VisiQuest MANUALS

Programming Services Volume 2

Data Services

AccuSoft Corp.
Www.accusoft.com

Program Services \Volume |

Chapter 1

Introduction

Copyright (c) AccuSoft Corporation, 2004. All rights reserved.

Chapter 1 - Introduction

A. Overview of Program Services

VisiQuest Program Services is a large group of libraries that are layered to provide the software devel oper
with a variety of programming interfaces that trade off reduced complexity against detailed control. Program
Services consists of three catagories. Foundation Services, Data Services, and GUI & Visudization Services.

Each Program Services category is comprised of one or more distinct libraries.

While this volume deals exclusively with Data Services, an overview of Program Services as a whole follows

in order to provide a context for understanding the role of Foundation Services.

[DATA SERVICES — GUI SERVICES

Data Services xvwidgets (li

kappserv (libkaps.so)

DATASERV

xvutils (libxv

kgeom (libkgeom.so)

kwidgets (libkwd.so)

xvforms (libxvf.so)

kapputils (libkapu.so) xvlang (ibxvi.so)

bxvw.s0)

DESIGN

U.S0)

kdataman (libkdms.so) xvobjects (libxvo.so)

IMAGINE

xvisual (libsvs.so)
xvimage (libxvi.so)
xvannotate (libxva.so)
xvplot (libxvp.so)

VISUALIZATION SERVICES

ENVISION

—— FOUNDATION SERVICES

Basic & Operating
System Services Math Services

User Interface
Services

kutils (libku.so) . kforms (libkvf.so)
Klibc (libke.s0) kmath (libkim.s0) kelui (libkclui.so)

Expression Services

kexpr (libkexpr.so)

BOOTSTRAP

Figure 1: Program Services is comprised of libraries from the various VisiQuest toolboxes, bootstrap,
devel, dataserv, design, imagine, and envision. Foundation Servicesis part of the bootstrap toolbox,
and includes the klibc, kutils, klibm, and kexpr libraries. Data Services is provided in the dataserv tool-
box, and is made up of the kappserv, kapputils, kdataccess, kdataman, kjpg, kdatafmt, and kgeom
libraries. GUI and Visualization Services is in the design, imagine, and envision toolboxes, and
includes the kwidgets, xvforms, xvutils, xvwidgets, xvobjects, xvannotate, xvgraphics, xvimage, xvplot, xvi-

sual, klang, and xvlang libraries.

This volume (Volume I1) deals exclusively with Data Services. Volumes | and Il deal with Foundation Ser-

vices and GUI & Visuaization Services, respectively.

B. Introduction to Data Services

Data Services consists of a collection of libraries that, together, comprise a powerful system for accessing and
manipulating data. The objective of Data Services is to provide the application programmer with the ability to
access and operate on data independent of its file format or its physical characteristics, such as size or data
type. Data Servicesis designed to address the needs of alarge number of application domainsincluding image
processing, signal processing, geometry visualization, and numerical analysis.

DATA PROCESSING DATA VISUALIZATION
'l— — 00
r— 1/ =
E—_ﬁ =
e DATA =
OBJECT -

4212451
1453956
2321235
1235545
221456

Figure 2: Data Services implements a powerful and abstract data object. This data object is used by all
VisiQuest data processing and data visualization programs.

The Data Services Application Programming Interface (API) consists of a set of simple library functions that
provide access to an abstract data object. This API alows you to store and retrieve data from the data object
and to access characteristics of the data without having to worry about complicated data structures or intricate
file handling. This APl encapsulates extensive functionality that efficiently handles data access and presenta-
tion. Thisalows you to concentrate on the details of implementing your specific algorithm rather than worry-
ing about how to access the data on which the algorithm is operating.

Many different application domains are able to utilize Data Services. Each domain performs al data access
through the Data Services API. Data is interpreted according to the data model dictated by the domain. Data
Services has a series of data models available, each of which is designed to meet the needs of a single domain
or family of domains. The most powerful of these is the polymorphic data model, which provides consistent
interpretation of data across many diverse domains. A geometry data model and a color data model are also
available.

Data presentation routines, embedded into the Data Services API, handle casting, padding, resizing, scaling,
and normalizing data. Data can be easily presented in whatever form is most convenient.

IMAGES VOLUMES ANIMATIONS SIGNALS MATRIX GEOMETRY

®] P | | E | | S

A A A jk A A
\ 4 \ 4 \ 4 y \ 4 Y

Data Services Application Programming Interface (API)

Application
Domains

Polymorphic Model Geometry Model Color Model
PRIMITIVE LIST L MAPS
VALUE LOCATION TIME MASK MAP v 1)
iee i deal> e e
s ’J\, / garts % le) E A
124

size scaling mapping
datatype normalization validity

@] data access presentation

h

E shared

files E 3
E memory3
o e

Transport
Independence

transport abstraction

file format independence large data sets

File Format and
Memory Management

Figure 3: Many diverse application programs can be written to use Data Services. A powerful polymor-
phic data model ensures consistent data interpretation across the diverse domains. The complexity of han-
dling data presentation is built into Data Services along with the ability to deal with large data sets and
numerous file formats. The underlying VisiQuest transport abstraction provides Data Services with trans-
port independence.

At the lowest level of Data Services is support for reading and writing severa data file formats as well as a
memory management system for accessing very large data sets. The entire system is built on the VisiQuest
transport abstraction; data objects can be accessed independent of their underlying transport, whether it be a
file, pipe or shared memory. The functionality provided with Data Services empowers you to write highly ver-
satile and robust applications with a minimal amount of effort.

C. Application Programming Interface (API)

The Application Programming Interface (API) in Data Services is centered around an abstract data object
made available via the data type kobject. You declare a kobject just as you would any other variable. Once
declared, you can then open the object as either an input or output object, or create the object as a temporary
object. After that, you can access the object with a set of application-specific function calls. Access to the
object is done through primitives and attributes. T

Primitives are used to access data within the data object. Data is stored into the object and retrieved from the
object using put _data and get_data function calls. The primitive specified with each of these calls deter-
mines the amount of data being accessed as well as where in the overall data set that datais located. *

Attributes are used to access meta-data within the data object. Meta-datais aterm used loosely to cover char-
acteristics of the data such as size and data type aswell as auxiliary information such as the date or a comment.
Additionally, meta-data refers to presentation information such as scaling factor or normalization range.
Attributes are assigned to and retrieved from an object using set _attribute and get _attribute func-
tion calls. Functions also exist for comparing attributes of two objects, copying attributes from one object to
another, and printing attributes from an object.

meta-data is accessed

via attributes - attributes

include characteristics of the
data, auxiliary data, and the data

presentation. A/i

DATA examples : o }
size, data type | kobject input_object;
OBJ ECT O } kobject output_object;
4212450 @) } input_object = open_input ("./data/dataset.pnm") ;
i.‘;‘il 5 ol output_object = open_output ("result.viff");
|
231
ol get_attribute (input_object, <ATTRIBUTE>, &rvalue);
A the data itself is o } set_attribute (output object, <ATTRIBUTE>, value;
i |
ac_ce_s_sed via data Ol data = get_data(input_object, <PRIMITIVE>, data);
primitives. | process_data(data) ;
X ol put data (output object, <PRIMITIVE>, data);
examples : } - -

line, plane, region) A

Figure 4: Datais contained within an abstract data object. This object is available for programming via
the abstract data type kobject. The kobject attributes are accessed via'get’ and 'set’ attribute routines and
the kobject datais accessed via'get’ and 'put’ dataroutines. The pseudo-code illustratesin general terms
how a data processing routine utilizes Data Services. An input and output object are opened. Relevant
attributes are transferred from the input to the output. Data is then retrieved from the input, processed,
and finally, stored in the output.

1 The purpose of the kobject data type is to hide the data structure used by Data Services from the calling application. The calling application
should not change, manipulate or even see the contents of the underlying data structure; thus, the use of the kobject. This technique is used by severa
different libraries in VisiQuest system for the same reason. As such, depending on context, the kobject in question may be hiding different data struc-
tures. For example, the kobject is used by the kutils library to hide the data structure used for data transports, and by the kems library to hide the data
structure used for software objects. The xvisual and xvwidgets libraries do a similar thing with the xvobject data type. By convention, abstract data

types that are hidden from the calling application are called "kobject" if they are not related to visual display, "xvobject” if they are.

The primitives and attributes vary according to the data model that is used. Each data model hasits own set of
primitives and attributes. The specific primitives and attributes for each data model will be covered in depth in
later chapters. For now, it is sufficient to understand that data objects contain data, which can be accessed via
primitives, and meta-data, which can be accessed via attributes.

D. Overview of the Application Data Services

The upper level of Data Services is organized into a series of application-specific services, each with its own
data model. Each data model covers the needs of either a specific domain or those of a number of similar
domains. Note that even though the data models of each application service differ, the underlying philosophy,
design and Application Data Services of every service is similar. This means that once you've learned one
application service, you can easily learn the other application services simply by understanding their data mod-
els.

There are currently three application Data Services: Polymorphic Services, Geometry Services, and Color Ser-
vices. Polymorphic Services is designed to cover the magjority of application-domains; the polymorphic data
model can store anything from signals to images and from animations to volumes. Geometry Services is
designed to cover the specific needs of the geometry domain; the geometry model provides a range of geomet-
ric primitives such as triangles and spheres, in addition to a number of volumetric primitives. Color Servicesis
an extension to Polymorphic Services with very specific functionality relating to colormaps.

If you are working with data that is raster-based in nature, consisting of discrete points in space and time, then
you should use Polymorphic Data Services. Polymorphic Data Services is designed for storing up to five-
dimensional data, meaning it is ideally suited for applications that need to access signals, images, matrices,
volumes, or animations. Explicit spatial and temporal information can also be stored to position the data in
space and time. This flexibility allows elevation data, for example, to be stored with a time series of registered
satellite images.

If you are working with data which is vector-based in nature, consisting of geometric shapesin space, then you
should use geometry data services. Geometry Data Services is designed for storing geometric primitives such
as lines, triangles and spheres, meaning it is ideally suited for visualization and annotation applications.
Geometry Data Services can be used for storing data such as aroad map or an isosurface.

Finaly, if you need to store extra color information, regardless of the nature of the data, you should use Color
Data Services. Color Data Services is designed to work in conjunction with Polymorphic Data Services and
Geometry Data Services by storing auxiliary color information and by generating and manipulating specialized
colormaps for use with mapped data.

Please note that the data models of these services overlap wherever possible. This overlap allows processing
routines written to one service to operate transparently on data from the other services. For example, a col-
ormap generated with Color Services can be utilized directly by geometry stored with Geometry Services. The
following sections will provide a brief overview of the application services. Each service will be covered in
detail in later chapters.

D.1. Polymorphic Data Services

Polymorphic Data Services is the most powerful of all the application data services. The polymorphic data
model implemented by this service is designed to encompass many application domains. This model can be
used to represent data for application domains as diverse as image processing, volume processing, signal pro-
cessing, computer vision and numerical analysis. By capitalizing on the commonality of data interpretation
across these different domains, the polymorphic model facilitates interoperability of data manipulation rou-
tines. In other words, a processing routine written with Polymorphic Services will be able to process data
objects containing anything from signals to images and from volumes to animations.

This section of the manual provides a general explanation of the polymorphic data model, as well as some
examples of how data sets from different processing domains are stored in the model. You can find specific
details about this model in Chapter 2, Polymorphic Data Services of this volume.

D.1.1. Polymorphic Data Model

The polymorphic data model is based on the premise that data sets are usually acquired from real-world phe-
nomena or generated to model the same. As such, the polymorphic model consists of data that exists in three-
dimensional space and one-dimensional time. You can picture the model most easily as a time-series of vol-
umes in space. This time-series of volumes is represented by five different data segments. Each segment of
data has a specific meaning dictating how it should be interpreted. Specifically, these five segments are value,
location, time, mask and map. All of these segments are optional; a data object may contain any combination
of them and till conform to the polymorphic model.

The value segment is the primary data segment, consisting of data element vectors organized implicitly into a
time-series of volumes. The value data may be given explicit positioning in space and time with the location
and time segments. The remaining two segments are provided for convenience. The mask segment is used to
mark the validity of each point of value data. The map segment is provided as an extension to the value data;
the value data can be used to index into the map data.

MASK Data marks data MAP Data
validity
0
mask element value data 1
vector may index 2
intoamap 3
4
value element
vector / [
/ H
VALUE Data /’ A
/ s’
7
/ /, 7
/ /40Rd
element vector , 4 P 7
\ ’ .
7
o0
volume of
vector data
in space
» volumes through time >
LOCATION Data TIME Data
location data places
vector each
| - - = ' . ® . volume
- Z explicitly
X in time

places each
vector from
single volume
explicitly
in space

Figure 5: An overview of the Polymorphic Data Model. The polymorphic model consists of five data
segments, each segment serving a specific purpose. The value segment consists of data element vectors
organized into atime-series of volumes. The volume of value data can be given explicit locations in space
with the location segment; one location vector is provided for each value vector in a single volume. The
volumes of value data can be given explicit locations in time with the time segment; a time-stamp may be
given for each volumein time. A mask segment is available for marking value data validity. A map seg-
ment is also provided; the value data can be used to index into the map data.

D.1.2. Value Data

The value data segment is the primary storage segment in the polymorphic data model. Most of the data
manipulation routines are specifically geared toward processing the data stored in this segment. In an imaging
context, the individual pixel RGB values would be stored here. In a signal context, regularly sampled signal
amplitudes would be stored here.

The value segment consists of a time-series of volumes where each volume is composed of element vectors.
Each element vector is composed of a number of value points. The size of the value segment is determined by
the width, height, and depth of the volume, by the number of volumes through time, and by the number of
pointsin the element vector.

value element

VALUE Data _-“ vector each element has an implicit
/elements position in the value data

deply' iy 1 WHDTE-=

height

width time

Figure 6: Polymorphic Value Data. The value segment of the polymorphic model is best pictured as a
time-series of volumes. Each volume consists of element vectors oriented implicitly along the width,
height, depth, time, and elements dimensions. Each element vector can be indexed by a four-dimensional
designator while each specific value comprising the element vector can be indexed by a five-dimensional
designator.

D.1.3. Location Data

The value element vectors in the value segment are stored implicitly in aregularly gridded fashion. Explicit

location information can be added using the location segment. If the value data is irregularly sampled in
space, the explicit location of each sample can be stored here. Specifically, the information stored in this seg-
ment serves to explicitly position the value datain explicit space.

The location segment consists of avolume of location vectors. The width, height, and depth of the volume are
identical to the volume size of the value segment. Different location grid types are supported. A curvilinear
grid alows for explicit locations to be specified for each vector in the value data. A rectilinear grid allows for
explicit locations to be given for the width, height, and depth axes. A uniform grid alows for explicit location
corner markers to be specified. Note that the location data only explicitly positions a single volume; the posi-
tion then holds for each volume through time.

LOCATION Data ~ 'ocalion daia / ST T
__\Le_cio_r ____________ _7 value data,/\' \ / -\‘
X 1
deptV ey “dimension vector lx/l ',l,'

Entire Value Vector is positioned
by a Location Vector (X,Y,Z)

height

This position holds for the value

width element vector over all time VALUE Data

Figure 7: Polymorphic Location Data. The location segment of the polymorphic model is used to explic-
itly position the volume vectors in space. The location segment consists of a volume of location vectors,
the width, height, and depth of this volume is shared from the value segment. The location vector is of
size dimension.

D.1.4. Time Data

Explicit time information can be added using the time segment. |f each volume of value data is irregularly
sampled in time, an explicit timestamp for each volume can be stored here. Thisis useful in animations where
each frame of the animation occurs at a different time.

The time segment consists of alinear array of timestamps. The number of timestamps matches the time size of
the value segment.

TIME DataTI[EI[T%)++ [,
,, \\ N

//
e S
2 / \ S
» 14] N

VALUE Data

Figure 8: Polymorphic Time Data. The time segment of the polymorphic model is used to explicitly
position the value volumes in time. The location segment consists of a linear array of time stamps; the
number of timestamps is equivalent to the time size of the value segment.

D.1.5. Mask Data

The mask segment is available for flagging invalid values in the value segment. If a processing routine pro-
duces values, such as NaN or Infinity, these values can be flagged in the mask data so that later routines can
avoid processing them. A mask point of zero is used to mark invalid value points, while a mask point of oneis
used to mark valid value points.

The mask segment identically mirrors the value segment in size; there is one mask point for each value point.
Thus, avaluein any given element vector at any given location or time can be marked asinvalid.

value element vector
MASK Data m‘ﬂ f _ B
-7 mask element vector mask points mark validity on
oD ositionally identical value points
1 /glemeﬁts P v P
7 K
e

—_— time
width

Figure 9: Polymorphic Mask Data. The mask segment of the polymorphic model is used to mark data
validity of the value points. The mask segment is exactly the same size as the value segment.

D.1.6. Map Data

In cases where the value data contains redundant vectors that are duplicated in different positions within the
volume, the map segment may be used. The value vectors are replaced with values which index into the map;
the map then contains the actual data vectors. In this sense, the map is an extension of the value segment.

The map segment consists of a number of width-height planes. The values from the value segment map into
the map height indices. The map vector runs along the map width. A simple map would consist of just a sin-
gle width-height plane; a more complicated map would have a width-height plane for every depth, time, and
element plane in the value segment. This provides a great deal of mapping flexibility. For example, every
planein avolume or every image in an animation could have a separate map.

MAP Data
value points index into the -ﬁl valuetdata
map height ST Asf” vector
- 0 // 1/ /
%‘: ; e =
o 3 T e ted /
e 4
ol s
| 6
El” VALUE Data
map width

Figure 10: Polymorphic Map Data. The map segment of the polymorphic model is used store a lookup-
table of map vectors. Values in the value segment are then used as indices into the map; the value points
map to indices along the map height. The map vector runs along the map width. A number of map width
x map height planes may exist; the map size may match the depth, time, and element size of the value seg-
ment by specifying the appropriate map depth, map time and map el ements.

D.1.7. Polymorphic Example 1 : Storage of an RGB Image

This example illustrates the storage of a simple RGB image. This image utilizes only the value segment. The
image is 512 pixels wide by 480 pixels high. The pixels are stored along width and height in the value seg-
ment. The depth and time size of the value segment are each 1. The RGB values for each pixel are stored
down elements; thus the element sizeis 3. The other segments are not used.

1-10

VALUE data

-—13 No LOCATION data
G No TIME data
R No MASK data

elements = 3 No MAP data

height = 480

depth=1
time=1

RER AR
width =512

D.1.8. Polymorphic Example 2 : Storage of a Signal

This example illustrates the storage of a regularly-sampled time signal. The sampled points are stored in the
value segment along time, thus the time size is equal to the number of samples N. The width, height, depth,
and element sizesare al 1. The other segments are not used.

VALUE data
No LOCATION data
No TIME data
No MASK data
No MAP data
to < time =N IN-1
width = 1 . . .
height = 1 values points represent sampled signal amplitudes
depth =1 and are stored down the time dimension

elements =1

D.1.9. Polymorphic Example 3 : Storage of an Animation with RGB Colormap

This example illustrates the storage of a mapped animation. The frames of animations are stored in six width x
height value planes through time. The depth and element size of the value segment are one. Each point in the
value segment maps into the map segment. The values index into the map height; there are 256 available RGB
vectors in this example. Because the map contains RGB values, the map width is three. This map segment
contains a single colormap for each frame of animation, thus the map time is 6. If the map time had been 1,
then the entire animation would have referred to a single colormap. The time segment is used to store times-
tamps for each frame of the animation. The mask and |location segments are not utilized.

1-11

depth =1 No LOCATION data
VALUE data time = 6 No MASK data

width = 250 elements = 1

height = 192

MAP data
map width = 3 (RGB)
map height = 256
map depth =1

map time =6 %

map elements =1

map time 0 map time 1 map time 2 map time 3 map time 4 map time 5
TIME data
time =6 time 0 time 1 time 2 time 3 time 4 time 5

D.2. Geometry Data Services

Geometry Data Services is designed to meet the specific needs of geometry and volume storage. The geome-
try data model implemented by this service supports the storage and retrieval of a number of geometric primi-
tives, such as spheres, triangles and lines. Other non-geometric primitives such as octmeshes and textures are
also supported. This section of the manual provides a general explanation of the geometry data model, as well
as an example of how a geometry data set is stored. You can find specific details about this model in Chapter
3, Geometry Data Services of this volume.

D.2.1. Geometry Data Model

The geometry model is centered around a primitive list. Thislist is able to store any combination of geometric
primitives such as spheres or polylines. Each geometric primitive consists one or more different types of data,
such as location data and color data. The types of data required depend on the primitive; al primitives have
location and most have color while only some have radii or normas. Most data is explicitly provided,
although colors may be provided indirectly via a colormap. Quadmesh and octmesh primitives, which are not
illustrated here, are also available. These mesh primitives are overlaid on top of the polymorphic data model.
Thus, from the point of view of the polymorphic data model, a quadmesh will appear to be an image, and an
octmesh will appear to be avolume.

1-12

PRIMITIVE LIST

KGEOM_SPHERES CKGEOM TRIANGLES DISJOINT)—

KGEOM_POLYLINE_CONNECTED

]]] <[| sl | <f | sl | <f |
AR g | 2
[a] (a] [a) o a @
zZ - =z
z o (%} o o < o o [e]
o (¢} 2 £ 4 b= o = =
= o) o < Q o o < Q
< < O O o O o O
O | 9| | x 0 Z| | w o
o | x —
- S
o b v
o 4 =
g O O A8 0 0 8y 0 O
T T \
/ / , : \\ \\ // h /, ’v : \\ . \\ \\ \\ \\
X \ , 1 , , , N \ \\ | \ \ \
' / // | | \ \\ A ! ! \ :
Ky [E1 G
/ I d / " color index : \ " colt\)r iidex
color index radlus value LY “or- ! -or-
N3 texture coordinate
color vector color vector
Iocat|on data colorvector location data | dat vector
normal data location data

vector vector
vector vector

Figure 11: An overview of the Geometry Data Model. The geometry model consists primarily of a prim-
itive list. Geometric primitives are stored and retrieved from this list. Each geometric primitive is an
aggregate of different types of data. For example, a spheres primitive consists of location data, color data
and radius data. Please note that a single spheres primitive contains multiple spheres. Most data is
explicitly given for each primitive. Color data however may consist either of explicit color vectors or of
indicesinto acolormap. This figure does not illustrate any of the mesh primitives.

D.2.2. Geometry Example: Storage of Geometry Primitives

This example illustrates the storage of an isosurface and a bounding box. The isosurface is constructed from
many thousands of digoint triangles. The triangles composing the isosurface are stored in the first primitive on
the list. Please note that the triangles in this one primitive could have been broken into separate primitives if
so desired. The bounding box surrounding the isosurface simply consists of 12 digjoint lines. These are stored
in the last primitive on the list.

ISOSURFACIE\

MNPANM
=K LY

APA

BOUNDING BOX
N

PRIMITIVE O 1785 Triangles

ISOSURFACE KGEOM_TRIANGLES_DISJOINT

PRIMITIVE 1 12 Lines

BOUNDING BOX< KGEOM_POLYLINE_DISJOINT

1-13

D.3. Color Data Services

Color Data Services provides very specific functionality related to color data. The color data model imple-
mented by this service provides a number of automatically generated standard colormaps as well as a number
of colormap operations that can be utilized with polymorphic or geometric colormap data. It also provides a
number of color interpretation attributes, which indicate how the color vectors in a data object should be inter-
preted. This section provides a general explanation of the colormap data model. You can find specific details
about thismodel in Chapter 4, Color Data Services of this volume.

1-14

D.3.1. Color Data Model

The color model provides both autocolor procedures and colormap operations. An autocolor procedure, when
invoked, creates a colormap according to the given autocolor scheme. A colormap operation, when invoked,
will take an action on the existing colormap. In both cases, the original colormap is saved. The color model
also provides a mechanism for storing the current colorspace model of the data and determining whether or not
the color vectors contain an a pha channel for storing opacity information.

AUTOCOLOR COLORMAP
PROCEDURES OPERATIONS
RGB Cube Grey Scale Invert Red Filter
RGB Triangles Equalize MAP Data Invert Original Green Filter
RGB Spiral Stretch R Random Blue Filter
HLS Sprial Standard Deviation 1 Reverse Chain Left
HSV Rings Rainbox [> 2 <] Rotate Left Chain Right
HLS Rings Disjoint Greycode ,3, Rotate Right Rotate Red Left
RGB Distance Greycode : Band Rotate Left ~ Rotate Red Right
CIE Dlagram 3-3-2 Fmmmmmmmmmmmme——oo- Band Rotate Right Rotate Green Left
Density Slice I ORIGINAL MAP Data ! Swap Red/Green Rotate Green Right
0 o 1 Swap Red/Blue Roate Blue Left
originalmap 1 gwap Green/Blue Rotate Blue Right
1
1

1
1
1
1 2 .
H is saved
1 4
1

Figure 12: An overview of the Color Data Model. The color model provides both autocolor procedures
and colormap operations. Autocolor procedures replace the existing map, while colormap operations
operate on the existing map. In both cases, the original colormap is saved. The map can be used by both
polymorphic and geometry data.

E. Data Access Presentation

Data Services has the ability to present the data stored within a data object in a variety of different ways. Data
can be cast, resized, normalized, or scaled on access. The API to this functionality is provided by a number of
data presentation attributes. By setting the appropriate attributes, Data Services returns the data to you in the
form that you find the most convenient. In order to understand how the attributes are used, it is necessary to
understand how the data object is divided into a presentation layer and a physical layer.

E.1. Presentation and Physical Layers

A data object can be thought of in terms of two layers. a presentation layer and a physical layer. Attributes at
the physical layer typically describe the actual physical characteristics of the data. Attributes at the presenta-
tion layer typicaly dictate how the data is to be accessed. For example, there is a physical data type attribute
which indicates what data type the datais actually stored in, and a presentation data type attribute which indi-
cates what data type the data should be presented in. If the presentation data type is set to integer, while the
physical datatypeis set to short, then the data will be cast from short to integer on retrieval and from integer to
short on storage.

This presentation capability is handled by the data pipeline. This pipeline consists of a number of stages,
where each stage is designed to handle a single component of the presentation. Data passes through this

1-15

pipeline during put _data and get_data calls. Only the pipeline stages that are necessary to present the
data as requested will be invoked for any given data access. Thus, the data presentation capability can be
bypassed if speed isimportant.

application code

PRESENTATION
DATA TYPE = KINT
WIDTH = 180
LAYER HEIGHT = 160
"how the data appears to you"
w
E
e 4 3 N
3 |
g
DATA PIPELINE [transposing] | & g o
: 5 &
"uses pipeline stages to resizing e oL
transform data as it is being - 0o 3
accessed" oA
casting - I ‘
& _ 2 J
»
3
PHYSICAL
DATA TYPE =KBYTE
LAYER WIDTH = 256

HEIGHT = 269
"how the data is stored"

Figure 13: A data object can be thought of as having two layers, a presentation layer and a physical layer.
Attributes at the physical layer determine the storage characteristics of the data, such as its size and data
type. Attributes at the presentation layer determine the presentation characteristics of the data. On
access, data is passed through a data pipeline, which transforms the data according to the presentation
attributes. Each presentation attribute corresponds to a stage in the data pipeline; only the necessary
stages are invoked on data access.

E.2. Reference Objects

Data Services provides you with the ability to create reference objects. A reference object is smply a new
presentation layer on an existing data object. A reference object will share the same physical layer as the orig-
inal object, and as such, will share al the data and the corresponding physical attributes of the original data set.
However, the reference object will have its own presentation layer with its own copy of al the presentation
attributes. This provides you with the ability to have multiple views of the same data set in a single program.
It provides a mechanism by which a single data set can be accessed in two different contexts simultaneously.
This powerful concept has a number of uses. Reference objects are most commonly used to limit side effects
in data processing libraries, or to provide multiple views of asingle data set in an interactive program.

1-16

original reference

N
PRESENTATION PRESENTATION
LAYER LAYER

D.

DATATYPE = KINT) ATA TYPE = KFLOAT

1 J
PHYSICAL

LAYER
DATA TYPE = KBYTE

54321345
12566982

/\/7

kobject original;
kobject reference;

orignal = open("file");

O O0OO0OO0OO0OO0OO0OO0O0Oo

reference = reference(original) ;

f

Figure 14: An illustration of Reference Objects. It is sometimes useful to have access to multiple ver-
sions of agiven dataset. By using reference objects, you can avoid having multiple copies of the data and
have instead a single physical copy of the data with multiple presentations. Each reference object has its
own presentation layer, but they all share acommon physical layer. References are made from an original
object.

F. File Format Support

Data Services transparently supports numerous file formats. The details of file format support are hidden in
the Application Programming Interface (API) in Data Services. When you open up an input data object, the
file formats layer of Data Services will check the underlying file to determine if it is one of its supported file
formats. If it is, the data contained in the file will be made available through a number of data segments. You
can then access the data through the various application data models that overlay these segments. With this
abstraction, you can open a data object and process it without having to consider its underlying data format.

Application Models ‘ Polymorphic Model H Color Model

Data Segments TIME MASK LOCATION VALUE MAP

KDF
FORMAT

PBM
FORMAT

VIFF
FORMAT

File Format Layer

Figure 15: Data Services transparently supports a number of data file formats. The file format layer
understands how to read and write several different formats, and is able to present the data to Data Ser-
vices in the form of different data segments. These data segments are then accessed through the different
application data models.

1-17

F.1. Supported Formats

Data Services has support for the following file formats.

Data Services Supported Formats
Name File Format Description

KDF VisiQuest Data Format

JPEG Independent JPEG Group
PNM Portable Anymap File Formats
PCX Paintbrush Format

Rast Sun Raster

Xbm X Bitmap

Xpm X Pixmap

Xwd X Window Dump

Avs AV S Image Format

Arf Another Raster Format

Ascii Ascii formatted data

Raw Raw data

Eps Encapsulated Postscript (output only)

F.2. Format Storage Issues

Please note that not all formats are capable of storing all segments. For example, the PBM format is only able
to store map and value data. Thus, if you create a data object with explicit location data and then save the
object using the PBM format, your location datawill be lost. The VisiQuest KDF format is the only supported
format which is capable of generally supporting all data segments and attributes. Please aso note, however,
that since most of the supported formats are designed for storing images, thisistypically not alimitation if you
are working with image data. In these cases, the file format support provides you with the ability to seamlessly
store your datain formats usable by other software systems.

1-18

G. Large Data Sets

With other systems, the entire data set is read from disk and placed into memory for processing. This does not

work with large data sets, where the amount of data stored on disk exceeds the amount of memory available.
Data Services takes a better approach with its treatment of large data sets. If the amount of data in a file
exceeds the amount of memory available, then Data Services will read into memory only the data that you
specifically request. With Data Services, it is possible to write programs to process large data sets.

\ /
\ /

1000 Gigabytes

~
S
NN
\ / S
\ / S
r—

1 Megabyte
| I— |

BIG DISK SMALL MEMORY

Figure 16: Data Services provides the ability to operate on large data sets. If the entire data set will not
fit into memory, then only the data that is requested on any given data access call will be read from the
disk. Routines written with data services that never request more data than can be stored in memory will
be able to process large sets.

H. Data Services Organization

Data Services consists primarily of two services: Application Data Services and Data Management Services.
Application Data Services encompasses Polymorphic Data Services, Geometry Data Services, and Color Data
Services. Application Data Services contains all the public, high-level functionality of Data Services and is
typically the only data service you need to be aware of. Data Management Services contains the segment and
attribute infrastructure of Data Services, aong with the Data Presentation Pipeline. Its API, while publicly
available, isintended only for advanced users who wish to bypass the data models imposed by the Application
Data Services. Below these two services are the File Format libraries. These libraries, which contain no pub-
licly available functions, handles the reading and writing of the different supported data formats.

1-19

APPLICATION SERVICES

(7)) POLYMORPHIC COLOR GEOMETRY

(Llj DATA SERVICES DATA SERVICES DATA SERVICES

>

o

(L}J) DATA MANAGEMENT
' 1 e

< :_ 7 bt

-

g FILE FORMAT SUPPORT
i ElEE A EoTTETET
EoEIERE T Rt 1 iadvancedi

FOUNDATION SERVICES

Figure 17: An illustration of the organization of Data Services. Data Services consists of multiple lay-
ered libraries. The uppermost layer contains the Application Data Services libraries (kappserv and
kgeom). The kappserv library contains Polymorphic Data Services and Color Data Services while the
kgeom library contains Geometry Data Services. Below these libraries is the Data Management Services
layer. This layer contains the segment and attribute infrastructure of Data Services as well as the Data
Presentation Pipeline. This layer is broken into two libraries, kdataman and kdataccess. The lowest
library in Data Services is the File Format library. This library contains readers and writers for al the
underlying data formats supported by Data Services. Support for the JPEG format is contained within its
own library. Most programmers should only use the application services.

1-20

Table of Contents

A. Overview of Program Services
B. Introduction to Data Services .
C. Application Programming Interface (A PI)
D. Overview of the Application Data Services
D.1. Polymorphic Data Services .
D.1.1. Polymorphic Data Model
D.1.2. VaueData . .
D.1.3. Location Data .
D.1.4. TimeData .
D.1.5. Mask Data .
D.1.6. Map Data .
D.1.7. Polymorphic Example 1 Storage of an RGB Image
D.1.8. Polymorphic Example 2 : Storage of aSignal .
D.1.9. Polymorphic Example 3 : Storage of an Animation W|th RGB CoI ormap
D.2. Geometry Data Services . Ce e e
D.2.1. Geometry Data Model S
D.2.2. Geometry Example: Storage of Geometry Pr|m|t|ves
D.3. Color Data Services e e e
D.3.1. Color Data Model
E. Data Access Presentation .
E.1. Presentation and Physical Layers
E.2. Reference Objects . .
F. File Format Support .
F.1. Supported Formats .
F.2. Format Storage Issues .
G. Large Data Sets . .
H. Data Services Organlzatlon

1-2
1-4
1-5
1-6

1-7
1-8

1-9

. 1-10
. 1-10
111
111
. 1-12
. 1-12
. 1-13
. 114
. 115
. 1-15
. 1-15
. 1-16
. 1-17
. 1-18
. 1-18
. 1-19
. 1-19

This page left intentionally blank

Program Services \Volume |

Chapter 2

Polymorphic Data Services

Copyright (c) AccuSoft Corporation, 2004. All rights reserved.

