

Contents

Introduction..7

1.1 Overview..7

1.2 What is MATFOR ...8

1.3 The MATFOR Components ..9

1.4 MATFOR Procedure Naming Conventions.................................... 13

1.5 Array Terminology .. 15

1.6 MATFOR Installation .. 16

1.7 MATFOR Documentation and Examples 18

1.8 Technical Support ... 18

Working with mfArray......... 21

2.1 What is mfArray ... 21

2.1.1 Structure of the mfArray .. 21

2.1.2 mfArray Intr ins ic Data Type ... 22

2.1.3 mfArray Element Ordering... 23

2.1.4 Memory Management .. 24

2.1.5 mfArray Syntax and Expressions .. 24

2.1.6 Mix mfArray and Fortran Arrays .. 25

2.2 Create and Initialize mfArray .. 25

2.2.1 Declaring an mfArray .. 26

2.2.2 Initializing an mfArray .. 26

2.2.3 mfArray Creating Procedures ... 28

2.3 Access Elements and Sections of an mfArray 31

2.3.1 Element Subscripts .. 31

2.3.2 mfArray Creating Procedures .. 32

2.3.3 Using Subscript in an mfArray .. 34

2.4 mfArray I/O ... 37

2.4.1 Displaying mfArray Data .. 37

2.4.2 mfArray File I/O ... 42

2.5 mfArray Inquiry Procedures .. 47

2.5.1 Logical Inquiry ... 47

2.5.2 Size, Shape, and Extent ... 50

2.5.3 Logical Operations.. 53

2.6 mfArray Operators .. 56

2.6.1 Arithmetic Operators ... 57

2.6.2 Relational Operators ... 58

2.6.3 Matrix Operators and Functions... 59

2.6.4 Operators Precedence .. 63

2.6.5 MATFOR Parameters .. 64

2.7 Program with mfArray .. 65

2.7.1 Quick Conversion – Function mf() 66

2.7.2.Using mfArray in If Constructs ... 66

2.7.3 Using mfArray as Input to Fortran Procedures...................... 68

2.7.4 Using Fortran Arrays as Input to MATFOR Procedures 71

2.7.5 Using mfArray as Input Dummy Arguments 74

2.7.6 Using mfArray as Output Dummy Arguments in Functions ... 75

Linear Algebra.. 77

3.1 Matrix Inverse .. 77

3.2 Application of Eigenvalues and Eigenvectors............................... 82

3.3 Least Square Operations ... 84

Visualization Basics....................... 91

4.1 Plotting Your Data... 91

4.2 MATFOR Graphics Viewer .. 94

4.2.1 Window Frame and Figure Windows 94

4.2.2 Subplots .. 95

4.2.3 Menu and Toolbar .. 97

4.3 Creating 3-D Models ... 100

4.3.1 Generating the Data ... 100

4.3.2 Loading data (mfb, ascii) ... 102

4.4 Displaying 3-D objects .. 104

4.4.1 Adjusting the Viewpoint. ... 105

4.4.2 Shifting the Objects ... 106

4.4.3 Rescaling the Objects .. 107

4.4.4 Changing the Displaying Mode .. 108

4.4.5 Setting the Axis Object .. 109

4.5 Colormap, Shading and Texture ... 111

4.5.1 Adjusting Colormap ... 111

4.5.2 Displaying Colorbar .. 115

4.5.3 Shading Objects .. 116

4.5.4 Mapping Texture ... 117

4.6 Annotating Your Graph .. 121

4.6.1 Setting the Title and Axis Labels .. 122

4.6.2 Text Annotation ... 123

4.7 Animation and Recording .. 125

4.7.1 Animation ... 125

4.7.2 Recording your animation .. 127

4.7.3 Image Exporting .. 128

4.8 MATFOR Data Viewer .. 129

4.8.1 Matrix Table ... 130

4.8.2 Menu .. 131

4.8.3 Toolbar ... 132

4.8.4 Sampling Type .. 132

4.8.5 Snapshot Panel.. 133

4.8.6 Analysis Panel .. 134

4.8.7 Filter Panel ... 135

4.8.8 Status Bar ... 135

Visualization Methods.......... 137

5.1 Linear Graph .. 137

5.1.1 Two-dimensional Linear Graph.. 137

5.1.2 Three-dimensional Linear Graph 140

5.2 Surface Plot... 142

5.2.1 Surface plot .. 142

5.2.2 Contour plot ... 144

5.2.3 Pseudocolor plot ... 146

5.3 Volume Rendering .. 148

5.3.1 Surface (surf, mesh, outline, contour) 148

5.3.2 Sliced-planes .. 151

5.3.3 Isosurface ... 152

5.4 Vector Field.. 154

5.4.1 Quiver and Streamline... 154

5.5 Elementary 3-D Objects .. 156

5.5.1Primitives .. 156

5.5.2 Molecule .. 157

5.6 Unstructured Mesh ... 159

5.6.1 Surface.. 160

5.6.2 Contour ... 163

5.7 Unstructured Grids .. 164

5.7.1 Surface, Contour, and Iso-surface plots of unstructred grids 165

5.8 Delaunay Triangulation ... 175

5.8.1 Two-dimensional Delaunay .. 175

5.8.2 Three-dimensional Delaunay .. 178

Index .. 181

Introduction

1.1 Overview
This guide is written as an introduction to users who are new to MATFOR in Fortran —
a Fortran 90/95 numerical and visualization library. In this guide, the MATFOR
foundation array — mfArray is introduced and discussed with some depth in Chapter 2.
This is followed by the application of MATFOR in linear algebra in Chapter 3 and then
an introduction of visualization basics in Chapter 4. Chapter 5 contains the descriptions
on categories of the graphical procedures. We assume that the user has some prior
knowledge of programming.

The guide contains the following chapters:

Chapter 1. Introduction, provides an overview of MATFOR including Conventions,
Documentation, and Licensing.

Chapter 2. Working with mfArrays, provides an overview of the MATFOR mfArray,
including its structure, constructors, operators, and general array syntax.

Chapter 3. Linear Algebra, highlights the linear algebra procedures available in
MATFOR and their usage.

Chapter 4. Visualization Basics, contains some basic knowledge regarding MATFOR’s
visualization toolkits and functional capabilities, including MATFOR Graphics Viewer,
MATFOR Data Viewer, and steps to visualization, animation, and presentation.

8 MATFOR User’s Guide

Chapter 5. Visualization Methods, covers most of the MATFOR Graphical procedures
that are categorized into different groups including, Linear Graph, Surface Plot, Volume
Rendering, Vector Field, Elementary 3-D Objects, Unstructured Grids, and Delaunay
Triangulation.

1.2 What is MATFOR
MATFOR is a set of Fortran 90/95 libraries that enhance your Fortran program with
dynamic visualization capabilities, shortens your numerical codes, and speeds up your
development process.

By adding a few lines of MATFOR code to your Fortran program, you can easily
visualize your computation results, perform run-time animations, or even produce a
movie presentation file as you execute your program.

You also have the choice of recording an animation as a MATFOR .mfa file for later
viewing with the MATFOR mfPlayer.

Debugging is facilitated in the debugging facilities provided by MATFOR Graphics
Viewer. You can pause an animation, view the current data using MATFOR Data
Viewer, and examine any aberrations.

MATFOR numerical procedures are designed to be intuitive and easy to use. Using the
numerical procedures, you can solve many technical computing systems, especially
those involving linear algebra systems, in a fraction of the time it would take to write a
program in Fortran traditionally.

Chapter 1 Introduction 9

1.3 The MATFOR Components
The standard edition of MATFOR consists of six main components, namely the
MATFOR mfArray, MATFOR Numerical Library (named as fml), MATFOR Graphics
Library (named as fgl), MATFOR Graphics Viewer, MATFOR Data Viewer, and
MATFOR mfPlayer.

MATFOR procedures are divided into two main modules – the fml and fgl modules. The
fml module contains the numerical procedures whereas the fgl module contains the
graphical procedures. MATFOR mfArray is included within both modules. The
Graphics Viewer and Data Viewer are included in the fgl module.

Numerical procedures included in fml are further categorized into several modules such
as, mod_ess, mod_elmat, mod_matfun, mod_ops, mod_datafun, mod_fileio, and mod_elfun.
Advanced users who are overhead conscious may choose to include only the modules
necessary for the selected procedures as opposed to including the whole fml module.

MATFOR mfArray

The heart of MATFOR is a special array - the mfArray. The mfArray is a highly
flexible array which does not require explicit data typing nor dimensioning. All you
need is a simple declaration:

type (mfArray) :: x

The data type and dimensions of the mfArray are determined internally by MATFOR
when you enter data into it. It is so flexible that you can assign your Fortran array to an
mfArray. Then visualize your array data using MATFOR graphical procedures, without
having to having to be concerned with the dimensions or data types of your original
Fortran array.

MATFOR mfArray enables you to write programs with the ease of an interactive
language in the Fortran programming environment. With mfArray, powerful routines,
such as those in LAPACK, are packaged into simple and intuitive procedures. For
example, the original procedure DGESVX for calculating singular value decompositions
in LAPACK requires twenty-two individual arguments of different data types and array

10 MATFOR User’s Guide

dimensions. In MATFOR, the same calculation is achieved by passing three arguments
of the same data type to mfArray. As a result, you can focus more of your time on
problem-solving, rather than handling inputs and outputs.

MATFOR Numerical Library

The MATFOR Numerical Library is a collection of mfArray inquiries and mathematical
procedures, ranging from inquiry procedures such as mfShape, mfSize, mfIsLogical, and
elementary mathematical procedures such as mfSin, mfCos, and complex arithmetic, to
sophisticated procedures like eigenvalues, LU decomposition, matrix inverse, and
conditioning procedures. Most procedures use mfArray as the input and output
argument. The Numerical Library procedures are separated into several smaller
modules — mod_ess, mod_ops, mod_fileio, mod_datafun, mod_elfun, mod_elmat, and
mod_matfun. You may choose to use the individual modules necessary for selected
procedures to reduce the size of the library included.

MATFOR Graphics library

MATFOR Graphics library is a set of high-level visualization procedures for two-
dimensional and three-dimensional data visualization, animation, and graphical
debugging. They are easy-to-use and have a wide-range of applications. All procedures
use mfArray as the input and output argument.

MATFOR Graphics Viewer

The Graphics Viewer (shown in Figure 1.3.1) is a window for displaying your graphs
on the screen. The Graphics Viewer provides menu and toolbar functions for editing and
debugging.

Chapter 1 Introduction 11

Figure 1.3.1 The Graphics Viewer-MATFOR Data Viewer

MATFOR Data Viewer

MATFOR Data Viewer (shown in Figure 1.3.2) is a spreadsheet-like window used for
displaying your mfArray data. It displays both complex and real data. Menu and toolbar
functions are available for manipulating the array data. You can perform statistical
analysis on your mfArray data and filter the analysis with conditions specified using
mathematical expressions. MATFOR Data Viewer also allows you to export your
mfArray data to Microsoft Excel using the export function on the toolbar.

MATFOR mfPlayer

MATFOR mfPlayer (shown in Figure 1.3.3) is an offline player similar to Graphics
Viewer. You can record your data as mfa files using the procedures msRecordStart and
msRecordEnd, then play the animation using mfPlayer at a later time, without slowing
down your program computation. The mfPlayer shares the same GUI functions as the
Graphics Viewer. mfPlayer is located under the <MATFOR>\common\tools\player\
directory, where <MATFOR> is your MATFOR installation directory.

12 MATFOR User’s Guide

Figure 1.3.2 The Data Viewer

Chapter 1 Introduction 13

Figure 1.3.3 The mfPlayer

1.4 MATFOR Procedure Naming Conventions
MATFOR procedures are provided in function formats and subroutine formats. Two
prefixes are used to classify the MATFOR procedures. The procedures are classified
into — procedures with “mf” as their prefix and procedures with “ms” as their prefix.
All MATFOR procedures using “mf” as the prefix are function formats whereas
procedures using “ms” as the prefix are subroutine formats.

By default, MATFOR procedures use the mfArray as input and output arguments. In
special cases, it may be more convenient for procedures without a prefix to accept
Fortran data types as input and output arguments. Refer to the MATFOR Reference
Guide for documentation regarding the individual procedures and for more details on
the input and output argument types.

Procedures with “mf” as prefix

Most MATFOR procedures that return a single argument as the output use “mf” as
prefix. These procedures have a function format of the form:

out = mfFunction ([mfArray]in,…)

where out is the output argument and [mfArray]in is the input argument. For example, y
= mfSin(x), l=mfIsEmpty(a).

Procedures with “ms” as prefix

Procedures with "ms" as prefix are subroutines. There are three types of subroutine
formats — subroutine that do not return a value, subroutine that return a single output
(in which case, the prefix changes to "mf "), and subroutine that accept multiple input
and output arguments. Function mfOut() is used to specify the output arguments.

14 MATFOR User’s Guide

Subroutines have the following general format:

call msSubroutine (mfOut([mfArray]out1,…), [mfArray]in1,…)

where [mfArray]out1,… is the list of output arguments and [mfArray]in1,… is the list of
input arguments. The input and output arguments are optional.

For example,

call msViewPause()

call msSurf(x, y, z)

call msSubplot(2,2,1)

call msCos(mfOut(y),x)

call msLU(mfOut(l, u), a)

call msMeshgrid(mfOut(a, b), m, n)

Functions that return only mfArray as the output argument will also have a
corresponding subroutine of the format:

call msFunction(mfOut([mfArray]out), [mfArray]in, …).

For example, procedure y = mfSin(x) computes sin(x) and returns the result in mfArray y.
It has a corresponding subroutine counterpart using the same input and output
arguments of the format: call msSin(mfOut(y), x)

Chapter 1 Introduction 15

1.5 Array Terminology
Throughout this guide, we will be using the following array terminologies to describe an
array.

Properties Descriptions
rank number of dimensions

bounds upper and lower limits of indices

size total number of elements

shape rank and extents

conformance two arrays are of the same shape

Example

real :: a(3,3), b(5)

mfArray :: ma, mb

ma = a

mb = b

are described by the following:

 ma mb
rank 2 2

bounds [1,3] and [1,3] [1,1] and [1,5]

size 9 5

shape [3,3] [1,5]

conformance a and b do not conform

16 MATFOR User’s Guide

1.6 MATFOR Installation
MATFOR comes with an installation package that automatically installs all MATFOR
components and tools in your computer. The installation package automatically adds the
installed MATFOR directory to the system path and performs some of the Fortran
project configuration. In some cases, manual configuration is required. More details on
using the installation package are available in the installation instruction that comes
with the installation package.

In this section, we shall discuss several issues that might be encountered during your
installation of MATFOR. The topics covered include the MATFOR directory structure,
project settings, and upgrading a computer with MATFOR previously installed.

MATFOR Directory Structure

MATFOR is installed with the directory structure as illustrated in Figure 1.6.1.

Figure 1.6.1 MATFOR installed directory structure

Chapter 1 Introduction 17

MATFOR is installed under the AnCAD folder, where AnCAD is usually located under
C:\Program Files\AnCAD\ in the Windows environment. Under the AnCAD directory
tree, the installed components are further organized into two main categories — the
common utilities and the library specifics.

The common utilities include collateral programs, tools, and redistributables such as
MATFOR CA, mfPlayer, and dynamically linked libraries, etc. The library (e.g.
MATFOR Fortran Library) specifics are mainly components such as Fortran
modules .mod files, import library .lib files, the associated examples, and
documentations. Note that for library specifics, MATFOR Fortran Library is installed
under <MATFOR>\Fortran while MATFOR C++ Library is installed under
<MATFOR>\C++.

Project Settings

The installation package performs the following settings:

1) Automatically adds the path of the folder containing the MATFOR dynamically
linked library files to the system path. The added path is <MATFOR>\bin.

2) Automatically adds the MATFOR Library directories <MATFOR>\lib and
<MATFOR>\lib\cvf to the Visual Studio import library path.

3) Automatically adds the MATFOR Include directory <MATFOR>\include\cvf .

You are ready to use MATFOR in your program once the above settings are completed
successfully.

Bin

Figure 1.6.2 Specify import library file for linker.

Player Upgrade MATFOR

You should remove all previous versions of MATFOR components before upgrading to
a newer version. MATFOR installation package automatically detects previous versions
of MATFOR and uninstalls it when you run the installation package. If the installation
package fails to uninstall, uninstall through the Windows Add or Remove Program
utility located in the Control Panel.

18 MATFOR User’s Guide

Once uninstallation is complete, run the MATFOR installation package again to install
the new version.

1.7 MATFOR Documentation and Examples
MATFOR has two main documentations, namely MATFOR in Fortran User’s Guide,
and MATFOR in Fortran Reference Guide.

If you are new to MATFOR, start with MATFOR in Fortran User’s Guide. When you
need extensive write-up on a procedure, refer to the Reference Guide.

The documents are available in Acrobat Reader pdf format.

Throughout the MATFOR in Fortran User’s Guide, examples are used to illustrate
certain concepts or usages of MATFOR mfArray and procedures. Examples that are
labeled with numbers such as Example 2.2.2 are provided as *.f90 Fortran source files
and are located in your MATFOR directory. The general path is:

<MATFOR>\Fortran\examples\for_ug\

The *.f90 Fortran source files are named followed with their labels in the User’s Guide.
For example, Example 2.2.2 would be named as Example2_2_2. In most of the
examples, the results of the codes are not displayed in this guide, instead, you are
encouraged to compile and execute each program as you go through the User’s Guide to
get a first-hand experience of MATFOR.

1.8 Technical Support

MATFOR for Windows comes with a Support Utility tool, mfid.exe, which can be
invoked from the Start menu\Programs\MATFOR\MATFOR support utility or from the

Chapter 1 Introduction 19

command window that has the <MATFOR>\common\tools\registration and support
directory in the path. When submitting a support issue, this tool should be run, and the
output is copied and pasted into an email. The information will identify the version of
the installed MATFOR, its system environment, Product BIN and corresponding
Authorization Key to the AnCAD customer support.

Figure 1.9.1 Information contained in mfid.exe

Working with
mfArray

2.1 What is mfArray
MATFOR mfArray is an advanced dynamic array defined by MATFOR using modern
features of Fortran 90/95 such as modules, function and operator overloading, derived
data type and dynamic storage, and pointers.

The mfArray supports automatic data typing and dimensioning. To initialize an mfArray,
you only have to write,

type (mfArray) :: a
a = 2.0

The size, shape, and data type of the mfArray is automatically determined. In the
example above, mfArray a automatically assumes the shape of the array is 1-by-1,
storing 2.0 as a double precision real value.

The mfArray is the foundation of MATFOR. Most MATFOR procedures use mfArray
as the input and output arguments. Thus you would need to convert your data to
mfArrays in order to use MATFOR procedures. Master it, and you will find your
Fortran experience transformed. With mfArray you will not need to handle floating-
point data. All you need are mfArrays, integers, and characters in your programs.

2.1.1 Structure of the mfArray

The mfArray contains a set of descriptors and values outlined as below:

22 MATFOR User’s Guide

Figure 2.1.1 Structure of the mfArray data object

The descriptors store information such as the current data type of the mfArray, current
shape and extent of the mfArray, and status flags such as temporary or restricted. The
status flags are used internally by MATFOR for memory management and for
restricting methods of the mfArray.

All data are stored as arrays. Scalars are stored in mfArray as 1-by-1 arrays; vectors are
stored as 1-by-n arrays where n is the length of the vector; and matrices are stored as m-
by-n arrays where m and n are the lengths of dimensions of the matrices. MATFOR
provides supports for up to seven dimensions of data.

2.1.2 mfArray Intr insic Data Type

The mfArray works with three broad classes of data types — character, Boolean and,
numeric. Numeric data are stored in double precision format. Each element of an
mfArray assumes the same data type as specified in the data type descriptor.

The data type assumed by an mfArray is automatically determined by MATFOR when
you initialize an mfArray. For example,

type(mfArray) :: a

! Create a double precision real 1-by-1 mfArray containing 1.0.
a = 1.0d0

! Create a double precision complex 1-by-1 mfArray containing
! 2.0+2.0i.

Chapter 2 Working with mfArray 23

a = (2,2)

! Create a double precision real 1-by-1 mfArray containing real
! number 3.0.
a = 3

! Create a 1-by-6 character mfArray containing the characters
! 'string'.
a = 'string'

MATFOR displays data in short format when you display an mfArray using the
procedure msDisplay. Double precision numbers are displayed with four decimal places.
Numbers able to be displayed as integers are displayed as such.

2.1.3 mfArray Element Ordering

In actual memory storage, elements of an mfArray are arranged column major-wise as
specified by Fortran 90 standard.

Figure 2.1.3 Element ordering in an mfArray data object

The elements of the mfArray are arranged in such that succeeding columns are placed
one after another, into a single long column. The elements are numbered according to
their row numbers (i). Thus, as an alternative to describing an element using its
element subscript (See Access Elements and Sections of an mfArray), you can refer to
an element by its position in the actual memory arrangement. From Figure 2.1.3,
element C(5,3) , can also be referred to as C(15).

24 MATFOR User’s Guide

2.1.4 Memory Management

MATFOR mfArray is a dynamically allocated data object. As with all Fortran
dynamically allocated data objects, it is good practice to free the memory space of
variables no longer in use. (Refer to your Fortran compiler’s reference manual for more
information about dynamic data types and their memory management.)

MATFOR’s memory management follows the copy-on-write technique as the memory
for mfArrays is always allocated from heap. An mfArray object itself only stores a
pointer to a memory space. When copying an mfArray object, it does not actually
duplicate the mfArray object, instead it increases the reference count of the mfArray
object and lets the two mfArrays objects to share the same memory space. When one of
them is modified or deleted, the sharing of the memory space between the two mfArray
objects terminates while the reference count is decreased.

MATFOR provides three procedures msInitArgs, msFreeArgs, and msRetrunArray,
included in module mod_ess, for memory management of mfArrays to prevent them
from memory leakage.

Procedure msInitArgs stops temporary mfArrays from being released by increasing the
reference count. Procedure msFreeArgs reduces the reference count so that temporary
mfArrays are automatically released by MATFOR.

Procedures msInitArgs, msFreeArgs, and msRetrunArray are used when mfArray is used as
a dummy argument for subroutines and functions. Refer to Section 2.7.5 and Section
2.7.6 for more details.

2.1.5 mfArray Syntax and Expressions

MATFOR mfArray has its own sets of operators, inquiry procedures, constructors,
logical procedures, and mathematical procedures as described in Section 2.2 to Section
2.6.

