUTINE SPECIFICATIONS ggDisplayLineColumn

Arguments

Description

See Also

X

X coordinate of the top left hand corner of the column in the current units (default units are
millimetres)

Y coordinate of the top left hand corner of the column in the current units

nval
The number of values to be output between and including vbeg and vend

vbeg

First value to be output

vend
Last value to be output

header
Column header

The routine ggDisplayGeneratedColumn() generates a set of values and outputs them in an
optionally headed column with its top left corner positioned at x,y in user space coordinates.
The column is divided into nval or nval+1 cells (depending on the header switch) into which
the generated values are placed according to the current Text Chart justification as set by
ggSetTextChartAttribs(). A column frame is also drawn using the Text Chart frame colour
index also set by ggSetTextChartAttribs().

nval numbers are generated equally spaced from vbeg to vend inclusively. For example, if
vbeg = 1, vend = 7 and nval = 4 then the numbers 1, 3, 5, and 7 are output. The values are
output, using the current GINO text and line attributes, in the format of the current Y axis
annotation as set by ggSetAxesAnnotation(). Prefix and/or suffix strings may be added to each
value in the column using the routine ggSetValueTags().

The string header is output in an additional header cell if headers are switched on in the
previous call to ggSetTextChartAttribs(). If displayed, the string is output centrally in the cell
using the current GINO text and line attributes.

Page 157
ggSetAxesAnnotation
ggSetTextChartAttribs
ggSetValueTags

ggDisplayLineColumn

Syntax
‘ C/C++: void ggDisplayLineColumn(float x, float y, int nline, int *line, int ang, char header[]);
F90: subroutine ggDisplayLineColumn(x, y, nline, line, ang, header)

real, intent(in) :: x, y
integer, intent(in) :: nline, line(*), ang
character*(*), intent(in) :: header

225

ggDisplayLineColumn ROUTINE SPECIFICATIONS

Arguments

Description

See Also

226

X

X coordinate of the top left hand corner of the column in the current units (default units are
millimetres)

Y coordinate of the top left hand corner of the column in the current units

nline
The number of lines

line
Integer array, of dimension nline, determining the line style to be used in each cell

= GCURRENT Specifies the current line style
=1 to 256 Specifies the line style index
>256 Specifies the current line style
ang

Flag determining which angle the lines are displayed

= GHORIZONTAL Horizontal

= GVERTICAL Vertical

= GRIGHTDIAGONAL Bottom left to top right

= GLEFTDIAGONAL Top left to bottom right
header

Column header

The routine ggDisplayLineColumn() outputs a set of lines in an optionally headed column with
its top left corner positioned at x,y in user space coordinates. The column is divided into nline
or nline+1 cells (depending on the header switch) into which the lines are drawn. A column
frame is also drawn using the Text Chart frame line style index set by ggSetTextChartAttribs().

The line in each cell is drawn in the style of the corresponding index held in the array line,
each element pointing to an entry in the GINO line style table. If the array line contains any
negative line style indices, a warning message is output and the absolute value is used. The line
is drawn in one of four directions depending on the value of ang. If the value of ang is out of
range, option 3 is used.

The string header is output in an additional header cell if headers are switched on in the
previous call to ggSetTextChartAttribs(). If displayed, the string is output centrally in the cell
using the current GINO text and line attributes.

Page 160
ggSetTextChartAttribs

ROUTINE SPECIFICATIONS ggDisplayMarkerColumn

ggDisplayMarkerColumn

Syntax
C/C++: void ggDisplayMarkerColumn(float x, float y, int nsym, int *sym, int *line, char
header []);
F90: subroutine ggDisplayMarkerColumn(x, y, nsym, sym, line, header)

real, intent(in) :: x, y
integer, intent(in) :: nsym, sym(*), line(*)
character*(*), intent(in) :: header

Arguments X
X coordinate of the top left hand corner of the column in the current units (default units are
millimetres)
Y coordinate of the top left hand corner of the column in the current units
nsym
Number of symbols in the column
sym
Array of length nsym containing symbols to be output in each cell
= GSPOT Dot
=GUP Standard GINO symbol
=GDOWN Standard GINO symbol
=GPLUS Standard GINO symbol
= GCROSS Standard GINO symbol
=GBOX Standard GINO symbol
= GDIAMOND Standard GINO symbol
= GCIRCLE Standard GINO symbol
=GSTAR Standard GINO symbol
=9t023 Optional hardware symbol
>23 Character from font table
line
Array of dimension nsym, determining the line style to be used for the corresponding symbol
= GCURRENT Specifies the current line style
=1 to 256 Specifies the line style index
>256 Specifies the current line style
header
Column header

Description The routine ggDisplayMarkerColumn() outputs a set of symbols in an optionally headed

column with its top left corner positioned at x,y. The column is divided into nsym or nsym-+1
cells (depending on the header switch) into which the symbols are drawn. A column frame is
also drawn using the Text Chart frame line style index set by ggSetTextChartAttribs().

227

ggDisplayPercentageColumn ROUTINE SPECIFICATIONS

See Also

The symbol numbers required for each cell are held in the array sym. Any of the valid GINO
standard or font symbol numbers may be used. Negative symbol numbers or symbols that are
not available default to symbol GUP. They are drawn centrally within each cell in the line style
of the corresponding index held in the array line, each element pointing to an entry in the
GINO line style table. If the array line contains any negative line style indices, a warning
message is output and the absolute value is used.

The string header is output in an additional header cell if header cells have been switched on
in the previous call to ggSetTextChartAttribs(). If displayed, the string is output centrally in the
cell using the current GINO attributes.

Page 160
ggSetTextChartAttribs

ggDisplayPercentageColumn

Syntax
C/C++: void ggDisplayPercentageColumn(float x, float y, int nval, float *values, char header[
1)
F90: subroutine ggDisplayPercentageColumn(x, y, nval, values, header)
real, intent(in) :: x, y, values(*)
integer, intent(in) :: nval
character*(*), intent(in) :: header
Arguments X

228

X coordinate of the top left hand corner of the column in the current units (default units are
millimetres)
Y coordinate of the top left hand corner of the column in the current units

nval
The number of values to be output in the column

values
Array of length nval containing the original values from which the percentages are calculated

header
Column header

ROUTINE SPECIFICATIONS ggDisplayStringColumn

Description

See Also

The routine ggDisplayPercentageColumn() generates a set of percentage values and outputs
them in an optionally headed column with its top left corner positioned at X,y in user space
coordinates. The column is divided into nval or nval+1 cells (depending on the header switch)
into which the generated values are placed according to the current Text Chart justification as
set by ggSetTextChartAttribs(). A column frame is also drawn using the Text Chart frame
colour index also set by ggSetTextChartAttribs().

nval numbers are generated as percentages of the total of all the values held in the array
values. The values are output, using the current GINO text and line attributes, in the format of
the current Y axis annotation as set by ggSetAxesAnnotation(). The values are followed by a
‘%" sign. If the total is zero, an error message is output and no values are displayed.

The string header is output in an additional header cell if headers are switched on in the
previous call to ggSetTextChartAttribs(). If displayed, the string is output centrally in the cell
using the current GINO text and line attributes.

Page 157
ggSetAxesAnnotation
ggSetTextChartAttribs

ggDisplayStringColumn

Syntax
‘ C/C++: void ggDisplayStringColumn(float x, float y, int nstr, char *string[], char header[]); ‘
F90: subroutine ggDisplayStringColumn(x, y, nstr, string, header)
real, intent(in) :: x, y
integer, intent(in) :: nstr
character*(*), intent(in) :: string(*), header
Arguments X
X coordinate of the top left hand corner of the column in the current units (default units are
millimetres)
Y coordinate of the top left hand corner of the column in the current units
nstr
The number of strings in the column
string
Array of character strings to be output
header
Column header
Description The routine ggDisplayStringColumn() output a set of character strings in an optionally headed

column with its top left corner positioned at x,y in user space coordinates. The column is
divided into nstr or nstr+1 cells (depending on the header switch) into which the strings are
placed according to the current Text Chart justification as set by ggSetTextChartAttribs(). A
column frame is also drawn using the Text Chart frame colour index also set by
ggSetTextChartAttribs().

229

ggDisplayValueColumn ROUTINE SPECIFICATIONS

The string header is output in an additional header cell if headers are switched on in the
previous call to ggSetTextChartAttribs(). If displayed, the string is output centrally in the cell
using the current GINO text and line attributes.

See Also Page 155
ggSetTextChartAttribs

ggDisplayValueColumn

Syntax
‘ C/C++: void ggDisplayValueColumn(float X, float y, int nval, float *values, char header|]); ‘
F90: subroutine ggDisplayValueColumn(x, y, nval, values, header)

real, intent(in) :: x, y, values(*)
integer, intent(in) :: nval
character*(*), intent(in) :: header

Arguments X

X coordinate of the top left hand corner of the column in the current units (default units are
millimetres)

Y coordinate of the top left hand corner of the column in the current units

nval
The number of values to be output in the column

values
Array of length nval containing the values to be output

header
Column header

Description The routine ggDisplayValueColumn() outputs a set of values in an optionally headed column
with its top left corner positioned at X,y in user space coordinates. The column is divided into
nval or nval+1 cells (depending on the header switch) into which the values are placed
according to the current Text Chart justification as set by ggSetTextChartAttribs(). A column
frame is also drawn using the Text Chart frame colour index also set by
ggSetTextChartAttribs().

The values are held in the array values and are output, using the current GINO text and line
attributes, in the format of the current Y axis annotation as set by ggSetAxesAnnotation().
Prefix and/or suffix strings may be added to each value in the column using the routine
ggSetValueTags().

The string header is output in an additional header cell if headers are switched on in the
previous call to ggSetTextChartAttribs(). If displayed, the string is output centrally in the cell
using the current GINO text and line attributes.

230

ROUTINE SPECIFICATIONS ggDrawArrow

See Also Page 157
ggSetAxesAnnotation
ggSetTextChartAttribs
ggSetValueTags

ggDrawArrow

Synopsis :

‘ C/C++: void ggDrawArrow(float xhead, float yhead, int head, int mode);

F90: subroutine ggDrawArrow(xhead, yhead, head, mode)

real, intent(in) :: xhead, yhead
integer, intent(in) :: head, mode

Arguments xhead
Value that specifies the X part of the user space coordinates (if mode = GSPACE) or the X part
of the graphical axes coordinates (if mode = GGRAPH), to which the line of the arrow is to be
drawn, and at which point the arrowhead is to be drawn
yhead
Value that specifies the Y part of the user space coordinates (if mode = GSPACE) or the Y part
of the graphical axes coordinates (if mode = GGRAPH), to which the line of the arrow is to be
drawn, and at which point the arrowhead is to be drawn
head
The type of arrowhead to be drawn
= GOPEN Arrowhead open (drawn with two lines only)
= GCLOSED Arrowhead closed (drawn as a triangle)
= GSOLID Arrowhead filled using solid colour in the current line

style

mode
Flag specifying whether the point (xhead,yhead) represents user space coordinates or graphical
axes coordinates
= GSPACE (xhead,yhead) gives the space coordinates
= GGRAPH (xhead,yhead) gives the graphical axes coordinates

Description The routine ggDrawArrow() draws a line from the current pen position to the point (xhead,
yhead), and draws an arrowhead at that point. The arrowhead is made up of two or three
(depending on head) sides of an equilateral triangle. The length of the sides of the triangle is
the current character width, unless the tail of the arrow is less than one character width long, in
which case the length of the sides of the triangle is half the length of the tail of the arrow. If
head is not GOPEN, GSOLID or GCLOSED, a default of GOPEN is assumed. If mode is not
GSPACE or GGRAPH, a default of GSPACE is assumed.

See Also Page 168
ggMoveToGraphPoint
ggAddGraphLine

231

ggDrawAxes ROUTINE SPECIFICATIONS
ggDrawAxes
Syntax
‘ C/C++: void ggDrawAxes(int tick, int tickside, int val, int xory);
F90: subroutine ggDrawAXxes(tick, tickside, val, xory)
integer, intent(in) :: tick, tickside, val, xory
Arguments tick
The style in which tick marks are to be drawn on the axis
= GNONE No tick marks drawn
= GCARDINAL Tick marks drawn only at the defined intervals
= GINTERMEDIATE Tick marks drawn at the defined intervals and also at
intermediate positions
tickside
The side of axes tickmarks are drawn
= GCLOCKWISE Tick marks drawn on the clockwise side of the axis
= GANTICLOCKWISE Tick marks drawn on the anticlockwise side of the axis
val
The way in which numeric annotation is to be written on the axis
=GNOVAL No numeric annotation written
= GCLOCKWISE Numeric annotation written on clockwise side of axis
= GANTICLOCKWISE Numeric annotation written on the anti-clockwise side
of the axis
xory
Specified axis
= GXAXIS The X axis is drawn
=GYAXIS The Y axis is drawn
Description The routine ggDrawAxes() draws the xory axis defined by ggSetAxesPos() and/or

232

ggSetAxesScaling(), or the default axis if these routines have not been called. For the default
values, see ggSetAxesPos() and ggSetAxesScaling().

By default, on a linearly-scaled axis, numeric scale values are written in the form:
S=P*10"

where

S is the true value of an axis tick mark

P is the actual number written by the axis tick mark with up to two decimal places

* 10N is a multiplier written at the end of the axis ensuring N is not in the range -2 to 2

This may be altered using the routine ggSetAxesAnnotation().

ROUTINE SPECIFICATIONS ggDrawAxesLabels

See Also

On a logarithmically-scaled axis, the numeric annotation is a set of consecutive integers, N
representing log;o(10™). Intermediate tick marks may be drawn depending on the available
space. The scale factor LOG10 is written at the end of the axis.

A discrete axis is similar to a linear axis, except that the tick marks and numeric annotation are
centred in the intervals, and no intermediate tick marks are drawn.

General axis annotation attributes, such as positioning, start and skip values, angled, justified,
and reduced text, may be set using the routine ggSetAxesAttribs().

Page 24
ggSetAxesAnnotation
ggSetAxesAttribs

ggDrawAxesLabels

Syntax
‘ C/C++: void ggDrawAxesLabels(int nstr, char *string[], int val, int xory);
F90: subroutine ggDrawAxesLabels(nstr, string, val, xory)
integer, intent(in) :: nstr,val,xory
character*(*), intent(in) :: string
Arguments string
Character array of dimension nstr, holding the labels
nstr
The number of labels to be written
val
Flag indicating on which side of the axis the annotation should be shown
=GNOVAL No annotation
= GCLOCKWISE Clockwise of axis
= GANTICLOCKWISE Anticlockwise of axis
xory
Flag determining the axis to be labelled and label positioning
= GXAXIS Annotation along the current X axis
= GYAXIS Annotation along the current Y axis
Description The routine ggDrawAxesLabels() displays the labels in string along the axis denoted by xory.

If the number of tick marks on an axis is greater than the number of labels in string, the labels
are repeated. By default the labels are centred on the tick marks, and are only included if there
is sufficient space. If the interval is too small for the labels, they are written at alternate tick
marks or every third tick mark etc. This default output form can be changed with the routine
ggSetAxesAttribs() which gives control over the position, angle, justification and other
attributes of the annotation.

233

ggDrawAxesTitle

ROUTINE SPECIFICATIONS

See Also

Axes drawn with ggDrawAxes() or ggAddGrid() should have numeric output suppressed if
textual labels are required at the same position.

Page 30
ggSetAxesAttribs
ggDrawAxes
ggSetAxesPos
ggSetAxesScaling
ggAddGrid

ggDrawAxesTitle

Syntax
‘ C/C++: void ggDrawAxesTitle(char string[], float yorx, int xory, int pos1, int pos2);
F90: subroutine ggDrawAXxesTitle(string, yorx, xory, pos1, pos2)

character*(*), intent(in) :: string
real, intent(in) :: yorx
integer, intent(in) :: xory, pos1, pos2

Arguments string
Variable or constant holding the title
yorx
Value representing the Y or X user space coordinate positioning the title text
xory
Flag determining the axis to be titled
= GXAXIS Title the current X axis
= GYAXIS Title the current Y axis
posl
Justification of string relative to yorx
=GBOTTOM Title written with the bottom of the characters at yorx
= GTOP Title written with the top of the characters at yorx
pos2
The position of the title relative to the axis
=GBOTTOM Title justified to the bottom of the axis
= GLEFT Title justified to the left of the axis
= GCENTRE Title justified to the centre of the axis
= GRIGHT Title justified to the right of the axis
= GTOP Title justified to the top of the axis

Description The routine ggDrawAxesTitle() outputs a title held in string with reference to either the X or Y

234

axis.

ROUTINE SPECIFICATIONS ggDrawGraphTitle

See Also

yorx is the Y or X coordinate positioning the title. If the X axis is being titled, the Y coordinate
of the text is constant and contained in yorx, and the X coordinate is determined by the flags
pos1 and pos2. If the Y axis is being titled, yorx contains the X coordinate of the text and
pos1,pos2 determines the Y coordinate.

xory determines the axis being titled, and the positioning of the title. For the X axis the
position determined by yorx can specify the top of the characters in the title or the bottom of
the characters. For the Y axis, the characters are rotated through 90 degrees so that the top of
each character is the leftmost point of the character as drawn, and the bottom of each character
is the rightmost point of the character as drawn.

pos2 determines the justification of the title relative to the axis. X axis titles are written to be
read from left to right, and Y axis titles are written with the first character lowest.

The title need not be written along the axis itself. For example, a title can be written at the top
of a graph by using the routine with pos1 = GXAXIS and yorx set to a Y coordinate above the
top of the graph. ggDrawGraphTitle() provides additional graph titling facilities.

Page 29
ggDrawGraphTitle

ggDrawGraphTitle

Syntax
‘ C/C++: void ggDrawGraphTitle(char string[], int xpos, int ypos);
F90: subroutine ggDrawGraphTitle(string, xpos, ypos)

integer, intent(in) :: xpos, ypos
character*(*), intent(in) :: string

Arguments string
Variable or constant holding the graph title
Xpos
Flag determining the X position of the title within the current graph drawing limits
= GLEFT Left justified
= GCENTRE Centre justified
= GRIGHT Right justified
ypos
Flag determining the Y position of the title within the current graph drawing limits
=GTOP Top
= GMIDDLE Middle
=GBOTTOM Bottom

Description The routine ggDrawGraphTitle() displays a text string as a title in one of nine positions within

the current graph drawing limits. The position is determined by the combination of the values
xpos and ypos.

235

ggDrawPolarAxes ROUTINE SPECIFICATIONS
The graph drawing limits are set using the routine ggSetPlotFrame() or are defined as being the
current GINO window limits if this routine has not been called. The title is output using the
current GINO character and font attributes (except angle and justification).
Any trailing spaces in string are ignored on output and a maximum of 140 characters can be
used in the graph title.
See Also Page 165
ggSetPlotFrame
ggDrawPolarAxes
Syntax
‘ C/C++: void ggDrawPolarAxes(int tick1, int tick2, int val, int nintp, float vendp, int rorth); ‘
F90: subroutine ggDrawPolarAxes(tick1, tick2, val, nintp, vendp, rorth)
integer, intent(in) :: tick1, tick2, val, nintp, rorth
real, intent(in) :: vendp
Arguments tickl
Flag determining the way in which tick marks are to be drawn on the axis.
= GNONE No tick marks drawn (for THETA axis, the axis is also
omitted)
= GCARDINAL Tick marks drawn at the defined nintp
intervals
= GINTERMEDIATE Tick marks drawn at the defined nintp intervals and at
intermediate positions
tick2
The way in which tickmarks are to be drawn
= GTICKS Tick marks only
= GTICKSANDRADII Tick marks and radii (THETA axis)
= GTICKSANDCIRCLES Tick marks and circles (R axis)
val

236

Flag determining whether annotation is drawn

= GNOANNOTATION No annotation
= GANNATATION Annotation drawn
nintp

The number of intervals for the tick marks. If tick2 = GTICKSANDRADII or
GTICKSANDCIRCLES, nintp specifies the number of circles (R axis) or radii (THETA axis).

vendp
Value specifying the end of the range to be included on the axis; vendp is specified in current
units for the R axis radius and in degrees for the THETA axis.

rorth
Number whether ggDrawPolarAxes() refers to the R or THETA axis.

ROUTINE SPECIFICATIONS ggEngAxesAnnotation

Description

See Also

= GRAXIS The R axis is drawn
= GTHETAAXIS The THETA axis is drawn

The routine ggDrawPolarAxes() draws the rorth polar axis defined by
ggSetPolarChartAttribs() or the default axis if this routine has not been called.

The numeric annotation is displayed on the zero THETA axis in the same form as normal axes
and around the maximum R limit in integer degrees. ggDrawPolarAxes() alters the settings of
ggSetAxesPos() and ggSetAxesScaling() and therefore these should be reset if a normal graph
is required after ggDrawPolarAxes() is used.

Axis annotation attributes, such as format, positioning, start and skip values, angled, justified,
and reduced text, may be set using the routines ggSetAxesAnnotation() and/or
ggSetAxesAttribs().

When selecting tick marks and radii/circles, tick2 may be set to GTICKSANDRADII or
GTICKSANDCIRCLES as these two options are equivalent to each other. Whether ticks are
drawn with radii or circles is decided by the the value of rorth.

Page 133
ggSetAxesAnnotation
ggSetAxesAttribs
ggSetPolarChartAttribs

ggEngAxesAnnotation

Syntax
‘ C/C++: void ggEngAxesAnnotation(int *ndp, int *npower, int *nrfigs, int *asty, int xory); ‘
F90: subroutine ggEnqAxesAnnotation(ndp, npower, nrfigs, asty, xory)
integer, intent(out) :: ndp, npower, nrfigs, asty
integer, intent(in) :: xory
Arguments ndp

The current number of decimal places for graph axes annotation. ndp is in the range -9 to 9

npower

The current power to which the annotation is forced. npower is in the range -15 to 15

nrltgs

The current field width for graph axes annotation

asty

The current annotation scale type of display

= GNOSCALE No scale factor

= GSCALEPOWEROF10 Scale factor is displayed as *10"

= GSCALEZEROS Scale factor is displayed as ‘000 or 0.0

= GSCALEWORD Scale factor is displayed in words

= GSCALEPREFIX Scale factor is displayed in engineering units

237

ggEngAxesAttribs ROUTINE SPECIFICATIONS

xory
Flag determining which annotation characteristics are returned

= GXAXIS Parameters returned for X axis
= GYAXIS Parameters returned for Y axis

Description The routine ggEnqAxesAnnotation() returns the current numerical annotation settings as
defined by the most recent call to ggSetAxesAnnotation(). The values returned refer to the
settings for a particular axis defined by xory.

See Also Page 29
ggSetAxesAnnotation

ggEnqAxesAttribs

Syntax
C/C++: void ggEngAxesAttribs(int *switch, float *xy, int *nstrt, int *nsk, float *aoffs, float
*angstr, int *jstmb, int *jslcr, int *reduc, int xory);
F90: subroutine ggEnqAxesAttribs(switch, xy, nstrt, nsk, aoffs, angstr, jstmb, jslcr, reduc,

xory)

integer, intent(out) :: switch, nstrt, nsk, jstmb, jsclr, reduc
real, intent(out) :: xy, aoffs, angstr
integer, intent(in) :: xory

Arguments switch
Annotation position

= GONAXIS specified axis
= GOFFSET Positioned at xory
Xy

The position in user coordinates of the annotation in either the X or Y direction. xory is used
depending on the value of switch

nstrt

Tick mark number at which the annotation starts

nsk

Number of annotation elements to be skipped during annotation
=-1 Automatic skip generation
=0 No labels skipped

>0 Skip nsk elements

ao[ls

Offset as a proportion of distance between major tick marks on the specified axis

angstr

Annotation string angle

238

ROUTINE SPECIFICATIONS ggEngAxesPos

Description

See Also

jstmb

Vertical justification for each annotation element

=GTOP Top justified - string below control point

= GMIDDLE Middle justified - string centred at control point
=GBOTTOM Bottom justified - string above control point

= GDEFAULTPOSITION Default for requested axis

islcr

Horizontal justification for each annotation element

= GLEFT Left justified

= GCENTRE Centre justitied

= GRIGHT Right justified

= GDEFAULTPOSITION Default for requested axis

reduc

Annotation character size reduction switch

= GNOREDUCE No size reduction

= GREDUCE Reduced annotation elements to avoid overlapping
xory

Specified axis

= GXAXIS Parameters set for X axis

= GYAXIS Parameters set for Y axis

The routine ggEnqAxesAttribs() returns the current axes annotation settings as defined by the
most recent call to ggSetAxesAttribs(). The values returned refer to the settings for a particular
axis defined by xory.