Chapter 2 - Polymorphic Data Services

A. Introduction

Chapter 1 introduced the concept of an Application-Specific Data Service, which is an Application Program-
ming Interface (API) that is customized for a specific data processing domain or a specific type of interaction
with data. Polymorphic Data Servicesis an Application- Specific Data Service that provides full accessto and
full utilization of the Polymorphic Data Model.

The ability of programs to operate equally well on data from a broad range of application domainsis referred
to as polymorphism. For example, if a program can operate on rasterized image data as well as sampled sig-
nals or matrices, then it is polymorphic. The Polymorphic Data Model is a framework for interpreting data
that is based on an idealization of the physical universe (please see below). Thus, this model provides a uni-
form interpretation of data independent of any specific application domain. The model can represent data
acquired or generated for applications as diverse as image processing, signal processing, computer vision,
numerical analysis, and volume visualization.

IMAGES VOLUMES ANIMATIONS SIGNALS MATRIX

=
R R R B

Polymorphic Data Model

Application
Domains

VALUE LOCATION TIME MASK MAP

AN =

00000

Figure 1: The Polymorphic Data Model is designed to encompass a broad range of scientific application
domains. Images, signals, volumes, animations, and matrices can al be stored within this model.

Polymorphic Data Services provides an APl that can be easily applied to a wide variety of application
domains. However, while the other application services present a model in aform that is more customized for
a specific-application domain (such as Geometry Visualization or Color Interpretation), this application service
isfree of the limitations that may be imposed by such narrow domain-specific interpretations of data.

The remainder of this chapter consists of six sections: (1) an in-depth discussion of the Polymorphic Data
Model and (2) how to interact with it, (3) a discussion of the philosophy behind the Polymorphic Data Services
API, (4) definitions of the data primitives, (5) definitions of the data attributes and (6) descriptions of the Poly-
morphic Data Services functions.

2-1

B. The Polymorphic Data Model

The Polymorphic Data Model is a standardized interpretation that is applied to data that has been sampled
from physical phenomena, or that has been artificialy generated to emulate physical phenomena. In this
model, data is represented as a number of sets, or vectors of information that exist in three-dimensional space
and one-dimensional time. Using this model, a vector of data can be thought of as consisting of one or more
values that exist at a specific location in space-time. Each data point can be considered to be valid or invalid.
This collection of propertiesimplies that up to four storage components may be necessary in order to represent
the data. For convenience, these "components' are referred to as segments.

The four segments that are required to fully represent the model are: value, which serves as the primary source
of data in the model; mask, which provides validity information for each point in the value, segment; and
location and time, which together provide explicit world-coordinate placement in three-dimensional space and
one-dimensional time. In addition to these four segments, a fifth segment, map, is present in the model
because it provides exceptional storage compression for quantized data and is a useful representation when
visualizing data. These data segments are al interrelated, but are generally accessed independently. These
data segments are related together via a set of four indices; w, h, d, t. The aggregation of these data (value,
mask, map, location, and time) allow implicit and explicit data to be dealt with in a convenient manner. Fig-
ure 2 illustrates each of the data segments while Figure 3 illustrates the association between the segments with
respect to the four indices.

marks data MAP Data
validity

value data
may index
into a map

mask element
vector

e DNWNRO

value element /—
vector /
/

VALUE Data ,’ L/ .7

/

ey

7

elementvector , /" ~
7

s
s

oo

volume of

vector data
in space

————————————» volumes through time

LOCATION Data TIME Data
location data places

vector each
| _-= ' ¢ ' volume
_ AT Z explicitly
in time

places each
vector from
single volume
explicitly
in space

Figure 2: The Polymorphic Data Model consists of five data segments, with each segment serving a spe-
cific purpose. The value segment consists of data element vectors organized into a time-series of vol-
umes. The volume of value data can be given explicit locations in space with the location segment; one
location vector is provided for each value vector in a single volume. The volumes of value data can be
given explicit locations in time with the time segment; a time-stamp may be given for each volume in
time. A mask segment is available for marking value data validity.

Data is stored or retrieved via simple function calls in units that are referred to as primitives. Meta-data, or
information which describes the data and helps to provide an interpretation for it (such as its data type or a
color space model) are referred to as attributes and are similarly manipulated with simple function calls.

Location Data location Time Data
e —— element e ——
W*H*D /
W -
PR PN
4 .
A} .
location \ .' 1 / time
vector (w,h,d) " W,H,D, T 1 vector
1
A Y ',
‘~ - - "
(w,h,d,t) @te)
Value Data
Map Data

MT

/7

value
vector

value element

map
vector

Note that the Mask Data is organized Note that the map vector that is

the same as the Value Data chosen is a function of the value
element, V(w,h,d,t,e), and the
D, T, and E indices

Figure 3: The Polymorphic Data Model is comprised of five data components. The components are
related through their indices.

The values in a data vector are acquired from, or reside in, four-dimensional space-time. Thisis based on the
premise that data sets are usually acquired from, or modeled after the physical world. These data vectors exist
in one data segment of the model called the value data. Each value data vector is accessed via four indices,
hence it exists in four-dimensional space-time. Along with this value data, it is convenient to have associated
mask data. Within this mask data there exist a number of mask values, one for every data vector in the value
data. These mask values are used for marking data validity. When a data set’s organization in location and
time is implicit, smplified representations are alowed. For example, an image having no explicitly defined
propertiesis stored as an array of pixelsor pixel vectors. Implied relationships between the data sets as well as
the implied spatial and temporal locations of the data sets are inherently defined by their arrangement. When
these relationships or locations are explicit, a more complicated data representation is needed. This need is
satisfied by the location and time data.

Often, spatially different data vectors will contain identical data elements. If the number of distinct element
combinations is relatively small, it makes sense to keep them in a separate list. That way, rather than contain-
ing multiple copies of similar data, the value data could instead contain simply an index that maps into that
separate list. This way, the size of the value data can be reduced without reducing the information content.
This mapping functionality is provided through the map data. When taken together, the value, mask, map,
location and time data form the complete Polymorphic Data Model. The programmer that uses Polymorphic
Data Services is given access to all of these defined data segments, and it is actually the decision of the pro-
grammer to determine or choose the details of the interpretation of the data beyond the stated relationships of
the data segments.

The explicit location data can also be accessed according to the values of w, h, and d, athough this relation-
ship is not enforced. If the programmer chooses to interpret the location indices in this way, then for each
unique three-dimensional position in the value and mask data, there will exist an explicit location vector. Sim-
ilarly, the explicit time data can a so be accessed according to the value of t. If thisinterpretation is used, then
for each unigue one-dimensional time in the value and mask data, there can exist an explicit time value. Thus,
it is up to the programmer to provide an interpretation of the location and time data.

B.1. Value Data

The value data segment is the primary storage segment in the Polymorphic Data Model. Most of the data
manipulation routines are specifically designed to process the data stored in this segment. The value segment
is used to hold value vectors, which are sets of data of the same size and type, located explicitly or implicitly
in time and space. To simplify the following discussion, value vectors will be defined as having only one
dimension, though they can be N-dimensional. The value data can then be represented as value vectors in
four-dimensional space and time, with each value vector having e elements. In this context, three of the
dimensions define the spatial location, and one defines the time dimension of a value vector. Data values can
be then accessed within the value vector by indexing into the elements.

value element
VALUE Data = vector each element has an implicit
5] {7 elements position in the value data
depty iy (W,HD,TE)=
=
(@]
‘©
ey

—_— time
width

Figure 4: Polymorphic Value Data. The value segment of the Polymorphic Data Model is best pictured
as a time-series of volumes. Each volume consists of element vectors oriented implicitly along width,
height, depth, time and elements. Each element can be indexed directly by a 5-tuple position.

When the location and time of data are implicitly defined, the ordering of the value vectors can express rela-
tive location and relative time (i.e., which value vector is next to which value vector). Therefore, implicit loca-
tion and time information is intrinsically contained in the value data. If any of these properties is not implied,
the explicit data to provide the information can be stored in the time and/or location data.

B.2. Mask

The mask data contain zero and non-zero values located explicitly or implicitly in time and space. Each mask
data value corresponds in four-dimensional time and space with a value vector (if the value data is present).
Like the value data, the mask data itself is five-dimensional; three for space, one for time, and one for the
mask data set, or mask vector. The programmer can access points, lines, planes and volumes of mask data.

value element vector

MASK Data

i 1 1] mask element vector mask points mark validity on
et} P f : .
P ositionally identical value points
1]2 /élements P Y P
depth 7 o A
! /’
— l LN]
<
)
(4]
<
time

—_—
width

Figure 5: Polymorphic Mask Data. The mask segment of the Polymorphic Data Model is used to mark
data validity of the value points. The mask segment is exactly the same size as the value segment.

The programmer can use the mask data as a convenient method for indicating the validity of value data. The
number of values in the mask data is equal to the number of values in the value data (if the value data is
present). Like all data segments of the data object, the mask datais optional.

All of the mask data and value data orientation, position and size attributes should be made the same for pro-
cessing the data object correctly. The dimensions of the mask and value data must be the same. It is not
enforced while actually processing the data object, i.e. it is possible to have different sizes for the value and
mask data, but before the data object is closed the dimensions should be the same. When accessing the mask
data and the value, it is important to have the orientation and position the same for each so the accessed data
vectors correspond.

B.3. Map

The value data may optionally represent references to data that are held in the map data. In this case, each
value in the value data acts as a pointer or index to a map vector located in the map data. The map data is
five-dimensional; map width(mw) is the dimension on which the map vector is defined. The other four dimen-
sions are defined as the map height (mh) , map elements (me) , map depth (md) , and map time (mt) dimen-
sions. The map height corresponds with the number of discrete values between the maximum and minimum
values allowed in the map data. Note that this map height is a limited by the value data's data storage type.
For example, byte storage in the value data corresponds with a maximum range of 256. Note also that it is not
possible to have maps associated with floating-point data at this time.

MAP Data

value points index into the valuetdata
map height A A=l vector
= 4 2
'g’ : e -
© 5 __________ / (XX
N 4
o 5
[6
El VALUE Data

map width

Figure 6: Polymorphic Map Data. The map segment of the Polymorphic Data Model is used store a
lookup table of map vectors. Values in the value segment are then used as indices into the map; the value
points map to indices along the map height. The map vector runs along the map width. A number of map
width x map height planes may exists; the map size may match the depth, time and element size of the
value segment by specifying the appropriate map depth, map time, and map elements.

A map vector is similar to a value vector in the value data except that it is accessed using a different set of
indices. The programmer can access vectors of map values using mh, me, md and mt to specify the vector.

Figure 1 shows how a point of value data and its position are used to index into the map data. The value of the
point istypically used asmh, but is not tied to mh, me istied to e from the value or mask dataor set to 1, ms is
set to 1 or tied to either the w, h, or d common index, and mt istied to t common index or set to 1.

Value Segment Location Segment Time Segment
["vector w,h,d,t vector w, h,d vector t |
point w, h,d, t, e point w, h,d, n point t
line h,d, t, e line w, h,d line N.A. all elements
plane d, t,e plane N.A. all elements
volume t,e
region w,h,d, t e
and size
mh =value of point Map Segment
at (w,h,d te) _—
mw = used for set of
vector mh, me, md, mt |
mapels int h d mt
me=1orE Ipoln m;/]v,m,mde,m,m
md=1o0rD ine mh, me, md, mt
_ plane me, md, mt
mt =1lorT
volume md, mt

Figure 7: Another view of the Polymorphic Data Model and the interrelationships between each data
type. The diagram also lists the indices and primitives of each data segment.

B.4. Location

When the relative location implied by the accessing order of the value datais insufficient for defining location
information, explicit location data is required. When using explicit location data, each value vector in the
value data has a corresponding location vector in the location data. Each collection of value vectors has a
specific time, but a value vector’s explicit spatial location can NOT change with time. In other words, when

2-6

the time dimension is greater than one, the same location datawill be applied for all time.

LOCATION Data locationdata =00 e .

_/ value data

depty' /;g i-m-e-n-si-o-n ---------- vector l ,

1

Entire Value Vector is positioned 2
by a Location Vector (X,Y,Z) oo

height

This position holds for the value

width element vector over all time VALUE Data

Figure 8: Polymorphic Location Data. The location segment of the Polymorphic Data Model is used to
explicitly position the volume vectors in space. The location segment consists of a volume of location
vectors; the width, height, and depth of this volume is shared from the value segment. The location vector
is of size dimension.

The location data is made up of location vectors, one per value vector. The number of location vectors is
equal to the product of width * height * depth. The size or dimensionality (n) of alocation vector is assigned
using the size attribute of the location data. A specific point of alocation dataisfound using w, h, d, n, while
a specific location vector is found using the indices w, h and d. For three-dimensional location data, n would
be 3. Thus alocation vector istied to avalue vector viathe w, h and d common indices illustrated at the cen-
ter of Figure 2.

B.5. Time

When the relative time implied by the accessing order of the value data is insufficient, explicit time data is
required. Such a circumstance can occur when the value data is irregularly sampled in time. The time vector
isindexed using t and is a single element of data specifying explicit time of a value vector located at w, h and
d.

TIME Data_ ﬂﬂﬂ"'ﬂ

\
e
2 ! \ h

L] AN

7
*®

V~

VALUE Data

Figure 9: Polymorphic Time Data. The time segment of the Polymorphic Data Model is used to explic-
itly position the value volumes in time. The location segment consists of a linear array of time stamps;
the number of timestamps is equivalent to the time size of the value segment.

C. Interaction with the Polymorphic Data Model

Polymorphic Data Services provides a set of standard units of access for data that is held in a kobject.
Throughout this chapter, these units are referred to as primitives. The basic primitives that are available are:
points, lines, planes, and volumes. In addition to these, Polymorphic Data Services defines three other special-
ized primitives: vectors, regions, and all.

The properties of the data accessed via the function calls listed in Section G, Functions Provided By Polymor-
phic Data Services of this chapter are controlled by the attributes of the data presented in Section F, Attributes
Defined by the Polymorphic Data Model of this chapter. It may be tempting for the reader to associate terms
like signal and image to the terms line and planes. The reader may also desire examples in the context of sig-
nals and images. However, the generalized Data Object implemented as the kobject is not defined in terms
of images and signals, since these concepts are too specific. Sub-classed data models can be defined and built
from the more general PDS being presented here to create programming models for application-specific areas
as discussed in earlier chapters.

C.1. Presentation of the Data Object

Polymorphic Data Services has the ahility to present the data stored within a data object in a variety of ways.
Data can be cast, resized, normalized, scaled, or re-oriented on access. The API to this functionality is pro-
vided by a number of attributes. By setting the appropriate attributes, Polymorphic Data Services will return
the data in the form that is most convenient to process. In order to understand how the presentation attributes
are used, it is necessary to understand how the data object is divided into a presentation layer and physical

layer.

application code

PRESENTATION
DATA TYPE = KINT
WIDTH = 180
LAYER HEIGHT = 160
"how the data appears to you"
g
&
a
: 4
3
DATA PIPELINE L
" — ° -
uses pipeline stages to resizing L o
transform data as it is being 0o 3
accessed" o &
casting CELL 2 I l
2
3

PHYSICAL
LAYER T oms o

HEIGHT = 269
"how the data is stored"

Figure 10: A data object can be thought of as having two layers, a presentation layer and a physical
layer. Attributes at the physical layer determine the storage characteristics of the data, such as its size
and data type. Attributes at the presentation layer determine the presentation characteristics of the data.
On access, data is passed through a data pipeline which transforms the data according to the presentation
attributes. Each presentation attribute corresponds to a stage in the data pipeline; only the necessary
stages are invoked on data access.

A data object can be thought of in terms of two layers. a presentation layer and a physical layer. Attributes at
the physical layer typically describe the actual stored characteristics of the data. Attributes at the presentation
layer typically dictate how the data is to be accessed. For example, there is a physical data type attribute that
indicates in which data type the data is actually stored and a presentation data type attribute that indicates in
which data type the data should be presented. If the presentation data type is set to integer while the physica
datatypeis set to short, then the data will be cast from short to integer on retrieval and from integer to short on
storage.

The following sections outline the different mechanisms that are available for customizing data access.

C.2. Casting

The casting feature provided by Polymorphic Data Services is used to change the data type from the type
stored to another data type that is more suitable for processing. This process is nearly automatic. What is
involved is setting the data type of the segment that is being operated on to the desired processing data type
with a call to kpds_set_attribute() Or kpds _set attributes (). Afterward, al data retrieved with
kpds_get data () will bereturned to the user in the data type specified, regardliess of the stored datatype. If
operating on an output object, then setting the data type of the output object to something different from the
data type being stored informs Polymorphic Data Services that any data being written via a cal to
kpds_put_data () will begivenin the specified data type, but should be cast before being written out.

The casting feature is performed via the ANSI C cast operation. Since ANSI C does not dictate the behavior
of certain lossy cast operations such as signed information cast to an unsigned data type, the behavior of this
operation in certain circumstances can be different from platform to platform.

C.3. Scaling and Normalization

Scaling and normalization are two activities that ater the range of data when presented to the user. These
operations are often necessary when processing data where an algorithm operates better on a limited range of
data. After indicating that scaling or normalization is to occur, any cal to kpds_get data () will cause the
range of the data to be altered before it returned to the calling program. The attribute KPDS VALUE SCALING
(and similar attributes for the other polymorphic segments) determines what kind of range alteration is to
occur. The default value for this attribute is KNONE, which indicates that no scaling whatsoever is to occur.
Other legal values for this attribute are KSCALE and KNORMALIZE.

When the scaling attribute is set to kscaLE, then the range of the data is controlled by two attributes:
KPDS_VALUE_ SCALE FACTOR and KPDS_VALUE_SCALE OFFSET. The range change is computed by apply-
ing the scale factor first to each data point, then adding the scale offset.

When the scaling attribute is set to KNORMALIZE, the range of the data is controlled by two other attributes:
KPDS_VALUE NORM MIN and KPDS VALUE NORM MAX. These two attributes indicate the minimum and
maximum magnitude of the data. The effective scale factor and offset are computed by examining every point
in the primitive that was accessed viakpds_get data () Of kpds_put_data (). Thus, thisis not a global
normalization over the entire set, but rather alocal normalization over the extent of the data being accessed.

It is important to note the order in which al of these presentation changes are applied. The normalize and
scale operations occur after the cast operation if the cast operation is converting to a "higher order” data type,
i.e. adatatype that has a higher range or precision. If casting from a higher order data type to a lower order
data type, i.e., one that has less range or precision, then the Normalization or scaling occurs before the cast

2-9

operation.

C.4. Padding and Interpolation

Padding and interpolation are operations that change the apparent size of the data set being accesssed. These
operations are useful in circumstances in which a particular size of datais required in order for an algorithm to
function properly, such as a Fast Fourier Transform or in instances in which two operands must be the same
size in order for the algorithm to behave in a predictable manner, such as an addition operation. Other
instances where interpolation is useful is in visual applications for zooming or panning windows. This behav-
ior is controlled by an attribute called kPDS VALUE INTERPOLATE. This attribute can be set to one of three
values. KNONE, KPAD, Of KINTERPOLATE. The default value of this attribute is kpaD. When this attribute is
set to KNONE, it indicates that access of data outside of the physical bounds of the data set should not be per-
mitted. If a program attempts to access data that lies beyond the bounds of the data set in this mode, Polymor-
phic Data Services will generate an error.

If set to use the xkpAD mode, Polymorphic Data Services will allow access of data outside of the physical
bounds of the data set. Any data that is retrieved that is not part of the data set will be set to a constant value
indicated by the xPDS VALUE PAD VALUE attribute. This attribute takes two double arguments that repre-
sent the real and imaginary component. The imaginary component is only used if the data type being returned
is complex.

If the presentation size is set to be larger than the physical size, then any data that falls outside of the bounds of
the data set will similarly be set to this pad value. This mode also allows the presentation size to be set to a
value that is smaller than the physical size. In this mode, data outside of the presentation size is clipped, i.e., it
is not accessible.

If the kPDS_VALUE INTERPOLATE attribute is set to KZERO ORDER, then this indicates that the differencein
the presentation size and the physical size of the data segment should be rectified via a zero-order-hold (i.e.,
pixel replication) interpolation. Currently this is the only true interpolation mode available in Data Services.
If the presentation size is larger than the physical size, then an adjacent data point is replicated for each point
that does not exist in the interpolated data set. |If the presentation size is smaller than the physical size, then the
data set is sub-sampled to produce a smaller version of the original data.

C.5. Conversion of Complex Data

Complex conversion can be thought of as an extension to casting. However, since the process of converting
data from a complex data type to a non-complex data type, or vice-versa, is uniquely lossy, this capability is
provided as a separate feature so that its behavior can be more easily controlled.

This control is provided via the KPDS_VALUE COMPLEX CONVERT dattribute (and its sister attributes for each
of the other polymorphic segments). This attribute determines how to translate real valued data into complex
data. For example, if the KPDS_VALUE COMPLEX CONVERT attributeis set to AccuSof tEAL, the real valued
data will be interpreted as the real part of the complex pair. Similarly, a setting of KIMAGINARY instructs
Data Services to interpret the data as the imaginary component. In either case, the other component of the pair
is set to zero. When KpPDS_VALUE COMPLEX CONVERT iS set to KMAGNITUDE, then the magnitude of the
complex pair is set to the value of the data. Currently, this is performed by setting the phase to O radians.
Thus, KMAGNITUDE has the same effect as AccuSoftEAL. If the KPDS VALUE COMPLEX CONVERT
attribute is set to KPHASE, then the real valued data is interpreted as radian data and the magnitude is set to

2-10

1.0.

When complex data is returned to the application from Data Services, it will be in the form of akcomplex or
kdcomplex. Thereisacomplete set of operator functions available for operating on these data types. These
functions are available in the kmath library. When operating on complex data, the application programmer is
encouraged to refer to the kmath library for information on complex operations.

C.6. Map Evaluation

The map segment is typically used as a means to reduce the overall space of a data set. It contains vectors of
information that are referenced by indices in the value segment. This representation is ideal for some applica-
tions such as color manipulation or visualization, but this representation is not usually convenient for data pro-
cessing operators. Polymorphic Data Services provides a means of mapping the indices in the value segment
through the map segment "on the fly" during data access with kpds get data (). The affect is that size of
the KELEMENTS axis of the value segment is multiplied by the size of the Map wIDTH axis of the map seg-
ment. The KELEMENTS axiswill now contain true data instead of indices into the map data.

This behavior, by default, is disabled. To enable automatic mapping of data, the KPDS MAP ENABLE attribute
should be set to KMAPPED. If no map data exists, then this attribute is ignored.

This functionality, while powerful in the sense that it can drastically simplify writing a fully polymorphic oper-
ator, has a significant overhead. Thisis because mapping dataisinherently arandom access process, and Poly-
morphic Data Services must provide a fully general solution. If performance is critical to an application, it is
advisable to perform this operation manually, because typical applications can make simplifying assumptions
about the nature of the data and the maps that cannot be made by Polymorphic Data Services.

C.7. Mask Evaluation

Another operation provided by Polymorphic Data Services that simplifies writing polymorphic operators is
dynamic evaluation of mask information. By default, the mask segment is ignored, and the programmer must
write applicatons to interpret the mask manually. By setting the KPDS MASKED VALUE PRESENTATION tO
KUSE SUBSTITUTE VALUE, Polymorphic Data Services will replace every data point in the value segment
that has a corresponding O value in the mask segment to the value specified in the XxPDS_MASK SUBSTI -
TUTE_VALUE attribute. This functionality is useful when there is an "identity" value that can be used in place
of invalid data without adversely affecting the results of a computation. For example, in visuaization, it might
be reasonable to replace al invalid data with a pixel of a particular color. Using this functionality, this capabil-
ity istrivial to implement.

Similar to map evaluation, this functionality adds overhead to the retrieval of data. However, since the mask
segment is accessed the same way that the value segment is accessed, the overhead is not as severe.

C.8. Axis Assignment

The polymorphic data model is organized around an axis system that defines three spatial dimensions. width,
height, and depth. Polymorphic Data Services provides an attribute called kPDS AXIS ASSIGNMENT that
alows these three spatial axesto be reordered or reassigned. This means that a program can change the mean-
ing of the width axis to mean the height axis. This is useful for applications such as a matrix transposition
operation. By simply swapping the width with the height, a transpose operation is affected at the time of data

2-11

access. This operation does not alter data, but rather alters its interpretation and the way in which it is
accessed.

C.9. Data Ranging

When interpreting a dataset, it is often useful to understand what the possible range of the data is. For
instance, when displaying a dataset as a grayscal e image, the minimum data value can be mapped to black and
the maximum value can be mapped to white. However, there typically is no way to determine what range a
data set occupies without examining each data point. Even then, the actual available data may not occupy the
entire expected range. The KPDS_DATA RANGE and KPDS DATA FORMAT attributes provides a method for
storing the range.

The kPDS_DATA RANGE attribute allows data objects to carry aong a theoretical range. This attribute is not
automatically created for an object. If it does not exist, then there is no expected range.

The xPDS_DATA FORMAT attribute provides a front end for kPDS_DATA RANGE that defines many common
predefined data ranges. A program can check this attribute first to see if the kpPDS_DATA RANGE attribute
should be examined. Predefined dataranges are:

KNONE : raw data

KUBYTE: 0 - 255

KUSHORT : 0 - 65535

KFLOAT : 0 -1

KUSERDEFINED: User-defined range; must have been set

using KPDS DATA RANGE.

Theroutine kapu _scale data setsthe KPDS_VALUE SCALE_OFFSET and KPDS_VALUE_SCALE_FACTOR
attributes so that data accessed will be scaled to the indicated range. Scaling will be applied to either the value
or the map segment as appropriate.

Theroutine kapu_minmax finds the minimum and maximum values for a data primitive.

A usage example is shown below.

kpds_get_attribute (src_obj, KPDS_DATA FORMAT, &data format) ;

if (data format != KFLOAT))
kapu scale data(src_obj, 0.0, 1.0);

kpds_set attribute(dst obj, KPDS DATA FORMAT, KFLOAT) ;

Please note that these attributes are newly implemented and not widely used through the existing VisiQuest
system.

C.10. Reference Objects

Polymorphic Data Services provides you with the ability to create reference objects. A reference object is
simply a new presentation layer on an existing data object. A reference object will share the same physical
layer as the original object, and thus will share all the data and the corresponding physical attributes of the
original data set. However the reference object will have its own presentation layer with its own copy of al the

2-12

presentation attributes. This provides you with the ability to have multiple views of the same data set in asin-
gle program. It provides a mechanism by which a single data set can be accessed in two different contexts
simultaneously. This powerful concept has a number of uses. Reference Objects are most commonly used to
limit side effects in data processing libraries, or to provide multiple views of a single data set in an interactive
program. Figure 11 illustrates this concept.

original reference

~N
PRESENTATION PRESENTATION
LAYER LAYER
DATATYPE:PONT) DATA TYPE = KFLOAT
J

ngggg,

. kobject original;
. kobject reference;

vy

PHYSICAL
LAYER
DATA TYPE = KBYTE

54321345
12566982

orignal = open("file");

OO0OO0OO0O0OO0OO0OO0OO0OO0

£

reference = reference(original);

Figure 11: An illustration of Reference Objects. It is sometimes useful to have access to multiple ver-
sions of agiven dataset. By using reference objects, you can avoid having multiple copies of the data and
instead have a single physical copy of the data with multiple presentations. Each reference object has its
own presentation layer, but they all share acommon physical layer. References are made from an original
object.

C.11. Auto Incrementing

The auto-increment feature provided by Data Services maintains corresponding positions in most of the seg-
ments in an abstract data object. For example, if a plane of data is obtained from the value segment of an
object then the position in the value data segment is incremented prior to the next read so that the next plane
will be obtained. At the same time, any segments with indices tied to the value segment’s indices are updated
accordingly. For example, the width, height, and depth indices in the location segment will be incremented so
that a read from the location segment will result in location data that corresponds to the value data aready
obtained.

An increment and update operation is performed prior to any second consecutive read or write operation on a
segment. This ensures that data can be obtained from every segment necessary before an Increment operation
is performed.

State information is maintained internally for each segment to help to determine when it is appropriate to per-
foom an increment operation. Whenever the position attributes (KPDS VALUE POSITION,
KPDS_MASK POSITION, KPDS MAP POSITION, KPDS LOCATION POSITION, KPDS TIME POSITION)
are set using kpds_set_attribute Of kpds_set attributes the segment whose position is being set
will reset the state information. This means that after setting the position, the next read or write operation will
not perform a pre-increment.

2-13

D. The Application Programming Interface (API)

This section presents an overview of the Polymorphic Data Services Application Programming Interface
(API). It will demonstrate how an object is instantiated, how its attributes are manipulated, how the data is
processed and how the object is closed.

An application that manipulates data using the Polymorphic Data Services will be processing data that can be
used by other application services using the Polymorphic Data Model.

1. Thefirst step isto instantiate the source and destination data objects. The source object is opened
using kpds open_ input object () (for read only). As such, all changes done to the
source object do not effect the permanent transport. The destination object is opened with
kpds open output object () (for write only). All changes to the destination object will
be stored in the permanent transport.

/*
* gource object
*/

source_ object = kpds open input object ("name") ;

/*
* destination object
*/

destination object = kpds open output object ("name2") ;

2. This example processes only the value data, but the object may contain map, mask, time, or loca-
tion data and data/object attributes. So that data and attribute settings are not lost, the destination
object will be made into a copy of the source object. The kpds copy object () function
copies all object data and attributes from the source object to the destination object, so it is not
necessary to copy the data and attributes individually. By doing this, it is possible to avoid the
side effect of losing data and attributes that could be used by other routines later in some series of
processing steps.

/ *
* copy object
*/

kpds copy object (source object, destination object) ;

3. The data will be processed using vector units, where a vector is defined to span the element
dimension of the value segment. The attribute KkPDS_VALUE_VECTOR INFO Will tell usthe num-
ber of data elements contained in each vector, as well as the number of vectors contained in the
entire data set,

kpds get attribute (source object, KPDS VALUE VECTOR_ INFO,
&vector size, &num_vectors) ;

4. The next step is to set the values of the attributes of the Polymorphic Data Model and its primi-
tives so that the data is properly presented, managed and accessed. The following invocations of
kpds set attribute () will cause the source data to be converted to double, and when data
is put to the destination object viakpds put data (), it will be converted to float. As stated

2-14

above in step 1, since the source object was opened with kpds open_input object (), the
actual data in the permanent transport is not changed to double. It is converted to double by data
services when kpds _get data () iscaled. However, the destination object was opened with
kpds open output object (), S0 the data in the permanent transport will be stored as
float when the kpds put data () iscaled. By setting the kPDS_VALUE DATA TYPE On the
source object, we can write our process_data () S0 that it only needs to process double data
and does not have to handle multiple data types.

kpds_set attribute (source object, KPDS VALUE DATA TYPE, KDOUBLE) ;
kpds set attribute (destination object, KPDS VALUE DATA TYPE, KFLOAT) ;

Now that the source and destination objects have been set up, instantiated and the attributes
appropriately manipulated, the data can be processed. The data object may contain one vector,
but most likely it will have a series of vectors as defined by the Polymorphic Data Model. There-
fore, the for loop will process each vector. It is important to note that a vector may not be very
large so a data primitive that obtains larger parts of the data may be desired. See Tables 5 for
more primitives that can be used to access the value data. A vector is a good size to use if it is
important to process large data sets.

The kpds _get data() and kpds put data () functions are auto-incrementing. These
functions automatically increment the position attribute of the primitive being accessed so that the
next execution of kpds get data () and kpds_put data () access data at the next con-
secutive position, i.e., the next vector. Therefore, it is not necessary to set the position for the two
objects using the kPDS_VALUE POSITION altribute. The default for the position is O for al
dimensions (width, height, etc.) when the object is instantiated, so we do not have to set the initia
position either. See Tables 6 through 10 for attribute defaults.

double *vector = NULL;
for (i=0, i<num vectors, i++) {
vector = (double *) kpds get data(reference object, KPDS VALUE VECTOR,
(kaddr) vector) ;
/*
* your application function
*/
process data(vector, vector size);
kpds put data(destination object, KPDS VALUE VECTOR, (kaddr) vector);

}

The vector variable is set to NULL initialy so that the function kpds get data () will adlo-
cate the memory for the initial vector of data. Every call after thatthe call to that vector will have
avalid address so that kpds get data () will just replace the data contained in vector with
the new vector and not allocate more memory. See Section G, "Functions Provided By Polymor-
phic Data Services' of this chapter for more information on the behavior of
kpds_get datal().

Finally, the data objects should be closed with the Polymorphic Data Services
kpds close object () function. This will store the destination object in the permanent
transport and free up memory used by Data Services for the objects.

kpds close object (destination object) ;
kpds close object (source object) ;

2-15

This next example will show the steps needed when creating a data part in a data object. It will instantiate an
object, create a data part, manipul ate some attributes, generate data and then close the object.

1. Thefirst step isto instantiate the destination data object as we did in step 1 of the above example
using kpds open_ output object ().
/*
* destination object
*/

destination_object = kpds_open_output_object ("name") ;

2. To create the value data part, the routine kpds _create value () isused. It will create value
data that obeys the Polymorphic Data Model.
/*
* create value data
*/

kpds create value(destination object) ;

3. Thekpds create value () does not set the size of the data or the data type, so they must
be set before any kpds get data() or kpds get data () callsaredone. Setting the size
and data type must be done after any kpds create xxx () cals. To set the size and data
type, kpds_set attributes () isused. Inthiscase, the data type will be double and the
value datawill be200x 200x 1 x 1 x 3.

kpds_set_attributes(source_object,
KPDS VALUE DATA TYPE, KDOUBLE,
KPDS VALUE SIZE, 200, 200, 1, 1, 3,
NULL) ;

Now we have specified the minimum amount of information about the value data, size and data
type, so that Polymorphic Data Services can manipulate it.