Chapter 2 Working with mfArray 25

Using the MATFOR-defined operators and procedures, you can work with mfArray by
referencing the whole array, accessing the individual elements in it, or by treating it as a
whole variable.

2.1.6 Mix mfArray and Fortran Arrays

MATFOR caters to the needs of programmers who work interchangeably with mfArray
and a Fortran array. Besides the traditional methods of using the assignment operator
‘=’, you can use msAssign, mfEquiv, and msPointer to share data of an mfArray and a
Fortran array. More details on the usage of these procedures are covered in Section
2.7.3 and Section 2.7.4. As a quick overview, Table 2.1.6 below summarizes the
difference between the different procedures.

Table 2.1.6 Comparison between Equivalency Procedures

Procedure Memory
Duplication

Possibility
of Stack
Overflow

Main Purpose

mfEquiv No No Used when using a Fortran array to call
a MATFOR procedure.

msPointer No No Used when you would like to use
Fortran indexing with mfArray or call a
Fortran function using mfArray.

msAssign Yes No Memory copy without temporary
memory allocation.

= Yes Yes Memory copy. May lead to stack
memory overflow for insufficiently
allocated stack memory with some
Fortran compilers.

2.2 Create and Initialize mfArray
This section provides an opening step to using mfArray in your Fortran program. We
shall use examples to introduce the concepts of using MATFOR modules, declaring an
mfArray, initializing an mfArray and constructing mfArray using mfArray constructors.

26 MATFOR User’s Guide

2.2.1 Declaring an mfArray

To use mfArrays in your program, you must use one of the MATFOR modules and
declare the mfArray in the variable declaration section of your program.

The following steps outline the general steps of using mfArray in your programs,
functions, or subroutines.

Step 1. Add the statement use <module name> under your program name,
module name, function name, or subroutine name. For example,

use fml
use fgl
use mod_ess
use mod_ops

Step 2. Declare the mfArray by adding your mfArray declare statement
under the implicit none declaration. The general format is:

type(mfArray) ::< variable-list> [=< value >]

For Example:

Program 2_2_1

! Use module mod_ess

use mod_ess

implicit none
type(mfArray) :: a

2.2.2 Initializing an mfArray

The mfArray works with three broad classes of object types, including character,
Boolean, and numeric. You can initialize your mfArray by using the following data
types:

Table 2.2.2 mfArray Initialization

Chapter 2 Working with mfArray 27

Data type Statement
character a = ‘A’

character(*) a = ‘string’

Logical a = .true.

Integer a = 1

real(4) a = 1.0

real(8) a = 3.1418d0

complex(4) a = (2.0, 3.0)

complex(8) a = (2.0d0, 3.0d0)

All data are stored as character, double precision real, or double precision complex. The
mfArray automatically assumes the shape of the data used for initialization.

Example 2.2.2 below lists some valid initialization of an mfArray. Notice that the
mfArray a changes its shape and data type automatically with different initialization
data.

Example 2.2.2 Initialize mfArray

Program Example2_2_2

use fml
implicit none

type(mfArray) :: a
real(8), dimension(10,10) :: b, c

! a is a 1-by-5 vector containing double precision real
! values

a = (/1.0, 2.0, 3.0, 4.0, 5.0/)
call msDisplay(a, 'a')

! a is a 1-by-16 vectors containing 16 characters.
a = "This is a string"
call msDisplay(a, 'a')

28 MATFOR User’s Guide

! a is a 1-by-1 double precision complex array.
a = (2.0d0, 1.0d0)
call msDisplay(a, 'a')

! a is a 1-by-1 double precision real array.
a = 1
call msDisplay(a, 'a')

! a is a 2-by-3 matrix. Operator .vc. is a MATFOR
! operator that concatenates vectors vertically.
! The operator accepts only double precision data.

a = (/1.0d0, 2.0d0, 3.0d0/).vc.(/4.0d0, 5.0d0, 6.0d0/)
call msDisplay(a, 'a')

! a is a 1-by-6 vector. Operator .hc. is a MATFOR
! operator that concatenates vectors horizontally.
! The operator accepts only double precision data.

a = (/1.0d0, 2.0d0, 3.0d0/).hc.(/4.0d0, 5.0d0, 6.0d0/)
call msDisplay(a, 'a')

! a is a 1-by-1 logical array. All values are ones.
b = 10.0
c = 2.0
a = b > c
call msDisplay(a, 'a')

! Deallocate mfArary a
call msFreeArgs(a)

end Program Example2_2_2

2.2.3 mfArray Creating Procedures

MATFOR contains a set of mfArray creating procedures for quick creation of special
mfArrays. These procedures are located in the mod_elmat and mod_ops modules. Table
2.2.3 below lists some of the mfArray creating procedures available.

Table 2.2.3 mfArray creating procedures

mod_elmat
MfEye,
msEye

Create identity arrays.

Chapter 2 Working with mfArray 29

mfLinspace,
msLinspace

Create a linearly spaced vector with specified
number of points.

mfMagic,
msMagic

Create a magic matrix of equal column, row and
diagonal sums.

mfMeshgrid,
msMeshgrid

Create matrices from vectors for functions of two
variables and three-dimensional figure.

mfOnes,
msOnes

Create arrays containing all ones.

mfRand,
msRand

Create arrays containing random numbers.

mfRepmat,
msRepmat

Create an array by tiling smaller arrays.

mfReshape
msReshape

Repack vectors into specified array shapes.

mfZeros
msZeros

Create arrays containing all zeros.

 mod_ops
.vc. Vertically concatenate arrays.

.hc. Horizontally concatenate arrays.

mfColon Create vectors of specified increment.

Example 2.2.3 below uses the mfArray creating procedures listed above to
create mfArrays of a specified shape and data. Notice that in the example, the
mfArray a changes its shape and data automatically with each creating
procedure.

Example 2.2.3 mfArray creating procedures

Program Example2_2_3

use fml
implicit none

30 MATFOR User’s Guide

type(mfArray) :: a, b, c

! Creates a 3-by-3 identity matrix
a = mfEye(3,3)
call msDisplay(a, 'mfEye(3,3)')

! Creates a 2-by-2 ones matrix
a = mfOnes(2,2)
call msDisplay(a, 'mfOnes(2,2)')

! Creates a 2-by-2 zeros matrix
a = mfZeros(2,2)
call msDisplay(a, 'mfZeros(2,2)')

! Creates a 2-by-2-by-2 3-D random array
a = mfRand(2,2,2)
call msDisplay(a, 'mfRand(2,2,2)')

! Creates a 3-by-3 magic matrix
a = mfMagic(3)
call msDisplay(a, 'mfMagic(3)')

! Creates a 2-by-2-by-2-by-2 4-D array using
! mfReshape. This is similar to Fortran's
! reshape procedure.
a = mfReshape(mfColon(1,16),(/2,2,2,2/))
call msDisplay(a, &
'mfReshape(mfColon(1,16),(/2,2,2,2/))')

! Creates a vector containing the values from
! 0 to 1, with increment of 0.2. The suffix 'd0'
! forces the number to double precision.
a = mfColon(0d0,0.2d0,1d0)
call msDisplay(a,'mfColon(0d0,0.2d0,1d0)')

! Creates a vector containing 5
! linearly spaced data between the
! numbers -3.1412 to 3.1412. MF_PI
! is a MATFOR parameter for -3.1412.
a = mfLinspace(-MF_PI,MF_PI,5)
call msDisplay(a, &
'mfLinspace(-MF_PI, MF_PI,5)')

Chapter 2 Working with mfArray 31

! Creates two matrices, one containing row
! tiling of a vector, and the other column tiling
! of another vector respectively. This
! is useful in creating matrices for drawing
! a surface.
call msMeshgrid(mfOut(b,c),mfColon(1,5),mfColon(6,10))
call msDisplay(b, &
'msMeshgrid(mfOut(b,c),mfColon(1,5), mfColon(6,10)), b', &
c, 'c')

! Creates a matrix containing tiling of a
! vector.
a = mfRepmat(mfColon(1,5),(/2,2/))
call msDisplay(a, 'mfRepmat(mfColon(1,5),(/2,2/))')

! Deallocate mfArrays
call msFreeArgs(a, b, c)

end Program Example2_2_3

2.3 Access Elements and Sections of an mfArray
The mfArray is a special MATFOR defined array type. You can use the procedure
mfMatSub for accessing an element or a range of elements in an mfArray. The subscript
convention used by procedures mfMatSub is similar to the subscript conventions used in
accessing Fortran arrays.

In this section, we shall go through the subscripting conventions used in Fortran 90/95
for accessing individual elements and sections of an array, followed by an introduction
to the procedures mfMatSub.

2.3.1 Element Subscripts

In Fortran, array elements are specified through their subscripts containing positions of
the element in each dimension. The general syntax is as follows.

[posdim1, posdim2, posdim3,…, posdim7]

For example,

32 MATFOR User’s Guide

 a scalar has subscript (1, 1)

 the fifth element of a row vector is (1,5)

 the second element of a column vector is (2,1)

 the sixth element of a 3-by-3 matrix is (3,2)

2.3.2 mfArray Creating Procedures

An array section is a portion of an array that can be specified by using a combination of
vectors. The vector specifies a whole section of individual elements whose positions are
described by the element subscript in 2.3.1. Element Subscripts above.

The vector subscript is a rank one array of integer values specifying elements of a
section in any order. The vector can contain duplicate values. For example, (/2, 3, 4, 5, 4,
7/) is a valid set of vector subscripts.

As an illustration, the following example specifies three sets of array sections
(highlighted in gray) using vector subscript.

Chapter 2 Working with mfArray 33

 Section subscripts: ((/1, 2, 3/), (/1, 2, 3/))

The subscript specifies the group of highlighted elements in
Figure 2.3.2.1. This is equivalent to specifying the element
subscripts (1, 1), (1, 2), (1, 3), (2, 1), (2, 2) (2, 3), (3, 1), (3, 2),
and (3, 3).

Figure 2.3.2.1 Section subscripts ((/1, 2, 3/), (/1, 2, 3/))

 Section subscripts: ((/2, 4, 6/), (/1, 7, 4/))

The subscript specifies the group of highlighted elements in
Figure 2.3.2.2. This is equivalent to specifying the element
subscripts (2, 1), (2, 7), (2, 4), (4, 1), (4, 7) (4, 4), (6, 1), (6, 7),
and (6, 4).

Figure 2.3.2.2 Section subscripts ((/2, 4, 6/), (/1, 7, 4/))

 Section subscripts: ((/2, 3, 4, 5/), 7)

The subscript specifies the group of highlighted elements in
Figure 2.3.2.3.This is equivalent to specifying the element
subscripts (2, 7), (3, 7), (4, 7), and (5, 7).

34 MATFOR User’s Guide

Figure 2.3.2.3 Section subscripts ((/2, 3, 4, 5/), 7)

2.3.3 Using Subscript in an mfArray

The mfArray provides users with the flexibility of automatic dimensioning, emulating
the behavior of Matlab arrays. In effect, it means that you do not have to worry about
the rank and shape of the array when you work with it. This is especially convenient for
Matlab users who would like to translate their works to Fortran.

You can work with procedures with a Matlab-like intuitive interface that does not
require users to take care of the data type and dimension of the array input arguments.

To implement the automatic dimensioning feature of mfArray, a special subscript has to
be employed — users have to use subscript in mfArray elements through the procedures
mfMatSub or mfS (The abbreviated procedure name).

For Fortran users who prefer to use Fortran array subscripts, you can use procedure
msPointer to construct a Fortran pointer targeting an mfArray. This way, you can
continue to use subscripts in elements of an mfArray through the Fortran pointer. More
descriptions of procedure msPointer are provided in Section 2.7.3.2.

Procedure mfMatSub retrieves data from an mfArray element or subsection. It has the
following general syntax:

<mfArray> = mfMatSub(<mfArray>, row, column, …)

Chapter 2 Working with mfArray 35

The arguments row and column are colon arrays or can be mfArrays.

MATFOR’s colon arrays has the format of

i.to.j.step.k

which corresponds to Fortran’s colon arrays (i:j:k). .to. and .step. are special operators
used only in procedure mfMatSub.

Example 2.3.3.1 below illustrates the usage of mfMatSub in reading data from mfArrays.
The shapes of the mfArray used in the example are chosen to conform to the shape of
the arrays used in illustrations in Section 2.3.1 Element Subscripts and Section 2.3.2
Section Subscripts.

Example 2.3.3.1 Use mfMatSub

Program Example2_3_3_1

use fml
implicit none

type(mfArray):: a, b

! In the example below, mfArray a is the original array,
! mfArray b is the returned array.

! Read mfArray data using element subscripts

! mfArray is scalar
a = 6
b = mfS(a, 1, 1)
call msDisplay(a, 'a', b, 'mfS(a, 1, 1)')

! mfArray is 1-by-5 row vector

36 MATFOR User’s Guide

a = (/1, 10, 5, 7, 6, 2/)
b = mfS(a, 1, 5)
call msDisplay(a, 'a', b, 'mfS(a, 1, 5)')

! mfArray is 4-by-1 column vector
a = reshape((/7, 2, 3, 1/), (/4,1/))
b = mfS(a, 2, 1)
call msDisplay(a, 'a', b, 'mfS(a, 2, 1)')

! mfArray is 4-by-4-by-5 three dimensional array
a = mfRand(4,4,5)
b = mfS(a, 3, 4, 5)
call msDisplay(a, 'a', b, 'mfS(a, 3, 4, 5)')

! mfArray is a 3-by-3 magic square
a = mfMagic(3)
b = mfS(a, 3, 2)
call msDisplay(a, 'a', b, 'b = mfS(a, 3, 2)')

! Read mfArray data using element subscripts

! Construct a 6-by-8 mfArray
a = mfRand(6, 8)
b = mfS(a, 1.to.3, 1.to.3)
call msDisplay(a, 'a', b, 'mfS(a, 1.to.3, 1.to.3)')

b = mfS(a, mf((/2, 2, 6/)), mf((/1, 8, 3/)))
call msDisplay(a, 'a', b, 'mfS(a, mf((/2, 2, 6/), mfS((/1, 8, 3/)))')

b = mfS(a, 2.to.4, 7)
call msDisplay(a, 'a', b, 'mfS(a, 2.to.4, 7)')

! Construct a 6-by-8 matrix
a = mfReshape(mfColon(1,48),(/6, 8/))
call msDisplay(a, 'a')

! Change the value of element at a(5,8) to 0.5
call msAssign(mfS(a, 5, 8), 0.5d0)

! Change the value of element at a(6,5) to 3.14
call msAssign(mfS(a, 6, 5), 3.14d0)
call msDisplay(a, 'a(5,8) = 0.5, a(6,5) =3.14')

! Change the values at section a(mfColon(2,4), 7) to 2
call msAssign(mfS(a, 2.to.4, 7), 2)
call msDisplay(a, 'a(2:4, 7) = 2')

call msFreeArgs(a,b)

end Program Example2_3_3_1

Chapter 2 Working with mfArray 37

2.4 mfArray I/O
This section discusses the procedures for displaying mfArray data: msDisplay and
msGDisplay and the procedures for saving and loading mfArray data to or from files:
mfLoad and msSave.

The section is further divided into the following subsections:

2.4.1 Displaying mfArray Data – This subsection introduces the usage of procedures
msDisplay and msGDisplay. Procedure msDisplay displays mfArray data in short format
on a Windows console, analogous to the write(*,*) function, but much easier to use.
Procedure msGDisplay displays mfArray data in a spreadsheet-like format in MATFOR
Data Viewer. From here, you can examine the mfArray data, perform statistic analysis
on them, and even export it to an Excel spreadsheet.

2.4.2 mfArray Fileio – This subsection introduces the usage of procedures mfLoad and
msSave. These procedures, together with mfLoadAscii and msSaveAscii, enable you to
export mfArray data to an external file in ASCII or binary format for further processing.

We will also cover the two Matlab .m file, mfLoad.m and mfSave.m, provided by
MATFOR for exchanging data between Matlab and MATFOR.

2.4.1 Displaying mfArray Data

To view the run-time contents of an mfArray you can use two procedures, msDisplay
and msGDisplay, provided by MATFOR. Procedure msDisplay outputs the content of
mfArray to a console. Procedure msGDisplay outputs the content to the MATFOR Data
Viewer.

msDisplay

Procedure msDisplay is included in module mod_ess. You can use the procedure to
specify multiple mfArrays for displaying in the Windows console. The procedure has
the following syntax:

38 MATFOR User’s Guide

call msDisplay(x)

call msDisplay(x, ‘name1’, y, ‘name2’,..)

The second multiple-input format requires the mfArray to be specified together with a
string type argument-‘name’. The number of mfArrays that you can display by using a
single procedure is limited to 32.

By default, msDisplay displays data in the ‘short’ format. That is, real numbers are
displayed with four decimal places. You can use procedure msFormat to change the
display format to ‘long’. In which case, real numbers are displayed with 16 digits. The
procedure displays data as integers when an mfArray is initialized with integers.

Example 2.4.1.1 below uses procedure msDisplay to display mfArrays. Go through the
example, try it on your compiler, you will see how integers, ‘short’, and ‘long’ format of
mfArray data are displayed on the Windows console.

Example 2.4.1.1 Use msDisplay

Program Example2_4_1_1

use fml

implicit none
type(mfArray) :: a

! Construct mfArray a using mfMagic procedure
a = mfMagic(3)

! Display a. Notice that the data is displayed as integer.
call msDisplay(a, 'mfMagic(3)')

a = mfRand(2,2)

! Display mfRand(2,2)
call msDisplay(a, 'mfRand(2,2)')

! Change the display format to long
call msFormat('long')

! Display a again
call msDisplay(a, 'Long mfRand(2,2)')

Chapter 2 Working with mfArray 39

! Deallocate mfArray from memory
call msFreeArgs(a)

end Program Example2_4_1_1

Compile and run the program. The Windows console pops up as shown in Figure
2.4.1.1 below:

Figure 2.4.1.1 Windows Console displaying mfArray a

Notice that the first line on Figure 2.4.1.1 displays the name of the mfArray as specified
by the name argument, such as ‘mfMagic(3)’ in the procedure call. If the name is not
specified, ‘ans’ representing answer is displayed instead. The ‘=’ symbol is
automatically added after the name argument.

msGDisplay

Procedure msGDisplay is included in the fgl module. The procedure displays the contents
of mfArrays in the MATFOR Data Viewer.

40 MATFOR User’s Guide

The syntax of msGDisplay is the same as procedure msDisplay.

call msGDisplay(x)

call msGDisplay (x,‘name1’,y,‘name2’,…)

Example 2.4.1.2 Use msGDisplay

In this example, we shall create a 3-by-3 magic square mfArray a, and compute its row
sum, column sum, and diagonal sum, then display the data using procedure msGDisplay
in the MATFOR Data Viewer.

Program Example2_4_1_2

use fml

use fgl

implicit none

type (mfArray) :: a, b, c, d

! Magic(3) creates a 3-by-3 matrix with equal

! row and column sums.

a = mfMagic(3)

! Compute the column, row and diagonal sum of a.

b = mfSum(a,1)

c = mfSum(a,2)

d = mfSum(mfDiag(a))

Chapter 2 Working with mfArray 41

! Display a,b,c,d using a Data Viewer

call msDisplay(a, 'a', b, 'b', c, 'c', &

d, 'd')

call msGDisplay(a, 'a', b, 'b', c, 'c', &

d, 'd')

! Pause Program for viewing

call msViewPause()

call msFreeArgs(a, b, c, d)

end Program Example2_4_1_2

Compile and run the program. The MATFOR Data Viewer is displayed, as shown in
Figure 2.4.1.2

You can switch between each mfArray by clicking on the Worksheet tabs. The names of
the tabs are specified by the name arguments in call msGDisplay(a, ‘a’, b, ‘b’, c, ‘c’, d, ‘d’),
in the second, fourth, sixth, and eighth position respectively.

Navigate between the worksheets to view the values of mfArray.

You will see that b is a row vector containing the elements (/15.0000, 15.0000, 15.0000/)
corresponding to each column sum. mfArray c is a column vector containing the same
values while d is a scalar with value 15.0000. The row, column, and diagonal sums are
the same. The magic square is truly magical!

42 MATFOR User’s Guide

From Figure 2.4.1.2 you can see that the Data Viewer has many functions available for
editing the mfArray data. Play with the buttons to get a feel of each function.

You may refer to Section 4.8 MATFOR Data Viewer for tutorials on manipulations of
the Data Viewer functions.

Figure 2.4.1.2 The Data Viewer displaying mfArrays a, b, c, and d

Procedure msViewPause
Procedure msViewPause is added to your program to pause program execution
for graphical displays. You will need to add this statement to every set of
graphical creation routines. If this routine is not called, the Graphical windows
will just flash on your computer.

2.4.2 mfArray File I/O

MATFOR supports text and binary format for importing and exporting data to and from
mfArray. The procedures provided are: mfLoad, msSave, mfLoadAscii, and msSaveAscii.
These procedures are located in module mod_fileio.

For Matlab users, MATFOR provides two .m files — mfLoad.m and mfSave.m, for
interfacing with the Matlab environment to facilitate the exchange of data in binary
format.

In the section below, we shall cover the usage of two procedures, msSaveAscii and
mfLoadAscii, which exports and imports data to and from text files, followed by a
discussion on mfLoad.m and mfSave.m.

Chapter 2 Working with mfArray 43

2.4.2.1 msSaveAscii

You can save data of mfArray to a text file by using procedure msSaveAscii. Procedure
msSaveAscii has the following syntax:

call msSaveAscii(<mfArray>,‘filename’)

MATFOR saves the mfArray data in ASCII format, with the data arranged in rows and
columns corresponding to the rows and columns of a matrix mfArray. This format is the
same as that used by Matlab Save function with the –ascii option. Example 2.4.2.1 below
exports the data of a 3-by-3 magic square to a text file using procedure msSaveAscii.

Example 2.4.2.1 Procedure msSaveAscii

Program Example2_4_2_1

use fml

implicit none
type(mfArray) :: a

! Construct a 3-by-3 magic square
a = mfMagic(3)

! Export a to a text file
call msSaveAscii('a.txt',a)

! Deallocate mfArray
call msFreeArgs(a)

end Program Example2_4_2_1

Compile and run the program. Open the text file ‘a.txt.’ The data are
arranged as in Figure 2.4.2.1.

