
AccuSoft
®

Visual Programming Guide

Table of Contents

Chapter 1: Imagine: VisiQuest . 1
Introduction . 1

Command Line Options . 2

Overview of Graphical User Interface . 4
The VisiQuest Visual Programming Environment Workspace 5
The VisiQuest Visual Programming Environment Menubar 6

File Menu . 6
Edit Menu . 6
Workspace Menu . 6
Options Menu. 6
Control Menu . 6
Glyphs Menu . 6
Objects Menu . 6
Help Menu . 7

The Workspace Command Bar. 7
The Console Window . 7
Other VisiQuest GUI Features . 7

Input and Output: Workspace Files and Workspace Objects 7
Workspace Files VS Workspace Objects . 8
Opening Files . 8
Opening Objects . 9
Saving Files. 9
Saving Workspace Objects . 10

The Visual Programming Workspace . 10
The File Menu . 11

New . 12
Open File.... 12
Open Object... . 12
Save . 12
Save File... 12
Save Object . 12
Close... 12
Exit . 13

The Edit Menu. 13
Cut . 13
Copy. 13
Paste . 13
Show Clipboard . 13
Duplicate . 13
Delete. 13
Undo Delete . 13
Select All . 14
1 • VisiQuest Visual Programming Table of Contents

Unselect All . 14
Find . 14

The Workspace Menu. 14
Run . 14
Stop . 14
Run Once / Run Continuous . 14
Reset . 15
Clear . 15
Redraw. 15
Information . 15
Variables... 15
Configure Remote Hosts.... 15

The Options Menu . 15
Adding a Toolbox Reference . 15
Preferences.... 16
Hide Command Bar . 16
Hide Console . 16
Small Size . 16
Clear Console . 16
Reload Menus . 16

The Control Menu . 16
Create Procedure. 16
Create Count Loop. 16
Create While Loop . 17
Create Expression . 17
Create If/Else . 17
Create Merge Paths. 17
Create Switch. 17
Create Trigger . 17

The Glyphs Menu . 17
The Help Menu . 17

On VisiQuest . 18
Activate Tooltips. 18
License. 18

The Workspace Command Bar . 18

Introduction to Glyphs . 19
Types of Glyphs . 19
Standard Glyph Components . 20

Input Data Connections . 20
Output Data Connections. 20
Pane Access . 20
Run Button . 20
Input Control Connections . 21
Output Control Connection Node. 21
Glyph Title . 21
Open Workspace . 21
Glyph Type Pixmap . 21
Glyph Console Button as Error Indicator . 21
Glyph Console Button as Info Indicator . 21
Glyph ToolTips. 21
Table of Contents VisiQuest Visual Programming • 2

Basic Glyph Operations . 22
Selecting a Glyph . 22
Deselecting a Glyph . 22
Moving A Glyph . 22
Destroying A Glyph . 22
Executing a Glyph . 23
Changing the Glyph Title . 23

Creating a Glyph . 23
The Glyph Menus . 23
Accelerated Routines List . 24
Accelerated Glyph Finder List . 25
Customizing Which Operators Are Accessible as Glyphs. 26

Toolbox Contents VS. Operator Organization in VisiQuest Visual
Programming Environment . 26

Input/Output: Glyph Connections . 27
Data Connections . 27

Yellow. 27
Blue . 27
Green . 28

Control Connections . 28
Manipulating Connections. 29

Delete Connection . 29
Save Data to File . 30
Connection Options . 30

Operator Execution . 30
Executing (or Halting) the Visual Program In Its Entirety 31
Run Mode . 31
Executing (or Halting) a Single Glyph . 32
Errors / Information Produced by Operator Execution 32

Error Indication. 32
Info Indication. 33

Changing Operator Arguments (Using the Pane of a Glyph) 33
Text Selections . 34
Filenames & File Browser . 34
Other Selections: Logicals, Cycles, Lists, Etc. . 34
Live Selections . 35
Optional Selections . 35
Toggles and Groups . 35
The Run Button . 35
The Help Button . 35
The Close Button . 36
The Options Menu. 36

License. 36
Composer... 36
Object Info... 36
Runtime Logging . 36
Process Debugging . 36
3 • VisiQuest Visual Programming Table of Contents

GUI Editing and Save Changes . 36
Debugging . 37

General Debugging Information. 37
Running the Debugger. 38

Preferences . 38
Glyphs. 39

Connection Type . 39
Display Glyph Finder on Start-Up . 39
Redraw Glyph Connections . 39
Place Glyph . 40
Display Glyph. 40
Set Glyph Reporting. 40
Set Glyph Selection Color . 40

The Workspace. 41
Echo Execution . 41
Set Background Color . 41
Set Background Pixmap . 41
Data Transport Type . 42

The Canvas Grid. 42
Set Canvas Grid To . 42
Canvas Grid Size . 42
Grid Color. 42

The Command Bar . 43
Toolboxes . 44

Variables and Expressions . 44
Defining Variables. 45
Data Types . 46
Incrementing/Decrementing Variables . 46
Checking Values of Variables. 47
Evaluating Expressions Using Defined Variables. 47

Example: Comparisons . 47
Example: Use of Predefined Functions . 47
Example: Defining New Variables Depending on Previous Variables 47
Example: Changing Values of Variables . 47

User-defined Functions. 47
Scope Of Variables. 48
Variables used by Loops and Expression Glyphs . 48
Using Variables with Filenames or Strings . 49
Deleting Variables. 50
Predefined Constants . 50
Predefined Functions . 51

If/Else Expressions . 52
User Defined Functions . 53

Logical Operators . 53
Arithmetic Operators. 54

Arithmetic Bit-wise Operators . 54
Arithmetic Assignment Operators . 55
String Operators. 55
Table of Contents VisiQuest Visual Programming • 4

Procedures . 56
Creating Procedures . 56
Opening/Closing Procedures . 57
Renaming Procedures . 58
Copying Procedures . 58
Nesting Procedures. 58

Control Structures . 58
Creation of a Control Glyph. 59
Conditional Constructs . 60

If/Else . 60
Merge . 62
Switch. 64
Trigger . 65
Expression . 66

Looping Constructs . 68
Creating A Loop Construct . 68
Opening/Closing Loop Glyphs . 68
Nesting Loops . 68
Count Loop. 69
While Loop . 71

Compiled Workspaces . 74
Workspace Compiler Types . 75

The Default Workspace Compiler . 76
The Script Workspace Compiler. 76

Creation of Compiled Workspaces . 76
Creating the Visual Program . 77
Creating the Compiled Workspace. 77
Verifying Correctness. 79
Modifying the Graphical User Interface . 79
Modifying the Visual Network . 82
Executing the Compiled Workspace from the Command Line. 83
Documentation And Maintenance . 83

Data Transports . 84
Transport Buffering . 85

File Buffering . 85
Stream Buffering . 85
Memory Buffering. 86

Directory for Creating Temporary Files . 86

Distributed Computing . 87
Using the Remote Hosts Control Panel . 87
Dispatching a Glyph to a Remote Machine. 88
Restrictions . 89

Parallel Host Management . 89
Hosts . 90
Groups . 90
Daemons. 91
Batch Queue . 91
5 • VisiQuest Visual Programming Table of Contents

Chapter 2: VisiQuest Operators . 1
Introduction . 1

Table of VisiQuest Operators . 1
Table of Contents VisiQuest Visual Programming • 6

Imagine: VisiQuest VisiQuest Visual Programming • 1

Imagine: VisiQuest

Introduction
VisiQuest Visual Programming Environment is used by the programmer to
develop interactive programs visually by combining glyphs into a complete
program. It is a graphically expressed, data flow visual programming environment
that provides a visual programming environment within the VisiQuest system.
Data flow is a "naturally visible" approach in which a visual program is described
as a directed graph, where each node represents an operator or function and
each directed arc represents a path over which data flows. The purpose in
providing a visual programming environment interface to the programs included in
VisiQuest is to increase the productivity of researchers and application
developers. By providing a more natural environment which is similar to the block
diagrams that are already familiar to practitioners in the field, the visual
programming environment provides support to both novice and experienced
programmers.

In VisiQuest Visual Programming Environment, the icons (called glyphs) typically
represent programs from VisiQuest. However, given the VisiQuest software
integration environment, they can also be used to represent non-VisiQuest

 2 • VisiQuest Visual Programming Imagine: VisiQuest

programs that have been integrated into VisiQuest (see The Toolbox
Programming Manual for information on creating a VisiQuest object and bringing
the object into VisiQuest Visual Programming Environment). Each of the
hundreds of stand-alone data processing and scientific visualization programs in
VisiQuest can be represented in the VisiQuest Visual Programming Environment
as glyphs. To create a VisiQuest Visual Programming Environment visual
program, the user selects the desired programs (and control structures, as
needed), places the corresponding glyphs on the VisiQuest Visual Programming
Environment workspace, and connects these glyphs to indicate the flow of data
from program to program, forming a network within a workspace. Such
workspaces can be executed, saved, and restored to be used again or modified
later. Workspaces may also be encapsulated into stand-alone applications with a
very simplified graphical user interface so that they may be treated as
independent VisiQuest Command Bars.

The visual hierarchy, iteration, flow control, and expression-based parameters
make VisiQuest Visual Programming Environment a powerful simulation and
prototyping system. VisiQuest Visual Programming Environment interprets the
visual network dynamically to schedule glyphs and then dispatch them as
processes. The VisiQuest Visual Programming Environment scheduler is event
driven rather than data driven or demand driven. Glyphs are referred to as
“coarse grained” because each glyph corresponds to an entire process, not a
code segment or a sub-procedure. Once a glyph has been scheduled, the
dispatcher is responsible for determining the data transport, the communication
protocol, and the process execution mode. Communication protocol between
VisiQuest Visual Programming Environment and the different glyphs can be as
simple as just initiating process execution, or more complicated if glyph
parameters must be continuously updated as the process executes continuously.

In UNIX environments, glyphs may be executed locally or remotely to efficiently
utilize a heterogeneous network of computers. VisiQuest Visual Programming
Environment utilizes a network execution daemon to negotiate the remote data
transport and to spawn processes on remote machines. The visual programmer
assigns operators to specific machines interactively; this may be done both to
optimize execution speed and to fully utilize available hardware. Note that the
remote machines to be utilized need not have a full VisiQuest installation, but
must at least have a copy of the network execution daemon running in order to
work with the remote transport mechanism.

Application specific domains, such as image processing and geometry
visualization, typically process data as blocks. However, the domains of
telecommunications and process control tend to process data as streams.
VisiQuest Visual Programming Environment glyphs can process data in both
blocks and streams.

The VisiQuest Visual Programming Environment extends the basic data flow
paradigm to make it a more powerful application prototyping or simulation
environment. Data and control-dependent program flow is provided by flow
control glyphs such as if/else, while, count, and trigger. Visual subroutines, or
procedures, are available to support the development of hierarchical data flow
graphs. Variables may be set interactively by the user, or calculated at run time
via mathematical expressions tied to data values or control variables.

Command Line Options
% VisiQuest -usage

===

Imagine: VisiQuest VisiQuest Visual Programming • 3

Usage for VisiQuest: "The visual programming language for VisiQuest"

% VisiQuest

 [-mini] (flag) Create A Miniaturized version of VisiQuest Visual
Programming Environment
 [-echoipc] (flag) Echo ipc port that VisiQuest Visual Programming
Environment is listening on
 [-tbmenus] (boolean) Create VisiQuest Visual Programming Environment Pulldown
Toolbox Menus
 (default = true)
 [-commandbar] (boolean) Create VisiQuest Visual Programming Environment Command
Bar Menus
 (default = true)
 [-console] (boolean) Create VisiQuest Visual Programming Environment Console
 (default = true)

 [Optional Mutually Exclusive Group - Specify one or none of the 2 options:]
 [-wksp] (infile) file for restoring VisiQuest workspace
 (default = {none})

 [Optional Mutually Inclusive Group - Specify all or none of the 2 options:]
 [-tb] (string) the toolbox of the workspace object
 (default = {none})
 [-oname] (string) The workspace object name
 (default = {none})
 [-gui] (flag) run from GUI as defined in *.pane file
 [-V] (flag) gives the version number of the program
 [-U] (flag) gives brief usage
 [-usage] (flag) gives full usage
 [-P] (flag) interactive prompting for arguments
 [-x] (integer) x value for GUI autoplacement
 (-1 <= x <= 1000, default = -1)
 [-y] (integer) y value for GUI autoplacement
 (-1 <= y <= 1000, default = -1)
 [-A] (outfile) Creates an answer file
 (default = {none})
 [-a] (infile) Uses an answer file
 (default = {none})
 [-ap] (infile) prints answer file values
 (default = {none})
===

[-wksp {workspace file}] OR [-tb {toolbox} -oname {object}
When VisiQuest Visual Programming Environment is started without the [-wksp]
and without the [-tb] and [-oname] arguments, it begins without a visual program
(an empty workspace). When it is started with the [-wksp] option specifying a
workspace file, VisiQuest Visual Programming Environment restores the
workspace into the main workspace, and allows you to modify it.

When started with the [-tb] and [-oname] arguments, VisiQuest Visual
Programming Environment will open the specified workspace object in the
specified toolbox

[-x {value}] [-y {value}]
The x and y arguments are usually specified as a pair. Together, they indicate the
automatic placement of the GUI at the (x,y) location, where x and y are given as
device (screen) coordinates. By default, x and y are both -1, indicating manual
placement of the GUI.

[-V]
This argument will print out the current version of the application.

 4 • VisiQuest Visual Programming Imagine: VisiQuest

[-U]
This argument will print out the command line argument structure for the
application in less detail than is given here.

[-P]
This argument will enable interactive prompting for each of the command line
arguments to the program.

[-gui]
This argument provides a graphical alternative to the interactive prompting mode
described above; it brings up the GUI of the application as defined in its *.pane
file. You may enter values for the start-up arguments as desired. When they are
complete, click on the Run button to start the program.

[-A {filename}]
This argument will create an answer file containing the specified values of
command line arguments for later use with the [-a] option. This CLUI answer file
will be named as specified if a filename is given. If no filename is specified, the
default filename "$HOME/visiquest.ans" will be used. Note: the "-A" argument is
often used in conjunction with the "-P" argument; you are interactively prompted
for arguments to the application, and those arguments are saved for later
executions.

[-a {filename}]
This argument will use the answer file values for the command line arguments as
they were saved earlier in a CLUI answer file. The specified CLUI answer file will
be used if a filename is given. If no filename is specified, the default file "$HOME/
visiquest.ans" will be used. No other command line arguments should be
necessary when the "-a" argument is used.

[-ap {filename}]
This argument will query the saved CLUI answer file for the command line
argument values and echo them. The specified CLUI answer file will be queried if
a filename is given. If no filename is specified, the default filename "$HOME/
visiquest.ans" will be used.

Overview of Graphical User Interface
The VisiQuest Visual Programming Environment graphical user interface consists
of the following major components:

The VisiQuest Visual Programming Environment Workspace

The VisiQuest Visual Programming Environment Menubar

The Workspace Command Bar

The Console Window

Imagine: VisiQuest VisiQuest Visual Programming • 5

The VisiQuest Visual Programming
Environment Workspace
The main portion of VisiQuest Visual Programming Environment is the VisiQuest
Visual Programming Environment workspace. The workspace consists of a
viewport containing a large canvas. It is in this workspace that the visual
programming network of glyphs is constructed.

To control whether or not grid lines appear, as well as the size of the grid and the
grid color, select Options from the Tools menu and use the "Canvas" tab to set
your preferences as desired.

The canvas is contained within a workspace and is many times larger than the
size of the visible window. You can control which part of the workspace is visible
by moving the scroll bars on the left and bottom sides of the workspace frame or
by enabling the Overview option in the View menu.

By default, VisiQuest Visual Programming Environment appears with a single
workspace, but multiple workspaces can be created. To create a new workspace,
select "New" from the File menu of the VisiQuest Visual Programming

Menu Bar Command Bar

Glyph

ConsoleWorkspace

 6 • VisiQuest Visual Programming Imagine: VisiQuest

Environment menubar. When multiple workspace areas are in use, tabs labeled
"Area1", "Area2" and so on will appear below the VisiQuest menubar. The
different workspaces can be brought to the foreground by clicking on the desired
Area tabs. All actions are performed on the currently selected workspace canvas.

The workspace areas are managed as child windows in the main VisiQuest
window. You can maximize them (as shown above), or have them displayed as
independent, overlapping windows. When the workspaces displayed as child
windows, you can have them automatically positioned, by using the Window
menu Cascade and Tile items.

The VisiQuest Visual Programming
Environment Menubar
At the top of VisiQuest Visual Programming Environment is its menubar. This
menubar contains a number of menus that provide access to all features of
VisiQuest Visual Programming Environment as well as the VisiQuest operators.
The menus available from the menubar are as follows:

File Menu

The "File" menu contains items that allow you to create a new workspace area,
open a VisiQuest workspace file, save the current network of glyphs as a
VisiQuest workspace file, close the current workspace area, and exit VisiQuest.

Edit Menu

The "Edit" menu contains utilities to edit to visual programming network, such as
cut, paste, duplicate, delete, etc. Each of the actions on the "Edit" menu has a
corresponding icon on the VisiQuest workspace command bar.

Workspace Menu

The "Workspace" menu provides access to utilities for executing, halting, and
manipulating visual programs in the VisiQuest workspace. It also provides access
to the distributed computing and parallel computing capabilities.

Options Menu

The "Options" menu provides various options for customizing the appearance and
functionality of VisiQuest, including the Preferences subform.

Control Menu

The "Control" menu allows the creation of special glyph types, including
Procedure glyphs, while and Count Loop glyphs, and the various conditional
glyphs. It also provides access to the VisiQuest workspace compiler.

Glyphs Menu

The "Glyphs" menu provides access to the VisiQuest operators.

Objects Menu

The "Objects" menu provides access to any Workspace Objects that may be
available in the accessible VisiQuest toolboxes.

Imagine: VisiQuest VisiQuest Visual Programming • 7

Help Menu

Standard help functions.

The Workspace Command Bar
The Command Bar contains icons representing the most commonly used
VisiQuest Visual Programming Environment commands. The Command Bar is
displayed just below the main VisiQuest Visual Programming Environment menu
bar. The set of icons that appears is user configurable. You can control which
icons you want to appear (including the entire set available). To select which icons
appear in the command bar, select Preferences from the Options menu and use
the "Command Bar" pane to specify your preferences as desired.

The workspace command bar can be hidden altogether by selecting the "Hide
Command Bar" item on the Options menu, or by setting the command line option
[-commandbar] to FALSE at startup.

The Console Window
The console windowappears at the bottom of the VisiQuest Visual Programming
Environment graphical user interface, and is divided from the VisiQuest Visual
Programming Environment workspace with a sash. When a visual program is
executed from VisiQuest Visual Programming Environment, the execution
commands are echoed to the VisiQuest Visual Programming Environment
console window (execution commands may also be echoed to a log file using the
"Workspace" pane of the Preferences subform.

The console window can be hidden by selecting the "Hide Console" item on the
Options menu, or by setting the command line option [-console] to FALSE at
startup.

Other VisiQuest GUI Features
In addition to the VisiQuest workspace, menubar, command bar, and console
window, there is also a status window, a workspace name window, and a sash on
the VisiQuest GUI. The status window, which appears directly below the
workspace and to the left, is used by VisiQuest for reporting the status of various
actions. The name window, to the right of the status window, indicates the name
of the currently selected workspace.

The sash, below the status and name windows and above the console, is used to
control how much of the VisiQuest GUI is devoted to the workspace, versus how
much of the VisiQuest GUI is devoted to the console window. Click on the box at
the far right of the sash to grab it and move it up or down.

Input and Output: Workspace Files and
Workspace Objects

The File menu on the VisiQuest Visual Programming Environment master form
provides tools for:

Opening and closing workspace areas

Opening and saving VisiQuest workspace files

 8 • VisiQuest Visual Programming Imagine: VisiQuest

Opening and saving VisiQuest workspace objects

Exiting VisiQuest

Workspace Files VS Workspace Objects
VisiQuest Visual Programming Environment can save a visual program as a
workspace file or as a workspace object. A workspace file is simply an ascii file
containing lines that specify the glyphs, connections, variables, etc. that are in the
visual program.

A workspace object is a software object that consists of the workspace file, a help
file, and the software object database. Because they are accessible from the
Object menus by category, subcategory and name, workspace objects are a nice
way to "package" visual programs for other users or demos. Moreover, when a
workspace object is restored, a special "help" icon will appear on the VisiQuest
Visual Programming Environment command bar. You may click on this icon to
access online help for the workspace.

Opening Files
To open a saved VisiQuest Visual Programming Environment workspace file,
select "Open File..." from the File menu. This displays the VisiQuest File Browser.

The Browser is used to locate and open a saved VisiQuest Visual Programming
Environment workspace file. Use the mouse to select the file you want, or type the
filename in the "Directory / Filename" text box at the bottom of the Browser, and
click "OK." The saved workspace will be restored in the VisiQuest Visual
Programming Environment main workspace. You will be prompted to delete any
glyphs that were in the workspace before the "Open File" operation.

A shortcut to using the "Restore Workspace" selection of the "Files" subform is
provided by the workspace command bar. Click on the "restore workspace"
command button to display the file browser from which you may select a
workspace to be automatically restored.

Imagine: VisiQuest VisiQuest Visual Programming • 9

A saved workspace may be restored at startup time by using the [-wksp] option to
VisiQuest Visual Programming Environment.

Opening Objects
To open a workspace object, select "Open Object..." from the File menu. This
brings up a Workspace Object browser and allows you to select a workspace
object to open. The Workspace object browser is similar in appearance and
operation to the Aliases browser. Initially, the list that appears will contain the
categories of all workspace objects that are available. Selecting a category will
cause the list to display all subcategories within the selected category. Selecting a
subcategory will change the list so that it displays the names of all workspace
objects in the subcategory. Finally, you may select a workspace object by name to
be opened into the VisiQuest Visual Programming Environment workspace. The
syntax used by the Workspace Object browser is "Category->Subcategory-
>Name"; you may also type in the desired workspace object using this syntax in
the text box that appears near the bottom of the browser. The button at the top of
the browser, labeled "Workspaces", is simply a queue that the browser is acting
as a Workspace Object browser rather than a File browser or an Aliases browser;
it will not respond to a mouse click.

A shortcut to using the "Open Object..." selection of the "Files" subform can be
provided by the workspace command bar. Click on the "open object" command
button (pictured above) to display the file browser from which you may select a
workspace to be automatically restored. Note that by default, this icon is not
displayed; you may use the Preferences subform to indicate that you want the
"open object" command button to appear.

Saving Files
To save a VisiQuest Visual Programming Environment workspace file, select
"Save File..." from the File menu. This displays the VisiQuest File Browser. The
browser is used to specify a new filename for the VisiQuest Visual Programming
Environment workspace to be saved, or to select an existing file to be overwritten
with the current VisiQuest Visual Programming Environment workspace.