4. Now to generate the data, in this case the data primitive KPDS_VALUE VECTOR is used. We
declare an array the size that matches the elements of the data, 3. The product of the width and
the height give us the number of element vectorsto store in the value data, 200 x 200. Putting the
datainto the destination object with the routine kpds _put data ().

double element vector[3];
for (i=0, i < 200 * 200, i++)
/*
* call a function to generate an element vector for each element of data.
*/
generate data(element vector) ;
kpds_put data(destination object, KPDS VALUE VECTOR,
(kaddr) element_vector) ;

5. Finaly, the data object should be closed with a call to the kpds close object () function.
Thiswill close the source object for reading, write out/save the destination object, and free up any
memory that was used by Data Services.

kpds_close_object (destination_object) ;

2-16

E. Polymorphic Primitives

Datais retrieved and stored in data objects via primitives. Primitives are data units that have been defined to
allow easy access of the associated data. Two functions have been provided for accessing primitives of data,
kpds get data() and kpds put data (). These functions take three arguments. The first argument is
the object associated with the data, the second argument is the primitive that is desired and the third argument
isapointer to adata buffer that isto be written to or read from.

The kpds get data() and kpds put data() functions auto-increment the position indices, or
attributes, of the primitive being addressed. The indices column in the following tables lists the indices that
are used to set or get individual primitive positions. The order of the indices in the table specifies how the data
is organized in the Polymorphic Data Model.

The kpds get_data call will return a type kaddr. Note that the kaddr type is a generic pointer that is
intended to be cast to the proper built-in type or data structure. For example, the data returned should be cast
to the proper type asin Step 5 of Section D, "The Application Programming Interface,” in this chapter.

E.1. Value Primitives

Table 1 lists the primitives defined by the polymorphic model for value data. These primitives are stored in
and retrieved from the value data using the kpds _put data () and kpds _get data () functions respec-
tively.

Table 1 - Value Primitives

Default
Primitive Dimension Indexing Description
KPDS_VALUE_ POINT oD w, h, d, A pointer to asingle value data point. The location
t, e of the data point is specified by the

KPDS_VALUE POSITION attribute. After every
get/put pair, or consecutive get or put operations, the
position attribute kpDS_VALUE POSITION Will be
automatically incremented to the next point.

KPDS_VALUE_VECTOR 1D w, h, d, t A pointer to avector of value data. The location of
the vector is specified by the kPDS_ VALUE_POSI-
TION attribute. The orientation of a vector can not be
changed. You will aways get a vector on the e direc-
tion. After every get/put pair, or consecutive get or
put operations, the position attribute
KPDS_VALUE POSITION Will beautomatically incre-
mented to the next vector.

2-17

Table 1 - Value Primitives

Primitive

Dimension

Default
Indexing

Description

KPDS_VALUE LINE

1D

h, 4, t, e

A pointer to aline of value data. The orientation of a
line with respect to the Polymorphic Data Model can
be changed by using the kPDS_AXIS ASSIGNMENT
attribute. The position index associated with the
width axis will be set to zero and the entire length
along that axis will be operated on when aget/put is
performed. The other attribute that can affect the
behavior of aget or put operation involving alineis
theKPDS_VALUE_OFFSET attribute. This attribute
forces an adjustment of the position in which a unit
of data begins. For example, an offset of (1, 0, 0, O,
0) will cause the beginning of alineto begin at posi-
tion 1 rather than position zero, and the end of the
line to exceed the size along the width axis by one.
After every get/put pair, or consecutive get or put
operations, the position attribute
KPDS_VALUE_POSITION Will beautomatically incre-
mented to the next line.

KPDS_VALUE_PLANE

2D

A pointer to a plane of value data. The orientation of
avalue plane with respect to the Polymorphic Data
Model is along width and height. What is defined as
width and height can be changed using the
KPDS_AXIS ASSIGNMENT attribute. The position
indices associated with the width and height axes will
be set to zero and the entire length along each axis
will be operated on when a get/put is performed. The
other attribute that can affect the behavior of aget or
put operation involving a planeisthe

KPDS_VALUE_ OFFSET attribute. This attribute forces
an adjustment of the position in which a unit of data
begins. For example, an offset of (1, 1, 0, O, 0) will
cause the beginning of a planeto begin at position 1
on both the width and height axes rather than position
zero, and the end of the plane to exceed the sizein
both directions direction by one. After every get/put
pair, or consecutive get or put operations, the position
attribute KxPDS_VALUE_POSITION Will be automati-
cally incremented to the next plane.

2-18

Table 1 - Value Primitives

Default
Primitive Dimension Indexing Description
KPDS_VALUE VOLUME 3D t, e A pointer to avolume of value data. The orientation

of avalue volume with respect to the Polymorphic
Data Model can be changed by using the
KPDS_AXIS ASSIGNMENT attribute. The position
indices associated with the width, height, and depth
axes will be set to zero and the entire length along
each axis will be operated on when a get/put is per-
formed. The other attribute that can affect the behav-
ior of aget or put operation involving avolume isthe
KPDS_VALUE OFFSET datribute. This attribute forces
an adjustment of the position in which a unit of data
begins. For example, an offset of (1, 1, 1, O, 0) will
cause the beginning of a volume to begin at position

1 on the width, height, and depth axes rather than
position zero, and the end of the volume to exceed the
sizein both directions direction by one. After every
get/put pair, or consecutive get or put operations, the
position attribute kpPDS_VALUE POSITION Will be
automatically incremented to the next volume.

KPDS_VALUE_REGION 5D N.A. A pointer to aregion of value data. The upper left-
hand corner is specified by the xPDs_VALUE_POSI-
TION and KPDS_VALUE OFFSET attribute. Thesize
is specified by the KPDS VALUE_REGION SIZE
attribute. After every get/put pair, or consecutive get
or put operations, the position attribute
KPDS_VALUE POSITION Will beautomatically incre-
mented to the next region.

KPDS_VALUE_ALL 5D N.A. A pointer to al of the value data.

KPDS_VALUE HISTOGRAM 1D N.A. A pointer to the histogram for aregion of the value
data. The upper left-hand corner is specified by the
KPDS_VALUE HIST POSITION attribute. Thesizeis
specified by the kPDS_VALUE_HIST REGION SIZE
attribute. The number of binsis specified by the
KPDS_VALUE HIST NUMBINS attribute. The range
of the histogram is specified by the

KPDS_VALUE_HIST RANGE attribute.

E.2. Mask Primitives

Table 2 lists the primitives defined by the Polymorphic Data Model for mask data. These primitives are stored
in and retrieved from the mask data using the kpds put data () and kpds get data () functions
respectively.

2-19

Table 2 - Mask Primitives

Primitive

Dimension

Default Indexing

Description

KPDS_MASK POINT

0D

w, h, d, t, e

A pointer to asingle mask point. The location of the
data point is specified by the KPDS_MASK_POSITION
attribute. After every get/put pair, or consecutive get
or put operations, the position attribute
KPDS_MASK_POSITION Will be automatically incre-
mented to the next point.

KPDS MASK VECTOR

1D

w, h, d, t

A pointer to avector of mask data. The location of
the vector is specified by the KPDS MASK POSITION
attribute. The orientation of a vector can not be
changed. You will always get a vector on the e direc-
tion. After every get/put pair, or consecutive get or
put operations, the position attribute
KPDS_MASK_POSITION Will be automatically incre-
mented to the next vector.

KPDS_MASK LINE

1D

A pointer to aline of mask data. The orientation of a
line with respect to the Polymorphic Data Model can
be changed by using the kPDS_AXIS ASSIGNMENT
attribute. The position index associated with the
width axis will be set to zero and the entire length
along that axis will be operated on when a get/put is
performed. The other attribute that can affect the
behavior of aget or put operation involving alineis
thekpDS_MASK OFFSET attribute. This attribute
forces an adjustment of the position in which a unit
of databegins. For example, an offset of (1, 0, 0, O,
0) will cause the beginning of alineto begin at posi-
tion 1 rather than position zero, and the end of the
line to exceed the size along the width axis by one.
After every get/put pair, or consecutive get or put
operations, the position attribute KPDS_MASK POSI -
TION Will be automatically incremented to the next
line.

2-20

Table 2 - Mask Primitives

Primitive

Dimension

Default Indexing

Description

KPDS_MASK PLANE

2D

d/

t, e

A pointer to a plane of mask data. The orientation of
amask plane with respect to the Polymorphic Data
Model is along width and height. What is defined as
width and height can be changed using the
KPDS_AXIS ASSIGNMENT attribute. The position
indices associated with the width and height axes will
be set to zero and the entire length along each axis
will be operated on when a get/put is performed. The
other attribute that can affect the behavior of a get or
put operation involving aplane isthe
KPDS_MASK_OFFSET attribute. This attribute forces
an adjustment of the position in which a unit of data
begins. For example, an offset of (1, 1, 0, 0, 0) will
cause the beginning of a planeto begin at position 1
on both the width and height axes rather than position
zero, and the end of the plane to exceed the sizein
both directions direction by one. After every get/put
pair, or consecutive get or put operations, the position
attribute kpDS_MASK_POSITION Will be automati-
cally incremented to the next plane.

KPDS_MASK VOLUME

3D

A pointer to avolume of mask data. The orientation
of amask volume with respect to the Polymorphic
DataModel can be changed by using the

KPDS_AXIS ASSIGNMENT attribute. The position
indices associated with the width, height, and depth
axes will be set to zero and the entire length along
each axis will be operated on when a get/put is per-
formed. The other attribute that can affect the behav-
ior of aget or put operation involving avolume isthe
KPDS_MASK_OFFSET attribute. This attribute forces
an adjustment of the position in which aunit of data
begins. For example, an offset of (1, 1, 1, 0, 0) will
cause the beginning of avolume to begin at position
1 on the width, height, and depth axes rather than
position zero, and the end of the volume to exceed the
sizein both directions direction by one. After every
get/put pair, or consecutive get or put operations, the
position attribute kPDs_Mask_posITION Will be
automatically incremented to the next volume.

2-21

Table 2 - Mask Primitives

Primitive

Dimension

Default Indexing

Description

KPDS_MASK REGION

sD

N.A.

A pointer to aregion of mask data. The upper |eft-
hand corner is specified by the kPDS_MASK POST-
TION and KPDS_MASK_OFFSET éitribute. Thesizeis
specified by thekPDS_MASK REGION SIZE
attribute. After every get/put pair, or consecutive get
or put operations, the position attribute
KPDS_MASK_POSITION Will be automatically incre-
mented to the next region.

KPDS MASK ALL

sD

A pointer to all of the mask data.

E.3. Map Primitives

Table 3 lists the primitives defined by the polymorphic model for map data. These primitives are stored in
and retrieved from the map data using the kpds_put data () and kpds _get data () functions respec-

tively.
Table 3 - Map Primitives
Default
Primitive Dimension Indexing Description
KPDS_MAP_POINT oD mw, mh, me, A pointer to asingle map point. The location of the
md, mt data point is specified by the xPDS_MAP_POSITION
attribute. After every get/put pair, or consecutive get
or put operations, the position attribute
KPDS MAP POSITION Will be automatically incre-
mented to the next point.
KPDS_MAP_VECTOR 1D mh, me, md, mt A pointer to avector of map data. The location of the

vector is specified by the kDS MAP POSITION
attribute. The orientation of a vector can not be
changed. You will aways get a vector on the mw
direction. After every get/put pair, or consecutive get
or put operations, the position attribute
KPDS_MAP_ POSITION will be automatically incre-
mented to the next vector.

2-22

Table 3 - Map Primitives

Primitive

Dimension

Default
Indexing

Description

KPDS_MAP LINE

1D

mh, me, md, mt

A pointer to aline of map data. The orientation of a
line with respect to the Polymorphic Data Model can
be changed by using the kPDS_AXIS ASSIGNMENT
attribute. The position index associated with the
width axis will be set to zero and the entire length
along that axis will be operated on when aget/put is
performed. The other attribute that can affect the
behavior of aget or put operation involving alineis
thexpDS MAP OFFSET attribute. This attribute
forces an adjustment of the position in which a unit
of data begins. For example, an offset of (1, 0, 0, O,
0) will cause the beginning of alineto begin at posi-
tion 1 rather than position zero, and the end of the
line to exceed the size along the width axis by one.
After every get/put pair, or consecutive get or put
operations, the position attribute KPDS_MAP POSI-
TIO0N Will be automatically incremented to the next
line.

KPDS_MAP PLANE

2D

me, md, mt

A pointer to a plane of map data. The orientation of a
map plane with respect to the Polymorphic Data
Model is along width and height. What is defined as
width and height can be changed using the
KPDS_AXIS ASSIGNMENT attribute. The position
indices associated with the width and height axes will
be set to zero and the entire length along each axis
will be operated on when a get/put is performed. The
other attribute that can affect the behavior of aget or
put operation involving a planeisthe

KPDS_MAP OFFSET attribute. This attribute forces
an adjustment of the position in which a unit of data
begins. For example, an offset of (1, 1, 0, O, 0) will
cause the beginning of a planeto begin at position 1
on both the width and height axes rather than position
zero, and the end of the plane to exceed the sizein
both directions direction by one. After every get/put
pair, or consecutive get or put operations, the position
atribute kpDs_MAP_POsITION Will be automatically
incremented to the next plane.

2-23

Table 3 - Map Primitives

Default
Primitive Dimension Indexing Description
KPDS_MAP_VOLUME 3D md, mt A pointer to avolume of map data. The orientation

of amap volume with respect to the Polymorphic
Data Model can be changed by using the
KPDS_AXIS ASSIGNMENT attribute. The position
indices associated with the width, height and depth
axes will be set to zero and the entire length along
each axis will be operated on when a get/put is per-
formed. The other attribute that can affect the behav-
ior of aget or put operation involving avolume isthe
KPDS_MAP OFFSET attribute. This attribute forces
an adjustment of the position in which a unit of data
begins. For example, an offset of (1, 1, 1, O, 0) will
cause the beginning of a volume to begin at position
1 on the width, height, and depth axes rather than
position zero, and the end of the volume to exceed the
sizein both directions direction by one. After every
get/put pair, or consecutive get or put operations, the
position attribute kpDs_MaAP POSITION Will be auto-
matically incremented to the next volume.

KPDS_MAP_REGION 5D N.A. A pointer to aregion of data. The upper left-hand
corner is specified by the kpDs MAP POSITION and
KPDS_MAP OFFSET atributes. The sizeis specified
by the kpDS_MAP REGION SIZE attribute. After
every get/put pair, or consecutive get or put opera-
tions, the position attribute KPDS_MAP POSITION
will be automatically incremented to the next region.

KPDS_MAP_ALL 5D N.A. A pointer to al of the map data.

E.4. Location Primitives

The different segments of Polymorphic Data Services are organized into arrays of data of up to five dimen-
sions. Elements in these arrays are always accessible by their implicit position within the array. For many
applications, such as image processing, this implicit positioning is sufficient. It is enough to know that the ele-
ments are arranged into a regular grid, and the size of the grid describes the size of the dataset. However, for
some applications, such as satellite image registration, it is important to have a more explicit description of the
location of the data points. For example, an image may correspond to an explicit location on the Earth or the
pixels may be many meters or even many kilometers across.

The location segment is provided to address the need for storing such explicit location information. The loca
tion segment can be used to store explicit location vectors which position the value segment in some space.
The size of the location segment will match the size of the value segment in the width, height and depth
dimension. If multiple volumes are present down the time dimension, each volume will be positioned at the
same explicit location through time.

2-24

Conceptualy, the location segment will contain an explicit location vector for every element vector in the
value segment. In practice, storing a single vector for every position along width, height and depth may be
more then necessary, depending on the implicit arrangement of the data. Consider the case where all pointsin
the value segment are uniformly spaced across aregular grid. Inthis case, it would be sufficient to store only a
begin and end location to indicate the span of the value segment in explicit space. The explicit location of
every vector in the value segment can then be derived based on its implicit position in the value segment. This
is the motivation for support of the different location gridsin Data Services.

KUNIFORM KRECTILINEAR KCURVILINEAR

VALUE AND
® U

[]
VALUE POINT EXPLICIT LOCATION POINT

Figure 12: Illlustration of uniform, rectilinear and curvilinear location data for the two-dimensional case.
The dots represent value segment points, and the circles represent where explicit location information is
provided. With each successive type of grid, increasing amounts of explicit location data must be pro-
vided. Thus, the dependence on the implicit organization of the data is reduced. Uniform location data
consists only of two points, but is entirely dependent on the uniform spacing across the implicit dimen-
sions to have meaning. Rectilinear location datais similar to a uniform grid, except that the spacing along
each dimension may vary. Curvilinear location data consists of a specified point for every value segment
position, and has no dependence on the implicit organization of the data.

Support is provided for for three different types of location grids. These grid types are UNIFORM, RECTI-
LINEAR, and CURVILINEAR.

0 A uniform grid consists of two explicit location points which signify a begin and end point which
defines a span in explicit space. The explicit position of each point is then derived from the implicit
position within the value segment.

O A rectilinear grid is similar to a uniform grid, except that the spacing along each dimension may
vary. To specify a rectilinear grid, it is necessary to specify the explicit spacing along the width,
height, and depth axis. Note that the time segment is actually just a rectilinear specification down
the time dimension. The explicit position of each point is formed from the explicit coordinates
provided along each implicit axis.

O A curvilinear grid has no dependence on the implicit organization of the data. A curvilinear grid
requires that a unique explicit position be provided for every implicit position. This has been the
standard interface for specifying location data for data servicesin previous versions. Because of its
generality, acurvilinear grid is created by default if no grid is explicitly specified.

2-25

Note that since uniform and rectilinear grids are tied to the implicit width-height-depth organization of the
data, they are limited to three-space when deriving explicit location information. For convenience, this three-
space is said to exist over (X,y,z), with x corresponding to the width dimension, y to the height dimension and z
to the depth dimension. The dimension can be defined to be smaller than three, if appropriate for a specific
application. For example, a satellite image may just have explicit uniform location information defined over
only x and y. If explicit positioning for more than three dimensions, a curvilinear grid must be used.

It is not possible to mix the different types of grids over different implicit dimensions. For example, it is not
possible to specify a uniform width and arectilinear height. When a grid is specified, it will apply to the entire
location segment.

E.4.1. Creating Location

The type of location grid must be specified prior to the creation of the location segment using the
KPDS_LOCATION GRID attribute. This attribute can have the value of KUNIFORM, AccuSoftECTILINEAR,
Or KCURVILINEAR. This attribute can also have the value of kNONE, when no location segment is present and
no grid type has been specified.

The following example illustrates the creation of a uniform location segment :

kpds_set attribute (object, KPDS LOCATION GRID, KUNIFORM) ;
kpds create location(object) ;

If no grid type is set and the location segment is created, it will be created as curvilinear by default. Once cre-
ated, the grid type cannot be changed. The KPDS LOCATION GRID attribute should not be set at any time
after the location segment has been created. If a different grid type is desired, the location segment should be
first destroyed with acall to kpds destroy location and then recreated with the new grid type.

E.4.2. Location Primitives

Table 4 lists the primitives defined by the Polymorphic Data Model for location data. These primitives are
stored in and retrieved from the location data using the kpds put data () andkpds get data() func-
tions, respectively. There are different primitives provided for accessing the data from each type of location
grid.

Table 4a - Curvilinear Location Primitives

Default
Primitive Dim’n Indexing Description
KPDS_LOCATION_POINT 0D w, h, d, n A pointer to asingle location data point. The loca-

tion of the data point is specified by the xpps_L.ocCa-
TION POSITION éttribute. After every get/put pair,
Or consecutive get or put operations, the position
attribute kpDs_LocaTION POSITION Will be auto-
matically incremented to the next point.

2-26

Table 4a - Curvilinear Location Primitives

Primitive

Default

Dim’n Indexing

Description

KPDS_LOCATION_VECTOR

1D

w, h, d

A pointer to avector of location data. The location
of the vector is specified by the xpDs_LOCA-

TION POSITION attribute. The orientation of avec-
tor cannot be changed. You will always get a vector
on the n direction. After every get/put pair or consec-
utive get or put operations, the position attribute
KPDS_LOCATION POSITION Will be automatically
incremented to the next vector.

KPDS_LOCATION_LINE

1D

h, d, n

A pointer to aline of location data. The orientation
of aline with respect to the Polymorphic Data M odel
isalong width. What is defined as width can be
changed using the KPDS_AXIS ASSIGNMENT
attribute. The position index associated with the
width axis will be set to zero and the entire length
along that axis will be operated on when a get/put is
performed.

The other attribute that can affect the behavior of a
get or put operation involving aline isthe
KPDS_LOCATION OFFSET datribute. Thisattribute
forces an adjustment of the position in which a unit
of databegins. For example, an offset of (1, 0, O, 0)
will cause the beginning of aline to begin at position
1 rather than position zero, and the end of the line to
exceed the size in the along the width axis by one.
After every get/put pair, or consecutive get or put
operations, the position attribute kpDs_L.oca-

TION POSITION Will be automatically incremented
to the next line.

2-27

Table 4a - Curvilinear Location Primitives

Primitive

Default

Dim’n Indexing

Description

KPDS_LOCATION_PLANE

2D

d, n

A pointer to aplane of location data. The orientation
of alocation plane with respect to the Polymorphic
Data Model is aong width and height. What is
defined as width and height can be changed using the
KPDS_AXIS ASSIGNMENT attribute. The position
indices associated with the width and height axes will
be set to zero and the entire length along each axis
will be operated on when a get/put is performed. The
other attribute that can affect the behavior of a get or
put operation involving aplaneisthe kpDS_LOCA-
TION OFFSET attribute. This attribute forces an
adjustment of the position in which aunit of data
begins. For example, an offset of (1, 1, 0, 0) will
cause the beginning of a plane to begin at position 1
on both the width and height axes rather than position
zero, and the end of the plane to exceed the size in
both directions direction by one. After every get/put
pair, or consecutive get or put operations, the position
attribute KPDS_LOCATION POSITION Will be auto-
matically incremented to the next plane.

KPDS_LOCATION_VOLUME

3D

A pointer to avolume of location data. The orienta-
tion of alocation volume with respect to the Poly-
morphic Data Model can be changed by using the
KPDS_AXIS_ASSIGNMENT attribute. The position
indices associated with the width, height, and depth
axes will be set to zero and the entire length along
each axis will be operated on when a get/put is per-
formed. The other attribute that can affect the behav-
ior of aget or put operation involving avolume isthe
KPDS_LOCATION OFFSET attribute. This attribute
forces an adjustment of the position in which a unit

of databegins. For example, an offset of (1, 1, 1, 0)
will cause the beginning of avolume to begin at posi-
tion 1 on the width, height, and depth axes rather than
position zero, and the end of the volume to exceed the
sizein both directions direction by one. After every
get/put pair, or consecutive get or put operations, the
position attribute KPDS LOCATION POSITION Will
be automatically incremented to the next volume.

2-28

Table 4a - Curvilinear Location Primitives
Default
Primitive Dim’n Indexing Description

KPDS_LOCATION_REGION 4D N.A. A pointer to aregion of location data. The upper |eft-
hand corner is specified by the kpDs_Loca-
TION POSITION and KPDS LOCATION OFFSET
attributes. The sizeis specified by the kpDs_L.OCA-
TION REGION SIZE attribute. After every get/put
pair, or consecutive get or put operations, the position
attribute KPDS_LOCATION POSITION Will be auto-
matically incremented to the next region.

KPDS_LOCATION ALL 4D N.A. A pointer to al of the location data.

Rectilinear location data has primitives which allow the specification of an explicit array of data down each
dimension. These primitives are specified over the location width, height and depth dimensions. In essence,
these primitives are analogous to the primitives for the time segment. The regular location position, offset and
Size attributes are used with rectilinear location data, with the width component affecting the width primitives,
the height component affecting the height primitives and the depth component affecting the depth primitives.
Data for each dimension must be stored or retrieved with a separate put_data or get_data call and the corre-
sponding primitive for that dimension.

Table 4b - Rectilinear Location Primitives
Default
Primitive Dim’n Indexing Description
KPDS_LOCATION WIDTH POINT oD w, h, 4, n A pointer to asingle rectilinear location data point.
KPDS_LOCATION HEIGHT POINT The location of the data pOI ntis SpeCIerd by the cor-
KPDS_LOCATION DEPTH_POINT r&pondi ng Component of the KPDS_LOCA-
TION POSITION attribute. The dimension compo-
nent of the position attribute is not relevant for recti-
linear location data.
KPDS_LOCATION WIDTH_REGION 1D N.A. A pOI nter toa region of rectilinear location data. The
KPDS_LOCATION_HEIGHT REGION upper left-hand corner is Speleled by the
KPDS_LOCATION_DEPTH_REGION KPDS_LOCATION POSITION and KPDS LOCA-
TION OFFSET attributes. Thesizeis specified by the
KPDS_LOCATION REGION SIZE attribute.
KPDS_LOCATION_ WIDTH_ALL 1D N.A. A pOI nter to all of the rectilinear location dataalong a
KPDS_LOCATION HEIGHT ALL certain dimension.
KPDS_LOCATION_DEPTH_ALL

Uniform location data actually does not have any primitives associated with it. The explicit begin and end
points are specified via the attributes kPDS LOCATION BEGIN and KPDS LOCATION END. These attributes
areonly available if uniform location datais present. A uniform location segment must be created before these
attributes can be set.

2-29

Uniform Location Attributes

Attribute Legal Definition
and Default Values
KPDS_LOCATION BEGIN This attribute represents an explicit begin marker point for
the Polymorphic DataModel. This begin point maps to the

double implicit origin of the datamodel. This attribute can only be

w 0.0 set if uniform location data has been explicitly created with

h 0.0 akpds create location cal. Seealso: KPDS LOCA-

d 0.0 TION_END.

Persistence: permanent

KPDS_LOCATION END This attribute represents an explicit end marker point for
the Polymorphic DataModel. Thisend point maps to the
double implicit extent of the datamodel. This attribute can only be
w 0.0 set if uniform location data has been explicitly created with
h 0.0 akpds_create location cal. Seealso: KPDS LOCA-
d 0.0 TION_END.

Persistence: permanent

E.4.3. Presentation of Location Data

In order to minimize the complexity of processing incoming location data, functionality has been provided
which can present any type of location grid as curvilinear location data. Unlike any other presentation capabil-
ities in Data Services, it is not necessary to set any presentation attributes to invoke this capability. It is
embedded into the primitive access routines and will automatically be invoked on akpds get datacall.

To process location data, a program minimally can just get curvilinear location primitives. If the location seg-
ment actually consists of uniform or rectilinear location data, it will be presented back through the curvilinear
primitives as if the data actually was stored as curvilinear. If only uniform or rectilinear location data is
present, the contents of that vector will automatically be constructed and returned via the kpds get data
cal. So, for example, it is always possible to get any given curvilinear location vector using the KPDS_LOCA-
TION VECTOR primitive, regardless of the grid type of the data being stored.

In general, any more explicit form of location data can be retrieved when a less explicit form is present. Thus,
this presentation capability works for rectilinear location data as well. Uniform data can be retrieved, if
desired, as rectilinear location data. Note that it is never possible to retrieve a less explicit form of location
data when a more explicit form is present. For example, you could never retrieve uniform location primitives
from curvilinear location data. Furthermore, this presentation functionality also only works for data retrieval,
not for data storage. Clearly, it is not possible to store a set of explicit curvilinear location points as uniform
data because it may not actually be uniformly spaced.

2-30

E.5. Time Primitives

Table 5 lists the primitives defined by the polymorphic model for time data. These primitives are stored in
and retrieved from the time data using the kpds _put data () and kpds get data () functions respec-
tively.

Table 5 - Time Primitives

Primitive Dimension | Default Indexing Description
KPDS_TIME_ POINT 0D t A pointer to asingle time point. The location of the
data point is specified by the kPDS_TIME POSITION
attribute. After every get/put pair, or consecutive get
or put operations, the position attribute
KPDS_TIME_POSITION Will be automatically incre-
mented to the next point.

KPDS_TIME REGION 1D N.A. A pointer to aregion of time data. The starting point
is specified by the xpDs TIME POSITION and
KPDS_TIME_OFFSET aitributes. Thesizeis specified
by the kPDS_TIME REGION_ SIZE attribute. After
every get/put pair, or consecutive get or put opera-
tions, the position attribute KPDS_ TIME_POSITION
will be automatically incremented to the next region.

KPDS TIME ALL 1D N.A. A pointer to al of the time data.

F. Attributes Defined by the Polymorphic Data Model

Table 6 lists the attributes defined by the Polymorphic Data Model and Table 7 describes these attributes in
detail. Each attribute is associated with a particular component of the data object, such as the mask. The
attributes are stored and retrieved using kpds set attribute() and kpds get attribute()
respectively.
kpds_set attribute(obj2, KPDS VALUE SIZE, width, height, depth, time, elements);
kpds_get_attribute(objl, KPDS VALUE SIZE, &width, &height, &depth, &time, &elements) ;

Thekpds get attribute() andkpds set attribute () functions have variable argument lists as
specified in the data model attribute table that follows in Table 6.

The last three functions listed — kpds get attributes(), kpds set attributes(), and
kpds match attributes () — are multiple attribute functions, and the argument lists for these must be
NULL terminated. See the corresponding function descriptions in Section G for more information on usage.

Each column in the tables that follow are defined as follows:

Attribute and Default — This is the attribute name and the data type of the attribute’'s value(s) and suggested
variable names to use for multi-variable attributes, like kpDs_VALUE s1ze. The attribute order is given, and
the default value for the variable(s). If the default is read only then you cannot set or change the corresponding
attribute, but only read it. If the default is unknown, then you can set an input object to the stored value(s), or
you must set the attribute for objects created via kpds create object or output objects.

2-31

Legal Values — Where appropriate, alist of preprocessor symbols or a numerical range is given that indicates
the legal range of values for the attribute.

Description — A description of the attribute and how it should be used.
Persistence — This field indicates whether the attributes are stored when written to a file, or transient (not
stored) with the data. If the attribute is stored, then when the transport is re-opened, the value of the attribute

will be restored. If the attribute is transient, then it is only valid during the current processing of the data, and
when the object is opened, it is set to the default value.

2-32

F.1. Global Attributes

Global Attributes

Attribute
and Default

Legal
Values

Definition

KPDS_ARCHITECTURE

int

architecture

KMACH_UNKNOWN

KMACH_LITTLE_ENDIAN IEEE
KMACH_LITTLE ENDIAN VAX

KMACH_LITTLE_ENDIAN 64

KMACH_BIG_ENDIAN_IEEE

KMACH_BIG_ENDIAN_CRAY

This attribute is an integer val ue which encodes a descrip-
tion of the floating point and integer representation for the
machine which what used to generate the object. A set of
C defines are typically used when operating on the value of
this attribute in a program. Typicaly, this attribute is set
based on an examination of the input object, and is set to
thelocal architecture on an output object. The encoding
scheme and specific values for these defines can be found
in $BUILD/include/machine/kmachine.h.

Persistence: stored

KPDS_AXIS ASSIGNMENT

int
w KWIDTH
h KHEIGHT
d KDEPTH

KWIDTH

KHEIGHT

KDEPTH

This attribute allows the width, height, and depth axes to be
reassigned to one-another to simplify visualization or pro-
cessing. The effect of reassigning axesis similar to trans-
posing a matrix.

Persistence: stored

KPDS_COMMENT

char *
comment NULL

This attribute is aNULL terminated string used to document
the object. This attribute is used by auser or programmer
to describe the origin or nature of the data set. When this
attribute is set, it overwrites anything previously held in this
attribute. Therefore, it is up to the programmer to first get
the comment attribute, append new information to it, and
then set the entire comment attribute, if prior comment
information isto be propagated. To clear the comment
attribute, passin NULL

when setting the attribute. This attribute is copied with the
kpds_copy_ object () and kpds_copy object_attr()
cals.

Persistence: stored

2-33

Global Attributes

Attribute
and Default

Legal
Values

Definition

KPDS_COUPLING

int

coupling See Note 1.

KCOUPLED
KDEMAND

KUNCOUPLED

When this attribute is set to kcouPLED, changesto any
attribute that affects the physical representation of the data
(for example, data type, size, etc.) will be propagated to the
physical layer immediately. Otherwise, the presentation
layer isthe only layer that is changed, --the physical layer
remains unchanged. The difference between kUNCOUPLED
and KDEMAND is that KDEMAND allows the
kpds_sync_object () function call to force an update of
the presentation and physical layers. When this attribute is
set to KUNCOUPLED, the calling the kpds_sync_object ()
will not do anything. Seekpds_sync_object () for more
information.

Persistence: transient

KPDS DATA FORMAT

int

data_ format

KUBYTE
KUSHORT
KFLOAT

KUSERDEFINED

This attribute defines the format of datato be expected in
terms of predefined theoretical ranges. The actua range of
data may be within this range or outside of the range.

Persistence: stored

KPDS_DATA RANGE

This attribute defines the theoretical range of datato be
expected. The actual range of data may be within this

double range or outside of the range.
min
max
Persistence: stored
KPDS_DATE This attribute is anNuLL terminated string used to record the
date of the creation of the dataobject. Thisattributeis
char * NOT copied by kpds copy_attributes (). Toassign
date current date the current date as defined by computer system, passin

NULL When setting the attribute. The date will be stored in
the default format of the UNIX date command ("day
month date HH:MM:SS timezone year", e.g. "Wed Mar 10
00:07:23 MST 1994")

Persistence: stored

2-34

Global Attributes

Attribute Legal Definition
and Default Values

KPDS_FORMAT kaf This attribute specifies the file format that will be used with
Viff the object. If the object is an input object, then this

char * ipeg attribute is automatically initialized to the file format that

format viff pnm the object isstored in. If the object is an output object, then
pex this attribute defaults to "viff", indicating that the output
xpm datafile will be aviff. On output objects, this attribute can
xbm be set to any of the legal values. Theresult isthat when the
xwd object isclosed, it will be written out in the format speci-
eps fied.
rast
avs
ascii
raw
Persistence: stored
KPDS_FORMAT DESCRIPTION N/A This (read-only) attribute retrieves the file format descrip-

char *

description viff

tion that will describes the format associated with an object.

Persistence: transient

KPDS_ HISTORY

char *
history NULL

This attribute is a string that describes the operations that
have been performed on the original data set that result in
the current data set. Typically, programs names and their
command line arguments are listed here to reproduce this
data set. Thisattribute will only be set if the kHOROS_HIS-
TORY environment variableis set.

Persistence: stored

KPDS_HISTORY MODE

int

hmode

KAPPEND_HISTORY

KREPLACE_HISTORY

This attribute determines how the kpPDs_HISTORY attribute
isinterpreted when being set. If the history modeis set to
KAPPEND HISTORY, then the string begin set will be
appended to the exisiting history string. If the history mode
iS set to KREPLACE_HISTORY, then the string being set will
replace the existing history string.