 8.0000000E+00 1.0000000E+00 6.0000000E+00
 3.0000000E+00 5.0000000E+00 7.0000000E+00
 4.0000000E+00 9.0000000E+00 2.0000000E+00

Figure 2.4.2.1 Content of “a.txt”

44 MATFOR User’s Guide

2.4.2.2 mfLoadAscii

You can load data from a file into an mfArray by using procedure mfLoadAscii or
procedure mfLoad. Procedure mfLoadAscii loads a text file in the format used by
msSaveAscii or Matlab ASCII data file. Procedure mfLoad loads a MATFOR *.mfb
binary file created by using procedure msSave. Both procedure mfLoadAscii and mfLoad
have the same syntax and are located in module mod_fileio. In the following, we will
look more closely at the application of procedure mfLoadAscii.

Procedure mfLoadAscii has the following syntax:

<mfArray> =mfLoadAscii(‘filename’)

where ‘filename’ is a string specifying the name of the text file to be loaded. Example
2.4.2.2 below loads the text file ‘a.txt’, created in Example 2.4.2.1 using procedure
mfLoadAscii, into mfArray a and displays the mfArray.

Example 2.4.2.2

Program Example2_4_2_2

use fml

implicit none
type(mfArray) :: a

! Import data into mfArray a using mfLoadAscii
a = mfLoadAscii('a.txt')

! Display data of a
call msDisplay(a, 'a')

! Deallocate mfArray
call msFreeArgs(a)

end Program Example2_4_2_2

Chapter 2 Working with mfArray 45

2.4.2.3 mfLoad.m and mfSave.m

The Matlab .m files, mfLoad.m and mfSave.m, are installed in the folder
<MATFOR>\common\tools\matlab\ when you install MATFOR. These two files call
the MATFOR mfLoad.dll and mfSave.dll, to export and load MATFOR binary data file,
*.mfb, to and from the Matlab workspace. Copy the .m and .dll files into your Matlab
working directory and you can start exchanging binary data between Matlab and
MATFOR.

The functions mfLoad and mfSave have the following syntax,

x = mfLoad(filename)

mfSave(filename, x)

where x is a Matlab matrix, and filename is a string containing the name of the target
binary file. If the file extension is not specified, the file extension .mfb is automatically
appended.

In your Fortran environment, you can retrieve the data contained in a *.mfb binary file,
exported using function mfSave in Matlab, into MATFOR mfArray through procedure
mfLoad. Likewise, you can save your MATFOR mfArray data in binary format using
procedure msSave and load it into a Matlab matrix using function mfLoad in Matlab.

Example 2.4.2.3 Exchange binary data between Matlab and MATFOR

In this example, we shall export a binary file from Matlab using function mfSave and
retrieve the data in Fortran using procedure mfLoad.

Step 1. First, ensure that the files mfLoad.m, mfSave.m, mfLoad.dll, and
mfSave.dll, installed in <MATFOR>\common\tools\Matlab\, are in your
Matlab working directory.

46 MATFOR User’s Guide

Step 2. We shall export the data in [X, Y, Z] matrices, computed using
Matlab sample function –peaks, to a MATFOR binary file, using the
following commands in Matlab workspace.

[X, Y, Z] = peaks;
mfSave(‘X.mfb’, X);
mfSave(‘Y.mfb’, Y);
mfSave(‘Z.mfb’, Z);

The data from matrices X, Y, Z are saved as X.mfb, Y.mfb, and Z.mfb,
respectively in your Matlab working directory.

Step 3. Copy the binary files into your MATFOR project file. In this case,
we shall copy the files into <MATFOR>\Fortran\example\for_ug.

Step 4. Start a Fortran program titled Example2_4_2_3. We shall retrieve
the data into mfArrays x, y, and z and plot the data using procedure
msSurf.

Program Example2_4_2_3

use fml
use fgl
implicit none

type(mfArray) :: x, y, z

x = mfLoad('.\data\x.mfb')
y = mfLoad('.\data\y.mfb')
z = mfLoad('.\data\z.mfb')

call msSurf(x,y,z)

call msViewPause()

call msFreeArgs(x,y,z)

end Program Example2_4_2_3

Step 5. Compile and run the program. Figure 2.4.2.3 displays.

Chapter 2 Working with mfArray 47

Figure 2.4.2.3 Surface plot produced by importing data from
Matlab

2.5 mfArray Inquiry Procedures
The mfArray has a set of inquiry procedures for querying its data type, array type, and
attributes. In this section, we shall look into the three types of inquiry procedures as
below.

2.5.1 Logical Inquiry Procedures – This topic covers the logical functions that are used
to query the status of mfArrays, such as mfIsNumeric, mfIsReal, etc. The logical functions
return a logical .true. or .false.

2.5.2 Size, Shape, and Extent – This topic covers the functions for checking array
properties such as array size, shape, rank, and extent.

2.5.3 Logical Operations – This topic covers the functions used for querying ones and
zeros in an mfArray.

2.5.1 Logical Inquiry

The logical inquiry procedures listed in Table 2.5.1 return Fortran logical type as output.
The logical inquiry procedures are located in module mod_ess.

Table 2.5.1 Logical Inquiry Procedures.

48 MATFOR User’s Guide

mod_ess
l = mfIsEmpty(a) Return .true. if mfArray is empty.

l = mfIsNumeric(a) Return .true. if mfArray contains numerical data.

l = mfIsReal(a) Return .true. if mfArray is real.

l = mfIsComplex(a) Return .true. if mfArray contains complex values.

l = mfIsLogical(a) Return .true. if mfArray is logical.

Usually, MATFOR procedures return mfArray as output argument. However, in the
case of logical inquiry procedures, Fortran logical types are returned. This design is
adopted to simplify the programming involved in if constructs. You can use these
procedures to determine the data type of mfArrays, compare mfArrays, and apply them
directly in an if construct.

For example,

type(mfArray) :: a

if (mfIsEmpty(a)) then a = 5

Below, we go through details on the application of each procedure.

λ mfIsEmpty – An mfArray is empty if it has not been initialized and
points to a null storage space.

λ mfIsLogical – An mfArray is logical if it is constructed using logical
operations. The statements below construct a logical mfArray.

type (mfArray) :: a, b

a = b>5

λ mfIsNumeric – An mfArray is numeric if it contains complex, logical,
or real data type. A character type mfArray is non-numeric.

Chapter 2 Working with mfArray 49

λ mfIsReal –A real mfArray contains real data type.

λ mfIsComplex –A complex mfArray contains double precision
complex data type.

Example 2.5.1 Logical Inquiry Procedures

The example below uses the Logical Inquiry procedures.

Program Example2_5_1

use fml
implicit none

type(mfArray) a, b, c, d
logical :: L

a = mfMagic(3)
d ='string'

! Is mfArray C empty?

If(mfIsEmpty(c)) then
 c = (2,-2)
end if

! Is mfArray Complex?
If (mfIsComplex(c)) then
 call msDisplay(c, 'c is complex')
end if

! Is mfArray numeric?
L = mfIsNumeric(d)
call msDisplay(d, 'd', mf(L), 'mfIsNumeric(d)')

! Is mfArray numeric Real?
L = mfIsReal(c)
call msDisplay(c, 'c', mf(L), 'mfIsReal(c)')

! Is mfArray logical?
d = mfANY(a)
If (mfIslogical(d)) then
 write (*,*) 'd is logical'

50 MATFOR User’s Guide

end if

call msFreeArgs(a, b, c, d)

end Program Example2_5_1

2.5.2 Size, Shape, and Extent

You can get information on the number of elements, shape, and extent of an mfArray
using procedures Size, mfNDims, Shape, mfLength, and mfSize. These procedures are
located in modules mod_ess and mod_elmat as listed in Table 2.5.2 below.

Table 2.5.2 Size, Shape and Extent

mod_ess
S = mfSize(a) Return the total number of elements.

S = mfSize(a, dims) Return the extent along the specified dimension.

N = mfNDims(a) Return the rank or number of dimensions.

V = mfShape(a) Return the shape of mfArray.

S = mfLength(a) Return the largest extent of mfArray.

mod_elmat
b = mfSize(a) Return a vector containing the shape of the

mfArray.

b = mfSize(a, dims) Return the extent along the specified dimension.

call msSize(mfOut(n1,n2,…), a) Return the lengths of the first n dimensions of
mfArray a.

These procedures return Fortran scalars, vectors, or mfArray as output. Procedures Size,
mfNDims, and mfLength returns a Fortran scalar integer data type as output. Procedure
Shape returns a Fortran vector integer data type as output. Procedure mfSize returns an
mfArray as output.

To get the shape of an mfArray, you can use either procedure Shape, which returns a
Fortran integer vector, or procedure mfSize, which returns an mfArray. The following
statements are examples of valid inquiries for getting the shape of a, a square mfArray.

type (mfArray) :: a, b

Chapter 2 Working with mfArray 51

integer :: V(2)

! To get shape of a, you can use....
b = mfSize(a)

! or
V = Shape(a)

To get the size or total number of elements in an mfArray, use procedure Size.

type(mfArray) :: a
integer :: S

! Get total number of elements of a
S = Size(a)

To get the rank or number of dimensions of an mfArray, use procedure mfNDims.

type(mfArray) :: a
integer :: N

! Get number of dimensions or rank of a
N = mfNDims(a)

To get the largest extent, or the extent in a certain dimension, of an mfArray, use
procedures mfLength, SIZE, or mfSize.

type (mfArray) :: a, e
integer :: S

! Get largest extent
S = mfLength(a)

! Get size in specified dimension ==> 1
S = Size(a, 1)
! or
e = mfSize(a,1)

Example 2.5.2 below provides further examples on the usage of procedures Size,
mfNDims, Shape, and mfLength to determine the size, shape, extent, and rank of an
mfArray.

52 MATFOR User’s Guide

Example 2.5.2 Size, shape and extent

Program Example2_5_2

use fml
implicit none

type(mfArray) :: a, b, m, n, o
integer :: S, S1(3)

! Construct a 2-by-2-by-4 mfArray
a = mfRand(2,3,4)
call msDisplay(a, 'a')

! Procedure Size
S = mfSize(a)
call msDisplay(mf(S),'mfSize(a)')

S = mfSize(a,1)
call msDisplay(mf(S),'mfSize(a,1)')

S = mfSize(a,2)
call msDisplay(mf(S),'mfSize(a,2)')

S = mfSize(a,3)
call msDisplay(mf(S),'mfSize(a,3)')

! Procedure mfNDims
b = mfNDims(a)
call msDisplay(b, 'mfNDims(a)')

! Procedure Shape
S1 = SHAPE(a)
call msDisplay(mf(S1), 'SHAPE(a)')

! Procedure mfLength
S = mfLength(a)
call msDisplay(mf(S), 'mfLength(a)')

! Deallocate mfArray
call msFreeArgs(a,b,m,n,o)

end Program Example2_5_2

Chapter 2 Working with mfArray 53

2.5.3 Logical Operations

You can use procedures All, Any, and mfFind as listed in Table 2.5.3 to find nonzero
elements in mfArray. These procedures are located in modules mod_ops and mod_elmat.

Table 2.5.3 Logical Operations

mod_ess
L = All(a) Return .true. if all are nonzero.

L = Any (a) Return .true. if any is nonzero.

mod_ops
b = All(a) Return a vector containing the status of nonzero

in each column. If a column contains all nonzero,
then its corresponding status is true.

b = All (a, dims) Return a vector containing the status of nonzero
in specified dimension.

b = Any(a) Return a vector containing the status of nonzero
in each column. If a column contains any
nonzero, then its corresponding status is true.

b = Any(a, dims) Return a vector containing the status of nonzero
in specified dimension.

mod_elmat
I = mfFind(a) Return the column major indices of nonzero

elements.

call msFind(mfOut(i,j),a) Return the nonzero elements subscripts in vectors
i and j.

call msFind(mfOut(i,j,v),a) Return the nonzero elements subscripts in vectors
i and j, and the nonzero values in vector v.

Each procedure provides different information about the nonzero elements in mfArray.
In MATFOR, logical .false. is represented as zero while .true. is represented as a number
one.

λ Procedures All and Any query the status of nonzero elements of
mfArray. The procedures operate on the whole mfArray and return a
Fortran logical scalar as output. For example,

54 MATFOR User’s Guide

type(mfArray) :: a
logical :: L

! Return true if all elements of a > 2
L = All(a>2)

! Return true if any elements of a > 2
L = Any(a>2)

λ Procedures mfAll and mfAny operate on specified dimensions of
mfArray and returns an mfArray as output. By default the procedures
operate column-wise. For example,

type(mfArray) ::: a, b

! If a is a 2-by-2 mfArray, b is a size 2 vector.
b = mfAll(a)

In the example above, mfArray b is a vector containing the status of
each column of mfArray a. If all elements of (shape 2-by-2) mfArray
a is greater than zero, then b is (/1,1/). If only the first column contains
all nonzero, while the second column contains zeros, then b is (/1,0/).

You can use procedure mfFind to get indices of non-zero elements of
mfArray. Depending on your input argument, you can return: 1) a vector
mfArray containing the column-major index, 2) two vector mfArrays
containing the corresponding row and column element subscripts, or 3)
three vectors containing the row and column element subscripts and
values corresponding to nonzero values. For example,

type(mfArray) :: a, i, j, v

! Vector i contains the column-major indices of non-zeros
i = mfFind(a)

! Vectors i and j contain the row and column index of non-zero
call msFind(mfOut(i,j), a)

! Vectors i and j contain the row and column index of non-zeros,
! while vector v contains the corresponding non-zero elements.
call msFind(mfOut(i,j,v), a)

Example 2.5.3 provides further examples on the usage of procedures ANY, ALL, mfAll,
mfAny, mfFind to query the status of nonzero elements.

Chapter 2 Working with mfArray 55

Example 2.5.3

Program Example2_5_3

use fml
implicit none

type(mfArray) :: a, b, c, d
logical :: l

a = mfMagic(3)

! Procedure ALL
l = mfAll(a>2)
call msDisplay(mf(l), 'mfAll(a>2)')

b = mfAll(a>2,1)
call msDisplay(b, 'mfAll(a>2,1)')

b = mfAll(a>2,2)
call msDisplay(b, 'mfAll(a>2,2)')

! Procedure ANY
l = mfAny(a>2)
call msDisplay(mf(l), 'mfAny(a>2)')

b = mfAny(a>2,1)
call msDisplay(b, 'mfAny(a>2,1)')

b = mfAny(a>2,2)
call msDisplay(b, 'mfAny(a>2,2)')

! Procedure mfFind
b = mfFind(a>2)
call msDisplay(a, 'a')
call msDisplay(b, 'mfFind(a>2)')

call msFind(mfOut(b,c),a)
call msDisplay(b, 'call msFind(mfOut(b,c) a), b', c, 'c')

call msFind(mfOut(b,c,d),a)
call msDisplay(b, 'call msFind(mfOut(b,c,d) a), b', c, 'c',d,'d')

! Deallocate mfArray
call msFreeArgs(a, b, c, d)

56 MATFOR User’s Guide

end Program Example2_5_3

2.6 mfArray Operators
MATFOR mfArray supports the usual set of Fortran 90/95 operators and a set of
MATFOR - defined operators and operator functions. Table 2.6 below lists the available
MATFOR operators and operator functions. The operators are listed according to their
precedence.

MATFOR-defined operators include matrix transpose (.t.), matrix complex transpose
(.h.), horizontal concatenation (.hc.), and vertical concatenation (.vc.). The operator
functions include mfMul for matrix multiplication, mfLDiv for matrix left divide, and
mfRDiv for matrix right divide. These operators and operator functions enable you to
perform matrix manipulations conveniently.

Table 2.6 mfArray Operators and Operator functions.

Operators/
Functions

Descriptions Precedence

.h. mfArray complex transpose Highest

.t. mfArray transpose

** mfArray power

* mfArray array multiplication

/ mfArray array right division

+ mfArray array addition or unary plus

- mfArray array subtraction or unary minus

>= mfArray greater than or equal to comparison

> mfArray greater than comparison

<= mfArray less than or equal to comparison

< mfArray array less than comparison

/= mfArray array inequality comparison

== mfArray array equality comparison

Chapter 2 Working with mfArray 57

.hc. Horizontal concatenation

.vc. Vertical concatenation Lowest

c = mfColon(s,e) Colon function

c = mfMul(a,b) mfArray matrix multiplication function

c = mfLDiv(a,b) mfArray matrix left division function

c = mfRDiv(a,b) mfArray matrix right division function

2.6.1 Arithmetic Operators

The mfArray arithmetic operators *, **, /, \, +, -, operate element-wise on the mfArray.
Example 2.6.1 shows some valid operations of the arithmetic operators.

Example 2.6.1 Arithmetic operators

Program Example2_6_1

use fml
implicit none

type(mfArray) :: a, b, c, d, e, f

a = mfOnes(3,3)
call msDisplay(a, 'a')

! * element-by-element multiplication
b = 2*a
call msDisplay(b, '2*a')

! ** element-by-element power
c = b**2
call msDisplay(c, 'b**2')

! - element-by-element subtraction
d = c -a
call msDisplay(d, 'c-a')

! / element-by-element division
e = c/b
call msDisplay(e, 'c/b')

58 MATFOR User’s Guide

! Deallocate mfArray
call msFreeArgs(a, b, c, d, e, f)

end Program Example2_6_1

2.6.2 Relational Operators

The mfArray relational operators include >=, >, <=, <, /=, ==. These operators perform
element-by-element comparisons between mfArrays that conform in size and shape, or
between mfArray and a scalar. These operators return a logical mfArray. Example 2.6.2
shows some valid operations of the mfArray relational operators.

Example 2.6.2 mfArray Relational Operators

Program Example2_6_2

use fml
implicit none

type(mfArray) :: a, b, c

a = mfMagic(3)
b = 2*mfRand(3, 3)

call msDisplay(a, 'a', b, 'b')

! >= element-by-element greater than or equal comparison
c = a >= 3
call msDisplay(c, 'a >= 3')

! > element-by-element greater than comparison
c = a > b
call msDisplay(c, 'a > b')

! < = element-by-element less than or equal comparison
c = a <= 5
call msDisplay(c, 'a <= 5')

! < element-by-element less than comparison
c = a < b
call msDisplay(c, 'a < b')

! /= element-by-element not equal comparison
c = a /= b
call msDisplay(c, 'a /= b')

! == element-by-element equal comparison

Chapter 2 Working with mfArray 59

c = a == b
call msDisplay(c, 'a == b')

! Deallocate mfArray
call msFreeArgs(a, b, c)

end Program Example2_6_2

2.6.3 Matrix Operators and Functions

You can perform matrix operations using MATFOR defined operators such
as .t., .h., .hc., .vc., and operator functions such as mfMul, mfLDiv, mfRDiv.

The .t. transpose operator performs a matrix transpose.

Example,

a =

8 1 6

3 5 7

4 9 2

b = .t.a =

8 3 4

1 5 9

6 7 2

The .h. complex transpose operator performs a complex conjugate transpose.

Example,

a =

60 MATFOR User’s Guide

1 + 2i 2+3i

 b = .h.a

1 - 2i

2 - 3i

Matrix multiplication function, mfMul(x, y), returns the linear algebraic product of two
mfArrays, x and y, where x is an m-by-p matrix and y is a p-by-n matrix. The product
returns an m-by-n matrix.

Matrix left division function, mfLDiv(a, b), and matrix right division function, mfRDiv(a,
b), solves linear matrix inverse problems.

The result of mfLDiv(a, b) is approximately mfMul(mfInv(a),b). The result of mfRDiv(a, b)
is approximately mfMul(b, mfInv(a)). Depending on the structure of the mfArray,
MATFOR uses different algorithms for the computation as shown in Figure 2.6.3 below.
More details on the difference between matrix right division and matrix left division are
covered under Matrix Division below.

Figure 2.6.3 Algorithms applicable for each matrix type in matrix division
operation

Matrix Division

Matrix division is often used to solve the linear matrix inverse problem ax = b, where a
is m-by-m square matrix, while x and b are m-by-1 column vectors. There are, however,
other fields of study that prefer writing the equation in a different format. The
appreciation of writing x and b as row vectors has turned the equation into xa = b. To

Chapter 2 Working with mfArray 61

accommodate both conventions, MATFOR introduces left and right matrix divisions.
Use procedures mfLDiv or msLDiv to solve systems where matrix a is put on the left of
unsolved variable x. On the other hand, use procedures mfRDiv or msRDiv for row
vector major problem. For example:

x = mfLDiv(a, b)

solves for x in equation ax = b and

x = mfRDiv(a,b)

solves for x in equation xa = b.

In many cases x and b are more than vectors. They are matrices representing different
conditions for the same system. For a given large matrix b, we might want to save
storage by putting the solution x into the same memory. Instead of using functions, this
can be done without extra memory copying by using subroutines msLDiv and msRDiv.
Expressions like

call msLDiv(mfOut(b), a, b)

and

call msRDiv(mfOut(b), a, b)

put the solution x back to the memory of mfArray b.

62 MATFOR User’s Guide

Note that if x is assigned to be the mfOut argument, these expressions are identical to
using the function format x = mfLDiv(a, b) and x = mfRDiv(a, b).

For non-square matrix a, equation ax = b represents an over-determined or under-
determined system. In either case, matrix division routines provide solutions in least
square sense.

Example 2.6.3 below lists some valid operations of the matrix operators and operator
functions.

Example 2.6.3 Matrix Operators

Program Example2_6_3

use fml
implicit none

type(mfArray) :: a, b, c

! .t. matrix transpose
a = mfMagic(3)
b = .t.a
call msDisplay(a, 'a', b, '.t.a')

! .h. complex conjugate transpose
a =(/(1,2),(2,3)/)
b = .h.a
call msDisplay(a, 'a', b, '.h.a')

! , matrix multiplication
a = mfRand(3,3)
b = mfRand(3,2)
c = mfMul(a,b)
call msDisplay(a, 'a', b, 'b', c, 'mfMul(a,b)')

! .mldiv. matrix left division
b = mfMul(mfInv(a),c)
call msDisplay(b, 'mfMUL(mfInv(a),c)')

Chapter 2 Working with mfArray 63

b = mfLdiv(a,c)
call msDisplay(b, 'mfLDiv(a,c)')

! Deallocate mfArrays
call msFreeArgs(a, b, c)

end Program Example2_6_3

2.6.4 Operators Precedence

MATFOR operators follow the Fortran intrinsic operator precedence. The precedence of
the operators is as shown in Table 2.6 above. In the following, we look at the operation
of mfArray x, a, b, c, d, e, and f, using MATFOR operators, and the resulting operation
when the operator precedence is put into perspective.

For example, the following expression,

x = .t.a**2 + b/5.0d0 - c**d + 2*mfMul(e,f)

is equivalent to

x = ((.t.a)**2) + b/5.0d0 - (c**d) + 2*mfMul(e,f)

as .t. has the highest precedence followed by **. This is equivalent to

x =((.t.a)**2)+(b/5.0d0)-(c**d)+(2*mfMul(e,f))

as / and * are the next highest, followed by – and +.