A shortcut to using the "Save File..." selection of the "Files" subform can be
provided by the workspace command bar. Click on the "save file" command
button (pictured above) to display the file browser from which you may select a
workspace to be automatically restored.

 10 • VisiQuest Visual Programming Imagine: VisiQuest

Saving Workspace Objects
To save a VisiQuest Visual Programming Environment workspace object, select
"Save Object..." from the File menu.

Then, select the toolbox in which the workspace object will reside. If there are any
workspace objects that currently exist in that toolbox, those will appear in the
Workspace Object List. You may over-write an old workspace object or create a
new one. Specify the desired object name, as well as Category and Subcategory,
and the name to appear in the Object Menus. Clicking on "Save Workspace
Object" will cause the workspace object to be created. The workspace object can
then be updated and maintained using Composer, just like any other software
object. Remember to add text to the help file, so that the user will have access to
meaningful online help describing your workspace.

A shortcut to using the "Save Object..." selection of the "Files" subform can be
provided by the workspace command bar. Click on the "save object" command
button (pictured above) to display the file browser from which you may select a
workspace to be automatically restored. Note that by default, this icon is not
displayed; you may use the Preferences subform to indicate that you want the
"save object" command button to appear.

The Visual Programming Workspace
The visual programming workspace is made up of a viewport containing a canvas
with a grid. A visual program, made up of a network of glyphs, can be placed on
the canvas, either by restoring a saved program, or by creating a new one. To the
right and bottom of the canvas are scrollbars which can be used to control the
portion of the grid that is visible within the viewport. Along the top of the
workspace is a workspace command bar, containing buttons displaying icons.

Imagine: VisiQuest VisiQuest Visual Programming • 11

These buttons provide shortcuts to a variety of visual programming operations
that are also available from the main VisiQuest Visual Programming Environment
menus, shown at the top of the VisiQuest Visual Programming Environment
window.

There are a variety of functions supported by the VisiQuest Visual Programming
Environment workspace. Procedure creation and loop construct creation are
accessible from the Control menu. Editing capabilities are accessed from the Edit
menu. File manipulation features are accessed through the File menu. The
Workspace menu provides control for starting, stopping, resetting, and checking
visual programs. The most commonly used functions are also accessible from
buttons/icons on the workspace command bar. With only a few exceptions (where
the concept simply does not apply), the workspace functions always operate on
the currently selected glyphs.

Functions in VisiQuest Visual Programming Environment are available from
several sources, such as the menus, the command bar, and keyboard
accelerators. However, the most basic interface to VisiQuest Visual Programming
Environment functionality is through the menus; while only a subset of operations
may be available through the command bar, for example, all functionality is
available through the menus. It makes sense, then, to discuss menus first.

The following sections explain the general organization of the VisiQuest Visual
Programming Environment menus, with an explanation of the functionality
provided by each item. Command bar counterparts to the menu items are
provided where appropriate, as are keyboard accelerators. In those cases where
a more detailed discussion is provided elsewhere, a reference to that discussion
is given.

The File Menu
The file menu provides tools to manipulate workspace files. Workspaces can be
saved and restored using the utilities on this menu.

 12 • VisiQuest Visual Programming Imagine: VisiQuest

New

New creates a new workspace area. By default, VisiQuest Visual Programming
Environment appears with a single workspace area, but multiple workspace areas
can be used. With multiple workspace areas, tabs labeled "Area1", "Area2" and
soon will appear below the VisiQuest Visual Programming Environment menubar.
The different workspaces can be brought to the foreground by clicking on the
desired Area tabs. All actions are performed on the currently selected workspace.

A new workspace is displayed by default on top of the existing workspace. It may
appear that the existing workspace has disappeared, but it is only hidden from
view. It is possible to view other workspaces by clicking the Area buttons in the
upper-left corner of the new workspace. Clicking the Area buttons allows you to
toggle between multiple workspaces without closing and opening them.

Keyboard Accelerator: Ctrl-n

Open File...

Clicking the Open item displays the VisiQuest Directory/Alias browser, which
allows you to open a VisiQuest Visual Programming Environment workspace.

Keyboard Accelerator: Ctrl-o

Open Object...

This item brings up a Workspace Object browser and allows you to select a
workspace object to open.

Keyboard Accelerator: Ctrl-O

Save

This writes out the current VisiQuest workspace to either a workspace file or to a
workspace object, depending on what you did last. If "Open File" or "Save File"
was used, then it saves the file as that filename. If "Open Object" or "Save Object"
was used, then it allows you to save the workspace object.

Keyboard Accelerator: None

Save File...

Save File allows the current workspace to be saved to a new filename.

Keyboard Accelerator: Ctrl-s

Save Object

Save Object allows you to create a new workspace object.

Keyboard Accelerator: Ctrl-S

Close...

When using multiple workspace areas, this closes the current workspace area.
Note that the contents of the workspace area will not be saved. If you are using a
single workspace area, "Close..." will produce an error message.

Keyboard Accelerator: Ctrl-w

Imagine: VisiQuest VisiQuest Visual Programming • 13

Exit

Select "Exit" to exit from VisiQuest Visual Programming Environment.

Keyboard Accelerator: Ctrl-q

The Edit Menu
The Edit menu provides utilities for copying, deleting, and editing visual programs.
It also provides tools for helping to locate glyphs.

Cut

Cut removes a selected glyph (or glyphs) from the workspace and places it on the
clipboard.

Keyboard Accelerator: Ctrl-x

Copy

Copy makes a duplicate of the selected glyph and places it on the clipboard. The
original is not removed from the workspace.

Keyboard Accelerator: Ctrl-c

Paste

Paste copies glyphs from the clipboard and places them on the workspace.

Keyboard Accelerator: Ctrl-v

Show Clipboard

Selecting "Show Clipboard" dispays the clipboard. Objects that are cut or pasted
from the workspace using the relevant Edit menu commands are visible when in
the clipboard. The clipboard can be used as a temporary repository for all or
portions of a network that you wish to copy from one workspace and then paste
into another within a single VisiQuest session.

Duplicate

Duplicate makes a copy of a selected glyph or glyphs.

Keyboard Accelerator: Ctrl-d

Delete

This item removes a selected glyph (or set of glyphs) without placing it on the
clipboard.

Keyboard Accelerator: Ctrl-b

Undo Delete

Undo Delete replaces a previously deleted glyph (or set of glyphs). It returns the
most recently deleted item. If invoked a second time, it returns the item that was
deleted before the last item, and so on through a series of previously deleted
items.

 14 • VisiQuest Visual Programming Imagine: VisiQuest

Keyboard Accelerator: Ctrl-z

Select All

This item selects all glyphs and connections in the entire workspace.

Keyboard Accelerator: Ctrl-a

Unselect All

This item unselects any items in the workspace that are selected; if only one glyph
is selected, it will be unselected; if many or all items are selected, they will all be
unselected.

Find

Launched by default when you start VisiQuest, this subform can be used to locate
any of the glyphs available through the Glyph menus. The subform can be toggled
back and forth between the Glyph Finder list and the Accelerated Routines list by
selecting the labeled tabs at the top of the category display. See the sections on
the Accelerated Routines List and the Accelerated Glyph Finder List for more
details. You can change the default launch behavior in the Preferences subform
(Options>Preferences>Glyphs).

The Workspace Menu
The Workspace Menu provides access to utilities for executing, halting, and
manipulating visual programs in the workspace.

Run

Once glyphs have been selected and connected together in a network, the "Run"
item may be used to execute the entire visual program automatically. Note that
the Run icon on the workspace command bar, shown below, can also be used to
execute all the glyphs in the workspace.

Stop

Clicking the Stop button halts program execution. If the Run Mode is in continuous
position, the scheduler will continue to run even though execution has been
interrupted. If the Run button is clicked after the program has been halted, it will
begin at the stage where it was stopped rather than starting from the beginning.
To restart the program from the beginning, you must first click Reset (see below)
and then Run.

Run Once / Run Continuous

When Run Mode is is "Run Once" mode, VisiQuest executes the visual network
only one time. Changes made in parameters to glyphs will not cause them to re-
execute. When Run Mode is in "Run Continuous" mode, VisiQuest will execute
the visual program continuously. As changes are made in parameters to glyphs,
they will re-execute, and all downstream glyphs will also re-execute.

Imagine: VisiQuest VisiQuest Visual Programming • 15

Reset

Selecting "Reset" from the Workspace menu will touch all glyphs in the workspace
so that a "Run" will reexecute ALL glyphs, whether or not they hav e been
modified. Note that the "Reset" icon in the workspace command bar can also be
used to reset all the glyphs in the workspace.

Clear

Selecting "Clear" from the Workspace submenu will delete all glyphs in the
workspace. If you accidentally clear the workspace without meaning to, the glyphs
can be restored using the "Undo Delete" item on the Edit menu. Note that "Clear"
icon on the workspace command bar can also be used to clear all glyphs in the
workspace.

Redraw

Selecting "Redraw" from the Workspace submenu will refresh all glyphs and the
connections of the network in the workspace.

Information

Selecting "Information" from the Workspace menu will calculate a few basic visual
program statistics such as the number of glyphs and procedures in the visual
program. Note that the "Information" icon on the workspace command bar can
also be used to get information.

Variables...

Selecting the "Variables" item displays the Variables subform. The subform can
be used to define new variables, view the values of all variables, regardless of
where they were defined, and watch them as they are incremented during
program execution.

Configure Remote Hosts...

Supporting distributed computing, VisiQuest allows programs to be executed on
multiple machines. Selecting this menu item displays the Remote Host Control
Panel, which is the user interface to VisiQuest’s distributed computing feature.

The Options Menu
The Options menu provides several items for customizing the appearance and
functionality of VisiQuest.

Adding a Toolbox Reference

This dialog box allows you to add a reference to another toolbox to your VisiQuest
environment. Note that this operation does not have anything to do with the
currently selected toolbox; it is an independent operation. Adding a new toolbox
reference will enable you to execute programs in that toolbox, modify its software
objects using Craftsman and Composer, and access its operators in VisiQuest
Visual Programming Environment.

 16 • VisiQuest Visual Programming Imagine: VisiQuest

Specify the path of the toolbox to which you wish to add a reference. Click "OK" to
add the reference. This will cause your main Toolboxes file to be updated with a
line referencing the specified toolbox, and that toolbox will now be available in
your VisiQuest environment.

Preferences...

The "Preferences" subform allows workspace attributes to be changed. For
example, the size and color of the grid, the texture and color of the canvas, or the
visibility of the command bar.

Hide Command Bar

This item makes the command bar disappear. After it has been selected, it
toggles to "Show Command Bar" so that the command bar can be redisplayed.

Hide Console

This item makes the console disappear. After it has been selected, it toggles to
"Show Console" so that the console can be redisplayed.

Small Size

Selecting this item reduces the overall size of the VisiQuest display. Reducing
display size is handy if the program is executed on a system with a small monitor,
say a laptop computer. Note that the size of the overall display is affected; icons,
menu titles, glyphs, and other VisiQuest objects shrink along with the workspace.
When the "Small Size" is selected, it toggles to "Large Size" to allow you to return
to the original display size.

Clear Console

Selecting this item erases all message appearing in the console window, just
below the main workspace canvas.

Reload Menus

Reloads the operators that are available as glyphs from the VisiQuest toolbox
menus. This allows a newly created and installed program to be brought into a
VisiQuest session without exiting and restarting VisiQuest.

The Control Menu
The Control menu provides a series of utilities for creating special structures in the
VisiQuest workspace.

Create Procedure

Select this item to create a procedure. Creating procedures involves several
steps.

Create Count Loop

Select this item to create a count loop. Creating a count loop involves several
steps.

Imagine: VisiQuest VisiQuest Visual Programming • 17

Create While Loop

Select this item to create a while loop. Creating a while loop involves several
steps.

Create Expression

Sets the value of a variable; used in conjunction with other control structures for
purposes of variable initialization and/or modification.

Create If/Else

Directs data flow to one path if a specified condition is met, to another path if the
condition is not met.

Create Merge Paths

Directs data flow from two separate paths to the same path, whether data arrives
from the first path, the second path, or both; no condition is involved.

Create Switch

Selects one of two inputs for use by the visual network, depending on the value of
a conditional statement.

Create Trigger

Delays execution of a glyph until data is made available by another glyph which is
not otherwise connected to the dependent glyph. Control connections provide a
simple way of specifying an order for process execution when one is not already
dictated by the data flow, as is frequently the case in networks with a number of
parallel paths.

The Glyphs Menu
All of the VisiQuest rountines available as glyphs in VisiQuest are accessible
through the Glyphs menu. The menu contents will change depending on the
toolboxes that were actually loaded when VisiQuest was executed, but their
general organization remains the same regardless. Clicking the Glyphs menu
displays a drop-down list of categories. Selecting one of the categories displays a
drop-down list of subcategories belonging to the parent category. Selecting a
subcategory displays a drop-down list of glyph names. When a glyph name is
selected, the outline of the glyph will appear in the VisiQuest workspace. Click the
mouse in the workspace where you wish the glyph to be placed. The glyph will
appear where you have placed it, the cursor will return to its arrow shape, and you
may repeat the process to select other glyphs.

See the sections on the "Accelerated Routines List" and "Accelerated Glyph
Finder List" for alternative methods of locating and placing glyphs on the
workspace.

The Help Menu
The Help menu provides access to information about VisiQuest. Information is
organized under the following headings:

 18 • VisiQuest Visual Programming Imagine: VisiQuest

On VisiQuest

Selecting this item displays information about VisiQuest.

Activate Tooltips

This option serves as a reminder of the functionality of objects on the VisiQuest
GUI. When activated, a brief explanatory phrase is displayed just below the cursor
as the mouse passes over command bar icons, glyphs, connections, etc. Tooltips
do not provide a detailed description of the functionality of these objects; rather, it
supplies just enough additional information to help an experienced user
remember the functional difference between similar looking items on the screen.

To prevent a constant flutter of descriptions from appearing as the mouse passes
through the VisiQuest workspace, a slight delay occurs before the desciption is
displayed; the mouse must remain over an object for two seconds before Tooltips
display the message.

License

Selecting this item provides information on VisiQuest licensing agreements for
VisiQuest and other VisiQuest software.

The Workspace Command Bar
The workspace command bar provides alternative interfaces to the most
commonly used features of VisiQuest.

Many of the operations in VisiQuest that are available through Menus are also
available from command bar icons. The same functionality that is invoked by
selecting a menu item can be invoked by clicking a single icon. The intent is to
make it easier to call those operations that are most commonly used. When
VisiQuest is first executed, a default set of command bar icons is made available,
but, by using the Workspace Preferences subform, the set can be edited to
include more operations. Icons that are used infrequently can also be eliminated
from the command bar.

Many of the icons that represent certain operations have been displayed along
with the explanation of the corresponding operation, above. The command bar
displayed above shows the general appearance of the icons in a group. If you are
uncertain about the function of a particular icon in the command bar, place the
mouse over it. A brief description of that icon’s functionality will display in the
space betwen the console and the main VisiQuest workspace, close to the bottom
of the VisiQuest window. Also, when the the Activate Tooltips option on the Help
menu is turned on, a brief description displays just beneath the icon as the cursor
passes over it.

Imagine: VisiQuest VisiQuest Visual Programming • 19

Introduction to Glyphs
A glyph is simply a visual representation of a program available from within the

VisiQuest Visual Programming Environment. Typically, these are the programs in
one of the VisiQuest toolboxes you have installed at your site, but they can also
be non-VisiQuest programs you have developed that have been given a
VisiQuest pane interface (see The Toolbox Programming Manual for information
on creating an VisiQuest object and bringing the object into VisiQuest Visual
Programming Environment).

Each program may be run independently from the command line, or may be
executed via VisiQuest Visual Programming Environment.

When accessed from VisiQuest Visual Programming Environment, the program
itself is referred to as an operator; the icon that represents the operator in the
VisiQuest Visual Programming Environment workspace is called a glyph. As
stated earlier, a visual program simply consists of a number of glyphs connected
together in a network.

Types of Glyphs
In fact, there are a number of different types of glyphs that are used in VisiQuest
Visual Programming Environment. A glyph that represents a VisiQuest program
and allows the execution of an operator, as described above, is a standard glyph.
The different glyphs available in VisiQuest Visual Programming Environment are
as follows.

Standard Glyphs

A standard glyph represents an operator available from within VisiQuest
Visual Programming Environment.
Input Glyphs

Input glyphs simply provide input for other glyphs. Usually, such glyphs
provide a user interface for the specification of a data file.
Procedure Glyphs

Procedure glyphs represent a visual programming procedure consisting of a
sub-network of glyphs.
Control Glyphs

 20 • VisiQuest Visual Programming Imagine: VisiQuest

Control glyphs represent one of the conditional or looping constructs
supported by VisiQuest Visual Programming Environment.
Compiled Workspace Glyphs

Compiled workspace glyphs represent a visual program that has been
compiled into a separate binary or script. Internally, a compiled workspace is
handled exactly like a standard glyph (e.g., an operator).

Standard Glyph Components
A glyph has a number of components. Each component provides some sort of
information about the glyph. In addition, many of the components are also
buttons which you may use to perform an operation on the glyph. A summary of
the various glyph components follows.

Input Data Connections

Each glyph may have one or more input data connections. The input data
connection node is represented by a colored square at the left edge of the glyph.
When a data input connection is required, the square will appear in yellow; when it
is optional, it will appear in blue. Some operators are provided for the express
purpose of providing input for other operators; their glyphs will have no input data
connections, as they take no input.

When there is data available to the operator from a previous glyph connected to
the input data connection, the input data connection will change to green. Read
this as, "data has been made available to the glyph at this input data connection."

Output Data Connections

Each glyph may have one or more output data connections. The output data
connection node is represented by a colored square at the right edge of the glyph.
When a data output connection is required, the square will appear in yellow; when
it is optional, it will appear in blue. Some operators are provided specifically to
visualize data produced by other operators; their glyphs will have no output data
connections, as they produce no output.

When data is made available by the operator to a subsequent glyph connected to
the output data connection of the glyph, the data connection indicator will change
to green. Read this as, "data has been made available by the glyph at this output
data connection."

Pane Access

Every glyph has a pane access button in the upper-left corner in the shape of a
black triangle. This button is used to display the graphical user interface, or pane,
of the operator. The pane is used to specify values for the arguments of the
operator. These values correspond to command line arguments when the
operator is run outside of VisiQuest Visual Programming Environment.

Run Button

Most glyphs have a square run button in the center that is used to execute the
operator represented by the glyph. The run button will glow red when the operator
is executing.

Imagine: VisiQuest VisiQuest Visual Programming • 21

Input Control Connections

Input control connections are used to delay execution of the glyph until another
glyph is executed. This control is represented by the small, gray square above
the input data connection(s).

Output Control Connection Node

Output control connections are used to delay execution of another glyph until this
glyph is executed. This control is represented by the small, gray square above
the output data connection(s).

Glyph Title

Every glyph will display its title beneath it. Typically this is the name of the
operator that the glyph represents. The glyph title can be changed by clicking on
it, and then typing the desired title in the edit pop-up window.

Open Workspace

Glyphs representing procedures and loop control structures have a special "Open
Workspace" button which is used to open up the workspace associated with the
procedure or the loop. The open workspace button is the white triangle that
appears in the upper-right corner of the glyph.

Glyph Type Pixmap

Procedure glyphs and control glyphs have a special icon displayed in the middle
to indicate the glyph type; this helps to differentiate them from standard glyphs.
The glyph type pixmap is inside the run button square.

Glyph Console Button as Error Indicator

The glyph console button at the bottom of the glyph normally appears in the same
color as the background of the glyph. However, if the operator encounters an
error during execution and writes to standard error, the glyph console button will
turn red. Clicking on the glyph console button will display a message window
containing the text that was written to standard error by the operator. The glyph
console button will appear in red until the glyph is reset.

Glyph Console Button as Info Indicator

The glyph console button at the bottom of the glyph normally appears in the same
color as the background of the glyph. However, if the operator writes information
to standard out during execution, the glyph console button will turn blue. Clicking
on the glyph console button will display a message window containing the text
that was written to standard out by the operator. The glyph console button will
appear in blue until the glyph is reset.

Glyph ToolTips

Glyphs have tooltips available; to activate tooltips, select "Activate ToolTips" from
the Help menu of the VisiQuest Visual Programming Environment menubar.
When tooltips are activated, move the mouse slowly over the glyph; an identifier
for each component of the glyph will appear in a pop-up tooltips information box.

 22 • VisiQuest Visual Programming Imagine: VisiQuest

Basic Glyph Operations
Selecting a Glyph

Many of the workspace manipulation and editing capabilities in VisiQuest Visual
Programming Environment work on the currently selected glyph(s). By selecting
a glyph (or a set of glyphs), you are indicating to VisiQuest Visual Programming
Environment which glyphs you want a particular operation to be applied. In
general, if no glyphs are selected when such an operation is initiated, the
operation will apply to no glyphs in the workspace. Selected glyphs will appear
outlined in pastel blue or pastel green. The difference is that some functions,
which operate on selected glyphs, need to know which of the selected glyphs is
the “reference point” (for example, Tools/Format/Align) - the glyph outlined in
green is the “reference point” (to which the other glyphs will be aligned).

You can select multiple glyphs by rubber banding (i.e., outlining with the mouse) a

box around a set of glyphs. To rubber band a box, click in the workspace at the
upper left corner of the area containing the glyphs that you wish to select. Holding
the mouse button down, drag the mouse to the lower right hand corner of the area
containing the glyphs that you wish to select; a box will appear following the
cursor as you move the mouse.

Deselecting a Glyph

You can unselect a particular glyph by clicking in it and simultaneously holding the
Shift button down. You can unselect all currently selected glyphs by clicking
anywhere in the workspace canvas that a glyph does not appear. All glyphs in the
workspace can be selected or unselected at once by choosing "Select All" or
"Unselect All" from the Edit menu, or by using the "Select All" or "Unselect All"
icons of the workspace Command Bar.

Moving A Glyph

First select the glyph(s) to be moved. Then, hold down the left mouse button
while dragging the glyph to the desired position. Releasing the mouse button will
place the glyph(s) at the new location. When moving a set of selected glyphs,
simply choose one glyph to drag to the new location; all the other selected glyphs
will follow along, maintaining their relative position.

Destroying A Glyph

To eliminate a glyph from the workspace, select it and then use the Delete item on
the Edit menu. Multiple glyphs can be selected and deleted at the same time.
You can also delete selected glyphs by pressing the Delete key on the keyboard.

Imagine: VisiQuest VisiQuest Visual Programming • 23

If you destroy a glyph by mistake, you can recover the glyph by using the "Undo
Delete" feature of the Edit menu, or the "Undo Delete" icon of the workspace
Command Bar.

Executing a Glyph

To execute the operator represented by a particular glyph individually, click on the
run button of the glyph.