Page 38
ggSetAxesAttribs

ggEnqAxesPos

Syntax
‘ C/C++: void ggEngAxesPos(int *or, GPOINT *origin, float *axlen, int xory);
F90: subroutine ggEnqAxesPos(or, origin, axlen, xory)
integer, intent(out) :: or
type (GPOINT), intent(out) :: origin
real, intent(out) :: axlen
integer, intent(in) :: xory
Arguments or

An integer determining the position of the point (origin) on the axis

= GDATAORIGIN (origin) represents the point at which the
natural origin should occur on the drawing
area

239

ggEngAxesScaling ROUTINE SPECIFICATIONS

= GAXISSTART (origin) represents the point where the axis
starts on the drawing area
origin.x
Value which specifies the X part of the user space coordinates defining the position of the axis
in the drawing area

origin.y
Value which specifies the Y part of the user space coordinates defining the position of the axis
in the drawing area

axlen
Value specifying the length of the axis in the current units (default units are millimetres)

xory
Flag determining which position characteristics are returned

= GXAXIS Parameters returned for X axis
= GYAXIS Parameters returned for Y axis

Description The routine ggEnqAxesPos() returns the position and length of either axis as defined by the
most recent call to ggSetAxesPos() (or the default setting).

See Also Page 23
ggSetAxesPos

ggEngAxesScaling

Syntax
‘ C/C++: void ggEngAxesScaling(int *scale, int *nints, float *vbeg, float *vend, int xory); ‘
F90: subroutine ggEnqAxesScaling(scale, nints, vbeg, vend, xory)

integer, intent(out) :: scale, nints
real, intent(out) :: vbeg, vend
integer, intent(in) :: xory

Arguments scale

The current type of scaling for requested axis. Type of scaling is as set by previous calls to
ggSetAxesScaling() or ggSetPolarChartAttribs()

nints

The current number of intervals on the requested axis. For scale type GLINEARTYPE], this
may not be the same as set in ggSetAxesScaling() or ggDrawPolarAxes(). For log scaling,
nints is returned as zero

vbeg

Real value giving the initial data value of the range on the axis requested. The value may be
rounded down from that specified by the previous call to ggSetAxesScaling() or
ggDrawPolarAxes()

vend

Real number specifying the end of the range on the axis requested. The value may be rounded
up from that specified by the previous call to ggSetAxesScaling() or ggDrawPolarAxes()

240

ROUTINE SPECIFICATIONS ggEngBlockChartAttribs

Description

See Also

xory

Flag determining which scaling characteristics are returned

= GXAXIS Parameters returned for X axis
= GYAXIS Parameters returned for Y axis

The routine ggEnqAxesScaling() returns the scaling parameters of either the X or Y axis as
they will be or have been displayed by the axes drawing routines (ggDrawAxes() or
ggDrawPolarAxes()). The returned arguments may not be exactly as specified, as for certain
scale types the number of intervals and the range is adjusted to give more sensible output.

Page 23
ggSetAxesScaling
ggSetPolarChartAttribs
ggDrawPolarAxes

ggEngBlockChartAttribs

Syntax
C/C++: void ggEnqgBlockChartAttribs(int *coloff, float *azim, float *elev, float *depth, float
*top, float *side);
F90: subroutine ggEnqBlockChartAttribs(coloff, azim, elev, depth, top, side)

integer, intent(out) :: coloff
real, intent(out) :: azim, elev, depth, top, side

Arguments coloff
Colour index offset for shading (default =20)
azim
Azimuth angle of block in range -60.0 to 60.0 (default =30.0)
eley
Elevation angle of block in range -60.0 to 60.0 (default= = 30.0)
depth
Depth as fraction of column width in range 0.1 to 10.0 (default = 1.0)
top
The relative lightness of the top of a column compared to that of the front in range 0.0 to 100.0
(default =0.67)
side
The relative lightness of the side of a column compared to that of the front in range 0.0 to 100.0
(default = 0.33)

Description The routine ggEnqBlockChartAttribs() enquires the Block Chart attributes used for all the

Block Chart routines. A full description of the attributes is documented with the setting routine
geSetBlockChartAttribs(). The default block chart attributes may be restored using the routine
ggRestoreBlockChartAttribs().

241

ggEngDateAxesAnnotation ROUTINE SPECIFICATIONS
See Also Page 87
ggBlockFillAreaChart
ggBlockFillBarChart
ggBlockFillHistogram
ggBlockFillMultiHistogram
ggBlockFillStepChart
ggRestoreBlockChartAttribs
ggSetBlockChartAttribs
ggEngDateAxesAnnotation
Syntax
‘ C/C++: void ggEngDateAxesAnnotation(int *fdow, int *fday, int *fmon, int *fyear, int xory); ‘
F90: subroutine ggEnqDateAxesAnnotation(fdow, fday, fmon, fyear, xory)
integer, intent(out) :: fdow, fday, fmon, fyear
integer, intent(in) :: xory
Arguments dow
Format for Day of Week
<0 Alphanumeric with -fdow characters (up to 9)
= GNONE Not present
=1 Numeric (1 to 7) with 1 = Monday
fday
Format for Day
<0 Alphanumeric (1st, 2nd, 3rd, etc.)
=GNONE Not present
=1 Numeric (1 to 31)
lmon
Format for Month
<0 Alphanumeric with -fmon characters (up to 9)
= GNONE Not present
=1 Numeric (1 to 12)
l 'zear
Format for Year
= GNONE Not present
= Two digit display
= Four digit display
xory
Flag determining which date annotation characteristics are returned
= GXAXIS The X axis setting is returned
= GYAXIS The Y axis setting is returned

242

ROUTINE SPECIFICATIONS ggEngDateAxesScaling

Description Returns the output format for date axis annotation as set by ggSetDateAxesAnnotation(). Date
axis scaling is defined using ggSetDateAxesScaling().

See Also Page 45
ggSetDateAxesAnnotation
ggSetDateAxesScaling

ggEngDateAxesScaling

Syntax
C/C++: void ggEngDateAxesScaling(int *scale, int *dincr, char dbeg|], char dend[], int
xory);
F90: subroutine ggEngDateAxesScaling(scale, dincr, dbeg, dend, xory)

integer, intent(out) :: scale, dincr
character*(*), intent(out) :: dbeg, dend
integer, intent(in) :: xory

Arguments scale
Axis scaling type

<0 Current axis is numerically scaled
= GLINEARTYPEI }

= GLINEARTYPE2 } Date axis scaling type

= GLINEARTYPE3 }

dincr

The increment being used for major tick marks on the date axis

= GDECADE Decade (10 years)

=GYEAR Year

= GMONTH Month

= GWEEK Week (7 days starting on Monday)

= GDAY Day

dbeg

Date at the beginning of the date axis

dend

Date at the end of the date axis

xory

Flag determining which date settings are returned

= GXAXIS The X axis setting is returned

= GYAXIS The Y axis setting is returned
Description The routine ggEnqDateAxesScaling() returns the current date axis scaling information for

either the X or Y axis as set up by ggSetDateAxesScaling().

243

ggEngDateFormat ROUTINE SPECIFICATIONS

The values returned are not necessarily those requested by ggSetDateAxesScaling() as that
routine may select an appropriate date interval or adjust the start and end dates on the axis
according to the requested scaling type. The values returned are therefore those that represent
the actual axis to be, or already drawn.

The start and end dates are returned as character strings of 10 characters, in the current input
date format as set by ggSetDateFormat().

This routine should only be called in association with a corresponding call to
ggSetDateAxesScaling() for the same axis. If the requested axis scaling has been defined
through a call to ggSetAxesScaling() (ie. numeric scaling). scale will return with a negative
value and other values are meaningless.

See Also Page 45
ggSetAxesScaling
ggSetDateFormat
ggSetDateAxesScaling

ggEngDateFormat

Syntax
‘ C/C++: void ggEngDateFormat(int *inform, char *insep, int *ouform, char *ousep);
F90: subroutine ggEngDateFormat(inform, insep, ouform, ousep)

integer, intent(out) :: inform, ouform
character, intent(out) :: insep, ousep

Arguments inform

Date format for input dates

= GBRITISH British form dd/mm/yy or dd/mm/yyyy

= GAMERICAN American form mm/dd/yy or mm/dd/yyyy

= GLOGICAL Standard Logical form yy/mm/dd or yyyy/mm/dd
insep

Date separator for input dates

ouform

Date format for output dates

= GBRITISH British form dd/mm/yy or dd/mm/yyyy

= GAMERICAN American form mm/dd/yy or mm/dd/yyyy
=GLOGICAL Standard Logical form yy/mm/dd or yyyy/mm/dd
ousep

Date separator for output dates
Description Returns the current date format for numeric date character strings as set by ggSetDateFormat().

The input format is used by ggConvertDateToGraph(), ggConvertDates(),
ggSetDateAxesScaling(), ggEngDateAxesScaling() and ggConvertGraphToDate() routines.

244

ROUTINE SPECIFICATIONS ggEngGridMarker

See Also

Page 45
ggConvertDates
ggSetDateFormat
ggSetDateAxesScaling

ggEngGridMarker

Syntax
‘ C/C++: void ggEnqGridMarker(int *sym);
F90: subroutine ggEnqGridMarker(sym)

integer, intent(out) :: sym

Arguments sym
Grid intersection symbol number

Description The routine ggEnqGridMarker() returns the grid intersection symbol as defined by
ggSetGridMarker(). The default being a cross symbol (no. 3, GPLUS) displayed at the
intersection of the major tick marks.

See Also Page 27
ggSetGridMarker

ggEngPieChartAnnotation

Syntax
‘ C/C++: void ggEngPieChartAnnotation(int *type, int *txt, int *per, int *val, float *tol);
F90: subroutine ggEngPieChartAnnotation(type, txt, per, val, tol)
integer, intent(out) :: type, txt, per, val
real, intent(out) :: tol
Arguments type
Pie chart annotation type
= GRADIAL Radial
= GINTERNAL Internal
= GEXTERNAL External
txt
Flag determining whether text string is included in annotation
= GNOTEXT Text string not included
= GTEXT Text string included
per

Flag determining whether calculated percentage is included in annotation

245

ggEngPieChartSettings ROUTINE SPECIFICATIONS

= GNOPERCENT Percentage value not included
= GPERCENT Percentage value included
val

Flag determining whether data value is included in annotation

= GNODATA Data value not included
= GDATA Data value included
tol

Tolerance level. The minimum percentage of the whole Pie Chart that the segment must occupy
before being annotated

Description The routine ggEnqPieChartAnnotation() returns the current Pie Chart annotation settings as set
by the routine ggSetPieChartAnnotation(). If ggSetPieChartAnnotation() has not been called
the default settings are returned.

See Also Page 151
ggSetPieChartAnnotation

ggEngPieChartSettings

Syntax
‘ C/C++: void ggEngPieChartSettings(float *radius, GPOINT *origin, float *angle);
F90: subroutine ggEngPieChartSettings(radius, origin, angle)

real, intent(out) :: radius, angle
type(GPOINT), intent(out) :: origin

Arguments radius

Value giving the current radius of the Pie Chart in the current units (default units are
millimetres)

origin.x

Value giving the current X coordinate of the centre of the Pie Chart in user space coordinates

origin.y

Value giving the current Y coordinate of the centre of the Pie Chart in user space coordinates

angle

Value giving the current start angle of the Pie Chart in degrees

Description The routine ggEnqPieChartSettings() returns the current Pie Chart settings as defined by the
most recent calls to ggSetPieChartFrame() and ggSetPieChartStartAngle() (or the default
settings).

See Also Page 151

ggSetPieChartStartAngle
ggSetPieChartFrame

246

ROUTINE SPECIFICATIONS ggEngPlotFrame

ggEnqPlotFrame

Syntax
‘ C/C++: void ggEngPlotFrame(int *flg, GLIMIT *limits);
F90: subroutine ggEngPlotFrame(flg, limits)

integer, intent(out) :: flg
type(GLIMIT), intent(out) :: limits

Arguments flg
Flag to indicate source of drawing limits
= GGINOMODE limits set by current GINO window
= GGINOGRAF limits set by ggSetPlotFrame()
limits.xmin
The minimum limit of the graph drawing area in the horizontal direction
limits.xmax
The maximum limit of the graph drawing area in the horizontal direction
limits.ymin
The minimum limit of the graph drawing area in the vertical direction
limits.ymax
The maximum limit of the graph drawing area in the vertical direction

Description The routine ggEnqPlotFrame() returns the current limits of the graph drawing area and a flag to
indicate how they were set.
By default, the drawing area is defined as the current window limits as set by GINO. However,
the routine ggSetPlotFrame() can be used to set alternative limits, without affecting the
clipping limit.

See Also Page 16
ggSetPlotFrame

ggEnqTextChartAttribs

Syntax
‘ C/C++: void ggEnqTextChartAttribs(float *width, float *height, int *jslcr, int *head, int *line); ‘
F90: subroutine ggEnqTextChartAttribs(width, height, jslcr, head, line)
real, intent(out) :: width, height
integer, intent(out) :: jslcr, head, line
Arguments width

Column width in user space coordinates

247

ggEnqgValueAttribs ROUTINE SPECIFICATIONS

height

Column height in user space coordinates

jsler

Justification flag for column entry

= GLEFT Left justification

= GCENTRE Centre justification
= GRIGHT Right justification

head

Header switch for Text Chart columns

= GNOHEAD No header cell for column
=GHEAD Header cell added at top of column

line
Text chart frame line style index

<0 Switch frame box off

= GCURRENT Specifies the current line style
=11t0256 Specifies the line style index
>256 Specifies the current line style

Description The routine ggEnqTextChartAttribs() returns the current settings of the Text Chart
characteristics as set by the routine ggSetTextChartAttribs().

See Also Page 154
ggSetTextChartAttribs

ggEnqValueAttribs

Syntax
C/C++: void ggEnqValueAttribs(int *xpos, int *ypos, float *xory, GPOINT *offset, float
*angstr, int *jstmb, int *jslcr);
F90: subroutine ggEnqValueAttribs(xpos, ypos, xory, offset, angstr, jstmb, jslcr)

integer, intent(out) :: xpos, ypos, jstmb, jslcr
real, intent(out) :: xory, angstr
type(GPOINT), intent(out) :: offset

Arguments Xpos

Position of data value control point in horizontal direction

= GOUTSIDELEFT left of lower value, left of data value

= GINSIDELEFT right of lower value, left of data value
= GCENTRE centre of area at data value

= GINSIDERIGHT left of upper value, right of data value
= GOUTSIDERIGHT right of upper value, right of data value
= GSPECIFIED positioned at xory

248

ROUTINE SPECIFICATIONS ggEngVectorAttribs

[Ny
Position of data value control point in vertical direction

= GOUTSIDEBOTTOM below lower value below data value

= GINSIDEBOTTOM above lower value, below data value

= GMIDDLE middle of area at data value

= GINSIDETOP below upper value above data value

= GOUTSIDETOP above upper value, above data value

= GSPECIFIED positioned at xory

Xxory

Position of data value control point in graphical coordinates, if xpos or ypos = GSPECIFIED
oﬂset.x

X Offset from control point in user space coordinates

offset.y

Y Offset from control point in user space coordinates

angstr

Data value string angle

jstmb

Vertical justification of data value

= GTOP Top justified - string below control point

= GMIDDLE Middle justified - string centred at control point
= GBOTTOM Bottom justified - string above control point
jslcr

Horizontal justification of data value

= GLEFT Left justified

= GCENTRE Centre justified

= GRIGHT Right justified

Description The routine ggEnqValueAttribs() returns the current settings of the value display attributes as
set by the routine ggSetValueAttribs().

See Also Page 66
ggSetValueAttribs

ggEnqVectorAttribs

Syntax
C/C++: void ggEnqVectorAttribs(int *pos, float *vecmin, float *vecmax,
float *factor);
F90: subroutine ggEnqVectorAttribs(pos, vecmin, vecmax, factor)

integer, intent(out) :: pos
real, intent(out) :: vecmin, vecmax, factor

249

ggEnqgVectorChartFrame ROUTINE SPECIFICATIONS

Arguments pos

Vector position flag

= GTAIL Arrow tail

= GMIDDLE Middle of arrow
= GHEAD Head of arrow
vecmin

Absolute vector strength represented by a zero length vector

vecmax
Absolute vector strength represented by a unit length vector

factor

Overall vector length scaling factor

Description The routine ggEnqVectorAttribs() returns the position and scaling attributes for Vector Charts
as set by ggSetVectorAttribs().

See Also Page 123
ggSetVectorAttribs

ggEngVectorChartFrame

Syntax
‘ C/C++: void ggEnqVectorChartFrame(GLIMIT *limits);
F90: subroutine ggEnqVectorChartFrame(limits)

type(GLIMIT), intent(out) :: limits

Arguments limits.xmin
Horizontal minimum of Vector Chart in Graphical coordinates

limits.xmax
Horizontal maximum of Vector Chart in Graphical coordinates

limits.ymin

Vertical minimum of Vector Chart in Graphical coordinates

limits.ymax

Vertical maximum of Vector Chart in Graphical coordinates

Description The routine ggEnqVectorChartFrame() enquires the area in graphical coordinates onto which
Vector Charts are mapped as set by ggSetVectorChartFrame(). The graphical coordinate system
is set up by the latest calls to the routines ggSetAxesPos() and ggSetAxesScaling().

If ggSetVectorChartFrame() has not been called or if the routine ggRestoreVectorSettings() has

been called the default area is returned. That is the area represented by the intersection of the
limits of the horizontal (X) and vertical (Y) axes.

250

ROUTINE SPECIFICATIONS ggEnqgVectorLimits

See Also

Page 123

ggSetAxesPos
ggSetAxesScaling
ggSetVectorChartFrame
ggAddVectors
ggRestore VectorSettings

ggEnqVectorLimits

Syntax

| ClC++:

void ggEnqgVectorLimits(float *smin, float *smax);

F90:

subroutine ggEnqVectorLimits(smin, smax)
real, intent(out) :: smin, smax

Arguments

Description

See Also

smin
Minimum absolute strength of vector that may be displayed using ggAddVectors()

smax
Maximum absolute strength of vector that may be displayed using ggAddVectors()

The routine ggEnqVectorLimits() returns the minimum and maximum absolute vector strength
that may be drawn by subsequent calls to ggAddVectors() as set by ggSetVectorLimits().

If smin and smax are equal then clipping is switched off and all vectors with strength not equal
to zero are drawn. The routine ggRestoreVectorSettings() also switches clipping off.

Page 123
ggSetVectorLimits
ggAddVectors
ggRestoreVectorSettings

ggFillAreaChart

Syntax
C/C++: void ggFillAreaChart(int nareas, GAREACHART *areas, int xory, int *fill,
int *line);
F90: subroutine ggFillAreaChart(nareas, areas, xory, fill, line)
integer, intent(in) :: nareas, xory, fill(*), line(*)
type(GAREACHART), intent(in) :: areas(*)
Arguments nareas

The number of areas to be plotted

areas
Array of structures giving data for the Area Chart

251

ggFillAreaChart ROUTINE SPECIFICATIONS

xXor

Flag{ietermining which axis the data ranges are shown on, and on which axis the heights are
shown

= GXAXIS Data on X axis, heights on Y axis
= GYAXIS Data on Y axis, heights on X axis
fill

Integer array, of dimension nareas, determining the fill styles to be used to fill each bar
<-1 Specifies no fill and no boundary
= GHOLLOW Specifies boundary only

= GSOLID Specifies a solid fill

= GFINEHORIZONTAL }

= GFINEVERTICAL }

= GFINELEFTDIAGONAL }

= GFINERIGHTDIAGONAL }

= GFINEHORIZONTALGRID }

= GFINEDIAGONALGRID }

= GFINEHORIZONTALMESH } Specifies the hatch

= GFINEDIAGONALMESH } style index

= GCOARSEHORIZONTAL }

= GCOARSEVERTICAL }

= GCOARSELEFTDIAGONAL }

= GCOARSERIGHTDIAGONAL }

= GCOARSEHORIZONTALGRID }

= GCOARSEDIAGONALGRID }

= GCOARSEHORIZONTALMESH }

= GCOARSEDIAGONALMESH }

>256 Specifies a solid fill for software fill, or the fill style
index for hardware fill

line

Integer array, of dimension nareas, determining the line style to be used to fill each column
= GCURRENT Specifies the current line style

=1-256 Specifies the line style index

>256 Specifies the current line style

The value of an element of line is irrelevant where the corresponding element of fill has a value
of less than -1

Description The routine ggFillAreaChart() draws filled rectangles defined by the data ranges held in the
components areas.s and areas.f and height values held in the components areas.h1 and
areas.h2, with respect to either the current axes, as set up by ggSetAxesPos() and
ggSetAxesScaling(), or the default axes used by one of the high level routines. The widths of
the areas, held in areas.s and areas.f, are shown on the X axis if xory=GXAXIS, and on the Y
axis if xory=GYAXIS.

252

ROUTINE SPECIFICATIONS ggFillBarChart

The areas are filled in the style determined by the combination of the corresponding elements
of fill and line. Where a fill element is equal to GHOLLOW, only the boundary of the area is
drawn. One or more of the segments may be left unfilled by giving the corresponding
element(s) of fill a value of -2 or less. Negative values of line cause a warning to be output and
the absolute value is used. The default line styles, hatch styles and fill styles appear in
Appendix A of this manual. The current line style is left unchanged.

See Also Page 108
ggPlotAreaChart
ggAddAreaChartOutline
ggAddAreaChartValues
ggFillBarChart
Syntax
C/C++: void ggFillBarChart(int nbars, GBARCHART *bars, float frac, int *fill,
int *line);
F90: subroutine ggFillBarChart(nbars, bars, frac, fill, line)

type(GBARCHART), intent(in) :: bars(*)
integer, intent(in) :: nbars, fill(*), line(*)
real, intent(in) :: frac

Arguments nbars
The number of bars in the Bar Chart

bars
Array of dimension nbars, giving the start and finish values of all the bars in the Bar Chart

frac

Fraction of an interval to be filled for each bar

fill

Integer array, of dimension nbars, determining the fill styles to be used to fill each column

<-1 Specifies no fill and no boundary
= GHOLLOW Specifies boundary only

= GSOLID Specifies a solid fill

= GFINEHORIZONTAL

= GFINEVERTICAL

= GFINELEFTDIAGONAL

= GFINERIGHTDIAGONAL

= GFINEHORIZONTALGRID

= GFINEDIAGONALGRID

= GFINEHORIZONTALMESH
= GFINEDIAGONALMESH

= GCOARSEHORIZONTAL

= GCOARSEVERTICAL

= GCOARSELEFTDIAGONAL
= GCOARSERIGHTDIAGONAL

Specifies the hatch
style index

I N N N N N N NN

253

ggFillBarChart

ROUTINE SPECIFICATIONS

Description

See Also

254

= GCOARSEHORIZONTALGRID }
= GCOARSEDIAGONALGRID }
= GCOARSEHORIZONTALMESH }
= GCOARSEDIAGONALMESH }

>256 Specifies a solid fill for software fill, or the fill style
index for hardware fill

line

Integer array, of dimension nbars, determining the line style to be used to fill each column
= GCURRENT Specifies the current line style

=110 256 Specifies the line style index

>256 Specifies the current line style

The value of an element of line is irrelevant where the corresponding element of fill has a value
less than -1

The routine ggFillBarChart() fills the bars of a Bar Chart, with respect to either the current
axes, as set up by ggSetAxesPos() and ggSetAxesScaling(), or the default axes used by
ggPlotBarChart(). If a discrete axis has not been defined (using ggSetAxesScaling() with
scale=GDISCRETE) or both axes have been defined as discrete axes, the discrete axis is
assumed to be the X axis. Linear scaling is assumed as the default for the Y axis.