64 MATFOR User’s Guide

The codes for the above statements are presented in Example 2.6.4.

Example 2.6.4 Operator precedence

Program Example2_6_4

use fml
implicit none

type(mfArray) ::x, a, b, c, d, e, f

! Array construction
a = mfMagic(3)
b = mfRand(3,3)
c = 2*mfOnes(3,3)
d = mfReshape(mfColon(1,9),(/3,3/))
e = mfRand(3,2)
f = mfRand(2,3)

! Expression 1
x = .t.a**2 + b/5.0d0 - c**d + 2*mfMUL(e,f)
call msDisplay(x, 'x = .t.a**2 + b/5.0d0 - c**d + 2*mfMUL(e,f)')

! Expression 2: Equivalent to expression 1. as .t. has the highest
precedence
! followed by **.
x = ((.t.a)**2) + b/5.0d0 - (c**d) + 2*mfMUL(e,f)
call msDisplay(x, 'x = ((.t.a)**2) + b/5.0d0 - (c**d) + 2*mfMUL(e,f)')

! Expression 3: Equivalent to expressions 1 and 2 as / and * has a
higher precedence
! than - and +.

x = ((.t.a)**2) + (b/5.0d0) - (c**d) + (2*mfMUL(e,f))
call msDisplay(x, 'x = ((.t.a)**2) + (b/5.0d0) - (c**d) + (2*mfMUL(e,f))')

call msFreeArgs(x, a, b, c, d, e, f)

end Program Example2_6_4

2.6.5 MATFOR Parameters

Table 2.6.5 below lists some MATFOR pre-defined parameters, provided for your
convenience.

Table 2.6.5 MATFOR parameters

Chapter 2 Working with mfArray 65

Parameter Data Type Description
MF_EMPTY mfArray Empty mfArray

MF_COLON mfArray Colon ‘:’ operator

MF_I Complex(8) (0.0, 1.0)

MF_PI Real(8) π

MF_EPS Real(8) The smallest positive number

MF_INF Real(8) Positive infinity number

MF_NAN Real(8) Not a number

MF_E Real(8) Natural logarithm number

MF_REALMAX Real(8) Largest representable number

MF_REALMIN Real(8) Smallest representable number

2.7 Program with mfArray
This section focuses on the various issues encountered when you program with mfArray.
The topics covered are listed below.

2.7.1 Quick Conversion – Function mf() — this topic introduces the ubiquitous
function mf(). It is a convenient function for you to convert non–mfArray data into
mfArray that can be used as MATFOR procedure input arguments.

2.7.2 Use mfArray in If Constructs — this topic goes through examples of using
mfArray in if constructs and note the special requirements.

2.7.3 Use mfArray as input to Fortran Procedures — this topic looks at creating an
equivalent Fortran array that shares the content of the mfArray, as an input to a Fortran
procedure. The assignment operator and procedure msPointer are covered.

66 MATFOR User’s Guide

2.7.4 Use Fortran Arrays as input to MATFOR Procedures — this topic looks at using
procedure mfEquiv to construct an mfArray that shares the same memory address as the
Fortran array.

2.7.5 Use mfArray as Dummy Arguments — this topic looks at the special
requirements when using mfArray as dummy arguments in functions and subroutines.

2.7.6 Use mfArray as Returned Dummy Arguments in Function — this topic covers
the requirements for using mfArray as the returned argument in a function.

2.7.1 Quick Conversion – Function mf()

Function mf() provides a quick conversion from Fortran data objects into an mfArray.

The general syntax is: mf(<Fortran Data>)

The Fortran data object can be a scalar, vector, matrix, or arrays of up to seven
dimensions. Its data type can be integer, real (4), and real (8), complex (4), complex (8),
or strings.

The function is particularly useful in cases where you wish to use a MATFOR
procedure that accepts only mfArrays as input argument. For example, procedure
msDisplay accepts only mfArrays as input argument. By using function mf(), you can
display a Fortran data.

call msDisplay(mf((/1, 2, 3, 4, 5/)), ‘Vector’)

2.7.2.Using mfArray in If Constructs

There are four types of if constructs in Fortran 90/95, namely:

Chapter 2 Working with mfArray 67

if (<logical statement>) <execution statement>

if ... then ...

if ... then ... else ... endif

if ... then ... elseif ... else ...endif

All of these four if constructs use the <logical statement> or a logical scalar, .true.
or .false., for conditional control.

mfArray logical inquiry procedures such as mfIsEmpty, mfIsReal, etc, and logical
procedures such as mfAll, mfAny, can be used directly as the <logical statement>. For
example,

If (mfIsNumeric(a)) write (*,*) ‘mfArray is numeric!’

If (mfAll(a>2)) then
a = b +c
end if

However, MATFOR logical operators such as <, >, <=, >=, ==, return mfArray as
output, thus they are not applicable to the <logical statement> directly. Instead, use
procedure mfAll or mfAny to get a scalar logical result.

For example,

If (mfAll(a==2)) then
 a = a + 3
end if

If (mfAny(a>=2)) then

68 MATFOR User’s Guide

 a = b > 2
end if

2.7.3 Using mfArray as Input to Fortran Procedures

To use a Fortran procedure, you would need to assign your mfArray to a Fortran array
of the same data type, shape, and extent. You can assign the mfArray to a Fortran array
using two methods - assignment and msPointer.

The assignment method involves memory copy. A memory block, of the same size as
that occupied by the mfArray, is assigned to the new Fortran array. This means that
memory resource is not optimized. The two data objects are independent from each
other. In effect, changes made to the Fortran array is not reflected in the mfArray.

The msPointer method associates an allocatable Fortran pointer of the same data type
and dimension as the mfArray, to the memory space occupied by the mfArray. This
conserves memory resource. However, changes made to the memory storage through
the Fortran pointer are also reflected in the mfArray. Deallocating the Fortran pointer
nullifies the mfArray.

2.7.3.1 Assignment operation

To assign mfArray to a Fortran array, you would have to declare a Fortran array of the
same data type, shape, and extent as the mfArray. The assignment is easily done
through the assignment operator ‘=’. Example, a = b.

 Example 2.7.3.1 below shows some valid expressions of the assignment operation.

Example 2.7.3.1 Assign an mfArray to a Fortran array

Program Example2_7_3_1

use fml
implicit none

type(mfArray):: a
double complex, allocatable :: COMPLEXA(:,:)
real(8), allocatable :: REALA(:,:)

! Construct mfArray a

Chapter 2 Working with mfArray 69

a = mfMagic(3)
call msDisplay(a, 'a')

! Assign mfArray to Fortran array.
If (mfIsReal(a)) then
 allocate (REALA(mfSize(a,1),mfSize(a,2)))
 REALA = a
 write(*,*) 'REALA = '
 write(*,*) REALA

elseif (mfIsComplex(a)) then
 allocate (COMPLEXA(mfSize(a,1),mfSize(a,2)))
 COMPLEXA = a
 write(*,*) 'COMPLEXA = '
 write(*,*) COMPLEXA

else
 write (*,*) 'mfArray is of different data type'

endif

! Deallocate mfArray
call msFreeArgs(a)

end Program Example2_7_3_1

2.7.3.2 msPointer operation

Procedure msPointer, located in module mod_ess, associates the storage space of an
mfArray to a Fortran pointer of the same rank and data type as the mfArray. In effect,
the Fortran pointer and the mfArray share the same memory space. Thus operations
performed on the Fortran variable are reflected in the content of the mfArray and vice
versa. This enables you to use Fortran subscript method to access elements of the
mfArray.

MATFOR handles the mfArray as the primary variable and the Fortran pointer as the
secondary variable. In effect, MATFOR does not restrict you to reshape the mfArray
that effectively releases the original data container. It is the programmer’s responsibility
to reassign the Fortran pointer after changing the shape of an mfArray or releasing its
memory space. Note that deallocating the Fortran pointer will nullify the mfArray.
Refer to procedure mfEquiv for more information about equivalency of mfArray and
Fortran data object.

70 MATFOR User’s Guide

Procedure msPointer has the following general syntax.

call msPointer(<mfArray>, <pointer>)

call msPointer(<mfArray>, <pointer>, shape)

Example 2.7.3.2 below shows an example of using procedure msPointer.

Program Example2_7_3_2

use fml
implicit none

type(mfArray) :: b
real(8), pointer :: PD(:,:)
complex(8), pointer :: PZ(:,:,:)

! Construct 10-by-10 mfArray b
b = mfReshape(mfColon(1,100), (/10,10/))
call msDisplay(b, 'b')

! Assign pointer of mfArray to Fortran pointer
if(mfIsReal(b)) then
 ! PD now targets b
 call msPointer(b, PD)

 PD(10,10) = 5.0
 call msDisplay(b, 'PD(10,10) =5.0, b ')

else if(mfIsComplex(b)) then
! PZ- now targets b
 call msPointer(b, PZ)

! calls Fortran complex sine function
 write(*,*) SIN(PZ)

else
write(*,*) 'Unknown data type'

end if

call msFreeArgs(b)

Chapter 2 Working with mfArray 71

end Program Example2_7_3_2

2.7.4 Using Fortran Arrays as Input to MATFOR Procedures

To use a Fortran array as input to a MATFOR procedure that supports only mfArray I/O,
you can convert the Fortran array to an mfArray using function mf(), or construct a new
mfArray using the assignment operator ‘=’ or procedure msAssign. The above operations
involve a duplication of the memory space occupied by the Fortran array. The
constructed mfArray acts independently from the Fortran array. To avoid duplication of
memory, you can use procedure mfEquiv, located in module mod_ess, to construct an
mfArray that is equivalent to the Fortran array. The target Fortran array must be of type
double precision real or complex, and of a rank of not more than 7. Procedure mfEquiv
constructs a restricted mfArray. The restricted mfArray does not support operations that
change the shape nor deallocate memory space. This avoids illegal memory
manipulation of the Fortran variable should the shape or memory space of the
equivalent mfArray be changed accidentally?

Procedure mfEquiv has the following general syntax.:

<mfArray> = mfEquiv (<Fortran Array>)

For example,

COMPLEX(16), ALLOCATABLE :: F(:,:)
type (mfArray) :: a

ALLOCATE(F(2,2))
a = mfEquiv(F)

In the above codes, procedure mfEquiv constructs an mfArray a, equivalent to array F.
The procedure associates the memory space occupied by array F as the target of
mfArray a. Effectively, this means that you can use either mfArray a or array F to
control the content of the same memory space.

Warning! Be aware that caution must be taken when you program with two variables
sharing the same memory space. In this case, deleting the Fortran variable F, would
result in an invalid mfArray.

72 MATFOR User’s Guide

Difference between operator ‘=’ and msAssign
You can use either operator ‘=’ or procedure msAssign to construct a new mfArray
from an existing Fortran array.

Both operations involve a duplication of the memory space occupied by the Fortran
array in the heap memory. However, when operator ‘=’ is used, stack overflow may
occur in some compilers. This is avoided by using procedure msAssign.

Example 2.7.4.1 shows some valid usages of procedure mfEquiv. Example 2.7.4.2
shows a dangerous manipulation of a Fortran array associated with mfArray using
mfEquiv. Example 2.7.4.3 shows the effect of reshaping an mfArray constructed using
mfEquiv.

Example 2.7.4.1

Program Example2_7_4_1

use fml
use fgl
implicit none

type(mfArray) :: a, l, u
REAL(8), DIMENSION(10,10) :: T

call RANDOM_NUMBER(T)

! mfArray a shares the same storage space as T.
a = mfEquiv(T)
call msDisplay(a, 'a')

! Perform LU decomposition of T
call msLu(mfOut(l, u), a)
call msDisplay(l, 'l', u, 'u')

! Surface plot of T is plotted
call msSurf(a)
call msShading('interp')
call msViewPause()

! Deallocate mfArray
call msFreeArgs(a, l, u)

end Program Example2_7_4_1

Chapter 2 Working with mfArray 73

In the example above, procedure msFreeArgs is used at the end of the program to release
mfArray a. Note that, in this case, procedure msFreeArgs nullifies mfArray a, but does
not deallocate Fortran array T?

Example 2.7.4.2 Dangerous example

This example below shows a dangerous operation where the Fortran variable is
deallocated. The resulting mfArray returns erroneous data.

Program Example2_7_4_2

use fml
use fgl
implicit none

type(mfArray)::t
REAL(8), ALLOCATABLE::A(:,:)

ALLOCATE(A(3,4))
call RANDOM_NUMBER(A)
t = mfEquiv(A)

call msDisplay(mfSvd(t), 'mfSvd(t)') !==> OK

DEALLOCATE(A) !== >inconsistent mfArray data
! status, t cannot be used any more.

call msDisplay(mfSvd(t), 'mfSvd(t)')
! ==> result is invalid. t's data point
! to a, but a is deallocated.

call msFreeArgs(t)

end Program Example2_7_4_2

Example 2.7.4.3 – Effects of Reshaping

Program Example2_7_4_3

use fml
implicit none

type(mfArray)::t
REAL(8),POINTER::A(:,:)

ALLOCATE(A(3,3))

74 MATFOR User’s Guide

call RANDOM_NUMBER(A)

t = mfEquiv(A)
call msDisplay(t, 't')

call msAssign(mfMatSub(t, 3, 2), 5)
call msDisplay(t, 't(3,2) = 5, t ')

t = mfReshape(mfColon(1,9),(/3,3/))
!== > operation proceeds as shape is not modified.
call msDisplay(t, 't = mfReshape(mfColon(1,9),(/3,3/))')

! Content of array A is also changed.
! Note write prints array data as a single
! line following column-major arrangement.
write(*,*) 'A is also changed! A ='
write(*,*) A

t=(/1,2,3/)
! ==> error occurs as the operation changes
! the shape of mfArray t.

call msFreeArgs(t)

end Program Example2_7_4_3

In the example above, you can see that changing values of a single element of the
mfArray is a valid operation. The second operation, reshaping, does not change the
shape of the mfArray (mfArray remains as 3-by-3), hence the operation proceeds,
updating the contents of array A and mfArray t. The third operation changes mfArray t
to a size 3 vector. This action changes the shape of the mfArray t, which was restricted
to the shape of array A, hence an error occurs.

2.7.5 Using mfArray as Input Dummy Arguments

When you use mfArray as input dummy arguments in your subroutines and functions, it
is recommended for you to use procedures msInitArgs and msFreeArgs to enclose the
dummy mfArrays. For example,

function mffun(x,y,z) result(out)
 type(mfArray) ::x，y，out
 type(mfArray) ::a,b
 INTEGER(4) :: Z(:,:)

 call msInitArgs(x,y)
 a=x-y

Chapter 2 Working with mfArray 75

 b=a+3
 ...
 call msFreeArgs(x,y)
 call msReturnArray(out)
end function myfun

More information about procedures msInitArgs and msFreeArgs is provided in Section
2.7.5.1.

2.7.5.1 More about msInitArgs and msFreeArgs

MATFOR mfArray is a dynamic data type. To prevent from memory-leakage,
MATFOR assigns a temporary flag to all temporarily constructed mfArrays and frees
their associated memory spaces automatically. Examples of temporary mfArrays
include MATFOR function outputs that are used as input to MATFOR procedures or
user-defined subroutines accepting mfArray as input argument.

To prevent accidental deletion of mfArray used as input to your subroutines, MATFOR
provides you with the procedures msInitArgs and msFreeArgs. Procedure msInitArgs is
used at the beginning of your subroutine while procedure msFreeArgs is used at the end
of your subroutine.

Procedure msInitArgs specifies mfArrays for use in your subroutine. This prevents
MATFOR from automatically deleting temporary mfArrays that might be used as
entries into your subroutine. ?

Procedure msFreeArgs complements the function of msInitArgs by restoring the status of
temporary mfArrays back to temporary, so that they are removed automatically by
MATFOR.

2.7.6 Using mfArray as Output Dummy Arguments in Functions

When you use mfArray as function output argument, it is recommended to use
procedure msReturnArray to clean any temporary mfArrays. For example,

function mffun(ra,rb) result(out)
type(mfArray) ::x，y，out

76 MATFOR User’s Guide

REAL(8) :: RA(:),RB(:)

x=RA
...

call msReturnArray(out)
end function myfun

Linear Algebra

Matrix operation is used in many engineering and scientific problems. For the purpose
of numerical computation, these problems are normally represented in the form of linear
algebra using matrices. MATFOR provides users with a set of linear algebra procedures
located in module mod_matfun to solve matrix operation intuitively and efficiently.

Three kinds of matrix operations are often encountered in real problems, namely matrix
inverse, eigenvalues and eigenvectors, and least square approximation. Algorithms used
for solving these problems depend heavily on the characteristics of the matrices. For
efficient performance, different algorithms must be employed for each type of matrix.

MATFOR mod_matfun has built in mechanisms for handling the details of algorithm
selection in matrix operations. Intuitive interfaces are provided so that users do not have
to know the details of the algorithm used. We shall go through three examples in
Sections 3.1, 3.2, and 3.3 to familiarize with the mod_matfun procedures.

3.1 Matrix Inverse
Matrix inverse is often used in mathematical applications. The following is an example
employing MATFOR matrix inverse procedure, mfInv.

Example 3.1 Matrix Inverse

The objective in this example is to determine the relationship between the value of
export from Hong Kong, to the Gross National Product and Per Capita Import of each of
its fourteen overseas markets.

78 MATFOR User’s Guide

Using the relationship determined, we attempt to compute the value of export from
Hong Kong when a target overseas market has a Gross National Product equal to 367.56
(million millions U.S. dollars) and a Per Capita equal to 1230.08 (U.S. dollars).

The data for computation is listed in Table 3.1 below.

Table 3.1 Relationship between export value from Hong Kong and GNP
+ Per Capita Import of overseas market

Overseas
markets
(i)

Export value of
Hong Kong
(Yi：million
HK$)

Gross National Product
(Xi 1:million millions
US$)

Per Capita Import
(Xi 2:US$)

1. America 6825 1298 437.26

2. Canada 512 119.8 1283.48

3. Germany 1902 344.28 1128.33

4. French 146 235.56 600.58

5. England 2814 163.79 783.15

6. Brazil 37 76.72 65.26

7. Panama 52 17.81 441.26

8. Venezuela 56 30.66 242.33

9. Indonesia 187 15.92 23.98

10. Japan 1065 345.08 371.98

11. Malaysia 107 6.7 324.4

12. South Africa 173 28 262.11

13. Australia 771 75 1058.16

14. New
Zealand

192 12.47 1072.27

In this example, we shall use the regression model below to determine the relationship.

Regression Model:

Chapter 3 Linear Algebra 79

Yi = β0 + β1Xi1 + β2Xι2 + Ei

where,

i =1,2,…,14

Yi : Value of export from Hong Kong to i-th market.

Xi1 : Gross National Product of i-th market.

Xi2 : Per Capital Import of i-th market.

Ei : i-th error

βi : regression constant i= 0,1,2

The regression model can be expressed in matrix form:

Y = X β+E

where,

Y = [Y1 Y2 ... Y14] (Y is a 14x1 row vector)

X = (X is a 14 x 3 matrix)

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

2,14 1,14

2,2 1,2

2,1 1,1

 1
...
...

 1
 1

XX

XX
XX

80 MATFOR User’s Guide

β = [β1 β2 β3]t (β is a 1x3 column vector)

E = [E1 E2 … E14]t (E is a 14x 1 row vector)

Using least square approximation, we obtain an estimate for β and Y:

β
~ = (X'X)-1X'Y;

Y
~=X β

~ =X(X'X)-1X'Y;

where β
~ is an estimate of β and Y~ is an estimate of Y.

 To solve β
~ and Y~ , the inverse of (X'X) must be determined. The following code uses

MATFOR procedures to determine the inverse of (X'X).

Program Example3_1

use fml
use fgl
implicit none

type(mfArray) :: y, x1, x2, beta, a, ey, x

real(8) :: t1, t2

x1=.t.(/1298d0, 119.8d0, 344.28d0, 235.56d0, &

163.79d0, 76.72d0,17.81d0, 30.66d0,15.92d0, &

345.08d0, 6.70d0, 28d0,75d0,12.47d0/)

Chapter 3 Linear Algebra 81

x2=.t.(/437.26d0, 1283.48d0, 1128.33d0, 600.58d0,&

783.15d0, 65.26d0, 441.26d0, 242.33d0, 23.98d0,&

371.98d0, 324.4d0, 262.11d0, 1058.16d0, 1072.27d0/)

! input two values (Gross National product and

! Per Capita Import)

write(*,*) "Input two numbers"
read(*,*) t1,t2

a = .t.mfOnes(1,14)

x = a .hc. x1 .hc. x2

y=.t.(/6825d0, 512d0, 1902d0, 146d0, 2814d0, &

37d0, 52d0, 56d0, 184d0, 1065d0, 107d0, 173d0, &

771d0, 192d0/)

! beta = mfMul(mfInv(mfMul(.t.x, x)), mfMul(.t.x, y))
beta = mfLDiv(x,y)
ey = mfMatSub(beta ,1 ,1) + t1*mfMatSub(beta ,2 ,1) +
t2*mfMatSub(beta ,3 ,1)

call msDisplay(beta,'beta',ey,'ey')
call msGDisplay(x1,'x1',x2,'x2',x,'x',a,'a',y,'y',beta,'beta',ey,'ey')
call msViewPause()

call msFreeArgs(y, x1, x2, beta, a, ey, x)

82 MATFOR User’s Guide

end Program Example3_1

Compile and run the code.

Use Gross National Product, t1 = 367.59 and Per Capta Import, t2 = 1230.08

β
~ = ; and Y

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−

0.3975
5.094
177.9518

~= 2183.6 (million Hong Kong dollars)

3.2 Application of Eigenvalues and Eigenvectors
Eigenvalues and eigenvectors are important in many areas of science and engineering. It
is often applied in solving differential equations, and finding physical characteristics of
structures. In MATFOR, you can use procedure mfEig to determine eigenvalues and
eigenvectors of a matrix. The example below applies procedure mfEig in solving a
differential equation.

Example 3.2 Solving a differential equation

In this example, we shall use procedure mfEig to find the solution to a set of differential
equations.

Consider the following differential system:

;
dt

dx
 .3

;
dt

dx
 .2

;
dt

dx
 .1

321
3

321
2

321
1

xxx

xxx

xxx

+−−=

−+−=

−−=

where x1, x2, and x3 are functions of t.