Changing the Glyph Title

The readability of the visual program may be improved by changing the title of a
glyph; this is particularly true of procedure glyphs. To change the title of a glyph,
click on the current title that appears underneath the glyph; a prompt in which you
can enter a new title will pop up. Enter the desired title and click "OK." The title
that appears under the glyph will be immediately updated. While copies of the
glyph will reflect the name change, note that the change is valid only for a single
instance. That is, the name for the glyph in the Glyphs menu will not change.

Creating a Glyph
Each VisiQuest program has an assigned category, subcategory, and icon name
(also called the operator name). The use of the category/subcategory/name
convention imposes a hierarchy on the VisiQuest Visual Programming
Environment operators and makes the process of finding a particular operator
from the hundreds of available operators a much easier task.

There are three ways to create a glyph for an existing operator in VisiQuest Visual
Programming Environment. The first way uses the category/subcategory/name
approach to finding the desired operator; the second way uses a combination of
category/subcategory/name organization with alphabetization; the third way uses
a combination of alphabetization and key word scanning. This section explains
the three methods of glyph creation in VisiQuest Visual Programming
Environment, and then goes on to describe how you can customize operators that
are available as glyphs. Keep in mind that the operators available to you as glyphs
in VisiQuest Visual Programming Environment will vary according to which
VisiQuest toolboxes you have installed at your site, and which toolboxes you
currently have installed in VisiQuest Visual Programming Environment.

The Glyph Menus
The Glyph Menus are used to select an operator and create a glyph according to
category/subcategory/operator name.

The Glyph Menu provides the first method of glyph creation in VisiQuest Visual
Programming Environment. The Glyph Menus contain a list of the operators
contained in the enabled toolboxes arranged in their category/subcategory/name
hierarchy. Selecting a category from Glyph Menu displays another walking menu
of subcategories in that category. Selecting a subcategory displays a third walking
menu of of operator names. Select the desired operator name, and then move the
mouse into the VisiQuest workspace to place the new glyph. Note that the outline
of the glyph will follow the cursor until you click the mouse in the workspace to
place the glyph.

 24 • VisiQuest Visual Programming Imagine: VisiQuest

Accelerated Routines List
Like the Toolbox Menu, the Accelerated Routines List is used to select an
operator and create a glyph according to category/subcategory/operator name.

Click on the "Routines" subform button of the VisiQuest Visual Programming

Environment master form to display the Accelerated Routines List. This feature
can be used as a short cut in selecting operators from which to create glyphs. Like
the Toolbox Menu, the Accelerated Finder list also uses the category/
subcategory/name hierarchy to org anize operators. However, many users find
the Accelerated routines list easier to use than the Toolbox Menu because the
categories, subcategories, and operator names are all visible at the same time.

On the far left of the Accelerated Routines List is an alphabetized list of all the
available categories. Clicking on a particular category will cause the middle list of
alphabetized subcategories to be updated according to the contents of the
selected category. Similarly, clicking on a particular subcategory in the middle list
will cause the far right list of alphabetized operators to be updated according to
the operators available in the selected subcategory.

To create a glyph, you may either double-click on an operator that appears in the
list on the far right, or single click on an operator in the list and then click on the
"Open" button that appears above the subcategory list.

After an operator has been selected from the list on the right, the "busy" cursor will
appear while VisiQuest reads in the information associated with the selected
operator. When VisiQuest is to create the glyph in the workspace, the cursor will
change back to its original shape, and the outline of the glyph will follow the cursor
until you click the mouse in the workspace to place the glyph.

Imagine: VisiQuest VisiQuest Visual Programming • 25

Accelerated Glyph Finder List
The Accelerated Finder List is used to select an operator by name; key words can

also be used to scan for a particular operator. Click on the "Finder" subform button
of the VisiQuest master form to display the Accelerated Finder List. This feature
provides a third method of glyph creation which is sometimes more convenient
than either the Toolbox Menu or the Accelerated Routines List.

If you know the (binary) name of the program corresponding to the operator for
which you wish to create a glyph, you can simply use the scrollbar on the left of
the Finder list to scroll through all the available programs until the desired
program name appears in the viewport (program names are always followed by
their associated operator name).

If you do not know the name of the program in question, you may also use the
Finder list to search for operators. You may type phrases, key words, or word
segments in the Finder Expression parameter box that appears at the bottom of
the Finder list. When you hit <cr> in the Finder Expression parameter box, the
Finder list will scan all the available program names and their associated operator
names, and update the list with only those having matches to the desired
expression.

When the desired program and operator name appear in the finder list, you may
create a glyph either by double-clicking on an operator that appears in the list, or
by single clicking on an operator in the list and then clicking on the "Open" button
that appears above the finder list.

After an operator has been selected from the list on the right, the "busy" cursor will
appear while VisiQuest reads in the information associated with the selected
operator. When VisiQuest is to create the glyph in the workspace, the cursor will
change back to its original shape, and the outline of the glyph will follow the cursor
until you click the mouse in the workspace to place the glyph.

 26 • VisiQuest Visual Programming Imagine: VisiQuest

Customizing Which Operators Are Accessible
as Glyphs
The operators available from the Glyph Menu, Accelerated Routines List, and
Accelerated Finder List are dynamic. The complete set of available operators is
determined by the toolboxes you have installed at your site. You may further
control which of these toolboxes are available in the VisiQuest software
development environment by using the "Add Toolbox Reference" and "Remove
Toolbox Reference" features of craftsman. The subset of available toolboxes that
are available to you in VisiQuest Visual Programming Environment may be further
partitioned into enabled and disabled toolboxes using the Toolboxes pane of the
VisiQuest Visual Programming Environment Preferences subform.

To enable and disable toolboxes in VisiQuest Visual Programming Environment,
select the Preferences subform from the Options menu, and go to the Toolboxes
pane. Enabled toolboxes appear in a list on the right, while disabled toolboxes
appear in a list on the left. To disable a toolbox, select it from the Enabled
Toolboxes list and click on the "Disable Toolbox" button. That toolbox will be
moved to the list of disabled toolboxes.

Similarly, selecting a file from the Disabled Toolboxes list and clicking on "Enable
Toolbox" will move the toolbox to the Enabled Toolboxes list. Click on the "Apply
Changes" button at the bottom of the Preferences subform to enable and disable
the toolboxes as specified.

To sav e the current configuration for the next VisiQuest Visual Programming
Environment session, click on the "Save Preferences" button at the bottom of the
Preferences subform.

Toolbox Contents VS. Operator Organization in VisiQuest Visual
Programming Environment

There is no immediate indication in VisiQuest Visual Programming Environment of
the toolbox in which an operator originated, since the Glyph menu, the Finder List,
and the Accelerated Routines list all organize glyphs by category and subcategory
rather than toolbox name. Furthermore, the categories and subcategories used by
the Glyph Menu and the Accelerated Routines List span toolboxes; the
appearance of a particular category does not necessarily imply that its contents
will come from only one toolbox (although this is often the case). For example, the
Retro and Image toolboxes both have operators in the "Image Proc" category and
the "Transforms" subcategory.

Thus, if you disabled the Retro toolbox in VisiQuest Visual Programming
Environment, the "Image Proc" category would still appear, since that category is
still used by operators in the Image toolbox. Only if are no enabled toolboxes
which use a particular category will that category will disappear from VisiQuest
Visual Programming Environment.

Imagine: VisiQuest VisiQuest Visual Programming • 27

Input/Output: Glyph Connections

Data Connections

To become part of a network, two glyphs are connected with a data connection.
Here, the data connection between the two glyphs causes the output of the
"Images (Misc)" operator to become the input of the "Display Image" operator.

Data connections are an integral part of the visual program, and are required for
the program's construction.

Glyphs contain input and output data connection nodes, represented by colored
squares located on the left and right sides of the glyph. To create a data
connection between two glyphs, do the following:

1. Position the mouse so that it is over a connector (data or control, input or
output) on some glyph - the mouse cursor changes to a hand-with-pointing-
finger

2. While holding the left mouse button down, move the mouse til it is over the
appropriate connector on some other glyph (control-to-control, data-to-data,
input-to-output).

3. Release the mouse button.
When a successful data flow connection is made, a connection line will be drawn
between the two glyphs.

When two glyphs are connected with a data connection, it is implied that the
output of the first will become the input of the second. As such, the data
connection represents data flow in the visual program. Color coding for data
connection nodes is as follows:

Yellow

If a data connection node is yellow, then its corresponding input/output parameter
is a required argument for that operator. It must be connected in order to be
executed. A yellow connection between two glyphs indicates that the upstream
node does not have data available for the downstream glyph at its output data
connection (ie, the glyph has yet to be executed and produce output).

Blue

If a data connection node is blue, then its corresponding input/output parameter
is an optional argument for that operator. It may or may not be connected when
the network is executed.

 28 • VisiQuest Visual Programming Imagine: VisiQuest

Green

Both required and optional data connection nodes turn green when data is
available at that point in the network (ie, the upstream glyph has data available for
the downstream glyph). It will always be connected to other glyphs with data
connections.

Control Connections
A control connection is made between two glyphs to prevent the second glyph
from executing until the first glyph has already done so. In addition to data
connection nodes, glyphs contain a pair of input and output control connection
nodes which are represented by dark grey squares at the upper left and right
corners of the glyph. A control connection between two glyphs prevents the
downstream glyph from starting execution until the upstream glyph is finished
executing. While a visual program requires data connections between glyphs in
order to form the network and to define where each process will obtain its data,
control connections are not necessary as part of a fully operational network. They
do, however, allow you to constrain the operation of a visual program and provide
additional control over the order in which processes are executed.

Control connections simply cause the second, or controlled glyph, to "wait" on the
execution of the operator represented by the first glyph. Thus, control
connections provide a simple way of specifying an order for process execution
when one is not already dictated by the data flow, as is frequently the case in
networks with a number of parallel paths. Note that control connections can be
created independently of data connections. In other words, a glyph that does not
feed data to a second glyph can still have a control connection to that glyph.

Without control connections, there is no way to predict the order in which the
"Display Icon" operators will be executed.

Imagine: VisiQuest VisiQuest Visual Programming • 29

With the control connections in place, the second "Display Image" operator will
not be scheduled for execution until the first "Display Image" operator has
displayed its image, and the user has closed the Display Image window.

Manipulating Connections
Once a data flow or control connection has been made between two glyphs, it can
be changed either by connecting that glyph to a different glyph or by deleting the
connection altogether.

Clicking the left mouse button on the connection between two glyphs will bring up
a menu which you may use to delete the connection, save the file associated with
that connection (for data flow connections only), or set connection options directly.

Delete Connection

Choosing this selection from the menu will remove the connection.

 30 • VisiQuest Visual Programming Imagine: VisiQuest

Save Data to File

Offered as an option with data flow connections only, this item will bring up a
prompt where you can enter the filename in which to save a copy of the file
associated with that connection. Note that this option can only be used with
permanent data transport mechanisms, specifically shared memory, standard
unix files, or memory mapped files.

Connection Options

Selecting "Connection Options" from the Connection menu will bring up the
menuform for the connection object. You can use the menuform to set attributes
of the connection object, such as the line width of the connection, the connection
type, the highlight color and background color used by the connection.

Operator Execution

The Median Histogram glyph's "Run" button turns bright red while it is actively
executing.

A single operator can be executed by clicking on the run button of its glyph.
Alternatively, the entire visual program can be run by clicking on the "Run" button
that in the workspace Command Bar (it’s a green triangle), or by selecting "Run"
from the Workspace submenu. Regardless of how the execution is initiated, both
the "Run" button of the workspace Command Bar and the run button of the
currently executing glyph(s) will be switched to the "on" position (the button on the
glyph turns bright red) during execution.

Imagine: VisiQuest VisiQuest Visual Programming • 31

If an operator is running but idle, as with continuously running glyphs that are
waiting for new input and with xvroutines that have already been started up. Idle
routines will switch to bright read again only when they receive new input,
temporarily indicating a "non-idle" state until the new input has been processed
and they are idle once more.

Once a visual program has been constructed, there are two ways in which you
can execute the operators represented by the glyphs:

You can run the entire visual program at once, where order of operator
execution is determined by the data connections (and control connections, if
any) of the network.

You can execute individually one or more glyphs of the visual program
"manually", by clicking their Run buttons in succession. The data and control
connections in the workspace define the order in which the operators must be
run. When executing a workspace manually, start with the Input Glyphs. For
all other glyphs, you can run a glyph once all of its required input connections
have turned green.

Executing (or Halting) the Visual Program In Its
Entirety
After a network is constructed, click on the run button of the workspace Command
Bar or select "Run" from the Workspace menu to execute the entire visual
program. When you click the Run button, it will be disabled, and the Stop button
will be enabled.

As each glyph in the visual network is executed, its individual run button will
change from its "off" display to its "on" display (i.e., it glows red when running);
thus, it is easy to see at a glance which glyph(s) are executing at any given time.

To halt the execution of a workspace, click on the Stop button.

Run Mode
A VisiQuest workspace can be run in two different modes, described here and
immediately below; the Run Mode button is used to control the scheduling mode.
When the button is in single-iteration mode, it appears as above. In single-
iteration mode, the workspace is scheduled and run exactly one time. Any
changes to workspace parameters or input will not have an effect until the
program is executed again by clicking the run button.

The Run Mode button is, by default, in responsive mode. Clicking the Run Mode
button toggles it from responsive mode to single-iteration mode, and vice versa. In
responsive mode, it appears as shown above. When a program is executed in
responsive mode, the scheduler is always on, meaning that changes in
parameters or input cause the program to rerun those segments that are affected
by the changes as soon as the changes are detected by the scheduler. When the

 32 • VisiQuest Visual Programming Imagine: VisiQuest

Stop button is clicked, the program will cease to execute, but the scheduler will
continue to run. If the Run button is clicked again, the program will continue
execution from the state it was in when it was stopped rather than starting over
from the beginning. If you wish to execute the program from the beginning after
stopping it, click Reset before clicking Run.

When a program is executed, variables may be incremented, decremented, or
changed in some fashion from their original values. Other program parameters,
such as input files or calculated values, may also change during the course of
execution. Clicking the reset button returns any altered values, parameters, or
variables to their initial state. It also sets up the scheduler to re-examine the
program from the point of view of its never having been executed, so once
execution is invoked, the program is run in its entirety.

Because the network may contain several different paths, the scheduler will find a
correct sequence for executing the glyphs and run them in that order. Once
programs have been executed, if changes are made to the network, "Run" will re-
execute only those programs that are affected by the change. Selecting "Reset"
from the Workspace submenu (or clicking on the "Reset" button of the workspace
command bar) will "touch" all glyphs in the workspace so that a subsequent "Run"
will re-execute ALL glyphs, whether or not they have been modified.

Executing (or Halting) a Single Glyph
Each executable glyph contains a run button which can be used to execute that
operator individually. The run button is a square located in the center of the glyph.
By default, this square appears gray, signalling that it is off. When the operator is
being executed, the square turns red, signalling that it is on; when the operator is
finished executing (or is halted) the square reverts to its gray, off display.

Clicking the run button causes the operator represented by the glyph to be
executed. Clicking again on the run button halts execution of the operator.

NOTE: When executing glyphs "manually" as described here, it is important to follow the
data flow of the visual network. This is because you cannot successfully execute a
glyph unless all required input data are available as they would be if the entire
visual program were executed automatically.

Errors / Information Produced by Operator
Execution
Error Indication

If the execution of an operator fails, either because of an incorrect network
connection or because of an error within the process itself, the glyph console
button at the bottom of the glyph will turn red. Clicking the mouse on the glyph
console button displays a message window containing the error output written to
standard error by the operator.

Imagine: VisiQuest VisiQuest Visual Programming • 33

Info Indication

The glyph console button at the bottom of the glyph will turn green when the
operator produces information output during execution. Clicking the mouse on the
glyph console button displays message window containing the text written by the
operator to standard out.

Changing Operator Arguments (Using the
Pane of a Glyph)

Every program in VisiQuest has a pane, its graphical user interface that is used
when the program is accessed as an operator in VisiQuest Visual Programming
Environment. This GUI includes an item corresponding to each program
argument so that you may use the GUI to specify the desired value for each.

When accessed via VisiQuest Visual Programming Environment, all input of
arguments for an operator takes place on its pane. Thus, it is necessary to "open
up the pane" for a glyph whenever parameters for the operator are to be changed.
Open the pane for the glyph using the pane access button (the hand/document
icon in the upper left corner of the glyph), and then change operator argument
values as desired.

This is one of the most useful features of VisiQuest, because operator arguments
can be changed while a workspace is running. After changing one or more of the
arguments for a given operator, click the “Run” button in the Pane and that
operator will be re-executed with the new arguments. Once it has completed, then
all downstream operators will be re-executed, as per the data/control connections.
This make it easy to “experiment” with a workspace.

 34 • VisiQuest Visual Programming Imagine: VisiQuest

Clicking on the pane access button of a glyph opens up its pane. Here, the pane
for the "Shrink" operator is displayed; it consists of an input file selection, an
output file selection, and 5 float selections for width, height, depth, time, and
elements.

Text Selections
Text selections, or text boxes as they are sometimes referred to, are provided for
entering string, integer, float, and double values (and occasionally, filenames).
Typically, these appear as a title, followed by narrow text parameter boxes in
which the required information is entered by clicking the mouse pointer in the box
and typing in a value; you can also switch from text box to text box by pressing the
Tab key on the keyboard.

For bounded numerical values, scrollbars may be used to enter a value between
predefined limits. Position the mouse cursor on the scrollbar, hold down the left
button and move the mouse horizontally, releasing when it reflects the desired
level.

Typing a specific value in the text parameter box always implies that the value
entered will be a constant. In addition to entering constants, variables and
expressions can also be used with integer, float, and double arguments.

Filenames & File Browser
Names for input/output files may be typed directly. Alternatively, the file browser
may be used to locate and specify a file. Clicking on either the Input File or the
Output File button will bring up the file browser, which can be used to browse the
directory structure and select a file. It also provides access to the aliases
capability to select a file provided the SAMPLEDAT A toolbox has been installed.
Directories may be accessed either by clicking on a subdirectory name (or ../ to
back up) or by typing a pathname directly in the space at the bottom of the
browser.

Other Selections: Logicals, Cycles, Lists, Etc.
A variety of other types of selections are also found on panes; these include flags,
logicals, cycles, pulldown lists, display lists, string lists, and so on.

In the case of a flag, a square button appears in front of a label; selecting the
button implies a value of true for the flag, while leaving it unselected implies a
value of false. For a logical, a title will be followed by a button. Clicking on the
button will toggle back and forth between two labels indicating two boolean
values. A cycle is similar to a logical, except that the button will indicate more
than two values. A pulldown list looks similar to a logical or cycle, except that
when you click on the button, a pulldown menu will appear, from which you may
select a value. A displayed list is a window in which a number of items appear;
the highlighted item indicates the current value of the selection. A stringlist looks
like a string text selection, except that the title is really a button which you may use
to automatically select one of a predefined set of strings; alternatively, you may
enter your own string in the text parameter box. See the Toolbox Programmer's
Manual for more details on the meaning and use of each type of GUI item.

Imagine: VisiQuest VisiQuest Visual Programming • 35

Live Selections
"Live" parameters are indicated by a stylized lightening bolt pixmap that appears
to the right of the GUI selection box. When a selection is "live," changing the
value of the parameter will cause execution of the VisiQuest Visual Programming
Environment network downstream from the glyph containing the modified pane.

NOTE: The Live Selection feature is not yet implemented on the Windows platform. On
Windows, after changing the value of a selection in the pane, click the “Run”
button at the top of the pane to have the operator re-executed with the new
selection value. The glyphs downstream of the one whose selection value has
changed will be re-executed automatically, if the workspace is running.

Optional Selections
Optional parameters are prefaced by a small check box. When selected, the box
is checked, meaning the parameter value is to be used. If the optional box is left
unchecked, the parameter value is either to be ignored, or the default value used.

Toggles and Groups
Relationships between optional selections are varied and sometimes complex.
With a toggle, a set of selections having the same data type are grouped so that
only one of the group may be selected at any time. In contrast to toggles, groups
do not have to be of the same data type. A required mutually exclusive group
expects exactly one member of the group to be selected at any time. An optional
mutually exclusive group expects only one or none of the group members to be
selected at any time. A mutually inclusive group requires all or none of the group
members to be selected. A loose group requires at least one group member to be
selected. Groups can be nested to one level. For example, a mutually inclusive
group could be nested inside a mutually exclusive group, requiring you to select at
least one of A, B, or (C, D, and E). A mutually exclusive group could be nested
inside a mutually inclusive group, requiring that if you select A, you must also
select B and one of (C, D, or E). Using the grouping capability of the VisiQuest
GUI, some panes can impose a complex relationship between variables. Only a
few panes use these more advanced capabilities.

The Run Button
After all parameters on the pane have been set, the Run button allows execution
of the program from the pane. The program will execute using the argument
values as specified on the pane. Note that using the Run button on the pane is
the same as using the run button on the glyph.

The Help Button
The help button on the pane allows you to access the online help for the operator
represented by the glyph.

 36 • VisiQuest Visual Programming Imagine: VisiQuest

The Close Button
When you are finished with the pane, close it using the Close button; the glyph will
be updated with the new values as specified in the pane.

The Options Menu
Every pane has an Options submenu, which provides various operations
regarding the program represented by the glyph pane.

License

The License item displays the license associated with the program.

Composer...

The composer item brings up the software object editor so that you can edit the
program referenced by the glyph; in this way, VisiQuest integrates visual
programming with the software development environment. Please see the
documentation on Composer for more information about the software object
editor.

Object Info...

This selection will display an information window showing the current values of
some of the program object attributes. Attributes displayed include the toolbox in
which the program is installed, the name of the software object, the type
ofsoftware object, and the category, subcategory, and icon name which is used
with it in VisiQuest.

Runtime Logging

When Runtime Logging is set to "on," a record is kept for how many times the
program represented by the glyph executed. The duration of execution is also
recorded, so the results are reported in terms of number of executions per
second.

Process Debugging

When Process Debugging is turned on, execution of the glyph will take place
within the context of the debugger. A window with the debugging session will be
displayed, and you can use the debugger on the program the same way as you
would if it was executed from the command line.

The debug command used is specified with the VisiQuest_DEBUGGER
environment variable.

See the following section for more details.

GUI Editing and Save Changes

The pane of a program may be edited while the program is being accessed as an
operator in VisiQuest. For example, the layout of the GUI items in the pane may
be re-arranged, the titles of selections changed, and so on. The GUI Editing
button puts the pane in "edit mode" so that you may make changes. Edit mode
can also be toggled on and off by holding down the <shift> key and clicking the
left mouse button in the pane. For more information about editing panes, please

Imagine: VisiQuest VisiQuest Visual Programming • 37

see the documentation on guise. After the pane of the operator is changed as
desired, selecting "Save Changes" will save the changes to the GUI and re-
generate the code of the operator.