Persistence: transient

KPDS_KERNEL_ORIGIN

int

o o QB =
© o o o o

This attribute is used to specify a"hot spot” in the data set
that isinterpreted as the center point of a5 dimensional
convolution kernel.

2-35

Global Attributes

Attribute Legal Definition
and Default Values
Persistence: stored
KPDS_MAPPING MODE KMAPPED This attribute specifies how to interpret the map dataif itis
KUNMAPPED present. The default interpretation KUNMAPPED means that

int
mapping mode KUNMAPPED

nothing is done with the map. It isthen the responsibility
of the programmer to interpret or ignore the map. The
KMAPPED mode causes the map and value data to be
merged. This means that the map will not appear to be
present. Instead, the value data will assimilate the
attributes of the map data as appropriate. Furthermore, any
value datathat isretrieved viaacall to kpds _get data
will be mapped through the map before being returned.

For example, the keDs_vALUE_s1ZE attribute will have its
KELEMENTS value multiplied by the xMap_wIDTH size of
themap. ThekpDs VALUE DATA TYPE Will actualy take
the value of thexpps_MaP DATA TYPE. Each valuewill
be used as an index into the map and used asthe
KMAP_HEIGHT index. All get and and set attribute calls
will behave in this manner.

Persistence: transient

KPDS_MASKED_VALUE_PRESENTATION

int
mask mode KUSE ORIGINAL

KUSE_ORIGINAL

KUSE_SUBSTITUTE_VALUE

This attribute takes on one of two values: either
KUSE_ORIGINAL, Of KUSE_SUBSTITUTE VALUE. If setto
KUSE_ORIGINAL, then regardless of the mask value at a
given data point, the value returned for that data point is
what is stored there. If the attribute is set to KUSE _SUB-
STITUTE_ VALUE, then the kPDS_MASK_SUBSTI-
TUTE_VALUE Will replace any value data point that hasa0
mask.

Persistence: transient

KPDS_MASK SUBSTITUTE_VALUE

Thisvalueis used to replace value data whose mask indi-
catesthat itisinvalid data. Itisonly used when the

double KPDS_MASKED VALUE PRESENTATION iSSet to
real KUSE_SUBSTITUTE VALUE.
imag
Persistence: stored
KPDS_NAME This attribute is used to obtain the filename associated with
the specified data object. Thisisthat name passedin to
char * kpds_open object, kpds_open output_object, OF
name kpds open_input object. Objectsthat areinstantiated

with kpds create object do not have afilename. In
such instances, this attribute’s value is NULL.

Persistence: stored

2-36

Global Attributes

Attribute
and Default

Legal
Values

Definition

KPDS_POINT_SIZE

double

w

o o Q5

N e

o O O O o

>

This attribute indicates the physical dimension in world
coordinates of apoint inthe dataset. A single sampled
point represents a continuous volume of datain world coor-
dinate space. This attribute indicates the size of that vol-
ume.

Persistence: stored

KPDS_SUBOBJECT_POSITION

int

o & 0 5 =

O O O O o

Thisisthe offset of the current data object in a parent
object. Typically the value of this attribute will be {0, 0, O,
0, O}, but if this object was extracted from a " parent
object", viakextract or other means, then this attribute will
indicate the position in the parent object from which this
region was extracted. It isintended to be used to automate
the process of reinserting the object into its parent once
region-of-interest processing is complete.

Persistence: stored

2-37

F.2. Value Segment Attributes

Value Segment Attributes

Attribute Legal Definition
and Default Values
KPDS_VALUE_COMPLEX_ CONVERT KIMAGINARY This attribute specifies how complex data should be con-
KMAGNITUDE verted. If itisconverted to a"lower" datatype, this
int KPHASE attribute specifies how to down-convert the data. For exam-
convert KREAL KREAL pleif thedatais actually complex, but the presentation

KMAGSQ attribute is byte, the complex data would first be converted

KMAGSQP1 to the representation defined by this attribute, and then con-

KLOGMAG verted to byte.

KLOGMAGP1 If the datais being converted from a"lower" datatypeto a
complex data type, this attribute defines how the data
should be interpreted — as the real or imaginary compo-
nent of the complex pair. KPHASE and KMAGNITUDE are
invalid values for up converting to complex, and will result
inan error.

Persistence: transient
KPDS_VALUE_DATA TYPE KBIT This attribute is used to get or set the data type, or numeri-
KBYTE cal representation of thedata. This datatype will be the
int KUBYTE presentation data type, not necessarily the physical data
data_type KSHORT type. Seethe kpDS_COUPLING attribute for more informa-

KUSHORT tion on how to control the presentation and physical data

KINT types. When the application programmer specifies a pre-

KUINT sentation data type that is different than the actua datatype

KLONG of the stored data, the get kpds_get data function will

KULONG convert the data to return the requested data type. Like-

KFLOAT wise, thekpds put_data function expects datathat isin

KDOUBLE the data type specified by this attribute to the output object,

KCOMPLEX and if the databeing "put" is of adifferent type, it will be

KDCOMPLEX converted. This attribute must be set for objects created via

kpds create object Or output objects that are opened
with kpds_open output_object Of
kpds_open_object, Or else the get and put data calls will
fail.

Persistence: stored

2-38

Value Segment Attributes

Attribute
and Default

Legal Definition
Values

KPDS_VALUE_INCREMENT_SIZE

int
width
height
depth
num_volumes

This attribute is used to ater how the auto-increment state
machine behaves. Normally, the size of the data set is used
to dictate how position auto-advances from one position to
the next, based on the primitive being accessed. This
attribute, if set, will be used instead of the size of the data
set for controlling auto-advancement. One place where
such functionality is useful iswhen asmaller data set is
being inserted into alarger one. The larger destination data
set’'s INCREMENT _SIZE attribute can be set to the size of
the smaller source data set so that the auto-advancement
stays synchronized across all dimensions.

Persistence: transient

KPDS VALUE_ INTERPOLATE

int
interpolate KPAD

KNONE

KPAD

This attribute specifies how the data should be presented if
the application program requests a size different from what

KZERO_ORDER isphysically stored. If the size requested is larger than the

KWRAP

physical size and the interpolation requested is kpaD the
pad value will be returned for al points outside of the phys-
ical size. If the size requested is smaller than the physical
size and the interpolation requested is xpaD the returned
datais clipped to the size requested. If the size requested is
larger than the physical size and the interpolation requested
iSKZERO_ORDER the datais duplicated. If thesize
requested is smaller than the physical size and the interpo-
lation requested iSKzERO_ORDER the data is sub-sampled.
If the interpolation requested is kwraP then the size change
will be resolved by duplicating the data set. |f KWrRAP is Set,
then out-of-bounds data accesses will also be filled with
duplicated data. If the interpolate attribute is set to KNONE,
an error will be returned if the program requests a size dif-
ferent from what is physically stored.

Persistence: transient

KPDS_VALUE LINE INFO

int
line_size

num_lines

This attribute will return the number of pointsin aline and
the number of linesin the dataset. The line size will be the
size of the width axis and the of lines number will be the
product of the other axes’ sizes.

Persistence: transient

KPDS VALUE NORM MAX

double

norm max

> norm min This attribute specifies the maximum to be used when nor-

malizing datavalues. This attribute is used in conjunction
with the kpDs_* NORM MIN attribute, respectively, to
determine the bounds of a normalization operation. This
attribute comes into play when thexpbs_* SCALING
attribute is set to KNORMALIZE.

2-39

Value Segment Attributes

Attribute
and Default

Legal
Values

Definition

Persistence: transient

KPDS_VALUE NORM MIN

double

norm_min

< norm_max

This attribute specifies the minimum to be used when nor-
malizing data values. This attribute is used in conjunction
with the kpDS_* NORM MaX attribute, respectively, to
determine the bounds of a normalization operation. This
attribute comes into play when thexpbs_* SCALING
attribute is set to KNORMALIZE.

Persistence: transient

KPDS_VALUE_OFFSET +/- int These attribute val ues specify the offset into the data posi-
tion for all primitives. Offset values beyond the boundaries
int of the data are valid.
offset_w 0
offset_h 0
offset d 0
offset t 0
offset e 0
Persistence: transient
KPDS_VALUE_OPTIMAL REGION SIZE >0 This attribute will return the size of aregion of data and the

int

region width
region height
region depth
region time
region_elements

number_of regions

number of such regions that is most efficient to processin

terms of performance and memory use. The

KPDS_* REGION_SIZE atribute controlsthe size and dic-
tates the number of regions, which will always be rounded
up. SeekpPDS_* REGION_ SIZE for moreinformation.

Persistence: transient

KPDS_VALUE_PAD VALUE

double
real value

imag value

This attribute specifies the real (and imaginary) values of
the pad dataif the kPDS_* INTERPOLATE attributeis set to
KPAD, respectively. The double values must be specified,
whether the datais real or complex. The pad values will
internally be converted from double to the appropriate data
type.

The default pad value for location, map, time and valueis
0. The default pad value for the mask is 1 because when
padding data, the padded portion of the value data should
initially be considered valid.

Persistence: transient

2-40

Value Segment Attributes

Attribute
and Default

Legal
Values

Definition

KPDS_VALUE PLANE_INFO

int
plane width
plane height

num_planes

This attribute will return the size of a plane of datain points
and the number of planesin the dataset. The plane sizewill
be the size of the width and height axes and the number

will be the product of the sizes of the other axes.

Persistence: transient

KPDS_VALUE_POSITION +/- int The position attribute specifies four indices to locate a spe-
cific PRIMITIVE in the location data. wiswidth, his
int height, d is depth and nisdimension.
' 0
h 0
d 0
t 0
e 0
Persistence: transient
KPDS_VALUE_REGION INFO This attribute will return the size of aregion of datain
points and the number of regionsin the data. The
int KPDS_* REGION_ SIZE attribute controlsthe size and dic-
region width tates the number of regions, which will always be rounded
region_height up. SeeKPDS_* REGION sIZE for moreinformation.
region depth
region time
region_ elements
num_regions
Persistence: transient
KPDS_VALUE_REGION SIZE >0 These attribute val ues specify the size of the region being

int
region width
region height
region depth

e

region time

region elements 1

processed. If the region size for one or more dimensionsis
not a even multiple of the data size, then the pad value will
be returned by kpds_get data for @l data outside of the
data space, which isset by kpDs_* pAaD VALUE. Ona
kpds_put_data call, data points outside of the data space
will be truncated. E.g. if the object width is 512 and the
region width is 200, then getting the first two regions will
return the data for those regions. The next get will return
the remaining 112 points from the data in the width direc-
tion with the remaining 88 points set to the pad value. On a
put for this same setup, the first two puts will place full
regions into the data object, but the last put will place only
the first 112 pointsinto the data object in the width direc-
tion and the last 88 points are truncated.

Persistence: transient

2-41

Value Segment Attributes

Attribute Legal Definition
and Default Values

KPDS_VALUE_SCALE_FACTOR This attribute specifies the scaling factor to be used when
scaling data values. This attribute comesinto play when

double thexpDs_* SCALING attributeis set to KSCALE, respec-

scale factor 1.0 tively.

Persistence: transient

KPDS_VALUE_SCALE OFFSET This attribute specifies the scaling offset to be used when
scaling data values. This attribute comesinto play when

double thexpPDs_* SCALING attributeis set to KSCALE, respec-

offset_real 0.0 tively.
offset imaginary 0.0

Persistence: transient

KPDS_VALUE_SCALING KNONE This attribute specifies whether scaling or normalization

KNORMALIZE should be performed.
int KSCALE If kscaLE is specified for the value data, values will be
scaling KNONE scaled, according to the KPDS_VALUE_SCALE_FACTOR and

KPDS_VALUE_SCALE_OFFSET attributes. If KNORMALIZE
is specified for the value data, values will be normalized
using the kPDS_VALUE_NORM_MIN and
KPDS_VALUE NORM MAX attributes. If thisattributeis set
to kwoNE for the value data, values will not be scaled or
normalized. The sameistrue for the map and mask data.
They will use their respective scale factor & offset and nor-
malize minimum & maximum attributes.
Persistence: transient

KPDS_VALUE_SIZE >0 This attribute specifies the size of the dimensions width,

int
width
height
depth
time

elements

height, depth, elements, time, location dimension, map
width, map height, map elements, map depth map time.
When the application programmer specifies a size larger
than the actual size of stored data, the get functions will
sub-sampled, clipped, padded or duplicated the data to
present the program with the requested amount, see the
attribute xPDS_VALUE INTERPOLATE for more details.
The put functions store exactly the size that the physical
attributes will allow even if the amount of data"put” (set by
the presentation attributes) is different. This attribute must
be set for objects created viakpds_create object Of
output objects el se get/put data calls will fail.

The size of the mask and value dataisidentical. Thetime
size is shared between the time, mask and value data. The
width, height depth are shared between the location, mask
value data.

2-42

Value Segment Attributes

Attribute
and Default

Legal
Values

Definition

Persistence: transient

KPDS_VALUE VECTOR_INFO

int
plane_size

num_vectors

This attribute will return the number of pointsin avector of
data and the number of vectorsin the dataset. The vector
vector definition for the data primitive. For
KPDS_VALUE_VECTOR_INFO, the Sizeisthe size of the ele-
ment vector and the number is the product of the remaining
dimensions.

Persistence: transient

KPDS_VALUE_VOLUME_INFO

int
width
height
depth

num_volumes

This attribute will return the size of avolume of datain
points and the number of volumesin the dataset. The vol-
ume size will be the size of the width, height, and depth
axes. The number volumes will be the product of the sizes
of the remaining axes.

Persistence: transient

2-43

F.3. Mask Segment Attributes

Mask Segment Attributes

Attribute Legal Definition
and Default Values

KPDS_MASK_DATA TYPE KBIT This attribute is used to get or set the data type, or numeri-
KBYTE cal representation of thedata. This datatype will be the

int KUBYTE presentation data type, not necessarily the physical data

data_type KSHORT type. Seethe kpDS_COUPLING attribute for moreinforma-

KUSHORT tion on how to control the presentation and physical data
KINT types. When the application programmer specifies a pre-
KUINT sentation data type that is different than the actua datatype
KLONG of the stored data, the get kpds_get data function will
KULONG convert the data to return the requested data type. Like-
KFLOAT wise, thekpds put_data function expects datathat isin
KDOUBLE the data type specified by this attribute to the output object,
KCOMPLEX and if the databeing "put" is of adifferent type, it will be
KDCOMPLEX converted. This attribute must be set for objects created via

kpds create object Or output objects that are opened
with kpds_open output object Of
kpds_open_object, Or else the get and put data calls will
fail.

Persistence: stored

KPDS_MASK INCREMENT SIZE

int
width
height
depth

num_volumes

This attribute is used to ater how the auto-increment state
machine behaves. Normally, the size of the data set is used
to dictate how position auto-advances from one position to
the next, based on the primitive being accessed. This
attribute, if set, will be used instead of the size of the data
set for controlling auto-advancement. One place where
such functionality is useful iswhen asmaller data set is
being inserted into alarger one. The larger destination data
set’'s INCREMENT _SIZE attribute can be set to the size of
the smaller source data set so that the auto-advancement
stays synchronized across all dimensions.

Persistence: transient

2-44

Mask Segment Attributes

Attribute
and Default

Legal
Values

Definition

KPDS_MASK INTERPOLATE

KNONE

KPAD

This attribute specifies how the data should be presented if
the application program requests a size different from what

int KZERO_ORDER is physically stored. If the size requested is larger than the
interpolate KPAD KWRAP physical size and the interpolation requested is kpaAD the
pad value will be returned for all points outside of the phys-
ical size. If the sizerequested is smaller than the physical
size and the interpolation requested is xpaD the returned
datais clipped to the size requested. If the size requested is
larger than the physical size and the interpolation requested
iISKZERO_ORDER the datais duplicated. If thesize
requested is smaller than the physical size and the interpo-
lation requested is kzZERO ORDER the data is sub-sampled.
If the interpolation requested is kwraP then the size change
will be resolved by duplicating the data set. If KWRAP is set,
then out-of-bounds data accesses will aso befilled with
duplicated data. If the interpolate attribute is set to KNONE,
an error will be returned if the program requests a size dif-
ferent from what is physically stored.
Persistence: transient
KPDS_MASK LINE INFO This attribute will return the number of pointsin aline and
the number of linesin the dataset. Theline size will be the
int size of the width axis and the of lines number will be the
line size product of the other axes' sizes.
num_lines
Persistence: transient
KPDS_MASK_OFFSET +/- int These attribute val ues specify the offset into the data posi-
tion for all primitives. Offset values beyond the boundaries
int of the data are valid.
offset_w 0
offset h 0
offset d 0
offset t 0
offset e 0
Persistence: transient
KPDS_MASK OPTIMAL REGION SIZE >0 This attribute will return the size of aregion of dataand the

int

region width
region height
region depth
region_time
region_elements

number of regions

number of such regions that is most efficient to processin

terms of performance and memory use. The

KPDS_* REGION_SIZE attribute controlsthe size and dic-
tates the number of regions, which will always be rounded
up. SeekpPDS_* REGION_ SIZE for moreinformation.

2-45

Mask Segment Attributes

Attribute
and Default

Legal
Values

Definition

Persistence: transient

KPDS_MASK PAD VALUE

double
pad_value 1.0

This attribute specifies the real (and imaginary) values of
the pad dataiif the kpPDS_* INTERPOLATE attributeis set to
KPAD, respectively. The double values must be specified,
whether the dataisrea or complex. The pad values will
internally be converted from doubl e to the appropriate data
type.

The default pad value for location, map, time and value is
0. The default pad value for the mask is 1 because when
padding data, the padded portion of the value data should
initially be considered valid.

Persistence: transient

KPDS_MASK PLANE_INFO

int
plane width
plane height

num_planes

This attribute will return the size of a plane of datain points
and the number of planesin the dataset. The plane sizewill
be the size of the width and height axes and the number

will be the product of the sizes of the other axes.

Persistence: transient

KPDS MASK POSITION

int
\ 0
h 0
d 0
t 0
e 0

+/- int

The position attribute specifies four indices to locate a spe-
cific PRIMITIVE in the location data. w iswidth, his
height, d is depth and nisdimension.

Persistence: transient

KPDS MASK REGION INFO

int

region width
region_height
region depth
region time
region_ elements

num_regions

This attribute will return the size of aregion of datain
points and the number of regionsin the data. The

KPDS_* REGION_ SIZE attribute controlsthe size and dic-
tates the number of regions, which will always be rounded
up. SeekpPDS_* REGION SIZE for moreinformation.

Persistence: transient

2-46

Mask Segment Attributes

Attribute
and Default

Legal
Values

Definition

KPDS_MASK REGION SIZE

int
region width
region height
region_depth

[= S S

region time

region elements

1

>

These attribute values specify the size of the region being
processed. If the region size for one or more dimensionsis
not a even multiple of the data size, then the pad value will
bereturned by kpds _get data for all data outside of the
data space, which isset by kpDs_* paD VALUE. Ona
kpds put_ data call, data points outside of the data space
will be truncated. E.g. if the object width is 512 and the
region width is 200, then getting the first two regions will
return the data for those regions. The next get will return
the remaining 112 points from the data in the width direc-
tion with the remaining 88 points set to the pad value. On a
put for this same setup, the first two puts will place full
regions into the data object, but the last put will place only
thefirst 112 pointsinto the data object in the width direc-
tion and the last 88 points are truncated.

Persistence: transient

KPDS MASK SIZE

int
width
height
depth
time

elements

>

This attribute specifies the size of the dimensions width,
height, depth, elements, time, location dimension, map
width, map height, map elements, map depth map time.
When the application programmer specifies a size larger
than the actual size of stored data, the get functions will
sub-sampled, clipped, padded or duplicated the datato
present the program with the requested amount, see the
attribute xPDS_VALUE INTERPOLATE for more details.
The put functions store exactly the size that the physical
attributes will allow even if the amount of data"put” (set by
the presentation attributes) is different. This attribute must
be set for objects created viakpds_create object Of
output objects el se get/put data calls will fail.

The size of the mask and value dataisidentical. Thetime
size is shared between the time, mask and value data. The
width, height depth are shared between the location, mask
value data.

Persistence: stored

KPDS_MASK VECTOR_INFO

int
vector length

num_vectors

This attribute will return the number of pointsin avector of
data and the number of vectorsin the dataset. The vector
vector definition for the data primitive. For
KPDS_VALUE_VECTOR_INFO, the sizeisthe size of the ele-
ment vector and the number is the product of the remaining
dimensions.

Persistence: transient

2-47

Mask Segment Attributes

Attribute
and Default

Legal
Values

Definition

KPDS_MASK VOLUME_INFO

int
width
height
depth

num_volumes

This attribute will return the size of avolume of datain
points and the number of volumesin the dataset. The vol-
ume size will be the size of the width, height, and depth
axes. The number volumes will be the product of the sizes
of the remaining axes.

Persistence: transient

2-48

F.4. Map Segment Attributes

Map Segment Attributes

Attribute Legal Definition
and Default Values
KPDS_MAP_COMPLEX_ CONVERT KIMAGINARY This attribute specifies how complex data should be con-
KMAGNITUDE verted. If itisconverted to a"lower" datatype, this
int KPHASE attribute specifies how to down-convert the data. For exam-
convert KREAL KREAL pleif the datais actually complex, but the presentation

KMAGSQ attribute is byte, the complex data would first be converted

KMAGSQP1 to the representation defined by this attribute, and then con-

KLOGMAG verted to byte.

KLOGMAGP1 If the datais being converted from a"lower" datatypeto a
complex datatype, this attribute defines how the data
should be interpreted — as the real or imaginary compo-
nent of the complex pair. KPHASE and KMAGNITUDE are
invalid values for up converting to complex, and will result
inan error.

Persistence: transient
KPDS_MAP_DATA TYPE KBIT This attribute is used to get or set the data type, or numeri-
KBYTE cal representation of the data. This datatype will be the
int KUBYTE presentation data type, not necessarily the physical data
datatype KSHORT type. Seethe kpDs_couPLING attribute for more informa-

KUSHORT tion on how to control the presentation and physical data

KINT types. When the application programmer specifies a pre-

KUINT sentation data type that is different than the actual datatype

KLONG of the stored data, the get kpds _get_data function will

KULONG convert the data to return the requested data type. Like-

KFLOAT wise, thekpds_put_data function expects datathat isin

KDOUBLE the data type specified by this attribute to the output object,

KCOMPLEX and if the databeing "put" is of adifferent type, it will be

KDCOMPLEX converted. This attribute must be set for objects created via

kpds create object Or output objects that are opened
with kpds _open output_object Or
kpds_open_object, Or else the get and put data calls will
fail.

Persistence: stored

2-49

Map Segment Attributes

Attribute
and Default

Legal Definition
Values

KPDS_MAP_INCREMENT SIZE

int
width
height
depth
time
elements

num_volumes

This attribute is used to alter how the auto-increment state
machine behaves. Normally, the size of the data set is used
to dictate how position auto-advances from one position to
the next, based on the primitive being accessed. This
attribute, if set, will be used instead of the size of the data
set for controlling auto-advancement. One place where
such functionality is useful iswhen asmaller dataset is
being inserted into alarger one. The larger destination data
set’s INCREMENT _SIZE attribute can be set to the size of
the smaller source data set so that the auto-advancement
stays synchronized across all dimensions.

Persistence: transient

KPDS_MAP_ INTERPOLATE

int
interpolate KPAD

KNONE This attribute specifies how the data should be presented if
KPAD the application program requests a size different from what
KZERO_ORDER isphysically stored. If the size requested is larger than the

KWRAP physical size and the interpolation requested is kPaD the

pad value will be returned for all points outside of the phys-
ical size. If the sizerequested is smaller than the physical
size and the interpolation requested is xpaD the returned
datais clipped to the size requested. If the size requested is
larger than the physical size and the interpolation requested
iSKZERO_ORDER the datais duplicated. If thesize
requested is smaller than the physical size and the interpo-
lation requested is kZERO ORDER the datais sub-sampled.
If the interpolation requested is kwrAP then the size change
will be resolved by duplicating the data set. |f KWRAP iS Set,
then out-of-bounds data accesses will & so be filled with
duplicated data. If the interpolate attribute is set to KNONE,
an error will be returned if the program requests a size dif-
ferent from what is physically stored.

Persistence: transient

KPDS_MAP LINE INFO

int
line_size

num_lines

This attribute will return the number of pointsin aline and
the number of linesin the dataset. The line size will bethe
size of the width axis and the of lines number will be the
product of the other axes' sizes.

Persistence: transient

KPDS MAP NORM MAX

double

norm max

> norm min This attribute specifies the maximum to be used when nor-
malizing data values. This attribute is used in conjunction
with the kpDs_* NORM MIN attribute, respectively, to
determine the bounds of a normalization operation. This
attribute comesinto play when thexpps_* SCALING
attribute is set t0 KNORMALIZE.

2-50

Map Segment Attributes

Attribute
and Default

Legal
Values

Definition

Persistence: transient

KPDS_MAP NORM MIN

double

norm_min

< norm_max

This attribute specifies the minimum to be used when nor-
malizing data values. This attribute is used in conjunction
with the kPDS_* NORM MaX attribute, respectively, to
determine the bounds of anormalization operation. This
attribute comesinto play when thexpps_* scaALING
attribute is set to KNORMALIZE.

Persistence: transient

KPDS_MAP_OFFSET +/- int These attribute values specify the offset into the data posi-
tion for al primitives. Offset values beyond the boundaries
int of the data are valid.
mw 0
mh 0
md 0
mt 0
me 0
Persistence: transient
KPDS_MAP_OPTIMAL REGION SIZE >0 This attribute will return the size of aregion of data and the

int

region width
region height
region depth
region time
region_elements

number_of_ regions

number of such regionsthat is most efficient to processin

terms of performance and memory use. The

KPDS_* REGION SIZE attribute controlsthe size and dic-
tates the number of regions, which will always be rounded
up. SeekPDS_* REGION_ SIZzE for moreinformation.

Persistence: transient

KPDS_MAP PAD VALUE

double
real

imag

This attribute specifies the real (and imaginary) values of
the pad dataif the xPDs_* INTERPOLATE attributeis set to
KPAD, respectively. The double values must be specified,
whether the dataisreal or complex. The pad values will
internally be converted from double to the appropriate data
type.

The default pad value for location, map, time and value is
0. The default pad value for the mask is 1 because when
padding data, the padded portion of the value data should
initially be considered valid.

Persistence: transient

2-51

Map Segment Attributes

Attribute
and Default

Legal
Values

Definition

KPDS_MAP PLANE_INFO

int
map plane width
map plane height

num_planes

This attribute will return the size of a plane of datain points
and the number of planesin the dataset. The plane size will
be the size of the width and height axes and the number

will be the product of the sizes of the other axes.

Persistence: transient

KPDS MAP POSITION

int
mw
mh
md
mt

me

o O O o o

The position attribute specifies four indices to locate a spe-
cific PRIMITIVE in the location data. w iswidth, his
height, d isdepth and nisdimension.

Persistence: transient

KPDS MAP REGION INFO

int

region width
region_height
region depth
region time
region_elements

num_regions

This attribute will return the size of aregion of datain
points and the number of regionsin thedata. The

KPDS_* REGION_SIZE attribute controlsthe size and dic-
tates the number of regions, which will always be rounded
up. SeekpPDS_* REGION sIzE for moreinformation.

Persistence: transient

KPDS_MAP REGION SIZE

int
region width
region height
region depth
region time

region elements

[

1

>

These attribute values specify the size of the region being
processed. If the region size for one or more dimensionsis
not a even multiple of the data size, then the pad value will
be returned by kpds get_data for al data outside of the
data space, which isset by kpDs_* paD VALUE. Ona
kpds_put_data call, data points outside of the data space
will be truncated. E.g. if the object width is 512 and the
region width is 200, then getting the first two regions will
return the data for those regions. The next get will return
the remaining 112 points from the data in the width direc-
tion with the remaining 88 points set to the pad value. On a
put for this same setup, the first two puts will place full
regions into the data object, but the last put will place only
thefirst 112 pointsinto the data object in the width direc-
tion and the last 88 points are truncated.

Persistence: transient

2-52

Map Segment Attributes

Attribute Legal Definition
and Default Values
KPDS_MAP_SCALE_FACTOR 1.0 This attribute specifies the scaling factor to be used when

double

scale factor

scaling data values. This attribute comes into play when
thexpDs_* SCALING attributeis set to KSCALE, respec-
tively.

Persistence: transient

KPDS_MAP SCALE OFFSET

double

offset real 0.

offset imaginary

0

0.

0

This attribute specifies the scaling offset to be used when
scaling data values. This attribute comes into play when
the KPDS_*_SCALING attribute is set to KSCALE, respec-
tively.

Persistence: transient

KPDS_MAP SCALING

int
scaling KNONE

KNONE This attribute specifies whether scaling or normalization
KNORMALIZE should be performed.
KSCALE If kscaLk is specified for the value data, values will be

scaled, according to the KPDS_VALUE_SCALE_FACTOR and
KPDS_VALUE_SCALE_OFFSET attributes. If KNORMALIZE
is specified for the value data, values will be normalized
using the KxPDS_VALUE_NORM_MIN and
KPDS_VALUE_NORM MAX attributes. If thisattributeis set
to xwonE for the value data, values will not be scaled or
normalized. The sameistrue for the map and mask data.
They will use their respective scale factor & offset and nor-
malize minimum & maximum attributes.

Persistence: transient

KPDS MAP SIZE

int
map_width
map height
map_depth
map_ time

map_elements

>0 This attribute specifies the size of the dimensions width,
height, depth, elements, time, location dimension, map
width, map height, map elements, map depth map time.
When the application programmer specifies a size larger
than the actual size of stored data, the get functions will
sub-sampled, clipped, padded or duplicated the datato
present the program with the requested amount, see the
attribute kPDS_VALUE INTERPOLATE for more details.
The put functions store exactly the size that the physical
attributes will allow even if the amount of data "put” (set by
the presentation attributes) is different. This attribute must
be set for objects created viakpds_create object Or
output objects else get/put data calls will fail.

The size of the mask and value dataisidentical. Thetime
size is shared between the time, mask and value data. The
width, height depth are shared between the location, mask
value data.

2-53

Map Segment Attributes

Attribute
and Default

Legal
Values

Definition

Persistence: stored

KPDS_MAP VECTOR_INFO

int
vector length

num_vectors

This attribute will return the number of pointsin a vector of
data and the number of vectorsin the dataset. The vector
vector definition for the data primitive. For
KPDS_VALUE_VECTOR_INFO, the sizeisthe size of the ele-
ment vector and the number is the product of the remaining
dimensions.

Persistence: transient

KPDS MAP VOLUME_INFO

int

map_width
map height
map_depth

num_volumes

This attribute will return the size of avolume of datain
points and the number of volumes in the dataset. The vol-
ume size will be the size of the width, height, and depth
axes. The number volumes will be the product of the sizes
of the remaining axes.

Persistence: transient

F.5. Location Segment Attributes

Location Segment Attributes

Attribute Legal Definition
and Default Values
KPDS_LOCATION BEGIN This attribute represents an explicit begin marker point for
the polymorphic datamodel. This begin point mapsto the
double implicit origin of the datamodel. This attribute can only be
w set if uniform location data has been explicitly created with
h akpds_create location cal. Seealso: xPDS LoOCA-
d TION END.
Persistence: transient
KPDS_LOCATION COMPLEX_CONVERT KIMAGINARY This attribute specifies how complex data should be con-
KMAGNITUDE verted. If itisconverted to a"lower" datatype, this
int KPHASE attribute specifies how to down-convert the data. For exam-
convert KREAL KREAL pleif thedatais actually complex, but the presentation

KMAGSQ attribute is byte, the complex data would first be converted

KMAGSQP1 to the representation defined by this attribute, and then con-

KLOGMAG verted to byte.

KLOGMAGP1 If the dataiis being converted from a"lower" datatypeto a
complex data type, this attribute defines how the data
should be interpreted — as the real or imaginary compo-
nent of the complex pair. KPHASE and KMAGNITUDE are
invalid values for up converting to complex, and will result
inan error.

Persistence: transient
KPDS_LOCATION DATA TYPE KBIT This attribute is used to get or set the data type, or numeri-
KBYTE cal representation of thedata. This datatype will be the
int KUBYTE presentation data type, not necessarily the physical data
datatype KSHORT type. Seethe kpDs_COUPLING attribute for more informa-

KUSHORT tion on how to control the presentation and physical data

KINT types. When the application programmer specifies a pre-

KUINT sentation data type that is different than the actua datatype

KLONG of the stored data, the get kpds_get data function will

KULONG convert the data to return the requested data type. Like-

KFLOAT wise, thekpds put_data function expects datathat isin

KDOUBLE the data type specified by this attribute to the output object,

KCOMPLEX and if the databeing "put" is of adifferent type, it will be

KDCOMPLEX converted. This attribute must be set for objects created via

kpds create object Or output objects that are opened
with kpds_open output_object Of
kpds_open_object, Or else the get and put data calls will
fail.

Persistence: stored

2-55

Location Segment Attributes

Attribute Legal Definition
and Default Values
KPDS_LOCATION END This attribute represents an explicit end marker point for
the polymorphic data model. This end point mapsto the
double implicit extent of the datamodel. This attribute can only be
w set if uniform location data has been explicitly created with
h akpds create location cal. Seealso: KPDS LOCA-
d TION_BEGIN.
Persistence: transient
KPDS_LOCATION GRID KNONE The location grid attribute specifies the grid type to use
KUNIFORM when creating the location data. This attribute should be
int KRECTILINEAR set beforeakpds_create_location operation. By
grid_type KCURVILINEAR default, if the location datatype is xwoNE and location data

is created, a curvilinear location grid will be created and
this attribute will be set to KCURVILINEAR.

Persistence: permanent

KPDS LOCATION INCREMENT SIZE

int
width
height
depth

num_volumes

This attribute is used to alter how the auto-increment state
machine behaves. Normally, the size of the data set is used
to dictate how position auto-advances from one position to
the next, based on the primitive being accessed. This
attribute, if set, will be used instead of the size of the data
set for controlling auto-advancement. One place where
such functionality is useful iswhen asmaller data set is
being inserted into alarger one. The larger destination data
set’'s INCREMENT _SIZE attribute can be set to the size of
the smaller source data set so that the auto-advancement
stays synchronized across all dimensions.