The area filled for each bar has the start and finish values defined in the components bars.s and
bars.f and the width ((length of discrete axis)/nbars) * frac. If frac = 1.0, the fill occupies the
whole interval.

The bars are centred on the tick marks on the discrete axis.

The bars are filled in the style determined by the combination of the corresponding elements of
fill and line. Where a fill element is equal to GHOLLOW, only the boundary of the bar is
drawn. One or more of the segments may be left unfilled by giving the corresponding
element(s) of fill a value of -2 or less. Negative values of line cause a warning to be output and
the absolute value is used. The default line styles, hatch styles and fill styles appear in
Appendix A of this manual. The current line style is left unchanged.

Where the boundaries of the bars are not drawn; if required, these can be produced by a call to
ggAddBarChartOutline() or the complete Bar Chart routine ggPlotBarChart(). If
ggPlotBarChart() and ggFillBarChart() are used together, ggPlotBarChart() should be called
first to set up the axis system.

Page 96
ggPlotBarChart
ggAddBarChartOutline
ggAddBarChartValues

ROUTINE SPECIFICATIONS ggFillBelowDataset

ggFillBelowDataset
Syntax
C/C++: void ggFillBelowDataset(int npts, GPOINT *points, float xylev, int xory, int fill, int
line);
F90: subroutine ggFillBelowDataset(npts, points, xylev, xory, fill, line)

type(GPOINT), intent(in) :: points(*)
integer, intent(in) :: npts, xory, fill, line
real, intent(in) :: xylev

Arguments npts
The number of points on graph line

points
Array, of dimension npts, giving the data values of the points to be defined on the graph line

xylev
Value determining point on X or Y axis which is filled to. If xylev lies beyond the axes limits
then that limit is used instead of xylev

xory

Flag determining whether xylev is on the X or Y axis

= GXAXIS xylev on X axis
= GYAXIS xylev on Y axis

fill

Fill style

<-1 Specifies no fill and no boundary
= GHOLLOW Specifies boundary only

= GSOLID Specifies a solid fill

= GFINEHORIZONTAL

= GFINEVERTICAL

= GFINELEFTDIAGONAL

= GFINERIGHTDIAGONAL
= GFINEHORIZONTALGRID
= GFINEDIAGONALGRID
= GFINEHORIZONTALMESH } Specifies the hatch
= GFINEDIAGONALMESH } style index

= GCOARSEHORIZONTAL }

= GCOARSEVERTICAL

= GCOARSELEFTDIAGONAL

= GCOARSERIGHTDIAGONAL
= GCOARSEHORIZONTALGRID
= GCOARSEDIAGONALGRID

= GCOARSEHORIZONTALMESH
= GCOARSEDIAGONALMESH

[U)

[D S)

255

ggFillBetweenDatasets ROUTINE SPECIFICATIONS

>256 Specifies a solid fill for software fill, or the fill style
index for hardware fill

line

Number determining the line style to be used to fill graph

= GCURRENT Specifies the current line style

=110 256 Specifies the line style index

>256 Specifies the current line style

The value of line is irrelevant where fill is less than -1

Description The routine ggFillBelowDataset() fills the area between npts points on a graph held in the
points array, and a line perpendicular to the X or Y axis, held in xylev. If xylev is outside of
the current axes set up by the last axis definition then the relevant axis limits are used.
Complete filled graphs may be achieved in conjunction with ggFillBetweenDatasets().

The area is filled in the style determined by the combination of the values of fill and line.
Where fill is equal to GHOLLOW, only the boundary of the area is drawn. A negative value of
line causes a warning to be output and the absolute value is used. The default line styles, hatch
styles and fill styles appear in Appendix A of this manual. The current line style is left
unchanged.

See Also Page 61
ggFillBetweenDatasets

ggFillBetweenDatasets

Syntax
C/C++: void ggFillBetweenDatasets(int n1, GPOINT *xy1, int n2, GPOINT *xy2, int fill, int
line);
F90: subroutine ggFillBetweenDatasets(n1, xy1, n2, xy2, fill, line)

integer, intent(in) :: n1, n2, fill, line
type(GPOINT), intent(in) :: xy1(*), xy2(*)

Arguments nl
The number of points on first graph line

xyl

Array, of dimension n1, giving the data values of the points to be defined on the first graph line

n2

The number of points on second graph line

xy2

Array, of dimension n2, giving the data values of the points to be defined on the second graph
line

fill

Fill style

<-1 Specifies no fill and no boundary

256

ROUTINE SPECIFICATIONS ggFillBetweenDatasets

Description

See Also

= GHOLLOW Specifies boundary only
= GSOLID Specifies a solid fill

= GFINEHORIZONTAL

= GFINEVERTICAL

= GFINELEFTDIAGONAL

= GFINERIGHTDIAGONAL
= GFINEHORIZONTALGRID
= GFINEDIAGONALGRID
= GFINEHORIZONTALMESH } Specifies the hatch
= GFINEDIAGONALMESH } style index

= GCOARSEHORIZONTAL }

= GCOARSEVERTICAL

= GCOARSELEFTDIAGONAL

= GCOARSERIGHTDIAGONAL
= GCOARSEHORIZONTALGRID
= GCOARSEDIAGONALGRID

= GCOARSEHORIZONTALMESH
= GCOARSEDIAGONALMESH }

>256 Specifies a solid fill for software fill, or the fill style
index for hardware fill

[N N N

line

Number determining the line style to be used to fill graph

= GCURRENT Specifies the current line style
=110 256 Specifies the line style index
>256 Specifies the current line style

The value of line is irrelevant where fill is less than -1

The routine ggFillBetweenDatasets() fills the area between two sets of points on a graph held
in the arrays xyl and xy2, where each set of points is made up of n1 and n2 points respectively.
Complete filled graphs may be achieved in conjunction with ggFillBelowDataset().

The area is filled in the style determined by the combination of the values of fill and line.
Where fill is equal to GHOLLOW, only the boundary of the area is drawn. A negative value of
line causes a warning to be output and the absolute value is used. The default line styles, hatch
styles and fill styles appear in Appendix A of this manual. The current line style is left
unchanged.

Page 61
ggFillBelowDataset

257

ggFillHistogram ROUTINE SPECIFICATIONS

ggFillHistogram

Syntax

‘ C/C++: void ggFillHistogram(int ncols, float *yarray, float frac, int *fill, int *line);
F90: subroutine ggFillHistogram(ncols, yarray, frac, fill, line)

integer, intent(in) :: ncols, fill(*), line(*)
real, intent(in) :: yarray(*), frac

Arguments yarray
Array, of dimension ncols, giving the heights of all the columns in the Histogram

ncols
The number of columns in the Histogram

frac

Fraction of an interval to be filled for each column

fill

Integer array, of dimension ncols, determining the fill styles to be used to fill each column

<-1 Specifies no fill and no boundary

= GHOLLOW Specifies boundary only

= GSOLID Specifies a solid fill

= GFINEHORIZONTAL }

= GFINEVERTICAL }

= GFINELEFTDIAGONAL }

= GFINERIGHTDIAGONAL }

= GFINEHORIZONTALGRID }

= GFINEDIAGONALGRID }

= GFINEHORIZONTALMESH } Specifies the hatch

= GFINEDIAGONALMESH } style index

= GCOARSEHORIZONTAL }

= GCOARSEVERTICAL }

= GCOARSELEFTDIAGONAL }

= GCOARSERIGHTDIAGONAL }

= GCOARSEHORIZONTALGRID }

= GCOARSEDIAGONALGRID }

= GCOARSEHORIZONTALMESH }

= GCOARSEDIAGONALMESH }

>256 Specifies a solid fill for software fill, or the fill style
index for hardware fill

line

Integer array, of dimension ncols, determining the line style to be used to fill each column

= GCURRENT Specifies the current line style

258

ROUTINE SPECIFICATIONS ggFillMultiHistogram

Description

See Also

=1 to 256 Specifies the line style index
>256 Specifies the current line style

The value of an element of line is irrelevant where the corresponding element of fill has a value
less than -1

The routine ggFillHistogram() fills the columns of a Histogram with respect to either the
current axes, as set up by ggSetAxesPos() and ggSetAxesScaling(), or the default Histogram
axes used by ggPlotHistogram(). If a discrete axis has not been defined using
ggSetAxesScaling(), or both axes have been defined as discrete axes, the discrete axis is
assumed to be the X axis. Linear scaling is assumed as the default for the Y axis. The area
filled for each column has the height defined in the array yarray and the width = ((length of X
axis)/ncols) * frac.

If frac = 1.0, the fill occupies the whole interval. The columns are centred on the tick marks on
the discrete axis.

The columns are filled in the style determined by the combination of the corresponding
elements of fill and line. Where a fill element is equal to GHOLLOW, only the boundary of the
column is drawn. One or more of the segments may be left unfilled by giving the
corresponding element(s) of fill a value of -2 or less. Negative values of line cause a warning
to be output and the absolute value is used. The default line styles, hatch styles and fill styles
appear in Appendix A of this manual. The current line style is left unchanged.

The column boundaries are not drawn; if required these can be produced by a call to
ggAddHistogramOutline() or the high level routine ggPlotHistogram(). If ggPlotHistogram()
and ggFillHistogram() are used together, ggPlotHistogram() should be called first to set up the
axis system.

Page 90
ggPlotHistogram
ggAddHistogramOutline
ggAddHistogramValues

ggFillMultiHistogram

Syntax
C/C++: void ggFillMultiHistogram(int type, float *rdata, int ndim1, int ncols, int ndata, float
frac, float gap, int line[], int is1, int is2);
F90: subroutine ggFillMultiHistogram(type, rdata, ndim1, ncols, ndata, frac, gap, fill, line,
is1, is2)
integer, intent(in) :: type, ndim1, ncols, ndata
real, intent(in) :: rdata(ndim1,*), frac, gap
integer, intent(in) :: fill(*),line(*), is1, is2
Arguments type
Type of multi-histogram chart
= GSTACKED Data sets stacked in single column
= GCLUSTERED Data sets displayed as multiple columns

259

ggFillMultiHistogram ROUTINE SPECIFICATIONS

260

rdata
Two dimensional array, of dimension ndim1,* giving the heights of the columns in each of the
data sets

ndiml
The first dimension of the data array rdata

ncols
The number of compound columns, or clusters of columns to be drawn. This can be from 1 to
ndim1

ndata
The number of data sets for each column or column cluster to be drawn. This can be from 1 to
the second dimension of the data array rdata

frac

Fraction of an interval to be filled for each column or column cluster

gap
Size of gap between members of the cluster, as a fraction of the width of a single member of
the cluster. Range 0.0 to 1.0 (only used for type GCLUSTERED)

fill

Integer array, of dimension ndata, determining the fill style to be used to fill each data set. The
corresponding component of each column will be drawn with the same fill style

<-1 Specifies no fill and no boundary
= GHOLLOW Specifies boundary only

= GSOLID Specifies a solid fill

= GFINEHORIZONTAL

= GFINEVERTICAL

= GFINELEFTDIAGONAL

= GFINERIGHTDIAGONAL
= GFINEHORIZONTALGRID
= GFINEDIAGONALGRID

= GFINEHORIZONTALMESH } Specifies the hatch
= GFINEDIAGONALMESH } style index

= GCOARSEHORIZONTAL }

= GCOARSEVERTICAL

= GCOARSELEFTDIAGONAL

= GCOARSERIGHTDIAGONAL
= GCOARSEHORIZONTALGRID
= GCOARSEDIAGONALGRID

= GCOARSEHORIZONTALMESH
= GCOARSEDIAGONALMESH }

>256 Specifies a solid fill for software fill, or the fill style
index for hardware fill

[N N N)

line
Integer array, of dimension ndata, determining the line style to be used to fill each data set.
The corresponding component of each column will be drawn with the same line style

= GCURRENT Specifies the current line style

ROUTINE SPECIFICATIONS ggFillStepChart

Description

See Also

=1 to 256 Specifies the line style index
>256 Specifies the current line style
isl

The start position in the first dimension of the data array to be used as the first item (category)
on the discrete axis

is2
The start position in the second dimension of the data array to be used as the first component
on the continuous axis (or first column of cluster)

The routine ggFillMultiHistogram() fills the columns of a multi-data set Histogram with
respect to the current axes as set up by ggSetAxesPos() and ggSetAxesScaling(). If a discrete
axis has not been defined using ggSetAxesScaling(), or both axes have been defined as discrete
axes, the discrete axis is assumed to be the X axis. Linear scaling is assumed as the default for
the Y axis.

The routine is designed to display a stacked or clustered histogram representing a block of data
from an arbitrarily sized two dimensional array - rdata. Where ndiml1 is the first dimension of
the array and isl and is2 specify the starting offset of the data block. The dimensions of the
data being represented is ncols by ndata, where ncols is the number of data items in each set
and ndata is the number of data sets.

The width of each stacked column or clustered column = ((length of the discrete axis)/ncols) *
frac where a value of 0.99 will cause either the stacked column or clustered column to nearly
touch the adjacent column. Values of frac outside the range 0.0 to 1.0 are clipped to 0.1 and 0.9
respectively with values between 0.5 and 0.9 giving the most satisfactory results.

All the columns of each data set [i] are filled in the fill style specified by fill[i] and the line
style specified by linel[i].

Page 118
ggBlockFillHistogram
ggBlockFillMultiHistogram

ggFillStepChart

Syntax
C/C++: void ggFillStepChart(int nsteps, GSTEPCHART *steps, float base, int xory, int *ill, int
*line);
F90: subroutine ggFillStepChart(nsteps, steps, base, xory, fill, line)
integer, intent(in) :: nsteps, xory, fill(*), line(*)
type(GSTEPCHART), intent(in) :: steps(*)
real, intent(in) :: base
Arguments nsteps

The number of steps to be plotted
steps

Array of dimension nsteps, giving the start and finish widths and height values of all the steps
in the Step Chart

261

ggFillStepChart ROUTINE SPECIFICATIONS

base
Base value in graphical coordinates which steps are filled to

xory
Flag determining which axis the data ranges are shown on, and on which axis the heights are
shown

= GXAXIS Data on X axis, heights on Y axis
=GYAXIS Data on Y axis, heights on X axis

fill

Integer array, of dimension nsteps, determining the fill styles to be used to fill each column

<-1 Specifies no fill and no boundary
= GHOLLOW Specifies boundary only

= GSOLID Specifies a solid fill

= GFINEHORIZONTAL

= GFINEVERTICAL

= GFINELEFTDIAGONAL

= GFINERIGHTDIAGONAL
= GFINEHORIZONTALGRID
= GFINEDIAGONALGRID
= GFINEHORIZONTALMESH } Specifies the hatch
= GFINEDIAGONALMESH } style index

= GCOARSEHORIZONTAL h

= GCOARSEVERTICAL

= GCOARSELEFTDIAGONAL

= GCOARSERIGHTDIAGONAL
= GCOARSEHORIZONTALGRID
= GCOARSEDIAGONALGRID

= GCOARSEHORIZONTALMESH
= GCOARSEDIAGONALMESH }

>256 Specifies a solid fill for software fill, or the fill style
index for hardware fill

[N N)

line
Integer array, of dimension nsteps, determining the line style to be used to fill each column

= GCURRENT Specifies the current line style
=1t0 256 Specifies the line style index
>256 Specifies the current line style

The value of an element of line is irrelevant where the corresponding element of fill has a value
less than -1

Description The routine ggFillStepChart() draws filled rectangles defined by the data ranges held in the
components steps.s and steps.f and between the base value on the axis on which the steps.h
values are measured and the height values held in the component steps.h. The display of the
rectangles is drawn with respect to either the current axes, as set up by ggSetAxesPos() and
ggSetAxesScaling(), or the default axes used by one of the high level routines. The widths of
the columns, held in steps.s and steps.f, are shown on the X axis if xory=GXAXIS, and on the
Y axis if xory=GYAXIS.

262

ROUTINE SPECIFICATIONS ggMoveToGraphPoint

See Also

The rectangles are filled in the style determined by the combination of the corresponding
elements of fill and line. Where a fill element is equal to GHOLLOW, only the boundary of the
rectangle is drawn. One or more of the rectangles may be left unfilled by giving the
corresponding element(s) of fill a value of -2 or less. Negative values of line cause a warning
to be output and the absolute value is used. The default line styles, hatch styles and fill styles
appear in Appendix A of this manual. The current line style is left unchanged.

Page 102

ggMoveToGraphPoint

Syntax
‘ C/C++: void ggMoveToGraphPoint(float x, float y);
F90: subroutine ggMoveToGraphPoint(x, y)

real, intent(in) :: x, y

Arguments X
Value giving the X part of the graphical axes coordinate to which the pen will be moved
Value giving the Y part of the graphical axes coordinate to which the pen will be moved

Description The routine ggMoveToGraphPoint() moves the pen to the point (X, Y), either inside or outside
the graph limits, in the graphical axes system set up by the last axis definition calls or by one of
the axis control routines.
The point need not be within the area defined by the axes. The pen is moved to the position (X,
Y) without drawing a line.

See Also Page 167, 168

ggAddGraphLine
ggDrawArrow

ggPlotAreaChart

Syntax
‘ C/C++: void ggPlotAreaChart(int nareas, GAREACHART *areas, int scx, int scy);
F90: subroutine ggPlotAreaChart(nareas, areas, scx, scy)
integer, intent(in) :: nareas, scx, scy
type(GAREACHART), intent(in) :: areas(*)
Arguments nareas

The number of areas to be plotted

areas
Array of dimension nareas, containing data for all the areas in the Area Chart

263

ggPlotBarChart

ROUTINE SPECIFICATIONS

Description

See Also

SCX
The type of scaling used on the X axis

= GLINEAR Linear scale on axis
=GLOGI10 Log scale on axis
scy

The type of scaling used on the Y axis

= GLINEAR Linear scale on axis
= GLOGI10 Log)o scale on axis

The routine ggPlotAreaChart() draws a frame to fit the available drawing area or current
window and plots an Area Chart within it. The areas are drawn as rectangles defined by the
data ranges held in the components areas.s and areas.f and height values held in the
components areas.h1 and areas.h2. The axes are scaled according to the values of sex and scy.

The default axes annotation may be changed using the routines ggSetAxesAnnotation() and/or
ggSetAxesAttribs(). The default data ranges and axes intervals can be changed using the routine
ggSetGraphScaling().

Page 82
ggFillAreaChart
ggAddAreaChartOutline
ggAddAreaChartValues
ggSetAxesAnnotation
ggSetAxesAttribs
ggSetGraphScaling
ggSetPlotFrame

ggPlotBarChart

Syntax
C/CH++: void ggPlotBarChart(int nbars, GBARCHART *bars, float frac, int scx, int scy, float
vbeg, float vend);
F90: subroutine ggPlotBarChart(nbars, bars, frac, scx, scy, vbeg, vend)
type(GBARCHART), intent(in) :: bars(*)
integer, intent(in) :: nbars, scx, scy
real, intent(in) :: frac, vbeg, vend
Arguments nbars

264

The number of bars to be plotted

bars
Array of dimension nbars, giving the start and finish values of the bars to be plotted

Scx
Set the X axis as the discrete (perpendicular to bars) axis, or the type of scaling on the
continuous axis (axis defining bar length)

= GLINEAR Linear scaling on the X axis

ROUTINE SPECIFICATIONS ggPlotBarChart

Description

See Also

=GLOG10 Logarithmic scaling on the X axis
= GDISCRETE The X axis is the discrete axis
scy

Set the Y axis as the discrete (perpendicular to bars) axis, or the type of scaling on the
continuous axis (axis defining bar length)

= GLINEAR Linear scaling on the Y axis
=GLOG10 Logarithmic scaling on the Y axis
= GDISCRETE The Y axis is the discrete axis

frac

Fraction of an interval to be occupied by each bar

vbeg

The centre value of the first bar on the discrete (perpendicular to bars) axis

vend
The centre value of the last bar on the discrete (perpendicular to bars) axis

The routine ggPlotBarChart() draws a frame to fit the available drawing area or current
window and plots a Bar Chart within it. The bars on the Bar Chart have the width:

((length of discrete axis) / nbars) * frac.

and have the start and end positions defined in the bars array. If frac = 1.0, only the necessary
lines are drawn, ie, lines common to two bars are omitted. If frac = 0.0, two coincident lines
are drawn centred on the tick mark. If frac < 0.0, the default value is 0.0 and if frac > 1.0, the
default value is 1.0.

The Bar Chart is automatically scaled and annotated to make maximum use of the drawing
area. If vbeg = vend, no numeric annotation is written on the discrete axis. The type of scaling
of the continuous axis and the orientation of the discrete axis are defined by the value given in
scx & sey.

The default axes annotation may be changed using the routines ggSetAxesAnnotation() and/or
ggSetAxesAttribs().

Page 76
ggSetAxesAnnotation
ggSetAxesAttribs
ggFillBarChart
ggAddBarChartOutline
ggAddBarChartValues
ggSetPlotFrame

265

ggPlotGraph ROUTINE SPECIFICATIONS

ggPlotGraph

Syntax
‘ C/C++: void ggPlotGraph(int npts, GPOINT *points, int scx, int scy, int style, int axis); ‘
F90: subroutine ggPlotGraph(npts, points, scx, scy, style, axis)

integer, intent(in) :: npts, scx, scy, style, axis
type(GPOINT), intent(in) :: points(*)

Arguments npts
The number of points to be plotted

points
Array of dimension npts, giving the X and axis values of the points to be defined on the graph

ScxX

The type of scaling used on the X axis

= GLINEAR Linear scale on X axis
= GLOGI10 Log)o scale on X axis
SC

The type of scaling used on the Y axis

= GLINEAR Linear scales on Y axis

= GLOGI10 Logjo scale on Y axis

style

Type of graph

=GSYMBOLS Symbol drawn at each data point

= GSTRAIGHT Points drawn with straight lines

= GCUBIC Points joined with piecewise smooth parametric cubic
curve

= GAKIMA Point joined with smooth Akima curve

= GSPLINE Points joined with parametric cubic spline

Negative values of the above will add a symbol at each point.

axis

Type of axes

= GFRAME A frame is drawn

= GAXES Axes are drawn through origin of data (if present) or at

the bottom left corner of drawing area

Description The routine ggPlotGraph() is a general purpose graph drawing routine that plots the data
supplied in the components points.x and points.y according to the above arguments. The graph
is drawn to fit the available drawing area or current window. Scaling and annotation are
performed automatically.

266

ROUTINE SPECIFICATIONS ggPlotHistogram

See Also

The resultant curve drawn with style=GCUBIC or GSPLINE can extend outside the graph
frame or drawing area. The curve end conditions may be set by using the routines
ggSetCurveStartConds() and/or ggSetCurveEndConds().

Graphs with style= GSYMBOLS or GSTRAIGHT, can be affected by the current missing
value mode as set by the routine ggDefineMissingValues().

The default axes annotation may be changed using the routines ggSetAxesAnnotation() and/or
ggSetAxesAttribs(). The default data ranges and axes intervals can be changed using the routine
ggSetGraphScaling().