NOTE: Be careful when editing panes! Changing the GUI of a glyph is not specific to a
particular VisiQuest session; rather, it changes the GUI of the program itself, just
as you would if you edited the associated program with the VisiQuest software
development tools. Therefore, if you make a change, all other users at your site
accessing that operator via VisiQuest will be affected by the change.

Debugging
General Debugging Information

New features and innovations in VisiQuest reflect an effort to establish it as a
bona fide software development environment. One such feature, and a critical
component for any serious software development environment, is the availability
of an interactive debugger. Debuggers that are invoked from the command line
are typically not available to visual programming environments like VisiQuest
since there is no command line from which to call the debugging program.
VisiQuest solves the problem by allowing the debugger to be called from the glyph
pane.

As stated above, glyphs represent operators, software objects that perform
specified data processing tasks. When the debugger is active, it attaches to the
process generated by an operator when that operator is called in the course of
running a visual program. Since an operator is a compiled software object, the
debugger that is invoked by default is the one associated with the compiler used.
For example, if the operator was compiled with gcc, the debugger will default to
gdb, or if a Sun compiler was used, the default will be dbx.

However, choice of debugger is customizable, and can be set through an
environment variable. The example below shows the syntax and arguments for
setting the debugger on Solaris when the system is complied with Sun CC.

%setenv VisiQuest_DEBUGGER "xterm -e dbx %prog %pid"

Values that can be set in the argument string include:

%pid - active process id of process to be debugged
%prog - path to the program to be debugged
%fg - foreground color
%bg - background color
%g - geometry to be used

The debugger’s attachment is local; the debugger will attach only to the process
of the operator whose pane was used to invoke debugging in the first place, even
if multiple instances of the operator occur in a visual program. If you wish the
debugger to run for several operators, you must specify each case individually.

 38 • VisiQuest Visual Programming Imagine: VisiQuest

Running the Debugger

To start the debugger, you must have a workspace open that you wish to debug.
Identify the glyph that represents the operator you want to debug and opane the
pane. Select "Process Debugging" from the Options menu to indicate that the
operator in question is to run under the debugger.

Now run the program. When the flow of execution reaches the glyph for which you
just ruend on Process Debugging, a window with the debugger running in it will
display.

From this point, you can execute the regular set of dbx (or gdb, etc.) commands.

Notice that "Process Debugging" toggles from "<Off>" to "<On>" when process
debugging is selected. Select it again to reverse the process and turn debugging
off. Note that you must quit the debugging session to dismiss the debugging
window. Also, be aware that a separate debugging window will display for each
debugger invoked. This can be somewhat annoying if you happen to invike the
debugger for an operator inside a while loop, or other iterative hierarchical
strucure; a separate window will display for each loop iteration. You can avoid
filling the screen with debugging windows by setting up the loop for debugging
purposes to iterate only a couple of times. Return to the actual test condition when
debugging is complete.

Preferences
The Preferences subform, available from the Options menu on the VisiQuest
menu bar, allows you to set parameters that control various aspects of the
VisiQuest Visual Programming Environment. The Preferences subform consists
of five separate subpanes that can be selected via the buttons at the top of the
subform. The subpanes provide the ability to customize the VisiQuest GUI for the
Glyphs, the Workspace, the Canvas Grid, and the Command Bar. In addition,
toolboxes can be enabled and disabled from VisiQuest using the Preferences
subform.

Preference settings take effect for the current VisiQuest session when the "Apply
Changes" button is clicked. Note that changes indicated on subpanes that are not
currently displayed are also invoked, so you can make changes on more than one
subpane and click "Apply Changes" only one time to apply them all at once.

Imagine: VisiQuest VisiQuest Visual Programming • 39

Clicking "Restore Defaults" returns the Preferences settings to those that were in
effect when the current VisiQuest session was started.

"Save Preferences" saves the current Preferences settings to the $HOME/.kri/VQ/
VisiQuestPrefs file. This file is automatically read in when VisiQuest is started,
and the Preferences settings restored as specified.

"Close" dismisses the Preferences pane.

Each subpane and its attributes are described below.

Glyphs

Connection Type

This attribute allows you to control the type of connections that are used between
glyphs. By default, the Manhattan (right angle cornered) connection is used. Also
available are Direct Line (shortest route between two glyphs), Splines (curved
connections), Hexagon (hexagon cornered), and Diamond (zigzag cornered)
connections.

Display Glyph Finder on Start-Up

By default, the Glyph Finder launches when you start up the VisiQuest Visual
Programming Environment. If you do not want the Glyph Finder to launch on start-
up, deselect this check box. You can also launch the Glyph Finder using
Edit>Find.

Redraw Glyph Connections

This refers to how the glyph connections are automatically adjusted whenever a
glyph is moved. (Glyphs may be moved by placing the mouse cursor on the glyph,
pressing the mouse button, dragging the glyph to the desired position, then
releasing the button.) Using the value FALSE, the connections will be redrawn

 40 • VisiQuest Visual Programming Imagine: VisiQuest

AFTER the glyph is placed. Alternately, with "Connections" set to TRUE,
VisiQuest will continuously update the connection WHILE the glyph is being
moved. (Note, this may take longer than updating AFTER placement.)

Place Glyph

When you create a glyph, it will be placed automatically if this attribute is set to
FALSE. If you wish to place glyphs manually using the mouse, set this attribute to
TRUE.

Display Glyph

This attribute determines whether or not the glyph should be unmapped when its
pane is opened. By default, the glyph is always displayed, whether or not its pane
is opened.

Set Glyph Reporting

By default, this option is set to Enabled. When glyph reporting is enabled, if a
process writes to stdout or stderr, the information icon will appear under the glyph;
clicking on the information icon will display a window containing the text. If glyph
reporting is set to Disabled, all text written to stdout or stderr will go to the console.

Set Glyph Selection Color

This option will set a special highlight color for selected glyphs.

Imagine: VisiQuest VisiQuest Visual Programming • 41

The Workspace

Echo Execution

This attribute causes the executing processes to be echoed to either the log, the
console, or both, depending on which button under Echo Execution is selected.
When process execution is echoed to the console, the output will appear in the
console window below the VisiQuest workspace.

When process execution is echoed to the log, it will be written to the file which is
specified by the VisiQuest_LOG environment variable. Values are as follows:

1. "No Echoing"

2. "Echo to Console"

3. "Echo to Log"

4. "Echo to both Console and Log"

Set Background Color

The canvas background color can be set using this option. Enable the option by
clicking toggle button. Click the "Available Colors" button to display a list of colors
that can be used. Drag the mouse across the list and release it over the color you
want to select. This option and "Set Background Pixmap" are mutually exclusive.

Set Background Pixmap

The canvas background color can be set using this option. Enable the option by
clicking toggle button. Click the "Available Pixmaps" button to display a list of
pixmaps that can be used. Drag the mouse across the list and release it over the
pixmap you want to select. This option and "Set Background Color" are mutually
exclusive.

 42 • VisiQuest Visual Programming Imagine: VisiQuest

Data Transport Type

This toggle allows you to set the data transport type that will be used for creation
of all new data connections. It does not affect the data transport type of any
existing data connections. For details on the concept of data transport and on the
various data transports available in VisiQuest, see the Compiled Workspaces
section.

The Canvas Grid

Set Canvas Grid To

The canvas grid assists in the alignment of glyphs in the workspace. The grid may
be made Visible or Invisible by selecting the corresponding button in the
Preferences pane. Glyphs will snap to the upper-left corner of the nearest grid
whether or not the grid is visible.

Canvas Grid Size

If the grid is set to Visible, you may set the grid size (in number of pixels). A grid
size of 1, with the "Set Canvas Grid To" attribute set to Not Visible, is effectively
requesting "no grid."

Grid Color

if the grid is set to Visible, grid color can be set using the Grid Color option. Click
the labeled button to display a list of available colors. Drag the mouse over the
color list and release it on the preferred color. You can also type a color in the text
box, but be aware that some colors may not be available or the names you for
them use may not be recognized.

Imagine: VisiQuest VisiQuest Visual Programming • 43

The Command Bar

The group of command bar icons can be customized using the options on this
pane. Any single icon can be displayed or hidden depending on whether it is
selected or not on this pane. Command bar icons provide a swift method of
invoking VisiQuest commands without having to use the menus. If there are
commands that you use frequently, it is convenient to display the icon for that
command on the command bar so that you can access it easily. Those
commands that you use infrequently can be hidden and accessed via the menus.
A default set of icons appears on the command bar when VisiQuest first displays,
but your preferences can be saved so that they display automatically in future
sessions. The entire command bar can be hidden by selecting "Hide Command
Bar" from the Options menu. It can be redisplayed by selecting the counterpart
command, "Show Command Bar" from the same menu.

 44 • VisiQuest Visual Programming Imagine: VisiQuest

Toolboxes

When a toolbox is enabled in VisiQuest, all programs in that toolbox that have
their "Install in VisiQuest" attribute set to TRUE will appear as operators
accessable from the Glyph menus, the Accelerated Routines List, and the Finder
List. When a toolbox is disabled, its operators will not appear.

Enabled toolboxes appear in a list on the right, while disabled toolboxes appear in
a list on the left. To disable a toolbox, select it from the Enabled Toolboxes list and
click on the "Disable Toolbox" button. That toolbox will be moved to the list of
disabled toolboxes. Similarly, selecting a file from the Disabled Toolboxes list and
clicking on "Enable Toolbox" will move the toolbox to the Enabled Toolboxes list.

When the "Save Preferences" button is used, the enabled/disabled toolbox
specification will be written to a $HOME/.kri/VQ35/ToolboxList file. The next time
you run VisiQuest, this file is read in, and toolboxes will be enabled and disabled
accordingly.

Variables and Expressions
The "Variables" subform under the Workspace menu is used to define variables
and evaluate expressions within the VisiQuest Visual Programming Environment
programming environment. Once defined, variables and expressions can be used
in place of string, integer, float, and double arguments of glyphs. The use of
variables and expressions is required by many control structures; the Variables
window can also be used to query the values of variables being used in control
structures, and to change the values of those variables.

VisiQuest Visual Programming Environment includes a simple, textual
programming language for defining variables, mathematical expressions, and
functions. A variable in VisiQuest Visual Programming Environment is much the
same as a variable in any other programming language; it has a value and can be
referred to in expressions. An expression is a sequence of variables, literal

Imagine: VisiQuest VisiQuest Visual Programming • 45

values, function calls, and arithmetic operators. VisiQuest Visual Programming
Environment contains a large number of built-in functions that the user can call. In
addition, user-defined functions can be created and called.

Variables have three attributes: a definition, a data type, and a current value. The
definition is simply the last expression that was assigned to it in the Variables
window. The current value may be different from the value specified in the
definition if the variable has been changed by Expression or Loop glyphs in the
workspace. When a workspace is saved, the definition each variable in the
workspace is saved. When a workspace is reset or re-loaded, the definitions of its
variables are evaluated to initialize the the workspace variables.

To set variables or to enter an expression, place the cursor in the text box at the
top of the Variable window, and type the expression. Press the "Evaluate" button
to evaluate the expression. The value returned by the mathematical expression
parserwill be displayed as the "Evaluation Result".

The three lists below the Evaluation Result, from left to right, give the variable
name, the variable data type, and the current value of the variable.

Valid expressions may include variables, standard arithmetic and logical
operators, literal constants (like "21"), predefined constants (e.g. "pi"), and
function references. Any string of alphanumeric characters, beginning with a
letter, may be used as a variable.

Defining Variables
Unlike programming languages like C and Pascal, variables are not explicitly
declared. Instead, a new variable is created by assigning a value to it. To define
a variable, enter an assignment statement of the following form:

 46 • VisiQuest Visual Programming Imagine: VisiQuest

variable = expression

When this assignment statement is evaluated, the expression on the right side of
the equal sign is evaluated and the result is stored in the variable. Whenever the
variable appears in an expression its value is retrieved and used in place of the
variable reference. Using a Pascal-style assignment statement, "x := y", selects
an alternate method of defining a variable that will not evaluate the expression on
the right side, but will instead save the expression with the variable. In this case,
whenever the variable is used in an expression, the expression is re-evaluated
and the resulting value used in place of the variable reference. If the expression
contains references to other variables, the current value of the variable will
depend on the current value of the referenced variables.

The example below illustrates these concepts. The variable "foo" is assigned a
value of 100 using a standard (immediate) assignment statement. "bar" is
assigned a value that depends on foo, also using an immediate assignment.
Finally, "baz" is assigned a value that depends on foo using a deferred
assignment statement.

foo = 100
bar = foo + 10 (bar = 110)
baz := foo + 10 (baz = 110)
foo = 200 (foo = 200, bar = 110, baz = 210)

To check the value of a defined variable or to evaluate an expression, enter the
variable or expression in the "Expression" selection and click "Evaluate". The
value will be displayed as the "Evaluation Result". Note that you must delete the
previous entry before typing in a new entry. White space is ignored.

For example, to set x equal to 10, type "x = 10" in the "Expression" text parameter
box, then click on "Evaluate" to enter it. The result, "10," will be displayed as the
"Evaluation Result" as well as in the variable Value list.

Data Types
Variables can contain either numeric values or character strings. Variables are not
declared to be of any particular type and can be assigned either kind of value.
String constants are enclosed in double quotes. When evaluating expressions,
conversion between data types is performed as necessary. The example below
illustrates mixing data types in expressions. The "+" operator performs simple
addition, while the "." operator concatenates strings (note that the "." operator
must have a space on either side of it).

x = 10 (x has a numeric value of 10)
str = "20" (str has a string value of "20")
x + str (yields 30)
x . str (yields "1020")

Incrementing/Decrementing Variables
Use of automatic increment/decrement expressions can be used to modify the
value of a variable without changing its original definition.

To increment x by 1, enter "x++" and click on "Evaluate".

To increment x by n (where n is a number), enter "x += n" and click on

Imagine: VisiQuest VisiQuest Visual Programming • 47

"Evaluate".

To decrement x by 1, enter "x--" and click on "Evaluate".

To decrement x by n (where n is a number), enter "x -= n" and click on
"Evaluate".

Checking Values of Variables
To check the value of x, enter "x" (without the quotes) in the "Expression" text
parameter box and click on "Evaluate". The current value of x will be displayed as
the "Result of Evaluation" as well as in the Variables Definition list.

Evaluating Expressions Using Defined
Variables
Once a variable has been defined, expressions using that variable may be
evaluated. Comparisons can be done and new variables can be defined that
depend on the previously defined variable. There are also a number of
predefined functions that can be used on the variable.

Example: Comparisons

To see if x is greater than 0, enter "x > 0", and click on "Evaluate". The "Result of
Evaluation" is "1" for TRUE, "0" for FALSE.

Example: Use of Predefined Functions

To determine the natural log of x, enter "ln(x)" in the "Expression" text box and
click on "Evaluate".

Example: Defining New Variables Depending on Previous Variables

To define a variable "y" that depends on x, enter "y := x + 10" in the "Expression"
text parameter box.

Example: Changing Values of Variables

To change the value of a variable, simply enter a new expression that defines the
new value. For example, to set x to 100, enter "x = 100". Any variables that
depend on x will have their values automatically recalculated and updated to
reflect the new value of x.

User-defined Functions
VisiQuest Visual Programming Environment allows users to define their own
functions. The syntax is similar to defining variables: a function symbol and
argument list followed by an equal sign and an expression that uses the variables
in the argument list. For example:

f(x) := ln(x / 2)
g(x) := f(x) * 100

 48 • VisiQuest Visual Programming Imagine: VisiQuest

Scope Of Variables
Variables are defined with respect to the workspace selected by name from the
Variable list. In workspaces having no hierarchy (ie, no procedures, no while
loops, and no count loops), all variables are defined with respect to the main
VisiQuest Visual Programming Environment workspace. These are considered
global, and can be used by all procedures and loops within the main workspace.
Variables defined within a particular procedure or loop may be used only within
that procedure or loop, as well as in any subordinate procedures or loops.

Each subordinate workspace may have its own local variables. Subordinate
workspaces are listed by name in the variables list, along with global variables.
When a "+" symbol appears in front of the name, the variables in that workspace
will not be shown. Double clicking on the "+" symbol will "open" the subordinate
workspace's variable list; the "-" symbol will appear in front of the name, and the
variables that are local to that workspace will appear, indented, below the
workspace name. Double clicking on the "-" symbol will "close" the workspace's
variable list. In this way, you may access variables that are local to a subordinate
workspace.

For example, suppose the main workspace contains defined variables x, y, and z.
The main workspace contains a count loop, which uses the variable i to iterate,
and a while loop, which uses the variable j to iterate. The count loop contains a
procedure, which has defined variables a and b. This scenario implies three levels
of scope:

1. The main VisiQuest Visual Programming Environment workspace
"MainWorkspace" (variables x, y, and z),

2. a. The count loop, named by default "Count Loop" (variable i),
b. The while loop, named by default "While Loop" (variable j),

3. The procedure, named by default "Procedure" (variables a and b).
Being at the lowest level, the procedure can use all variables from the workspaces
"above" it. It gets a and b from its own local definitions; it can also access the
value of i from its count loop parent, and it can use x, y, and z from the main
workspace. The only variable to which it does not have access is "j" from the
while loop that is not part of its heritage.

At the middle level, the count loop can utilize its own variable i, as well as the x, y,
and z of the main workspace. It does not, however, have access to the definition
of j (defined by the while loop), or the a and b variables used by the procedure.
Similarly, the while loop can utilize its own variable j, as well as the x, y, and z of
the main workspace.

At the top level, the main workspace has access only to x, y, and z.

If an attempt is made to evaluate an undefined variable, an error message reading
"Error! Unknown variable or constant 'variable'"will be displayed.

Variables used by Loops and Expression

Imagine: VisiQuest VisiQuest Visual Programming • 49

Glyphs
A variable does not have to be defined using the Variables window before it can
be used in a loop or an expression glyph. Variables without previous definitions
can be defined directly using the pane of a loop or an expression glyph; such
variables will not be defined (and will not appear on in the lists of the Variables
window) until the workspace is run for the first time.

For example, suppose a visual network contains an Expression glyph that sets "n
= 0". Later, the value of "n" is incremented using another expression glyph inside
a loop. It is not necessary to use the Variables window to define n, as it will be
defined at the scope of the workspace in which the expression glyph appears as
soon as the network is executed and the expression glyph is encountered for the
first time. The value of n, however, can be monitored with the Variables window
as it is updated by the expression glyph inside the loop.

Using Variables with Filenames or Strings
Variables can be used to specify filenames or string parameters to glyphs. One
common use of this is when a VisiQuest Visual Programming Environment
network is looping through a series of input or output files with numbered prefixes
or postfixes. When used as part of filenames or strings, variables must be
preceded with a dollar sign ($). For example, suppose a visual program is to be
run on a set of 15 input files named "data.1", "data.2", "data.3", ... "data.15". The
files are referenced by a glyph contained in in a count loop that uses the variable
"i". In the glyph's user interface pane, specify "data.$i" (without the quotes) as the
filename.

Each time the loop executes the glyph, VisiQuest Visual Programming
Environment replaces the variable reference in the filename with the current value
of the variable. This generates the sequence of filenames "data.1", "data.2", etc.

One problem with this example is that when the files are listed, they will not be in
numeric order, i.e. "file.11" will appear before "file.2". This can be avoided by
using variable formatting syntax when referring to variables within filenames or
strings. This syntax is: a dollar sign, a left squiggly bracket, the variable name, a
colon, a printf-style format specifier (without the percent sign), and a right squiggly
bracket. For example, if the value of i is 8:

file.$i -> file.8
file.${i:04d} -> file.0008
file.$(i:4d} -> "file. 4"

Two final notes on variables within strings and filenames:

First, if a variable reference in a string or filename cannot be resolved,
VisiQuest Visual Programming Environment attempts to look it up in the
user's environment, e.g. "$HOME". If that also fails, the reference is left
unchanged inside the string.

Second, if you need to include a dollar sign in a string, place a back-slash in
front of it. Here are some more examples.

$HOME/file.$i -> /users/frank/file.10
file.$undefined -> file.$undefined
"Price is \\$$price" -> "Price is $12.34"

 50 • VisiQuest Visual Programming Imagine: VisiQuest

Deleting Variables
To delete a variable, select the variable to be deleted from the Variable list and
then click "Delete Selected Variable".

Note that any variables depending on the deleted variables will have to be
redefined; the value of a variable that depends on an undefined variable is itself
undefined.

Predefined Constants
Predefined constants recognized by the VisiQuest mathematical expression
parser are summarized below.

Constant Value Description

pi 3.14159265358979323846 pi

pi_2 1.57079632679489661923 pi/2

pi_4 0.78539816339744830962 pi/4

sqrtpi 1.77245385090551602730 square root of pi

sqrt2 1.41421356237309504880 square root of 2

sqrt1_2 0.70710678118654752440 square root of 0.5

e 2.71828182845904523536 natural number e

log10e 0.43429448190325182765 common log of e

ln2 0.69314718055994530942 natural log of 2

ln10 2.30258509299404568402 natural log of 10

log2e 1.4426950408889634074 log base 2 of e (1/ln2)

deg 57.29577951308232087680 radians to degrees (180/pi)

gamma 0.57721566490153286060 Euler's constant

phi 1.61803398874989484820

maxfl 1.0e+38 a large floating point value

maxint 2147483647 largest 32 bit integer value

maxshort 32767 largest 16 bit short value

Imagine: VisiQuest VisiQuest Visual Programming • 51

Predefined Functions
The standard functions recognized by the VisiQuest mathematical expression
parser are summarized below.

Function Definition Description

sin sin(x) sine of x

cos cos(x) cosine of x

tan tan(x) tangent of x

sinh sinh(x) hyperbolic sine of x

cosh cosh(x) hyperbolic cosine of x

tanh tanh(x) hyperbolic tangent of x

asin asin(x) arc sine of x (range -J/2 to J/2)

acos acos(x) arc cosine of x (range 0 to J)

atan atan(x) arc tangent of x (range -J/2 to J/2)

atan2 atan(y,x) arc tangent of y/x (range -pi to pi)

sqrt sqrt(x) square root of x

hypot hypot(x,y) Euclidean distance (returns sqrt(x*x
+ y*y))

exp exp(x) exponential function of x

expm1 expm1(x) (exp(x) - 1) even for small x

ln ln(x) natural log of x

log10 log10(x) log base 10 of x

log1p log1p(x) log(1+x) even for small x

gamma gamma(x) log gamma function of x

abs abs(x) absolute value of |x|

floor floor(x) largest integer not greater than x

ceil ceil(x) smallest integer not less than x

rint rint(x)

pow pow(x,y) x raised to the power of y

fact fact(x) integer factorial of x

gnoise gnoise(x) gaussian noise function

unoise unoise(x) uniform noise function

impulse impulse(x) impulse function

 52 • VisiQuest Visual Programming Imagine: VisiQuest

The following functions take a string argument and return a new string.