Persistence: transient

2-56

Location Segment Attributes

Attribute
and Default

Legal
Values

Definition

KPDS_LOCATION_INTERPOLATE

int
interpolate KPAD

KNONE
KPAD
KZERO_ORDER

KWRAP

This attribute specifies how the data should be presented if
the application program requests a size different from what
is physically stored. If the size requested is larger than the
physical size and the interpolation requested is kpaD the
pad value will be returned for all points outside of the phys-
ical size. If the size requested is smaller than the physical
size and the interpolation requested is xpaD the returned
dataisclipped to the size requested. If the size requested is
larger than the physical size and the interpolation requested
iISKZERO_ORDER the datais duplicated. If thesize
requested is smaller than the physical size and the interpo-
lation requested is kZERO ORDER the data is sub-sampled.
If the interpolation requested is kwraP then the size change
will be resolved by duplicating the data set. If KWRAP is set,
then out-of-bounds data accesses will aso befilled with
duplicated data. If the interpolate attribute is set to KNONE,
an error will be returned if the program requests a size dif-
ferent from what is physically stored.

Persistence: transient

KPDS LOCATION LINE INFO

int
line size

num_lines

This attribute will return the number of pointsin aline and
the number of linesin the dataset. The line size will be the
size of the width axis and the of lines number will be the
product of the other axes' sizes.

Persistence: transient

KPDS_LOCATION NORM MAX

double

norm max

> norm min

This attribute specifies the maximum to be used when nor-
malizing data values. This attribute is used in conjunction
with the kpDS_* NORM MIN attribute, respectively, to
determine the bounds of a normalization operation. This
attribute comes into play when thexpbs_* SCALING
attribute is set to KNORMALIZE.

Persistence: transient

KPDS_LOCATION_NORM MIN

double

norm_min unknown

< norm_max

This attribute specifies the minimum to be used when nor-
malizing data values. This attribute is used in conjunction
with the kpDs_* NORM Max attribute, respectively, to
determine the bounds of a normalization operation. This
attribute comes into play when the xpDs_+* _SCALING
attribute is set to KNORMALIZE.

Persistence: transient

2-57

Location Segment Attributes

Attribute Legal Definition
and Default Values
KPDS_LOCATION OFFSET +/- int These attribute val ues specify the offset into the data posi-
tion for al primitives. Offset values beyond the boundaries
int of the data are valid.
w 0
h 0
d 0
n 0
Persistence: transient
KPDS_LOCATION OPTIMAL REGION SIZE >0 This attribute will return the size of aregion of dataand the

int
w
h
d
dim

num_regions

number of such regions that is most efficient to processin

terms of performance and memory use. The

KPDS_* REGION SIZE attribute controlsthe size and dic-
tates the number of regions, which will always be rounded
up. SeeKPDS_* REGION sIZE for moreinformation.

Persistence: transient

KPDS_LOCATION_PAD_ VALUE

double
real

imag

This attribute specifies the real (and imaginary) values of
the pad dataif the kpDS_* INTERPOLATE attributeis set to
KPAD, respectively. The double values must be specified,
whether the dataisreal or complex. The pad values will
internally be converted from doubl e to the appropriate data
type.

The default pad value for location, map, time and valueis
0. The default pad value for the mask is 1 because when
padding data, the padded portion of the value data should
initially be considered valid.

Persistence: transient

KPDS LOCATION_ PLANE INFO

int
w

h

num planes

This attribute will return the size of a plane of datain points
and the number of planesin the dataset. The plane size will
be the size of the width and height axes and the number

will be the product of the sizes of the other axes.

Persistence: transient

2-58

Location Segment Attributes

Attribute Legal Definition
and Default Values
KPDS_LOCATION POSITION +/- int The position attribute specifies four indices to locate a spe-
cific PRIMITIVE in the location data. wiswidth, his
int height, d is depth and nisdimension.
w 0
h 0
d 0
n 0
Persistence: transient
KPDS_LOCATION REGION_ INFO This attribute will return the size of aregion of datain
points and the number of regionsin the data. The
int KPDS_* REGION_ SIZE attribute controlsthe size and dic-
w tates the number of regions, which will always be rounded
h up. SeekpPDS_* REGION SIZzE for moreinformation.
d
dim
num_regions
Persistence: transient
KPDS_LOCATION REGION SIZE >0 These attribute values specify the size of the region being

int
w 1
h 1
d 1
dim 1

processed. If the region size for one or more dimensionsis
not a even multiple of the data size, then the pad value will
bereturned by kpds get data for all data outside of the
data space, whichisset by kpDs_*_pap_vaLue. Ona
kpds_put_data call, data points outside of the data space
will betruncated. E.g. if the object width is512 and the
region width is 200, then getting the first two regions will
return the data for those regions. The next get will return
the remaining 112 points from the datain the width direc-
tion with the remaining 88 points set to the pad value. On a
put for this same setup, the first two puts will place full
regions into the data object, but the last put will place only
thefirst 112 pointsinto the data object in the width direc-
tion and the last 88 points are truncated.

Persistence: transient

KPDS_LOCATION SCALE FACTOR

double

scale factor 1.0

This attribute specifies the scaling factor to be used when
scaling data values. This attribute comesinto play when
the KPDS_*_SCALING altribute is set to KSCALE, respec-
tively.

Persistence: transient

2-59

Location Segment Attributes

Attribute
and Default

Legal
Values

Definition

KPDS_LOCATION_SCALE_OFFSET

double
real
offset

This attribute specifies the scaling offset to be used when
scaling datavalues. This attribute comesinto play when
thexpDs_* SCALING attributeis set to KSCALE, respec-
tively.

Persistence: transient

KPDS LOCATION_ SCALING

int
scaling KNONE

KNONE
KNORMALIZE

KSCALE

This attribute specifies whether scaling or normalization
should be performed.

If kscaLE is specified for the value data, values will be
scaled, according to the KPDS_VALUE_SCALE_FACTOR and
KPDS_VALUE_SCALE_OFFSET aitributes. If KNORMALIZE
is specified for the value data, values will be normalized
using the XPDS_VALUE NORM MIN and
KPDS_VALUE_NORM_Max attributes. If thisattribute is set
to xNONE for the value data, values will not be scaled or
normalized. The sameistrue for the map and mask data.
They will use their respective scale factor & offset and nor-
malize minimum & maximum attributes.

Persistence: transient

KPDS_LOCATION SIZE

int
w
h
d

dim

This attribute specifies the size of the dimensions width,
height, depth, elements, time, location dimension, map
width, map height, map elements, map depth map time.
When the application programmer specifies asize larger
than the actual size of stored data, the get functions will
sub-sampled, clipped, padded or duplicated the data to
present the program with the requested amount, see the
attribute xPDS_VALUE INTERPOLATE for more details.
The put functions store exactly the size that the physical
attributes will allow even if the amount of data"put” (set by
the presentation attributes) is different. This attribute must
be set for objects created viakpds_create object Or
output objects else get/put data calls will fail.

The size of the mask and value dataisidentical. Thetime
sizeis shared between the time, mask and value data. The
width, height depth are shared between the location, mask
value data.

Persistence: stored

KPDS_LOCATION_VECTOR_INFO

int
vector_ length

num_vectors

This attribute will return the number of pointsin avector of
data and the number of vectorsin the dataset. The vector
vector definition for the data primitive. For
KPDS_VALUE_VECTOR INFO, the sizeisthe size of the ele-
ment vector and the number is the product of the remaining
dimensions.

2-60

Location Segment Attributes

Attribute
and Default

Legal
Values

Definition

Persistence: transient

KPDS_LOCATION VOLUME INFO

int
w
h
d

num_volumes

This attribute will return the size of avolume of datain
points and the number of volumesin the dataset. The vol-
ume size will be the size of the width, height, and depth

of the remaining axes.

axes. The number volumes will be the product of the sizes

Persistence: transient

F.6. Time Segment Attributes

Time Segment Attributes

Attribute Legal Definition
and Default Values

KPDS_TIME_ COMPLEX_ CONVERT KIMAGINARY This attribute specifies how complex data should be con-
KMAGNITUDE verted. If itisconverted to a"lower" datatype, this

int KPHASE attribute specifies how to down-convert the data. For exam-

convert KREAL KREAL pleif the datais actually complex, but the presentation

KMAGSQ attribute is byte, the complex data would first be converted
KMAGSQP1 to the representation defined by this attribute, and then con-
KLOGMAG verted to byte.
KLOGMAGP1 If the datais being converted from a"lower" datatypeto a

complex data type, this attribute defines how the data
should be interpreted — as the real or imaginary compo-
nent of the complex pair. KPHASE and KMAGNITUDE are
invalid values for up converting to complex, and will result
inan error.

Persistence: transient

2-61

Time Segment Attributes

Attribute Legal Definition
and Default Values

KPDS_TIME DATA TYPE KBIT This attribute is used to get or set the data type, or numeri-
KBYTE cal representation of thedata. This datatype will be the

int KUBYTE presentation data type, not necessarily the physical data

datatype KSHORT type. Seethe xpDS_CoUPLING éttribute for more informa-

KUSHORT tion on how to control the presentation and physical data
KINT types. When the application programmer specifies a pre-
KUINT sentation data type that is different than the actual datatype
KLONG of the stored data, the get kpds_get_data function will
KULONG convert the data to return the requested data type. Like-
KFLOAT wise, the kpds_put_data function expects datathat isin
KDOUBLE the data type specified by this attribute to the output object,
KCOMPLEX and if the data being "put" is of adifferent type, it will be
KDCOMPLEX converted. This attribute must be set for objects created via

kpds_create_object Or output objects that are opened
with kpds_open_ output_object Or
kpds_open_object, oOr elsethe get and put data calls will
fail.

Persistence: stored

KPDS_TIME INCREMENT SIZE

int
width
height
depth

num_volumes

This attribute is used to alter how the auto-increment state
machine behaves. Normally, the size of the data set is used
to dictate how position auto-advances from one position to
the next, based on the primitive being accessed. This
attribute, if set, will be used instead of the size of the data
set for controlling auto-advancement. One place where
such functionality is useful iswhen asmaller data set is
being inserted into alarger one. The larger destination data
set’'s INCREMENT _SIZE attribute can be set to the size of
the smaller source data set so that the auto-advancement
stays synchronized across all dimensions.

Persistence: transient

2-62

Time Segment Attributes

Attribute
and Default

Legal
Values

Definition

KPDS_TIME_INTERPOLATE

int
interpolate KPAD

KNONE
KPAD
KZERO_ORDER

KWRAP

This attribute specifies how the data should be presented if
the application program requests a size different from what
is physically stored. If the size requested is larger than the
physical size and the interpolation requested is kpaAD the
pad value will be returned for all points outside of the phys-
ical size. If the sizerequested is smaller than the physical
size and the interpolation requested is xpaD the returned
datais clipped to the size requested. If the size requested is
larger than the physical size and the interpolation requested
iISKZERO_ORDER the datais duplicated. If thesize
requested is smaller than the physical size and the interpo-
lation requested is kzZERO ORDER the data is sub-sampled.
If the interpolation requested is kwraP then the size change
will be resolved by duplicating the data set. If KWRAP is set,
then out-of-bounds data accesses will aso befilled with
duplicated data. If the interpolate attribute is set to KNONE,
an error will be returned if the program requests a size dif-
ferent from what is physically stored.

Persistence: transient

KPDS_TIME NORM MAX

double

norm max

> norm min

This attribute specifies the maximum to be used when nor-
malizing datavalues. This attributeis used in conjunction
with the kpDS_* NORM_MIN attribute, respectively, to
determine the bounds of a normalization operation. This
attribute comes into play when the kpDs_* SCALING
attribute is set to KNORMALIZE.

Persistence: transient

KPDS_TIME NORM MIN

double

norm min

< norm_max

This attribute specifies the minimum to be used when nor-
malizing datavalues. This attributeis used in conjunction
with the kpDs_*_NORM_Max éttribute, respectively, to
determine the bounds of a normalization operation. This
attribute comes into play when thexpbs_* SCALING
attribute is set to KNORMALIZE.

Persistence: transient

KPDS_TIME OFFSET

int

offset time 0

+/- int

These attribute val ues specify the offset into the data posi-
tion for all primitives. Offset values beyond the boundaries
of the data are valid.

Persistence: transient

2-63

Time Segment Attributes

Attribute
and Default

Legal
Values

Definition

KPDS_TIME OPTIMAL REGION SIZE

int
t

num

This attribute will return the size of aregion of data and the
number of such regions that is most efficient to processin
terms of performance and memory use. The

KPDS_* REGION_ SIZE attribute controlsthe size and dic-
tates the number of regions, which will always be rounded
up. SeekpPDS_* REGION SIZzE for moreinformation.

Persistence: transient

KPDS_TIME PAD VALUE

double
real value

imag value

This attribute specifies the real (and imaginary) values of
the pad data if the kPDS_* _INTERPOLATE attributeis set to
KPAD, respectively. The double values must be specified,
whether the dataisreal or complex. The pad valueswill
internally be converted from double to the appropriate data
type.

The default pad value for location, map, time and valueis
0. The default pad value for the mask is 1 because when
padding data, the padded portion of the value data should
initially be considered valid.

Persistence: transient

KPDS_TIME POSITION

int

+/- int

This attribute specifies the real (and imaginary) values of
the pad dataif the kpDS_* INTERPOLATE attributeis set to
KPAD, respectively. The double values must be specified,
whether the dataisreal or complex. The pad values will
internally be converted from double to the appropriate data
type.

The default pad value for location, map, time and valueis
0. The default pad value for the mask is 1 because when
padding data, the padded portion of the value data should
initially be considered valid.

Persistence: transient

KPDS_TIME REGION INFO

int
region time

num_regions

This attribute will return the size of aregion of datain
points and the number of regionsin the data. The

KPDS_* REGION_SIZE atribute controlsthe size and dic-
tates the number of regions, which will always be rounded
up. SeekpPDS_* REGION_ SIZE for moreinformation.

Persistence: transient

2-64

Time Segment Attributes

Attribute
and Default

Legal
Values

Definition

KPDS_TIME REGION SIZE

int

region time 1

> 0

These attribute values specify the size of the region being
processed. If the region size for one or more dimensionsis
not a even multiple of the data size, then the pad value will
bereturned by kpds _get data for all data outside of the
data space, which isset by kpDs_* paD VALUE. Ona
kpds put_ data call, data points outside of the data space
will be truncated. E.g. if the object width is 512 and the
region width is 200, then getting the first two regions will
return the data for those regions. The next get will return
the remaining 112 points from the data in the width direc-
tion with the remaining 88 points set to the pad value. On a
put for this same setup, the first two puts will place full
regions into the data object, but the last put will place only
thefirst 112 pointsinto the data object in the width direc-
tion and the last 88 points are truncated.

Persistence: transient

KPDS_TIME SCALE FACTOR

double
scale_factor 1.0

This attribute specifies the scaling factor to be used when
scaling data values. This attribute comesinto play when
thekPDS_* SCALING attributeis set to KSCALE, respec-
tively.

Persistence: transient

KPDS_TIME_SCALE_OFFSET

double

offset real 0.

offset imaginary

0

0.

0

This attribute specifies the scaling offset to be used when
scaling datavalues. This attribute comesinto play when
thexpDs_* SCALING attributeis set to KSCALE, respec-
tively.

Persistence: transient

KPDS TIME SCALING

int

scaling KNONE

KNONE
KNORMALIZE

KSCALE

This attribute specifies whether scaling or normalization
should be performed.

If kscaLE is specified for the value data, values will be
scaled, according to the KPDS_VALUE_SCALE_FACTOR and
KPDS_VALUE_SCALE_OFFSET aitributes. If KNORMALIZE
is specified for the value data, values will be normalized
using the XPDS_VALUE NORM MIN and
KPDS_VALUE_NORM_MaX attributes. If thisattributeis set
to xNONE for the value data, values will not be scaled or
normalized. The sameistrue for the map and mask data.
They will use their respective scale factor & offset and nor-
malize minimum & maximum attributes.

Persistence: transient

2-65

Time Segment Attributes

Attribute Legal Definition
and Default Values
KPDS_TIME_SIZE >0 This attribute specifies the size of the dimensions width,
height, depth, elements, time, location dimension, map
int width, map height, map elements, map depth map time.
t When the application programmer specifies asize larger

than the actual size of stored data, the get functions will
sub-sampled, clipped, padded or duplicated the datato
present the program with the requested amount, see the
attribute xPDS_VALUE_INTERPOLATE for more details.
The put functions store exactly the size that the physical
attributes will allow even if the amount of data " put” (set by
the presentation attributes) is different. This attribute must
be set for objects created viakpds _create object Or
output objects else get/put data calls will fail.

The size of the mask and value dataisidentical. Thetime
sizeis shared between the time, mask and value data. The
width, height depth are shared between the location, mask
value data.

Persistence: stored

G. Functions Provided by Polymorphic Data Services

The API functions that are provided by Polymorphic Data Services are described below. They are organized
into sections according to their classification as management, data, or attribute operators.

Note: The multiple attribute functions kpds get attributes (), kpds match attributes (), and
kpds set attributes () requirea NULL at the end of the variable argument list to indicate the end of
thelist.

G.1. Object Management

* kpds_open_input_object() - open an input object for reading

* kpds_open_output_object() - open an output object for writing

* kpds_create_object() - create atemporary data object.

* kpds _create_object_attr() - create an attribute associated the data object.

* kpds_destroy_object_attr() - destroy an attribute associated with the data object.

* kpds_open_object() - create an object associated with an input or output transport.
* kpds close object() - close an open data object.

* kpds_reference_object() - create areference of a data object.

* kpds_copy_object() - copy all data and attributes from one object to another.

* kpds_copy_object_attr() - copy al presentation attributes from one data object to another.
* kpds_copy_object_data() - copy all data from one object to another object.

* kpds _copy_remaining_data() - copy remaining data from source to destination

* kpds sync_object() - synchronize physical and presentation layers of a data object.

2-66

G.1.1. kpds_open_input_object() — open an input object for reading

Synopsis
kobject kpds open input object (

char *name)

Input Arguments
name
astring that contains the path name of afile or transport that will be associated with the object.

Returns
a kabject on success, KOBJECT _INVALID on failure.

Description
This function is a simplified interface to the kpds open_object function. It differs from
kpds_open_object in that it assumes that the object is read-only and its transport has permanence. If a
permanent file is not desired (i.e. the object is going to be used as temporary storage, and will not be
used by any other process) then the kpds_create_object function call should be used instead.

The argument to this function is the transport or file name. This argument indicates the name of the
transport that is associated with the object. The transport name can be any legal VisiQuest transport
description. While this will usually be a regular UNIX file name, it is also possible to specify such
things as shared memory pointers, memory map pointers, sockets, streams, and even transports on
other machines. For more information on the syntax of a VisiQuest transport name, refer to the online
man page for the VisiQuest function kopen. For more information about opening an object, see
kpds_open_object.

The presentation index order will be set to KWIDTH, KHEIGHT, KDEPTH, KTIME and KELE-
MENTS for the value and mask data, to KMAP_WIDTH, KMAP_HEIGHT, KMAP_ELEMENTS,
KMAP_SPATIAL and KMAP_TIME for the map data and KWIDTH, KHEIGHT, KDEPTH and KDI-
MENSION for the location data. The only way to get the index order to reflect the stored index order

of thedataisto call kpds_sync_object. See the man page for kpds_sync_object for more information.

Because this function opens an input object, the KPDS COUPLING attribute is set to
KPDS UNCOUPLED.

Thisfunction is equivalent to:

kpds_open_object(name, KOBJ READ)

2-67

G.1.2. kpds_open_output_object() — open an output object for writing

Synopsis
kobject kpds open output object (

char *name)

Input Arguments
name
astring that contains the path name of afile or transport that will be associated with the object.

Returns
a kabject on success, KOBJECT _INVALID on failure.

Description
This function is a simplified interface to the kpds open_object function. It differs from
kpds_open_object in that it assumes that the object iswrite-only and its transport has permanence. If a
permanent file is not desired (i.e. the object is going to be used as temporary storage, and will not be
used by any other process) then the kpds_create_object function call should be used instead.

The argument to this function is the transport or file name. This argument indicates the name of the
transport that is associated with the object. The transport name can be any legal khoros transport
description. While this will usually be a regular UNIX file name, it is also possible to specify such
things as shared memory pointers, memory map pointers, sockets, streams, and even transports on
other machines. For more information on the syntax of a VisiQuest transport name, refer to the online
man page for the VisiQuest function kopen. For more information about opening objects, see
kpds_open_object.

The default index order will be set to KWIDTH, KHEIGHT, KDEPTH, KTIME and KELEMENTS
for the value and mask data, to KMAP _WIDTH, KMAP_HEIGHT, KMAP_ELEMENTS,
KMAP_SPATIAL and KMAP_TIME for the map data and KWIDTH, KHEIGHT, KDEPTH and KDI-
MENSION for the location data.

Thisfunction is equivalent to:

kpds_open_object(name, KOBJ WRITE)

2-68

G.1.3. kpds_create_object() — create a temporary data object.

Synopsis
kobject kpds create object (void)

Returns
kobject on success, KOBJECT _INVALID upon failure

Description
This function is used to instantiate a data object (kobject) when it will only be used for temporary stor-
age of information. If you are intending to process an object that already exists as a file or transport
(input), or you are planning on saving the kobject to a file or transport (output), then the appropriate
routines to use are kpds_open_input_object, kpds_open_output_object, or kpds_open_object.

This function creates an instance of a data object that will have associated with it atemporary transport
that will be used for buffering large amounts of data. This temporary transport will be automatically
removed when the process terminates. There is no way to rename the temporary file or replace the
temporary file with a permanent one.

The kpds_create object function call creates what is essentially a "blank" object. That is, the object
will initially have no data and all attributes will be initialized to default values or to an initialized state.
The default values for attributes are described in the Khoros 2.0 Programming Services Volume 2
Manual.

An object that is created with this function call behaves similarly to an output object that is created
with the kpds_open_output_object function call, i.e. the object initially has no data or attributes. Thus,
it is necessary to create the location, map, mask, time and/or value data and initialize attributes such as
size and datatype prior to using the object.

G.1.4. kpds_create_object_attr() — create an attribute associated the data object.

Synopsis

int kpds create object attr(

kobject object,
char *attribute,

int num_args,
int arg size,
int data_type,
int permanent,
int shared)

2-69

Input Arguments
object
the object on which to instantiate the new attribute.

attribute
attribute identifier string. Thisidentifier must be unique for the given segment.

numargs - number of arguments in the attribute; must be > 0;
argsize - number of units of the data type for each attribute argument must be > 0;

datatype - data type of the attribute can be KBIT, KUBYTE, KBYTE, KUSHORT, KSHORT,
KUINT, KINT, KULONG, KLONG, KFLOAT KDOUBLE, KCOMPLEX, KDCOMPLEX, or
KSTRING

permanent
TRUE if attribute is permanent.

shared
TRUE if attribute is shared

Returns
TRUE on success, FAL SE otherwise

Description
The purpose of this routine is to provide the programmer with a mechanism for creating attributes that
are specific to the program being written. The attribute created will be associated with the data object
itself and not with the Value, Mask, Map, Location or Time data.

The second argument to this function is the name of the attribute to be created specified as a string. |If
the attribute specified already exists then this function will return FALSE.

The datatype argument indicates the data type of al the elements associated with the attribute. [t take
on any of the following valuess KUBYTE, KBYTE, KUSHORT, KSHORT, KUINT, KINT,
KULONG, KLONG, KFLOAT, KDOUBLE, KCOMPLEX, or KDCOMPLEX. Any other vaue is
considered illegal. Passing this argument with an illegal value will force this function to return
FALSE.

The numargs argument indicates how many of elements of the type "datatype” will be contained in the
attribute. This information is necessary so that Polymorphic Services can allocate sufficient memory
to store the attribute. A negative or 0 value passed in will force this function to return FALSE.

The argsize argument indicates the size of each element, (i.e. you could be passing in a pointer to an
array of integers or several arrays if num greater than 1). This information is necessary so that Poly-
morphic Services can allocate sufficient memory to store the attribute. This argument specifies the
length of the array that needs to be allocated.

The last argument, permanent, indicates whether the attribute should be saved when the data object is

2-70

closed and being stored in a permanent transport. It should be set to TRUE if the attribute is perma-
nent and FALSE if the attribute is transient.

For example, calling this function as follows:
kpds _create object_attr(object, "Nose", 1, 10, KFLOAT, FALSE);

will create an attribute called "Nose" that contains 10 floats that are accessed as asingle array. A call
to kpds_get_attribute might look like this:

float *array;
kpds get_attribute(object, "Nose", & array);

Restrictions
The length variable indicates the length of al the attribute elements. If different size length are

desired, different attributes must be created.

G.1.5. kpds_destroy_object_attr() — destroy an attribute associated with the data object.

Synopsis
int kpds destroy object attr(

kobject object,
char *attribute)

Input Arguments
object
the object that contains the attribute.
attribute
the name of the attribute to destroy.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
The purpose of this routine is to provide the programmer with a mechanism for deleting attributes that

were previoudy created with acall to kpds_create object_attr.

2-71

The name argument specifies the name of the attribute to be destroyed. This function will fail if the
attribute is one of the predefined KPDS attributes or if the specified attribute does not exist.

G.1.6. kpds_open_object() — create an object associated with an input or output transport.

Synopsis
kobject kpds open object (
char *name,
int flags)

Input Arguments
name
astring that contains the path name of afile or transport that will be associated with the object.

flags
how the object is to be opened. A bitwise OR of KOBJ READ, KOBJ WRITE, KOBJ RAW as
described above.

Returns
kobject on success, KOBJECT INVALID upon failure

Description
This function is used to instantiate a data object (kobject) that is associated with a permanent file or
transport. If a permanent file is not desired (i.e. the object is going to be used as temporary storage,
and will not be used by any other process) then the kpds_create object function call should be used
instead.

The first argument to this function is the transport or file name. This argument indicates the name of
the transport that is associated with the object. The transport name can be any legal khoros transport
description. While this will usually be a regular UNIX file name, it is also possible to specify such
things as shared memory pointers, memory map pointers, sockets, streams, and even transports on
other machines. For more information on the syntax of a VisiQuest transport name, refer to the online
man page for the VisiQuest function kopen.

The second argument to the kpds_open_object function call, flags, is used to provide polymorphic ser-
vices with specific information about how the abject is going to be manipulated. The flags argument is
analogous to kopen’s flags argument. The flags argument is constructed by bitwise OR’ing predefined
values from the following list:

KOBJ READ - Open an existing file or transport for reading (input). By using this flag, you are
indicating that the file or transport exists and that it contains valid data. If it
does not exist, or the data is not recognized, then an error message will be gener-
ated and this function will return KOBJECT_INVALID.

2-72

KOBJ WRITE -

KOBJ RAW -

Open afile or trangport for writing (output). By using this flag, you are indicat-
ing that any data that you write to the object will be stored in the file or transport
specified.

When an object is opened, data services usually attempts to recognize the file
format by examining the first part of the file. By setting this value, you will
bypass this operation, forcing the file to be read as raw unformatted data.

These flags can be combined arbitrarily to determine how the file or transport is
opened and subsequently manipulated. This is done by bitwise OR’ing any
combination of these options. For example KOBJ READ | KOBJ WRITE will
result in aread/write file object. Thisimpliesthat the file already exists and will
be read from using kpds get data and written to using kpds put _data. When
kpds_close is called, the changes that are a result of calls to kpds put_data will
be stored to the file or transport.

However, if you intend to open an output object, but you need to occasionally
read data from it that you have already written, it is not necessary to specify
KOBJ READ (in fact, doing so may result result in an error if the file or trans-
port does not aready exist).

Likewise, it is possible to call kpds_put_data on an input object (one which was
opened without the KOBJ WRITE flag). If this is done, then subsequent calls
to kpds_get_data on a region that has been written to will contain the new data.
However, the file or transport that is associated with this input object will not be
changed. Thus, the KOBJ READ and KOBJ WRITE flags only indicate what
operations are alowed on the permanent file or transport that is associated with
the object, not what operations are alowable on the object itsalf.

If KOBJ READ is specified, then the Data Services will attempt to recognize
the file format automatically. If it fails, then this function will return KOB-
JECT _INVALID, indicating that it was unable to open the object, unless the
KOBJ_RAW flag was also specified, in which case, it will assume that the input
fileissmply raw data. The structured file formats that are currently recognized
are VIFF (The Khoros 2.0 standard file format), Viff (The Khoros 1.0 standard
file format, which was referred to as VIFF in Khoros 1.0), Pnm (Portable Any
Map, which includes PBM, PGM, and PNM), and Sun Raster.

The default index order will be set to KWIDTH, KHEIGHT, KDEPTH, KTIME
and KELEMENTS for the value and mask data, to KMAP WIDTH,
KMAP_HEIGHT, KMAP_ELEMENTS, KMAP_DEPTH and KMAP_TIME
for the map data and KWIDTH, KHEIGHT, KDEPTH and KDIMENSION for
the location data. The only way to get the index order to reflect the stored index
order of the data is to call kpds sync object. See the man page for
kpds_sync_object for more information.

2-73

Restrictions
The KOBJ _RAW flag will have unpredictable results if it is combined with the KOBJ WRITE flag.
This limitation will be removed in alater release of the Khoros 2.0 system.

G.1.7. kpds_close_object() — close an open data object.

Synopsis
int kpds close object (

kobject object)

Input Arguments
object
the object to be closed.

Returns
TRUE (1) if object is closed successfully, FALSE (0) otherwise

Description
This function is called on an object when all interaction with the object is complete. In addition to
freeing resources that were used to manage the object, this function also writes any component of the
data set that has not yet been written and may alter index order and datatype of the data to that is sup-
ported by the file format.

If the object was created with the kpds_reference_object function call, or if another object was created
as a reference of the one being closed, then the object might be sharing some of its resources with
other objects. If thisis the case, then those shared resources will not be freed, but rather they will be
disassociated from the object being closed. Thus, closing an object does not affect any other object.

G.1.8. kpds_reference_object() — create a reference of a data object.

Synopsis
kobject kpds reference object (
kobject object)

Input Arguments
object

2-74

the object to be referenced.

Returns
akobject that is areference of the input object on success, KOBJECT _INVALID upon failure

Description
This function is used to create a reference object for a data object that can be treated as a second inde-
pendent data object under most circumstances. A referenced object is similar conceptually to a sym-
balic link inaUNIX file system in most respects. For example, getting data from an input object and a
reference of the object will result in the same data. Data that is put on an output object can then be
accessed from any of that object’s references.

The similarity ends there. Once an object is referenced, the two resulting objects are equiva ent--there
is no way to distinguish which was the original. In fact, closing the original does not in any way affect
the reference, and visa-versa.

kpds_reference_object creates a new object that has presentation attributes that are independent of the
original object’s presentation attributes. The presentation attributes are UNCOUPLED from the physi-
cal attributes, see the description found in Table 4 in Chapter 6 of the the VisiQuest Programmer’s Man-
ua on the KPDS _COUPLING attribute for more information. The two objects (or more if there are
severa callsto kpds _reference object) share all physical data.

The default index order will be set to KWIDTH, KHEIGHT, KDEPTH, KTIME and KELEMENTS
for the vaue and mask data, to KMAP WIDTH, KMAP HEIGHT, KMAP_ELEMENTS,
KMAP_DEPTH and KMAP_TIME for the map data and KWIDTH, KHEIGHT, KDEPTH and KDI-
MENSION for the location data.

G.1.9. kpds_copy_object() — copy all data and attributes from one object to another.

Synopsis
int kpds copy object (

kobject source object,

kobject destination object)

Input Arguments
source object
the object that serves as a source for the data and attributes.

Output Arguments
destination object

2-75

the object that will serve as a destination in the copy operation.

Returns
TRUE (1) on success, FAL SE (0) otherwise

Description
kpds_copy_abject copies al physical & presentation attributes and all data from the source_object to

the destination_object. This means that all the attributes and data (not just those that are part of the
polymorphic data model) are copied. For example, the source object may contain data and attributes
that one of the other services (geometry, numerical, etc.) uses. These will aso be copied.

G.1.10. kpds_copy_remaining_data() — copy remaining data from source to destination

Synopsis

int kpds copy remaining data(

kobject source object,
kobject destination object)

Input Arguments
source_ object
the source object

Output Arguments
destination object
the destination object

Returns
TRUE (1) on success, FAL SE (0) otherwise

Description
kpds_copy_remaining_data copies any data that has not been previously written to in the destination

from a specified source.

2-76

G.1.11. kpds_copy_object_attr() — copy all presentation attributes from one data object to
another.

Synopsis
int
kpds copy object attr(
kobject source,
kobject destination)

Input Arguments
source
the object that serves as the source for the attributes.

Output Arguments
destination
the object that serves as the destination for the operation.

Returns
TRUE on success, FAL SE otherwise

Description
This function copies all presentation attributes from the source_object to the destination_object. This
means that all the attributes of the object will be copied (not just parts of the polymorphic data model)
aswell. For example, the source object may contain attributes that one of the other services (geometry,
numerical, etc.) uses. These will also be copied. Segments present in the source object will be created
in the destination object if they are not already present.

There are three attributes for each data component (i.e. Value, Mask, etc.) that are affected by this
function cal in a specid way: KPDS * SIZE, KPDS * DATA_TYPE, and
KPDS * INDEX_ORDER. These attributes are used to define how the data is stored. When this
function is called, these attributes will appear to change to the user, but the storage of the data will only
be affected if the KPDS_COUPLING attributeis set to KCOUPLED.

For more information on the behavior of attributes, please refer to kpds sync_object,
kpds_get_attribute and kpds_set_attribute.

G.1.12. kpds_copy_object _data() — copy all data from one object to another object.

2-77

Synopsis
int kpds copy object data(

kobject source object,
kobject destination object)

Input Arguments
source object
the object that serves as a source for the data.

Output Arguments
destination object
the object that will serve as a destination in the copy operation.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This function copies al of the data associated with the source_object to the destination_object. This
means that all of the data in the object will be copied, not just the data associated with the polymorphic
data model (Vaue, Mask, Map, Location and Time data). For example, the source object may contain
data that one of the other services (such as geometry services or color services.) use. These data will
also be copied.