Page 48
ggDefineMissing Values
ggSetAxesAnnotation
ggSetAxesAttribs
ggSetCurveStartConds
ggSetCurveEndConds
ggSetGraphScaling
ggSetPlotFrame

ggPlotHistogram

Syntax
C/C++: void ggPlotHistogram(int ncols, float *yarray, float frac, int scy, float vbeg, float
vend);
F90: subroutine ggPlotHistogram(ncols, yarray, frac, scy, vbeg, vend)
integer, intent(in) :: ncols, scy
real, intent(in) :: yarray(*), frac, vbeg, vend
Arguments ncols

The number of columns to be plotted

yarray
Array, of dimension ncols, giving the heights of the columns to be plotted on the Histogram

frac

Fraction of an interval to be occupied by each column

scy

The type of scaling used on the Y axis

= GLINEAR Linear scale on Y axis
= GLOGI10 Logo scale on Y axis
vbeg

Value specifying the centre value of the first column on the X axis

vend
Value specifying the centre value of the last column on the X axis

267

ggPlotPieChart ROUTINE SPECIFICATIONS

Description The routine ggPlotHistogram() draws a frame to fit the available drawing area or current
window and plots a Histogram within it. The columns on the Histogram have the width:

((length of X axis)/ncols) * frac.

If frac = 1.0, only the necessary verticals are drawn, ie, lines common to two columns are
omitted. If frac = 0.0, two coincident vertical lines are drawn centred on the tick mark. If frac
< 0.0, the default value is 0.0 and if frac > 1.0, the default value is 1.0. Each column has the
height defined in array yarray.

The Histogram is automatically scaled and annotated to make maximum use of the drawing
area. If vbeg = vend, no numeric annotation is written on the X axis. The type of scaling on the
continuous axis is defined by the value given in scy. The default axes annotation may be
changed using the routines ggSetAxesAnnotation() and/or ggSetAxesAttribs().

See Also Page 72
ggSetAxesAnnotation
ggSetAxesAttribs
ggSetPlotFrame
ggFillHistogram
ggAddHistogramValues

ggPlotPieChart

Syntax
‘ C/C++: void ggPlotPieChart(int nsegs, float *value, char *string[], int *fill, int *line);
F90: subroutine ggPlotPieChart(nsegs, value, string, fill, line)

integer, intent(in) :: nsegs, fill(*), line(*)
real, intent(in) :: value(*)
character*(*), intent(in) :: string(*)

Arguments nsegs
The number of segments to be plotted (between 1 and 50)

value
Array, of dimension nsegs, of segment values for the chart. These need not be percentages as
ggPlotPieChart() calculates the percentage value of each segment automatically

string
Array of dimension nsegs, holding the labels for the segments

fill

Integer array, of dimension nsegs, determining the fill styles to be used to fill each segment

<-1 Specifies no fill and no boundary
= GHOLLOW Specifies boundary only

= GSOLID Specifies a solid fill

= GFINEHORIZONTAL }

= GFINEVERTICAL }

= GFINELEFTDIAGONAL }

268

ROUTINE SPECIFICATIONS ggPlotPieChart

Description

= GFINERIGHTDIAGONAL }

= GFINEHORIZONTALGRID }

= GFINEDIAGONALGRID }

= GFINEHORIZONTALMESH } Specifies the hatch
= GFINEDIAGONALMESH } style index

= GCOARSEHORIZONTAL }

= GCOARSEVERTICAL

= GCOARSELEFTDIAGONAL

= GCOARSERIGHTDIAGONAL
= GCOARSEHORIZONTALGRID
= GCOARSEDIAGONALGRID

= GCOARSEHORIZONTALMESH
= GCOARSEDIAGONALMESH }

>256 Specifies a solid fill for software fill, or the fill style
index for hardware fill

line

Integer array, of dimension nsegs, determining the line style to be used to fill each segment
= GCURRENT Specifies the current line style

=11t0256 Specifies the line style index

>256 Specifies the current line style

The value of an element of line is irrelevant where the corresponding element of fill has a value
less than -1

The routine ggPlotPieChart() draws a complete annotated, filled Pie Chart. The Pie Chart is
drawn to fit the available drawing window, or with respect to the Pie Chart frame defined by
the most recent call to ggSetPieChartFrame(). The segments are drawn anticlockwise from the
three o’clock position, or from the start angle defined by the most recent call to
ggSetPieChartStartAngle(). The absolute value for each segment takes a proportion of the pie.
The proportion is defined as the segment value divided by the sum of all the segment values.

Each segment of the Pie Chart consists of the following elements; the background filling, the
annotation and associated box and the segment boundary.

The segments are filled in the style determined by the combination of the corresponding
elements of fill and line. Where a fill element is equal to GHOLLOW, only the boundary of the
segment is drawn. One or more of the segments may be left unfilled by giving the
corresponding element(s) of fill a value of -2 or less. Negative values of line cause a warning
to be output and the absolute value is used. The default line styles, hatch styles and fill styles
appear in Appendix A of this manual. The current line style is left unchanged.

The default annotation for the Pie Chart is to print the segment label horizontally in a masked
box within the segment boundary. Other forms of annotation are available including radial and
external, each of which may include a combination of the segment label, the percentage value
of the segment and the data value itself. All these options are set with the Pie Chart annotation
routine ggSetPieChartAnnotation(). The routine ggSetPieChartBoxType() controls the
filling/masking and drawing of the annotation box for internal segment annotation.

By default the segment boundaries are drawn in the current pen colour, these can be switched
off using ggSetPieChartBoundSwitch().

269

ggPlotStepChart ROUTINE SPECIFICATIONS

Individual segments may be extracted from the Pie Chart centre using the routine
ggSetPieChartExplosion().

See Also Page 140
ggSetPlotFrame
ggSetPieChartStartAngle
ggSetPieChartAnnotation
ggSetPieChartBoxType
ggSetPieChartBoundSwitch
ggSetPieChartExplosion
ggSetPieChartFrame

ggPlotStepChart

Syntax
C/C++: void ggPlotStepChart(int nsteps, GSTEPCHART *steps, float base, int scx, int scy,
int drop);
F90: subroutine ggPlotStepChart(nsteps, steps, base, scx, scy, drop)

integer, intent(in) :: nsteps, scx, scy, drop
type(GSTEPCHART), intent(in) :: steps(*)
real, intent(in) :: base

Arguments nsteps
The number of steps to be plotted

steps
Array of dimension nsteps, giving the start and finish widths and height values of all the areas
in the Step Chart

SCX
The type of scaling used on the X axes

= GLINEAR Linear scale on axis

= GLOGI10 Log scale on axis

scy

The type of scaling used on the Y axes

= GLINEAR Linear scales on axis
=GLOGI10 Log, scale on axis

base

Base value in graphical coordinates which steps are drawn to depending on the value of drop
drop

Flag determining how step edges are drawn

= GDROPTYPEO Step heights only are drawn
= GDROPTYPEI Link adjacent steps

270

ROUTINE SPECIFICATIONS ggPlotXYPolarChart

Description

See Also

= GDROPTYPE2 Link adjacent steps and draw non-adjacent edges to
base
= GDROPTYPE3 Draw all step edges to base

The routine ggPlotStepChart() draws a frame to fit the available drawing area or current
window and plots a Step Chart within it. The steps are drawn as columns with widths
determined by the values in steps.s and steps.f, and with heights of the values held in the
component steps.h.

The columns may be represented in one of four ways depending on the value of drop. If drop
= GDROPTYPE2 or GDROPTYPES3 then all or the end column edges are drawn to base on the
Y axis.

The axes are scaled according to the value of scx, scy.

The default axes annotation may be changed using the routines ggSetAxesAnnotation() and/or
ggSetAxesAttribs(). The default data ranges and axes intervals can be changed using the routine
ggSetGraphScaling().

Page 79
ggAddStepChartOutline
ggAddStepChartValues
ggFillStepChart
ggSetAxesAnnotation
ggSetAxesAttribs
ggSetGraphScaling
ggSetPlotFrame

ggPlotXYPolarChart

Syntax
‘ C/C++: void ggPlotXYPolarChart(int npts, GPOINT *points, int line);
F90: subroutine ggPlotXYPolarChart(npts, points, line)

integer, intent(in) :: npts, line
type(GPOINT), intent(in) :: points

Arguments npts
The number of points to be plotted
points
Array of dimension npts, giving the X and Y values of the points to be defined on the graph
line
The type of line to be drawn
=GSYMBOLS Symbol drawn at each data point
= GSTRAIGHT Points drawn with straight lines (default)
= GCUBIC Points joined with piecewise smooth parametric cubic

curves

271

ggRestoreAxesSettings ROUTINE SPECIFICATIONS

Description

See Also

= GAKIMA Point joined with smooth Akima curve
= GSPLINE Points joined with parametric cubic splines

Negative values of the above will add a symbol at each point

The routine ggPlotXYPolarChart() draws a complete Polar Chart to fit the available drawing
area or current window and plots a graph within it from the data held in the components
points.x and points.y. The type of line joining the data points is determined by line. The polar
plot is automatically scaled and annotated to fit centrally within the available drawing area,
giving the full 360 degrees radius and containing all the points in the data array.

Graphs with style= GSYMBOLS or tGSTRAIGHT, can be affected by the current missing
value mode as set by the routine ggDefineMissing Values().

The default axes annotation may be changed using the routines ggSetAxesAnnotation() and/or
ggSetAxesAttribs().

Page 127
ggDefineMissing Values
ggSetAxesAnnotation
ggSetAxesAttribs
ggSetPlotFrame

ggRestoreAxesSettings

Syntax

‘ C/C++: void ggRestoreAxesSettings(void); ‘

‘ F90: subroutine ggRestoreAxesSettings ‘

Arguments None

Description The routine ggRestoreAxesSettings() restores the default settings for axis positioning, scaling,
and annotation. ggRestoreAxesSettings() restores all the attributes set using the routines
ggSetAxesPos(), ggSetAxesScaling(), ggSetDateAxesAnnotation(), ggSetDateAxesScaling(),
ggSetPolarChartAttribs(), ggSetAxesAnnotation(), and ggSetAxesAttribs().
ggRestoreAxesSettings() also switches off any graphical drawing boundary set up with the
routine ggSetPlotFrame(), such that future axis positioning for any of the complete graph or
chart routines is calculated to fit the current GINO drawing area or window.

See Also Page 15, 23, 45 and 135

272

ggSetAxesPos
ggSetAxesScaling
ggSetAxesAnnotation
ggSetAxesAttribs
ggSetDateAxesAnnotation
ggSetPlotFrame
ggSetPolarChartAttribs
ggSetDateFormat
ggSetDateAxesScaling

ROUTINE SPECIFICATIONS ggRestoreBlockChartAttribs

ggRestoreBlockChartAttribs

Syntax

‘ C/C++: void ggRestoreBlockChartAttribs(void); ‘

‘ F90: subroutine ggRestoreBlockChartAttribs ‘

Arguments None

Description The routine ggRestoreBlockChartAttribs() restores the Block Chart attributes to their default
settings.
A full description of the attributes and their default values is documented with the setting
routine ggSetBlockChartAttribs().

See Also Page 88

ggEnqBlockChartAttribs
ggSetBlockChartAttribs

ggRestorePieChartSettings

Syntax

‘ C/C++: void ggRestorePieChartSettings(void); ‘
‘ F90: subroutine ggRestorePieChartSettings ‘
Arguments None

Description The routine ggRestorePieChartSettings() restores the default Pie Chart frame, in which the size

and position of the Pie Chart are calculated to fit the available drawing area or current window.
This resets any frame set up by ggSetPieChartFrame() or the GINOGRAF drawing area set by
ggSetPlotFrame().

ggRestorePieChartSettings() also restores all Pie Chart attributes to their defaults. These
include:

Start angle (ggSetPieChartStartAngle())

Annotation settings (ggSetPieChartAnnotation())
Annotation box type (ggSetPieChartBoxType())

Segment boundary switch (ggSetPieChartBoundSwitch())

Explosion factors (ggSetPieChartExplosion())

273

ggRestoreVectorSettings ROUTINE SPECIFICATIONS

See Also

Page 151

ggSetPlotFrame
ggSetPieChartStartAngle
ggSetPieChartAnnotation
ggSetPieChartBoxType
ggSetPieChartBoundSwitch
ggSetPieChartExplosion
ggSetPieChartFrame

ggRestoreVectorSettings

Syntax

‘ C/C++: void ggRestoreVectorSettings(void); ‘

‘ F90: subroutine ggRestoreVectorSettings ‘

Arguments None

Description The routine ggRestoreVectorSettings() resets the clipping, positioning and scaling attributes of
Vector Chart arrows to their default state. The different attributes are set by the routines
ggSetVectorChartFrame(), ggSetVectorLimits() and ggSetVectorAttribs().
ggRestoreVectorSettings() restores their state to that at GINOGRAF initialization.

See Also Page 123

ggSetVectorChartFrame
ggSetVectorLimits
ggSetVectorAttribs

ggReturnLineCoeffs

Syntax

C/C++:

void ggReturnLineCoeffs(int type, int npts, GPOINT *points, int ncoef, float coeffs]],
int *nmax, int *er);

F90:

subroutine ggReturnLineCoeffs(type, npts, points, ncoef, coeffs, nmax, er)

integer, intent(in) :: type, npts, ncoef
integer, intent(out) :: nmax, er
type(GPOINT), intent(in) :: points(*)
real, intent(out) :: coeffs(*)

Arguments

274

lype
Type of line fitting performed on the data set

= GLEASTSQUARE Least squares straight line fit
>1 Reserved for future use

points
Array of dimension npts, giving the X and Y axis values of the points defined on the graph

ROUTINE SPECIFICATIONS ggSetAxesAnnotation

Description

See Also

npts
The number of points in X and Y

ncoef
The number of coefficients required to be returned

coejfs
Array of dimension ncoef, returning the coefficients of the fitted line

nmax
The total number of coefficients of the fitted line

=0, No coefficients returned due to argument or fitting error
>0, Number of coefficients of successful fit

er

Error flag

= GSUCCESS Successful fit

= GFAIL Unsuccessful fit

The routine ggReturnLineCoefts() takes a set of data points and fits a straight line or curve to
it, returning their coefficients to the user. No graphics output is generated by this routine.

The data is supplied in the components points.x, points.y each having npts points. The
coefficients are returned in the array coeffs which should have the same dimension as the
number of coefficients required as set in ncoef. The actual number of coefficients calculated by
the fitting algorithm is returned in nmax which may be more or less than ncoef.

In the case of the straight line fit (type=GLEASTSQUARE), the two coefficients ‘a’ and ‘b’ of
line ‘y=ax + b’ are returned in coeffs(2) and coeffs(1) respectively.

If less than two points are supplied or less that one coefficient is requested, an error message is
generated and no fitting is attempted. If there is enough data but a fit is not possible (ie, if the
points are located in one position, or if all the points have the same Y coordinate values) the
error flag er is set to 1 but no error message is produced. In either of these cases nmax is set to
zero to indicate that no coefficients have been returned.

Page 169

ggSetAxesAnnotation

Syntax
‘ C/C++: void ggSetAxesAnnotation(int ndp, int npower, int asty, int xory);
F90: subroutine ggSetAxesAnnotation(ndp, npower, asty, xory)
integer, intent(in) :: ndp, npower, asty, xory
Arguments ndp

The number of decimal places

<0, ndp decimal places are always displayed

275

ggSetAxesAnnotation ROUTINE SPECIFICATIONS

Description

276

>0, Up to ndp decimal places are displayed
=0, No decimal places are used forcing rounding to the nearest integer value

ndp must be in the range -9 to 9

npower
The power to which annotation is raised, e.g. x10""*"*". npower must be in the range -15 to 15,
any value outside this range will result in default annotation

asty

Axis scale format

= GNOSCALE No scale factor is displayed

= GSCALEPOWEROF10 Scale factor is displayed as *10"

= GSCALEZEROS Scale factor is displayed as ‘000 or 0.00’

= GSCALEWORD Scale factor is displayed in words

= GSCALEPREFIX Scale factor is displayed in engineering units

Scale types GSCALEWORD and GSCALEPREFIX require that npower is a multiple of 3

xory
Specified axis

= GXAXIS Parameters set for X axis
= GYAXIS Parameters set for Y axis

The routine ggSetAxesAnnotation() is used to alter the format of all numeric annotation and
the style of the scale factor on linear graphical axes.

Its main use is with axes annotation format for all the complete graph and chart routines as well
as the component axis drawing routines ggDrawAxes(), ggDrawPolarAxes() and ggAddGrid().
The default format is described under ggDrawAxes().

ndp can be used to optionally control or force the display of the number of decimal places if
there are more or less than two decimal places. When ndp is positive, the axis annotation will
only contain up to that number of decimal places as required by the calculated increment.

NB. Certain machines may not have the capability to cope with numbers to an accuracy of
nine decimal places. This may produce undesirable results.

npower is used to control the scale factor of the annotation forcing it to a particular value in
the range -15 to 15. If npower is outside this range, GINOGRAF will display the actual power
factor of the data supplied.

asty provides the five alternatives in the display of the scale factor at the end of the axis. If set
to GNOSCALE, NO scale factor is displayed at the end of the axes. Obviously, this should be
used with care as the values displayed at the tick marks could be misleading and require a scale
factor. Type GSCALEPOWEROF10 is the default, displaying the power factor. Type
GSCALEZEROS will display the scale factor with the required number of 0’s, for example:

x10* is displayed as ‘0000
x107 is displayed as 0.00

ROUTINE SPECIFICATIONS ggSetAxesAttribs

Types GSCALEWORD and GSCALEPREFIX are used when npower is a multiple of 3
displaying the following words:

GSCALEWORD GSCALEPREFIX
x10™ Quadrillionths atto
x10™ Trillionths pico
x10” Billionths nano
x10° Millionths micro
x10° Thousandths milli
x10° Thousand kilo
x10° Million mega
x10° Billion giga
x10% Trillion tera
x10” Quadrillion peta

If npower is not a multiple of 3, for type GSCALEWORD or GSCALEPREFIX, the default
scale type will be used and a warning message output. If the power factor is outside the range
-15 to 15 or if ggSetAxesAnnotation() has not been called, GINOGRAF will select an
appropriate scale factor which is zero or a multiple of 3.

ggSetAxesAnnotation() is also used to control numerical annotation on Value Charts, Pie
Charts and Text Charts. Value charts use the format of the relevant axis, but Pie Charts and
Text Charts use the attributes set for the Y axis (xory = GYAXIS) so that values can be
matched to those displayed on the Y axis if necessary. The user should note however, that these
routines do not provide a means for displaying the scale factor and so in most cases the value
of npower should be zero unless a direct relationship can be made with a Y axis and its scale
factor.

All the annotation attributes are set to their respective defaults if the routine
ggRestoreAxesSettings() is called.

See Also Page 27, 145 and 157
ggDrawAxes
ggRestoreAxesSettings
ggEngAxesAnnotation
ggDrawPolarAxes
ggAddGrid

ggSetAxesAttribs

Syntax
C/C++: void ggSetAxesAttribs(int swi, float xy, int nstart, int nskip, float aoff, float angstr, int
jstmb, int jslcr, int reduc, int xory);
F90: subroutine ggSetAxesAttribs(swi, xy, nstart, nskip, aoff, angstr, jstmb, jslcr, reduc,

xory)

integer, intent(in) :: swi, nstart, nskip, jstmb, jslcr, reduc, xory
real, intent(in) :: xy, aoff, angstr

277

ggSetAxesAttribs ROUTINE SPECIFICATIONS

Arguments swi
Annotation position

= GONAXIS On specified axis
= GOFFSET Positioned at xory
Xy

The position in user space coordinates of the annotation in either the X or Y direction. xy is
only used if swi=GOFFSET

nstart
Tick mark number at which the annotation starts

nskip

Number of annotation elements to be skipped during annotation

<0 Automatic skip generation

= GNONE No labels skipped - all annotation elements are output
>0 Skip nskip elements

aoff

Offset as a proportion of distance between major tick marks on the specified axis

angstr

Annotation string angle

jstmb

Vertical justification for each annotation element

=GBOTTOM Bottom justified - string above control point
= GMIDDLE Middle justified - string centred at control point
=GTOP Top justified - string below control point

= GDEFAULTPOSITION Default for requested axis

Jsler

Horizontal justification for each annotation element

=GLEFT Left justified

= GCENTRE Centre justified

= GRIGHT Right justified

= GDEFAULTPOSITION Default for requested axis

reduc

Annotation character size reduction switch

= GNOREDUCE No size reduction

= GREDUCE Reduce annotation so that no elements overlap (only
operates when nskip = GNONE)

xory

Specified axis

= GXAXIS Parameters set for X axis

= GYAXIS Parameters set for Y axis

278

ROUTINE SPECIFICATIONS ggSetAxesPos

Description

See Also

The routine ggSetAxesAttribs() sets general characteristics for text and numerical axis
annotation produced by all the complete graph and chart routines as well as the component axis
drawing routines ggDrawAxes(), ggDrawAxesLabels(), ggDrawPolarAxes() and ggAddGrid().

The arguments nstart and nskip determine the first major tick mark to be annotated and
whether any elements are to be skipped. If nskip < 0, elements are automatically skipped if
there is not enough space between tick marks to output the requested elements.

The annotation is output with respect to a control point which is positioned in line with each
major tick mark to the specified axis. Where the annotation is output ‘on’ the axis (swi=0), the
control point is twice the tick mark length away from the axis on either the clockwise or
anti-clockwise side. (The side being determined by the relevant parameter in the output routine
ggAddGrid(), ggDrawAxes() or ggDrawAxesLabels()). Where the annotation is output at xy
the control point is on the specified line.

The control point can then be shifted using the offset factor aoff which is measured as a
proportion of the distance between the major tick marks on the relevant axis. The annotation
elements may be rotated by angstr about the control point and justified in both vertical and
horizontal directions using jstmb and jsler. The justification is performed with respect to the
angle that the annotation is output.

When all annotation elements are being output (nskip=GNONE) and their bounding boxes
overlap then the character size may be reduced by setting reduc to GREDUCE. The character
size of the annotation along the whole axis is reduced in height and width in order to retain the
current aspect ratio.

All the axes attributes for both axes are set to their respective defaults if the routine
ggRestoreAxesSettings() is called.

Page 31

ggDrawAxes
ggRestoreAxesSettings
ggDrawAxesLabels
ggEnqAxesAttribs
ggDrawPolarAxes
ggAddGrid

ggSetAxesPos

Syntax
‘ C/C++: void ggSetAxesPos(int or, float xor, float yor, float axlen, int xory);
F90: subroutine ggSetAxesPos(or, xor, yor, axlen, xory)
integer, intent(in) :: or, xory
real, intent(in) :: xor, yor, axlen
Arguments or

Flag determining the position of the point (xor, yor) on the axis

= GDATAORIGIN (xor, yor) represents the point at which the natural
origin should occur on the drawing area

279

ggSetAxesScaling ROUTINE SPECIFICATIONS

= GAXISSTART (xor, yor) represents the point where the axis starts on
the drawing area
xor

Value which specifies the X part of the user space coordinates defining the position of the axis
in the drawing area

yor
Value which specifies the Y part of the user space coordinates defining the position of the axis
in the drawing area

axlen
Value specifying the length of the axis in the current units (default units are millimetres). Units
can be changed using the GINO routine gDefinePictureUnits(), described in the GINO User

Guide

xory

Specified axis

= GXAXIS The X axis is defined
= GYAXIS The Y axis is defined

Description The routine ggSetAxesPos() defines the position and length of an axis in user space
coordinates. or determines whether the coordinates (xor, yor) represent the start of the axis or
the natural origin. If the natural origin is not within the range of the data, the axis starts at the
coordinate (xor, yor). If graphical drawing begins before ggSetAxesPos() is called, suitable
defaults are calculated in terms of the available drawing area or current window.

Successive calls to ggSetAxesPos() for the same axis override earlier definitions. Coordinates
defined in terms of axes set up by ggSetAxesPos() and ggSetAxesScaling() are referred to as
graphical axes coordinates.