If/Else Expressions

There are two kinds of if/else expressions, a condition expression and an if-
expression. They both have the same effect but use a different syntax. The
conditional expression consists of an expression followed by a question mark and
two expressions separated by a colon.

expr1 ? expr2 : expr3
If expr1 evaluates to a non-zero value, expr2 is evaluated, otherwise expr3 is
evaluated. The if-expression accomplishes the same thing with a slightly less
obscure syntax.

if (expr1) expr2 else expr3
The following examples both set "i" and performs a conditional increment of the
variable i, (i = (i+1)%11).

i = (i > 10) ? 0 : i + 1
i = if (i > 10) 0 else i + 1

step step(x) unit step function

sign sign(x) sign function

j0 j0(x) bessel functions

j1 j1(x) bessel functions

y0 y0(x) bessel functions

y1 y1(x) bessel functions

erfc erfc(x) error function for 1.0 - erf(x)

erf erf(x)
where erf(x) = 2/sqrt(pi)*integral
from 0 to x of exp(-t*t) dt.

error function of x

Function Definition Description

make_upper make_upper(str) make upper case

make_lower make_lower(str) make lower case

dirname dirname(path) get the directory part of a path

basename basename(path) get the filename part of a path

extension extension(path) get the file part of a path

Function Definition Description

Imagine: VisiQuest VisiQuest Visual Programming • 53

User Defined Functions

You may also define your own function, using a method similar to that of defining
variables. In some instances, this proves to be easier than trying to keep track of
many dependent expressions or evaluating complex expressions.

For instance:

f(x,y)= cos(sqrt(x**2+y**2))*exp(0.0-sqrt(x**2+y**2)/4)
To evaluate the above expression at (x = 0) and (y = 0), simply enter "f(0,0)" which
should result in the value of "1.0". You may use predefined or previously-defined
expressions as well as variables in evaluating the function "f". For example, it is
valid to enter "f(-pi*2,2+x)" for evaluation. In this example evaluation, the "x" in
"f(x,y)" is explicitly defined as "-pi*2" and the "y" in "f(x,y)" is explicitly defined as
"2+x." Contrastingly, if you enter an expression that is dependent on variables not
explicitly defined within the function, as in "f(x,y)," then the variable list will be
searched for the current values of the variables used.

f(x) = x + z
The variable z is not defined by the function "f" so the current variable list will be
searched (if the variable is not defined then an error will be displayed).

Recursive definitions are allowed; however, it is important to understand that
there are no checks on the stack size. Thus, it is possible to core dump the
application using recursive definitions. With any recursive function, you must to
make sure that the recursive expression has a base case in order to prevent a
stack overflow from occurring.

For example, the intuitive way to define a Fibonacci sequence is with the
fib(n) = (n == 0 || n == 1) ? n : fib(n-1) + fib(n-2)

The Fibonacci sequence of 10, "fib(10)", should return 55. The base case occurs
when n equals 0 or 1. However, if you enter "fib(-2)", a stack overflow will occur,
core dumping the application. Consider, instead, the following definition of the
Fibonacci sequence:

fib(n) = (n > 1) ? fib(n-1) + fib(n-2) : n

Although this is not the strict definition of a Fibonacci sequence, this function will
protect the stack from overflowing when a negative number is used as the
argument.

Logical Operators
The logical operators used by the VisiQuest mathematical expression parser to
evaluate logical expressions are summarized below. The result of an evaluation
will be returned as "1" for TRUE and "0" for FALSE.

Logical (C style) Logical (Fortran style) Description

== .EQ See if two expressions are equal

> .GT See if first expr is greater than second

< .LT See if first expr is less than second

>= .GE See if first expr is greater/equal than second

 54 • VisiQuest Visual Programming Imagine: VisiQuest

Arithmetic Operators
Valid expressions recognized by the VisiQuest mathematical expression parser
may include the standard arithmetic operators summarized below.

Arithmetic Bit-wise Operators

Valid bit-wise expressions may include the following standard C style operators.
Note: all expressions will be evaluated and then cast to integers in order to do the
arithmetic bit-wise operation.

<= .LE See if first expr is less/equal than second

!= .NE See if first expr is not equal to second

&& .AND.:AND AND two expressions together

|| .OR.:OR OR two expressions together

! .NOT.:NOT NOT one expression

Symbol Meaning Description

* Multiply multiple the two expressions together

/ Divide divide the first expression by the second

- Subtract subtract the second expression from the first

+ Add add the two expressions together

** Power take the first expression to the power of the second

Symbol Meaning Description

<< Shift Left shift the first expr to the left by second

>> Shift Right shift the first expr to the right by second

& Bit wise AND and the two expressions together

| Bit wise OR or the two expressions together

^ Bit wise XOR exclusive or two expressions together

~ Bit wise INVERT invert the expression

% Bit wise MODULOS modulos the expression

Logical (C style) Logical (Fortran style) Description

Imagine: VisiQuest VisiQuest Visual Programming • 55

Arithmetic Assignment Operators

Arithmetic assignment operators are used to update a current expression to a new
expression. The new and old expressions are operated on by the type of
assignment operator. An example is the "+=" operator which adds the new
expression to the existing expression. Valid assignment expressions may include
the following standard C style operators.

String Operators

VisiQuest Visual Programming Environment supports the following string
operators and assignment operators.

Examples

str = "Hello" . " " . "world."

str .= " Just testing."

Symbol Meaning Description

*= Multiply multiply the current expr by the original
expr

/= Divide divide the current expr from the original
expr

-= Subtract subtract the current expr from the
original expr

+= Add add the current expr to the original expr

<<= Shift Left shift the first expression to the left by
second

>>= Shift Right shift the first expression to the right by
second

&= Bit wise AND and the current expr with the original
expr

|= Bit wise OR or the current expr with the original expr

^= Bit wise XOR exclusive or the current expr with the
original expr

Symbol Meaning Description

\. Concatenate concatenate two strings

\.= Concatenating assignment concatenate onto a variable

 56 • VisiQuest Visual Programming Imagine: VisiQuest

Procedures

Procedure glyphs differ from "regular" glyphs in that they have a "procedure"
pixmap in the middle and an "Open Workspace" button at the top-right corner.

Hierarchy is supported within the VisiQuest Visual Programming Environment in
the form of procedures. Similar in concept to a subroutine in a textual
programming language, a visual programming procedure allows you to
modularize a visual program so that certain operations are confined to a particular
location within the visual program. Procedures promote readability of a visual
program. In addition, they allow a certain portion of a network that performs a
particular function to be used multiple times within a visual program. The use of
procedures is especially effective with large and complex workspaces, as well as
with workspaces that are required to perform a particular task a number of times.

A procedure in this context is for use in the current workspace only; thus, it can be
considered a "local" procedure. If you want a procedure that is to be shared
among different VisiQuest workspaces, you should first follow the instructions
given here for creation of a procedure. Then, with the procedure open, create a
compiled workspace from the procedure. Once a compiled workspace has been
created from the procedure, it can be considered "global"; that is, the procedure
will be accessible from the Glyph Menus, Accelerated Routines List, and
Accelerated Finder list just like any other operator, and can be used by a number
of different visual programs.

Creating Procedures
If there are no inputs connected to the set of glyphs when the procedure is
created, then the procedure will have no inputs ports. So the user should make
sure that there is at least one glyph with an incoming connection that extends
beyond the selection. Even if a procedure is created with no inputs, this can be
fixed by editing the procedure. The user needs to click on the file folder portion of
the procedure glyph. This will open the procedure in the VPE for editing. Then
open the pane for the glyph whose inputs they want to export. In the pane, move
the mouse over the input to be exported. It will turn yellow, and a pop-up
message will appear instructing them to right-click the mouse in order to export
this parameter. At that point they can click the right mouse button, and select
Export. This will cause the parameter to be exported, and an input data path can
now be connected to the procedure.

To create a procedure:

1. First, use rubberbanding to select the set of glyphs on the workspace that are
to be incorporated into the procedure. Be sure that only those glyphs that are
to be made part of the procedure are selected.

2. Select "Create Procedure" from the Control menu (or use the appropriate icon
from the workspace command bar to create the procedure). The selected
glyphs will be removed from the workspace in preparation for procedure

Imagine: VisiQuest VisiQuest Visual Programming • 57

creation. Move the cursor into the workspace; it will be changed to the "busy"
cursor while the procedure is being created. When the procedure glyph is
ready to be placed, the cursor will be changed to the "arrow" cursor.

3. Place the new procedure by clicking at the desired location in the workspace.
After you place the procedure glyph, the network connections will be
automatically redrawn with respect to the new procedure.

In a very simple network, two glyphs have been selected to be incorporated into a
procedure.

The procedure has been created to contain the "Shrink" and "Rotate" glyphs.

Inside the open procedure containing the "Shrink" and "Rotate" glyphs.

Opening/Closing Procedures
To open the procedure, click on the "Open Workspace" button that appears in the
upper-right corner of the glyph. The main VisiQuest Visual Programming
Environment workspace, displaying the "outer" visual program, will be replaced
with the procedure workspace, displaying the network that comprises the
procedure. Note that the workspace name label that appears below the
workspace will change from "Active Workspace: MainWorkspace" to
"MainWorkspace.Procedure"; this label helps to remind you of your "location"
within the visual program at any given time.

When the procedure workspace is open, all operations initiated through use of the
workspace Command Bar, the "Workspace" menu, and the "Edit" menu will apply
to the procedure rather than to the main VisiQuest Visual Programming
Environment workspace.

 58 • VisiQuest Visual Programming Imagine: VisiQuest

To close the procedure workspace, click on the "Close" minus-sign that appears
in the upper-left corner of the procedure workspace. The procedure workspace
will be replaced with the main VisiQuest Visual Programming Environment
workspace once again.

You can also click the up-arrow that appears in the upper-right corner of the
procedure workspace to create a top-level window for the procedure and to move
the workspace to a another location on the screen; moving the top-level
workspace allows the procedure glyph in the main VisiQuest Visual Programming
Environment workspace beneath to be seen. Click the now-inverted white
triangle in the upper-right corner of the procedure glyph to close the procedure
workspace.

Renaming Procedures
By default, the name of a newly created procedure is "Procedure." We
recommend improving the readability of the visual program by giving the
procedure a more descriptive name. To change the name of a procedure, click on
the current name, "Procedure," that appears underneath the procedure glyph; a
pop-up prompt in which you can enter a new name displays. Enter the desired
name in the string selection that appears in the popup prompt, and click "OK."
Note that this process can be used to rename any glyph, not only procedure
glyphs.

Copying Procedures
Procedures may be copied or duplicated using the editing features of VisiQuest
Visual Programming Environment. However, it is important to be aware that once
a procedure is copied or duplicated, the copied glyph is separate and independent
from the original. For example, if you make multiple copies of a procedure, and
then make a modification to one of the copies, the modification will not be
reflected in any of the other procedures.

Nesting Procedures
If desired, procedures may be nested. Creation of nested procedures may be
done in two ways: (1) If one or more procedures has already been incorporated
into a visual program, repeating the procedure creation process in the main
VisiQuest Visual Programming Environment workspace and including an existing
procedure glyph in the new procedure will cause the existing procedure to be
nested inside the newly created procedure; (2) If an existing procedure is open,
repeating the procedure creation process inside the procedure workspace will
cause the newly created procedure to be nested inside the existing procedure.

Control Structures
Control structures are available from the Create menu. They allow you to create
more complex visual programs by providing constructs that you may use to direct
the flow of your visual program. In this context, "flow" refers to both "control flow"
and "data flow;" when there is more than one possibility for data flow, control
structures are used to determine which path the data flow will take.

Control structures fall into two major categories: conditional constructs and
looping constructs. Both types of constructs are discussed in detail below.

Imagine: VisiQuest VisiQuest Visual Programming • 59

Conditional constructs imply that control flow of the visual program will be directed
one way or another, depending on the value of variables defined for the
workspace. The available conditional constructs include:

If/Else

Directs data flow to one path if a specified condition is met, to another path if
the condition is not met.
Merge

Directs data flow from two separate paths to the same path, whether data
arrives from the first path, the second path, or both; no condition is involved.
Switch

Selects one of two inputs for use by the visual network, depending on the
value of a conditional statement.
Trigger

Delays execution of a glyph until data is made available by another glyph
which is not otherwise connected to the dependent glyph.
Expression

Sets the value of a variable; used in conjunction with other control structures
for purposes of variable initialization and/or modification.

In contrast, looping constructs cause control flow of the visual program to iterate
through a particular section of the network multiple times. Looping constructs
depend on the value of variables to determine how many times the control flow
will iterate on the specified section of the network. The available looping
constructs are:

Count Loop

Causes the data flow to iterate through a particular section of network a
specified number of times.
While Loop

Causes the data flow to iterate through a particular section of network as long
as a particular condition is met.

Creation of a Control Glyph
Control structures in VisiQuest Visual Programming Environment are represented
by special purpose glyphs. The glyphs representing control structures are
accessible from the Control menu; selecting one of the items in this menu will
cause the corresponding glyph to appear in the workspace.

 60 • VisiQuest Visual Programming Imagine: VisiQuest

Conditional Constructs
If/Else

The if/else conditional construct is used to divert data flow in a visual network into
one of two paths. Data flow will be directed to the upper path if a specified
condition is TRUE; it will follow the lower path if the specified condition is FALSE.

When data is available at the input connection of the if/else glyph, the specified
expression is evaluated. If the expression is evaluated as TRUE, the input
connection data is passed to the upper (TRUE) output connection; if the
expression is evaluated as FALSE, the input connection data is passed to the
lower (FALSE) output connection. Data flow will then progress downstream from
the if/else glyph to the rest of the network.

To use the if/else conditional construct:

1. Begin by creating an if/else glyph.

2. Use the "Variables" window to define and initialize the variable that will be
used in the conditional expression for the if/else conditional construct, if it has
not already been defined.

3. Open the pane for the if/else glyph and type in the expression that defines the
condition that will determine how the data flow is to be directed. Be sure to
provide an expression that will evaluate as boolean (TRUE or FALSE).

4. Close the pane, and connect the if/else glyph at the desired location in the
visual program.

Imagine: VisiQuest VisiQuest Visual Programming • 61

When the data flow of the visual program reaches the if/else glyph, the specified
condition will be evaluated and the data will be propagated to one of the two
output connections, depending on whether the expression was evaluated as
TRUE or FALSE.

A visual network containing an if/else glyph. The pane for the if/else glyph is
displayed to the lower left.

In the example above, the variable "i" has been defined and set to 0 using the
"Variables" window. The condition specified on the pane for the if/else glyph is "i >
0". If the condition evaluates as TRUE, the input image is passed to the first
output of the if/else glyph, which is the "Display Image" glyph. However, since "i"
is set to 0, the condition is evaluated as FALSE; accordingly, the input image is
routed to the second output of the if/else glyph, which is the "Icon" glyph. Thus,
the result of the visual program is that the input image displays as an icon. Note
that when the conditional expression of the if/else glyph is evaluated as FALSE,
the fact that data will flow to the second output as a result of the evaluation is
reflected by the pixmap on the if/else glyph, which is highlighted to reflect
"connection" between the input and the second output.

If the variable "i" is modified to have a value greater than 0, and then the visual
network is reset and rerun, then the data flow in this network will take the upper
path, and the input image will be displayed at full size.

 62 • VisiQuest Visual Programming Imagine: VisiQuest

Merge

The merge control construct is used to merge two paths of a visual program into
one.

When data is available at either of the input connections of the merge glyph, the
data flow will be directed to the single output connection.

To use the merge control construct:

1. Begin by creating a merge glyph.

2. Connect the output of the last glyph in the first path to the first input of the
merge glyph; connect the output of the last glyph in the second path to the
second input of the merge glyph.

The operation of the merge glyph will differ depending on whether or not it is
possible for data to flow across both paths at the same time.

In the first case, when the two independent paths have been created with the use
of an if/else glyph, it is not possible for data to flow across both paths at once;
either one path will be active, or the other one will, but not both. In this case, the
merge glyph is simply used to rejoin the two paths into one; this approach is
easier and visually more efficient than the alternative, which is to replicate the
downstream portion of the visual network and use identical segments for each
path. When data becomes available to the merge glyph, regardless of which path
was determined by the if/else glyph, the input is simply propagated directly to the
output of the merge glyph and the data flow continues downstream in a single
path.

In the second case, when the two independent paths have separate origins and
are not controlled by some conditional construct, it is possible for both data flow
paths to be used simultaneously. When this is the case, the merge glyph will
propagate the data from either path as soon as it becomes available. In the case
that both paths produce available data at the same time, the first input will be

Imagine: VisiQuest VisiQuest Visual Programming • 63

passed to the output; immediately following it, the second input will be passed to
the output. Thus, the data flow of the two paths will "take turns" moving through
the merge glyph.

A visual network containing an merge glyph used to reconnect two data flow paths
produced by an if/else glyph.

In the example illustrated above, a merge glyph is used to reconnect the two data
flow paths produced by an if/else glyph. If the variable "i" evaluates to an even
number (ie, if "(i%2) == 0" evaluates as TRUE), the "Floating Ball" input image will
be directed into the "Clip Above" glyph. If the variable "i" evaluates to an odd
number (ie, if "(i%2) == 0" is evaluated as FALSE), the input image will be
directed into the "Thresh Above" glyph. The merge glyph is used to direct the
resulting output into the "AND" glyph, regardless of whether the input image is
clipped or thresholded. The clipped (or thresholded) image is then AND-ed with
the original floating ball, and the result is displayed in iconic form. In the example
illustrated above, the variable "i" had been set to 10, so that the input image was
clipped.

A visual network containing an merge glyph used to connect two data flow paths
with different origins.

In the example illustrated above, a merge glyph directs two separate data flow
paths into the "Display Icon" glyph, one after the other. The top path has the
"Floating Ball" input image being processed by a "NOR" operator; the bottom path
simply provides the "Spanish Gull" input image with no data processing. Since
the bottom path will execute faster, the icon will first display the gull image. After
a slight delay while the ball input image is processed by the "NOR" operator, the
icon will be updated to display the modified ball image.

 64 • VisiQuest Visual Programming Imagine: VisiQuest

Switch

The switch control construct is used to specify which of two inputs will be used by
a visual network, depending on a conditional expression. Data will be obtained
from the first input if a specified condition is TRUE; it will be obtained from the
second path if the specified condition is FALSE.

When data is available at both of the two input connections of the switch glyph,
the specified expression is evaluated. If the expression is evaluated as TRUE,
the data is passed from the first (TRUE) input connection of the switch to the
output of the switch. If the expression is evaluated as FALSE, the data from the
second (FALSE) input connection of the switch to the output of the switch.

To use the switch control construct:

1. Begin by creating an switch glyph.

2. Use the "Variables" window to define and initialize the variable that will be
used in the conditional expression for the switch control construct if it has not
already been defined.

3. Next, open the pane for the switch glyph and type in the expression that
defines the condition to determine how the data flow is directed. Be sure to
provide an expression that will evaluate as boolean (TRUE or FALSE).

4. Close the pane of the switch glyph.

5. Connect the switch glyph at the desired location in the visual program.

Imagine: VisiQuest VisiQuest Visual Programming • 65

When the data flow of the visual program reaches the switch glyph, the specified
condition will be evaluated and the data will be passed from one of the two input
connections to the output connection, depending on whether the expression was
evaluated as TRUE or FALSE.

A visual network containing a switch glyph.

The condition specified on the pane for the switch glyph is "(i % 2) == 0". If the
condition was evaluated as TRUE, the first input to the switch, signal
"plot2d:brain," would be passed to the output of the switch glyph and would
display as a 2D plot. However, since the current value of "i" is set to 5, the
condition is evaluated as FALSE, and, the second input to the switch, signal
"plot2d:cosine," is passed to the output of the switch glyph. Therefore, the result
of the visual program is that the cosine curve is displayed as the 2D plot.

If the variable "i" is modified to have an even value rather than an odd value, and
the visual network is reset and rerun, then the data flow in this network will
originate from the first input to the switch, and the displayed 2D plot will be the
signal of the healthy NMR brain scan.

Trigger

The trigger control construct is used to control the scheduling of a data path. The
use of a trigger control construct is similar to the use of a control connection in that
it allows you to make the execution of a particular glyph dependent on the
execution of a second glyph that does not supply the data flow for the first glyph.

 66 • VisiQuest Visual Programming Imagine: VisiQuest

With a control connection, however, the dependent glyph cannot execute until the
glyph on which it depends has completely finished executing. In contrast, a
trigger is used when the dependent glyph needs to execute as soon as the glyph
on which it depends makes data available, regardless of whether or not it has
finished executing.

As soon as data is available at the input connection of the trigger glyph, the trigger
will allow the dependent glyph to be scheduled. The dependent glyph will not be
scheduled prior to that, regardless of whether its input connection has data
available or not.

To use the trigger control construct:

1. Begin by creating a trigger glyph.

2. Connect the output of the glyph which passes data to the first (upper) input of
trigger. Connect the output of the triggering glyph to the second (lower) input
of trigger.

When the data flow of of the visual program reaches the trigger, its execution will
be delayed until the glyph providing the input to the trigger makes data available.

A visual network containing a trigger glyph.

In the example illustrated above, the trigger glyph is used to make the display of
the VW icon dependent on the output of the fft. If the "Images (Misc)" glyph was
connected directly to the "Icon" glyph, the VW would be displayed as an icon
immediately. However, by using the trigger glyph to intervene, the "Icon" operator
will not be scheduled for execution until after the "FFT" operator has been run on
its own input image, the moon. As soon as the FFT operator makes data
available, the VW input image will be displayed by the icon operator.

Expression

The expression control construct is used to evaluate an expression at a certain
point in the network. The expression glyph provides a convenient way to
reinitialize variables within a loop construct, initialize variables prior to the
execution of another control construct, or to set new variables at any point in a
network.

Imagine: VisiQuest VisiQuest Visual Programming • 67

When data is available at the input connection, the specified expression is
evaluated. The input connection data is then propagated to the output
connection. Data flow will then progress downstream from the expression glyph
to the rest of the network.

To use the expression control construct:

1. Begin by creating an expression glyph.

2. Open the pane for the expression glyph and type the expression that defines
the variable, initializes the variable, or modifies the value of the variable.

3. Close the pane of the expression glyph.

4. Connect the expression glyph at the desired location in the visual program.
When the data flow of the visual program reaches the expression glyph, the
specified expression will be evaluated before the data is propagated to the output
connection of the expression glyph.

A visual network containing an expression glyph.

In the example illustrated above, the expression glyph is used to auto-increment
the value of the variable before the conditional expression of the if/else glyph is
evaluated. First, the "Variables" window was used to define the value of "i" as 0.
The pane of the expression glyph is used to specify "i++" as the expression that
will be evaluated. In the if/else glyph, "(i%2)==0" is the conditional expression
which will evaluate as TRUE if "i" is an even number, FALSE if "i" is an odd
number. If the conditional expression of the if/else glyph is evaluated as TRUE,
the input "Floating Ball" image will be displayed as an icon; if it is evaluated as
FALSE, the ball image will first be processed with the "NOT" bitwise arithmetic
operator before it is displayed as an icon.