This routine will create all of the data in the destination_object that do not exist. It will initialize two
atributes that are used to define the physical storage the of the dataa KPDS * SIZE, and
KPDS * DATA_TYPE. If the data already exists in the destination_object, then the data will be
replaced with what isin the source_object. In this case, the data type and size will not be changed. As
the data is copied from the source to the destination, it will be cast and resized to fit the destination.
The attribute that is used to control how the resize occurs is KPDS * INTERPOLATE. This attribute
can take on the values KNONE indicating that no resize should occur (if resize is necessary, then this
function will fail); KPAD, indicating that the data should be padded with the KPDS * PAD_VALUE
if the source object is larger than the source, or clipped if the destination is smaller than the source; or
KZERO_ORDER, which indicates that a zero-order hold interpolation (pixel replication) should occur.

G.1.13. kpds_sync_object() — synchronize physical and presentation layers of a data object.

Synopsis
int kpds_sync object (

kobject object,
int direction)

2-78

Input Arguments
object
data object to be re-synchronized.
direction
the desired direction of the synchronization. the legal values are KPRES2PHY S, which indicates that
the physical layer will be updated to correspond to the presentation layer; and KPHY S2PRES, which
indicates that the presentation layer will be updated to correspond to the physical layer.

Returns
TRUE (1) if object sync’ed, FALSE (0) otherwise

Description
This function is used to update physical attributes of the entire data object to match those of the pre-
sentation layer, or visa-versa.

When an attribute is set via kpds_set_attribute(s) or kpds_copy_object_attr, the presentation version of
the attribute is the only thing that is directly manipulated. The KPDS_COUPLING attribute is used at
that time to determine if the physical attribute should be updated to correspond to its value at the pre-
sentation level or vice versa. The KPDS COUPLING attribute can take on one of three values: KUN-
COUPLED, KCOUPLED, or KDEMAND. If it is set to KUNCOUPLED or KDEMAND, then Poly-
morphic Services will not update the physical layer. If the attribute is set to KCOUPLED, then Poly-
morphic Services immediately updates the physical layer any time kpds set_attribute(s) is called. If
the attribute is set to KDEMAND, then this updating will only occur when kpds_sync_object is called.
If the KPDS_COUPLING attribute is set to KUNCOUPLED, then this routine will simply return and
an error message will be returned.

G.2. Data Functions

* kpds_get_data() - retrieve data from a data object.
* kpds_put_data() - store datain a data object.

G.2.1. kpds_get_data() — retrieve data from a data object.

Synopsis
kaddr
kpds_get data(
kobject object,
char *primitive,
kaddr data)

Input Arguments

object
the object that will serve as the source for the data to be retrieved.

2-79

primitive
adescription of the unit of data desired.

data
a pointer to the region of memory that will serve as a destination for the data. If this value is NULL,
then sufficient space for this operation will be alocated to return the data. The data type kaddr is used
because it represents a generic data pointer.

Output Arguments
data
if "data’ isnot initially NULL, then the memory that it points to will be filled with the requested data.

Returns
If "data" is not initially NULL, then the data space pointed to by "data" will be returned on success. If
the "data" argument is NULL, then a new pointer to the requested data will be returned. Unsuccessful
callsto thisroutine are indicated by areturn value of NULL.

Description
Thisfunction is used to retrieve a unit of data, referred to as a"primitive”, from a data object.

Data within a data object is accessed in terms of the polymorphic data model. The polymorphic data
model contains 5 different data segments: value, mask, location, map, and time. Datais retrieved from
an object by using a segment-specific primitive.

The first argument to this function is the data object from which the data should be retrieved.
The second argument is the data primitive which should be retrieved.

Data primitives are accessed relative to the position and offset attributes. For instance, the position and
offset a which a value primitive will be accessed are determined by the attributes
KPDS_VALUE_POSITION and KPDS VALUE_OFFSET.

Successive callsto kpds_get_data cause an automatic increment of the position attribute. The position
is incremented by the amount of data contained in the primitive. This alows kpds get data to be
called repeatedly in order to traverse all data within a data segment. For example, successive calls to
get KPDS VALUE_PLANE primitives will return successive planes down depth, time, and then ele-
ments.

Below isalist of the types of primitives that are available:
point - specifies that a single value will be returned. Successive calls to kpds get data
will result in adjacent points being returned, as described above. An example of
apoint primitiveis KPDS_VALUE_POINT.
line - specifies that a one-dimensional unit of data will be returned. The direction of a

line is always aong the width of the dataset. An example of aline primitive is
KPDS VALUE_LINE.

2-80

plane -

volume -

region -

all -

vector -

specifies that a two-dimensional unit of data will be returned. The plane is
defined along the width and height of the segment. An example of a plane prim-
itiveisKPDS_VALUE_PLANE.

specifies that a three-dimensional unit of data will be returned. The volume is
defined along the width, height, and depth of the segment. An example of avol-
ume primitiveisKPDS_VALUE_VOLUME.

specifies that a n-dimensiona unit of data will be returned. The n varies from
segment to segment and is based on the dimensionality of the segment being
accessed. For example, the value segment will be 5-dimensional, so nis 5 for
the value segment. A region upper corner is specified by the current position
(for the value segment, thisis afive-tuple). The size of the region is given by a
region size attribute (such as KPDS VALUE_REGION_SIZE) which must be
set prior to using this primitive. An example of a region primitive is
KPDS_VALUE_REGION.

specifies that al data for the specified segment should be returned. An example
of an al primitiveis KPDS VALUE_ALL. Note that position and offset do not
affect this primitive.

specifies that a one-dimensional unit of data should be returned. An example of
avector primitiveisKPDS_VALUE_VECTOR.

For the five segments each has a different dimension that specifies a vector.
Below isalist of the data segments and their associated vector definition:

VALUE - KELEMENTS
MASK - KELEMENTS
MAP - KWIDTH
LOCATION - KDIMENSION
TIME - KTIME

The third argument, "data’, serves as both an input and an output argument. As
input, it dictates whether kpds get data must allocate space sufficient for the
operation. If the argument is NULL, then memory will be allocated to store the
data primitive requested. A pointer to that memory will be returned. If this
argument is not NULL, then kpds get data assumes that the "data’ argument is
a pointer to a sufficient amount of memory with the correct dimensionality for
the primitive (no memory allocation occurs). In this case, if this routine returns
successfully, then the return value is the pointer "data".

2-81

Restrictions
This routine assumes that if the argument "data" is not NULL, then it contains the appropriate amount
of memory with the appropriate dimensionality for the requested primitive.

G.2.2. kpds_put_data() — store data in a data object.

Synopsis
int
kpds put data(
kobject object,
char *primitive,
kaddr data)

Input Arguments
object
the data object that will serve as a destination for the data.
primitive
adescription of the unit of datain the argument "data".
data
apointer to the region of memory that will be stored.

Returns
TRUE on success, FAL SE otherwise

Description
Thisfunction is used to store a unit of data, referred to as a"primitive", into a data object.

Data within a data object is accessed in terms of the polymorphic data model. The polymorphic data
model contains 5 different data segments: value, mask, location, map, and time. Data is stored in an
object by using a segment-specific primitive.

Thefirst argument to this function is the data object in which the data should be stored.

The second argument is the data primitive which should be stored.

Data primitives are accessed relative to the position and offset attributes. For instance, the position and
offset a which a value primitive will be accessed are determined by the attributes
KPDS VALUE_POSITION and KPDS VALUE_OFFSET.

Successive calls to kpds_get_data cause an automatic increment of the position attribute. The position
is incremented by the amount of data contained in the primitive. This allows kpds_put_data to be

called repeatedly in order to traverse all data within a data segment. For example, successive calls to
get KPDS VALUE PLANE primitives will store successive planes down depth, time, and then

2-82

elements.

Below isalist of the types of primitives that are available:

point -

line -

plane -

volume -

region -

all -

vector -

specifies that a single value will be stored. Successive calls to kpds put_data
will result in adjacent points being stored, as described above. An example of a
point primitiveis KPDS_VALUE_POINT.

specifies that a one-dimensional unit of data will be stored. The direction of a
line is always along the width of the dataset. An example of aline primitive is
KPDS VALUE_LINE.

specifies that a two-dimensional unit of data will be stored. The plane is defined
along the width and height of the segment. An example of a plane primitive is
KPDS_VALUE_PLANE.

specifies that a three-dimensional unit of data will be stored. The volume is
defined along the width, height, and depth of the segment. An example of avol-
ume primitiveisKPDS VALUE_VOLUME.

specifies that a n-dimensional unit of datawill be stored. The n varies from seg-
ment to segment and is based on the dimensionality of the segment being
accessed. For example, the value segment will be 5-dimensional, so nis 5 for
the value segment. A region upper corner is specified by the current position
(for the value segment, thisis afive-tuple). The size of the region is given by a
region size attribute (such as KPDS VALUE _REGION_SIZE) which must be
set prior to using this primitive. An example of a region primitive is
KPDS_VALUE_REGION.

specifies that all data for the specified segment should be stored. An example of
an al primitive is KPDS VALUE_ALL. Note that position and offset do not
affect this primitive.

specifies that a one-dimensional unit of data will be stored. An example of a
vector primitiveis KPDS VALUE_VECTOR.

For the five segments each has a different dimension that specifies a vector.
Below isalist of the data segments and their associated vector definition:

VALUE - KELEMENTS
MASK - KELEMENTS
MAP - KWIDTH
LOCATION - KDIMENSION
TIME - KTIME

2-83

The third argument is the data to be stored. This must be a non-NULL pointer
to valid data of the appropriate size (as defined, for example, by the
KPDS VALUE_SIZE attribute) and data type (as defined, for example, by the
KPDS VALUE_DATA_TY PE attribute).

The data is copied out of the data array on storage, so it can be overwritten or
freed after the kpds _put_data call.

G.3. Attribute Functions

* kpds_copy_attribute() - copy an attribute from one object to another

* kpds_copy_attributes() - copy multiple attributes from one object to another.

» kpds get_attribute() - get the value of an attribute from a data object

 kpds get_attributes() - get the values of multiple attributes from a data object

 kpds match_attribute() - returns TRUE if the same attribute in two objects match.

* kpds_match_attributes() - returnstrue if the list of segment attributes in two objects match.
* kpds_print_attribute() - print the value of an attribute from a data object.

* kpds_query_attribute() - get information about an attribute

* kpds_set_attribute() - set the values of an attribute in a data object

 kpds set_attributes() - set the values of multiple attributes in a data object.

G.3.1. kpds_copy_attribute() — copy an attribute from one object to another

Synopsis
int
kpds copy attribute (
kobject objectl,
kobject object2,
char *attribute)

Input Arguments
objectl
the object to copy from
object2
the object to copy to
attribute
the attribute to copy

Returns
TRUE on success, FAL SE otherwise

Description
Thisfunction is used to copy a single attribute from one object to another object.

2-84

Data Services manages two versions of some of the attributes associated with each object. These
attributes are the size and data type. Internally, the two versions of these attributes are referred to as
the physical attribute and the presentation attribute. Typically, the programmer has access to only the
presentation versions of these attributes. The physical attributes are set indirectly depending on the
setting of KPDS_COUPLING. Seekpds_get_datafor a description of how the presentation and physi-
cal attributes affect interaction with the data object.

Other attributes are classified as either shared or unshared. Shared attributes are stored at the physical
layer of the attribute, and thus can be shared by multiple references of the data object (see kpds _refer-
ence_object for more information about references). Unshared attributes, on the other hand, can only
be used by the local object (see kpds_query_attribute for information on how to determine whether an
attribute is shared or unshared).

This function accepts a source object, a destination object, and an attribute name. If the attribute exists
in the source object, then it will be copied to the destination object. |If the attribute does not exist in the
source aobject, then an error condition is returned.

A complete list of the polymorphic attributes can be found in Chapter 2 of Programming Services Vol-
umell.

G.3.2. kpds_copy_attributes() — copy multiple attributes from one object to another.

Synopsis
int
kpds copy attributes(
kobject objectl,
kobject object2,
kvalist)

Input Arguments
objectl
the object to copy from

object2
the object to copy tova alist - NULL terminated list of attribute namesto copy.

Returns
TRUE on success, FAL SE otherwise

Description
This function is used to copy multiple attributes from one object to another. The attributes should be
provided in aNULL terminated variable argument list.

Data Services manages two versions of some of the attributes associated with each object. These

2-85

attributes are the size and data type. Internally, the two versions of these attributes are referred to as
the physical attribute and the presentation attribute. Typically, the programmer has access to only the
presentation versions of these attributes. The physical attributes are set indirectly depending on the
setting of KPDS_COUPLING. Seekpds get datafor a description of how the presentation and physi-
cal attributes affect interaction with the data object.

Other attributes are classified as either shared or unshared. Shared attributes are stored at the physical
layer of the attribute, and thus can be shared by multiple references of the data object (see kpds_refer-
ence_object for more information about references). Unshared attributes, on the other hand, can only
be used by the local object (see kpds_query_attribute for information on how to determine whether an
attribute is shared or unshared).

This function accepts a source object, a destination object, and alist of attribute names. The last argu-
ment to this function must be NULL. If it is not NULL, then the behavior of this function will be
unpredictable (the NULL argument is used as a sentinal to indicate the end of the variable argument
list. If the sentinal is not present, then this function will continue to attempt to pull arguments off of
the stack, until it finds a NULL). If each of the attributes exist in the source object, then it will be
copied to the destination object. If an attribute does not exist in the source object, then an error condi-
tion isreturned. Inthe event that an attribute does not exist, then the remainder of the attributes on the
list will not be copied.

A complete list of the polymorphic attributes can be found in Chapter 2 of Programming Services Vol-
umell.

G.3.3. kpds_get_attribute() — get the value of an attribute from a data object

Synopsis
int
kpds_get attribute(

kobject object,
char *attribute,
kvalist)

Input Arguments
object

the object from which to retrieve the specified attribute. This must be a legal kobject that has been
opened or instantiated by an appropriate kpds function call, such as kpds open_object or kpds _refer-
ence.

attribute

the name of the attribute to retrieve. thisisa character string that isthe name of an existing attribute in
the object. There are a large number of predefined KPDS attributes. Users can also create attributes
viathe kpds_create attribute function call.

2-86

Returns
TRUE if the attribute was successfully retrieved, FALSE otherwise.

Description
Thisroutine is used to get the value of an attribute from a data object.

Data Services manages two versions of some of the attributes associated with each object. These
attributes are the size and data type. Internally, the two versions of these attributes are referred to as
the physical attribute and the presentation attribute. Typically, the programmer has access to only the
presentation versions of these attributes. The physical attributes are set indirectly depending on the
setting of KPDS_COUPLING. Seekpds_get datafor a description of how the presentation and physi-
cal attributes affect interaction with the data object.

Other attributes are classified as either shared or unshared. Shared attributes are stored at the physical
layer of the attribute, and thus can be shared by multiple references of the data object (see kpds _refer-
ence_object for more information about references). Unshared attributes, on the other hand, can only
be used by the local object (see kpds_query_attribute for information on how to determine whether an
attribute is shared or unshared).

This function accepts an object, the name of the attribute that is desired and the address of alocation in
which to return the value of the attribute. Certain KPDS attributes require more than one argument in

order to return the entire attribute. For example, KPDS VALUE_SIZE requires five (5) arguments.
Getting the KPDS_VALUE_DATA_TY PE attribute might look like this:

kpds get_attribute(object, KPDS VALUE _DATA_TYPE, &typ);

Getting the KPDS_VALUE_SIZE attribute, is alittle more complex:

kpds get_attribute(object, KPDS VALUE_SIZE,
&w, &h, &d, &t, &e);

A complete list of the polymorphic attributes can be found in Chapter 2 of Programming Services Vol-
umell.

G.3.4. kpds_get_attributes() — get the values of multiple attributes from a data object

Synopsis
int
kpds get attributes(
kobject object,
kvalist)

2-87

Input Arguments
object
the object from which to retrieve the specified attribute. This must be a legal kobject that has been
opened or instantiated by an appropriate kpds function call, such as kpds_open_object or kpds refer-
ence.

Returns
TRUE if the attribute was successfully retrieved, FALSE otherwise.

Description
Thisfunction is used to retrieve the values of an arbitrary number of attributes from a data object.

Data Services manages two versions of some of the attributes associated with each object. These
attributes are the size and data type. Internally, the two versions of these attributes are referred to as
the physical attribute and the presentation attribute. Typically, the programmer has access to only the
presentation versions of these attributes. The physical attributes are set indirectly depending on the
setting of KPDS_COUPLING. Seekpds_get datafor a description of how the presentation and physi-
cal attributes affect interaction with the data object.

Other attributes are classified as either shared or unshared. Shared attributes are stored at the physical
layer of the attribute, and thus can be shared by multiple references of the data object (see kpds _refer-
ence_object for more information about references). Unshared attributes, on the other hand, can only
be used by the local object (see kpds_query_attribute for information on how to determine whether an
attribute is shared or unshared).

This function accepts an object followed by alist of of arguments that alternate between an attribute
name and an address into which the attribute's value will be stored. The last argument on thislistisa
NULL which serves as a flag that indicates that no more attributes are present on the list. Certain
KPDS attributes require more than one address in order to return the entire attribute. For example,
KPDS VALUE_SIZE requires five (5) arguments. For example,

kpds get_attributes(object,
KPDS VALUE_DATA_TYPE, &typ,
KPDS VALUE_SIZE, &w, &h, &d, &t, &e,
NULL);

The last argument to this function must be NULL. If itisnot NULL, then the behavior of thisfunction
will be unpredictable (the NULL argument is used as a sentinal to indicate the end of the variable argu-
ment list. If the sentinal is not present, then this function will continue to attempt to pull arguments off
of the stack, until it findsaNULL).

A complete list of the polymorphic attributes can be found in Chapter 2 of Programming Services Vol-
umell.

2-88

G.3.5. kpds_match_attribute() — returns TRUE if the same attribute in two objects match.

Synopsis
int
kpds_match attribute(
kobject objectl,
kobject object2,
char *attr)

Input Arguments
objectl
the first object on which to match the specified attribute
object2

the second object on which to match the specified attribute attribute - the attribute that will be com-

pared in the two objects.

Returns

There are three ways for this routine to return a FALSE: (1) if the attribute in the two objects does not
match; (2) if either abject does not contain the specified attribute; (3) an error condition resulting from
an invalid object or segment. If none of these three conditions exist, then this function will return

TRUE.

Description
The purpose of thisroutine isto alow the programmer to compare a single in two data objects.

Data Services manages two versions of some of the attributes associated with each object. These
attributes are the size and data type. Internally, the two versions of these attributes are referred to as
the physical attribute and the presentation attribute. Typically, the programmer has access to only the
presentation versions of these attributes. The physical attributes are set indirectly depending on the
setting of KPDS_COUPLING. Seekpds get datafor a description of how the presentation and physi-

cal attributes affect interaction with the data object.

Other attributes are classified as either shared or unshared. Shared attributes are stored at the physical
layer of the attribute, and thus can be shared by multiple references of the data object (see kpds_refer-
ence_object for more information about references). Unshared attributes, on the other hand, can only
be used by the local object (see kpds_query_attribute for information on how to determine whether an

attribute is shared or unshared).

This routine will return TRUE if the specified attribute has the same value in both of the objects. This
routine will return FALSE if the attribute does not have the same value in both of of the objects.
kpds_match_attribute will also return FALSE if the attribute does not exist in either or both of the

objects.

A complete list of the polymorphic attributes can be found in Chapter 2 of Programming Services Vol-

umell.

2-89

G.3.6. kpds_match_attributes() — returns true if the list of segment attributes in two objects
match.

Synopsis
int
kpds match attributes(
kobject objectl,
kobject object2,
kvalist)

Input Arguments
objectl
thefirst object on which to match the specified attributes
object2
the second object on which to match the specified attributes va alist - variable argument list, that con-
tains an arbitrarily long list of attributes followed aNULL. It takesthe form:

ATTRIBUTE_NAMEL, ATTRIBUTE_NAMEZ, ..., NULL

Returns
There are three ways for this routine to return a FALSE: (1) if any of the attributes between the two
objects do not match; (2) if either object does not contain one or more of the specified attributes; (3) an
error condition resulting from an invalid object or segment. If none of these three conditions exist,
then this function will return TRUE.

Description
The purpose of thisroutine isto alow the programmer to compare multiple attributes in two object.

Data Services manages two versions of some of the attributes associated with each object. These
attributes are the size and data type. Internally, the two versions of these attributes are referred to as
the physical attribute and the presentation attribute. Typically, the programmer has access to only the
presentation versions of these attributes. The physical attributes are set indirectly depending on the
setting of KPDS_COUPLING. Seekpds get datafor a description of how the presentation and physi-
cal attributes affect interaction with the data object.

Other attributes are classified as either shared or unshared. Shared attributes are stored at the physical
layer of the attribute, and thus can be shared by multiple references of the data object (see kpds_refer-
ence_object for more information about references). Unshared attributes, on the other hand, can only
be used by the local object (see kpds_query_attribute for information on how to determine whether an
attribute is shared or unshared).

This routine will return TRUE if all of the specified attributes have the same value in the objects. This

routine will return FALSE if any of the attributes do not match kpds_match_attributes will also return
FALSE if any of the attributes do not exist in either or both of the two objects.

2-90

The last argument to this function must be NULL. If itisnot NULL, then the behavior of thisfunction
will be unpredictable (the NULL argument is used as a sentinal to indicate the end of the variable argu-
ment list. If the sentinal is not present, then this function will continue to attempt to pull arguments off
of the stack, until it findsa NULL).

A complete list of the polymorphic attributes can be found in Chapter 2 of Programming Services Vol-
umell.

G.3.7. kpds_print_attribute() — print the value of an attribute from a data object.

Synopsis
int
kpds print attribute(
kobject object,
char *attribute,
kfile “*printfile)

Input Arguments
object
the object containing the attribute
attribute
the attribute to print
printfile
the open kfile to print to

Returns
TRUE on success, FAL SE otherwise

Description
Thisfunction is used to print the value of an attribute from a data object to an output file.

This function is typicaly used by such programs as kprdata to print out the values of attributes in an
object.

G.3.8. kpds_query_attribute() — get information about an attribute

Synopsis
int
kpds_query attribute(

2-91

kobject object,

char *attribute,
int *num_args,
int *arg size,
int *data_type,
int *permanent)
Input Arguments
object
the object with the attribute
attribute

name of the attribute to be queried.
num_args
number of arguments in this attribute
arg size
size of each argument in this attribute.
data_ type
datatype of the attribute
permanent
isthe attribute stored or transient? The return value will be either TRUE or FALSE

Returns
TRUE if attribute exists, FALSE otherwise

Description
This function is used for two purposes: (1) to determine the existence of an attribute; and (2) to obtain
the characteristics of the attribute.

Data Services manages two versions of some of the attributes associated with each object. These
attributes are the size and data type. Internally, the two versions of these attributes are referred to as
the physical attribute and the presentation attribute. Typically, the programmer has access to only the
presentation versions of these attributes. The physical attributes are set indirectly depending on the
setting of KPDS _COUPLING. Seekpds get datafor a description of how the presentation and physi-
cal attributes affect interaction with the data object.

Other attributes are classified as either shared or unshared. Shared attributes are stored at the physical
layer of the attribute, and thus can be shared by multiple references of the data object (see kpds_refer-
ence_object for more information about references). Unshared attributes, on the other hand, can only
be used by the local object.

The difference between shared and unshared attributes is abstracted from the user at the PDS level.
The permanent attributes are generally shared, and the non-permanent attributes are generally non-
shared. Permanent attributes are attributes that will be stored as part of an output object when it is
written. Any attributes that are retrieved when an object is opened are also permanent attributes. Non-
permanent attributes exist only while the program that is operating on the object is executing.

The datatype argument indicates what kind of information is stored in the attribute. Attributes can be
one of the following data types: KBYTE, KUBYTE, KSHORT, KUSHORT, KINT, KUINT, KLONG,

2-92

KULONG, KFLOAT, KDOUBLE, KCOMPLEX, or KDCOMPLEX.

The num_args argument indicates how many arguments must be passed in an argument list to one of
the attribute functions.

The size arguments indicates the number of units of the data type there are in each argument. This
argument allows arrays of information to be stored as attributes.

Any arguments after object, segment, and attribute name can be set to NULL if the user does not need
these values.

G.3.9. kpds_set_attribute() — set the values of an attribute in a data object

Synopsis
int
kpds_set attribute(
kobject object,
char *attribute,
kvalist)

Input Arguments

object
the object in which to set the specified attribute. This must be a legal kobject that has been opened or
instantiated by an appropriate kpds function call, such as kpds_open_object or kpds_reference.

attribute
the name of the attribute to set. thisis a character string that is the name of an existing attribute in the
object. There are a large number of predefined KPDS attributes. Users can also create attributes via
the kpds_create_attribute function call. va alist - a C variable argument list that contains value or
values of the specified attribute.

Returns
TRUE if the attribute was successfully set, FALSE otherwise.

Description
Thisfunction is used to assign the value of a attribute to a data object.

Data Services manages two versions of some of the attributes associated with each object. These
attributes are the size and data type. Internally, the two versions of these attributes are referred to as
the physical attribute and the presentation attribute. Typically, the programmer has access to only the
presentation versions of these attributes. The physical attributes are set indirectly depending on the
setting of KPDS_COUPLING. Seekpds get datafor a description of how the presentation and physi-
cal attributes affect interaction with the data object.

2-93

Other attributes are classified as either shared or unshared. Shared attributes are stored at the physical
layer of the attribute, and thus can be shared by multiple references of the data object (see kpds _refer-
ence_object for more information about references). Unshared attributes, on the other hand, can only
be used by the local object (see kpds_query_attribute for information on how to determine whether an
attribute is shared or unshared).

This function accepts an object, the name of the attribute that is desired and the value of the attribute.
Certain KPDS attributes require more than one value in order to set the entire attribute. For example,
KPDS VALUE SIZE requires five (5) arguments. For example, setting the
KPDS VALUE_DATA_TY PE attribute might look like this:

kpds set_attribute(object, KPDS_VALUE_DATA_TY PE, KFLOAT);

Setting the KPDS VALUE_SIZE attribute, is alittle more complex:

kpds_set_attribute(object, KPDS_VALUE_SIZE,
100, 100, 1, 1, 1);

A complete list of the polymorphic attributes can be found in Chapter 2 of Programming Services Vol-
umell.

G.3.10. kpds_set_attributes() — set the values of multiple attributesin a data object.

Synopsis
int
kpds_ set attributes(

kobject object,
kvalist)

Input Arguments
object

the object in which to set the specified attribute. This must be a legal kobject that has been opened or
instantiated by an appropriate kpds function call, such as kpds_open_object or kpds_reference.

Returns

TRUE if the attribute was successfully retrieved, FAL SE otherwise.

Description

Thisfunction is used to assign the values of an arbitrary number of attributes to a data object.

2-94

Data Services manages two versions of some of the attributes associated with each object. These
attributes are the size and data type. Internally, the two versions of these attributes are referred to as
the physical attribute and the presentation attribute. Typically, the programmer has access to only the
presentation versions of these attributes. The physical attributes are set indirectly depending on the
setting of KPDS_COUPLING. Seekpds_get_datafor a description of how the presentation and physi-
cal attributes affect interaction with the data object.

Other attributes are classified as either shared or unshared. Shared attributes are stored at the physical
layer of the attribute, and thus can be shared by multiple references of the data object (see kpds _refer-
ence_object for more information about references). Unshared attributes, on the other hand, can only
be used by the local object (see kpds_query_attribute for information on how to determine whether an
attribute is shared or unshared).

This function accepts an object followed by alist of of arguments that alternate between an attribute
name and values that the specified attribute is to be set to. The last argument on this list is a NULL
which serves as a flag that indicates that no more attributes are present on the list. Certain KPDS
atributes require more than one value in order to return the entire attribute. For example,
KPDS VALUE_SIZE requires five (5) arguments. For example,

kpds_set_attributes(object,
KPDS VALUE_DATA_TYPE, KFLOAT,
KPDS VALUE_SIZE, 100, 100, 1, 1, 1,
NULL);

The last argument to this function must be NULL. If itisnot NULL, then the behavior of thisfunction
will be unpredictable (the NULL argument is used as a sentinal to indicate the end of the variable argu-
ment list. If the sentinal is not present, then this function will continue to attempt to pull arguments off
of the stack, until it findsaNULL).

A complete list of the polymorphic attributes can be found in Chapter 2 of Programming Services Vol-
umell.

G.4. Location Functions

« kpds_copy_location() - copy the location segment from one object to another.

* kpds _copy_location_attr() - copy al location attributes from one object to another object.
* kpds copy location_data() - copy all location data from one object to another object.

* kpds_create location() - create alocation segment within a data object.

* kpds_destroy_location() - destroy the location segment in a data object.

* kpds_query_location() - determineif the location segment exists in a data object.

2-95

G.4.1. kpds_copy_location() — copy the location segment from one object to another.

Synopsis
int kpds copy location(
kobject objectl,
kobject object2,

int copy through presentation)
Input Arguments
objectl

the object that serves as a source for the location segment.

copy through presentation
if set to TRUE, the copy will be performed through the presentation of the source and destination
objects. if set to FALSE, the copy will be adirect copy of the physical data.

Output Arguments
object2
the object that will serve as a destination for the copy operation.

Returns
TRUE if copy was successful, FAL SE otherwise

Description
This function copies al of the attributes and data contained in the location segment of one object into
the location segment contained in another object. If the location segment exists in the destination
object, then its data will be replaced with the data from the source object. If the location segment does
not exist in the destination object, it will be created.

All location segment attributes will be copied from one object to the other. This includes presentation
attributes, such as position and offset.

The location data can be optionaly copied through the presentations of the two data objects. This
implies that any presentation stages which are normally invoked during a kpds_get_data on the source
object or akpds_put_data call on the destination object will be used for the copy.

Any of the following presentation stages can be invoked on either the source object or the destination
object : casting, scaling, normalizing, padding, and interpolating.

The following presentation stages can be invoked on only the source object : axis assignment, position,
and offset. The resulting copy will be transposed to be in the default axis ordering. The resulting copy
will also appear to be shifted by the source position and offset.

The resulting copy will contain data in the most explicit grid type between the source and the

2-96

destination.

For example, if the destination grid type is curvilinear, and the source grid type is uniform, the result-
ing copy will contain curvilinear data. However, if the destination grid type is uniform, and the source
grid type is curvilinear, then the destination must be curvilinear. In general, the copy can not contain
less data than is contained in the source.

If the destination grid typeis not set, then the copy will preserve the source grid type.

These presentation stages are brought into the data pipeline by setting the appropriate presentation
attributes on the data objects. Please see the chapter on polymorphic data services in the data services
manual for more information on the various presentation attributes.

The following example may help in visualizing the process. The source object has a presentation data
type different from the physical datatype, and a presentation size different from the physical size. The
destination object only has a different presentation and physical datatype.

source -> interpolating -> casting -|...| -> casting -> destination

In the above example, the data resulting from the copy will be interpolated to a new size and cast to a
new data type. When being copied into the destination object, the data will be cast yet again before it
finally is stored.

If the presentation and physical layers of the destination object are coupled then the destination
attributes will be ignored and the source presentation attributes will be propogated to the destination
physical layer. The copy, in essence, will be performed only through the source presentation, with the
destination physical and presentation layers taking on the characteristics of the source presentation.
By default, output objects are not coupled, so this behavior istypical.

The copy need not be performed using the presentation. If the datais not copied through the presenta-
tion, the destination data will be a direct copy of the physical source data. The physical size and data
type of the location segment will be reflected in the destination data object from the source to the desti-
nation since they describe the physical state of the data. The grid type of the destination will always
match the grid type of the sourcein this case.

This function is equivalent to performing successive calls to kpds copy location attr and
kpds copy_location_data.

G.4.2. kpds_copy_location_attr() — copy all location attributes from one object to another
object.
Synopsis

int kpds copy location attr(

kobject objectl,

2-97

kobject object2)

Returns
TRUE if copy was successful, FAL SE otherwise

Description
Thisfunction copies all the location attributes from one object to another object.

If the destination object does not contain a location segment, then this function will create a location
segment, and initialize its size and data type attributes to those in the source object. If the location data
aready existsin the destination object, then the presentation attributes will be set to the source object’s
settings.

The destination’s physical attributes will change depending on the coupling of the data objects. If the
destination is coupled, then the physical attributes will be changed as well. Any data contained in the
destination will be cast, rescaled, or resized to match its new physical attributes.

G.4.3. kpds_copy_location_data() — copy all location data from one object to another object.

Synopsis
int kpds copy location data(
kobject objectl,
kobject object2,
int copy_ through presentation)

Input Arguments
objectl
the object that serves as a source for the data.

copy_through presentation
if set to TRUE, the copy will be performed through the presentation of the source and destination
objects. if set to FALSE, the copy will be adirect copy of the physical data.

Output Arguments
object2
the object that will serve as a destination for the copy operation.

Returns
TRUE if copy was successful, FAL SE otherwise

2-98

Description
This function copies all of the data contained in the location segment of one object into the location
segment contained in another object. If the location segment exists in the destination object, then its
datawill be replaced with the data from the source object. If the location segment does not exist in the
destination object, it will be created.

The location data can be optionaly copied through the presentations of the two data objects. This
implies that any presentation stages which are normally invoked during a kpds_get_data on the source
object or akpds put_data call on the destination object will be used for the copy.

Any of the following presentation stages can be invoked on either the source object or the destination
object : casting, scaling, normalizing, padding, and interpolating.

The following presentation stages can be invoked on only the source object : axis assignment, position,
and offset. The resulting copy will be transposed to be in the default axis ordering. The resulting copy
will also appear to be shifted by the source position and offset.

The resulting copy will contain data in the most explicit grid type between the source and the destina-
tion.

For example, if the destination grid type is curvilinear, and the source grid type is uniform, the result-
ing copy will contain curvilinear data. However, if the destination grid type is uniform, and the source
grid type is curvilinear, then the destination must be curvilinear. In general, the copy can not contain
less data than is contained in the source.

If the destination grid typeis not set, then the copy will preserve the source grid type.

These presentation stages are brought into the data pipeline by setting the appropriate presentation
attributes on the data objects. Please see the chapter on polymorphic data services in the data services
manual for more information on the various presentation attributes.

The following example may help in visualizing the process. The source object has a presentation data
type different from the physical datatype, and a presentation size different from the physical size. The
destination object only has a different presentation and physical datatype.

source -> interpolating -> casting -|...| -> casting -> destination

In the above example, the data resulting from the copy will be interpolated to a new size and cast to a
new datatype. When being copied into the destination object, the data will be cast yet again before it
finally is stored.