The effects of ggSetAxesPos() can be cancelled using ggRestoreAxesSettings(), allowing
defaults overridden by ggSetAxesPos() to be restored.

See Also Page 20
ggRestoreAxesSettings
ggEnqAxesPos

ggSetAxesScaling

Syntax
‘ C/C++: void ggSetAxesScaling(int scale, int nints, float vbeg, float vend,int xory);
F90: subroutine ggSetAxesScaling(scale, nints, vbeg, vend, xory)

integer, intent(in) :: scale, nints, xory
real, intent(in) :: vbeg, vend

Arguments scale
The type of scaling to be used

280

ROUTINE SPECIFICATIONS ggSetAxesScaling

Description

= GLINEARTYPE1 Linear scaling automatically calculated from the
available axis length. Results in a range which includes
vbeg and vend as closely as possible, divided into
approximately nints intervals

= GLINEARTYPE2 Linear scaling automatically calculated to
produce precisely nints intervals in a range
including vbeg and vend

= GLINEARTYPE3 Linear scaling selected by the user with precisely nints
intervals, vbeg on the first interval and vend on the last
interval

= GLOG10 Logjgscaling

= GDISCRETE Discrete axis with nints columns or rows

and tick marks at the column or row centres

nints
The number of intervals on a linear axis, or the number of columns or rows on a discrete axis.
The value of nints is irrelevant when used with logarithmic scaling

vbeg

Value specifying the beginning of the range to be included on the axis

vend
Value specifying the end of the range to be included on the axis

xory

Specified axis

= GXAXIS The X axis is defined
= GYAXIS The Y axis is defined

The routine ggSetAxesScaling() defines the scaling characteristics of the last xory axis defined
by ggSetAxesPos(), or the default axis if ggSetAxesPos() has not been called. If graphical
drawing begins before ggSetAxesScaling() is called, the following defaults are used:

scale = GLINEARTYPE3

nints = 9
vbeg = 1.0
vend = 10.0

If, for scale = GLINEARTYPE1, GLINEARTYPE2, GLINEARTYPE3, or GDISCRETE, vbeg
= vend, the following defaults are used:

new vbeg = vbeg - 0.5 (exponent of vbeg)
new vend = vend + 0.5 (exponent of vend)

If, for scale = GLOG10, vbeg = vend, the following default is used:

vbeg = vbeg/10
vend = 10 * vend

The actual number of intervals and ranges calculated by ggSetAxesScaling() may be enquired
through the routine ggEnqAxesScaling().

281

ggSetBlockChartAttribs ROUTINE SPECIFICATIONS

See Also

Successive calls to ggSetAxesScaling() for a particular axis override previous calls for that
axis. Coordinates defined in terms of axes set up by ggSetAxesScaling() and ggSetAxesPos()
are referred to as graphical axes coordinates.

The effects of ggSetAxesScaling() may be overridden using ggRestoreAxesSettings(), allowing
parameters set by ggSetAxesScaling() to be restored to their default values.

Page 21

ggSetAxesPos
ggRestoreAxesSettings
ggEnqAxesScaling

ggSetBlockChartAttribs

Syntax
C/C++: void ggSetBlockChartAttribs(int coloff, float azim, float elev, float depth, float top,
float side);
F90: subroutine ggSetBlockChartAttribs(coloff, azim, elev, depth, top, side)

integer, intent(in) :: coloff
real, intent(in) :: azim, elev, depth, top, side

Arguments coloff
Colour index offset for shading (deafult = 20)
azim
Azimuth angle of block in range -60.0 to 60.0 (default = 30.0)
elev
Elevation angle of block in range -60.0 to 60.0 (default = 30.0)
depth
Depth as fraction of column width in range 0.1 to 10.0 (default = 1.0)
top
The relative lightness of the top of a column compared to that of the front in range 0.0 to 100.0
(default = 0.67)
side
The relative lightness of the side of a column compared to that of the front in range 0.0 to 100.0
(default = 0.33)

Description The routine ggSetBlockChartAttribs() sets the Block Chart attributes for all the Block Chart

282

routines.

The colour index offset is used for the allocation of colour table entries to set the top and side
shading colours. The first index used is coloff+1. Each of the standard block chart routines
require two indices where as the multi-histogram routine requires 2 * the number of groups
indices. User should be aware that the colour table entries coloff+1 and beyond are modified by
the block filling routines and are not reset by any GINOGRAF routine.

ROUTINE SPECIFICATIONS ggSetCurveEndConds

See Also

The azimuth and elevation angles determine the shape of the block filling. When both are
positive, the filling is to the right and above the front of the column or area. Negative values
switch the block shading to the alternative side.

The depth fraction (depth) is used as specified above in the histogram and bar chart routines,
but because the width is variable in the step and area charts, depth is multiplied by a fixed
value (10% of the specified axis length) to determine the nominal block depth.

Both arguments top and side may be set to make the top and side panels of the block either
darker or lighter than the front. i.e Values less than 1.0 will produce darker colours and values
greater than 1.0 will produce lighter colours. In all cases the hue of the front panel is
maintained.

The default block chart attributes may be restored using the routine
ggRestoreBlockChartAttribs().

Page 87
ggBlockFillAreaChart
ggBlockFillBarChart
ggBlockFillHistogram
ggBlockFillMultiHistogram
ggBlockFillStepChart
ggEngBlockChartAttribs
ggRestoreBlockChartAttribs

ggSetCurveEndConds

Syntax
‘ C/C++: void ggSetCurveEndConds(int fin, float cosfin, float sinfin, float xfin, float yfin); ‘
F90: subroutine ggSetCurveEndConds(fin, cosfin, sinfin, xfin, yfin)
integer, intent(in) :: fin
real, intent(in) :: cosfin, sinfin, xfin, yfin
Arguments fin

End conditions for end of subsequent graph curve drawing routine

= GXPOINT Direction of curve defined such that it would pass
through the extra point xfin, yfin

= GNONE No end condition set

= GANGLE Direction angle of curve defined in terms of cosfin and
sinfin

cosfin

Cosine of finish angle

sinfin
Sine of finish angle

xfin

X coordinate of extra point in graph coordinates

283

ggSetCurveStartConds ROUTINE SPECIFICATIONS

Description

See Also

Yfin

Y coordinate of extra point in graph coordinates

The routine ggSetCurveEndConds() sets the finish conditions of the next curve drawing routine
used by GINOGRAF (ggPlotGraph(), ggAddGraphCurve(), ggAddAkimaCurve() or
ggAddGraphSpline()). The end conditions may be defined in terms of an extra point (in graph
coordinates) or an angle.

The specified end conditions remain in effect for all curve drawing routines, until reset with fin
being set to GNONE.

Page 55
ggSetCurveStartConds
ggAddAkimaCurve
ggAddGraphCurve
ggPlotGraph
ggAddGraphSpline

ggSetCurveStartConds

Syntax
C/C++: void ggSetCurveStartConds(int beg, float cosbeg, float sinbeg, float xbeg, float
ybeg);
F90: subroutine ggSetCurveStartConds(beg, cosbeg, sinbeg, xbeg, ybeg)

integer, intent(in) :: beg
real, intent(in) :: cosbeg, sinbeg, xbeg, ybeg

Arguments beg
End conditions for start of subsequent graph curve drawing routine
= GXPOINT Direction of curve defined such that it would pass

through the extra point xbeg, ybeg
= GNONE No start condition set
= GANGLE Direction angle of curve defined in terms of cosbeg and
sinbeg

cosbeg
Cosine of start angle
sinbeg
Sine of start angle
xbeg
X coordinate of extra point in graph coordinates
ybeg
Y coordinate of extra point in graph coordinates

Description The routine ggSetCurveStartConds() sets the start conditions of the next curve drawing routine

284

used by GINOGRAF (ggPlotGraph(), ggAddGraphCurve(), ggAddAkimaCurve() or
ggAddGraphSpline()). The start conditions may be defined in terms of an extra point (in graph
coordinates) or an angle.

ROUTINE SPECIFICATIONS ggSetDateAxesAnnotation

The specified start conditions remain in effect for all curve drawing routines, until reset with
beg being set to GNONE.

See Also Page 55
ggSetCurveEndConds
ggAddAkimaCurve
ggAddGraphCurve
ggPlotGraph
ggAddGraphSpline

ggSetDateAxesAnnotation

Syntax
C/C++: void ggSetDateAxesAnnotation(int fdow, int fday, int fmon,int fyear,
int xory);
F90: subroutine ggSetDateAxesAnnotation(fdow, fday, fmon, fyear, xory)
integer, intent(in) :: fdow,fday,fmon,fyear,xory

Arguments fdow
Format for Day of Week

<0, Alphanumeric with -fdow characters (up to 9)
= GNONE Not present

=1, Numeric (1 to 7) with 1 = Monday
JSday

Format for Day

<0, Alphanumeric (1st, 2nd, 3rd, etc.)
= GNONE Not present

=1, Numeric (1 to 31)

fmon

Format for Month

<0, Alphanumeric with -fmon characters (up to 9)
= GNONE Not present

=1, Numeric (1 to 12)

fyear

Format for Year

= GNONE Not present

=2, Two digit display

=4, Four digit display

xory

Specified axis

= GXAXIS The X axis is defined

= GYAXIS The Y axis is defined

285

ggSetDateAxesScaling ROUTINE SPECIFICATIONS

Description

See Also

Defines the output format for date axis annotation for use in conjunction with the date axis
format and scaling routines ggSetDateAxesAnnotation() and ggSetDateAxesScaling().

Each of the day of the week, day and month may be specified as alphanumeric, not present or
numeric in the label attached to the major tick mark of the date axis. The year element may be
omitted or contain 2 or 4 digits. Where an alphanumeric format is specified, for days of the
week and months, the component is truncated to the specified number of characters. ie. where
fmon is set to -3, months are output as Jan, Feb, Mar, etc.

The ordering of the date components is set with the output format settings of the routine
ggSetDateFormat().

The routine ggRestoreAxesSettings() will reset the date format to the default settings for both
axes.

Page 40
ggRestoreAxesSettings
ggSetDateFormat
ggSetDateAxesScaling

ggSetDateAxesScaling

Syntax
C/C++: void ggSetDateAxesScaling(int scale, int dincr, char dbeg[],
char dend[], int xory);
F90: subroutine ggSetDateAxesScaling(scale, dincr, dbeg, dend, xory)
integer, intent(in) :: scale, dincr, xory
character*(*), intent(in) :: dbeg, dend
Arguments scale

286

The type of scaling to be used

= GLINEARTYPE!I Results in a range which includes dbeg and dend
rounded up to the nearest suitable date increment (dincr
is not used)

= GLINEARTYPE2 As type | but uses the supplied date increment

= GLINERATYPE3 Using the supplied dincr, the range will start at dbeg

and end on a date increment at or beyond dend

dincr
The increment used for major tick marks on the date axis

= GDECADE Decade (10 years)

=GYEAR Year

= GMONTH Month

= GWEEK Week (7 days starting on Monday)
= GDAY Day

dbeg

Date for the beginning of the range to be included on the axis

ROUTINE SPECIFICATIONS ggSetDateFormat

Description

See Also

dend

Date for end of the range to be included on the axis

xory

Specified axis

= GXAXIS The X axis is defined
= GYAXIS The Y axis is defined

The routine ggSetDateAxesScaling() defines a date scaling type for the xory axis replacing any
numerical scaling type defined by ggSetAxesScaling(). The position set by ggSetAxesPos() is
unaltered.

Rather than specifying the number of increments, ggSetDateAxesScaling() specifies the
increment type to be used on the major tick marks of the date axis. Minor tick marks will
represent the next smaller increment (if there is space to display them)

Note that axes tickmarks are always equally spaced and therefore the positioning of month and
year tickmarks and their associated label may not be drawn in exactly the correct position due
to the varying length of these increments.

The start and end dates are supplied as character strings of up to 10 characters, formatted
according to the current date input format type as set up by ggSetDateFormat(). Dates which
are incorrectly formatted are interpreted as January Ist 1900.

Data represented as a series of dates in the same format may be converted to the appropriate
real day values required for the data display routines using the routine ggConvertDates().

Numerical scaling can be reset on an axis using ggSetAxesScaling() or
ggRestoreAxesSettings(), the latter of which will reset numerical scaling to their default
values.

Page 39

ggSetAxesPos
ggSetAxesScaling
ggRestoreAxesSettings
ggConvertDates
ggSetDateFormat

ggSetDateFormat

Syntax
‘ C/C++: void ggSetDateFormat(int inform, char insep, int ouform, char ousep);
F90: subroutine ggSetDateFormat(inform, insep, ouform, ousep)
integer, intent(in) :: inform, ouform
character, intent(in) :: insep, ousep
Arguments inform

Date format for input dates

= GBRITISH British form dd/mm/yy or dd/mm/yyyy

287

ggSetGraphCharMode ROUTINE SPECIFICATIONS

Description

See Also

= GAMERICAN American form mm/dd/yy or mm/dd/yyyy

= GLOGICAL Standard Logical form yy/mm/dd or yyyy/mm/dd
insep

Date separator for input dates

ouform

Date format for output dates

= GBRITISH British form dd/mm/yy or dd/mm/yyyy

= GAMERICAN American form mm/dd/yy or mm/dd/yyyy

= GLOGICAL Standard Logical form yy/mm/dd or yyyy/mm/dd
ousep

Date separator for output dates

Sets the date format for numeric date character strings. Essentially this routine controls the
ordering of the date components and their separator when in numeric format.

The input format setting is used by ggConvertDates(), ggConvertDateToGraph() and
ggSetDateAxesScaling() routines. In these routine, dates are supplied as a character string of
up to 10 characters with the defined input separator separating the day, month and year. Days
and months can be given as one or two digits, there can be a leading zero if the value is less
than 10. Years can be supplied as two or four digits, with two digits being taken to apply to the
years 1950 to 2049, ie. 05 means 2005 not 1905. The input format is also used in the routines
ggEngDateAxesScaling() and ggConvertGraphToDate().

The output format is used to control the ordering of the date components on date axes although
their full format is controlled by the routine ggSetDateAxesAnnotation(). The output separator
is only used for fully numeric dates.

If either format type is out of range, then the default British format is set.

Page 39
ggSetDateAxesAnnotation
ggConvertDates
ggSetDateAxesScaling

ggSetGraphCharMode

Syntax
| ClC++: void ggSetGraphCharMode(int sw);
F90: subroutine ggSetGraphCharMode(sw)
integer, intent(in) :: sw
Arguments sw

288

Flag determining whether software transformable character strings are to be used within
GINOGRAF

= GGINOMODE Use current GINO character mode
= GSOFTWARE Set software transformable character strings

ROUTINE SPECIFICATIONS

ggSetGraphScaling

Description

See Also

The routine ggSetGraphCharMode() sets a switch to determine whether software transformable

characters or the current GINO character mode are to be used for all character output by
GINOGRAF.

By default GINOGRAF sets software transformable characters so that graph annotation is
correctly positioned if any GINO transformations are current. If sw = GGINOMODE,

GINOGRAF uses the current character mode for all its character output which allows the use

of hardware characters if desired.

sw should not be set to GGINOMODE if GINO transformations are current because annotation

will be incorrectly positioned.

The current GINO character mode is always restored at the end of each GINOGRAF routine.

Page 14

ggSetGraphScaling

Syntax
‘ C/C++: void ggSetGraphScaling(int mode);
F90: subroutine ggSetGraphScaling(mode)
integer, intent(in) :: mode
Arguments mode
Graph scaling mode
= GDEFAULT Default
= GEQUALLIMITS Equal limits for both axes
= GEQUALRANGES Equal ranges for both axes
= GEQUALGRAPHINTERVALS Equal sized interval in graph coordinates
= GEQUALSPACEINTERVALS Equal sized intervals in space coordinates (Square grid)
Description The routine ggSetGraphScaling() sets the scaling mode for the complete graph, step chart and
area chart drawing routines.
By default, all the complete graph and chart drawing routines, calculate the separate ranges of
X and Y from the data supplied to the routine and display axes representing these ranges. The
routine ggSetGraphScaling() can be used to modify the final output of the graph or chart by
altering the ranges or intervals on the axes according to the required mode.
Note that, in GEQUALSPACEINTERVALS mode, the length of one of the axes may be
reduced in order to comply with the request for equal sized intervals in space coordinates.
See Also Page 86
ggPlotAreaChart
ggPlotGraph
ggPlotStepChart

289

ggSetGridMarker ROUTINE SPECIFICATIONS

ggSetGridMarker

Syntax

‘ C/C++: void ggSetGridMarker(int sym);
F90: subroutine ggSetGridMarker(sym)

integer, intent(in) :: sym

Arguments sym
GINO symbol number

= GSPOT
=GUP
=GDOWN

= GPLUS

= GCROSS
=GBOX

= GDIAMOND
= GCIRCLE

= GSTAR }

=9-23, Optional hardware symbol
>23 Character from font table

Standard GINO symbols

[N N N N

Description The routine ggSetGridMarker() defines the grid intersection symbol. The default being a cross
symbol displayed at the intersection of the major tick marks.

sym may be any GINO symbols as described in the GINO user guide.

See Also Page 26
ggAddGrid
ggSetPieChartAnnotation
Syntax
‘ C/C++: void ggSetPieChartAnnotation(int type, int txt, int per, int val, float tol);
F90: subroutine ggSetPieChartAnnotation(type, txt, per, val, tol)

integer, intent(in) :: type, txt, per, val
real, intent(in) :: tol

Arguments type

Pie chart annotation type

= GRADIAL Radial
= GINTERNAL Internal
= GEXTERNAL External

290

ROUTINE SPECIFICATIONS ggSetPieChartAnnotation

Description

Ixt

Flag determining whether text string is included in annotation

= GNOTEXT Text string not included

= GTEXT Text string included

per

Flag determining whether calculated percentage is included in annotation
= GNOPERCENT Percentage value not included
= GPERCENT Percentage value included
val

Flag determining whether data value is included in annotation

= GNODATA Data value not included

= GDATA Data value included

tol

Tolerance level. The minimum percentage of the whole Pie Chart that the segment must occupy
before being annotated

The routine ggSetPieChartAnnotation() sets the Pie Chart annotation type for the complete Pie
Chart routines ggPlotPieChart() and ggAddPieChartSegment().

The style and position of the annotation is set by type. Radial annotation (GRADIAL) outputs
a single string, bisecting the Pie Chart segment in such a way that it is readable from left to
right when viewed from the 6 o’clock position (Y axis negative direction). Internal annotation
(GINTERNAL) is printed horizontally in a masked box within the segment. However, if the
required strings do not fit then they are automatically printed outside the segment (as for
external annotation). External annotation (GEXTERNAL) prints the required output as a single
string horizontally outside the segment with a connecting line.

The annotation may consist of up to three elements: text strings held in the array string,
percentage values calculated from the proportion of the whole pie that each segment occupies,
and data values held in the array value. The inclusion of each of these elements is determined
by the three flags txt, per and val.

Pie chart annotation can be suppressed for small segments by setting the value of tol to a
suitable value. tol is measured as a percentage of a complete circle, therefore if it were set to
1.0 all segments less than 1% of the complete circle (3.6 degrees) would not be annotated.

Percentage values are always followed by a percent symbol. Value output is in the format set
by ggSetAxesAnnotation() for the Y axis which by default is with up to 2 decimal places. The
value may also include prefix and suffix strings set by ggSetValueTags().

The routine ggSetPieChartBoxType() is used to control the form of the box used with the
internal Pie Chart annotation (GINTERNAL).

All the annotation settings are returned to their default with the routine
ggRestorePieChartSettings().

291

ggSetPieChartBoundSwitch ROUTINE SPECIFICATIONS

See Also

Page 142
ggSetAxesAnnotation
ggSetPieChartBoxType
ggPlotPieChart
ggRestorePieChartSettings
ggAddPieChartSegment
ggSetValueTags

ggSetPieChartBoundSwitch

Syntax
‘ C/C++: void ggSetPieChartBoundSwitch(int switch);
F90: subroutine ggSetPieChartBoundSwitch(int switch)

integer, intent(in) :: switch

Arguments switch
Pie chart boundary switch
= GOFF Switch Pie Chart boundaries off
=GON Pie chart boundaries are drawn

Description The routine ggSetPieChartBoundSwitch() switches the drawing of Pie Chart boundaries on or
off when using the Pie Chart routines ggPlotPieChart() and ggAddPieChartSegment(). The
default condition is to draw the boundaries for all Pie Chart segments.
The boundary switch is restored to its default setting by the routine
ggRestorePieChartSettings().

See Also Page 148

ggPlotPieChart
ggRestorePieChartSettings
ggAddPieChartSegment

ggSetPieChartBoxType

Syntax
‘ C/C++: void ggSetPieChartBoxType(int type, int fill, int line);
F90: subroutine ggSetPieChartBoxType(type, fill, line)
integer, intent(in) :: type, fill, line
Arguments type

292

Pie chart internal annotation box type

= GNONE No filling/masking and no boxes

ROUTINE SPECIFICATIONS ggSetPieChartBoxType

Description

= GFILLED Filling/masking done but no boxes drawn
= GBOXED No filling/masking but box outlines are drawn

GFILLED and GBOXED can be combined by an OR operation to produce a box which is both
filled and outlined.

fill

Fill style of Pie Chart annotation boxes for types GFILLED and GBOXED

<-1 Specifies box is masked only
= GHOLLOW Specifies boundary only

= GSOLID Specifies a solid fill

= GFINEHORIZONTAL

= GFINEVERTICAL

= GFINELEFTDIAGONAL

= GFINERIGHTDIAGONAL
= GFINEHORIZONTALGRID
= GFINEDIAGONALGRID
= GFINEHORIZONTALMESH } Specifies the hatch
= GFINEDIAGONALMESH } style index

= GCOARSEHORIZONTAL }

= GCOARSEVERTICAL

= GCOARSELEFTDIAGONAL

= GCOARSERIGHTDIAGONAL
= GCOARSEHORIZONTALGRID
= GCOARSEDIAGONALGRID

= GCOARSEHORIZONTALMESH
= GCOARSEDIAGONALMESH }

>256 Specifies a solid fill for software fill, or the fill style
index for hardware fill

[U)

H
H
H
H
H
H

line
Line style to be used for filling boxes for types GFILLED and GBOXED

= GCURRENT Specifies the current line style
=1t0 256 Specifies the line style index
>256 Specifies the current line style

The value of line is irrelevant where fill has a value less than -1

The routine ggSetPieChartBoxType() controls the form of the internal annotation boxes (where
ggSetPieChartAnnotation() has been set to type GINTERNAL) for the complete Pie Chart
routines ggPlotPieChart() and ggAddPieChartSegment(). ggSetPieChartBoxType() affects the
annotation boxes of all the label types wherever they are placed within the segment area.

The value of type determines whether the annotation box is filled/masked, and whether a box
outline drawn. If output, the box outline is drawn in the current GINO colour. If the box area is
not filled/masked (type = GNONE) then the annotation is displayed over any segment filling.
If type = GFILLED, the box area is filled in the specified fill and line style, except if fill <-1,
where the box area is left unfilled.

If the value of type is out or range, a warning message is output and the default value is used.

293

ggSetPieChartExplosion ROUTINE SPECIFICATIONS

The routine ggRestorePieChartSettings() resets the box type and fill styles back to their
defaults.