When executing this network for the first time, "i" is initialized to 0. Then, "i" is
incremented to 1 by the expression glyph. By the time the conditional expression
of the if/else glyph is evaluated, "i" is an odd number, which means that the
"Floating Ball" image is sent to the "NOT" operator before being displayed as an
icon.

To see the change in variable value, re-run the network with "i" initially having a
value of 1, which will be incremented to 2 by the expression glyph. Since 2 is an
even number, the original image of the ball will be displayed as the icon. The

 68 • VisiQuest Visual Programming Imagine: VisiQuest

network can be run many times in succession; since the expression glyph
increments "i" to the next integer each time the network is run, the output will
alternate between the two output paths.

Looping Constructs
Looping is supported within the VisiQuest Visual Programming Environment
visual language with the use of procedures. The creation of loop constructs,
opening and closing of loop constructs, and nesting of loop constructs is identical
to operating with procedures. Like procedures, loop constructs in a visual
program constitute hierarchy.

Creating A Loop Construct

To create a loop construct:

1. First, select by rubberbanding the set of glyphs in the workspace that are to
be incorporated into the loop construct. Be sure that only those glyphs that
are to be made part of the loop construct are selected.

2. Next, create the loop construct. Depending on the type of loop construct
desired, "Count Loop" or "While Loop" can be selected either from the
"Create" menu or from the workspace Command Bar. The selected glyphs
will be removed from the workspace in preparation for loop construct creation.
Move the cursor into the workspace; it will be changed to the "busy" cursor
while the loop construct is being created. When the loop glyph is ready to be
placed, the cursor will be changed to the "arrow" cursor.

3. Place the new loop glyph by clicking at the desired location in the workspace.
After you place the loop glyph, the network connections will be automatically
redrawn with respect to the new loop glyph.

Opening/Closing Loop Glyphs

To open the loop glyph, click on the "Open Workspace" white triangle in the
upper-right corner of the glyph. The workspace displaying the loop glyph will be
replaced with the loop workspace, displaying the network that comprises the
contents of the loop.

To close the loop workspace, click on the "Close" minus-sign that appears at the
upper-left corner of the loop workspace. The loop workspace will be replaced with
the main VisiQuest Visual Programming Environment workspace once again.

You may also click the up-arrow in the upper-right corner of the loop workspace to
create a top-level window for the procedure and to moveit so that the main
VisiQuest Visual Programming Environment workspace beneath is visible.
Clicking the now-inverted white triangle in the upper-right corner of the loop glyph
will close the loop workspace. Note that the triangle returns to its original position
once the workspace is closed.

Nesting Loops

Loops may be nested. Creation of nested loops may be done in two ways: (1) If
one or more loops has already been incorporated into a visual program, repeating
the loop construct creation process in the main VisiQuest Visual Programming
Environment workspace and including an existing loop glyph in the new loop

Imagine: VisiQuest VisiQuest Visual Programming • 69

construct will cause the existing loop to be nested inside the newly created loop
construct; (2) If an existing loop workspace is open, repeating the loop construct
creation process inside the loop workspace will cause the newly created loop
constructs to be nested inside the existing loop.

Count Loop

The count loop construct is used to repeat execution of a particular region of a
visual network for a specified number of times.

After you have created the count loop, open the pane for the count loop glyph to
specify the count loop parameters (click the black triangle in the upper-left corner
of the glyph to open and close the pane). Provide a variable, initial value, final
value, and increment value in the appropriate selections on the count loop pane.
When the count loop parameters are complete, close the pane.

When data is available at the input connection(s) of the count loop glyph, events
will occur as follows. First, the count variable will be initialized. Next, the current
value of the count variable will be compared to the final value specified; if the
current value is less than the final value, the network contained in the count loop
will be executed. After the glyphs in the count loop are executed, the increment
value specified will be added to the current value of the count variable. The new
value of the count variable will again be compared to the specified final value; if
the current value is still less than the final value, the network will be rescheduled.
This process will be repeated until the current value of the count variable meets or
exceeds the final value specified. Data flow will then progress downstream from
the output connection(s) of the count loop glyph to the rest of the network.

To create the example illustrated above, this is the procedure that was followed:

 70 • VisiQuest Visual Programming Imagine: VisiQuest

1. We first create a simple visual program consisting of an "Images (Misc)"
glyph, a "Rotate" glyph, and an "Icon" glyph. The pane of the "Images (Misc)"
glyph is opened so that the input image can be set to the "Spanish Gull".

2. Next, the "Rotate" glyph is selected in preparation for creation of a count loop.

3. Click on the "Create Count Loop" command button in order to create a count
loop to contain the "Rotate" glyph. The "Rotate" glyph is replaced by the
"Count Loop" glyph in the main VisiQuest Visual Programming Environment
workspace.

4. The pane for the count loop is used to specify that the count loop will use the
variable "i" to iterate from an initial value of 0 to a final value of 340 in
increments of 20.

Imagine: VisiQuest VisiQuest Visual Programming • 71

5. Clicking on the "Open Workspace" button of the "Count Loop" glyph displays
the count loop workspace. Inside the count loop workspace, the pane of the
"Rotate" glyph is used to specify that the angle used to rotate the Spanish Gull
image will be determined by the value of "i."

6. So that we can see the intermediate results of the loop, an "Icon" glyph is
created inside the count loop workspace and connected to the "Rotate" glyph.

7. Finally, the count loop workspace is closed. A control connection is used to
prevent the outer "Display Icon" glyph from being executed until the loop is
completed. The visual program with the count loop is executed. As the count
loop iterates, the intermediate results will be displayed in icon form. The
number of the count loop iteration is displayed inside the control pixmap of the
count loop glyph.

While Loop

The while loop construct is used to repeat execution of a particular region of a
visual network as long as a particular condition is met.

 72 • VisiQuest Visual Programming Imagine: VisiQuest

After you have created the while loop, open the pane for the while loop glyph to
specify the while loop parameters (click the black triangle in the upper-left corner
of the glyph to open and close the pane). Provide the conditional expression that
will be used to determine how many times the while loop is to be executed. If
desired, you may also provide an initial expression and an update expression in
the appropriate selections on the while loop pane. When the while loop
parameters are complete, close the pane.

When data is available at the input connection(s) of the while loop glyph, events
will occur as follows. First, the initial expression (if provided) will be evaluated so
that the variable used in the conditional expression can be initialized. Next, the
conditional expression will be evaluated; if it evaluates as TRUE, the network
contained in the while loop is executed. After the glyphs in the while loop are
executed, the update expression (if provided) will be evaluated, so that the
variable used in the conditional expression can be updated. The conditional
expression will then be evaluated again; if the conditional expression is still TRUE,
the network will be rescheduled; the process will be repeated until the conditional
expression is evaluated as FALSE. Data flow will then progress downstream from
the output connection(s) of the while loop glyph to the rest of the network.

To create the example illustrated above, this is the procedure that was followed:

1. First, create a simple visual program consisting of an "Images (Misc)" glyph, a
"Translate" glyph, and a "Display Icon" glyph. The pane of the "Images
(Misc)" glyph specifies the input image as the "Moon".

2. Next, the "Translate" glyph is selected in preparation for creation of a while
loop.

Imagine: VisiQuest VisiQuest Visual Programming • 73

3. Click the "While Loop" command button from the Create menu in order to
create a while loop to contain the "Translate" glyph. The "Translate" glyph is
replaced by the "While Loop" glyph in the main VisiQuest Visual Programming
Environment workspace.

4. The pane for the while loop is used to specify that the while loop will use the
variable "i" to iterate from an initial value of 0 to a final value of 500 in
increments of 50.

5. Clicking on the "Open Workspace" white triangle of the "While Loop" glyph
displays the while loop workspace. Inside the while loop workspace, the pane
of the "Translate" glyph is used to specify that the width offset used to
translate the moon image will be determined by the value of "i."

 74 • VisiQuest Visual Programming Imagine: VisiQuest

6. So that we can see the intermediate results of the loop, an "Icon" glyph is
created inside the while loop workspace and connected to the "Rotate" glyph.

7. Finally, the while loop workspace is closed. A control connection ensures that
the outer "Display Icon" glyph will not be executed until the while loop is
completed. The visual program with the while loop is executed. As the while
loop iterates, the intermediate results will be displayed in icon form, and the
number of the while loop iteration is displayed inside the control pixmap of the
while loop glyph.

Compiled Workspaces
Compiled workspace creation is a software development process, and is
considered an advanced issue with respect to the use of VisiQuest Visual
Programming Environment. This section assumes that you are familiar with the
use of VisiQuest as a software development system and that you have read the
Toolbox Programming Manual. It is further assumed that you have experience
with the creation/modification of a graphical user interface, are familiar with the
use of craftsman and composer, and that you understand the process of software
object creation and maintenance within the VisiQuest System. If you do not have
the necessary background in these areas, it is recommended that you read
Chapters 1 - 6 of the Toolbox Programming Manual before continuing.

Once you have completed a visual program, you may create from it a stand-alone
application that can be run independently of VisiQuest Visual Programming
Environment. Such a program is called a compiled workspace. A compiled
workspace can be brought into VisiQuest Visual Programming Environment as a
new operator. It is accessible via the Glyph Menus, the Accelerated Routines List,
and the Accelerated Finder list like any other VisiQuest program.

Imagine: VisiQuest VisiQuest Visual Programming • 75

Compiled workspaces provide re-usability for visual programs. In addition,
compiled workspaces are a convenient method of "packaging" visual programs for
others who may not be familiar with visual programming to use the solution
without being concerned, or even aware, of its origin as a visual program.

Because a compiled workspace eliminates the overhead associated with creating
a VisiQuest workspace with glyphs, connections, and the like, it is also more
efficient than the visual program from which it originated. Because no interaction
is required from a user (unless there are glyphs in the network that require user
interaction), the compiled workspace also has the capability of being run
automatically. For example, the compiled workspace might be used as part of a
test suite that is executed repeatedly with different input parameters by a script
that is run overnight.

Note that while a compiled workspace is an independent program it will require
the binary for each glyph used in its network in order to run. In order to package a
compiled workspace for execution in an environment where VisiQuest is not
installed, a packaging tool will be required. As of August 2, 1999, this tool was not
yet available. Contact AccuSoft Corporation for more information on the status of
this tool if your application requires it.

A compiled workspace is created and updated within VisiQuest Visual
Programming Environment. First, the visual program is assembled. Then, the
glyphs that will make up the compiled workspace are selected; these may include
some or all of the glyphs in the visual program. The compiled workspace creation
process is then used to automatically generate the first version of the compiled
workspace, save it in a toolbox, compile and install the binary.

When a compiled workspace is created or updated, VisiQuest Visual
Programming Environment produces two files and passes them to the workspace
compiler: the VisiQuest Visual Programming Environment workspace file and the
UIS file. The saved VisiQuest Visual Programming Environment workspace file
stores the network of glyphs as they appeared in the VisiQuest Visual
Programming Environment workspace when the compiled workspace was
created. The UIS file defines the GUI and the CLUI of the compiled workspace; it
is used to match selections on the compiled workspace glyph's pane with inputs
and outputs from the glyphs in the compiled network, as well as any additional
parameters that may be set by the user and utilized within the network to affect
the run of the visual program.

After the initial creation of the compiled workspace, its graphical user interface
and the glyphs in its network may be modified as desired. After each modification,
changes to the compiled workspace must be explicitly saved. The workspace
compiler will be re-executed with the new UIS file and the new VisiQuest Visual
Programming Environment workspace file; it will automatically re-generate, re-
compile and re-install the compiled workspace. Note that changes to the GUI
involving addition or deletion of parameters or variable name changes will require
any saved VisiQuest Visual Programming Environment workspaces that contain
the compiled workspace glyph to be updated (this is true for any VisiQuest
program that is used as a glyph in a saved VisiQuest Visual Programming
Environment workspace).

Workspace Compiler Types
The VisiQuest workspace file defines the contents of the compiled workspace; its
UIS defines its graphical user interface and its command line user interface.
Naturally, the structure, behavior, features and limitations of the compiled
workspace depend on the workspace compiler that was used to generate it.

 76 • VisiQuest Visual Programming Imagine: VisiQuest

VisiQuest Visual Programming Environment, using the flexible code generation
system of VisiQuest, is designed to support a variety of workspace compilers.
VisiQuest contains two different workspace compilers.

The Default Workspace Compiler is the standard workspace compiler for
VisiQuest. It produces a kroutine which is compiled into a binary.

The Script Workspace Compiler a sh shell script. It supports only simple
sequential visual networks that contain no loops or control structures.

The Default Workspace Compiler

A workspace compiled using the Default Workspace Compiler is generated as a
software object similar to a kroutine. It is compiled into a binary and installed.
When the compiled workspace is executed, the same scheduler which is used by
VisiQuest Visual Programming Environment to schedule glyphs is used
independently to schedule and execute the binaries according to the flow
represented by the saved VisiQuest Visual Programming Environment
workspace. The compiled workspace now depends only on the binaries of the
glyphs used within it. The overhead associated with the VisiQuest Visual
Programming Environment visual program itself, as well as the display and
update of glyphs in the workspace, is eliminated.

The source code of the compiled workspace is completely auto-generated in the
$TOOLBOX/objects/kroutine/oname/src/ directory. No hand editing of the source
code should be done.

The main functionality for the compiled workspace is generated in a routine called
run_{oname}_compiled_workspace() in the "oname.c" file. This routine opens the
VisiQuest Visual Programming Environment workspace file that is saved as part
of the software object, and uses calls to the klang library (a private VisiQuest
library that implements the VisiQuest Visual Programming Environment
workspace scheduler, among other things) to execute the operators specified.

The Script Workspace Compiler

A workspace compiled using the Script Workspace Compiler is generated as a
software object similar to a standard script object. The script for the compiled
workspace is completely auto-generated in the $TOOLBOX/objects/script/oname/
src/ directory. No hand editing of the generated script should be done.

The generated script contains 'sh' script instructions to execute the binaries
represented by the glyphs in the visual network in the order indicated. The Script
workspace compiler has only limited scheduling capabilities. It cannot handle
looping, conditional constructs such as if/else glyphs, or continuously running
glyphs at this time.

Creation of Compiled Workspaces
A compiled workspace may be created and maintained within VisiQuest Visual
Programming Environment throughout its life cycle, although the software
development tools can also be used on it (with some restrictions that we be
mentioned). The main operations involved in creating and maintaining a compiled
workspace are:

Creating the visual program

Creating the compiled workspace from the visual program

Imagine: VisiQuest VisiQuest Visual Programming • 77

Verifying the correctness of the compiled workspace

Modifying the graphical user interface of the compiled workspace

Modifying the visual network contained in the compiled workspace

These operations are explained in detail in the following sections.

Creating the Visual Program

Use VisiQuest Visual Programming Environment to create or restore the visual
program that you wish to make into a compiled workspace. Select the glyphs to
be contained in the compiled workspace. Remember not to include the first input
glyph(s) or the last output glyph(s) in the network unless you want the input(s)
and/or output(s) of the compiled workspace to be hardwired.

In VisiQuest Visual Programming Environment, the glyphs that will become the
compiled workspace are selected.

Creating the Compiled Workspace

Select "Compiled Workspace" from the Workspace menu. This will display the
Compile Workspace pane. A list at the top of the pane allows you to specify the
Default Workspace Compiler or the Script Workspace Compiler.

Next, From the Toolbox List, select the toolbox in which the compiled workspace
object is to be created. Then, provide an object name, icon name, category, and
subcategory. Note that it is wise to set standards with respect to Category and
Subcategory, and to re-use these as appropriate. Selecting an existing compiled

 78 • VisiQuest Visual Programming Imagine: VisiQuest

workspace from the Compiled Workspace Object List will set the Category,
Subcategory, and Icon Name to the values for that software object; this allows you
to re-use Category and Subcategory names conveniently.

The Compile Workspace pane is available from the Workspace menu.

Set "Install in VisiQuest Visual Programming Environment?" to Yes if you want the
compiled workspace to be accessible via the Glyph Menus. Setting this option to
No will prevent it from appearing in VisiQuest Visual Programming Environment.
Note that you will not be able to modify the GUI or the network within the compiled
workspace unless "Install in VisiQuest Visual Programming Environment?" is set
to TRUE, since these operations are done from within VisiQuest Visual
Programming Environment.

Click on the "Create Compiled Workspace" button to generate, compile, and
install the compiled software object in the specified toolbox. VisiQuest Visual
Programming Environment's console will report the progress of the compiled
workspace creation process. Examine this window to verify that the compiled
workspace has been successfully created, compiled, and installed.

NOTE: Do not attempt to perform any other VisiQuest Visual Programming Environment
operations while the compiled workspace is being created. An information pop-up
will appear when the compiled workspace generation process is complete.

Imagine: VisiQuest VisiQuest Visual Programming • 79

After the compiled workspace has been generated, you MUST position the mouse
in the VisiQuest Visual Programming Environment canvas, and place the new
compiled workspace glyph at the desired location. The compiled workspace
glyph will replace the set of glyphs that were used to create the compiled
workspace.

A new glyph is created to represent the compiled portion of the visual program.
The little white triangle icon at the upper right is used to open the compiled
workspace and see the network contained within.

Verifying Correctness

At this point, the workspace containing the compiled workspace glyph can be
executed normally. Resetting and running the workspace should produce exactly
the same results as the visual program did before it was compiled.

Assuming the "Install in VisiQuest Visual Programming Environment" option was
set to Yes during creation, the compiled workspace now will be available for use in
VisiQuest Visual Programming Environment. Use the VisiQuest Visual
Programming Environment toolbox menus to create an experimental new
compiled workspace glyph.

The compiled workspace glyph is similar to a Procedure glyph in that it has the
little black triangle at the upper left, and the little white triangle at the upper right.
As with the procedure glyph, the little black triangle icon is used to open the GUI
of the compiled workspace, and the little white triangle icon is used to display the
workspace that was compiled.

Modifying the Graphical User Interface

Now that the compiled workspace has been created, you will probably want to
adjust the graphical user interface / command line user interface. By default, the
GUI will contain Inputfile and Outputfile selections according to the connections of
the visual network as they were when the compiled workspace was created.
However, they will probably not be in the desired order or position. You may also
want to change titles and descriptions to be more self explanatory, and to give
appropriate variable names and default values. You may also export other
parameters from the panes of the glyphs within the network to the compiled
workspace's GUI, such as integers, floats, flags, and logicals.

Modifications to the GUI of the compiled workspace must be made using the
following process:

 80 • VisiQuest Visual Programming Imagine: VisiQuest

1. Display the GUI of the compiled workspace by clicking on the little black
triangle at the upper left of the compiled workspace glyph.

2. Put the GUI in edit mode by selecting "GUI Editing <Off>" from the Options
menu.

3. Display the menuform of the GUI selection you wish to change by clicking the
middle mouse button on it.

4. Use the menuform to change the title, default, variable name, etc. as desired.

5. When all selections on the GUI are specified as desired, select "Save
Changes" from the Options menu. This will re-generate, re-compile, and re-
install the compiled workspace with the modified GUI.

NOTE: After changing the GUI of the compiled workspace, never forget to regenerate the
compiled workspace by selecting "Save Changes" from the Options menu! If you
forget this critical last step, all changes to the GUI will be lost!

The compiled workspace’s GUI as created by default.

To add additional parameters to the compiled workspace's GUI and CLUI, you
may take parameters from glyphs in the compiled workspace and "export" them to
the GUI. First, open the compiled workspace glyph and display the compiled
network. Then, use the following procedure to "export" parameters:

1. Open the pane of the glyph containing the desired parameters

2. Put the pane in edit mode by turning "GUI Editing <Off>" on the Options menu
of the glyph's pane to "GUI Editing <On>."

Imagine: VisiQuest VisiQuest Visual Programming • 81

3. Select the parameter(s) you want to export; when a parameter is selected, it
will have control brackets on the 4 corners.

The pane for the "Expand" glyph is opened, and put in edit mode. The
parameters that specify the magnification factors for width, height, depth,
time, and elements are selected for export to the workspace GUI.

4. Finally, export the parameter to the compiled workspace's GUI by selecting
"Export to Workspace GUI" from the Options pulldown menu. Note that
Export to Workspace GUI" will not be activated in the Options menu unless
the pane has been put in edit mode. The parameter you exported should now
appear on the GUI.

Repeat the selection exportation process (steps 1-4, above) until all desired
arguments from glyphs in the network appear on the workspace GUI.

 82 • VisiQuest Visual Programming Imagine: VisiQuest

You may make changes to the titles, descriptions, default values, variable names,
etc. of the newly exported parameters by following the process described at the
beginning of this section.

The compiled workspace’s GUI after exporting width, height, depth, time, and
elements parameters from the "Expand" glyph, rearranging selections, and re-
naming the two outputfile parameters.

NOTE: Do NOT use Guise modify the compiled workspaces' GUI. GUI modifications must
be done in VisiQuest Visual Programming Environment using the method
described above.

Modifying the Visual Network

If you would like to modify the visual network that has been compiled, you may do
so by opening the workspace of the compiled workspace glyph and making
changes as desired. After changes have been made, the compiled workspace
must be re-generated. To regenerate the compiled workspace, select the
"Compile Workspace" icon from the Command Bar of the compiled workspace.

The "Compile Workspace" icon only appears in the Command Bar of compiled
workspaces. Clicking on this icon will re-generate the compiled workspace; it is
the same as selecting "Save Changes" from the Options menu of the compiled
workspace's pane.

Note that the "Compile Workspace" glyph only appears on the commandbar of the
compiled workspace, not on the main workspace; thus, you will not see it if you
close the compiled workspace glyph. You can also regenerate the compiled
workspace by selecting "Save Changes" from the Options menu of the compiled
workspace's GUI.

Imagine: VisiQuest VisiQuest Visual Programming • 83

NOTE: After changing the visual network of the compiled workspace, you must
regenerate the compiled workspace! If you forget, changes to the network in the
compiled workspace will be lost!

Executing the Compiled Workspace from the Command Line

Since compiled workspace are generated, compiled and installed as part of the
creation process, an compiled workspace may be run from the command line as
soon is it is created.

If you have installed the compiled workspace in a toolbox for which you already
have the bin directory in your path, just execute:

% rehash

Note that if you have created a brand new toolbox to contain the compiled
workspace, the new toolbox's bin/ directory may not be in your path.

% set path =($TOOLBOX/bin $path)

At this point, you should be able to execute the compiled workspace according to
the user interface that you defined for it above. If you used the default workspace
compiler, you can check its command line user interface using

% {oname} -U

To execute the default compiled workspace using its GUI, use
% {oname} -gui

The script workspace compiler is limited in that it does not support the standard
VisiQuest options, so [-U], [-gui], [-V], etc, will not work for script compiled
workspaces.