The system can be rewritten in matrix-vector format as:

Chapter 3 Linear Algebra 83

;
dt
dx AX=

where

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

dt
dx
dt

dx
dt
dx

x
xA

3

2

1

3

2

1

dt
dx ,

x
X ,

1 1- 1-
1- 1 1-
1- 1- 1

Then, the solution to the differential system is:

X = K1*eλ1 t*v1+ K2*eλ2 t *v2+ K3*eλ3 t*v3

where K1, K2, and K3 are constants.

λ1, λ2, and λ3 are the eigenvalues of A.

v1, v2, and v3 are eigenvectors corresponding to λ1, λ2, and λ3.

The eigenvalues and eigenvectors of the system can be obtained by using MATFOR
procedure as illustrated in the code below:

Program Example3_2

use fml
implicit none

type (mfArray) :: a, p, d

a = (/1,-1,-1/) .vc. (/-1,1,-1/) .vc. (/-1,-1,1/)

! Compute eigenvalues and eigenvectors

84 MATFOR User’s Guide

call msEig(mfOut(p, d),a)

! Display results
call msDisplay(a,'a',d,'d',p,'p')

! Deallocate mfArrays
call msFreeArgs(a, p, d)

end Program Example3_2

Compile and run the program. The eigenvector p and the eigenvalue d are computed to
be as follow:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

 2 0 0
0 2 0
0 0 1-

0.8000 0.1633- 5774.0
0.2586- 0.7745 5774.0
0.5414- 0.6112- 5774.0

dp

Using the eigenvector and eigenvalue, the solution to the differential system is:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−
−

∗∗+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
∗∗+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
∗∗= −

8000.0
2586.0
5414.0

1633.0
7745.0
6112.0

5774.0
5774.0
5774.0

2
3

2
21

ttt eKeKeKX

3.3 Least Square Operations
Least square method is often used in the determination of optimal solutions such as
obtaining an optimal polynomial equation approximating a collection of data. The
example below presents an application of MATFOR procedures in Least Square
operations.

Chapter 3 Linear Algebra 85

Example 3.3 Determining the optimal binomial

There are four data points with coordinates (2, 1), (4, 3), (5, 5), and (8, 12) as shown in
Figure 3.3.

Figure 3.3.1 Plot of four data points (2,1), (4,3), (5,5) and (8,12).

The points can be approximated using a binomial equation
f(x) = r0 + r1x +r2x2, where r0, r1, and r2 are the constants of the polynomial. From the
four data points, four systems equations are formed as follows.

⎪
⎪
⎩

⎪
⎪
⎨

⎧

210

210

210

210

64r + 8r + r = 12
25r + 5r + r = 5
16r + 4r + r = 3

 4r + 2r + r = 1

86 MATFOR User’s Guide

The system equation can be represented in matrix-vector form as Ar = b where,

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

6481
2551
1641
421

A , ,

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

12
5
3
1

b
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

2

1

0

r
r
r

r

As Ar = b has no linear solution, an approximate solution to Ar ≈ b needs to be
determined.

Using least square method, vector r can be approximated by,

bAAAr TT 1)(−= ,

Instead of solving r by computing the inverse of , which is an expensive
operation, you can use MATFOR matrix left division mfLDiv to solve r. The codes
below use procedures in mod_matfun to obtain an approximation to the coefficient vector
r.

)(AAT

Program Example3_3

use mod_ops
use mod_elmat
use mod_matfun
use fgl
implicit none
type(mfArray) :: x, y, r,A,x1

! Obtain a solution to vector r in linear equation Ar=y.

! Initialize matrix A.
x = (/2,4,5,8/)
A=mfOnes(4,1).hc.(.t.x).hc.(.t.x**2)

! Initialize vector y to contain the four data points
y=.t.(/1,3,5,12/)

! Plot the four data points using red *

Chapter 3 Linear Algebra 87

call msPlot(x,y,'r*')

! Compute the solution to vector r.

! r = mfMul(mfMul(mfInv(mfMul(.t.A, A)),.t.A), y)
r = mfLDiv(A,y)

call msDisplay(r, 'r')

! Using the result from r, compute the resulting binomial equation
! y =r0 + r1*x+ r2*x**2 over the range x =[1:8].
! y is computed using y = mfMul(A, r)

x = mfColon(1,8)
A = mfOnes(8,1).hc.(.t.x).hc.(.t.(x**2))
y = mfMul(A, r)

! Stop the Graphics Viewer from erasing the first graph
call msHold('on')

! Plot the binomial equation using a blue line
call msPlot(x,y,'b-')

! Set the axis range
call msAxis(1d0,8.1d0,0d0,12.1d)

! Pause program to view the resulting graphics
call msViewpause()

! Deallocate mfArrays
call msFreeArgs(x, y, r,A)

end Program Example3_3

Using the program, we obtain r as:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1833.0
0100.0
2067.0

r

Thus, the optimal binomial equation to fit the data by least square method is:

88 MATFOR User’s Guide

f(x) = 0.207 + 0.010x + 0.183x2

Table 3.3 shows the comparison of the raw data of the solution to the binomial
approximation using ai, i=1,2,3,4. Figure 3.3.2 shows the resulting binomial curve and
the four data points.

Table 3.3 (comparison of the data with the polynomial)

i ai bi f(ai)

1 2 1 0.959

2 4 3 3.17

3 5 5 4.83

4 8 12 12.0

ai and bi, are the data, and f(ai) is the solution to the binomial equation using data ai,
i=1,2,3,4.

Chapter 3 Linear Algebra 89

Figure 3.3.1 The polynomial equation and the four data points.

Visualization Basics

The basic idea of visualization is to transform your computational data into a format that
is more communicative and instructive. MATFOR Graphics Library contains a set of
high-level visualization procedures for data visualization, animation, graphical
debugging, and presentation. They are designed to be intuitive and require minimal
programming.

In this chapter, we will introduce some fundamental capabilities MATFOR provides and
explores what is possible. A few examples are provided to guide you to the steps of
using MATFOR Visualization Routines.

4.1 Plotting Your Data
This section outlines the general steps for creating a graph using MATFOR graphical
procedures. We’ll begin by plotting a linear graph.

Step 1. Use MATFOR modules in your program by adding the statement use <module>
under your program name. You’ll need to use the module fgl when using any of the
visualization routines. For example,

Program Example4_1
use fgl
use mod_ops
use mod_elfun

Step 2. Construct and initialize the mfArray for plotting. For example,

type (mfArray) :: x, y
integer :: i
x = (/(i,i=-10,10)/)
y = x**2

92 MATFOR User’s Guide

Step 3. Initiate a Graphics Viewer for plotting to by using procedure msFigure. All
Figures are numbered automatically, depending on the sequence of creation. For
example,

call msFigure(1)

Step 4. Create a graph using one of the graph creation procedures such as msPlot. For
example,

call msPlot(x,y)

Step 5. You can touch up the graph by using procedures such as msShading, msAxis, and
msBackGroundColor, or annotate the graph by adding axis labels and a title. By default,
x-axis is labeled x, y-axis labeled y, and z-axis labeled z.

For example,

call msTitle(‘y = x**2’)

Step 6. Pause the program execution to view the graph by using:

call msViewPause()

Step 7. Deallocate the mfArrays and end the program.

call msFreeArgs(x,y)

end Program Example4_2

Step 8. Compile and run the program to view the graph as shown in Figure 4.2.

Step 9. When you have finished viewing your graph, press the Continue button on the
top right corner of the Graphics Viewer to continue program execution.

Chapter 4 Visualization Basics 93

Figure 4.1 Plotting of y = cos(x)

Example 4.1 Below is a summarization of the above codes.

Example 4.2 Steps to visualization

Program Example4_1

use fgl
use mod_ops
use mod_elfun
implicit none

type (mfArray) :: x, y

x = mfColon(-10,10)

94 MATFOR User’s Guide

y = x**2

! Specify a new Graphics Viewer
call msFigure(1)

! Plot a 2-D x-y plot
call msPlot(x,y)

! Add a Title to the graph
call msTitle('y = x**2')

! Pause Program to view Graphics
call msViewPause()

! Deallocate mfArray
call msFreeArgs(x,y)

end Program Example4_1

4.2 MATFOR Graphics Viewer
When you use graph-creating procedures such as msPlot, the created graphs will be
displayed on MATFOR Graphics Viewer as shown in Figure 4.1.

Graphics Viewer is composed of six major components, namely the window frame,
figure windows, subplots, menu, toolbar, and a couple of dialog box editors. These
components collaborate to display the graphics objects you created on your monitor
screen and provide you with graphics formatting functions.

In this section, we shall briefly describe each component and its usage.

4.2.1 Window Frame and Figure Windows

The properties of the Window Frame can be set through procedures mfWindowCaption,
mfWindowSize, and mfWindowPos.

A Graphics Viewer can contain a number of figure windows. Each figure window is
attached to a window tab that shows the ID and name of that particular figure window.
It enables you to navigate through the figure windows more easily.

Chapter 4 Visualization Basics 95

Figure 4.2.1 Windows and figure windows
4.2.2 Subplots

Each figure window can be further divided into multiple subplots by using the
procedure msSubplot. The procedure has the following syntax:

call msSubplot(m, n, p)

Where m is the number of rows, n is the number of columns and p specifies the current
sub-plot space number. The procedure divides the plot space of a figure window into m-
by-n rectangular sub-plot spaces. Each sub-plot space is numbered row-wise, so that a
sub-plot space at position (1,2) is numbered p =2 and (2,2) is numbered p=4.

96 MATFOR User’s Guide

Example 4.2.2 Using msSubplot

In the following, we shall create a new figure window and plot the two graphs using a 1-
by-2 convention.

Create a new figure window with the ID 1.

call msFigure(1)

Divide the plot space into 1-by-2 subplot spaces and plot the first pair of graphs on
subplot space 1.

call msSubplot(1,2,1)
h = mfPlot(x, y1, 'b')
call msHold('on')
h = mfPlot(x, y2, 'ro')
call msGSet(h, 'symbol_scale', 25)
call msCamZoom(0.8d0)
call msCamPan(20, 0)

Plot the third of graph defined by x, y3 on sub-plot space 2. The axis will be
automatically scaled by MATFOR to fit the third graph.

call msSubplot(1,2,2)
h = mfPlot(x, y3, 'gx')
call msGSet(h, 'symbol_scale', 25)
call msCamZoom(0.8d0)
call msCamPan(40, 0)

Pause the program to view the graph.

call msViewPause()

Compile and execute the program.

Chapter 4 Visualization Basics 97

Figure 4.2.2 Two subplots in the same figure window

4.2.3 Menu and Toolbar

The most appearing feature of Graphics Viewer might be the flexibility of
manipulations on graphics objects. All of the graphics object editing carried out by the
procedures can be manipulated directly using the menu and toolbar functions!

With these functions, you can perform axis adjustment, material shading, colormap
setting, and many other things after the program is run and the graphics objects are
shown in the plot space.

Just play with the menu and toolbar functions to get a feel of this amazingly easy-to-use
feature.

98 MATFOR User’s Guide

Figure 4.2.3.1 Material setting dialog box

Chapter 4 Visualization Basics 99

Figure 4.2.3.2 Axis setting dialog box

100 MATFOR User’s Guide

Figure 4.2.3.3 Colormap setting dialog box

Figure 4.2.3.4 Toolbar

4.3 Creating 3-D Models
In MATFOR, there are two methods to obtain data for plotting. One is to generate the
data from algorithm or mathematical expression as shown in example 4.1. The other
way is to read a data file into the system.

This section goes through examples that use the two methods to plot three-dimensional
graphs. One uses two-dimensional matrices to construct a surface plot; whereas the
other one reads data files into the system to draw a dolphin object.

4.3.1 Generating the Data

First, we shall being to generate the data by using msMeshgrid, which is a useful
procedure to transform the domain specified by two vectors into two-dimensional
matrices. The resulting matrices are useful for evaluating functions of two variables and

Chapter 4 Visualization Basics 101

for plotting surfaces. The matrices are composed of repeating rows and columns of the
two vectors. The syntax of the procedure is:

call msMeshgrid(mfOut(matrix X,matrix Y), vector x, vector y)

As an example, we shall create four matrices x, y, indxi, and indxj using procedure
msMeshgrid. Matrices x and y will be used for plotting the graph, while indxi, and indxj
will be used to evaluate function z. The resulting mfArrays will be used in the examples
for plotting lines and surfaces in three-dimensional space in the sections that follow.

Example 4.3.1 msMeshgrid- function of two variables

Start a program named Example4_3_1, use modules fgl and fml, and declare the
variables x, y, z, indxi, and indxj as mfArrays. .

Program Example4_3_1

use fgl
use fml

implicit none
type(mfArray) :: m, x, y, z

Create two 30-by-30 matrices x, y using procedure msMeshgrid.

m = mfLinspace(-3, 3, 30)
call msMeshGrid(mfOut(x, y), m)

Procedure mfLinspace is used to construct a linearly spaced vector as input vector. It has
the syntax mfLinspace(lowerbound, upperbound, intervals).

Function mfOut specifies x and y as output mfArrays.

Calculate z from x and y.

z = mfSin(x) * mfCos(y) / (x*(x-0.5d0) + (y+0.5d0)*y + 1)

102 MATFOR User’s Guide

Using the data created above, we shall draw a surface graph in three-dimensional space
using the procedure msSurf.

call msSurf(x, y, z)
call msViewPause()

Compile and run the program.

Figure 4.3.1 Surface graph in three-dimensional space

4.3.2 Loading data (mfb, ascii)

Here, we’ll demonstrate an example that reads in the data of a dolphin module from
ASCII data files and plots it in three-dimensional space.

Chapter 4 Visualization Basics 103

Example 4.3.1 mfLoadAscii- loading ASCII data files

Start a program named Example4_3_2, use modules fgl and fml, and declare the
variables xyz and tri as mfArrays.

Program Example4_3_2

use fml
use fgl

implicit none
type (mfArray) :: xyz, tri

Loads the data from the ASCII files dolphin_tri.txt and dolphin_xyz.txt using procedure
mfLoadAscii. The example data files can be found in
<MATFOR>\examples\for_ug\data\dolphin_tri.txt and
<MATFOR>\examples\for_ug\data\dolphin_xyz.txt. The data is loaded into the
mfArrays xyz and tri.

xyz = mfLoadAscii('.\data\dolphin_xyz.txt')
tri = mfLoadAscii('.\data\dolphin_tri.txt')

Next, construct the polygons defined by the face matrix tri and the corresponding vertex
matrix xyz using procedure mfTriSurf. You may refer to Section 5.5 for more details on
plotting unstructured mesh graphs.

call msTriSurf(tri, xyz))

Display the graphics object with proper axis adjustments to make it look neater.

call msAxis('equal')
call msAxis('off')
call msViewPause()

Compile and run the program.

104 MATFOR User’s Guide

Figure 4.3.2 Dolphin object

4.4 Displaying 3-D objects
Once you have created a graphics object that is either procedurally generated or loaded
from a data file. You may want to adjust the viewing of the object in order to make it
more meaningful.

Using the data created in example 4.3.1, we shall go through a variety of techniques that
are used when displaying the surface object.

Chapter 4 Visualization Basics 105

4.4.1 Adjusting the Viewpoint.

You can set the way you view a three-dimensional graph by setting the azimuth and
elevation angles of a viewpoint using procedure msView(az, el).

The azimuth angle, az, is the angle of horizontal rotation about the z-axis, measured
from the negative y-axis. The elevation angle, el, is the vertical angle.

Example 4.4.1 Setting the viewpoint

Simply add the statement call msView(45, 45) right below the surface plot procedure.

call msFigure('msView(45, 45)')
call msSurf(x, y, z)
call msView(45, 45)

Note that a three-dimensional graph has a default viewpoint at az = -37.5 and el = 30.
This default value can be restored by calling msView(“3”).

106 MATFOR User’s Guide

Figure 4.4.1 msView – adjust the viewpoint

4.4.2 Shifting the Objects

The camera manipulations may be handy when you want to shift the graph or rescale its
size in the plot space.

Procedure msCamPan is used when you want to shift the graph horizontally or vertically.
This is accomplished by specifying the horizontal and vertical distances of the camera
displacement. Notice that the displacement of the graph is directly opposite to the
displacement of the camera. For example, the graphics object will be shifted downward
in the plot space when you shift the camera upward.

Chapter 4 Visualization Basics 107

Example 4.4.2 Shifting in the surface object

Shift the surface object downward by moving the camera upward with the displacement
of 80.

call msFigure('msCamPan')
call msSubplot(1, 2, 1)
call msSurf(x, y, z)
call msSubplot(1, 2, 2)
call msSurf(x, y, z)
call msCamPan(0, 80)

Figure 4.4.2 msCamPan – shift the camera

4.4.3 Rescaling the Objects

Procedure msCamZoom rescales the visual size of the graph. It takes a zoom factor as
input and performs the zooming effect differently in perspective and parallel modes.

In perspective mode, it decreases the view angle by the zoom factor. In parallel mode, it
decreases the parallel scale by the zoom factor.

Example 4.4.3 Zooming in the surface object

We shall zoom in the surface object in parallel mode with a zooming factor of 1.5.

call msFigure('msCamZoom')

108 MATFOR User’s Guide

call msSubplot(1, 2, 1)
call msSurf(x, y, z)
call msSubplot(1, 2, 2)
call msSurf(x, y, z)
call msCamZoom(1.5d0)

Figure 4.4.3 msCamZoom – rescale the object

4.4.4 Changing the Displaying Mode

The camera projection mode can be either perspective or orthographic (e.g. parallel). It
can be done easily with procedure msCamProj(mode) that takes the input argument mode.

Example 4.4.4 Changing to the perspective displaying mode

The example code is as follows.

call msFigure('perspective')
call msSurf(x, y, z)
call msCamProj('perspective')

Chapter 4 Visualization Basics 109

Figure 4.4.4 msCamProj - change the displaying mode

4.4.5 Setting the Axis Object

The axis object is an aggregation of the axis itself, the axis wall and the axis grid. The
axis wall is the positive side of the three axis planes, which look like the three joined
sides inside a box.

With procedures msAxis, msAxisWall, and msAxisGrid, you set the range of the axes,
number of ticks on the axes, displaying grid lines, color of the axis box, etc.

110 MATFOR User’s Guide

Example 4.4.5 Adjusting the axis object

Using the procedures mentioned above to reset the axis ticks to be displayed, reset the
color of the axis wall to white and change the grid line pattern.

call msFigure('Axis')
call msSurf(x, y, z)
call msAxis(mf('xaxis_ticks'), mf((/3.0d0, 1.5d0, 0.0d0, -1.5d0, -
3.0d0/)))
call msAxisWall(mf('color'), mf((/1, 1, 1/)))
call msAxisGrid('pattern', 'dashed')

Chapter 4 Visualization Basics 111

Figure 4.4.5 Set the axis object properties

4.5 Colormap, Shading and Texture
In this section, we shall go through the examples of choosing preset colormaps,
displaying colorbar, shading the object surface material, and mapping texture on the
surface of the object.

4.5.1 Adjusting Colormap

A surface object can be rendered with different types of colormaps. MATFOR provides
a variety of predefined colormaps, such as jet, gray, hot, cool, cooper, hsv, etc.

In case where none of the predefined colormaps meets your need, you can also define
custom colormaps through the Colormap Setting dialog box.

Using the data constructed in example 4.3.1, we shall illustrate how to render the
surface with different predefined colormaps and define a colormap by using the
Colormap Editor.

Example 4.5.1.1 Using predefined colormaps

Specify the colormap types jet, hsv, cool, and gray for drawing the surface object. We
shall lay them out in subplot form in one figure window to illustrate the visual effect
each of them produces.

! Use colormap 'jet'
call msSubplot(2, 2, 1)
call msTitle('jet')
h = mfSurf(x, y, z)
call msColormap('jet')
call msCamZoom(1.5d0)

! Use colormap 'hsv'
call msSubplot(2, 2, 2)
call msTitle('hsv')
h = mfSurf(x, y, z)
call msColormap('hsv')
call msCamZoom(1.5d0)

! Use colormap 'cool'
call msSubplot(2, 2, 3)
call msTitle('cool')

112 MATFOR User’s Guide

h = mfSurf(x, y, z)
call msColormap('cool')
call msCamZoom(1.5d0)

! Use colormap 'gray'
call msSubplot(2, 2, 4)
call msTitle('gray')
h = mfSurf(x, y, z)
call msColormap('gray')
call msCamZoom(1.5d0)

Figure 4.5.1.1 Different types of predefined colormaps

You can also manually define the colormaps by using the Colormap Setting dialog box.

Example 4.5.1.2 Using Colormap Editor

We shall demonstrate an example showing you how to create a colormap that consists
of blue color components only. This is achieved by relocating the red, green, and blue
lines in the editing box.

The far left portion of the box is mapped to the area which has the lowest value and the
far right portion is mapped to the area which has the greatest value.

Chapter 4 Visualization Basics 113

Step 1: Start by running Example 4.5.1 and extend one of the four subplots. Open the
colormap setting editor, which can be found in the toolbar or Setting Menu.

Step 2: Choose the pre-defined colormap gray to work with. You may notice that the
three lines are on top of each other.

Figure 4.5.1.2 Colormap editor

Step 3: Drag the red and green lines to the bottom of the editing box and leave the blue
line unchanged.

114 MATFOR User’s Guide

Figure 4.5.1.3 Colormap of blue components only

The resulting graph shows in figure 4.5.1.4

Chapter 4 Visualization Basics 115

Figure 4.5.1.4 The resulting graph

4.5.2 Displaying Colorbar

The colorbar displays the current colormap and acts as a color scale showing the
relationship between graphics data and color. It can be displayed in the figure window
vertically or horizontally.

Vertical colorbar is displayed on the right hand side of the graph; whereas horizontal
colorbar is displayed on the bottom of the figure window.

The colorbar procedure msColorbar has the following syntax:

call msColorbar(mode) or
call msColorbar(property, value)

Where mode specifies the location to display the colorbar. It can be ‘vert’, ‘horz’, ‘on’, or
‘off’.
The number and color of labels can be adjusted using property ‘label_count’ and
‘label_color”

116 MATFOR User’s Guide

4.5.3 Shading Objects

In MATFOR, graphics objects are often composed of two major components, namely
edge and surface. When it comes to shading the graphics objects, these two components
are manipulated independently.

The general syntax of msDrawMaterial is:

call msDrawMaterial(handle, target, property, value)

Where handle is associated with the graphics object and target specifies the component
that you are shading.

The shading property varies from the reflectances of the components, color of the
components, to the shading mode, and visibility. For the edge component, it has two
more properties, which are width and style.