See Also Page 147
ggSetPieChartAnnotation
ggPlotPieChart
ggRestorePieChartSettings
ggAddPieChartSegment

ggSetPieChartExplosion

Syntax
‘ C/C++: void ggSetPieChartExplosion(int num, int *list, float *factor);
F90: subroutine ggSetPieChartExplosion(num, list, factor)

integer, intent(in) :: num, list(*)
real, intent(in) :: factor(*)

Arguments num
The number of segments to be drawn as exploded segments (not greater than 50)

=0, Lists of indices and explosion factors are ignored and
all segments are drawn from the centre

>0, The num segments indexed in array list are drawn with
the explosion factors in array factor

list

Array of dimension num, giving the indices of the segments to be drawn as exploded segments

factor
Array of dimension num, defining explosion factors

Description The routine ggSetPieChartExplosion() defines a list of explosion factors, allowing the selective
explosion of Pie Charts sectors. If ggSetPieChartExplosion() is called with num > 0, the num
segments indexed in the array list will be exploded in all Pie Charts subsequently drawn by
ggPlotPieChart(). For example, if list contains the values 1, 3 and 4, the first, third and fourth
segments drawn will be extracted.

The distance from the centre of the Pie Chart to the inner point of the segment indexed in
list(N) is then factor(N) * radius, all segments not indexed in list being drawn from the centre
with no explosion factor.

Pie chart radius is automatically adjusted to take account of the explosion factor if the default
Pie Chart frame is used. If ggSetPieChartFrame() has been called the user should ensure that
exploded sections remain within the available drawing area or current window.

If ggSetPieChartExplosion() is called with num = 0, the lists of segment indices and explosion
factors are deleted and all segments will be drawn from the centre in all Pie Charts
subsequently drawn by ggPlotPieChart().

Once called, ggSetPieChartExplosion() remains active until called again with num = 0.

294

ROUTINE SPECIFICATIONS ggSetPieChartFrame

See Also

Page 148
ggPlotPieChart

ggSetPieChartFrame

Syntax
‘ C/C++: void ggSetPieChartFrame(float radius, float xcen, float ycen);
F90: subroutine ggSetPieChartFrame(radius, xcen, ycen)

real, intent(in) :: radius, xcen, ycen

Arguments radius
Value giving the radius of the Pie Chart in the current units (default units are millimetres)
xcen
Value giving the X coordinate of the centre of the Pie Chart in user space coordinates
ycen
Value giving the Y coordinate of the centre of the Pie Chart in user space coordinates

Description The routine ggSetPieChartFrame() defines a Pie Chart frame with radius radius and centre at
the point (xcen,ycen). The default Pie Chart frame, used if ggSetPieChartFrame() is not called
before drawing a Pie Chart, gives a radius and a centre calculated to fit the available drawing
area or current window.
If ggSetPieChartFrame() has been used, automatic sizing and positioning can be restored using
the routine ggRestorePieChartSettings(). The frame can be redefined at any point in the user
program by another call to ggSetPieChartFrame().

See Also Page 139

ggRestorePieChartSettings

ggSetPieChartStartAngle

Syntax
‘ C/C++: void ggSetPieChartStartAngle(float angle);
F90: subroutine ggSetPieChartStartAngle(angle)
real, intent(in) :: angle
Arguments angle
Number specifying the start angle in degrees
Description The routine ggSetPieChartStartAngle() defines the angle in degrees, measured anticlockwise

from the three o’clock (positive X axis) position, to be used as the start point for the first
defined segment when a Pie Chart is drawn using one of the routines ggPlotPieChart(). The
default start angle used if ggSetPieChartStartAngle() is not called before drawing a Pie Chart is
0.0 degrees.

The routine ggRestorePieChartSettings() restores the start angle to 0.0 degrees.

295

ggSetPlotFrame ROUTINE SPECIFICATIONS

See Also Page 148
ggPlotPieChart
ggRestorePieChartSettings

ggSetPlotFrame

Syntax
‘ C/C++: void ggSetPlotFrame(GLIMIT *limits);
F90: subroutine ggSetPlotFrame(limits)
type(GLIMIT), intent(in) :: limits
Arguments limits.xmin

The minimum limit of the graph drawing area in the horizontal direction

limits.xmax
The maximum limit of the graph drawing area in the horizontal direction

limits.ymin
The minimum limit of the graph drawing area in the vertical direction

limits.ymax
The maximum limit of the graph drawing area in the vertical direction

Description The routine ggSetPlotFrame() defines a boundary for the GINOGRAF drawing area when
using complete graph or chart routines.

By default, the drawing area is defined as the current window limits as set by GINO.
ggSetPlotFrame() can be used therefore, to define an alternative drawing area, without
affecting the clipping limit.

The drawing area affects the default position and length of graph axes as well as the placement
of pie and polar charts. ggSetPlotFrame() does not restrict the manual placement of axes, pie
and Polar Charts using the low level routines described in the relevant chapters.

The drawing area limits can be reset to match the current GINO window limits by calling
ggRestoreAxesSettings() or ggRestorePieChartSettings().

If either of the minimum limits is greater than the corresponding maximum limit the two
arguments are interchanged. If either of the horizontal or vertical extents of the drawing limits
are zero a warning message is output and the default limits are used.

See Also Page 16
ggRestoreAxesSettings
ggEngPlotFrame
ggRestorePieChartSettings

296

ROUTINE SPECIFICATIONS ggSetPolarChartAttribs

ggSetPolarChartAttribs

Syntax
‘ C/C++: void ggSetPolarChartAttribs(float xorp, float yorp, float radlen, int scale);
F90: subroutine ggSetPolarChartAttribs(xorp, yorp, radlen, scale)
real, intent(in) :: xorp, yorp, radlen
integer, intent(in) :: scale
Arguments xorp
Value which specifies the X part of the user space coordinates defining the position of the
origin of the axis in the drawing area
yorp
Value which specifies the Y part of the user space coordinates defining the position of the
origin of the axis in the drawing area
radlen
Value specifying the radius of the polar plot in the current user space units
scale
The type of scaling to be used. In relation to the number of intervals (nints) and end of range
value (vendp) as defined in ggDrawPolarAxes().
= GLINEARTYPEI Linear scaling automatically calculated from the
defined axis length (in ggDrawPolarAxes()). Results in
a range from zero and which includes vendp as closely
as possible, divided into approximately nintp intervals.

= GLINEARTYPE2 Linear scaling automatically calculated to produce
precisely nintp intervals in a range from zero and
including vendp.

= GLINEARTYPE3 Linear scaling selected by the user with precisely nintp
intervals, zero on the first interval and vendp on the last
interval.

Description The routine ggSetPolarChartAttribs() defines the positioning, size and type of scaling for a
polar plot. The coordinates (xorp, yorp) represent the origin of the polar plot in user space
coordinates.

If ggSetPolarChartAttribs() is not called, the following defaults are used:
Xorp,yorp Centre of drawing area

radlen 0.375 * minimum of X or Y drawing area dimension
scale 3

See Also Page 133
ggDrawPolarAxes

297

ggSetTextChartAttribs ROUTINE SPECIFICATIONS

ggSetTextChartAttribs

Syntax
‘ C/C++: void ggSetTextChartAttribs(float width, float height, int jslcr, int head, int line); ‘
F90: subroutine ggSetTextChartAttribs(width, height, jslcr, head, line)
real, intent(in) :: width, height
integer, intent(in) :: jslcr, head, line
Arguments width
Column width in user space coordinates
height
Column height in user space coordinates
jsler
Justification flag for column entry
= GLEFT Left justification
= GCENTRE Centre justification
= GRIGHT Right justification
head
Header switch for Text Chart columns
= GNOHEAD No header cell for column
= GHEAD Header cell added at top of column
line
Text chart frame line style index
<0 Switch frame box off
= GCURRENT Specifies the current line style
=1 to 256, Specifies the line style index
>256 Specifies the current line style
Description The routine ggSetTextChartAttribs() defines the general characteristics for the text chart

298

routines. The size of the Text Chart column is set by width and height which are in user space
coordinates. ggSetTextChartAttribs() takes the absolute values supplied in the arguments. If
either the width and/or height = 0.0 then a default size of column is defined, which is 10 times
the character width and twice the character height times the number of rows required
respectively. The character dimensions are those current at the time the Text Chart is output.

jsler sets the justification of text or value entries of Text Chart columns which may be set to
left, centre, or right justified. Left justified strings start half a character width away from the
left hand side of the column and right justified strings end half a character width away from the
right hand side of the column.

ROUTINE SPECIFICATIONS ggSetValueAttribs

See Also

If head = GHEAD a header cell is added to the top of the column thus increasing the number
of rows by one and the header string supplied in the Text Chart output routine is displayed
centrally in that cell. If head = GNOHEAD, no header cell is added and the header string
supplied in the Text Chart output routine is ignored.

Column frame boxes are drawn in the line style set by the value of line. If line < 0 then no
column frame is drawn. Filled rectangles, line styles and symbols within Text Chart columns
have their own line style settings passed as arguments. All other Text Chart elements, ie,
header strings, text strings, values and percentages are displayed in the current GINO line style.

Page 154
ggEnqTextChartAttribs

ggSetValueAttribs

Syntax
C/C++: void ggSetValueAttribs(int xpos, int ypos, float xory, float xoff, float yoff, float angstr,
int jstmb, int jslcr);
F90: subroutine ggSetValueAttribs(xpos, ypos, xory, xoff, yoff, angstr, jstmb, jslcr)
integer, intent(in) :: xpos, ypos, jstmb, jslcr
real, intent(in) :: xory, xoff, yoff, angstr
Arguments Xxpos

Position of data value control point in horizontal direction

= GOUTSIDELEFT left of lower value, left of data value

= GINSIDELEFT right of lower value, left of data value
= GCENTRE centre of area, at data value

= GINSIDERIGHT left of upper value, right of data value
= GOUTSIDERIGHT right of upper value, right of data value
= GSPECIFIED positioned at xory

ypos

Position of data value control point in vertical direction

= GOUTSIDEBOTTOM below lower value, below data value

= GINSIDEBOTTOM above lower value, below data value

= GMIDDLE middle of area, at data value

= GINSIDETOP below upper value, above data value

= GOUTSIDETOP above upper value, above data value

= GSPECIFIED positioned at xory

xory

Position of data value control point in graphical coordinates, if xpos or ypos = GSPECIFIED
xoff, yoff

Offset from control point in user space coordinates

angstr
Data value string angle measured in degrees (anti-clockwise) from the 3 o’clock position

299

ggSetValueAttribs ROUTINE SPECIFICATIONS
jstmb
Vertical justification of data value
=GBOTTOM Bottom justified - string above control point
= GMIDDLE Middle justified - string centred at control point
=GTOP Top justified - string below control point
jsler
Horizontal justification of data value
= GLEFT Left justified
= GCENTRE Centre justitied
= GRIGHT Right justified

Description

See Also

300

The routine ggSetValueAttribs() sets the attributes for the display of data values output by the
ggAddxxxValues() routines. By default, values are positioned centrally over the coordinate
position of the value itself (for ggAddGraphValues()) or in the centre of the column or area
being annotated (for ggAddAreaChartValues(), ggAddBarChartValues(),
ggAddHistogramValues(), ggAddStepChartValues()).

xpos and ypos (together with xory) set alternative positions of a control point about which the
offset, angle and justification are taken. For xpos = GINSIDERIGHT / GINSIDELEFT /
GOUTSIDERIGHT / GOUTSIDELEFT or ypos = GINSIDEBOTTOM / GINSIDETOP /
GOUTSIDEBOTTOM / GOUTSIDETOP the control point is positioned one character width or
height away from the upper or lower limit of the column or area. If xpos or ypos equals
GSPECIFIED the control point is positioned at the specified xory coordinate on the respective
axis. Where xpos or ypos is set to GSPECIFIED on a discrete axis (ie, where
ggAddBarChartValues() or ggAddHistogramValues() are being used), the default (xpos or
ypos=GCENTRE / GMIDDLE) is assumed. If both xpos and ypos are equal to GSPECIFIED
for ggAddGraphValues(), ggAddAreaChartValues() or ggAddStepChartValues(), all the values
are displayed at X=xory, Y=xory.

As there are no upper and lower limits when the routine ggAddGraphValues() is used, where
xpos and ypos are negative, the control point is positioned to the left or below the coordinate
position and where positive values of xpos and ypos are used (except GSPECIFIED) the
control point is positioned to the right or above the coordinate position. The control point is
effectively shifted by a character width or a character height in the respective direction away
from each of the coordinate positions.

The control point can be shifted by an additional amount using the offsets xoff and yoff. These
values are in user space coordinates and provide a means of finely adjusting the position of the
data values.

The data value strings may be rotated by angstr about the control point and justified in either a
vertical or horizontal direction using jstmb and jsler. The justification is performed with
respect to the angle that the data value is output.

Values may be appended by a prefix and/or suffix string to improve annotation with the routine
ggSetValueTags(). If strings are appended, the whole string is treated as a single entity for
justification purposes.

Page 64
ggEnqValueAttribs
ggSetValueTags

ROUTINE SPECIFICATIONS ggSetValueTags

ggSetValueTags

Syntax
‘ C/C++: void ggSetValueTags(char prefix[], char suffix[]);
F90: subroutine ggSetValueTags(prefix, suffix)

character*(*), intent(in) :: prefix, suffix

Arguments prefix
Prefix string
suffix
Suffix string

Description Certain GINOGRAF routines, when outputting values, allow prefix and suffix strings to be
output positioned in front of and after the values. The routine ggSetValueTags() allows the
strings to be set up before use.
Where strings can be output with the value, the form of the value’s output is set using
ggSetAxesAnnotation(); outputting prefix and suffix strings does not change these settings.
Where no string is required for one of the parameters a blank string or the GINO string
terminator should be used “*.”.

See Also Page 66, 92 and 158

ggSetAxesAnnotation

ggSetVectorAttribs

Syntax
‘ C/C++: void ggSetVectorAttribs(int pos, float vecmin, float vecmax, float factor);
F90: subroutine ggSetVectorAttribs(pos, vecmin, vecmax, factor)
integer, intent(in) :: pos
real, intent(in) :: vecmin, vecmax, factor
Arguments pos
Vector position flag
= GTAIL Arrow tail
= GMIDDLE Middle of arrow
=GHEAD Head of arrow
vecmin

Absolute vector strength represented by a zero length vector

vecmax
Absolute vector strength represented by a unit length vector

301

ggSetVectorChartFrame ROUTINE SPECIFICATIONS

Description

See Also

factor
Overall vector length scaling factor

The routine ggSetVectorAttribs() sets up the position and scaling attributes for Vector Charts
drawn with the routine ggAddVectors().

Vector positions are located at the intersection of each grid point on the Vector Chart. The
value of pos determines which part of the arrow is located at this grid position.

By default, each vector is scaled such that the maximum absolute vector strength is represented
by an arrow of one unit grid length. That is the minimum distance between grid intersection
points such that the arrows do not overlap. However, the arguments vecmin and vecmax can
be used to define an alternative scaling where veemin is the absolute strength of a vector which
is represented by a zero length arrow (ie, not output) and veemax is the absolute strength of a
vector represented by an arrow of one unit grid length. If veemin and vecmax are both set to
the same value then the default scaling is restored.

vecmin and vecmax may be set inside or outside the actual range of vector strengths enabling
complete flexibility of vector scaling.

Following the vector scaling calculated using veemin and veemax, an additional overall scale
factor may be applied to each vector using the absolute value of factor.

If vecmin > vecmax the two values are inter-changed. If factor = 0.0 then no arrows are
displayed.

Page 122
ggSetVectorChartFrame
ggSetVectorLimits
ggAddVectors
ggRestore VectorSettings

ggSetVectorChartFrame

Syntax
‘ C/C++: void ggSetVectorChartFrame(GLIMIT *limits);
F90: subroutine ggSetVectorChartFrame(limits)
type(GLIMIT), intent(in) :: limits
Arguments limits.xmin

302

Horizontal minimum limit of Vector Chart in Graphical coordinates

limits.xmax
Horizontal maximum limit of Vector Chart in Graphical coordinates

limits.ymin
Vertical minimum limit of Vector Chart in Graphical coordinates

limits.ymax
Vertical maximum limit of Vector Chart in Graphical coordinates

ROUTINE SPECIFICATIONS ggSetVectorLimits

Description

See Also

The routine ggSetVectorChartFrame() sets up an area in graphical coordinates onto which
future Vector Charts are mapped. The graphical coordinate system is set up by the latest calls to
the routines ggSetAxesPos() and ggSetAxesScaling().

If ggSetVectorChartFrame() is not called or if the routine ggRestoreVectorSettings() has been
called the default area is used. That is the area represented by the intersection of the limits of
the horizontal (X) and vertical (Y) axes.

Page 122

ggSetAxesPos
ggSetAxesScaling
ggAddVectors
ggRestoreVectorSettings

ggSetVectorLimits

Syntax

| ClC++:

void ggSetVectorLimits(float smin, float smax);

F90:

subroutine ggSetVectorLimits(smin, smax)
real, intent(in) :: smin, smax

Arguments

Description

See Also

smin
Minimum absolute strength of vector that may be displayed using ggAddVectors()

smax
Maximum absolute strength of vector that may be displayed using ggAddVectors()

The routine ggSetVectorLimits() defines the minimum and maximum absolute vector strength
that may be drawn by subsequent calls to ggAddVectors(). Any absolute value of vector
strength outside the range of smin to smax are not drawn.

If smin > smax the two values are inter-changed.

If smin and smax are both set to equal values then clipping is switched off and all vectors with
strength not equal to zero are drawn. The routine ggRestoreVectorSettings() also switches
clipping off.

Page 122

ggAddVectors
ggRestoreVectorSettings

303

ggTransformGraphPoint ROUTINE SPECIFICATIONS

ggTransformGraphPoint

Syntax
‘ C/C++: void ggTransformGraphPoint(float xgr, float ygr, GPOINT *point);
F90: subroutine ggTransformGraphPoint(xgr, ygr, point)

float, intent(in) :: xgr, ygr
type(GPOINT), intent(out) :: point

Arguments xgr
Value giving the X part of the graphical axes coordinates of a point
yer . . 4
Value giving the Y part of the graphical axes coordinates of a point
point.x
Returns a real value giving the X part of the user space coordinates of a point, equivalent to xgr
point.y
Returns a real value giving the Y part of the user space coordinates of a point, equivalent to ygr

Description The routine ggTransformGraphPoint() converts the graphical coordinates of a specified point
(xgr, ygr), defined with respect to the graphical axes system set up by the last axis definition
calls or by one of the axis-dependent Basic Complete Routines, to user space coordinates
returned as point.x and point.y.

See Also Page 166
ggTransformSpacePoint

ggTransformSpacePoint

Syntax
‘ C/C++: void ggTransformSpacePoint(float xsp, float ysp, GPOINT *point);
F90: subroutine ggTransformSpacePoint(xsp, ysp, point)
real, intent(in) :: xsp, ysp
type(GPOINT), intent(out) :: point
Arguments xsp

304

Value giving the X part of the user space coordinates of a point

ysp

Value giving the Y part of the user space coordinates of a point

point.x

Returns a real value giving the X part of the graphical axes coordinates of a point, equivalent to
Xsp

ROUTINE SPECIFICATIONS ggTransformSpacePoint

point.y

Returns a real value giving the Y part of the graphical axes coordinates of a point, equivalent to
ysp

Description The routine ggTransformSpacePoint() converts the user space coordinates of a specified point
(xsp, ysp) to graphical axes coordinates returned as point.x, point.y, defined with respect to
the graphical axes system set up by ggSetAxesPos() and ggSetAxesScaling() or by one of the
complete graph or chart routines.

See Also Page 167
ggSetAxesPos
ggSetAxesScaling
ggTransformGraphPoint

305

Appendix

DEFAULTS

Default Parameters

The GINOGRAF default parameters are as follows:
Axes Definition Defaults
AXxis position and size

The axis positioning and size is calculated in relation to the available drawing
area or current window.

Axis scaling

scale = GLINEARTYPES3 (linear scaling with precisely nints intervals, vbeg on
the first interval and vend on the last interval).

nints =9
vbeg =1.0
vend = 10.0

Axis annotation

Number of decimal places - Up to 2
Scale power factor = None
Scale type display = *10 to the power n (where -2>n>2)

307

Default Parameters DEFAULTS

Annotation attributes

Numerical and string annotation is displayed at each major tick mark starting at
the first of each axes. Items on the X axis are displayed centrally justified in the
horizontal direction above or below the tick mark. Items on the Y axis are
displayed bottom justified in the vertical direction either to the left or right of the
axis. All items are displayed horizontally (at 0 degrees) at the current character
size.

Data Value Display Defaults
Value position

Values are displayed centrally over coordinate position for ggAddGraphValues()
or at centre of column or area for ggAddHistogramValues(),
ggAddBarChartValues(), ggAddStepChartValues() or ggAddAreaChartValues().

Value orientation

Values are centre justified and displayed horizontally (at 0 degrees) in the current
character size.

Prefix, suffix strings
Null
Chart Defaults
Histogram and bar chart axis

The X axis is the default base axis for a bar chart or histogram where neither or
both axes have been defined as discrete axes.

Block Filling Attributes

Colour index offset = 20
Azimuth angle = 30 degrees
Elevation angle = 30 degrees
Depth fraction = 1.0

Top face lightness factor = 0.67
Side face lightness factor = 0.33

308

DEFAULTS Default Parameters

Vector Chart Defaults
Mapping

Vector Charts are mapped onto the area represented by intersection of current
horizontal (X) and vertical (Y) axes.

Clipping
All vectors with strength not equal to zero are displayed.

Scaling

Maximum vector strength is represented by an arrow of one unit square length.
Polar Chart Defaults

Polar axis parameters

Polar axes are placed in the centre of the drawing area or current window with
the radius being 0.375 of the minimum width or height. Linear scaling type
GLINEARTYPES3 is the default for the R axis.

Pie Chart Defaults

Pie chart size & position

The pie chart size and position is calculated in terms of the available drawing
area or current window with the radius being 0.375 of the minimum width or
height.

Pie chart start angle

The default start angle for a pie chart is 0.0 degrees (three o’clock).

Pie chart annotation

The default annotation type for the complete pie chart routines is to write the
segment labels horizontally within the segment (unless they don’t fit) within a
masked box.

Pie chart boundary

On

309

Default Parameters

DEFAULTS

310

Text Chart Defaults

Text chart attributes

The default dimensions of a text chart column is 10.0 * current character width
by twice the current character height times the number of rows, with no header
cell. The entries are centre justified. The column frame is drawn in the current
GINO line style.

Drawing Attributes

Area fill and hatch styles

The area fill and hatch styles are selected with the variable fill in GINOGRAF

filling routines. The possible values of fill are listed below.

O 0 3 AN W R W N =

—_ e e e e e
AN W kA W N = O

GFINEHORIZONTAL
GFINEVERTICAL
GFINELEFTDIAGONAL
GFINERIGHTDIAGONAL
GFINEHORIZONTALGRID
GFINEDIAGONALGRID
GFINEHORIZONTALMESH
GFINEDIAGONALMESH
GCOARSEHORIZONTAL
GCOARSEVERTICAL
GCOARSELEFTDIAGONAL

GCOARSERIGHTDIAGONAL
GCOARSEHORIZONTALGRID

GCOARSEDIAGONALGRID

GCOARSEHORIZONTALMESH

GCOARSEDIAGONALMESH

fine horizontal hatch

fine vertical hatch

fine left diagonal hatch
fine right diagonal hatch
fine horizontal grid

fine diagonal grid

fine horizontal mesh

fine vertical mesh

coarse horizontal hatch
coarse diagonal hatch
coarse left diagonal hatch
coarse right diagonal hatch
coarse horizontal grid
coarse diagonal grid
coarse horizontal mesh

coarse diagonal mesh

DEFAULTS

Default Parameters

Hatch styles can be redefined with the GINO routine gDefineHatchStyle().