Documentation And Maintenance

As with other VisiQuest objects, documentation for the compiled workspace is
added in the html page; the online help page and the man page are automatically
generated from the contents of the html page by selecting "Generate Code" from
the Make menu of the Commands window in composer, or by executing

% kmake regen

in the $TOOLBOX/objects/kroutine/oname/src or $TOOLBOX/objects/script/
oname/src directory for default compiled workspaces or script compiled
workspaces, respectively.

Like any other program in VisiQuest, the compiled workspace software object
attributes can be edited and maintained with the composer software object editor;
however, remember that changes to the user interface and the visual network
within the compiled workspace must be done from within VisiQuest Visual
Programming Environment.

 84 • VisiQuest Visual Programming Imagine: VisiQuest

Data Transports
Data between glyphs is communicated via a temporary data transport. Each
connection between the glyphs represents a unique temporary transport. The
transport, by default, will be a "file" transport. However, it may greatly increase
the efficiency of a workspace to change the data transport used to stream,
memory mapped files, or shared memory.

The transport type of any given connection can be changed by clicking on the
connection and displaying the connection menu. Any one of the following data
transport types may be selected from the connection menu.

file

Standard UNIX File (local transport / permanent storage)
stream

Standard Stream (FIFO) (local transport / no permanent storage)
mmap

Memory Mapped Files (permanent storage).
shm

Shared Memory (local transport / permanent storage).
The data transports supported by VisiQuest Visual Programming Environment,
listed above, are a subset of the data transports offered by VisiQuest Operating
System services. The following data transports are also supported in VisiQuest:

pipe:

Standard Pipes (local transport / no permanent storage) socket
socket:

UNIX domain socket transport (local transport / no permanent storage)
tcpip

TCP/IP socket transport (network transport / no permanent storage)
However, VisiQuest Visual Programming Environment does not support these
data transports because the transports only persists as long as the process which
created it exists; as soon as the process terminates, the data transport will also
terminate.

Not all transports may be available on your machine. For instance, if the machine
currently running VisiQuest Visual Programming Environment does not have
support for shared memory, the shm transport will not function. However, "shm"
will still appear on the connection menu.

When using distributed computing, processes distributed to remote machines
must have the input and output connections stored on a file system common to
both the local and remote machines. Additionally, transport types other than "file"
will not work to a distributed host.

As mentioned above, the data transport used between two processes may be
changed by clicking on the connection between two glyphs, displaying the
connection menu, and selecting the desired data transport type. This must be

Imagine: VisiQuest VisiQuest Visual Programming • 85

done for each connection, a procedure which can be tedious especially if you
have a large workspace and you wish to change the transport type of all the
connections it contains.

When the data transport type needs to be changed for the majority of glyphs in a
workspace, it is easier to change the default data transport type. Normally, the
default data transport type is "file." However, the default can be changed by
setting the environment variable KHOROS_TEMPFILE to shm, mmap, or stream.
Set the variable to file to return to the original default.

%setenv KHOROS_TEMPFILE shm
%setenv KHOROS_TEMPFILE mmap
%setenv KHOROS_TEMPFILE stream
%setenv KHOROS_TEMPFILE file

Transport Buffering
There are three types of transport buffering models in VisiQuest. The first is for file
based transports, the second is for stream based transports, and the third is for
memory based transports.

File Buffering

File buffering is used by the file transport. With the file transport, the data is
persistent. The file data transport reads data from the file into the transport buffer.
When writing, when the transport buffer gets full the buffer is written back to the
file.

In VisiQuest the file buffering has been extended to deal with this intricacy. So the
application is free to call read/write operations in any order. This is implemented
within the transport buffer by having a validity region which indicates the validity of
the data residing in the transport buffer. This enhancement allows us to to get
better buffering speeds than available with Sun's FILE buffering (measured using
quantify).

Stream Buffering

Stream buffering is used by the stream, tcpip, socket and pipe transports. It was
developed specifically to address compilications involved with attempting to map
stream based transports into file based transports. The first complication is due to
the fact that stream based transports are not persistent; therefore, after data is
read or written it is lost. The second complication is that streams will block when
reading or writing too much data. This complicates transports buffering code
attempting to generically interface to a transport. The notion of stream buffering
was developed to formalize the interfacing to streams and to address these
problems. With stream buffering, as data is read or written the transport buffer will
accomodate this by dynamically grow to fit all data read or written to date. Seeking
on a stream is accomplished by reading or writing to the desired position. One
limitation is that the transport buffer is not paged. For example, when streaming a
100 MB file the buffer will grow to 100 MB and then write the data on close.

To override this behavior, applications must open the transport using
KOPEN_STREAM, which indicates that persistent is not desired. This causes
stream based transports to write the buffer when filled and discard the buffer on
read. However, if an application isn't re-reading the data, re-writing the data, or
seeking to a previously position this is much more efficient. Both Polymorphic
Data Services and Streaming Data Services set KOPEN_STREAM for writing.

 86 • VisiQuest Visual Programming Imagine: VisiQuest

Streaming data services additionally sets KOPEN_STREAM for reading. For
Polymorphic Data Services, reading will be stream buffered when using
kpds_open_input_object() on a stream based transport.

Memory Buffering

Memory buffering is used for memory based transports including Shared Memory
(shm) and Memory Mapped Files (mmap). For these transports, the file buffering
mechanism also works. However, file buffering is not geared to taking full
advantage of the fact that the entire content of the transport is already available in
memory. Therefore, to take full advantage of memory based transports, the
buffering model makes the transport buffer and the transport's memory one and
the same. In this manner, memory buffering the allows the memory based
transport to read and write directly into memory.

The memory based transports' read and write methods will only be called when
trying to read past the end of the available memory. It is then up to the memory
based transport to either indicate EOF has been reached or resize the memory
segment making more memory to buffer data to. Since the operation of resizing
the memory segment is very expensive, both shm and mmap resize the memory
segment by multiplying the requested size by 25% and rounding up to the nearest
page size. Stream buffering also resizes the transport buffer rounding up to the
nearest page size.

To accomodate the ability to have transport buffers be bigger than the data
actually buffered, the transport validity has been split into the actual buffer size vs.
validity region within the buffer.

Directory for Creating Temporary Files
When a permanent data transport mechanism is used, such as shared memory,
or memory mapping, VisiQuest Visual Programming Environment will need a
location in which to create the temporary files associated with that data transport.
In addition, VisiQuest Visual Programming Environment occasionally creates
temporary files for its own use, such as when it needs to display the values of
current variables and expressions being used with the expression parser. All
temporary files are erased on a normal exit from VisiQuest unless specifically
saved.

By default, these temporary files will be created in the directory specified by the
CWTMPDIR environment variable. The location of this directory may be changed
before starting VisiQuest Visual Programming Environment as in the following
example command,

CW% setenv TMPDIR /usr/visiquest/tmp.

However, this location may be changed as desired while VisiQuest Visual
Programming Environment is running by filling in the new location in the
Temporary Files text selection. Files created by connecting glyphs prior to
changing the Temporary Files directory will NOT be affected by the change. That
is, they will NOT be moved to the new directory.

Imagine: VisiQuest VisiQuest Visual Programming • 87

Distributed Computing
Distributed computing is available via VisiQuest Visual Programming Environment
on UNIX platforms only. This functionality allows the user to distribute various
glyphs to run on remote machines or hosts.

Display the Remote Hosts Control Panel by selecting "Configure Remote Hosts"
from the Workspace menu of your UNIX installation.

Using the Remote Hosts Control Panel
The Remote Hosts Control Panel is the VisiQuest Visual Programming
Environment user interface to the VisiQuest distributed computing capability.
Select "Configure Remote Hosts" from the Workspace menu to display the
Remote Hosts Control Panel. To enable distributed computing, change the
"Remote Execution" toggle from "Disabled" to "Enabled".

When Remote Execution is enabled, the glyphs in the workspace display the
remote host icon at the upper right, as shown with the FFT glyph, below. Also,
only when Remote Execution is enabled will the other selections on the Remote
Hosts Control Panel be active.

Distributed computing works by dispatching a daemon on each remote host, with
that daemon handling all remote process dispatch and communicating process
completion back to the local VisiQuest Visual Programming Environment.

 88 • VisiQuest Visual Programming Imagine: VisiQuest

The Remote Hosts Control Panel features a list of configurable machines under
Available Remote Hosts. If there are no networked machines available for
distributed computing, there will be only one entry in the list that reads "localhost
<no daemon present>".

For networked machines to be automatically included in the Available Remote
Hosts list, they must be specified in the $HOME/.kri/KP2001/khoros_hosts file.
This file may be created by hand or with the Remote Hosts Control Panel. The
following example shows the syntax used to specify a remote host:

tucumcari:oasis:rsh
brandy:mirage:rsh
water:kp2001:rsh
cabernet:guest:rsh

Names in the list consist of three parts separated from each other by a colon. For
example, the second name in the list, above, is

brandy:mirage:rsh

In this name, brandy is the name of the remote machine. After the machine
name, and separated from it by a colon, comes the log-in name you wish to run
under, in this case, mirage. Finally, following a second colon, is the shell for the
remote machine; rsh is used here, but any available remote shell may be used,
such as ssh or remsh.

Remote hosts can be added from the Remote Hosts Control Panel. Type the new
name into the text box labeled "Add & Start Remote Host" and press return to add
a machine to the list. Be sure to utilize the syntax specified above
(machine_name:user_name:shell_name). The new remote host will appear in the
"Available Remote Hosts" list, and a distributed computing daemon will
automatically be started on that machine.

To make machines in the list available for remote execution, use the mouse to
select it from the list, then click the "Start Daemon" button. Only those machines
with a running daemon will be available for remote execution. The message
following the machine name indicates whether the machine has a running
daemon or not. Clicking "Stop Daemon" will halt the daemon on the selected
machine. "Delete" removes a selected machine from the Remote Hosts list.
"Save" saves the machine names in the "Available Remote Hosts" list to the
$HOME/.kri/KP2001/khoros_hosts file. "Close" dismisses the Control Panel pane.

Dispatching a Glyph to a Remote Machine
When distributed computing is enabled and remote daemons have been activated
on the desired remote machines, glyphs can be dispatched to those machines by
clicking on the remote host icon that appears near the top of the glyph. This will
pop up a list of all the remote hosts currently available for distributed processing.
Remember, only the machines with running daemons will appear in this list.

Imagine: VisiQuest VisiQuest Visual Programming • 89

Selecting a host from the list and then closing the list will dictate to the glyph that it
should be dispatched to run on that local machine for all subsequent executions.
The host "localhost" is the default and dictates that the glyph will be run locally.

Clicking on the glyph's remote host icon displays the Remote Host List. Select the
desired host from the Remote Host list.

To check which host a glyph is assigned to, position the cursor over the remote
host icon. The status window will display the currently selected host for that
glyph.

Restrictions
When using distributed computing, processes distributed to remote machines
must have the input and output connections stored on a file system common to
both the local and remote machines. If this is not the case, glyphs will produce
errors indicating that they cannot read the temporary files produced from
upstream glyphs.

Note that a distributed interprocess communication is not yet in place for
distributed computing. Glyphs running on a remote host are scheduled very
simply, with process completion indicating that all output data is available and all
downstream processes can be scheduled.

Parallel Host Management
Parallel host management is only available on UNIX platforms if the PARALLEL
toolbox is installed. If this toolbox is not installed, then this selection will be
disabled. There are four control panes available for Parallel Host Management:

Hosts

Groups

Daemons

Batch Queue

 90 • VisiQuest Visual Programming Imagine: VisiQuest

Hosts
The Hosts control pane provides a list of all known hosts available for parallel
processing. New hosts can be added and existing hosts can be removed from
this interface. The following information is listed for each machine in the Hosts list.

Hostname - The fully qualified name of the machine by which it is known on
the network.

Config - The configuration name provided when installing VisiQuest. For
homogeneous networks, all architectures will probably have the same config
name. The config name is generally different only for different VisiQuest
installations on different architectures or operating systems.

CPUs - The number of processors available on this host. Some HPC
machines and symmetric multi-processor (SMP) machines will contain
multiple CPUs.

MPI - The implementation of MPI against which this architecture was
compiled. Since different implementations of MPI can not intercommunicate,
only hosts compiled with the same version of MPI as the local machine may
be used for parallel processing. The hosts which match the local version of
MPI are indicated with a >.

Username - The username used to rsh to the host. By default, this will match
your username on your local machine.

The Remove Host button will remove the highlighted entry in the host list. New
hosts can be added by pressing the Add Host button after typing in the name of a
new host. If a different user name should be used for that host, the Username
field can be filled out. The Password field is not yet supported, so you must have
permission to rsh to any machine you wish to add. Your remote account should
contain a CW.rhosts entry with your local machine and username. The pecho
command on the remote machine is used to determine the new host information,
so your path on theyremote machine must include the PARALLEL toolbox
binaries.

The CW$USER/.kri/KP2001/hosts file is used to store the host information. A
different file can be specifying by setting the KHOROS_HOSTS environment
variable.

Groups
The Groups control pane provides a mechanism for specifying directed groups of
hosts for execution. A group can be specified for a parallel glyph in VisiQuest
Visual Programming Environment, indicating that that parallel operator should be
run only on the machines included within that group. Groups can be created or
deleted from this interface.

The Group button will pop up a pull-down list of all available groups. The text box
next to this pull down indicates the name of the currently selected group. To
create a new group, type in a new name into this box and press the Create button.
To delete a group, simply press the Delete button. The members of the currently
selected group are listed in the center of this control pane. Hosts can be added or
deleted from this group using the Add Host and Delete Host buttons. Only the
hosts in the Host list which match the local MPI version are available for inclusion
in a group.

Imagine: VisiQuest VisiQuest Visual Programming • 91

The CW$USER/.kri/KP2001/groups directory is used to store the group
information. Each group list is stored in a separate file. A different group directory
can be specifying by setting the KHOROS_GROUPS environment variable.

Daemons
The Daemons control pane provides control over the daemons in a daemon-
based implementation of MPI. Currently, on the LAM MPI is supported from this
interface. If your local version of MPI is not LAM, this interface will be disabled.

Daemon-based implementations of MPI require running daemons for process
dispatch and communication. This is generally done to reduce process startup
time; the time-consuming rsh process is only done once to start the daemons.
New parallel processes are then spawned quickly because they are started by the
daemons.

The Start Daemons button will start the daemons and the Stop Daemons button
will stop the daemons. The current state of the daemons is indicated by a status
line above these buttons. Addition LAM-specific functionality is also present, such
as the ability to start LAM in a fault-tolerant mode. The Check MPI Process
Status button will print out the status to the tty or VisiQuest Visual Programming
Environment console. The Kill All MPI Processes button will kill all running MPI
processes.

Note that the LAM binaries must be in your path as sourced by your CWcshrc file
for the daemons to start. If LAM is installed with the PARALLEL toolbox, the
following command will add the proper path:

set path = (`kecho -tb parallel -echo path`/thirdparty/lam61/
bin $path)

Note that this must be done after the location of kecho has already been added to
your path.

Batch Queue
The Batch Queue control pane is not currently enabled. This pane will one day
allow you to create batch-specific groups which can be used to submit individual
parallel programs to a batch system such as LoadLeveler on the IBM SP2.

 92 • VisiQuest Visual Programming Imagine: VisiQuest

VisiQuest Operators VisiQuest Visual Programming • 1

VisiQuest Operators

Introduction
The following table contains listings of the VisiQuest Toolbar toolbox operators
that are available via VisiQuest. Table entries are organized alphabetically by
Category, Subcategory, and Operator name (icon name), in that order. A brief
description of each operator is given, followed by binary name of the program
which can be executed from the command line.

Table of VisiQuest Operators

Category
Subcategory

Operator Description Executable

Arithmetic
Bitwise Operators

AND Output = Input 1 AND (Input 2 or Constant) kbitand

AND Inverted Output = NOT(Input 1) AND (Input 2 or Constant) kbitandinv

AND Reverse Output = Input 1 AND NOT(Input 2 or Constant) kbitandrev

CLEAR Set All Bits to Zero kbitclear

Hadamard Compute 2-D Fast Hadamard Transform ifht

Left Shift Bitwise LEFT SHIFT of Input 1 by (Input 2 or
Constant) Bits

kbitlshift

NAND Output = NOT(Input 1) OR NOT(Input 2 or
Constant)

kbitnand

NOR Output = NOT(Input 1) AND NOT(Input 2 or
Constant)

kbitnor

NOT Perform Bitwise NOT (Invert) Operation on Input kbitnot

OR Output = Input 1 OR (Input 2 or Constant) kbitor

OR Inverted Output = NOT(Input 1) OR (Input 2 or Constant) kbitorinv

OR Reverse Output = Input 1 OR NOT(Input 2 or Constant) kbitorrev

Right Shift Bitwise RIGHT SHIFT of Input 1 by (Input 2 or
Constant) Bits

kbitrshift

SET Set All Bits to One kbitset

XOR Output = Input 1 XOR (Input 2 or Constant) kbitxor

 2 • VisiQuest Visual Programming VisiQuest Operators

Arithmetic
Comparison
Operators

!= IF Input 1 is Not Equal to (Input 2 or Constant),
Output = TRUE

kne

< IF Input 1 is Less Than (Input 2 or Constant),
Output = TRUE

klt

Category
Subcategory

Operator Description Executable

<= IF Input 1 is Less or Equal to (Input 2 or
Constant), Output = TRUE

kle

== IF Input 1 is Equal to (Input 2 or Constant),
Output = TRUE

keq

> IF Input 1 is Greater Than (Input 2 or Constant),
Output = TRUE

kgt

>= IF Input1 is Greater or Equal to (Input2 or
Constant), Output = TRUE

kge

Arithmetic
Complex Operators

Complex to
Real

Output = Real, Imaginary, Phase, or Magnitude
Component of Input

kcmplx2real

Conjugate Output(real, imaginary) = Input(real, -imaginary) kconj

Imaginary Part Output = Imaginary Component of (Complex)
Input

kimagpart

Magnitudes Output is a Function of the Magnitude of the Input kmag

Phase Output = Phase Component of Input
[atan2(imaginary, real)]

kphase

Polar to Rect Convert (r, theta) to (real, imaginary) Coordinates kpol2rect

Real Part Output = Real Component of (Complex) Input krealpart

Real to
Complex

Output = Input 1 + j(Input 2) kreal2cmplx

Rect to Polar Convert (real, imaginary) to (r, theta) Coordinates krect2pol

Arithmetic
Linear Transforms

FFT Fast Fourier Transform (Forward and Inverse) kfft

LinearOp Performs linear operations (convolution/cor-
relation)

klinearop

Arithmetic
NonLinear Functions

Bessel Compute Bessel Functions kbessel

Error Function Compute Error & Complement Error Functions kerf

Exponential Compute Exponential (antilog) kexp

Log Gamma Compute Log Gamma Function kgamma

Logarithm Compute Logarithm klog

VisiQuest Operators VisiQuest Visual Programming • 3

ldexp Output = Input 1 * 2**(Input 2 or Constant) kldexp

Arithmetic
Single Operand
Arithmetic

Absolute
Value

Output = Absolute Value of Input kabs

Category
Subcategory

Operator Description Executable

Ceiling Output = Integer Ceiling of Input kceiling

Cube Output = Input**3 kcube

Cube Root Output = Cube Root of Input kcbrt

Floor Output = Integer Floor of Input kfloor

Fractional Part Output = Fractional Part of Input kfraction

Negative Output = 0.0 - Input kneg

Reciprocal Output = 1/Input krecip

Square Output = Input**2 ksqr

Square Root Output = Square Root of Input ksqrt

Truncate Output = Integer Truncate of Input ktruncate

Arithmetic
Trigonometry

Atan Output = Arc Tangent[Input 1 / (Input 2 or
Constant)]

katan

Atan2 Output = Arc Tangent[Input 1 / (Input 2 or
Constant)]

katan2

Cos & ArcCos Compute Cosine or Arc Cosine Function kcos

Cosh &
ArcCosh

Compute Hyperbolic Cosine or Arc Cosine
Function

kcosh

Degree to
Radian

Output = Input * (pi/180) kdeg2rad

Hypotenuse Output = sqrt[(Input 1)**2 + (Input 2 or
Constant)**2]

khypot

Radian to
Degree

Output = Input * (180/pi) krad2deg

Sin & ArcSin Compute Sine or Arc Sine Function ksin

Sinc Output = sin(Input)/Input ksinc

Sinh &
ArcSinh

Compute Hyperbolic Sine or Arc Sine Function ksinh

Tan & ArcTan Compute Tangent or Arc Tangent Function ktan

Tanh &
ArcTanh

Compute Hyperbolic Tangent or Arc Tangent
Function

ktanh

 4 • VisiQuest Visual Programming VisiQuest Operators

Arithmetic
Two Operand
Arithmetic

Absolute Diff Output = Absolute Value of (Input 1 - (Input 2 or
Constant))

kabsdiff

Add Output = Input 1 + (Input 2 or Constant) kadd

Category
Subcategory

Operator Description Executable

Blend Data Output = (Input 1 * Constant) + (Input 2 (1
Constant))

kblend

Divide Output = Input 1 / (Input 2 or Constant) kdiv

Divide Into Output = (Input 2 or Constant) / Input 1 kdivinto

Expression Output = Function(Input1, Input2) kexprn

Gate Data Based on Gating Input, Output Values Will Be
From Input 1 or Input 2

kgate

Maximum Returns Higher Value between Input 1 and (Input
2 or Constant)

kmaximum

Minimum Returns Lower Value between Input 1 and (Input
2 or Constant)

kminimum

Modulus Output = Remainder of [Input 1 / (Input 2 or
Constant)]

kmod

Multiply Output = Input 1 * (Input 2 or Constant) kmul

Power Output = (Input 1) ** (Input 2 or Constant) kpow

Replace Value Replace All Occurrences of X with Y kreplace

Subtract Output = Input 1 - (Input 2 or Constant) ksub

Subtract From Output = (Input 2 or Constant) - Input 1 ksubfrom

Data Manip
Analysis &
Information

Print Stats Print statistics to VisiQuest variables kprstats

Print Value Print Data Value to Parser and/or Concatenate to
File

kprval

Statistics Compute Statistics of Data Object kstats

Data Manip
Clustering Operators

K-Means Perform K-Means Clustering kkmeans

Data Manip
Convolution

Convolve Simple convolution and correlation kconvolve

Data Manip
Data Conversion

Cast Input
Types

Upconvert All Inputs to the Highest Input Data
Type (K1)