Using the data constructed in Example 4.3.1, we shall demonstrate a simple example of
shading the graphics object.

Example4.5.3 msDrawMaterial

First, we shall add a lighting effect on the surface to make it looks more three-
dimensional. This is achieved by setting the three reflectances.

call msDrawMaterial(h, mf('surf'), mf('visible'), mf('on'), &
 mf('smooth'), mf('on'), &
 mf('colormap'), mf('on'), &
 mf('ambient'), mf(0), &
 mf('diffuse'), mf(75), &
 mf('specular'), mf(25))

At this point, the edge appears to be too obvious on the surface. We then add a fading
effect on the edge by setting the value of its transparency reflectance to be 90.

call msDrawMaterial(h, mf('edge'), mf('color'), mf((/1,0,0/)), &
 mf('smooth'), mf('on'), &
 mf('colormap'), mf('off'), &
 mf('ambient'), mf(0), &
 mf('diffuse'), mf(0), &
 mf('diffuse'), mf(0), &
 mf('specular'), mf(0), &
 mf('trans'), mf(90))

Compile and run the program.

Chapter 4 Visualization Basics 117

Figure 4.5.3 Shading the surface and edge components

The shading can also be done using the Material Editor that is located on the toolbar or
can be located in the Setting Menu.

4.5.4 Mapping Texture

Place a texture on the graphics object by mapping the texture’s coordinates to the
object’s coordinates.

Texture’s coordinates comprise two coordinates, s-coordinate and t-coordinate that
represent the horizontal and vertical coordinates of the texture respectively. Both of
them are vectors of values ranging from 0 to 1. Figure 4.5.4.1 shows the relationship
between the coordinate values and the positions on the texture.

118 MATFOR User’s Guide

(s=0, t=0) (s=0, t=0.5) (s=0, t=1)

(s=0.5, t=0.5)

(s=1, t=1)(s=1, t=0)

Figure 4.5.4.1 Texture coordinates

call msDrawTexture(handle, property1, value1, property2, value2, …)

The handle is associated with the graphics object that the texture is to be placed on.

In the following example, we shall construct a tetrahedron (a polyhedron with four faces)
using procedure msTriSurf.

First, construct the vertices of the tetrahedron using four 1-by-2 double vectors. Then
we use mfArrays x, y, and z to store the coordinates accordingly. Each row of mfArray
tri defines a face of the tetrahedron.

type (mfArray) :: tri, x, y, z, h, s, t
real(8), dimension(3) :: p1, p2, p3, p4

p1(1) = -0.25d0 * sqrt(3.0d0)
p1(2) = 0.5d0
p1(3) = 0.0d0
p2(1) = -0.25d0 * sqrt(3.0d0)
p2(2) = -0.5d0
p2(3) = 0.0d0
p3(1) = 0.25d0 * sqrt(3.0d0)
p3(2) = 0.0d0
p3(3) = 0.0d0

Chapter 4 Visualization Basics 119

p4(1) = 0.0d0
p4(2) = 0.0d0
p4(3) = sqrt(6.0d0) / 3.0d0

x = (/p1(1), p2(1), p3(1), p1(1), p2(1), p4(1), p1(1), p3(1), p4(1), p2(1),
p3(1), p4(1)/)
y = (/p1(2), p2(2), p3(2), p1(2), p2(2), p4(2), p1(2), p3(2), p4(2), p2(2),
p3(2), p4(2)/)
z = (/p1(3), p2(3), p3(3), p1(3), p2(3), p4(3), p1(3), p3(3), p4(3), p2(3),
p3(3), p4(3)/)
tri = (/1, 2, 3/) .vc. &
 (/4, 5, 6/) .vc. &
 (/7, 8, 9/) .vc. &
 (/10, 11, 12/)

h = mfTriSurf(tri, x, y, z)

We now have to define the corresponding texture coordinates s and t using six 1-by-2
double vectors that represent six vertices on the texture individually.

q1(1) = 0.0d0
q1(2) = 0.0d0
q2(1) = 0.5d0
q2(2) = 0.0d0
q3(1) = 1.0d0
q3(2) = 0.0d0
q4(1) = 0.0d0
q4(2) = 0.5d0
q5(1) = 0.0d0
q5(2) = 1.0d0
q6(1) = 1.0d0
q6(2) = 1.0d0

s = (/q2(1), q4(1), q6(1), q2(1), q4(1), q1(1), q2(1), q6(1), q3(1), q4(1),
q6(1), q5(1)/)
t = (/q2(2), q4(2), q6(2), q2(2), q4(2), q1(2), q2(2), q6(2), q3(2), q4(2),
q6(2), q5(2)/)

Finally, map the texture file brick.bmp onto the tetrahedron that is associated with the
handle h. Figure 4.5.4.2 illustrates how the texture is divided into four portions to be
mapped onto the four faces of the tetrahedron. The bitmap file is located under the
directory <MATFOR>\examples\for_ug\data\.

call msDrawTexture(h, mf('map'), mf('.\data\brick.bmp'), &
 mf('enable'), mf('on'), &
 mf('coord_s'), s, &
 mf('coord_t'), t)

120 MATFOR User’s Guide

q6q5

q3q1 q2

q4

Figure
4.5.4.2 Brick.bmp

The result is in figure 4.5.4.3.

Chapter 4 Visualization Basics 121

Figure 4.5.4.3 Map texture on the tetrahedron object

4.6 Annotating Your Graph
MATFOR allows you to annotate a graph with a title and axis labels. In addition to that,
it also enables you to add floating text annotations on graph.

There are two ways to add the text annotation. Examples of their usages are provided in
this section.

122 MATFOR User’s Guide

4.6.1 Setting the Title and Axis Labels

By default, the x-, y-, and z-axes are labeled as “x”, “y”, and “z” respectively.

You can change the labels of x-, y-, and z-axes or add a title to your graph by using the
annotation procedures such as msXLabel, msYLabel, msZLabel, and msTitle, or through the
Appearance Setting dialog box that can be find in the View menu.

In the following example, we shall demonstrate how to annotate a graph with a title and
axis labels.

Example 4.6.1 Changing the axis labels and title

Change the labels of x-axis and y-axis and add a title to the surface graph.

call msXLabel('indxi')
call msYlabel('indxj')
call msTitle('Graph of z = mfSin(x) * mfCos(y) / (x*(x-0.5d0) +
(y+0.5d0)*y + 1)')

Chapter 4 Visualization Basics 123

Figure 4.6.1 Axis labels and title

4.6.2 Text Annotation

You can add two-dimensional and three-dimensional text annotations with colors on
your graph by using procedure msText and msAnnotation, respectively.

Example 4.6.2 Adding text annotations

Place a two-dimensional text annotation on the bottom-left corner of the figure window.
The color of the text is set to purple.

call msText('Annotating Your Graph', mf((/0.1, 0.1/)), mf((/1, 0, 1/)))

124 MATFOR User’s Guide

Next, we shall locate the point with the maximum z value and label it with a three-
dimensional text annotation. Try to rotate the graphics object; you’ll see the text
annotation moves with the maximum point.

pos = mfOnes(3, 1)
call msAssign(mfS(pos, 1, 1), mfS(x, 15,19)/6.0d0 + 0.065d0)
call msAssign(mfS(pos, 2, 1), mfS(y, 15,19)/6.0d0 - 0.02d0)
call msAssign(mfS(pos, 3, 1), mfS(z, 15,19) + 0.02d0)

call msAnnotation('Maximum', pos, mf((/0, 1, 1/)))

Figure 4.6.2 Two-dimensional and three-dimensional text annotations

Chapter 4 Visualization Basics 125

4.7 Animation and Recording
Animations effects are produced by the continuous erase and update of data displayed in
the Graphics Viewer. Animation can be recorded in two different formats, namely avi
and bmp.

In this section, we shall animate the surface object drawn in example 4.3.1 using
mfArrays x, y, and z.

4.7.1 Animation

Typically, you create an animation by following the steps below:

Step 1. Construct and initialize the mfArrays for plotting.

Step 2. Create a static plot of the graph you wish to animate and get its handle using
mfGetCurrentDraw.

Step 3. Set up an iteration loop for the range of data you wish to observe through
animation.

Step 4. Within the iteration loop, use procedure call msGSet(handle, ‘axis-data’, data) to
update the targeted data of the current draw.

Step 5. Update the current Graphics Viewer by using procedure msDrawNow; animation
effect is created.

Step 6. Pause the program after completing the animation to observe the static graph
using procedure msViewPause.

Example 4.7.1 Animation

Create the surface object by using the data with procedure msSurf and use mfArray h to
retrieve the handle of the object created.

call msSurf(x, y, z)
h = mfGetCurrentDraw()

Then, create an iteration loop to vary z data, using integer i = 1 to 300.

do i = 1, 300

126 MATFOR User’s Guide

 z = mfSin(x+0.08d0*i) * mfCos(y-0.13d0*i) / (x*(x-0.5d0) +
(y+0.5d0)*y + 1)
 call msGset(h, 'zdata', z)
 call msDrawNow()
end do

Pause the program to view the surface object at the point of termination using procedure
msViewPause.

Compile and run the program.

Figure 4.7.1 Animating surface object

Chapter 4 Visualization Basics 127

4.7.2 Recording your animation

You can record animations of your graphics object as an avi movie file, MATFOR mfa
file, or as picture files to view your simulation process at another time. The general
syntax is as follows.

call msRecordStart(‘animation.avi’)

or
call msRecordStart(‘animation.mfa’)

or
call msRecordStart(‘animation.bmp’)

<animation codes>

call msRecordEnd()

You have the options of to temporarily pause the animation or terminate the recording
by clicking on the pause or stop button on the toolbar. When the stop bottom is pressed,
the played animation up till the point of termination will still be recorded and the
remaining animation will keep on rolling.

At the end of the recording, an end of recording dialog box pops out to notify you that
the recording has been completed successfully. Click “OK” to continue.

When call msRecordStart(‘animation.avi’) is used, MATFOR records an avi movie file
using the compression method that you select. The Graphics Viewer pops up a Video
Compression selection dialog box at the start of the recording, as shown in Figure
4.7.2.3 below.

128 MATFOR User’s Guide

Figure 4.7.2.3 Video Compression selection dialog box

Example 4.7.2 Recording an animation

In this example, we shall record the animation created in example 4.7.1 into an avi file.
Simply add the statements call msRecordStart('.\data\Example4_7.avi') and call
msRecordEnd() at the beginning and end of the animation code respectively.

call msRecordStart('.\data\Example4_7.avi')

call msSurf(x, y, z)
h = mfGetCurrentDraw()
! Reset the axis ranges to yield a better animation
call msAxis(-3.0d0, 3.0d0, -3.0d0, 3.0d0, -1.1d0, 1.1d0)
do i = 1, 300
 z = mfSin(x+0.08d0*i) * mfCos(y-0.13d0*i) / (x*(x-0.5d0) +
(y+0.5d0)*y + 1)
 call msGset(h, 'zdata', z)
 call msDrawNow()
end do

call msRecordEnd()
call msViewPause()

The recorded ‘Example4_7.avi’ file will be located under the data folder in your project
directory. By default, you can find it at <MATFOR>\examples\for_ug\data\.

4.7.3 Image Exporting

A graph displaying on the Graphics Viewer can be captured and saved into a picture file.
This is easily accomplished by using the procedure msExportImage. Various picture
formats are supported, e.g. bmp, jpeg, tiff, ps and png.

It can also be accomplished by using the Export to File function located under the File
Menu.

Chapter 4 Visualization Basics 129

You may define the size of the picture format to be saved using either one of the two
methods.

Figure 4.7.3 Capture displaying graph

4.8 MATFOR Data Viewer
MATFOR Data Viewer is a powerful tool that displays data in a spreadsheet-like editor
and enables you to perform additional manipulations on the data. It is composed of six
major components, namely Matrix Table, Menu, Toolbar, Sampling Type, Panels, and
Status Bar.

There are three kinds of panels in MATFOR Data Viewer, which are Snapshot Panel,
Analysis Panel, and Filter Panel.

130 MATFOR User’s Guide

4.8.1 Matrix Table

Matrix Table is where actual entries are displayed. The data displayed are entries in two
selected dimensions of an mfArray.

Figure 4.8.1 Matrix Table

4.8.1.1 Cell Color

The cells in the Matrix Table may have different colors and each cell color has a its
meaning. The default color (usually white) is to represent entries in odd rows and the
sky blue color is to represent entries in even rows.

You can also define new colors for cells for emphasizing purpose through Filter Panel.
Descriptions on Filter Panel can be found in Section 4.8.7.

Chapter 4 Visualization Basics 131

4.8.1.2 Cell Selection

The selected entry will be shown in the Status Bar. You can select a cell entry by
clicking the mouse or by using the Goto Cell dialog box.

4.8.1.3 Array Selection

Similar to MATFOR Graphics Viewer, each array-displaying window is attached to a
tab. This allows you to switch between arrays windows very easily.

4.8.2 Menu

The menu functions support file saving functions.

Figure 4.8.2.1 File Menu

You may notice that MATFOR Data Viewer does not support file-opening function.
This is because it is not an independent application as all the data are input from
procedure calls or through MATFOR Graphics Viewer.

Figure 4.8.2.2 View Menu

The Close Current Array function closes the selected array. The Close All Array
function under the View Menu closes all the arrays that are currently displayed in the
Data Viewer. It is equivalent to the Exit function.

The Goto Cell function enables you to jump to a specific cell given its row index and
column index. A dialog box will pop up prompting you to input, as illustrated in Figure
4.8.2.3.

132 MATFOR User’s Guide

Figure 4.8.2.3 Goto Cell dialog box

Find the entries that satisfy the condition you insert. The format of the condition is
similar to the one used for filtering. Refer to Section 4.8.7 Filter Panel.

Figure 4.8.2.4 Find dialog box

4.8.3 Toolbar

MATFOR Data Viewer also provides you with some quick buttons to use the menu
functions on the Toolbar as shown in the left part of Figure 4.8.3.

You can reset the width of the grids by dragging the slide bar. The width is specified in
pixels. The number of precisions can also be reset using the slide bar for number of
digits to display.

Figure 4.8.3 Toolbar

4.8.4 Sampling Type

With the Sampling Range options, you can select either to display the full
array or sub-matrix. For the sub-matrix option, if the range selection is (:, :,
3), the Data Viewer will display 900 entries of the sub-matrix (1:30, 1:30, 3).

Chapter 4 Visualization Basics 133

Figure 4.8.4 Range and type sampling

4.8.5 Snapshot Panel

Figure 4.8.5 Snapshot Panel

The window in the middle displays a snapshot of the distribution and size of
the two-dimensional data. The darkness of a cell is determined by mapping the
value stored in the cell to a predefined range.

134 MATFOR User’s Guide

The range is defined by setting the upper bound to be the average + 3 x
standard deviation and setting the lower bound to be the average – 3 x standard
deviation.

In the snapshot window, the values that exceed the upper bound are all treated
as the maximum value and the values that are less than the lower bound are
treated as the minimum value. The range is further divided into 256 levels of
darkness and the cells are drawn accordingly.

The string (30x30x1) above the snapshot window specifies the shape of the
array being examined. The string (30x30) right below the snapshot window is
the size of the dimensions of displaying array data.

The Data Range Selection input box allows you to specify the range of data to
be displayed.

For example, if you want to display all entries in an 30-by-30 matrix, you
simply input (:,:) and press Enter. When the input is (10:20, 10:), the Data
Viewer displays only the entries in rows 10 to 20 and columns 10 to 30.

4.8.6 Analysis Panel

The Analysis Panel shows the distribution of the data. It also displays the average,
standard deviation and min/max values, as displayed in Figure 4.8.6.

Chapter 4 Visualization Basics 135

Figure 4.8.6 Analysis Panel

4.8.7 Filter Panel

The Filter Panel allows you to define a range using conditions of inequalities. The
conditions of inequalities are specified in the condition boxes provided. The entries that
satisfy a condition are highlighted in the color shown at the right side of the condition
box.

Use ‘X’ or ‘x’ to represent the data being extracted. You may use avg, std, max, and min
to represent the average, the standard deviation, maximum value, and minimum value,
respectively.

MATFOR Data Viewer supports the inequality operators listed below: <, >, <=, >=.
Notice that equal sign is not supported.

Figure 4.8.7 Filter panel

4.8.8 Status Bar

The Status Bar on the bottom of the Data Viewer contains two parts. The right one
shows the system status and the left one shows the progress status.

The system status bar also displays the value when you select a specific cell.

136 MATFOR User’s Guide

Figure 4.8.8 Status bar

Visualization Methods

MATFOR’s Graphics Library contains a set of visualization procedures for visualizing
data in two-dimensional space and three-dimensional spaces. These visualization
procedures can be categorized according to the type of data domain that they use to
display.

Not all MATFOR Visualization procedures are described here. You may refer to the
MATFOR Reference Guide to see detailed descriptions on every MATFOR procedures.

Examples with figures and diagrams will be presented for each major category.

5.1 Linear Graph
The data used for plotting linear graphs in two-dimensional space and three-dimensional
space is the coordinates in vector forms.

This section is divided into two sub-sections. The first one presents the manipulations
on the two-dimensional linear graph and the second covers the plotting of three-
dimensional linear graphs using different representations.

Examples are provided for each sub-section.

5.1.1 Two-dimensional Linear Graph

Use the two-dimensional linear graph procedure mfPlot to visualize your data as trend
lines. The procedure accepts different combinations of input arguments and allows you
to plot multiple graphs with one procedure call.

The line color and marker type used by these graphs are specified through optional
arguments of the procedures.

138 MATFOR User’s Guide

We shall go through example 5.1.1 to see how to plot a line graph for cosine using
different combinations of line colors and market types.

Example 5.1.1 Two-dimensional linear plot

Create a new figure window and plot the cosine graph. The line color is set to red,
which is specified with the optional argument ‘r’.

x = mfLinspace(-MF_PI, MF_PI,30)
y = mfCos(x)

call msFigure(1)
call msPlot(x, y, 'r')
call msTitle('Cosine graph')

Chapter 5 Visualization Methods 139

Figure 5.1.1.1 Cosine graph with red line

Plot a second cosine graph with the line specification set to ‘go-‘, which specifies a
solid green color line with circle markers.

call msFigure(2)
call msPlot(x, y, 'go-')
call msTitle('Cosine graph')

Figure 5.1.1.2 Cosine graph with green line and circle markers

140 MATFOR User’s Guide

5.1.2 Three-dimensional Linear Graph

MATFOR provides the procedures mfPlot3, mfTube, and mfRibbon for visualizing linear
graphs in three-dimensional space as trend lines, tubes, and ribbons.

Example 5.1.2 should give you a clear picture of what the three kinds of three-
dimensional linear graphs look like.

Example 5.1.2 Three-dimensional linear plot

Create three figure windows with the names ‘plot3’, ‘tube’, and ‘ribbon’ for plotting the
data in line graph, tube graph, and ribbon graph respectively.

call msFigure('plot3')
h = mfPlot3(x, y, z)
call msAxis(-30,30,-30,30,0,30)
call msCamZoom(1.4d0)

call msFigure('tube')
h = mfTube(x, y, z)
call msAxis(-30,30,-30,30,0,30)
call msCamZoom(1.4d0)

call msFigure('ribbon')
h = mfRibbon(x, y, z)
call msAxis(-30,30,-30,30,0,30)
call msCamZoom(1.4d0)

The results are displayed in the following figures.

Chapter 5 Visualization Methods 141

Figure 5.1.2.1 Line graph

142 MATFOR User’s Guide

Figure 5.1.2.2 Tube graph

Figure 5.1.2.3 Ribbon graph

5.2 Surface Plot
In MATFOR, quadrilateral grid data can be plotted using various representations, such
as surface graph, mesh graph, and contour lines.

This section goes through some examples on plotting a quadrilateral surface using these
representations.

5.2.1 Surface plot

In the following example, we shall illustrate how to plot a quadrilateral grid in three-
dimensional space with procedures mfSurf, mfMesh, mfSurfc, and mfMeshc.

Example 5.2.1 Surface plots using different methods

First, create a new figure window with the name ‘surface’.

call msFigure('surface')

Chapter 5 Visualization Methods 143

Divide the figure window into four subplots and draw a surface plot on each of them
using different representations.

You may notice that by using procedures mfSurfc and mfMeshc, a two-dimensional
contour plot is added to the surface plot.

call msSubplot(2, 2, 1)
call msTitle('surf')
h = mfSurf(x, y, z)
call msCamZoom(1.5d0)

call msSubplot(2, 2, 2)
call msTitle('mesh')
h = mfMesh(x, y, z)
call msCamZoom(1.5d0)

call msSubplot(2, 2, 3)
call msTitle('surfc')
h = mfSurfc(x, y, z)
call msCamZoom(1.5d0)

call msSubplot(2, 2, 4)
call msTitle('meshc')
h = mfMeshc(x, y, z)
call msCamZoom(1.5d0)

144 MATFOR User’s Guide

Figure 5.2.1 Surface plots

5.2.2 Contour plot

Contour plots are lines or surfaces of constant scalar values. They can be drawn in two-
dimensional space or three-dimensional space using procedures mfContour, mfContour3,
mfSolidContour, and mfSolidContour3.

The procedure msOutline allows you to draw a wireframe outline boundary for a given
data set. It is often used when drawing contour plots.

Using the same data set as the one used in example 5.2.1, we shall plot the contour
graphs using different representations in the example below.

Example 5.2.2 Using contours

Create a new figure window with the name ‘contour’.

call msFigure('contour')

Chapter 5 Visualization Methods 145

Divide the figure window into four subplots and draw a contour plot on each of them
using different representations and shading options.

call msSubplot(2, 2, 1)
call msTitle('contour3 with outline')
h = mfContour3(x, y, z)
call msHold('on')
h = mfOutline(x, y, z)
call msDrawMaterial(h, 'edge', 'color', mf((/0, 0, 1/)))
call msCamZoom(1.5d0)

call msSubplot(2, 2, 2)
call msTitle('contour')
h = mfContour(x, y, z)
call msAxis('equal')

call msSubplot(2, 2, 3)
call msTitle('solidcontour3 with outline')
h = mfSolidContour3(x, y, z)
call msHold('on')
h = mfOutline(x, y, z)
call msDrawMaterial(h, 'edge', 'color', mf((/0, 0, 1/)))
call msCamZoom(1.5d0)

call msSubplot(2, 2, 4)
call msTitle('solidcontour')
h = mfSolidContour(x, y, z)
call msAxis('equal')

146 MATFOR User’s Guide

Figure 5.2.2 Contour plots

5.2.3 Pseudocolor plot

Using the pseudocolor plotting procedure, mfPColor, the data is mapped to the current
colormap to represent the magnitude of the data value. The resulting graph is equivalent
to the top-view of the one produced using procedure mfSurf.