GFINEHORIZONTAL

GFINEVERTICAL

GFINELEFTDIAGONAL

GFINERIGHTDIAGONAL

GFINEHORIZONTALGRID

GFINEDIAGONALGRID

GFINEHORIZONTALMESH

GFINEDIAGONALMESH

GCOARSEHORIZONTAL

GCOARSEVERTICAL

GCOARSELEFTDIAGONAL

GCOARSERIGHTDIAGONAL

GCOARSEHORIZONTALGRID

Line styles

GCOARSEDIAGONALGRID

Default Hatch Styles

GCOARSEHORIZONTALMESH

GCOARSEDIAGONALMESH

The line styles are selected with the variable line in GINOGRAF filling routines.
Default line styles are solid, with 0.2mm width (or the device default), and have
the colour index equal to the line style index.

Colours 0 to 10 are defined by GINO as:

311

Default Parameters

DEFAULTS

Some devices may support fewer colours than the standard GINO range.

Symbols

O 0 9 AN R WD = O

—_
(=]

GBACKGROUND
GBLACK
GRED
GORANGE
GYELLOW
GGREEN
GCYAN
GBLUE
GMAGENTA
GBROWN
GWHITE

The standard GINO symbols are as follows:

GSPOT

312

GDOWN

GPLUS GCROSS GBOX GDIAMOND GCIRCLE

v + X] < O

GSTAR

Appendix

ERROR AND WARNING MESSAGES

GINOGRAF Errors and Warnings

1

Number of columns negative or zero
The number of columns in a barchart or histogram cannot be negative or zero

Value for log axis is negative or zero
Log axes in barchart or histogram cannot have a value of zero

Discrete axis not specified
Either the X axis or Y axis needs to be set to ‘discrete’ (perpendicular to bars)
when defining a barchart

Error in log data
A log axis has been defined with a barchart or histogram and incorrect data has
been passed to it

Number of pie chart segments outside range 1-50
ggPlotPieChart() must have a number of segments in the range 1-50

All values are zero
A piechart or percentage column has been attempted with all data values being
set to zero

Annotation number of decimal places out of range
ndp in ggSetAxesAnnotation() must be in the range -9 to 9

Negative line style
A line style has been requested with a negative value

313

GINOGRAF Errors and Warnings ERROR AND WARNING MESSAGES

9 Illegal or incompatible annotation scale type
Certain scale types require that npower is a multiple of 3

10 Drawing area available to GINOGRAF is zero
The Window or Paper size is too small. Use gSetDrawingLimits() or
gWindow2D() to increase the area

11 Drawing area width too small for graph/chart
Increase the available drawing width with ggSetPlotFrame()

12 Drawing area height too small for graph/chart
Increase the available drawing height with ggSetPlotFrame()
13 X value negative or zero for log axis
Self explanatory
14 Y value negative or zero for log axis
Self explanatory
15 Number of points to be plotted less than two

All GINOGRAF point-plotting routines require at least two points

16 Number os symbols to be plotted negative or zero
ggAddGraphMarkers() routine requires at least 1 symbol to be plotted

17 Axis length negative or zero
Self explanatory
18 Axis scaling type out of range

Axis scaling type must be set to one of the predefined types

19 Number of intervals negative or zero
The number of intervals defined for an axis must be 1 or greater

20 Range of data values zero
Data values do not have any range

21 Negative data range
Cannot have negative data on a polar axis

22 Number of list elements outside range 1-50
ggSetPieChartExplosion() must have a number of elements in the range 1-50

314

ERROR AND WARNING MESSAGES GINOGRAF Errors and Warnings

23

24

25

26

27

28

29

30

31

32

33

34

35

36

A list element is outside range 1-50
ggSetPieChartExplosion() has been called with element number outside
allowable range

Negative explosion factor requested
ggSetPieChartExplosion() cannot have a negative explosion factor

Available polygon workspace is low when using area fill
More polygon workspace is required - Increase the value in
gDefinePolygonWorkspace()

Negative number of unmarked points requested
ggAddGraphMarkers() must have a positive value for unmarked points

Symbol number out of range
Symbol number must not be negative

Arrowhead type or coordinate type out of range
Check values in ggDrawArrow() or ggAddVectors()

Arrow length is zero
Self explanatory

Pie chart radius is zero
Self explanatory

Negative pie chart radius requested
Self explanatory

Routine used that will not be available in next release
Check Appendix E for list of deprecated routines

Routine no longer available
Check Appendix E for list of deprecated routines

Number of areas negative or zero
Area charts must have a positive number of areas

Number of steps negative or zero
Step Charts must have a positive number of steps

Number of vectors negative or zero
Vector charts must have a positive number of vectors

315

GINOGRAF Errors and Warnings ERROR AND WARNING MESSAGES

37 All vector strength values are zero
Vector strengths must be positive

38 Number of error bars negative or zero
Self explanatory

39 Number of text boxes negative or zero
Self explanatory

40 No characters in graph title

The string given to ggDrawGraphTitle() is blank

41 Number of points to be fitted less than two
ggReturnLineCoeffs() must have more than two points

42 Number of coefficients required negative or zero
ggReturnLineCoeffs() must have a positive number of coefficients

43 Invalid reference line text position
Check text positions available in routine ggAddReferenceLine()

44 String length greater than 30 characters - truncated
Prefix and Suffix strings in ggSetValueTags() cannot be greater than 30
characters

45 Invalid justification

Check allowable justification settings in ggSetAxesAttribs(),
ggSetTextChartAttribs() or ggSetValueAttribs()

46 Invalid value position
Check allowable positions in ggSetValueAttribs()

47 Invalid breakpoint position
Check allowable breakpoint positions in ggAddSquareWave()

48 Invalid line angle
Check allowable angles for line columns in ggDisplayLineColumn()

49 Invalid pie chart annotation type
Check allowable annotation type in ggSetPieChartAnnotation()

50 Zero extent for graph drawing limits
Increase sizes in ggSetPlotFrame()

316

ERROR AND WARNING MESSAGES Configuration File Errors

51

52

53

55

56

57

58

59

60

61

62

63

64

Invalid pie chart annotation box type
Check allowable box types in ggSetPieChartBoxType()

Invalid value specifier
Check value specifier

Invalid arrow position
Check arrow position in ggSetVectorAttribs()

Invalid date format type
Check date format in ggSetDateFormat()

Invalid date/time increment
Check date/time increment in ggSetDateAxesScaling()

Incorrect date format
Check date format in ggSetDateAxesScaling() or ggConvertDates()

Invalid missing value mode
Check missing value mode in ggDefineMissingValues()

Invalid graph scaling mode
Check graph scaling mode in ggSetGraphScaling()

Primary dimension of data array less then number of columns
The specified size of the data array is smaller than the number of columns
requested

Gap outside permitted range
Gap must be in the range 0.0 to 1.0. Negative values are not permitted

Multi-histogram type out of range
Multi-histogram type must be either GSTACKED or GCLUSTRED

Sub-array limits outside primary dimension of data array
Sub-array limits must lie within the specified dimensions of the data array

Number of data sets negative or zero
Number of data sets must be positive

Configuration File Errors

*** Incorrect GINOGRAF Serial No. - Program Aborted! **x*

317

Configuration File Errors ERROR AND WARNING MESSAGES

318

Check the contents of your configuration file. There should be a serial number
line beginning with GRAFSERIAL= followed by a string of ASCII characters.
Contact Bradly Associates or your dealer if this error continues.

*** GINOGRAF Evaluation period expired! ***

You have a temporary licence which has now expired - Contact Bradly
Associates or your dealer.

Appendix

STRUCTURES

Structures in GINOGRAF

GAREACHART - Data type for area charts

typedef struct { type GAREACHART
float s; sequence
float £; real :: s
float hl; real :: f
float h2; real :: hl
} GAREACHART; real :: h2
end type

GBARCHART - Data type for bar charts

typedef struct { type GBARCHART
float s; sequence
float £; real :: s
} GBARCHART; real :: f
end type

GERROR - Data type for an error range

typedef struct { type GERROR
float lower; sequence
float upper; real :: lower
} GERROR; real :: upper
end type

319

GINO Structures Used By GINOGRAF

STRUCTURES

typedef struct {

float s;
float f;
float h;
} GSTEPCHART;

typedef struct {

GSTEPCHART - Data type for step charts

type GSTEPCHART

sequence
real :: s
real :: f
real :: h
end type

GVECTOR - Data type for vector charts

type GVECTOR

float direc; sequence
float stren; real direc
int col; real stren
} GVECTOR; integer col
end type
GINO Structures Used By GINOGRAF
GPOINT - Single 2D coordinate
typedef struct { type GPOINT
float x; sequence
float y; real :: x
} GPOINT; real :: y
end type
GLIMIT - 2D coordinate limits
typedef struct { type GLIMIT
float xmin; sequence
float xmax; real :: xmin
float ymin; real :: xmax
float ymax; real :: ymin
} GLIMIT real :: ymax
end type

320

Appendix

CROSS-REFERENCES

Cross-Reference Summary

GINOGRAF is supplied as either a C library or FORTRAN library. The
FORTRAN library includes two bindings; an F77 binding using short names and
simple arguments and an F90 binding using long names and structures/optional
arguments as appropriate. This Appendix gives the cross-references from both
short name to long name and vice-versa.

F77-F90 Cross-Reference

F77 names F90 names

ARECHA ggPlotAreaChart
AREFI2 ggBlockFillAreaChart
AREFIL ggFillAreaChart
AREGRA ggAddAreaChartOutline
AREVAL ggAddAreaChartValues
ARROW ggDrawArrow
AXIANN ggSetAxesAnnotation
AXIATT ggSetAxesAttribs
AXIDRA ggDrawAxes

AXIPOS ggSetAxesPos
AXISCA ggSetAxesScaling
AXISET ggRestoreAxesSettings
AXLSTR ggDrawAxesLabels
AXNENQ ggEngAxesAnnotation
AXNSTR ggDrawAxesTitle
AXPENQ ggEnqAxesPos

321

F77-F90 Cross-Reference

CROSS-REFERENCES

AXSENQ
AXTENQ
BARCHA
BARFI2
BARFIL
BARGRA
BARVAL
CHT2ST
CHTATT
CHTATQ
COMFI2
COMFIL
CURBEG
CURFIN
DATANN
DATANQ
DATCON
DATFOQ
DATFOR
DATGRA
DATSCA
DATSCQ
DRAPOL
GRAAKI
GRACUR
GRAERB
GRADAT
GRAFI2
GRAFIL
GRALIN
GRAMOV
GRAPH
GRAPOL
GRAPOP
GRASCA
GRASPA
GRASPL
GRASQU
GRASYM
GRAVAL

322

ggEngAxesScaling
ggEnqAxesAttribs
ggPlotBarChart
ggBlockFillBarChart
ggFillBarChart
ggAddBarChartOutline
ggAddBarChartValues
ggRestoreBlockChartAttribs
ggSetBlockChartAttribs
ggEngBlockChartAttribs
ggBlockFillMultiHistogram
ggFillMultiHistogram
ggSetCurveStartConds
ggSetCurveEndConds
ggSetDateAxesAnnotation
ggEngqDateAxesAnnotation
ggConvertDates
ggEnqDateFormat
ggSetDateFormat
ggConvertDateToGraph
ggSetDateAxesScaling
ggEngqDateAxesScaling
ggDrawPolarAxes
ggAddAkimaCurve
ggAddGraphCurve
ggAddErrorBars
ggConvertGraphToDate
ggFillBetweenDatasets
ggFillBelowDataset
ggAddGraphLine
ggMoveToGraphPoint
ggPlotGraph
ggAddGraphPolyline
ggAddPopulationGraph
ggSetGraphScaling
ggTransformGraphPoint
ggAddGraphSpline
ggAddSquareWave
ggAddGraphMarkers
ggAddGraphValues

CROSS-REFERENCES

F77-F90 Cross-Reference

GRBENQ
GRDSYM
GRDSYQ
GRFBND
GRFMOD
GRFTTL
GRID
HISCHA
HISFI2
HISFIL
HISGRA
HISVAL
LINFIT
PIAENQ
PIEANG
PIEANN
PIEBOX
PIEBSW
PIECHA
PIEENQ
PIEEXP
PIEPAP
PIESET
POLXY
REFLIN
SEGCHA
SETPOL
SPAGRA
STPCHA
STPFI2
STPFIL
STPGRA
STPVAL
TDFENQ
TEXDEF
TEXFIL
TEXGEN
TEXLIN
TEXPER
TEXSTR

ggEnqgPlotFrame
ggSetGridMarker
ggEnqGridMarker
ggSetPlotFrame
ggSetGraphCharMode
ggDrawGraphTitle
ggAddGrid
ggPlotHistogram
ggBlockFillHistogram
ggFillHistogram
ggAddHistogramOutline
ggAddHistogramValues
ggReturnLineCoeffs

ggEnqPieChartAnnotation

ggSetPieChartStartAngle
ggSetPieChartAnnotation
ggSetPieChartBoxType

ggSetPieChartBoundSwitch

ggPlotPieChart
ggEnqPieChartSettings
ggSetPieChartExplosion
ggSetPieChartFrame

ggRestorePieChartSettings

ggPlotXYPolarChart
ggAddReferenceLine
ggAddPieChartSegment
ggSetPolarChartAttribs
ggTransformSpacePoint
ggPlotStepChart
ggBlockFillStepChart
ggFillStepChart
ggAddStepChartOutline
ggAddStepChartValues
ggEnqTextChartAttribs
ggSetTextChartAttribs
ggDisplayFillColumn

geDisplayGeneratedColumn

ggDisplayLineColumn

ggDisplayPercentageColumn

geDisplayStringColumn

323

F90-F77 Cross-Reference

CROSS-REFERENCES

TEXSYM
TEXVAL
VALATT
VALMIS
VALTXT
VATENQ
VECBND
VECBNQ
VECCLP
VECCLQ
VECGRA
VECSCA
VECSCQ
VECSET

ggDisplayMarkerColumn
ggDisplayValueColumn
ggSetValueAttribs
ggDefineMissing Values
ggSetValueTags
ggEnqValueAttribs
ggSetVectorChartFrame
ggEnqVectorChartFrame
ggSetVectorLimits
ggEnqVectorLimits
ggAddVectors
ggSetVectorAttribs
ggEnqVectorAttribs
ggRestoreVectorSettings

F90-F77 Cross-Reference

F90 names
ggAddAkimaCurve
ggAddAreaChartOutline
ggAddAreaChartValues
ggAddBarChartOutline
ggAddBarChartValues
ggAddErrorBars
ggAddGraphCurve
ggAddGraphLine
ggAddGraphPolyline
ggAddGraphSpline
ggAddGraphMarkers
ggAddGraphValues
ggAddGrid
ggAddHistogramOutline
ggAddHistogramValues
ggAddPieChartSegment
ggAddPopulationGraph
ggAddReferenceLine
ggAddSquareWave
ggAddStepChartOutline
ggAddStepChartValues
ggAddVectors

324

F77 names
GRAAKI
AREGRA
AREVAL
BARGRA
BARVAL
GRAERB
GRACUR
GRALIN
GRAPOL
GRASPL
GRASYM
GRAVAL
GRID
HISGRA
HISVAL
SEGCHA
GRAPOP
REFLIN
GRASQU
STPGRA
STPVAL
VECGRA

CROSS-REFERENCES F90-F77 Cross-Reference

ggBlockFillAreaChart AREFI2
ggBlockFillBarChart BARFI2
ggBlockFillHistogram HISFI2
ggBlockFillMultiHistogram COMFI2
ggBlockFillStepChart STPFI2
ggConvertDates DATCON
ggConvertDateToGraph DATGRA
ggConvertGraphToDate GRADAT
ggDefineMissingValues VALMIS
geDisplayFillColumn TEXFIL
ggDisplayGeneratedColumn TEXGEN
ggDisplayLineColumn TEXLIN
ggDisplayPercentageColumn TEXPER
ggDisplayStringColumn TEXSTR
ggDisplayMarkerColumn TEXSYM
ggDisplayValueColumn TEXVAL
ggDrawArrow ARROW
ggDrawAxes AXIDRA
ggDrawAxesLabels AXLSTR
ggDrawAxesTitle AXNSTR
ggDrawGraphTitle GRFTTL
ggDrawPolarAxes DRAPOL
ggEngAxesAnnotation AXNENQ
ggEnqAxesAttribs AXTENQ
ggEngAxesPos AXPENQ
ggEngAxesScaling AXSENQ
ggEnqBlockChartAttribs CHTATQ
ggEngqDateAxesAnnotation DATANQ
ggEnqDateAxesScaling DATSCQ
ggEnqDateFormat DATFOQ
ggEnqGridMarker GRDSYQ
ggEngPieChartAnnotation PIAENQ
ggEnqPieChartSettings PIEENQ
ggEngPlotFrame GRBENQ
ggEnqTextChartAttribs TDFENQ
ggEnqValueAttribs VATENQ
ggEnqVectorAttribs VECSCQ
ggEnqVectorChartFrame VECBNQ
ggEnqVectorLimits VECCLQ
ggFillAreaChart AREFIL

325

F90-F77 Cross-Reference

CROSS-REFERENCES

326

ggFillBarChart
ggFillBelowDataset
ggFillBetweenDatasets
ggFillHistogram
ggFillMultiHistogram
ggFillStepChart
ggMoveToGraphPoint
ggPlotAreaChart
ggPlotBarChart
ggPlotGraph
ggPlotHistogram
ggPlotPieChart
ggPlotStepChart
ggPlotXYPolarChart
ggRestoreAxesSettings
ggRestoreBlockChartAttribs
ggRestorePieChartSettings
ggRestoreVectorSettings
ggReturnLineCoeffs
ggSetAxesAnnotation
ggSetAxesAttribs
ggSetAxesPos
ggSetAxesScaling
ggSetBlockChartAttribs
ggSetCurveEndConds
ggSetCurveStartConds
ggSetDateAxesAnnotation
ggSetDateAxesScaling
ggSetDateFormat
ggSetGraphCharMode
ggSetGraphScaling
ggSetGridMarker
ggSetPieChartAnnotation
ggSetPieChartBoundSwitch
ggSetPieChartBoxType
ggSetPieChartExplosion
ggSetPieChartFrame
ggSetPieChartStartAngle
ggSetPlotFrame
ggSetPolarChartAttribs

BARFIL
GRAFIL
GRAFI2
HISFIL
COMFIL
STPFIL
GRAMOV
ARECHA
BARCHA
GRAPH
HISCHA
PIECHA
STPCHA
POLXY
AXISET
CHT2ST
PIESET
VECSET
LINFIT
AXIANN
AXIATT
AXIPOS
AXISCA
CHTATT
CURFIN
CURBEG
DATANN
DATSCA
DATFOR
GRFMOD
GRASCA
GRDSYM
PIEANN
PIEBSW
PIEBOX
PIEEXP
PIEPAP
PIEANG
GRFBND
SETPOL

CROSS-REFERENCES

F90-F77 Cross-Reference

ggSetTextChartAttribs
ggSetValueAttribs
ggSetValueTags
ggSetVectorChartFrame
ggSetVectorAttribs
ggSetVectorLimits
ggTransformGraphPoint

ggTransformSpacePoint

TEXDEF
VALATT
VALTXT
VECBND
VECSCA
VECCLP
GRASPA
SPAGRA

327

Appendix

DEPRECATED ROUTINES

Deprecation Procedure

This appendix contains routines that are being deprecated due to the developing
nature of GINOGRAF as it keeps in line with changes in the graphics and general
computing environment.

A routine will go through two intermediate stages prior to being removed from
the GINOGRAF library:

Stage 0:

Routine has no further use in GINOGRAF library. Documentation will be
removed from the reference chapter and temporarily placed in this Appendix. The
routine will not however be removed from the library.

Stage 1:

Routine will generate a warning message but will run correctly. Documentation
will be removed from the reference chapter and placed in this Appendix.

Stage 2:

Routine will generate an error message and will not have any effect on a users
program. Its routine specification and arguments will remain in this Appendix,
but without the description. Alternative routines (where applicable) will be
indicated.

Stage 3:

The routine will be removed from the GINOGRAF library.

329

Deprecation Procedure DEPRECATED ROUTINES

Each stage represents one major release of GINOGRAF which gives about 2-3
years in order to facilitate changes to an application program to reflect any
deprecations of a routine.

However, it is stressed that no routine will be deprecated without alternatives
being provided or where it is offering a facility that has fallen out of use, and in
both cases discussed by the GINO Technical Committee. Any problems that are
encountered due to routine deprecation should be addressed to the Product
Development Manager of Bradly Associates Limited.

There are currently NO routines at any level of deprecation in this version of
GINOGRAF.

Due to a rationalisation, the following routines are being phased out of the
GINOGRAF library due to duplication or lack of use. The following table lists
the F77 routine name and the alternative routine that should be called if

appropriate.