If the presentation and physical layers of the destination object are coupled then the destination
attributes will be ignored and the source presentation attributes will be propogated to the destination
physical layer. The copy, in essence, will be performed only through the source presentation, with the
destination physical and presentation layers taking on the characteristics of the source presentation.
By default, output objects are not coupled, so this behavior istypical.

The copy need not be performed using the presentation. If the data is not copied through the

2-99

presentation, the destination data will be a direct copy of the physical source data. The physical size
and data type of the location segment will be reflected in the destination data object from the source to
the destination since they describe the physical state of the data. The grid type of the destination will
aways match the grid type of the source in this case.

G.4.4. kpds_create_location() — create a location segment within a data object.

Synopsis
int kpds create location(
kobject object)

Input Arguments
object
object in which to create the location segment.

Returns
TRUE if the location segment was successfully created, FAL SE otherwise

Description
This function is used to create a location segment within a specified data object. The size of the loca-
tion segment will be initialized to match any the sizes shared with any other polymorphic segments.

Either uniform, rectilinear, or curvilinear location grids can be created. The attribute KPDS_LOCA-
TION_GRID should be set to the desired grid type of either KUNIFORM, KRECTILINEAR, or
KCURVILINEAR, before caling kpds create location(). By default, if the grid attribute is not set,
curvilinear location will be created.

It is considered an error to create alocation segment if the object already contains one.

G.4.5. kpds_destroy location() — destroy the location segment in a data object.

Synopsis
int kpds_destroy location(
kobject object)

Input Arguments

object
object from which to remove the location segment.

2-100

Returns
TRUE if the location segment is successfully destroyed, FAL SE otherwise

Description
This function is used to destroy the location segment contained within an object. Once the location
segment has been destroyed, any data or attributes associated with the location data will be lost forever.
A new location segment can be created in its place with the function kpds_create location.

If the location segment does not exist in the specified object, it is considered to be an error.

G.4.6. kpds_query_location() — determine if the location segment exists in a data object.

Synopsis
int kpds query location(
kobject object)

Input Arguments
object
data object to be queried.

Returns
TRUE if the location segment exists, FAL SE otherwise

Description
This function is used to determine if the location segment exists in a data object. If location segment
exists in the specified object, then this function will return TRUE. If the object is invalid, or location
data does not exist in the object, then this function will return FALSE.

G.5. Map Functions

« kpds_copy _map() - copy the map segment from one object to another.

* kpds_copy_map_attr() - copy all map attributes from one object to another object.
* kpds_copy_map_data() - copy all map data from one object to another object.

* kpds_create_map() - create a map segment within a data object.

* kpds_destroy_map() - destroy the map segment in a data object.

* kpds_query_map() - determine if the map segment exists in a data object.

2-101

G.5.1. kpds_copy_map() — copy the map segment from one object to another.

Synopsis
int kpds copy map (
kobject objectl,
kobject object2,

int copy through presentation)
Input Arguments
objectl

the object that serves as a source for the map segment.

copy through presentation
if set to TRUE, the copy will be performed through the presentation of the source and destination
objects. if set to FALSE, the copy will be adirect copy of the physical data.

Output Arguments
object2
the object that will serve as a destination for the copy operation.

Returns
TRUE if copy was successful, FAL SE otherwise

Description
This function copies al of the attributes and data contained in the map segment of one object into the
map segment contained in another object. If the map segment exists in the destination object, then its
data will be replaced with the data from the source object. If the map segment does not exist in the
destination object, it will be created.

All map segment attributes will be copied from one object to the other. This includes presentation
attributes, such as position and offset.

If the mapping mode is set to map the data, the map segment will appear not to be present and this call
will fail.

The map data can be optionally copied through the presentations of the two data objects. Thisimplies
that any presentation stages which are normally invoked during a kpds_get data on the source object
or akpds put_datacall on the destination object will be used for the copy.

Any of the following presentation stages can be invoked on either the source object or the destination
object : casting, scaling, normalizing, padding, and interpolating.

The following presentation stages can be invoked on only the source object : axis assignment, position,
and offset. The resulting copy will be transposed to be in the default axis ordering. The resulting copy

2-102

will also appear to be shifted by the source position and offset.

These presentation stages are brought into the data pipeline by setting the appropriate presentation
attributes on the data objects. Please see the chapter on polymorphic data services in the data services
manual for more information on the various presentation attributes.

The following example may help in visualizing the process. The source object has a presentation data
type different from the physical data type and a presentation size different from the physical size. The
destination object only has a different presentation and physical datatype.

source -> interpolating -> casting -|...| -> casting -> destination

In the above example, the data resulting from the copy will be interpolated to a new size and cast to a
new data type before being copied into the destination object. When being copied into the destination
object, the datawill be cast yet again before it finally is stored.

If the presentation and physical layers of the destination object are coupled then the destination
attributes will be ignored and the source presentation attributes will be propogated to the destination
physical layer. The copy, in essence, will be performed only through the source presentation, with the
destination physical and presentation layers taking on the characteristics of the source presentation.
By default, output objects are not coupled, so this behavior istypical.

The copy need not be performed using the presentation. If the datais not copied through the presenta-
tion, the destination data will be a direct copy of the physical source data. The physical size and data
type of the map segment will be reflected in the destination data object from the source to the destina-
tion since they describe the physical state of the data.

This function is equivalent to performing successive cals to kpds copy_map attr and
kpds _copy_map_data.

G.5.2. kpds_copy _map_attr() — copy all map attributes from one object to another object.

Synopsis
int kpds copy map attr(
kobject objectl,
kobject object2)

Returns
TRUE if copy was successful, FALSE otherwise

Description
This function copies all the map attributes from one object to another object.

2-103

If the destination object does not contain a map segment, then this function will create a map segment,
and initialize its size and data type attributes to those in the source object. If the map data already
exists in the destination object, then the presentation attributes will be set to the source object’s set-
tings.

The destination’s physical attributes will change depending on the coupling of the data objects. If the
destination is coupled, then the physical attributes will be changed as well. Any data contained in the
destination will be cast, rescaled, or resized to match its new physical attributes.

If the mapping mode is set to map the data. then this function will not copy the map attributes.

2-104

G.5.3. kpds_copy_map_data() — copy all map data from one object to another object.

Synopsis
int kpds copy map data(
kobject objectl,
kobject object2,

int copy through presentation)
Input Arguments
objectl

the object that serves as a source for the data.

copy through presentation
if set to TRUE, the copy will be performed through the presentation of the source and destination
objects. if set to FALSE, the copy will be adirect copy of the physical data.

Output Arguments
object2
the object that will serve as a destination for the copy operation.

Returns
TRUE if copy was successful, FAL SE otherwise

Description
This function copies all of the data contained in the map segment of one object into the map segment
contained in another object. If the map segment exists in the destination object, then its data will be
replaced with the data from the source object. If the map segment does not exist in the destination
object, it will be created.

The map data can be optionally copied through the presentations of the two data objects. Thisimplies
that any presentation stages which are normally invoked during a kpds_get data on the source object
or akpds put_datacall on the destination object will be used for the copy.

When copying through the presentation, if the mapping mode is set to map the data, the map segment
will appear not to be present and this call will fail. The copy will work normally if not copying
through the presentations.

Any of the following presentation stages can be invoked on either the source object or the destination
object : casting, scaling, normalizing, padding, and interpolating.

The following presentation stages can be invoked on only the source object : axis assignment, position,

and offset. The resulting copy will be transposed to be in the default axis ordering. The resulting copy
will also appear to be shifted by the source position and offset.

2-105

These presentation stages are brought into the data pipeline by setting the appropriate presentation
attributes on the data objects. Please see the chapter on polymorphic data services in the data services
manual for more information on the various presentation attributes.

The following example may help in visualizing the process. The source object has a presentation data
type different from the physical data type and a presentation size different from the physical size. The
destination object only has a different presentation and physical data type.

source -> interpolating -> casting -|...| -> casting -> destination

In the above example, the data resulting from the copy will be interpolated to a new size and cast to a
new data type before being copied into the destination object. When being copied into the destination
object, the datawill be cast yet again before it finally is stored.

If the presentation and physical layers of the destination object are coupled then the destination
attributes will be ignored and the source presentation attributes will be propogated to the destination
physical layer. The copy, in essence, will be performed only through the source presentation, with the
destination physical and presentation layers taking on the characteristics of the source presentation.
By default, output objects are not coupled, so this behavior istypical.

The copy need not be performed using the presentation. If the datais not copied through the presenta-
tion, the destination data will be a direct copy of the physical source data. The physical size and data
type of the map segment will be reflected in the destination data object from the source to the destina
tion since they describe the physica state of the data. Again, if not copying through the presentation,
the copy will ignore the mapping mode of the object.

G.5.4. kpds_create_map() — create a map segment within a data object.

Synopsis

int kpds create map(

kobject object)

Input Arguments
object

object in which to create the map segment.

Returns

TRUE if the map segment was successfully created, FAL SE otherwise

Description

This function is used to create a map segment within a specified data object. The map segment can not

2-106

be created if mapping mode is set to map the value data.

It is considered an error to create a map segment if the object already contains one.

G.5.5. kpds_destroy_map() — destroy the map segment in a data object.

Synopsis
int kpds destroy map (
kobject object)

Input Arguments
object
object from which to remove the map segment.

Returns
TRUE if the map segment is successfully destroyed, FAL SE otherwise

Description
This function is used to destroy the map segment contained within an object. Once the map segment
has been destroyed, any data or attributes associated with the map datawill be lost forever. A new map
segment can be created in its place with the function kpds_create_map.

If the mapping mode is set to map the data. then this function will not destroy the map. This is
because destroying the map when operating in this mode would cause an inconsistency in the interpre-
tation of the value data. KPDS MAPPING_MODE is an attribute which, when set to KMAPPED,
causes the map data to be unmapped into the value data. For example, if you are operating on a
pseudo-colored image, and set mapping mode, the result will be that the value data will appear to be a
true-color image.

G.5.6. kpds_query_map() — determine if the map segment exists in a data object.

Synopsis
int kpds query map (
kobject object)

Input Arguments

object
data object to be queried.

2-107

Returns
TRUE if the map segment exists, FALSE otherwise

Description
This function is used to determine if the map segment exists in a data object. If map segment existsin
the specified object, then this function will return TRUE. If the object isinvalid, or map data does not
exist in the object, then this function will return FALSE.

When the mapping mode is set to map the data, the data object will aways appear to not contain a
map.

G.6. Mask Functions

* kpds_copy_mask() - copy the mask segment from one object to another.

* kpds _copy _mask_attr() - copy all mask attributes from one object to another object.
* kpds_copy mask data() - copy all mask data from one object to another object.

* kpds_create_mask() - create a mask segment within a data object.

* kpds_destroy_mask() - destroy the mask segment in a data object.

* kpds_query_mask() - determine if the mask segment exists in a data object.

G.6.1. kpds_copy_mask() — copy the mask segment from one object to another.

Synopsis
int kpds copy mask(
kobject objectl,
kobject object2,

int copy_through presentation)
Input Arguments
objectl

the object that serves as a source for the mask segment.

copy through presentation
if set to TRUE, the copy will be performed through the presentation of the source and destination
objects. if set to FALSE, the copy will be adirect copy of the physical data.

Output Arguments
object2
the object that will serve as a destination for the copy operation.

Returns
TRUE if copy was successful, FALSE otherwise

2-108

Description
This function copies all of the attributes and data contained in the mask segment of one object into the
mask segment contained in another object. If the mask segment exists in the destination object, then
its datawill be replaced with the data from the source object. If the mask segment does not exist in the
destination object, it will be created.

All mask segment attributes will be copied from one object to the other. This includes presentation
attributes, such as position and offset.

The mask data can be optionally copied through the presentations of the two data objects. Thisimplies
that any presentation stages which are normally invoked during a kpds_get_data on the source object
or akpds_put_data call on the destination object will be used for the copy.

Any of the following presentation stages can be invoked on either the source object or the destination
object : casting, scaling, normalizing, padding, and interpolating.

The following presentation stages can be invoked on only the source object : mapping, axis assign-
ment, position, and offset. The resulting copy will be mapped through the map and transposed to be in
the default axis ordering. The resulting copy will also appear to be shifted by the source position and
offset.

These presentation stages are brought into the data pipeline by setting the appropriate presentation
attributes on the data objects. Please see the chapter on polymorphic data services in the data services
manual for more information on the various presentation attributes.

The following example may help in visualizing the process. The source object has a presentation data
type different from the physical datatype, and a presentation size different from the physical size. The
destination object only has a different presentation and physical datatype.

source -> interpolating -> casting -|...| -> casting -> destination

In the above example, the data resulting from the copy will be interpolated to a new size and cast to a
new data type before being copied into the destination object. When being copied into the destination
object, the datawill be cast yet again before it finally is stored.

If the presentation and physical layers of the destination object are coupled then the destination
attributes will be ignored and the source presentation attributes will be propogated to the destination
physical layer. The copy, in essence, will be performed only through the source presentation, with the
destination physical and presentation layers taking on the characteristics of the source presentation.
By default, output objects are not coupled, so this behavior istypical.

The copy need not be performed using the presentation. If the datais not copied through the presenta-
tion, the destination data will be a direct copy of the physical source data. The physical size and data
type of the mask segment will be reflected in the destination data object from the source to the destina-
tion since they describe the physical state of the data.

This function is equivdent to performing successive calls to kpds copy mask_attr and
kpds_copy_mask_data.

2-109

G.6.2. kpds_copy_mask_attr() — copy all mask attributes from one object to another object.

Synopsis
int kpds copy mask attr(
kobject objectl,
kobject object2)

Returns
TRUE if copy was successful, FALSE otherwise

Description
Thisfunction copies all the mask attributes from one object to another object.

If the destination object does not contain a mask segment, then this function will create a mask seg-
ment, and initialize its size and data type attributes to those in the source object. If the mask data
aready exists in the destination object, then the presentation attributes will be set to the source object’s
Settings.

The destination’s physical attributes will change depending on the coupling of the data objects. If the
destination is coupled, then the physical attributes will be changed as well. Any data contained in the
destination will be cast, rescaled, or resized to match its new physical attributes.

G.6.3. kpds_copy_mask_data() — copy all mask data from one object to another object.

Synopsis
int kpds_ copy mask data(
kobject objectl,
kobject object2,

int copy through presentation)
Input Arguments
objectl

the object that serves as a source for the data.
copy_ through presentation

if set to TRUE, the copy will be performed through the presentation of the source and destination
objects. if set to FALSE, the copy will be adirect copy of the physical data.

Output Arguments
object2

2-110

the object that will serve as a destination for the copy operation.

Returns
TRUE if copy was successful, FALSE otherwise

Description
This function copies all of the data contained in the mask segment of one abject into the mask segment
contained in another object. If the mask segment exists in the destination object, then its data will be
replaced with the data from the source object. If the mask segment does not exist in the destination
object, it will be created.

The mask data can be optionally copied through the presentations of the two data objects. Thisimplies
that any presentation stages which are normally invoked during a kpds_get data on the source object
or akpds_put_datacall on the destination object will be used for the copy.

Any of the following presentation stages can be invoked on either the source object or the destination
object : casting, scaling, normalizing, padding, and interpolating.

The following presentation stages can be invoked on only the source object : mapping, axis assign-
ment, position, and offset. The resulting copy will be set to the size it appears to be when mapping
mode is set to mapped, and will be transposed to be in the default axis ordering. The resulting copy
will also appear to be shifted by the source position and offset.

These presentation stages are brought into the data pipeline by setting the appropriate presentation
attributes on the data objects. Please see the chapter on polymorphic data services in the data services
manual for more information on the various presentation attributes.

The following example may help in visualizing the process. The source object has a presentation data
type different from the physical datatype, and a presentation size different from the physical size. The
destination object only has a different presentation and physical data type.

source -> interpolating -> casting -|...| -> casting -> destination

In the above example, the data resulting from the copy will be interpolated to a new size and cast to a
new data type before being copied into the destination object. When being copied into the destination
object, the datawill be cast yet again before it finally is stored.

If the presentation and physical layers of the destination object are coupled then the destination
attributes will be ignored and the source presentation attributes will be propogated to the destination
physical layer. The copy, in essence, will be performed only through the source presentation, with the
destination physical and presentation layers taking on the characteristics of the source presentation.
By default, output objects are not coupled, so this behavior istypical.

The copy need not be performed using the presentation. |If the datais not copied through the presenta-

tion, the destination data will be a direct copy of the physical source data. The physical size and data
type of the mask segment will be reflected in the destination data object from the source to the

2-111

destination since they describe the physical state of the data.

G.6.4. kpds_create_mask() — create a mask segment within a data object.

Synopsis
int kpds create mask(
kobject object)

Input Arguments
object
object in which to create the mask segment.

Returns
TRUE if the mask segment was successfully created, FALSE otherwise

Description
This function is used to create a mask segment within a specified data object. The size of the mask
segment will be initialized to match any the sizes shared with any other polymorphic segments.

Note that the pad value for this segment is initalized to 1. Thisis done so that padded data is marked
as valid according to the mask segment.

It is considered an error to create a mask segment if the object already contains one.

G.6.5. kpds_destroy _mask() — destroy the mask segment in a data object.

Synopsis
int kpds destroy mask(
kobject object)

Input Arguments

object
object from which to remove the mask segment.

Returns
TRUE if the mask segment is successfully destroyed, FAL SE otherwise

2-112

Description
This function is used to destroy the mask segment contained within an object. Once the mask segment
has been destroyed, any data or attributes associated with the mask data will be lost forever. A new
mask segment can be created in its place with the function kpds_create_mask.

If the mask segment does not exist in the specified object, it is considered to be an error.

G.6.6. kpds_query _mask() — determine if the mask segment existsin a data object.

Synopsis
int kpds query mask (
kobject object)

Input Arguments
object
data object to be queried.

Returns
TRUE if the mask segment exists, FALSE otherwise

Description
This function is used to determine if the mask segment exists in a data object. If mask segment exists
in the specified object, then this function will return TRUE. If the object isinvalid, or mask data does
not exist in the object, then this function will return FALSE.

G.7. Time Functions

* kpds_copy_time() - copy the time segment from one object to another.

* kpds_copy_time_attr() - copy al time attributes from one object to another object.
* kpds_copy_time_data() - copy al time data from one object to another object.

* kpds create time() - create atime segment within a data object.

* kpds_destroy _time() - destroy the time segment in a data object.

* kpds_query_time() - determine if the time segment exists in a data object.

G.7.1. kpds_copy_time() — copy the time segment from one object to another.

Synopsis
int kpds copy time(

2-113

kobject objectl,
kobject object2,

int copy through presentation)
Input Arguments
objectl

the object that serves as a source for the time segment.

copy through presentation
if set to TRUE, the copy will be performed through the presentation of the source and destination
objects. if set to FALSE, the copy will be adirect copy of the physical data.

Output Arguments
object2
the object that will serve as a destination for the copy operation.

Returns
TRUE if copy was successful, FAL SE otherwise

Description
This function copies al of the attributes and data contained in the time segment of one object into the
time segment contained in another object. If the time segment exists in the destination object, then its
data will be replaced with the data from the source object. If the time segment does not exist in the
destination object, it will be created.

All time segment attributes will be copied from one object to the other. This includes presentation
attributes, such as position and offset.

The time data can be optionally copied through the presentations of the two data objects. Thisimplies
that any presentation stages which are normally invoked during a kpds_get_data on the source object
or akpds_put_data call on the destination object will be used for the copy.

Any of the following presentation stages can be invoked on either the source object or the destination
object : casting, scaling, normalizing, padding, and interpolating.

The following presentation stages can be invoked on only the source object : position, and offset. The
resulting copy will appear to be shifted by the source position and offset.

These presentation stages are brought into the data pipeline by setting the appropriate presentation
attributes on the data objects. Please see the chapter on polymorphic data services in the data services
manual for more information on the various presentation attributes.

The following example may help in visualizing the process. The source object has a presentation data

type different from the physical data type and a presentation size different from the physical size. The
destination object only has a different presentation and physical data type.

2-114

source -> interpolating -> casting -|...| -> casting -> destination

In the above example, the data resulting from the copy will be interpolated to a new size and cast to a
new data type before being copied into the destination object. When being copied into the destination
object, the datawill be cast yet again before it finally is stored.

If the presentation and physical layers of the destination object are coupled then the destination
attributes will be ignored and the source presentation attributes will be propogated to the destination
physical layer. The copy, in essence, will be performed only through the source presentation, with the
destination physical and presentation layers taking on the characteristics of the source presentation.
By default, output objects are not coupled, so this behavior istypical.

The copy need not be performed using the presentation. If the datais not copied through the presenta-
tion, the destination data will be a direct copy of the physical source data. The physical size and data
type of the time segment will be reflected in the destination data object from the source to the destina
tion since they describe the physical state of the data.

This function is equivadent to performing successive cals to kpds copy time attr and
kpds copy_time data.

G.7.2. kpds_copy_time_attr() — copy all time attributes from one object to another object.

Synopsis
int kpds copy time attr(
kobject objectl,
kobject object2)

Returns
TRUE if copy was successful, FALSE otherwise

Description
This function copies all the time attributes from one object to another object.

If the destination object does not contain a time segment, then this function will create a time segment,
and initialize its size and data type attributes to those in the source object. If the time data already
exists in the destination object, then the presentation attributes will be set to the source object’s set-
tings.

The destination’s physical attributes will change depending on the coupling of the data objects. If the

destination is coupled, then the physical attributes will be changed as well. Any data contained in the
destination will be cast, rescaled, or resized to match its new physical attributes.

2-115

G.7.3. kpds_copy_time_data() — copy all time data from one object to another object.

Synopsis
int kpds copy time data(
kobject objectl,
kobject object2,

int copy through presentation)
Input Arguments
objectl

the object that serves as a source for the data.

copy through presentation
if set to TRUE, the copy will be performed through the presentation of the source and destination
objects. if set to FALSE, the copy will be adirect copy of the physical data.

Output Arguments
object2
the object that will serve as a destination for the copy operation.

Returns
TRUE if copy was successful, FALSE otherwise

Description
This function copies al of the data contained in the time segment of one object into the time segment
contained in another object. If the time segment exists in the destination object, then its data will be
replaced with the data from the source object. If the time segment does not exist in the destination
object, it will be created.

The time data can be optionally copied through the presentations of the two data objects. Thisimplies
that any presentation stages which are normally invoked during a kpds_get data on the source object
or akpds_put_datacall on the destination object will be used for the copy.

Any of the following presentation stages can be invoked on either the source object or the destination
object : casting, scaling, normalizing, padding, and interpolating.

The following presentation stages can be invoked on only the source object : position, and offset. The
resulting copy will appear to be shifted by the source position and offset.

These presentation stages are brought into the data pipeline by setting the appropriate presentation
attributes on the data objects. Please see the chapter on polymorphic data services in the data services
manual for more information on the various presentation attributes.

The following example may help in visualizing the process. The source object has a presentation data
type different from the physical data type and a presentation size different from the physical size. The

2-116

destination object only has a different presentation and physical data type.

source -> interpolating -> casting -|...| -> casting -> destination

In the above example, the data resulting from the copy will be interpolated to a new size and cast to a
new data type before being copied into the destination object. When being copied into the destination
object, the datawill be cast yet again before it finally is stored.

If the presentation and physical layers of the destination object are coupled then the destination
attributes will be ignored and the source presentation attributes will be propogated to the destination
physical layer. The copy, in essence, will be performed only through the source presentation, with the
destination physical and presentation layers taking on the characteristics of the source presentation.
By default, output objects are not coupled, so this behavior istypical.

The copy need not be performed using the presentation. If the datais not copied through the presenta-
tion, the destination data will be a direct copy of the physical source data. The physical size and data
type of the time segment will be reflected in the destination data object from the source to the destina
tion since they describe the physical state of the data.

G.7.4. kpds_create_time() — create a time segment within a data object.

Synopsis

int kpds create time(

kobject object)

Input Arguments
object

object in which to create the time segment.

Returns

TRUE if the time segment was successfully created, FAL SE otherwise

Description

This function is used to create a time segment within a specified data object. The size of the time seg-
ment will beinitialized to match any the time size shared with the other polymorphic segments.

It is considered an error to create atime segment if the object already contains one.

2-117

G.7.5. kpds_destroy time() — destroy the time segment in a data object.

Synopsis
int kpds destroy time(
kobject object)

Input Arguments
object
object from which to remove the time segment.

Returns
TRUE if the time segment is successfully destroyed, FAL SE otherwise

Description
This function is used to destroy the time segment contained within an object. Once the time segment
has been destroyed, any data or attributes associated with the time data will be lost forever. A new
time segment can be created in its place with the function kpds_create_time.

If the time segment does not exist in the specified object, it is considered to be an error.

G.7.6. kpds_query_time() — determine if the time segment exists in a data object.

Synopsis
int kpds query time(
kobject object)

Input Arguments
object
data object to be queried.

Returns
TRUE if the time segment exists, FAL SE otherwise

Description
This function is used to determine if the time segment exists in a data object. If time segment existsin
the specified object, then this function will return TRUE. If the object isinvalid, or time data does not
exist in the object, then this function will return FALSE.

2-118

G.8. Value Functions

« kpds_copy_valug() - copy the value segment from one object to another.

* kpds _copy value attr() - copy all value attributes from one object to another object.
* kpds_copy value data() - copy all value data from one object to another object.

* kpds_create value() - create a value segment within a data object.

* kpds_destroy_value() - destroy the value segment in a data object.

* kpds_query value() - determine if the value segment exists in a data object.

G.8.1. kpds_copy_value() — copy the value segment from one object to another.

Synopsis
int kpds copy value(
kobject objectl,
kobject object2,

int copy_through presentation)
Input Arguments
objectl

the object that serves as a source for the value segment.

copy through presentation
if set to TRUE, the copy will be performed through the presentation of the source and destination
objects. if set to FALSE, the copy will be adirect copy of the physical data.

Output Arguments
object2
the object that will serve as a destination for the copy operation.

Returns
TRUE if copy was successful, FALSE otherwise

Description
This function copies all of the attributes and data contained in the value segment of one object into the
value segment contained in another object. If the value segment exists in the destination object, then
its data will be replaced with the data from the source object. If the value segment does not exist in the
destination object, it will be created.

All value segment attributes will be copied from one object to the other. This includes presentation
attributes, such as position and offset.

The value data can be optionally copied through the presentations of the two data objects. Thisimplies

that any presentation stages which are normally invoked during a kpds_get_data on the source object
or akpds_put_data call on the destination object will be used for the copy.

2-119

Any of the following presentation stages can be invoked on either the source object or the destination
object : casting, scaling, normalizing, padding, and interpolating.

The following presentation stages can be invoked on only the source object : mapping, axis assign-
ment, position, and offset. The resulting copy will be mapped through the map and transposed to bein
the default axis ordering. The resulting copy will also appear to be shifted by the source position and
offset.

These presentation stages are brought into the data pipeline by setting the appropriate presentation
attributes on the data objects. Please see the chapter on polymorphic data services in the data services
manual for more information on the various presentation attributes.

The following example may help in visualizing the process. The source object has mapping mode set
to map the data, a presentation data type different from the physical data type, and a presentation size
different from the physical size. The destination object only has a different presentation and physical
datatype.

source -> casting -> mapping -|...| -> casting -> destination

In the above example, the data resulting from the copy will be cast to a new data type and mapped
through the object’s map before being copied into the destination object. When being copied into the
destination object, the datawill be cast yet again before it finally is stored.

If the presentation and physical layers of the destination object are coupled then the destination
attributes will be ignored and the source presentation attributes will be propogated to the destination
physical layer. The copy, in essence, will be performed only through the source presentation, with the
destination physical and presentation layers taking on the characteristics of the source presentation.
By default, output objects are not coupled, so this behavior istypical.

The copy need not be performed using the presentation. If the datais not copied through the presenta-
tion, the destination data will be a direct copy of the physical source data. The physical size and data
type of the value segment will be reflected in the destination data object from the source to the destina-
tion since they describe the physical state of the data.

This function is equivalent to performing successive cals to kpds copy vaue attr and
kpds copy value data.

G.8.2. kpds_copy_value_attr() — copy all value attributes from one object to another object.

Synopsis
int kpds copy value attr(
kobject sobject,
kobject dobject)

2-120

Input Arguments
sobject
the object that serves as a source for the attributes.

Output Arguments
dobject
the object that serves as a destination for the operation.

Returns
TRUE if copy was successful, FALSE otherwise

Description
This function copies all the value attributes from one object to another object.

If the destination object does not contain a value segment, then this function will create a value seg-
ment, and initialize its size and data type attributes to those in the source object. If the value data
aready exists in the destination object, then the presentation attributes will be set to the source object’s
Settings.

The destination’s physical attributes will change depending on the coupling of the data objects. If the

destination is coupled, then the physical attributes will be changed as well. Any data contained in the
destination will be cast, rescaled, or resized to match its new physical attributes.

2-121

G.8.3. kpds_copy_value_data() — copy all value data from one object to another object.

Synopsis
int kpds copy value data(
kobject objectl,
kobject object2,

int copy through presentation)
Input Arguments
objectl

the object that serves as a source for the data.

copy through presentation
if set to TRUE, the copy will be performed through the presentation of the source and destination
objects. if set to FALSE, the copy will be adirect copy of the physical data.

Output Arguments
object2
the object that will serve as a destination for the copy operation.

Returns
TRUE if copy was successful, FAL SE otherwise

Description
This function copies al of the data contained in the value segment of one object into the value segment
contained in another object. If the value segment exists in the destination object, then its data will be
replaced with the data from the source object. If the value segment does not exist in the destination
object, it will be created.

The value data can be optionally copied through the presentations of the two data objects. Thisimplies
that any presentation stages which are normally invoked during a kpds_get data on the source object
or akpds put_datacall on the destination object will be used for the copy.

Any of the following presentation stages can be invoked on either the source object or the destination
object : casting, scaling, normalizing, padding, and interpolating.

The following presentation stages can be invoked on only the source object : mapping, axis assign-
ment, position, and offset. The resulting copy will be mapped through the map and transposed to be in
the default axis ordering. The resulting copy will aso appear to be shifted by the source position and
offset.

These presentation stages are brought into the data pipeline by setting the appropriate presentation

attributes on the data objects. Please see the chapter on polymorphic data services in the data services
manual for more information on the various presentation attributes.

2-122

The following example may help in visualizing the process. The source object has mapping mode set
to map the data, a presentation data type different from the physical data type, and a presentation size
different from the physical size. The destination object only has a different presentation and physical
datatype.

source -> casting -> mapping -|...| -> casting -> destination

In the above example, the data resulting from the copy will be cast to a new data type and mapped
through the object’s map before being copied into the destination object. When being copied into the
destination object, the data will be cast yet again before it finally is stored.

If the presentation and physical layers of the destination object are coupled then the destination
attributes will be ignored and the source presentation attributes will be propogated to the destination
physical layer. The copy, in essence, will be performed only through the source presentation, with the
destination physical and presentation layers taking on the characteristics of the source presentation.
By default, output objects are not coupled, so this behavior istypical.

The copy need not be performed using the presentation. If the datais not copied through the presenta-
tion, the destination data will be a direct copy of the physical source data. The physical size and data
type of the value segment will be reflected in the destination data object from the source to the destina
tion since they describe the physical state of the data.

G.8.4. kpds_create value() — create a value segment within a data object.

Synopsis

int kpds create value(

kobject object)

Input Arguments
object

object in which to create the value segment.

Returns

TRUE if the value segment was successfully created, FAL SE otherwise

Description

This function is used to create a value segment within a specified data object. The size of the value
segment will beinitialized to match any the sizes shared with any other polymorphic segments.

It is considered an error to create a value segment if the object already contains one.

2-123

G.8.5. kpds_destroy value() — destroy the value segment in a data object.

Synopsis
int kpds destroy value(
kobject object)

Input Arguments
object
object from which to remove the value segment.

Returns
TRUE if the value segment is successfully destroyed, FAL SE otherwise

Description
This function is used to destroy the value segment contained within an object. Once the value segment
has been destroyed, any data or attributes associated with the value data will be lost forever. A new
value segment can be created in its place with the function kpds_create value.

If the value segment does not exist in the specified object, it is considered to be an error.

G.8.6. kpds_query_value() — determine if the value segment existsin a data object.

Synopsis
int kpds query value(
kobject object)

Input Arguments
object
data object to be queried.

Returns
TRUE if the value segment exists, FAL SE otherwise

Description
This function is used to determine if the value segment exists in a data object. If value segment exists
in the specified object, then this function will return TRUE. If the object isinvalid, or value data does
not exist in the object, then this function will return FALSE.

2-124

This page left intentionally blank

2-125

Table of Contents

A.Introduction . . .
B. The Polymorphic Data Model
B.1. Value Data
B.2. Mask .
B.3. Map
B.4. Location .
B.5. Time . .
C. Interaction with the Polymorphlc Data M odel
C.1. Presentation of the Data Object .
C.2. Casting . . :
C.3. Scaling and Normallzatlon
C.4. Padding and Interpolation
C.5. Conversion of Complex Data
C.6. Map Evaluation
C.7. Mask Evaluation
C.8. Axis Assignment
C.9. DataRanging .
C.10. Reference Objects
C.11. Auto Incrementing
D. The Application Programming Interface (A PI)
E. Polymorphic Primitives
E.1. Value Primitives
E.2. Mask Primitives
E.3. Map Primitives .
E.4. Location Primitives
E.4.1. Creating Location
E.4.2. Location Primitives . .
E.4.3. Presentation of Location Data
E.5. Time Primitives. . .
F. Attributes Defined by the Polymorph|c DaIa M odel
F.1. Global Attributes
F.2. Value Segment Attributes .
F.3. Mask Segment Attributes .
F.4. Map Segment Attributes .
F.5. Location Segment Attributes .
F.6. Time Segment Attributes . . . :
G. Functions Provided by Polymorphic Data Servm% .
G.1. Object Management .o
G.1.1. kpds_open_input_object() — open an mput object for readl ng
G.1.2. kpds_open_output_object() — open an output object for writing
G.1.3. kpds_create_object() — create a temporary data object.
G.1.4. kpds _create object_attr() — create an attribute associated the data Obj ect
G.1.5. kpds_destroy_object_attr() — destroy an attribute associated with the data object.