Example 5.2.3 Pseudocolor plot

Create a new figure with the name ‘pcolor’.

call msFigure('pcolor')

Divide the figure window into four subplots and draw a pseudocolor plot on each of
them using different shading methods.

call msSubplot(2, 2, 1)
call msTitle('pcolor')
h = mfPColor(x, y, z)
call msAxis('equal')

call msSubplot(2, 2, 2)
call msTitle('pcolor w/o edge')

Chapter 5 Visualization Methods 147

h = mfPColor(x, y, z)
call msDrawMaterial(h, mf('edge'), mf('visible'), mf('off'))
call msAxis('equal')

call msSubplot(2, 2, 3)
call msTitle('solid with interp and contour')
h = mfPColor(x, y, z)
call msDrawMaterial(h, mf('surf'), mf('smooth'), mf('on'))
call msDrawMaterial(h, mf('edge'), mf('visible'), mf('off'))
call msAxis('equal')

call msSubplot(2, 2, 4)
call msTitle('solid with interp and contour')
h = mfPColor(x, y, z)
call msDrawMaterial(h, mf('surf'), mf('smooth'), mf('on'))
call msDrawMaterial(h, mf('edge'), mf('visible'), mf('off'))
call msHold('on')
h = mfContour(x, y, z)
call msDrawMaterial(h, mf('edge'), mf('colormap'), mf('off'))
call msAxis('equal')

Figure 5.2.3 Pseudocolor plots

148 MATFOR User’s Guide

5.3 Volume Rendering
This section covers the procedures that visualize volumetric data in the representation of
surface, mesh, slice-planes, and iso-surfaces. In MATFOR, the volumetric data is
defined in three-dimensional mfArrays that specify the coordinates and scalar values of
the data points.

In this section, we use an example that displays a portion of the nose on a missile using
various representations to explore different aspects of the application.

We shall load data from hdd.mfb that contains all the information required, including x-,
y-, z- coordinates, and a field data set.

In general, the x-, y-, and z- coordinates of the data set are plotted with a field data as
the scalar values. If field data is not given, then z-coordinate will be treated as the scale
values.

5.3.1 Surface (surf, mesh, outline, contour)

In the following example, displaying the data as surface plot or contour plot would give
you different perspectives on the application.

Example 5.3.1

First of all, we simply use procedure mfSurf with a transparent shading to visualize the
volumetric data as mesh grid.

h = mfSurf(x, y, z)
call msDrawMaterial(h, mf('surf'), mf('smooth'), mf('on'), &
 mf('trans'),
mf(50))
call msDrawMaterial(h, mf('edge'), mf('visible'), mf('on'), &
 mf('colormap'),
mf('on'))
call msView(30, 45)
call msAxis('off')
call msCamZoom(1.8d0)
call msCamPan(0, -70)

Chapter 5 Visualization Methods 149

Figure 5.3.1.1 Mesh Plot of the volumetric data

Next, we split the data into two sets of data: (x1, y1, z1) and (x2, y2, z2), then display
them in one figure simultaneously by plotting data set (x1, y1, z1) using procedure
mfSolidContour3 with field data mach1, and data set (x2, y2 and z2) using procedure
mfSurf with field data mach2.

h = mfSolidContour3(x1, y1, z1, mach1)
call msHold('on')

150 MATFOR User’s Guide

h = mfSurf(x2, y2, z2, mach2)
call msDrawMaterial(h, mf('surf'), mf('smooth'), mf('on'), &
 mf('trans'), mf(50))
call msDrawMaterial(h, mf('edge'), mf('visible'), mf('on'), &
 mf('colormap'), mf('on'))

call msColorbar('on')
call msView(30, 45)
call msAxis('off')
call msCamZoom(1.8d0)
call msCamPan(0, -70)

Figure 5.3.1.2 Solid contour and mesh plot of the volumetric data

Chapter 5 Visualization Methods 151

5.3.2 Sliced-planes

MATFOR supports various slicing techniques to display slice-planes of a set of
volumetric data.

Using procedure mfSliceXYZ, you can select any orthogonal slice-plane along x, y, and z
directions to be displayed. Procedure mfSlicePlane allows you to cut a slice-plane along
arbitrary directions.

Procedure mfSliceIJK displays slice-planes along i, j, and k, which are the indexes of the
matrices that specify the coordinates. It has the following syntax:

call msSliceIJK(x, y, z, i, j, k)

In example 5.3.2, we shall display several slice-planes of the missile node object by
using procedure mfSliceIJK.

Example 5.3.2

Display one slice-plane along the index of mfArray x, one slice-plane along the index of
mfArray y, and five slice-planes along the index of mfArray z.

h = mfSliceIJK(x, y, z, mach, mf(m), mf(1), mfLinSpace(1, k, 5))
call msDrawMaterial(h, mf('surf'), mf('smooth'), mf('on'))
call msDrawMaterial(h, mf('edge'), mf('visible'), mf('off'), &
 mf('colormap'),
mf('on'))

call msHold('on')
call msColorbar('on')
call msView(30, 45)
call msAxis('off')
call msCamZoom(1.8d0)
call msCamPan(0, -70)

152 MATFOR User’s Guide

Figure 5.3.2 Show slice-planes of the volumetric data

5.3.3 Isosurface

Procedure mfIsoSurface creates 3-D graphs composed of iso-surface data from the
volumetric data.

Example 5.3.3 combines a few representations of the missile nose using procedures
mfIsoSurface and mfOutline.

Note that the data on each surface has the same iso-value, thus the color on each surface
stays constant.

Chapter 5 Visualization Methods 153

Example 5.3.3

Display iso-surfaces on the right part and front left part. The wireframe of the missile
nose is also drawn.

! draw isosurfaces of right part
h = mfIsoSurface(x1, y1, z1, mach1, mfLinspace(1, 4, 6))
call msHold('on')

! draw isosurfaces of the front left part
h = mfIsoSurface(x3, y3, z3, mach3, mfLinspace(1, 4, 6))

! draw outline of data
h = mfOutline(x, y, z)
call msColorbar('on')
call msView(30, 45)
call msAxis('off')
call msCamZoom(1.8d0)
call msCamPan(0, -70)

154 MATFOR User’s Guide

Figure 5.3.3 Isosurface plot of the volumetric data

5.4 Vector Field
Vector set in two-dimensional and three-dimensional space can be represented in
quivers or streamlines using procedures mfQuiver and mfStreamlLine.

The streamlines are plotted by identifying their corresponding starting points.

5.4.1 Quiver and Streamline

In example 5.4.1, we shall generate a set of data and present it with quivers.

Chapter 5 Visualization Methods 155

Example 5.4.1

Start by generating a set of mesh grid data.

a = mfLinspace(-2, 1.6d0, 4)
b = mfLinspace(-2, 1, 3)
c = mfLinspace(-2, 1.84d0, 5)
call msMeshgrid(mfout(x, y, z), a, b, c)
u = mfOnes(3, 4, 5)
v = 0.4d0*(z**2)
w = mfExp(0.5d0*x)

Plot the quivers using the data set created. The streamlines are then plotted by
identifying the starting points.

call msQuiver3(x, y, z, u, v, w)
call msHold('on')
call msStreamline(x,y,z,u,v,w, mf((/-1.2,0.0,0.2/)), &
 mf((/-1.2,0.5,0.0/)), mf((/-2.0,-1.0,-2.0/)))

156 MATFOR User’s Guide

Figure 5.4.1 Plot quivers

5.5 Elementary 3-D Objects
MATFOR provides you a set of elementary 3-D objects to place on the plot space.

In general, the elements are plotted with the given coordinates, sizes, and colors. When
plotting molecules, the connectivity between the ball objects should also be specified.

5.5.1Primitives

The following is a list of 3-D objects MATFOR supports.

Chapter 5 Visualization Methods 157

msSphere, mfSphere

msCone, mfCone

msCube, mfCube

msCylinder, mfCylinder

msAxisMark, mfAxisMark

5.5.2 Molecule

A molecule plot is a bit different from other 3-D objects. It is often composed of balls
and sticks.

158 MATFOR User’s Guide

In the example below, we shall import a protein-structured data that specifies the atom
types, positions of the atoms, and the connectivity between them.

Here, We use different colors and sizes to represent the different atoms.
In Example 5.5.2, we shall demonstrate how to plot a molecule graph using the input of
a structured protein data.

Example 5.5.2 Plotting structured protein graph

Load data from ASCII files to retrieve the atom types, positions of atoms, and the
connectivity.

pos_data = mfLoadAscii('.\data\Protein1B9G_NPos.data')
conn = mfLoadAscii('.\data\Protein1B9G_Link.data')
s = mfSize(pos_data, 1)

loc = mfS(pos_data, MF_COL, 2.to.4)

atom = mfS(pos_data, MF_COL, 1)

Define the radius for each atom type

rad = atom + 0
call msAssign(mfS(rad, atom>14), 14)
rad = 0.1d0*rad

color = mfOnes(s, 3) * 0.7d0
do i = 1, s
 ! C
 if (mfAll(mfS(atom, i)==12)) then
 call msAssign(mfS(color, i, MF_COL), (/ 0.8, 0.8, 0.8 /))
 ! N
 else if (mfAll(mfS(atom, i)==14)) then
 call msAssign(mfS(color, i, MF_COL), (/ 0.2, 0.2, 1.0 /))
 ! O
 else if (mfAll(mfS(atom, i)==16)) then
 call msAssign(mfS(color, i, MF_COL), (/ 0.9, 0.0, 0.0 /))
 ! S
 else if (mfAll(mfS(atom, i)==32)) then
 call msAssign(mfS(color, i, MF_COL), (/ 1.0, 1.0, 0.0 /))
 end if
end do

Last, define the radius and color of the sticks to be connected between the atoms and
then plot the structured protein.

stick_rad = 0.1d0 * mfOnes(s, 1)

Chapter 5 Visualization Methods 159

stick_col = ((/0, 1, 0/))

call msMolecule(loc, conn, rad, color, stick_rad, stick_col, mf(6))

Figure 5.5.2 Structured protein graph

5.6 Unstructured Mesh
An arbitrary mesh or surface can usually be represented using an unstructured mesh that
includes a set of vertex and a face set.

160 MATFOR User’s Guide

The vertices are the coordinates in space and the face set specifies the surface
connectivities between the vertices.

In MATFOR, unstructured mesh can be visualized by using procedures mfTriSurf,
mfTriMesh, and mfTriContour.

The most often-used face connectivity is triangular representation. MATFOR supports
this representation and extends to other polygonal representations, such as quadrilateral,
pentagon, etc.
5.6.1 Surface

In Example 5.6.1, we shall prepare an icosahedron (a polyhedron composed of 20 faces
that span 12 vertices) and perform sub-divisions on it. Results are displayed using
procedure mfTriSurf, mfTriMesh and mfTriContour.

Example 5.6.1 Building an icosahedron

Define the vertices and triangles that make up an icosahedron and draw the icosahedron
using mfTriSurf.

x = 0.525731112119133606
z = 0.850650808352039932
xyz = reshape((/-x, x, -x, x, 0.0d0, 0.0d0, 0.0d0, 0.0d0, z, -z, z, -z, &
 0.0d0, 0.0d0, 0.0d0, 0.0d0, z, z, -z, -z, x, x, -x, -x, &
 z, z, -z, -z, x, -x, x, -x, 0.0d0, 0.0d0, 0.0d0,
0.0d0/), (/12,3/))
tri1 = reshape((/2, 5, 5, 9, 2, 2, 11, 9, 4, 4, 4, 11, 7, 7, 7, 11, 12, 3, 6,
12, &
 5, 10, 6, 6, 9, 11, 4, 4, 3, 8, 11, 7, 12, 1, 2, 2, 1, 12, 3, 3, &
 1, 1, 10, 5, 5, 9, 9, 6, 6, 3, 8, 8, 8, 12, 1, 7, 10, 10,
10, 8/), (/20, 3/))
c = mfS(xyz, MF_COL, 1)**2 + mfS(xyz, MF_COL, 2)**2 - mfS(xyz,
MF_COL, 3)**2

call msSubplot(1, 2, 1)
h = mfTriSurf(tri1, xyz, c)
call msAxis('equal')
call msSubplot(1, 2, 2)
h = mfTriMesh(tri1, xyz, c)
call msDrawMaterial(h, mf('surf'), mf('visible'), mf('off'))
call msAxis('equal')
call msViewPause()

Perform subdivision three times. Draw the polygonal object in each of the iterations.

do j = 1, 3

Chapter 5 Visualization Methods 161

 do i = 1, 20 * (4**(j-1))
 p1 = mfS(tri1, i, 1)
 p2 = mfS(tri1, i, 2)
 p3 = mfS(tri1, i, 3)
 p1xyz = mfS(xyz, p1, 1) .hc. mfS(xyz, p1, 2) .hc. mfS(xyz, p1, 3)
 p2xyz = mfS(xyz, p2, 1) .hc. mfS(xyz, p2, 2) .hc. mfS(xyz, p2, 3)
 p3xyz = mfS(xyz, p3, 1) .hc. mfS(xyz, p3, 2) .hc. mfS(xyz, p3, 3)

 p12xyz = (p1xyz + p2xyz) / 2
 p23xyz = (p2xyz + p3xyz) / 2
 p13xyz = (p1xyz + p3xyz) / 2

 p12xyz = normalize(p12xyz)
 p23xyz = normalize(p23xyz)
 p13xyz = normalize(p13xyz)

 p12 = p13 + 1
 p23 = p12 + 1
 p13 = p23 + 1

 if (i == 1) then
 tri2 = (p1 .hc. p12 .hc. p13) .vc. &
 (p2 .hc. p23 .hc. p12) .vc. &
 (p3 .hc. p23 .hc. p13) .vc. &
 (p12 .hc. p23 .hc. p13)
 else
 tri2 = tri2 .vc. &
 (p1 .hc. p12 .hc. p13) .vc. &
 (p2 .hc. p23 .hc. p12) .vc. &
 (p3 .hc. p23 .hc. p13) .vc. &
 (p12 .hc. p23 .hc. p13)
 end if
 xyz = xyz .vc. p12xyz .vc. p23xyz .vc. p13xyz

 end do
 tri1 = tri2
 tri2 = mf()
 c = mfS(xyz, MF_COL, 1)**2 + mfS(xyz, MF_COL, 2) - mfS(xyz,
MF_COL, 3)**2
 call msSubplot(1, 2, 1)
 h = mfTriSurf(tri1, xyz, c)
 call msAxis('equal')
 call msSubplot(1, 2, 2)
 h = mfTriMesh(tri1, xyz, c)
 call msDrawMaterial(h, mf('surf'), mf('visible'), mf('off'))
 call msAxis('equal')
 call msViewPause()
end do

162 MATFOR User’s Guide

The function normalize calculates the normalized cross product of two vectors.

contains

 function normalize(v) result(out)
 implicit none

 type (mfArray) :: v, out, d

 call msInitArgs(v)
 out = mfOnes(1, 3)
 d = mfSqrt(mfS(v, 1, 1)*mfS(v, 1, 1) + &
 mfS(v, 1, 2)*mfS(v, 1, 2) + &
 mfS(v, 1, 3)*mfS(v, 1, 3))
 call msAssign(mfS(out, 1, 1), mfS(v, 1, 1) / d)
 call msAssign(mfS(out, 1, 2), mfS(v, 1, 2) / d)
 call msAssign(mfS(out, 1, 3), mfS(v, 1, 3) / d)

 call msFreeArgs(v)
 call msReturnArray(out)

 end function normalize

end program example5_6

Figure 5.6.1.1 Surface and mesh plot of the polygonal object

Chapter 5 Visualization Methods 163

5.6.2 Contour

Contour lines are plotted on the constant value line on the surface. The bands between
the contour lines are filled with the same color.

Example 5.6.2

Contour representation of the polygonal object.

call msSubplot(1, 2, 1)
h = mfTriSurf(tri1, xyz, c)
call msDrawMaterial(h, mf('edge'), mf('visible'), mf('off'))
call msDrawMaterial(h, mf('surf'), mf('smooth'), mf('on') &
 , mf('ambient'), mf(50) &
 , mf('diffuse'), mf(20))
call msAxis('equal')
call msSubplot(1, 2, 2)
h = mfTriContour(tri1, xyz, c)
call msAxis('equal')
call msViewPause()

Figure 5.6.2 Contour plot of the polygonal object

164 MATFOR User’s Guide

5.7 Unstructured Grids
An arbitrary solid model can be represented using an unstructured grid that includes a
set of verteces and a cell set.

Verteces are the coordinates in space and cell set specifies the cell connectivity between
the verteces.

In MATFOR, unstructured grids can be visualized by using procedure mfTetSurf,
mfTetMesh, mfTetContour, and mfTetIsosurface.

MATFOR supports four kinds of the cell connectivity representations, as shown in
figure 5.7.1:

0
1

3

5

24

Wedge (n=6)

0

1
2

3

Tetrahedron (n=4)

1

2
3

4

0
Pyramid (n=5)

0
1

23
4

5

67

Hexahedron (n=8)
Figure 5.7.1 cell connectivity representations

In this section, we shall demonstrate an example of applying a force on the back of the
L-shape steel board, that has a fixed constrain around the hole on the bottom of the steel
board.

The force is represented with a cone and the fixed constraint is represented by cylinder.

Chapter 5 Visualization Methods 165

5.7.1 Surface, Contour, and Iso-surface plots of unstructred grids

Load data from binary files.

elem = mfLoad('./data/Lshape_elem.mfb')
node = mfLoad('./data/Lshape_node.mfb')
sxyz = mfLoad('./data/Lshape_sxyz.mfb')

xyz = mfS(node, MF_COL, 1.to.3)
dxyz = mfS(node, MF_COL, 4.to.6) * 10
x = mfS(xyz, MF_COL, 1)
y = mfS(xyz, MF_COL, 2)
z = mfS(xyz, MF_COL, 3)
dx = mfS(dxyz, MF_COL, 1)
dy = mfS(dxyz, MF_COL, 2)
dz = mfS(dxyz, MF_COL, 3)
d_norm = mfSqrt(dx*dx + dy*dy + dz*dz)

sx = mfS(sxyz, MF_COL, 1) * 1.0d-3
sy = mfS(sxyz, MF_COL, 2) * 1.0d-3
sz = mfS(sxyz, MF_COL, 3) * 1.0d-3
sxy = mfS(sxyz, MF_COL, 4) * 1.0d-3
syz = mfS(sxyz, MF_COL, 5) * 1.0d-3
sxz = mfS(sxyz, MF_COL, 6) * 1.0d-3

m1 = mfSize(node, 1)
m2 = mfSize(sxyz, 1)
if (m1>m2) then
 sx = sx .vc. mfZeros(m1-m2, 1)
 sy = sy .vc. mfZeros(m1-m2, 1)
 sz = sz .vc. mfZeros(m1-m2, 1)
 sxy = sxy .vc. mfZeros(m1-m2, 1)
 syz = syz .vc. mfZeros(m1-m2, 1)
 sxz = sxz .vc. mfZeros(m1-m2, 1)
end if

s_norm = mfSqrt(sx*sx + sy*sy + sz*sz)

Displays polyhedrons defined by a cell matrix.

! **
! Grid & Mesh
! **
call msFigure('Grid')

! **
! Grid

166 MATFOR User’s Guide

! **
call msSubplot(1, 2, 1)
call msTitle('Grid')

! draw structure element
h = mfTetSurf(elem, x, y, z);
call msDrawMaterial(h, mf('surf'), mf('colormap'), mf('off'))
call msHold('on')

! draw cylinder
h = mfCylinder(mf((/-5.8d0, 0.0d0, 0.25d0/)), mf(0.95d0), mf(1.5d0),
mf((/0, 0, 1/)));

! draw cone
h = mfCone(mf((/1.5d0, 0d0, 5d0/)), mf(0.5d0), mf(2), mf((/0, 0, 1/)));
call msObjOrigin(h, 1.5d0, 0d0, 5d0);
call msObjOrientation(h, 0, -90, 0)

! draw force annotation
h = mfAnnotation(mf("Force=10000NT"), mf((/2.5d0,0d0,5d0/)), mf((/1,
0, 0/)))
call msGSet(h, mf("offset"), mf((/-50, 10/)))

! draw constraint annotation
h = mfAnnotation(mf("Fix Constraint"), mf((/-5.8d0,0.0d0,1d0/)), mf((/1,
0, 0/)))
call msGSet(h, mf("offset"), mf((/-50, 10/)))

call msAxis('equal')
call msAxis('off')
call msCamZoom(1.3d0)

! **
! Mesh
! **
call msSubplot(1, 2, 2)
call msTitle('Mesh')

! draw structure element
h = mfTetSurf(elem, x, y, z);
call msDrawMaterial(h, mf('surf'), mf('colormap'), mf('off'), &
 mf('trans'),
mf(80))
call msHold('on')

! draw cylinder
h = mfCylinder(mf((/-5.8d0, 0.0d0, 0.25d0/)), mf(0.95d0), mf(1.5d0),
mf((/0, 0, 1/)));

! draw cone

Chapter 5 Visualization Methods 167

h = mfCone(mf((/1.5d0, 0d0, 5d0/)), mf(0.5d0), mf(2), mf((/0, 0, 1/)));
call msObjOrigin(h, 1.5d0, 0d0, 5d0);
call msObjOrientation(h, 0, -90, 0)

! draw force annotation
h = mfAnnotation(mf("Force=10000NT"), mf((/2.5d0,0d0,5d0/)), mf((/1,
0, 0/)))
call msGSet(h, mf("offset"), mf((/-50, 10/)))

! draw constraint annotation
h = mfAnnotation(mf("Fix Constraint"), mf((/-5.8d0,0.0d0,1d0/)), mf((/1,
0, 0/)))
call msGSet(h, mf("offset"), mf((/-50, 10/)))

call msAxis('equal')
call msAxis('off')
call msCamZoom(1.3d0)
call msViewPause

Figure 5.7.1.1 Display the grid and mesh plot of the L-shape steel board

Illustrate the deformation and displacement vectors of the steel board after
the force is applied.