vcast

Normalize Normalize Data Regions Using Minimum &
Maximum of Each Region

knormal

VisiQuest Operators VisiQuest Visual Programming • 5

Data Manip
Frequency Filters

InvFilter Inverse Filtering (Restoration) in Fourier
Frequency Domain

kinverse

Wiener Wiener Filtering (Restoration) in Fourier
Frequency Domain

kwiener

Category
Subcategory

Operator Description Executable

Data Manip
Histogram Operators

Equalize Perform Histogram Equalization kheq

Histogram Compute Histogram for Data Object khisto

Histogram Ops Perform Histogram Equalization and Stretching khistops

Local Enhance Enhance Image Using the Local Standard
Deviation & Mean (K1)

venhance

Stretch Perform Histogram Stretching khstr

Window Eq/Str Stretch or Equalize Histogram Using
Overlapping Windows (K1)

vhxray

Data Manip
Introduce Noise

Exponential
Noise

Introduce Exponential Noise in Input Object kexpon

Gaussian
Noise

Introduce Gaussian Noise in Input Object kgauss

Poisson Noise Introduce Poisson Noise in Input Object kpoisson

Rayleigh Noise Introduce Rayleigh Noise in Input Object krayleigh

Shot Noise Introduce Shot Noise in Input Object kshot

Uniform Noise Introduce Uniform Noise in Input Object kuniform

Data Manip
Location Operators

Elevate Data Create Elevation Location Data From Value
Plane

kelevation

Transform
Location

Rotate, Translate, and Scale Location Data klocxform

Data Manip
Map Operators

Map Data Map Value Data Through the Map kmapdata

Squish Map Compress Map to One Column by Means of
Average, RMS, or MAX

kmsquish

Data Manip
Mask Operators

Unmask Data Remove Mask from Data Object kunmask

Data Manip
Object Attributes

Comment Data Change the Comment on a Data Object kcomment

Set Attribute Modify Data Object Attributes ksetdattr

Data Manip
Reorganize Data

Flip Reflect Data Along Specified Axes kflip

 6 • VisiQuest Visual Programming VisiQuest Operators

Reorient Change Orientation of Data on Dimensions korient

Switch Axes Reorient Data on the Width, Height, and Depth
Axes

kaxis

Category
Subcategory

Operator Description Executable

Translate Translate Data in Object ktranslate

Transpose Transpose Data across Dimensions ktranspose

Data Manip
Size & Region
Operators

Accumulate
Data

Continuously read and accumulate input kaccum

Expand Expand Object Via Pixel Replication kexpand

Extract Extract Rectangular Region from Object kextract

Inset Inset Object 2 into Object 1 kinset

Iterate
Through Data

Interate through data in an input object kiterate

Pad Pad Data with a Constant Value kpad

Resample Resample Object Data kresample

SampleLine Sample a data object along an arbitrary line ksampline

Shrink Shrink Object Via Pixel Subsampling kshrink

Data Manip
Threshold & Clip
Operators

Clip Above Clip Data Values that are Above Specified Cutoff kclipabove

Clip Below Clip Data Values that are Below Specified Cutoff kclipbelow

Clip Inside Clip Data Values Inside the Specified Range kclipin

Clip Outside Clip Data Values Outside of the Specified Range kclipout

MegaClip Clip the Range of Values in Data Object kmegaclip

MegaThresh Threshold the Range of Data Values in Data
Object

kmegathresh

Thresh Above Threshold Data Values that are Above Specified
Cutoff

kthreshabove

Thresh Below Threshold Data Values that are Below Specified
Cutoff

kthreshbelow

Thresh Inside Threshold Data Values Inside the Specified
Range

kthreshin

Thresh
Outside

Threshold Data Values Outside of the Specified
Range

kthreshout

VisiQuest Operators VisiQuest Visual Programming • 7

Data Manip
Segment Operators

 Remove
Selected

Remove Selected Data Segments from Input krmseg

Insert Selected Insert Selected Data Segments from Input 1 into
Input 2

kinsertseg

Category
Subcategory

Operator Description Executable

Copy Selected Copy Selected Data Segments from Input kcpseg

Copy One
Segment

Copy One Segment Into Value Segment of
Output

kcptoval

Copy Value
Segment

Copy Value Segment Into One Segment of
Output

kcpfromval

Color Legend Construct Geometry Representing a Color
Legend

gcmaplegend

Extents Box Generate Geometry Representing Extents
Around Data

gextents

Geometry
Color

Colorize Map Value Data Through a Visualization
Colormap

gcolorize

Create
Visualization
Colormap

Create a Visualization Colormap ggencmap

Geometry
Data Files to
Geometry

Color XYZ
Lines

Create Polylines from ASCII XYZ data and a Vis
Cmap

glinecolor

Import Facet
Data

Import FACET data gimpfacet

Import PDB Generate geometry from PDB models pdb2geom

XYZ Lines Create Polylines from ASCII XYZ Data glinexyz

Geometry
Geometry Operators

Flip Normals Flip all Normals in a Geometry Object. gflipnorms

Make
Cylinders

Replace Lines with Tesselated Cylinders gtubeness

Transform
Location Data

geometric transformation of geometry objects. gtransform

Geometry Print Geometry Print ASCII Report of Geometry Input gprgeom

Information Print Location
Statistics

Create a directed-points geometry object from
raw data.

glocstats

Geometry
Region Operators

Grid 2D Data Compute z=f(x,y) over a user-defined grid given
scatter data.

ggridder2d

Interactive
Ortho Slicer

Interactive Slicing Tool. oslicer

 8 • VisiQuest Visual Programming VisiQuest Operators

Ortho Slice Extract (N-1)D Region from (N)D Object kslicer

Rake Create a computational rake. grake

Category
Subcategory

Operator Description Executable

Geometry
Te xture Operators

Bind Texture to
Geometry

Assign a Texture to a Geometry Object gbindtexture

Make Texture
Map

Create a 2d texture from an image. gcreate2dtex

Te xture
Resize

First-order resizing of value segment. gresample

Geometry
Visualization

Cuberille Data
Representatio
n

Volume Visualization using Geometric Icons. gcuberille

Hedgehog Generate hedgehog icons at each grid node of a
vector field.

ghogs

Isosurface Generate surface of constant value from 3d
data.

gisosurface

Make Spheres
from Data

Produce Spheres Whose Radii are Determined
from Data

gspheres

Octmesh
Maker

Create an Octmesh Geometry Object from 3D
Data

goctmesh

Quadmesh
Maker

Create a Quadmesh Geometry Object from 2D
Data

gquadmesh

Render Interactive Geometry Visualization render

Streamlines Compute Streamlines through 3-Component
Vector/Flow Data.

gstreamlines

Image Proc
Classification

Compute Cost Compute Cost (Surface Arc Length) for Image icost

Inverse
Median Axis

Compute the Median Axis Inverse Transform igrow

LRF-classifier Classify Image Using the Localized Receptive
Field Classifier (K1)

lrfclass

LRF-training Calculate Weights for Localized Receptive Field
Classifier (K1)

lrftrain

Labeling Perform Labeling on Multiband or Cluster Image ilabel

Medial Axis
Transform

Compute the Medial Axis Transform imediaxis

Minimum
Distance

Minimum Distance Classifier (K1) vmindis

VisiQuest Operators VisiQuest Visual Programming • 9

Non-
Parametric

Perform N-Dimensional Vector Quantization or
Classification (K1)

vquant

Category
Subcategory

Operator Description Executable

Quantization
Error

Compute Error between Quantized Image and
Original (K1)

vqerr

Shape
Analysis

Perform Shape Analysis on Image ishape

Spatial
Analysis

Compute Spatial Features Using NxM Window ispatial

Weighted Min
Dist

Weighted Minimum Distance Detector (K1) vwmdd

Image Proc
Color Map Display &
Manipulation

Composite Composite Images icomposite

Convert
Colorspace

Convert Image Colorspace icolorspace

Create Alpha Create an Alpha Channel icreate_alpha

Darken Darken Image idarken

Dissolve Disolve Image idissolve

Linear Convert Convert Between Tristimulus Color Spaces vcltrans

Matrix Convert Linear Color Space Conversion with Specified
3x3 Matrix (K1)

vcmtrans

Opaque Make Image Opaque iopaque

Image Proc
Convolution

Convolve Perform Convolution or Correlation on Image
Data

iconvolve

Image Proc
Data Compression

Compress
Colors

Compress Color Multiband Image to Single
Band with Map

igamut

Image Proc
Feature Extraction

Fractal
Analysis

Fractal Feature Extraction (K1) vfractal

Fractal Dim
P(m,L)

Estimate Fractal Dimension of Image Based on
P(m,L) (K1)

vpml

Generate
Contour Image

Generate Contour Image icontour

Te xture Texture Feature Extraction Using LAW Metrics itexture

Image Proc
Frequency Filter

Band-Pass 2-Dimensional Band-Pass Filter Design ibpf

Band-Stop 2-Dimensional Band-Stop Filter Design ibsf

 10 • VisiQuest Visual Programming VisiQuest Operators

High-Pass 2-Dimensional High-Pass Filter Design ihpf

Low-Pass 2-Dimensional Low-Pass Filter Design ilpf

Category
Subcategory

Operator Description Executable

Image Proc
Geometric
Operators

Flip Image Reflect Image Data Along Either Width Or
Height Axes

iflip

GeoWarp Perform Direct Bilinear Geometric Warping igeowarp

Rotate Rotate Object by Arbitrary Angle irotate

Image Proc
Nonlinear Filters

Median Median Filter for Image Data imedian

Image Proc
Organize Data

Extract 1 Band Extract a Specified Data Band from a Multiband
Image

ibandsp1

Extract 3
Bands

Extract 3 Bands from a Multiband Image (K1) vbandsp3

Mosaic to
Multiband

Convert Mosaic Image to Multiband Image (K1) vmos2band

Image Proc
Segmentation

Border
Distance

Compute Distance from the Boundary in a Tw o-
Valued Image

idistance

Color
Threshold

Generate a Binary Image by Thresholding a
Color Image

igamth

Edge Closing Close Boundaries of an Edge Image (K1) vclose

Image Proc
Spatial Filters

DRF Edge
Extract

Optimal Difference Recursive Filter for Edge
Detection (K1)

vdrf

GEF Edge
Extract

First Derivative Operator for Symmetric
Exponential Filter (K1)

vgef

Gradient
Operator

Gradient Operators (Roberts, Sobel, Prewitt,
Isotropic)

igradient

Median
Histogram

Median Filter the Image Using Histogram to Find
Median (K1)

vhmed

SDEF Edge
Extract

Second Derivative Operator for Symmetric
Exponential Filter (K1)

vsdef

Speckle
Removal

Reduce Speckle Noise Using the Crimmins
Algorithm (K1)

vspeckle

Image Proc
Surface

Add Tilt Add a Specified Illumination Gradient Plane to
Image (K1)

vtilt

Find Tilt Compute the Best-Fit Plane Parameters for
Input File (K1)

vgettilt

VisiQuest Operators VisiQuest Visual Programming • 11

Normals and
Angles

Compute Surface Parameters (Normals and
Angles) (K1)

vsurf

Remove Tilt Remove Illumination Gradient by Subtracting
Best-Fit Plane (K1)

vdetilt

Category
Subcategory

Operator Description Executable

Slopes and
Aspects

Compute Slope and Aspect Images from
Elevation Data (K1)

vslope

Input/Output
Conversion

KDF To Stream Convert from polymorphic to streaming pds2ds

Stream To KDF Convert from streaming to polymorphic ds2pds

Input/Output
Data Files

Animation
Data

Image Sequences Over Time and/or Depth sequences

Example
Volume Data

Volumetric Data Sets volumes

Example
Volume Data

Volumetric Data Sets volumes

Images (Misc) Sample Image Data images

RGB Images Sample RGB Color Images rgbimages

Signals (1D) 1D Signals or Sequences signals

Surface (3D
Plot)

Two Dimensional data for 3D Plotting plot3D

Input/Output
Generate Data

2D Gaussian Generate Gaussian Function Image igauss_func

Box Projection Create Image of Parallelogram Projected onto
CCD Sensor

igbox

Circle Image Create Image of a Filled Circle igcirc

Constant Generate Object Containing Constant Value
Data

kgconst

Fractal Image Create Fractal Image with Specified Fractal
Dimension (K1)

vgfractal

Generate
Expression

Generate Object Value Data From Expression kgexprn

Generate
Location

Generate Location Data kgenloc

Impulse Generate Object Containing Impulse Value Data kimpulse

Marr Filter Create a Marr Type Edge Detection Filter Kernel
(K1)

vmarr

 12 • VisiQuest Visual Programming VisiQuest Operators

Piecewise
Linear

Create 2D Piecewise Linear Periodic Function
(K1)

vgpwl

Sinusoid Generate Object Containing Sinusoidal Value
Data

kgsin

Category
Subcategory

Operator Description Executable

Input/Output
Generate Noise

Exponential
Noise

Generate Exponential Noise Data kgexpon

Gaussian
Noise

Generate Gaussian Noise Data kggauss

Poisson Noise Generate Poisson Noise Data kgpoisson

Rayleigh Noise Generate Rayleigh Noise Data kgrayleigh

Uniform Noise Generate Uniform Noise Data kguniform

Input/Output
Hardcopy Output

Postscript Convert Image to Postscript ipostscr

Input/Output
Information

Data Object
Info

Print File Information kfileinfo

File Viewer Display online help (or ascii text files) khelp

Print Data Print Data in Formatted ASCII kprdata

Matrix
Arithmetic

Invert Diagonal Compute Inverse of Diagonal Matrix minvdiag

Invert Matrix Compute Inverse Matrix minvert

Matrix Add Output = Matrix 1 + Matrix 2 madd

Matrix
Conjugate

Compute the Complex Conjugate Matrix mconj

Matrix Multiply Matrix Multiply (C=AB) mmul

Matrix Power Compute the Positive Integral Power of a
Square Matrix

mpow

Matrix Subtract Output = Matrix 1 - Matrix 2 msub

Matrix
Transform

Transform all vectors in an object using a single
matrix

mtransform

Scalar ABS Output = Absolute Value of Input
(componentwise)

mscalar_abs

Scalar Add Output = Input Matrix + Constant mscalar_add

Scalar Divide Output = Input Matrix / Constant mscalar_div

Scalar Multiply Output = Input Matrix * Constant mscalar_mul

VisiQuest Operators VisiQuest Visual Programming • 13

Scalar Power Output = Input Raised to a Power
(componentwise)

mscalar_pow

Scalar Recip Output = Reciprocal of Input (componentwise) mscalar_recip

Scalar Sqrt Output = Sqrt of Input (componentwise) mscalar_sqrt

Category
Subcategory

Operator Description Executable

Scalar Subtract Output = Input Matrix - Constant mscalar_sub

Transpose
Matrix

Transpose Rows and Columns of Matrix mtranspose

Matrix
Decomposition

LU
Decomposition

Compute LU Decomposition of Matrix (Input =
L*U)

mlud

SVD Compute Singular Value Decomposition (SVD) msvd

Matrix
EigenValues/Vec-
tors

Eigen Compute Eigenvectors and Eigenvalues of a
Square Matrix

meigen

Matrix
Generation

Gen Diag
Matrix

Generate a Diagonal Matrix mgdiag

Identity Matrix Generate Identity or Unit Matrix mgident

Null Matrix Generate Null or Zero Matrix mgnull

Matrix
Linear Operators

Covariance
Matrix

Compute Covariance Matrix mcovar

Simultaneous
Eqns

Least Squares Solution to System of Linear
Equations

mlse

Matrix
Utilities

Exchange row/
col

Exchange Rows or Columns of a Matrix mexchg

Extract Col Extract a Column from a Matrix mextract_col

Extract Row Extract a Row from a Matrix mextract_row

Extract diag/
row/col

Extract Matrix Diagonal, Row, or Column mextract_diag

Replicate
Submatrix

Replicate a Given Matrix as Submatrices of a
Larger Matrix

mreplicate

Row/Col Sums Compute Row or Column Sums for a Matrix mrcsum

Program Utilities
General

Command Icon Command_icon used to run a generic command command_ico
n

Comment Icon Comment a VisiQuest workspace comment

Counter
Display

Display the Output from sequence counter countdisplay

 14 • VisiQuest Visual Programming VisiQuest Operators

File Sequencer Utility for sequencing of file display in VisiQuest. kcat

Generic
Interface

Generic Routine Interface (glue) kgeneric

Loop Files Loop through file list and output data. kloopfiles

Category
Subcategory

Operator Description Executable

Sequencer
Counter

Utility for count sequencing in VisiQuest. kcount

Termination
Test Routine

VisiQuest test routine to check exit status kruntest

Test
Continuous
Run Routine

A test case for the continuous run proceedure. kcontrun

Stream
Binary

sabsdiff Absolute difference of two streams sabsdiff

sadd Add two streams sadd

sarctan2 Arctangent of second stream divided by the first
stream

sarctan2

sdiv Divide first stream by second stream sdiv

sdivinto Divide second stream by first stream sdivinto

shypot Compute the Euclidean distance of two streams
from origin

shypot

sldexp Computes x * 2ˆy sldexp

smaximum Maximum of two streams smaximum

sminimum Minimum of two streams sminimum

smodulo Modulo of two streams smodulo

smult Multiply two streams smult

spow Computes xˆy spow

ssub Subtract second stream from first stream ssub

ssubfrom Subtract first stream from second stream ssubfrom

Stream
Unary

sabs Absolute value sabs

sarccos Arccosine of stream sarccos

sarccosh Hyperbolic arccosine of stream sarccosh

sarcsin Arcsine of stream sarcsin

sarcsinh Hyperbolic arcsine of stream sarcsinh

VisiQuest Operators VisiQuest Visual Programming • 15

sarctan Arctangent of stream sarctan

sarctanh Hyperbolic arctangent of stream sarctanh

scbrt Cube root of stream scbrt

Category
Subcategory

Operator Description Executable

sceil Ceiling of stream sceil

scos Cosine of stream scos

scosh Hyperbolic cosine of stream scosh

serf Error function of stream serf

serfc Complementary error function of stream serfc

sfloor Floor of stream sfloor

sfraction Fraction of elements of stream sfraction

sgamma Log gamma function of stream sgamma

sneg Negation of stream sneg

srecip Reciprocal of stream srecip

ssin Sine of stream ssin

ssinc Sinc (sin(x)/x) of stream ssinc

ssinh Hyperbolic sine of stream ssinh

ssqrt Square root of stream ssqrt

stan Tangent of stream stan

stanh Hyperbolic tangent of stream stanh

strunc Truncation of elements of stream strunc

Visualization
Color Map Display &
Manipulation

Autocolor Automatically Color Data Object by Manipulating
the Color Map

kautocolor

Change
Colorspace

Change the color space attribute on a data
object

kcolorspace

Display Palette Non-Interactive Display of Color Palette putpalette

Interactive
Look Up Table

Interactively Edit Colormap using Look Up Table
Method

editlut

Interactive
Threshold

Interactively Edit Colormap Using Threshold
Method

edithresh

Print Color
Map

Print Color Map Values Associated with Image
Pixel Value

putmapval

 16 • VisiQuest Visual Programming VisiQuest Operators

Pseudo Color Interactively Edit Colormap Using Pseudo-color
Method

editpseudo

Visualization
Image Capture

Get Image Capture image from screen to Khoros 2.1 KDF getimage

Category
Subcategory

Operator Description Executable

Visualization
Interactive Image
Display

Animate Interactive Animation of Image Sequence animate

Edit Image Interactive Image Display and Manipulation editimage

Visualization
Interactive ROI
Extraction

Extract ROI Interactive image Region of Interest (ROI)
extraction

extractor

Visualization
Non-Interactive
Image Display

Display
Animation

Non-Interactive Animation of Image Sequence putanimate

Display Icon Non-Interactive Display of Iconified Image puticon

Display Image Non-Interactive Image Display putimage

Display
Zoomed Image

Non-Interactive Display of a Zoom Image putzoom

Print Pixels Display Pixel Values Associated with Region of
Image

putpixel

Visualization
Plot Display

Display 2D Plot Non-Interactive 2D Plot Display putplot2

Display 3D Plot Non-Interactive 3D Plot Display putplot3

Interactive 2D/
3D Plot

Interactive 2D & 3D Plotting xprism

Visualization
Spectral Analysis

spectre Multi-spectral Image Display spectre

	Table of Contents
	Imagine: VisiQuest
	Introduction
	Command Line Options
	Overview of Graphical User Interface
	The VisiQuest Visual Programming Environment Workspace
	The VisiQuest Visual Programming Environment Menubar
	The Workspace Command Bar
	The Console Window
	Other VisiQuest GUI Features

	Input and Output: Workspace Files and Workspace Objects
	Workspace Files VS Workspace Objects
	Opening Files
	Opening Objects
	Saving Files
	Saving Workspace Objects

	The Visual Programming Workspace
	The File Menu
	The Edit Menu
	The Workspace Menu
	The Options Menu
	The Control Menu
	The Glyphs Menu
	The Help Menu
	The Workspace Command Bar

	Introduction to Glyphs
	Types of Glyphs
	Standard Glyph Components
	Basic Glyph Operations

	Creating a Glyph
	The Glyph Menus
	Accelerated Routines List
	Accelerated Glyph Finder List
	Customizing Which Operators Are Accessible as Glyphs

	Input/Output: Glyph Connections
	Data Connections
	Control Connections
	Manipulating Connections

	Operator Execution
	Executing (or Halting) the Visual Program In Its Entirety
	Run Mode
	Executing (or Halting) a Single Glyph
	Errors / Information Produced by Operator Execution

	Changing Operator Arguments (Using the Pane of a Glyph)
	Text Selections
	Filenames & File Browser
	Other Selections: Logicals, Cycles, Lists, Etc.
	Live Selections
	Optional Selections
	Toggles and Groups
	The Run Button
	The Help Button
	The Close Button
	The Options Menu
	Debugging

	Preferences
	Glyphs
	The Workspace
	The Canvas Grid
	The Command Bar
	Toolboxes

	Variables and Expressions
	Defining Variables
	Data Types
	Incrementing/Decrementing Variables
	Checking Values of Variables
	Evaluating Expressions Using Defined Variables
	User-defined Functions
	Scope Of Variables
	Variables used by Loops and Expression Glyphs
	Using Variables with Filenames or Strings
	Deleting Variables
	Predefined Constants
	Predefined Functions
	Logical Operators
	Arithmetic Operators

	Procedures
	Creating Procedures
	Opening/Closing Procedures
	Renaming Procedures
	Copying Procedures
	Nesting Procedures

	Control Structures
	Creation of a Control Glyph
	Conditional Constructs
	Looping Constructs

	Compiled Workspaces
	Workspace Compiler Types
	Creation of Compiled Workspaces

	Data Transports
	Transport Buffering
	Directory for Creating Temporary Files

	Distributed Computing
	Using the Remote Hosts Control Panel
	Dispatching a Glyph to a Remote Machine
	Restrictions

	Parallel Host Management
	Hosts
	Groups
	Daemons
	Batch Queue

	VisiQuest Operators
	Introduction
	Table of VisiQuest Operators

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