Fortran-77 New routine if appropriate
PIEFIL ggPlotPieChart
PIESTR ggPlotPieChart
SEGFIL ggAddPieChartSegment
SEGSTR ggAddPieChartSegment

330

A

AKMACUIVE - = + + = v v v v v e s 48
ANNOtation « = + ¢ ¢ ot v e e e e e e e e e 27
Area Charts: « « « + =+« @ v oo 82
Arrow Drawing 167
Axes
Annotation Control + « « = = = =+ + + + - 31-37
Annotation Enquiry -« - - - -0 oo e 38
Date -« » ¢ s s e e e e 38 -44
Definition =+« -+ - - - - - e e e 20-23
Drawing 24 -28
Frames = « « « « = = =+ s e e e 25
Labelling -------------------- 30
POSitioning ------------------- 20
Scaling -+« - v 21
Sub-Intervals « =+ =+ = o 24
Tick Mark Size- - = = = = =+« « « o o oo 24
Titling -« -« - oo 29
B
Bar Charts « - =« =« = v v s e e 76
Block Charts Attributes -+« « = = = =+« oot 87
Block Filled
Area Chart = =+ + = =+ oo 107
Bar Chart- -« =« = =« =« « o oo 95
Histogram - - - - = =« oo 38
Step Chart: « =« =« = oo 101
C
Characters - - = = =« « « c s e e e e 13
Chart Scaling® « =« =+ =« oo 86
Conversion Scales « + « + « s s s e e e 189
Coordinate System - -« « « « - - - - 17
CUIVE -+ « = = o o e e e e e 48
Curve End Conditions - = « =« =« =+ =+ =+ = - - 55
D
Date AXES =+« + - vt e e e e e 38 -44
Date Axes Enquiry: -« - - =« - - - oo e 45

Date Axes Scaling « =+« - - - s s 39
Date Axis Usage - © =+« = = = - s s e 41
Date COnVerSiOn 40
Defaults 45
Deprecated Routines « + = =+ - =+ oo 329
E

Error & Warning Messages - - - - - - - - - 313-318
Error Bars 57
F

F77-F90 Cross-Reference - - - - - - - - - - 321-323
F90-F77 Cross-Reference - - - - - - - - - - 324 -327
Filling between Lines -« =« =« =« =« oo v oo 61
Filling under a Line - - - - = -~ - - =« - o v oo 61
FOHtS 1 3
G

gDefineBrokenLineStyle Usage: = = =+« - - - - - 13
gDefineHatchStyle Usage - - - = = = =+« « - - - - 13
gDefineLineStyle Usage: - - - = = = =+« « - - - - 13
ggAddAkimaCurve Usage- - - = = = =« « - - - - 54
ggAddAreaChartOutline Usage « « - - - - =« - - 108
ggAddAreaChartValues Usage- « + - - - - =« - - 109
ggAddBarChartOutline Usage- - - =+ - =+ - - - - 96
ggAddBarChartValues Usage - - = - -+« - - - - - 97
ggAddErrorBars Usage - - - - = = - - o 00 e e 57
ggAddGraphCurve Usage - - - = = = =+« - - - - - 54
ggAddGraphLine Usage = =+ - =+ » =« - o - - - 167
ggAddGraphMarkers Usage - « + - =+« =« - - - - 56
ggAddGraphPolyline Usage - « + - =+ » =+ - - - - 54
ggAddGraphSpline Usage - =~ + - =+ » =« - - - - 54
ggAddGraphValues Usage- =+« - =+ » =« - - - - 64
2gAddGrid Usage - =« - - - = - - s 25
ggAddHistogramOutline Usage - - =+ - =+ - - - - 89
ggAddHistogramValues Usage - - =+ - =« - - - - 91
ggAddPieChartSegment Usage: « + - =+ - =« - - 142
ggAddPopulationGraph Usage - - =+ - =« - - - - 59
ggAddReferenceLine Usage «+ - =+ - =+ - =+ - - 168
ggAddSquareWave Usage - - - = = = =+« - - - - - 58

331

G Index
ggAddStepChartOutline Usage: = = = -+« « - - - 101 ggPlotPieChart Usage « « =+« =+« =+« - 140
ggAddStepChartValues Usage = = = - = -+ -« - - 103 ggPlotStepChart Usage - =+« =+« =+« =« - - 79
ggAddVectors Usage = » -+« = =« 0 e 123 ggPlotXYPolarChart Usage « « =+« =+« =« - - 127
ggBlockFillAreaChart Usage: « + + - - - = =« - - 107 ggRestoreAxesSettings Usage = « - - - - 15,23,45,135
ggBlockFillBarChart Usage - - =« =+« « + - - - - 95 ggRestoreBlockChartAttribs Usage + + - - - =« - - 88
ggBlockFillHistogram Usage - = = = -+« + - - - - 88 ggRestorePieChartSettings Usage = -+« + - - - - 151
ggBlockFillMultiHistogram Usage: -+« + - - - - 113 ggRestoreVectorSettings Usage - - - = = -+« - - 123
ggBlockFillStepChart Usage = « « « - - - = =« -+ 101 ggReturnLineCoeffs Usage: -« = - -+ = - -+« - - 169
ggConvertDates Usage: + - - = = = = =« - - - v - 41 ggSetAxesAnnotation Usage: - - -+ « - - 27,145,157
ggConvertDateToGraph Usage - - -+« - - - - - 41 ggSetAxesAttribs Usage« - =+« - =+ - o0 31
ggConvertGraphToDate Usage - - = - - =+ - - - - 41 ggSetAxesPos Usage: - =+ + =+ c o s 20
ggDefineMissingValues Usage -+ = - = - =+ - - - 69 ggSetAxesScaling Usage « - =+« =« - v 21
ggDisplayFillColumn Usage - « -+« « « « « - - 160 ggSetBlockChartAttribs Usage - =« - =« - =« - - 87
geDisplayGeneratedColumn Usage - =+ - - - - - 157 ggSetCurveEndConds Usage - -+ - =« - =« - - - 55
ggDisplayLineColumn Usage - - -« - -« - - - - 160 ggSetCurveStartConds Usage « « - - =« « - - - - - 55
geDisplayMarkerColumn Usage - + - =+ - - - - - 160 ggSetDateAxesAnnotation Usage - - =+ - =« - - - 40
geDisplayPercentageColumn Usage - -+ - - - - - 157 ggSetDateAxesScaling Usage - =+ - =+ - =« - - - 39
geDisplayStringColumn Usage -+ - =+ - -« - - 155 ggSetDateFormat Usage = -« - =+ - =+« =+« - - 39
ggDisplayValueColumn Usage- - - -+« « - - - - 157 ggSetGraphCharMode Usage « - =+ - =« - = « - - 14
ggDrawArrow Usage - - = = = = = s e s 168 ggSetGraphScaling Usage = =« « - - = =« - - - 51,86
ggDrawAxes Usage =« =« =+ =+ oo 24 ggSetGridMarker Usage - = « =+ =+ =+ o+ e o 26
ggDrawAxesLabels Usage- = = -« - - - -« - - - - 30 ggSetPieChartAnnotation Usage- = « - = « - - - - 142
ggDrawAxesTitle Usage- - - - - - - - - - - - - - - 29 ggSetPieChartBoundSwitch Usage - - - - - - - - 148
ggDrawGraphTitle Usage- - - - = -~ - - -+ - 70,165 ggSetPieChartBoxType Usage = - = « - =« - - - - 147
ggDrawPolarAxes Usage: -« - =+ - =« - =« - - 133 ggSetPieChartExplosion Usage - =« - =« - - - - 148
ggEnqAxesAnnotation Usage + - -+« - =+ - - - - 29 ggSetPieChartFrame Usage - - - - - - - - - - - - 139
ggEnqAxesAttribs Usage -« + - =« - o 00 38 ggSetPieChartStartAngle Usage - = =+« - - - - - 148
ggEnqAxesPos Usage =+ + =+« = o s oo e e 23 ggSetPlotFrame Usage: =+« =+« =+« =+ - 16
ggEnqAxesScaling Usage = - -+« =« - - - o - - 23 ggSetPolarChartAttribs Usage - = =+ + - =« « - - 133
ggEngBlockChartAttribs Usage = + -+ =+ =+ -+ - 87 ggSetTextChartAttribs Usage « « + + = =+« + - - 154
ggEngDateAxesAnnotation Usage - -+« - - - - - 45 ggSetValueAttribs Usage- « « + - - = = = -+« -+ 64,91
ggEngDateAxesScaling Usage -+« -+« - - - - - 45 ggSetValueTags Usage « + - - - - -« - 66,92,145,158
ggEnqDateFormat Usage - - -+« - -« - - -« - - 45 ggSetVectorAttribs Usage + + = =+« + -« -« 122
ggBEngGridMarker Usage - - - - = - - - oo 0 e 27 ggSetVectorChartFrame Usage: = - = - = -« - - - 122
ggEnqPieChartAnnotation Usage - - - -« - - - - 151 ggSetVectorLimits Usage: + + « =+« + = =« « + - 122
ggEngPieChartSettings Usage « + + - - - =« « -+ 151 ggTransformGraphPoint Usage -« + - - - - =« - - 166
ggBEngPlotFrame Usage - - = - - = - - = o 0 o0 e 16 ggTransformSpacePoint Usage: + -+ -+ -+ -+ - 167
ggEnqTextChartAttribs Usage - = - - =+ - =+ - - 154 GINO: « « « o oo oo e e e 12
ggEnqValueAttribs Usage - =+« = =+ - =+ - - - - 66 gMoveTo2D Usage: « + + + + = =+« + = v 168
ggEnqgVectorAttribs Usage © «+ «+ «+ « - - - = = - - - 123 Graph Drawing - -+« « » = = o oo oo 52-53
ggEnqgVectorChartFrame Usage « + - - - -« « -+ 123 Graph Layout- - = =« =« « - oo oo e 175 -191
ggEnqgVectorLimits Usage =+« «+ « - - - = =« -« 123 Graph Scaling -« « « + © c o s 51
ggFillAreaChart Usage ~~~~~~~~~~~ 108 Graph Titles = = = =« = o oo 70
ggFillBarChart Usage « « - = =« = =+ = =+ -« - - 06 Grids « « + v v e e 25
ggFillBelowDataset Usage- - - = = = =+« + - - - - 61 gSetBrokenLine Usage - - - - = = = - - 000 - e 13
ggFillBetweenDatasets Usage - =« =+« « - - - - - 61 gSetCharFont Usage = « « - - = = = = = v o 000 e e 14
ggFillHistogram Usage - - = = - - =+ - -+ -« - 90 gSetCharSize Usage «+ - =+ + =+« =+« =« -« - 14
ggFillMultiHistogram Usage - + - =+ - =« - - - - 118 gSetFontFillStyle Usage- - =+ - =+ - =« - =« - - 14
ggFillStepChart Usage « - =+ =+ = -« -« -« - - 102 gSetFontWeight Usage: « - =+ + =+ = =« + =« - 14
ggMoveToGraphPoint Usage - - - - - - - - 167-168 gSetltalicAngle Usage - - = =+ = =+ - =+« =« - - 14
ggPlotAreaChart Usage « - -~ - - =+ - =+ -« - - 82 gSetLineColour Usage: -« = -« = -« = - -« o - - 13
ggPlotBarChart Usage - -« = -« = - -« = -« - - - 76 gSetLineEnd Usage « =+ =+ =+ =+ oo c e o 13
ggPlotGraph Usage - « =+ =« =+ o+ oo 48 gSetLineWidth Usage = « =« =+ =+ =+ =« oo o 13
ggPlotHistogram Usage « - =~ + = =+ - =+ - - - 72 gSetStrUnderscore Usage + =+ =+ =+ =+ =+ - - - 14

332

Index H
Hatch Styles 310 TeXt Charts 153 - 164
High-Low Graphs - - - =« =« o oo oo e 57 TickMarks - =« -« oo 24
Histograms 72 Tltllng 165
Transformations - « =« =« - oo 15
Initializing- -« -« - oo 15-17
Utllltles]65 - 173
Keys: -« v v v oo 153
Value Prefix & Suffix
L onCharts «+ « « =+« = e e e e e 92
on Graphs: -« = - - e 66
Legends - « <+« c o et 153 on Text Charts -« - = -« o oo e e e 158
linear scaling - « « « « -+ oo o5 Variable Width Histograms - = - = - - - - oo oo 79
logarithmic scaling- = - - = = - - - 25 YectorCharts - - - - - - - 122
Markers « -« « e 56312 Windowing « « « « ¢ v s 15
Masking - - ¢ 0o e 15
Missing Values - =+ + =+« o oo 69 X
Multi Data Sets « - -« = -« oo 112 - 119
Multiple Axes « - - - - - 179-191 X-Y Graphs - - - - o oo s e 54
Multiple Scales -« = = - = - - 182
Pie Charts- - - = =« = o v oo 137 -151
Polar Charts- - -~ - - = = - - o v e 127 - 136
Population Graphs - - = - - = - oo 59
Reference Lines: « - =« + = « « =« « o o oo 168
Rogue Values: =« «+ « =+« = o e e e e 69
Scatter Diagram ““““““““““ 56
Segment Explosion - =+ = - - - e e e 148
Spline CUIVE =« & = 0 e e e e e e e 48
Square Grid: -« ¢ ¢ e e e e 86
Square Wave Graphs 58
Stacked Histograms: - = - = - = - = - o 0o 113
Structures « = ¢ v v v v s e e e e e e e e e 319
Symbol Graphs- - = - - - o oo 56

333

	Contents
	INTRODUCTION 11
	The Scope of GINOGRAF 11
	Graphs 11
	Charts 11
	Vector Charts 11
	Polar Charts 11
	Pie Charts 12
	Text Charts 12
	Utility routines 12

	Interfacing With GINO 12
	Colour, Line Attributes and Filling 13
	Characters and Fonts 13
	Transformations, Windowing and Masking 15

	Initializing GINOGRAF 15
	Drawing Area 16
	Graphical Axis Coordinate System 17

	AXES 19
	Introduction to Axes 19
	Axes Definition 20
	Axis Positioning 20
	Axis Scaling 21
	Axes Position and Scaling Enquiry 23
	Axis Sub-Intervals and Tick Mark Size 24

	Axes Drawing 24
	Single Axes 24
	Axes Frames 25
	Numeric Annotation Format Control 27

	Axes Titling 29
	Axes Labelling 30
	Axes Annotation Control 31
	Annotation Position 32
	Skipping labels 34
	Adjusting Offsets, Angle and Justification 35
	Axes Annotation Enquiry 38

	Date Axes 38
	Date Axes Scaling 39
	Date Conversion 40
	Date Axes Usage 41
	Date Axes Enquiry 45

	Default Restoration 45

	GRAPHS 47
	Introduction to Graphs 47
	Complete Graph Drawing 48
	Graph Scaling 51

	Graph Drawing Components 52
	Graph Axes Definition and Display 52
	Data Representation 52

	Line Graphs 54
	Straight Lines Graphs 54
	Smooth Curves 54
	Curve End Conditions 55

	Symbol Graphs 56
	Error Bars 57
	Square Wave Graphs 58
	Population Graphs 59
	Data Set Filling 60
	Filling to a Line 61
	Filling Between Two Data Sets 61

	Displaying Data Values 64
	Graph Data Value Control 64

	Application Specific Missing Values 69
	Graph Titles 70

	CHARTS 71
	Introduction to Charts 71
	Complete Chart Drawing 72
	Histograms 72
	Bar Charts 76
	Step Charts & Variable Width Histograms 79
	Area Charts 82
	Chart Scaling 86

	Chart Drawing Components 87
	Chart Axes Definition and Display 87
	Block Chart Attributes 87

	Histogram Components 88
	Block Filled Histogram 88
	Histogram Outline 89
	Histogram Filling 90
	Annotating Height Values on Histograms 91
	Histogram Data Value Control 91
	Example of Fully Annotated Histogram 93

	Bar Chart Components 95
	Block Filled Bar Chart 95
	Bar Chart Outline 96
	Bar Chart Filling 96
	Annotating Bar Charts 97
	Example of Fully Annotated Bar Chart 98

	Step Chart Components 100
	Block Filled Step Chart 101
	Step Chart Outline 101
	Step Chart Filling 102
	Annotating Step Charts 103
	Example of Fully Annotated Step Chart 104

	Area Chart Components 107
	Block Filled Area Chart 107
	Area Chart Outline 108
	Area Chart Filling 108
	Annotating Area Charts 109
	Example of Fully Annotated Area Chart 110

	Multi Data Set Histogram Components 112
	Multi Data Set Block Filled Histogram 113
	Multi Data Set Histogram Filling 118

	VECTOR CHARTS 121
	Introduction to Vector Charts 121
	Vector Chart Components 121
	Vector Chart Axes Definition and Display 122

	Vector Chart Attributes 122
	Vector Chart Mapping 122
	Vector Clipping and Scaling 122
	Resetting Attributes 123
	Enquiring Attributes 123

	Vector Chart Drawing 123

	POLAR CHARTS 127
	Introduction to Polar Charts 127
	Complete Polar Chart 127
	Polar Chart Components 132
	Positioning and Scaling 133
	Polar Axes Drawing 133
	Polar Axes Annotation Control 134
	Polar Axes Enquiry 135
	Polar Chart Default Restoration 135
	Polar Chart Drawing 135

	PIE CHARTS 137
	Introduction to Pie Charts 137
	Pie Chart Facilities 137
	Pie Chart Size and Position 139

	Pie Chart Drawing 140
	Single Segment Output 142
	Pie Chart Annotation Control 142
	Pie Chart Annotation Box 147

	Pie Chart Control 147
	Start Angle Definition 148
	Pie Chart Boundary 148
	Pie Chart Explosion 148
	Pie Chart Enquiry 151
	Pie Chart Default Restoration 151

	TEXT CHARTS 153
	Introduction to Text Charts 153
	Text Chart Layout 154
	String Text Chart 155
	Value Text Charts 157
	Graphic Item Text Charts 160

	UTILITIES 165
	Introduction to Utilities 165
	Graph Titling 165
	Coordinate Conversion 166
	Line Drawing 167
	Arrow Drawing 167
	Reference Lines 168
	Data Fitting 169
	Example Program 170

	GRAPH LAYOUT 175
	Introduction to Graph Layout 175
	Multiple Graph Layout 175
	Using Complete Graph or Chart Routines 175
	Using Component Routines 177

	Graphs with Multiple Data Sets 178
	Mixing Graph Levels 178
	Mixing Graph Types 179

	Graphs with Multiple Axes 179
	Multiple Axes on Graph Frame 180
	Axes with Multiple Scales 182
	Conversion Scales 189

	ROUTINE SPECIFICATIONS 193
	DEFAULTS 307
	Default Parameters 307
	Axes Definition Defaults 307
	Data Value Display Defaults 308
	Chart Defaults 308
	Vector Chart Defaults 309
	Polar Chart Defaults 309
	Pie Chart Defaults 309
	Text Chart Defaults 310
	Drawing Attributes 310

	ERROR AND WARNING MESSAGES 313
	GINOGRAF Errors and Warnings 313
	Configuration File Errors 317

	STRUCTURES 319
	Structures in GINOGRAF 319
	GINO Struc tures Used By GINOGRAF 320

	CROSS-REFERENCES 321
	Cross-Reference Summary 321
	F77-F90 Cross-Reference 321
	F90-F77 Cross-Reference 324

	DEPRECATED ROUTINES 329
	Deprecation Procedure 329

	Index
	A
	Akima Curve 48
	Annotation 27
	Area Charts 82
	Arrow Drawing 167
	Axes
	Annotation Control 31 - 37
	Annotation Enquiry 38
	Date 38 - 44
	Definition 20 - 23
	Drawing 24 - 28
	Frames 25
	Labelling 30
	Positioning 20
	Scaling 21
	Sub-Intervals 24
	Tick Mark Size 24
	Titling 29

	B
	Bar Charts 76
	Block Charts Attributes 87
	Block Filled
	Area Chart 107
	Bar Chart 95
	Histogram 88
	Step Chart 101

	C
	Characters 13
	Chart Scaling 86
	Conversion Scales 189
	Coordinate System 17
	Curve 48
	Curve End Conditions 55

	D
	Date Axes 38 - 44
	Date Axes Enquiry 45
	Date Axes Scaling 39
	Date Axis Usage 41
	Date Conversion 40
	Defaults 45
	Deprecated Routines 329

	E
	Error & Warning Messages 313 - 318
	Error Bars 57

	F
	F77-F90 Cross-Reference 321 - 323
	F90-F77 Cross-Reference 324 - 327
	Filling between Lines 61
	Filling under a Line 61
	Fonts 13

	G
	gDefineBrokenLineStyle Usage 13
	gDefineHatchStyle Usage 13
	gDefineLineStyle Usage 13
	ggAddAkimaCurve Usage 54
	ggAddAreaChartOutline Usage 108
	ggAddAreaChartValues Usage 109
	ggAddBarChartOutline Usage 96
	ggAddBarChartValues Usage 97
	ggAddErrorBars Usage 57
	ggAddGraphCurve Usage 54
	ggAddGraphLine Usage 167
	ggAddGraphMarkers Usage 56
	ggAddGraphPolyline Usage 54
	ggAddGraphSpline Usage 54
	ggAddGraphValues Usage 64
	ggAddGrid Usage 25
	ggAddHistogramOutline Usage 89
	ggAddHistogramValues Usage 91
	ggAddPieChartSegment Usage 142
	ggAddPopulationGraph Usage 59
	ggAddReferenceLine Usage 168
	ggAddSquareWave Usage 58
	ggAddStepChartOutline Usage 101
	ggAddStepChartValues Usage 103
	ggAddVectors Usage 123
	ggBlockFillAreaChart Usage 107
	ggBlockFillBarChart Usage 95
	ggBlockFillHistogram Usage 88
	ggBlockFillMultiHistogram Usage 113
	ggBlockFillStepChart Usage 101
	ggConvertDates Usage 41
	ggConvertDateToGraph Usage 41
	ggConvertGraphToDate Usage 41
	ggDefineMissingValues Usage 69
	ggDisplayFillColumn Usage 160
	ggDisplayGeneratedColumn Usage 157
	ggDisplayLineColumn Usage 160
	ggDisplayMarkerColumn Usage 160
	ggDisplayPercentageColumn Usage 157
	ggDisplayStringColumn Usage 155
	ggDisplayValueColumn Usage 157
	ggDrawArrow Usage 168
	ggDrawAxes Usage 24
	ggDrawAxesLabels Usage 30
	ggDrawAxesTitle Usage 29
	ggDrawGraphTitle Usage 70,165
	ggDrawPolarAxes Usage 133
	ggEnqAxesAnnotation Usage 29
	ggEnqAxesAttribs Usage 38
	ggEnqAxesPos Usage 23
	ggEnqAxesScaling Usage 23
	ggEnqBlockChartAttribs Usage 87
	ggEnqDateAxesAnnotation Usage 45
	ggEnqDateAxesScaling Usage 45
	ggEnqDateFormat Usage 45
	ggEnqGridMarker Usage 27
	ggEnqPieChartAnnotation Usage 151
	ggEnqPieChartSettings Usage 151
	ggEnqPlotFrame Usage 16
	ggEnqTextChartAttribs Usage 154
	ggEnqValueAttribs Usage 66
	ggEnqVectorAttribs Usage 123
	ggEnqVectorChartFrame Usage 123
	ggEnqVectorLimits Usage 123
	ggFillAreaChart Usage 108
	ggFillBarChart Usage 96
	ggFillBelowDataset Usage 61
	ggFillBetweenDatasets Usage 61
	ggFillHistogram Usage 90
	ggFillMultiHistogram Usage 118
	ggFillStepChart Usage 102
	ggMoveToGraphPoint Usage 167 - 168
	ggPlotAreaChart Usage 82
	ggPlotBarChart Usage 76
	ggPlotGraph Usage 48
	ggPlotHistogram Usage 72
	ggPlotPieChart Usage 140
	ggPlotStepChart Usage 79
	ggPlotXYPolarChart Usage 127
	ggRestoreAxesSettings Usage 15,23,45,135
	ggRestoreBlockChartAttribs Usage 88
	ggRestorePieChartSettings Usage 151
	ggRestoreVectorSettings Usage 123
	ggReturnLineCoeffs Usage 169
	ggSetAxesAnnotation Usage 27,145,157
	ggSetAxesAttribs Usage 31
	ggSetAxesPos Usage 20
	ggSetAxesScaling Usage 21
	ggSetBlockChartAttribs Usage 87
	ggSetCurveEndConds Usage 55
	ggSetCurveStartConds Usage 55
	ggSetDateAxesAnnotation Usage 40
	ggSetDateAxesScaling Usage 39
	ggSetDateFormat Usage 39
	ggSetGraphCharMode Usage 14
	ggSetGraphScaling Usage 51,86
	ggSetGridMarker Usage 26
	ggSetPieChartAnnotation Usage 142
	ggSetPieChartBoundSwitch Usage 148
	ggSetPieChartBoxType Usage 147
	ggSetPieChartExplosion Usage 148
	ggSetPieChartFrame Usage 139
	ggSetPieChartStartAngle Usage 148
	ggSetPlotFrame Usage 16
	ggSetPolarChartAttribs Usage 133
	ggSetTextChartAttribs Usage 154
	ggSetValueAttribs Usage 64,91
	ggSetValueTags Usage 66,92,145,158
	ggSetVectorAttribs Usage 122
	ggSetVectorChartFrame Usage 122
	ggSetVectorLimits Usage 122
	ggTransformGraphPoint Usage 166
	ggTransformSpacePoint Usage 167
	GINO 12
	gMoveTo2D Usage 168
	Graph Drawing 52 - 53
	Graph Layout 175 - 191
	Graph Scaling 51
	Graph Titles 70
	Grids 25
	gSetBrokenLine Usage 13
	gSetCharFont Usage 14
	gSetCharSize Usage 14
	gSetFontFillStyle Usage 14
	gSetFontWeight Usage 14
	gSetItalicAngle Usage 14
	gSetLineColour Usage 13
	gSetLineEnd Usage 13
	gSetLineWidth Usage 13
	gSetStrUnderscore Usage 14

	H
	Hatch Styles 310
	High-Low Graphs 57
	Histograms 72

	I
	Initializing 15 - 17

	K
	Keys 153

	L
	Legends 153
	linear scaling 25
	logarithmic scaling 25

	M
	Markers 56,312
	Masking 15
	Missing Values 69
	Multi Data Sets 112 - 119
	Multiple Axes 179 - 191
	Multiple Scales 182

	P
	Pie Charts 137 - 151
	Polar Charts 127 - 136
	Population Graphs 59

	R
	Reference Lines 168
	Rogue Values 69

	S
	Scatter Diagram 56
	Segment Explosion 148
	Spline Curve 48
	Square Grid 86
	Square Wave Graphs 58
	Stacked Histograms 113
	Structures 319
	Symbol Graphs 56

	T
	Text Charts 153 - 164
	Tick Marks 24
	Titling 165
	Transformations 15

	U
	Utilities 165 - 173

	V
	Value Prefix & Suffix
	on Charts 92
	on Graphs 66
	on Text Charts 158

	Variable Width Histograms 79
	Vector Charts 122

	W
	Windowing 15

	X
	X-Y Graphs 54