168 MATFOR User’s Guide

! **
! Displacement
! **
call msFigure('Displacement')

! **
! Deformation
! **
call msSubplot(1, 2, 1)
call msTitle('Deformation')
h = mfTetSurf(elem, x, y, z, d_norm);
call msDrawMaterial(h, mf('surf'), mf('visible'), mf('off'))
call msDrawMaterial(h, mf('edge'), mf('colormap'), mf('on'), &
 mf('trans'),
mf(90))
call msHold('on')
h1 = mfTetSurf(elem, xyz, d_norm);
call msDrawMaterial(h1, mf('edge'), mf('visible'), mf('off'))

call msColorbar('vert')
call msAxis('equal');
call msAxis('off');
call msAxis(-8,2,-4,4,-2,9)
call msCamZoom(1.05d0)

! **
! Displacement vector
! **
call msSubplot(1, 2, 2)
call msTitle('Displacement vector')

! draw structure element
h = mfTetSurf(elem, x, y, z, d_norm);
call msDrawMaterial(h, mf('surf'), mf('colormap'), mf('on'), &
 mf('trans'),
mf(90))
call msDrawMaterial(h, mf('edge'), mf('visible'), mf('off'), &
 mf('trans'),
mf(90))
call msHold('on')

h2 = mfQuiver3(x, y, z, dx*0, dy*0, dz*0);
call msDrawMaterial(h2, mf('edge'), mf('colormap'), mf('on'))

call msColorbar('vert')
call msAxis('equal')
call msAxis('off')
call msViewPause

Chapter 5 Visualization Methods 169

do i=1,20
 call msGSet(h1, mf('xyz'), xyz + i / 20.0d0 * dxyz)
 call msGSet(h2, mf('udata'), dx*i/20, mf('vdata'), dy*i/20, mf('wdata'),
dz*i/20)
 call msDrawNow
end do

call msViewPause()

Figure 5.7.1.2 Display the deformation and displacement vector of the L-
shape steel board

Display the strength of the shear stress by mapping the graphics object to the
current colormap. Notice that the red area represents the deepest impacted
area of the shear stress.

We represent the shear stress using vectors as shown in the right-hand figure.

! **

170 MATFOR User’s Guide

! Shear stress
! **
call msFigure('Shear stress')

! **
! Shear value
! **
call msSubplot(1, 2, 1)
call msTitle('Shear stress')
h = mfTetSurf(elem, x+dx, y+dy, z+dz, s_norm);

call msColormapRange(0.0d0, 2d0)
call msAxis('equal');
call msAxis('off');
call msCamZoom(1.05d0)
call msColorbar('vert')

! **
! Shear vector
! **
call msSubplot(1, 2, 2)
call msTitle('Shear stress vector')

! draw structure element
h = mfTetSurf(elem, x+dx, y+dy, z+dz, d_norm);
call msDrawMaterial(h, mf('surf'), mf('colormap'), mf('off'), &
 mf('trans'), mf(90))
call msDrawMaterial(h, mf('edge'), mf('visible'), mf('off'), &
 mf('trans'), mf(90))
call msHold('on')

h1 = mfQuiver3(x+dx, y+dy, z+dz, sx*0, sy*0, sz*0, mf(0.2));
call msDrawMaterial(h1, mf('edge'), mf('colormap'), mf('on'))

call msColormapRange(0.0d0, 2d0)
call msColorbar('vert')
call msAxis('equal')
call msAxis('off')

call msViewPause

do i=1,20
 call msGSet(h1, mf('udata'), sx*i/20, mf('vdata'), sy*i/20, mf('wdata'),
sz*i/20)
 call msDrawNow
end do

call msViewPause

Chapter 5 Visualization Methods 171

Figure 5.7.1.3 Display the shear force and the shear force vectors of the L-
shape steel board

Draw contour on the surface with labels to show the iso-value of each
impacted area of the shear stress.

The right-hand figure is similar to the left-hand one, except it only displays
the contour lines around each area with its vector values.

! **
! Shear contour
! **
call msFigure('Shear contour')

! **
! Shear contour
! **

172 MATFOR User’s Guide

call msSubplot(1, 2, 1)
call msTitle('Shear force contour')

! draw structure element
h = mfTetContour(elem, x+dx, y+dy, z+dz, s_norm)
call msGSet(h, mf('iso'), mfLinspace(0, 2, 11), mf('label'), mf('on'))
call msDrawMaterial(h, mf('surf'), mf('ambient'), mf(20), &
 mf('diffuse'),
mf(80))

call msColormapRange(0.0d0, 2d0)
call msColorbar('vert')
call msAxis('equal')
call msAxis('off')

! **
! Shear contour
! **
call msSubplot(1, 2, 2)
call msTitle('Shear force contour + vector')

! draw structure element
h = mfTetContour(elem, x+dx, y+dy, z+dz, s_norm)
call msGSet(h, mf('iso'), mfLinspace(0, 2, 11))
call msDrawMaterial(h, mf('surf'), mf('ambient'), mf(20), &
 mf('diffuse'), mf(80), &
 mf('trans'), mf(80))

call msDrawMaterial(h, mf('edge'), mf('colormap'), mf('on'))

call msHold('on')
h = mfQuiver3(x+dx, y+dy, z+dz, sx, sy, sz, mf(0.2));
call msDrawMaterial(h, mf('edge'), mf('colormap'), mf('on'))

call msColormapRange(0.0d0, 1d0)
call msAxis('equal');
call msAxis('off');
call msCamZoom(1.05d0)
call msColorbar('vert')

call msViewPause()

Chapter 5 Visualization Methods 173

Figure 5.7.1.4 Display the shear force contour and vector of the L-shape steel
board

Lastly, show iso-surfaces of the shear stress on slice-planes; six on the left-
hand figure and eleven on the right-hand figure.

! **
! Shear iso-surface
! **
call msFigure('Shear iso-surface')

! **
! Shear iso-surface
! **
call msSubplot(1, 2, 1)
call msTitle('Shear iso-surface')

! draw structure element
h = mfTetContour(elem, x+dx, y+dy, z+dz, s_norm)
call msGSet(h, mf('iso'), mfLinspace(0, 2, 6), mf('label'), mf('on'))
call msDrawMaterial(h, mf('surf'), mf('ambient'), mf(20), &

174 MATFOR User’s Guide

 mf('diffuse'),
mf(80), &
 mf('trans'),
mf(80))

call msDrawMaterial(h, mf('edge'), mf('colormap'), mf('on'))

call msHold('on')
! draw structure element with iso-surfaces of 6 levels
h = mfTetIsoSurface(elem, x+dx, y+dy, z+dz, s_norm, mfLinspace(0, 2,
6))
call msDrawMaterial(h, mf('surf'), mf('ambient'), mf(20), &
 mf('diffuse'),
mf(80))

call msColormapRange(0.0d0, 1d0)
call msColorbar('vert')
call msAxis('equal')
call msAxis('off')

! **
! Shear iso-surface + contour
! **
call msSubplot(1, 2, 2)
call msTitle('Shear iso-surface')

! draw structure element with contour lines
h = mfTetContour(elem, x+dx, y+dy, z+dz, s_norm)
call msGSet(h, mf('iso'), mfLinspace(0, 2, 11), mf('label'), mf('on'))
call msDrawMaterial(h, mf('surf'), mf('ambient'), mf(20), &
 mf('diffuse'),
mf(80), &
 mf('trans'),
mf(80))

call msDrawMaterial(h, mf('edge'), mf('colormap'), mf('on'))

call msHold('on')
! draw structure element with iso-surfaces of 11 levels
h = mfTetIsoSurface(elem, x+dx, y+dy, z+dz, s_norm, mfLinspace(0, 2,
11))
call msDrawMaterial(h, mf('surf'), mf('ambient'), mf(20), &
 mf('diffuse'),
mf(80))

call msColormapRange(0d0, 1d0)
call msAxis('equal');
call msAxis('off');
call msCamZoom(1.05d0)
call msColorbar('vert')

Chapter 5 Visualization Methods 175

call msViewPause()

Figure 5.7.1.5 Display the shear iso-surfaces of the L-shape steel board

5.8 Delaunay Triangulation
Delaunay triangulation is performed on a set of input points.

In general, the application of Delaunay triangulation is to create triangles in two-
dimensional objects and tetrahedrons in three-dimensional objects from a set of input
points.

5.8.1 Two-dimensional Delaunay

Procedure mfDelaunay takes a set of input points and plots the triangular mesh.

Procedure mfGetDelaunay generates the triangular mesh as output that can be used by
mfTriSurf or mfTriMesh for plotting.

176 MATFOR User’s Guide

Example 5.8.1

Prompt you to insert the number of points to generate randomly.

n = mfInputValue('Input number of random points to generate', 30)
x = mfRand(n, 1) * 10 - 5
y = mfRand(n, 1) * 10 - 5
z = 5 - mfSqrt(x*x + y*y)

Next, create a figure window of two subplots. Perform Delaunay triangulation on the
points generated above using procedure mfDelaunay. To make the points more obvious,
we shall plot them on top of the polygons using procedure mfPlot.

call msFigure('Delaunay 2D')
call msTitle('Delaunay 2D')
call msSubplot(1, 2, 1)
h = mfDelaunay(x, y)
call msHold('on')
h = mfPlot(x, y, 'ob')
call msAxis('equal')
call msCamZoom(0.7d0)

Then, we shall use a different way to perform Delaunay triangulation on the points
using procedure mfGetDelaunay.

call msSubplot(1, 2, 2)
call msTitle('Delaunay 2D surface')
tri = mfGetDelaunay(x, y)
h = mfSphere(x .hc. y .hc. z, mf(0.2), mf((/0, 0, 1/)))
call msHold('on')
h = mfTriSurf(tri, x, y, z)
call msDrawMaterial(h, mf('surf'), mf('trans'), mf(50), &
 mf('smooth'),
mf('on'))
call msAxis('equal')
call msCamZoom(1.2d0)

Chapter 5 Visualization Methods 177

Figure 5.8.1.1 Delaunay 2D and Delaunay 2D surface

178 MATFOR User’s Guide

Figure 5.8.1.2 Displays the points within boundary and constrained Delaunay

5.8.2 Three-dimensional Delaunay

Procedure mfDelaunay3 takes a set of input points and plot the tetrahedron; whereas
procedure mfGetDelaunay3 generates the triangular mesh as output that can be used by
mfTetSurf or mfTetMesh for plotting.

Example 5.8.2

Prompts you to insert the number of points to generate randomly.

n = mfInputValue('Input number of random points to generate', 30)
xyz = mfRand(n, 3) * 10 – 5

Next, create a figure window of two subplots. Perform three-dimensional Delaunay
triangulation on the points generated above using procedure mfDelaunay3.

call msFigure('Delaunay 3D');
call msSubplot(1, 2, 1)
call msTitle('Distribution')

Chapter 5 Visualization Methods 179

h = mfSphere(xyz, mf(0.2), mf((/0, 0, 1/)));

call msSubplot(1, 2, 2)
call msTitle('Delaunay 3D')
h = mfDelaunay3(xyz);
call msDrawMaterial(h, 'surf', 'trans', 50)
call msHold('on')
h = mfSphere(xyz, mf(0.2), mf((/0, 0, 1/)));

call msViewPause()

Figure 5.8.2 Display the distributions and delaunay 3D of the points

Index

A

Access Elements and Sections of an mfArray31

All ... 53

Any.. 53

Arithmetic Operators 57

Array Terminology 15

Assignment .. 68

B

Bounds... 15

C

Comparison between Equivalency Procedures
.. 25

Conformance .. 15

Constructs .. 66

Create and Initialize mfArray 25

D

Data Viewer 11, 41, 42

Declare an mfArray 26

Determine the optimal binomial................... 85

Directory Structure 16

Display mfArray Data 37

Documentation and Examples18

E

Eigenvalues ..82

Eigenvectors ...82

Element Subscripts......................................31

Extent...50

F

FGL .. 9

File I/O ..42

FML .. 9

Function Naming Conventions13

G

Graphics library ..10

Graphics Viewer..10

H

hc 29

I
Initialize an mfArray26

Inquiry Procedures47

Installation ...16

182 MATFOR User’s Guide

L

Least Square Operations 84

Logical Inquiry ... 47

Logical Operations...................................... 53

M

MATFOR Parameters 64

Matrix Division .. 60

Matrix Inverse .. 77

Matrix Operators and Functions 59

Memory Management 24

mf() ... 66

MF_COLON ... 65

MF_E ... 65

MF_EMPTY ... 65

MF_EPS ... 65

MF_I .. 65

MF_INF ... 65

MF_NAN ... 65

MF_PI .. 65

MF_REALMAX.. 65

MF_REALMIN ... 65

mfAll ... 53

mfAny .. 53

mfArray ... 9, 21

mfArray creating procedures 28, 32

mfArray Element Ordering 23

mfArray I/O.. 37

mfArray Initialization 26

mfArray Int r ins ic Data Type 22

mfArray Operators 56

mfArray Syntax and Expressions 24

mfColon.. 29, 57

mfCone ...157

mfCube ...157

mfCylinder..157

mfEig .. 82

mfEquiv .. 25, 71

mfEye .. 28

mfFind ... 53

mfInv... 77

mfIsComplex ... 48

mfIsEmpty ... 48

mfIsLogical ... 48

mfIsNumeric .. 48

mfIsReal .. 48

mfLDiv .. 57

mfLength ... 50

mfLinspace .. 29

mfLoad.m .. 45

mfLoadAscii .. 44

mfMagic .. 29

mfMeshgrid ... 29

mfMul ... 57

mfNDims ... 50

Index 183

mfOnes .. 29

mfPlayer .. 11

mfRand .. 29

mfRDiv .. 57

mfRepmat .. 29

mfReshape ... 29

mfSave.m ... 45

mfSize ... 50

mfSphere.. 157

mfZeros ... 29

Mix mfArray and Fortran arrays 25

mod_datafun .. 9

mod_elfun .. 9

mod_elmat ... 9

mod_ess ... 9

mod_fileio.. 9

mod_matfun ... 9

mod_ops .. 9

msAssign ... 25

msCone .. 157

msCube .. 157

msCylinder ... 157

msDisplay .. 37, 40

msEye .. 28

msFind ... 53

msFreeArgs .. 24, 75

msGDisplay.. 39

msInitArgs .. 24, 75

msLinspace ...29

msMagic ...29

msMeshgrid .. 29, 100

msOnes...29

msPointer ... 25, 69

msRand ..29

msRecordStart .. 127

msRepmat ...29

msReshape ..29

msRetrunArray..24

msReturnArray..75

msSaveAscii ...43

msSphere .. 157

msSubplot...96

msZeros..29

N

Numerical Library10

O

Operators Precedence63

P

Procedures with “mf” as prefix13

Procedures with “ms” as prefix13

Program with mfArray.................................65

Project Settings ...17

184 MATFOR User’s Guide

R

Rank .. 15

Regression Model 78

Relational Operators 58

S

Shape ... 15, 50

Size.. 15, 50

Structure of the mfArray 21

Subscript .. 34

T

Technical Support 18

U

Upgrade MATFOR...................................... 17

Use Fortran Arrays as input to MATFOR
Procedures ... 71

Use mfArray as Input Dummy Arguments 74

Use mfArray as input to Fortran Procedures. 68

Use mfArray as Output Dummy Arguments.. 75

V

vc 29

visualization ... 91, 93

	Introduction
	1.1 Overview
	1.2 What is MATFOR
	1.3 The MATFOR Components
	MATFOR mfArray
	MATFOR Numerical Library
	MATFOR Graphics library
	MATFOR Graphics Viewer
	MATFOR Data Viewer
	MATFOR mfPlayer

	1.4 MATFOR Procedure Naming Conventions
	Procedures with “mf” as prefix
	Procedures with “ms” as prefix

	1.5 Array Terminology
	Example

	1.6 MATFOR Installation
	MATFOR Directory Structure
	Project Settings
	Upgrade MATFOR

	1.7 MATFOR Documentation and Examples
	1.8 Technical Support

	Working with�mfArray
	2.1 What is mfArray
	2.1.1 Structure of the mfArray
	2.1.2 mfArray Intrinsic Data Type
	2.1.3 mfArray Element Ordering
	2.1.4 Memory Management
	2.1.5 mfArray Syntax and Expressions
	2.1.6 Mix mfArray and Fortran Arrays

	2.2 Create and Initialize mfArray
	2.2.1 Declaring an mfArray
	2.2.2 Initializing an mfArray
	Example 2.2.2 Initialize mfArray

	2.2.3 mfArray Creating Procedures
	Example 2.2.3 mfArray creating procedures

	2.3 Access Elements and Sections of an mfArray
	2.3.1 Element Subscripts
	2.3.2 mfArray Creating Procedures
	2.3.3 Using Subscript in an mfArray
	Example 2.3.3.1 Use mfMatSub

	2.4 mfArray I/O
	2.4.1 Displaying mfArray Data
	msDisplay
	Example 2.4.1.1 Use msDisplay
	msGDisplay
	Example 2.4.1.2 Use msGDisplay

	2.4.2 mfArray File I/O
	2.4.2.1 msSaveAscii
	Example 2.4.2.1 Procedure msSaveAscii
	2.4.2.2 mfLoadAscii
	Example 2.4.2.2
	2.4.2.3 mfLoad.m and mfSave.m
	Example 2.4.2.3 Exchange binary data between Matlab and MATF

	2.5 mfArray Inquiry Procedures
	2.5.1 Logical Inquiry
	Example 2.5.1 Logical Inquiry Procedures

	2.5.2 Size, Shape, and Extent
	Example 2.5.2 Size, shape and extent

	2.5.3 Logical Operations
	Example 2.5.3

	2.6 mfArray Operators
	2.6.1 Arithmetic Operators
	Example 2.6.1 Arithmetic operators

	2.6.2 Relational Operators
	Example 2.6.2 mfArray Relational Operators

	2.6.3 Matrix Operators and Functions
	Matrix Division
	Example 2.6.3 Matrix Operators

	2.6.4 Operators Precedence
	Example 2.6.4 Operator precedence

	2.6.5 MATFOR Parameters

	2.7 Program with mfArray
	2.7.1 Quick Conversion – Function mf()
	2.7.2.Using mfArray in If Constructs
	2.7.3 Using mfArray as Input to Fortran Procedures
	2.7.3.1 Assignment operation
	Example 2.7.3.1 Assign an mfArray to a Fortran array
	2.7.3.2 msPointer operation
	Example 2.7.3.2 below shows an example of using procedure ms

	2.7.4 Using Fortran Arrays as Input to MATFOR Procedures
	Example 2.7.4.1
	Example 2.7.4.2 Dangerous example
	Example 2.7.4.3 – Effects of Reshaping

	2.7.5 Using mfArray as Input Dummy Arguments
	2.7.5.1 More about msInitArgs and msFreeArgs

	2.7.6 Using mfArray as Output Dummy Arguments in Functions

	Linear Algebra
	3.1 Matrix Inverse
	Example 3.1 Matrix Inverse
	3.2 Application of Eigenvalues and Eigenvectors
	Example 3.2 Solving a differential equation

	3.3 Least Square Operations
	Example 3.3 Determining the optimal binomial

	Visualization Basics
	4.1 Plotting Your Data
	Example 4.2 Steps to visualization
	4.2 MATFOR Graphics Viewer
	4.2.1 Window Frame and Figure Windows
	4.2.2 Subplots
	Example 4.2.2 Using msSubplot

	4.2.3 Menu and Toolbar

	4.3 Creating 3-D Models
	4.3.1 Generating the Data
	Example 4.3.1 msMeshgrid- function of two variables

	4.3.2 Loading data (mfb, ascii)
	Example 4.3.1 mfLoadAscii- loading ASCII data files

	4.4 Displaying 3-D objects
	4.4.1 Adjusting the Viewpoint.
	Example 4.4.1 Setting the viewpoint

	4.4.2 Shifting the Objects
	Example 4.4.2 Shifting in the surface object

	4.4.3 Rescaling the Objects
	Example 4.4.3 Zooming in the surface object

	4.4.4 Changing the Displaying Mode
	Example 4.4.4 Changing to the perspective displaying mode

	4.4.5 Setting the Axis Object
	Example 4.4.5 Adjusting the axis object

	4.5 Colormap, Shading and Texture
	4.5.1 Adjusting Colormap
	Example 4.5.1.1 Using predefined colormaps
	Example 4.5.1.2 Using Colormap Editor

	4.5.2 Displaying Colorbar
	4.5.3 Shading Objects
	Example4.5.3 msDrawMaterial

	4.5.4 Mapping Texture

	4.6 Annotating Your Graph
	4.6.1 Setting the Title and Axis Labels
	Example 4.6.1 Changing the axis labels and title

	4.6.2 Text Annotation
	Example 4.6.2 Adding text annotations

	4.7 Animation and Recording
	4.7.1 Animation
	Example 4.7.1 Animation

	4.7.2 Recording your animation
	Example 4.7.2 Recording an animation

	4.7.3 Image Exporting

	4.8 MATFOR Data Viewer
	4.8.1 Matrix Table
	4.8.1.1 Cell Color
	4.8.1.2 Cell Selection
	4.8.1.3 Array Selection

	4.8.2 Menu
	4.8.3 Toolbar
	4.8.4 Sampling Type
	4.8.5 Snapshot Panel
	4.8.6 Analysis Panel
	4.8.7 Filter Panel
	4.8.8 Status Bar

	Visualization Methods
	5.1 Linear Graph
	5.1.1 Two-dimensional Linear Graph
	Example 5.1.1 Two-dimensional linear plot
	5.1.2 Three-dimensional Linear Graph
	Example 5.1.2 Three-dimensional linear plot

	5.2 Surface Plot
	5.2.1 Surface plot
	Example 5.2.1 Surface plots using different methods

	5.2.2 Contour plot
	Example 5.2.2 Using contours

	5.2.3 Pseudocolor plot
	Example 5.2.3 Pseudocolor plot

	5.3 Volume Rendering
	5.3.1 Surface (surf, mesh, outline, contour)
	Example 5.3.1

	5.3.2 Sliced-planes
	Example 5.3.2

	5.3.3 Isosurface
	Example 5.3.3

	5.4 Vector Field
	5.4.1 Quiver and Streamline
	Example 5.4.1

	5.5 Elementary 3-D Objects
	5.5.1Primitives
	5.5.2 Molecule
	Example 5.5.2 Plotting structured protein graph

	5.6 Unstructured Mesh
	5.6.1 Surface
	Example 5.6.1 Building an icosahedron

	5.6.2 Contour
	Example 5.6.2

	5.7 Unstructured Grids
	5.7.1 Surface, Contour, and Iso-surface plots of unstructred

	5.8 Delaunay Triangulation
	5.8.1 Two-dimensional Delaunay
	Example 5.8.1

	5.8.2 Three-dimensional Delaunay
	Example 5.8.2

	Index