G.1.6. kpds_open_object() — create an object associated with an input or output transport. .

G.1.7. kpds_close_object() — close an open data object. .
G.1.8. kpds_reference_object() — create a reference of a data object.
G.1.9. kpds_copy_object() — copy all data and attributes from one object to another

2-2
2-4
2-5
2-5

2-7
2-8

2-9
2-9

. 2-10
. 2-10
. 2-11
. 2-11
. 2-11
. 2-12
. 2-12
. 2-13
. 2-14
. 2-17
. 2-17
. 2-19
. 2-22
. 224
. 2-26
. 2-26
. 2-30
. 2-31
. 2-31
. 2-33
. 2-38
. 2-44
. 2-49
. 2-55
. 2-61
. 2-66
. 2-66
. 2-67
. 2-68
. 2-69
. 2-69
. 2-71
. 2-72
. 2-74
. 2-74
. 2-75

G.1.10. kpds_copy_remaining_data() — copy remaining data from source to destination
G.1.11. kpds _copy_object_attr() — copy all presentation attributes from one data object to
another.
G.1.12. kpds _copy_object_data() — copy all data from one object to another object.
G.1.13. kpds_sync_object() — synchronize physical and presentation layers of a data object.
G.2. Data Functions . e
G.2.1. kpds_get_data() — retrleve data from a data object
G.2.2. kpds_put_data() — store data in a data object.
G.3. Attribute Functions
G.3.1. kpds_copy_attribute() — copy an attrrbute from one obj ect to another
G.3.2. kpds_copy_attributes() — copy multiple attributes from one object to another.
G.3.3. kpds_get_attribute() — get the value of an attribute from a data object .
G.3.4. kpds_get_attributes() — get the values of multiple attributes from a data object
G.3.5. kpds_match_attribute() — returns TRUE if the same attribute in two objects match.

G.3.6. kpds_match_attributes() — returnstrue if the list of segment attributes in two objects match.

. 2-90
. 291
. 291
. 293
. 2-94
. 2-95
. 2-96

G.3.7. kpds_print_attribute() — print the value of an attribute from a data object.
G.3.8. kpds_query_attribute() — get information about an attribute .
G.3.9. kpds_set_attribute() — set the values of an attribute in a data object
G.3.10. kpds_set_attributes() — set the values of multiple attributesin a data object. .
G.4. Location Functions .
G.4.1. kpds_copy_location() — copy the Iocatron segment from one obj ect to another
G.4.2. kpds_copy_location_attr() — copy all location attributes from one object to another object

G.4.3. kpds_copy_l ocation_data() — copy aJI Iocation data from one object to another object.
G.4.4. kpds_create location() — create a location segment within a data object. .
G.4.5. kpds_destroy_location() — destroy the location segment in a data object.
G.4.6. kpds_query_locati on() — determineif the location segment exists in a data object.
G.5. Map Functions . .
G.5.1. kpds_copy_map() — copy the map segment from one Obj ect to another .
G.5.2. kpds_copy_map_attr() — copy all map attributes from one object to another object
G.5.3. kpds_copy_map_data() — copy all map data from one object to another object.
G.5.4. kpds_create_map() — create a map segment within a data object.
G.5.5. kpds_destroy_map() — destroy the map segment in a data object.
G.5.6. kpds_query_map() — determineif the map segment existsin a data object.
G.6. Mask Functions

G.6.1. kpds_copy_mask() — copy the mask eegment from one Ob] ect to another .
G.6.2. kpds_copy_mask_attr() — copy all mask attributes from one object to another obj ect

G.6.3. kpds_copy_mask_data() — copy aII mask data from one obj ect to another obj ect.
G.6.4. kpds_create_mask() — create a mask segment within a data object.
G.6.5. kpds_destroy_mask() — destroy the mask segment in a data object. .
G.6.6. kpds_query_mask() — determine if the mask segment exists in a data object.

G.7. Time Functions . .
G.7.1. kpds_copy_time() — copy the trme segn‘ent from one obj ect to another
G.7.2. kpds_copy_time_attr() — copy all time attributes from one object to another object
G.7.3. kpds_copy_time_data() — copy all time data from one object to another object.
G.7.4. kpds_create_time() — create a time segment within a data object.
G.7.5. kpds_destroy_time() — destroy the time segment in a data object.

. 2-76

. 2-77
. 2-77
. 2-78
. 2-79
. 2-79
. 2-82

. 2-84
. 2-85
. 2-86
. 2-87
. 2-89

. 2-97

. 2-98
.2-100
.2-100
.2-101
.2-101
.2-102
.2-103
.2-105
.2-106
.2-107
.2-107
.2-108
.2-108

.2-110
.2-110
.2-112
.2-112
.2-113
.2-113
.2-113
.2-115
.2-116
.2-117
.2-118

G.7.6. kpds_query_time() — determine if the time segment exists in a data object.
G.8. Value Functions Ce e e e
G.8.1. kpds_copy_value() — copy the value segment from one object to another.

G.8.2. kpds_copy_value attr() — copy all value attributes from one object to another object.

G.8.3. kpds_copy_value _data() — copy all value data from one object to another object.
G.8.4. kpds_create value() — create a value segment within a data object.

G.8.5. kpds_destroy_value() — destroy the value segment in a data object.

G.8.6. kpds_query_value() — determine if the value segment existsin a data object.

.2-118
.2-119
.2-119

.2-120
.2-122
.2-123
.2-124
.2-124

This page left intentionally blank

-V -

Program Services \Volume |

Chapter 3

Geometry Data Services

Copyright (c) AccuSoft Corporation, 2004. All rights reserved.

Chapter 3 - Geometry Data Services

A. Geometry Data Services

A.l. Introduction

Geometry services provides a general mechanism for the storage and retrieval of geometry data. In terms of
data visualization, geometry data describes the shape and position of structuresin space. Geometry data there-
fore consists primarily of spatial information in the form of explicit location data. Furthermore, geometry data
may also include data which does not have any direct bearing on the spatial description of the structure; color,
normal, and texture data are examples. In addition to geometry data, volumetric data is also supported since it
too describes structures in space. Finally, geometry services also allows you to store attributes such as a name
or opacity value with the data.

With geometry services, geometry data is stored and retrieved from a data structure. The structure fields
describe the geometry data model. In contrast with the other VisiQuest data services, geometry data services
provides you with direct access to the geometry data structure. Data is stored in a geometry object by assign-
ing the data pointer to afield of a structure. Attributes are stored by assigning the appropriate fields of a struc-
ture.

DATA
OBJECT

Figure 1: Geometry Services supports the storage and retrieval of geometric data. Geometric data is
constructed and stored in a data object. This data can later be retrieved for processing or rendering.
Geometry services supports geometric data as well as volumetric data.

An image is produced from geometry through a process called rendering. Since a generic geometry service
that directly encompassed the needs of many different types of renderers would have too large a scope, geome-
try services does not attempt to support renderer-specific information. The goal of geometry servicesis simply
to provide a programming framework for processing geometry that separates the creation and storage of geom-

etry data from the manipulation and rendering of geometry.

A.1.1. The Geometry Data Model

The geometry data model is centered around the concept of a primitive list. Each geometry object contains a

single primitive list. Geometry primitives can be added to or removed from this primitive list. A geometry
primitive is defined smply to be a grouping of data with a specific geometric interpretation. For example, a
polyline or atriangle strip are considered to be geometry primitives. Hierarchical geometry structures may be
created by placing one geometry object on the primitive list of another object.

In addition to geometry primitives, a geometry object may contain a number of geometry attributes. These
attributes are represented by fields within the geometry object structure. Some of these attributes describe
global characteristics of the data and apply to al the primitives in the object as a collective group. Examples
of these object-level attributes are the bounding box or the object color. Primitives al'so have attributes. These
are represented by the structure fields within a primitive structure. Examples of these primitive level attributes
are the number of verticesin aprimitive, or the line type of a primitive.

A.1.1.1. Geometry Primitives

Geometry primitives in a basic sense can be thought of as an aggregation of different data components, such
as location data and color data, that represent a geometric construct. Other data components that are encoun-
tered are normals, texture coordinates, and radii. There are many types of geometry primitives, ranging from
surface primitives, such as connected triangles, to annotation primitives, such as text, to volumetric primi-
tives, such as an octmesh.

The Geometry Object contains object-specific

— KGEOM_OBJECT p characteristics and alinear list of primitives. These
primitives may define geometry, or may be another
name object which containsit’s own primitive list. The
)) object-specific attributes are contained here.

ambient_ color min, max

diffuse_color center

specular_color color

specular exponent opacity The Geometry Primitivesin an object’s

primitive list contain the specific data which defin
QO primitives the geometry in space.
; ; !
r KGEOM_SPHERES r KGEOM_QUADMESH——— 1 KGEOM_TRIANGLES_DISJOINT
nverts width nverts
Q height v
o LOCATION Data LOCATION Data LOCATION Data

@ @ [XYZ XYZ XYZ ... | [XYZ XYZ XYZ ... | [XYZ XYZ XYZ ... |
COLOR Data COLOR Data ﬁ COLOR Data
[RGB RGB RGB ... | [RGB RGB RGB ... | [RGB RGB RGB ... |
RADIUS Data NORMAL Data NORMAL Data
[R1 R2 R3 R4... | [XYZXYZ XYZ ... | [XYZXYZ XYZ ... |

Figure 2: An overview of the Geometry Data Model. A geometry object contains a primitive list. Geo-
metric primitives are stored and retrieved from this list. Each geometric primitive is an aggregate of dif-
ferent types of data; for example, a spheres primitive consists of location data, color data, and radius data.
Note that a single spheres primitive contains multiple spheres.

Primitives can be combined and stored in any combination within a single object. For example, a connected
polyline can be combined with a list of spheres and a list of directed points and placed into a single data
object. These primitives are all added to the geometry object’s primitive list.

A.1.1.2. VisiQuest Geometry Format

A new file format was created for the storage of geometry objects. This new VisiQuest Geometry format is
simply areflection of the geometry object stored in afile. It can be identified by the filename extension "kgm,"
or by thefirst 5 bytes, which will spell "kgeom."

A.2. Overview of Geometry Service Primitives

Geometry services supports a number of different geometric primitives: quadmesh primitives, octmesh primi-
tives, two- and three-dimensional texture primitives, as well as other informational primitives.

For the purposes of the following descriptions, the term vertex is used to describe a point in space-an (X,y,2)
point. The location data, which defines the object in space, consists of a series of these points, or vertices. The
term line is defined to be any vector between two connected vertices. The term face is the surface defined by
three or more connected vertices that is bounded by the edges connecting those vertices. Colors and normals
may exist either per vertex, per line, or per face, while other data, such as texture coords, always exist per ver-
tex.

The following table contains descriptions of the geometry primitives provided by geometry services.

Geometry Primitives

Name Description and Diagram
KGEOM_POLYLINE DISJOINT A digoint polyline uses N vertices, where N is greater than 1, to con-
struct N/2 lines. Every two vertices represent the end points of aline
segment.

o— 5 O vertices

KGEOM POLYLINE CONNECTED A connected polyline uses N vertices, where N is greater than 1, to con-
struct N-1 lines. A line segment connects each adjacent vertex. The
first and the last vertices indicate the beginning and the end of the line.

end
O vertices

begin

Geometry Primitives

Name

Description and Diagram

KGEOM_TRIANGLES DISJOINT

A digjoint polytriangle uses N vertices, where N is greater than 2, to
construct N/3 triangles. Every three vertices represent asingle triangle.

W O vertices
B

KGEOM_TRIANGLES_CONNECTED

A connected polytriangle uses N vertices, where N is greater than 2, to
construct N-2 triangles. Thefirst and last vertices indicate the begin-
ning and the end of the polytriangle.

begin end .
O vertices

— explicit edge
---- implied edge

KGEOM_SPHERES

A list of spheresuses N vertices to represent the centers of N spheres.
Each sphere has a corresponding radius to indicate its size.

O vertices
<«— radii

KGEOM_CYLINDERS

A list of digoint cylinders uses N vertices to construct N/2 cylinders. A
cylinder has top radius and bottom radius. If one or the other radii is
zero, the the cylinder becomes a cone.

bottom O vertices
e radius < radii

top
radius

KGEOM_DIRECTED_POINTS

A list of digoint discrete points with normals.

X N O vertices
7 <— directions

C/O—b

Geometry Primitives

Name

Description and Diagram

KGEOM_ELLIPSES

A list of ellipses uses N vertices to represent the centers of N ellipses.
Each ellipses has a corresponding major and minor radius to indicate its

size.
O vertices
@ } minor axis

> major axis

KGEOM_MARKERS

A list of digoint annotation markers of fixed size. For example, across
hatch or a diamond are markers. These can be thought of as 1D primi-
tivesin space.

O vertices

|><|D°<||>°<||><|

KGEOM_POLYGON

A single two-dimensional polygon defined to be line segments connect-
ing N vertices together. The connectivity of verticesisimplied by the
vertex order.

o vertices

KGEOM_RECTANGLES

A list of rectangles uses N vertices to construct N/2 rectangles. Every
two points define the opposing corners of arectangle.

S D o vertices

KGEOM_TEXT

A list of digoint text strings. Each text string has a vertex describing its
origin, and three vectors describing an up direction from the vertex, a
flow direction from the vertex, and an offset from the vertex.

A Text String

up 4
| -~ offset
7
[2 >
vertex flow

Geometry Primitives

Name

Description and Diagram

KGEOM_QUADMESH

A quadmesh is a surface formed by a collection of adjacent quadrilater-
als. The adjacency, or connectivity, between these quadrliateralsis
implied by the two parametric dimensions of width and height. Explicit
location vertices are provided to place the quadmesh in space.

O vertices

KGEOM_OCTMESH

An octmesh is avolume formed by a collection of adjacent hexahedra.
The adjacency, or connectivity between these hexahedraisimplied by
the three parametric dimensions of width, height, and depth. Explicit
locations of vertices are provided to place the quadmesh in space. The
number of locations needed to place the mesh in space is dependent on
the meshtype.

O vertices

KGEOM_TEXTURE2D

A two-dimensional texture is atwo-dimensional array of values vectors
or colors. The 2d texture primitives are not true geometry primitives,
but are accessed through geometry services for ease of programming.
The connectivity between colorsisimplied by their order across the
two parametric dimensions of width and height.

Geometry Primitives
Name Description and Diagram
KGEOM_TEXTURE3D A three-dimensional texture is athree-dimensional array of values or
colors. The 3d texture primitives are not true geometry primitives, but
are accessed through geometry services for ease of programming. The
connectivity between colorsisimplied by their order across the three
parametric dimensions of width, height, and depth.

/777,
n

KGEOM_OBJECT An object primitive is used when placing one geometry object onto the
primitive list of another. This alows the construction of geometric
hierarchies. Circular dependencies where two geometry objects are
each on the primitive list of the other are not supported.

KGEOM_OBJECT XFORM An object transform primitive can be used to specify a transformation
directed at some specific, named object. This is would be used, for
example, to externally control the transformation of an object external
to arendering program.

KGEOM_VIEW XFORM A view transform primitive can be used to specify a viewing transfor-
mation. This is would be used, for example, to externally control the
viewing position external to a rendering program.

KGEOM CAMERA ORIENTATION A camera orientation primitive can be used to specify the specific ori-
entation and characteristics of a camera. This is would be used, for
example, to externally control a camera position external to a rendering
program.

KGEOM VR EVENT A vr event primitive is used to send vr specific information from a vr
device routine to the rendering routine. It contains information on the
current state of the vr device, such as direction of movement, are there
any "buttons" being pressed, and so forth.

A.3. The Application Programming Interface (API)

The application programming interface to geometry services consists primarily of constructor and destructor
functions for creating and destroying geometry objects and geometry primitives. Functions are also available
for writing a geometry object to afile and reading it back.

A.3.1. Geometry Object Functions

A geometry object is represented by a pointer to a kgeom_object structure. A geometry object can be
instantiated by constructing a new empty object, or by reading in an existing object from a file or other

transport. A new empty object is constructed by the function kgeom new object () and an existing data
object can be read from a file using the function kgeom read (). Once you have a structure filled out, you
can writeit to afileusing the kgeom write () function. And finally, once you are done with the object, you
can destroy it and freeits resources using the kgeom blast object () function.

The following examplesillustrate the use of these functions:
kgeom_object *obj;

/* read in some geometry from a file */
obj = kgeom read("geometry.geom") ;

/* do something interesting with the geometry */

/* free up the geometry object when we’re done with it */
kgeom _blast object (obj) ;

Alternatively, if we wanted to create some new geometry and write it to a file, we could use the following
code.

kgeom_object *obj;

/* create a new geometry object */
obj = kgeom new object () ;

/* create some geometry to go in the object here */

/* once we have the geometry, we can write it out */
kgeom write (obj, "new geometry.geom") ;

/* and we can free it up now that we’re done writing it */
kgeom blast object (obj) ;

The attributes of the geometry object are stored as the fields of the geometry object structure. These fields are
publically accessible; an attribute of a geometry object is set ssimply by assigning the appropriate structure
field. For instance, the following code can be used to set the opacity and name attribute of a geometry object :

obj->opacity = 0.5;
obj->name = kstrdup ("Isosurface");

Note that any string attributes should be duplicated when assigned to the geometry object. In general, geome-
try services will assume that any data or attributes which are pointed to by the geometry object can be safely
freed when the kgeom _blast object () functioniscalled.

A.3.2. Geometry Primitive Functions

A geometry primitive is represented by a pointer to a kgeom primitive structure. As with a geometry
object, a geometry primitive can be instantiated either explicitly with the kgeom new primitive () func-
tion, or implicitly when a geometry object is read in from afile. The kgeom new primitive function
takes the type of primitive as its single argument. Each geometry primitive actually has its own distinct struc-
ture; the geometry primitive structure is simply a union of al the different primitive structures.

Since the fields of a geometry primitive vary from type to type, the type of primitive being used must be speci-
fied in order to access the components of the primitive structure. For example, to access a spheres primitive,

the following syntax should be used :

kgeom primitive *prim;
prim = kgeom new primitive (KGEOM_SPHERES) ;
/* specify that we want 45 spheres */

prim->spheres.nverts = 45;

Alternatively, this can be done by casting the structure to its specific primitive type as follows:

kgeom_spheres *s;

s = (kgeom spheres *) kgeom new primitive (KGEOM SPHERES) ;
/* specify that we want 45 spheres */

s->nverts = 45;

Primitives can be cast to any type at any time, but you should be sure that you cast back to the general
kgeom primitive type before passing a specific primitive into any functions which take a primitive argu-
ment.

A.3.3. Primitive List Functions

Geometry primitives must be stored on the primitive list of an object in order to be written to afile. Once a
new primitive has been created and its data assigned, it can be added to the primitive list of an object using the
function kgeom add primitive (). A corresponding function kgeom remove primitiwve ()
allows you to remove a primitive from the primitive list.

The number of primitives which have been added to the primitive list of an object is returned by the function
kgeom number primitives (). A primitive a a specific position in the primitive list can be retrieved
using the function kgeom get primitive (). Note that another geometry object contained on the primi-
tive list of this object will be considered to be a single primitive. The entire subobject will be returned by the
kgeom get primitive function and the primitives contained in the subobject will not be considered
when counting the number of primitivesin the given object.

These primitive list functions should be the only means used for accessing the primitives on a primitive list.
Even though the primitive list of the geometry object could be accessed directly from the fields of the geome-
try object, it should be considered to be private.

A.3.4. Primitives and Data Vectors

Geometry services provides some flexibility in the organization of the data that is stored for a geometry primi-
tive. The actual amount of data contained in any given primitive for a particular component is dependent on a
number of different attributes, as well as the primitive itself. This section will illustrate the attributes that dic-
tate the amount of data present. Once you have a general understanding of these attributes, the specifics of
determining how much datais present for a particular primitive will follow.

Note that there are many object-level attributes which will affect the amount of data present in a given primi-
tive. The object whose primitive list contains a given primitive is generally assumed to dictate the object-level

3-9

attributes to that primitive. This also implies that all the primitives on the primitive list of an object will share
the same attributes. It is not possible to have two line primitives with different layouts on the same primitive
list, for instance.

It is aso important to note the following: Data are always organized into a linear array of data vertices.
Even multi-dimensional data, such as quadmesh data, will be handled as a linear array of data. The values
composing each vertex are always the leading index in this array. For example a series of (x,y,2) points will be

arranged xyzxyzxyzxyz in the linear array.

A.3.4.1. Location Data

Location data consists of a series of vertices that position a primitive in space. Location data is required by
nearly all primitives. Location datais always of type float.

The number of location vertices in any given primitive is determined by the nverts primitive attribute. The
only exceptions to this are the mesh and texture primitives, which have their own width, height, and depth
attributes. The size of each location vertex is determined by the location dim object attribute. This
attribute is by default set to 3 to indicate (X,y,2) vertices.

A.3.4.2. Color Data
Color datais used to provide color to aprimitive. Color datais optional. Color datais aways of type f1loat.

The number of color vectors will be afunction of the nverts primitive attribute, but may also vary depending
on the 1ayout object attribute. For example, a digoint polyline primitive will have 1 color per vertex for a
KPER VERTEX layout, but will have 1 color per linefor aKPER LINE primitive.

Color vectors generally contain three floats for storing red, green, and blue intensities, although if the object-
level attribute has alpha is set to TRUE, the color vector will contain an extra float which indicates opacity.
These numbers should range from 0.0 to 1.0, with 1.0 implying maximum intensity. If an alpha component is
present, it also should range from 0.0 to 1.0, with 0.0 implying that the primitive is totally transparent, and 1.0
implying that the primitive istotally opaque.

A.3.4.3. Normal Data

Normal data consists of a series of vectors that give extra directional and orientation information to a geometry
primitive. Normal dataisoptional. Normal dataisaways of type float.

The number of normal vectors will be afunction of the nverts primitive attribute, but may also vary depend-
ing on the 1ayout object attribute. For example, a digjoint triangles primitive will have 1 normal per vertex
for a KPER VERTEX layout, but will have 1 normal per triangle for a KPER FACE primitive. The size of
each location vertex is determined by the 1ocation dim object attribute. This attribute is by default set to 3

3-10

to indicate that the normals exist in (x,y,2) space.

A.3.4.4. Radius Data

Radius data consists of a series of values that are interpreted to be the radii of alist of spheres. Radius datais
optional. Radius data is of type £1loat. The number of radii in any given primitive is determined by the
nverts primitive attribute.

A.3.4.5. Texture Coordinate Data

Texture coordinate data consists of a series of coordinates that are used to index into a separate texture map.
Texture coordinate datais optional. Texture coordinate datawill be of type f1oat.

The number of texture coordinates in any given primitive is determined by the nverts primitive attribute. The
only exceptions to this are the mesh and texture primitives, which have their own width, height, and depth
attributes. The size of each texture coordinate is determined by the texture coord dim object attribute.
This attribute is by default set to 2 to indicate (u,v) texture coordinates which index into a 2D texture map.

A.3.4.6. Text Data

Text data consists of an array of text strings. Text data may be optional depending on the primitive. The num-
ber of text strings in a text primitive is determined by the nverts primitive attribute. Each text string is
alwaysaNULL terminated char*.

A.3.5. Examples

The examples given below illustrate the use of geometry services for reading existing geometry data from a
datafile, aswell as the use of geometry servicesin storing datato anew file.

A.3.5.1. Reading Geometry Data

The following example presents a simple model of how a program should open up a data object and read the
contents of the primitive list using geometry services.

The first step is to declare the necessary variables and read in the geometry object. The geometry object is
read with the kgeom read () call.

kgeom_object *obj;
int i, number, nverts;

float *locs = NULL;
float *cols = NULL;
float *rads = NULL;

obj = kgeom read("input.file");

The next step is to determine if there is geometry contained within this data object. We will use the
kgeom number primitives () function to determine whether or not the data object contains any primitives.

number = kgeom number primitives (obj) ;

311

if (number == 0)

{

kprintf ("No geometry in here!") ;
kgeom blast object (obj) ;
kexit (KEXIT SUCCESS) ;

Next, we will loop through the primitive list and process all geometry primitives that we understand. For each
geometry primitive, we will examine the data as well as the number of vertices contained in the data. In this
example, we will cast the more general kgeom primitive data structure to more specific primitive structures.
Once al the primitives are processed, we will free the geometry object using the kgeom blast object (). FoOr
the sake of brevity, we will only consider spheres and digjoint polylines. Also, after retrieving the data, it is
likely that it would be processed in some fashion. However, here the datais just examined for the sake of illus-
tration.

for (i = 0; 1 < number; i++)

{

kgeom primitive *primitive = kgeom get primitive (obj, 1i);

switch (primitive->type)

{

case KGEOM_ SPHERES

{

kgeom_ spheres *spheres = (kgeom spheres *) primitive;
nverts = spheres->nverts;

locs = spheres->locs;

cols = spheres->cols;

rads = spheres->rads;

/* presumably something interesting would be done here */
} break;

case KGEOM POLYLINE DIS

{

kgeom polyline *lines = (kgeom polyline *) primitive;
nverts = lines->nverts;

locs = lines->locs;

cols = lines->cols;

/* presumably something interesting would be done here */
} break;

default:
kprintf ("Sample code doesn’t recognize that primitive") ;

}

/* this will free the geometry object and all of its data */
kgeom _blast object (obj) ;

It isimportant to be aware that the data pointers within each geometry primitive will be freed when the geome-
try object is blasted. To keep the data in memory beyond this, we must either duplicate the data or assign the

3-12

data pointers in the primitive to nurL before blasting the object.

A.3.5.2. Writing Geometry Data

The example below presents a simple model of how a program should output geometry into a data file using
geometry services.

Thefirst step isto declare the necessary variables and open the output data object. The new geometry object is
allocated with the kgeom new object () call.

kobject *obj;

kgeom primitive *primitive;

obj = kgeom new object () ;
At this time, we may want to set some interesting attributes on the data object. For example, we may wish to
assign the name of the geometry object.

obj->name = kstrdup("cool dataset");
For the most part, the default object attribute values will be sufficient. However, if we want to set any specific

attributes that will determine the amount of datain an object, we should do so now. For this example, we will
set the layout attribute to dictate that we wish to only have PER FACE data contained in this geometry object.

obj->layout = KPER FACE;

We can now begin to create our primitives and add them to the data object. Some components of a geometry
primitive are optional. If we have no data to put for these components, we may leave them pointing to NULL.
After we are done adding all the primitives, we then write the object with the kgeom write object () function
and free it using the kgeom blast object () function.

/*-- add the first primitive -- sphere list with 10 spheres --*/
primitive = kgeom new primitive (KGEOM_SPHERES) ;
primitive->spheres.nverts = 10;

primitive->spheres.locs =

cool function to get sphere locations() ;
primitive->spheres.rads =

cool function to get sphere radii();
kgeom_add_primitive (obj, primitive);

/*-- add the second primitive

-- disjoint line with 3 line segments --*/
primitive = kgeom new primitive (KGEOM_ POLYLINE DIS) ;
primitive->polyline.nverts = 6;

primitive->polyline.locs =
cool function to get line locations() ;
kgeom_add primitive (obj, primitive);

/*-- add the third primitive
-- disjoint triangles with 4 triangles --*/

primitive = kgeom new primitive (KGEOM_TRIANGLES DIS) ;
primitive->triangles.nverts = 12;
primitive->triangles.locs =

cool function to get line locations() ;
primitive->triangles.norms =

cool function to get calculate norms() ;
kgeom_add_primitive (obj, primitive);

3-13

kgeom write object (obj, "output.file");
kgeom _blast object (obj) ;

Note that we did not need to free any of the primitives; they will all be freed as part of the geometry object in
the kgeom blast object () call.

Object-Level Attributes

Attribute Legal Definition
and Default Values
ambient color 0.0 < 1.0 An object’s ambient reflectance is com-
bined source, and is equally scattered
float throughout a scene. These values indi-
ambient color [3] [.25 .25 .25] cate the amount of reflected incoming

ambient light in each of the R, G, and B
components. The value will range from
0.0to 1.0 where 0.0 implies complete
absorbtion of all ambient light.

Persistence: stored

center This attribute is the center point of the
extent of the geometry contained in this
float object. Theattributehas center
center [3] must also be set to TRUE to indicate

that there is a center point present.

Persistence: stored

color 0.0 < 1.0 This attribute is an RGB object color
which will dictate the object color in
float the absence of any primitive color. The
color[3] [1.0 1.0 1.0] atributehas_color must aso be set

to TRUE to indicate that thereisan
object level color present.

Persistence: stored

diffuse color 0.0 < 1.0 An object’s diffuse reflectance is com-
bined 0.0 to 1.0 where 0.0 implies com-
float plete absorbtion of all diffuse light.
diffuse color (3] [.5 .5 .5]

Persistence: stored

has_alpha TRUE This attribute indicates that opacity val-
FALSE ues are present in this object. Thiswill
unsigned char imply that all primitive color vectors
has_alpha FALSE are of size 4, and tht the opacity

object attribute should be interpreted.
Persistence: stored

3-14

Object-Level Attributes

Attribute Legal Definition
and Default Values
has_bounding box TRUE This attribute indicates that a bounding
FALSE box is present inthemin and max
unsigned char attributes. The min and max attributes
has_bounding box FALSE define opposing corners of the bound-
ing box.
Persistence: stored
has_center TRUE This attribute indicates that a center is
FALSE present in the center attribute of this
unsigned char object.
has_center FALSE
Persistence: stored
has_color TRUE This attribute indicates that a color is
FALSE present in the color attribute of this
unsigned char object.
has_color FALSE
Persistence: stored
has matrix TRUE This attribute indicates that a matrix is
FALSE present in themat rix attribute of this
unsigned char object.
has matrix FALSE

Persistence: stored

layout KPER VERTEX The primitives in the object can have
KPER LINE per vertex, per face, or per line data.
int KPER_FACE This attribute specifiesif color and nor-
layout NULL KPER_CELL mal vectors are associated with aver-
tex, face or edge.
Persistence: stored
location dim > 1 This attribute specifies the dimensional -

int

location_dim 3

ity of the location vertices. A dimen-
sion of 2 would imply a 2D space with
locations specifiedinx andy. A
dimension size of 3 would imply a3D
space with locations specified in x, y,
and z.

Persistence: stored

3-15

Object-Level Attributes

Attribute
and Default

Legal
Values

Definition

matrix

float

matrix[16]

This attribute is the 4x4 transformation
matrix which should be applied to the
location coordinates of the object. The
atribute has_matrix must aso be
set to TRUE to indicate that thereisa
matrix present.

Persistence: stored

max

float

max [3]

This attribute is the maximum corner of
the bounding box which defines extent
of the geometry contained in this
object. The attribute min must also be
set along with this attribute to fully
define the bounding box. The attribute
has_bounding_ box must aso be
set to TRUE to indicate that thereisa
bounding box present.

Persistence: stored

float

min[3]

This attribute is the minimum corner of
the bounding box which defines extent
of the geometry contained in this
object. The attribute max must also be
set along with this attribute to fully
define the bounding box. The attribute
has_bounding box must also be
set to TRUE to indicate that thereisa
bounding box present.

Persistence: stored

modeling space

float

modeling space KWORLD SPACE

KWORLD_SPACE

KNDC_SPACE

The modeling space attribute defines
the coordinate space in which the loca-
tion datais defined. A value of
KNDC_SPACE impliesthat all location
data should be in normalized device
coordinates and will range between 0.0
and 1.0.

Persistence: stored

opacity

float
opacity 1.0

0.0 < 1.0

The opacity attribute is areal number
between 0.0 and 1.0 where 0.0 implies
that the object is completely transpar-
ent. It should only be interpreted if the
has_alpha attribute is set to TRUE.

Persistence: stored

3-16

Object-Level Attributes

float

specular color([3]

.25

.25]

Attribute Legal Definition
and Default Values
specular color 0.0 < 1.0 An object’s specular reflectance is com-

bined and like diffuse reflection, is
brighter as the incident angle nears per-
pindicular. However, unlike diffuse
reflectance, specular reflectanceis
reflected away from the object in a par-
ticular direction (the reflected direction
isthe mirror angle of the angle between
the surface normal and thisincident
direction). These valuesindicate the
amount of reflected specular light in
each of the R, G, and B components.
The values may range from 0.0 and 1.0
where 0.0 implies no specular reflec-
tion.

Persistence: stored

specular exponent

float

specular_exponent

0.0 < 200.0

Controls the sharpness of specular
highlights

Persistence: stored

texture coord dim > 1 This attribute specifies the dimensional -
ity of the texture coordinate vertices. A
int dimension of 2 would imply a 2D space
texture coord dim 2 with locations specifiedinuand v. A
dimension size of 3 would imply a3D
space with locations specified in u, v,
and w.
Persistence: stored
visible TRUE The boolean attribute is a flag which
FALSE specifies whether the object isvisible or
int not.
visible TRUE

Persistence: stored

A.4. Geometry Primitives and Associated Attributes

The data associated with each primitive consists of multiple data components.
KGEOM_SPHERES primitive consists of location data, color data, and radii data. These data components are

assigned to the primitive structure.

3-17

For example, a

The following table presents each primitive in turn, first listing the data pointers, then specifying the primi-
tive's attributes. Note that the double linesin the table delineate these two parts of the primitive specification.

Table 12: Geometry Primitives and Attributes

Primitive Component Description
Name or Attribute
KGEOM_POLYLINE DISCONNECTED A digjoint polyline KGEOM_POLYLINE DISCON-
KGEOM_POLYLINE_CONNECTED NECTED with N verticesresultsin N/2 lines. A
connected polyline KGEOM_POLYLINE_CON-
NECTED Wwith N vertices resultsin N-1 lines.
float * An array of vertex locations. The dimension of
locs thelocationsis set by the location dim
attribute. The number of locationsis specified by
thenverts attribute.
float * An optional array of colors. The color data will
cols contain either RGB or RGBa vectors depending
on how the has_alpha attributeis set. The num-
ber of colorswill be affected by the 1ayout
attribute.
int This value specifies the number of vertices.
nverts Default: unspecified
int This attribute specifies the line type.
linetype Default: 1
int This attribute specifies the line width.
linewidth Default: 1
KGEOM_TRIANGLES DISJOINT A digoint polytriangles primtive with N vertices
KGEOM TRIANGLES CONNECTED can construct N/3 triangles. A connected polytri-
angles primitive with N vertices can construct
N-2 triangles.
float * An array of vertex locations. The dimension of
locs thelocationsis set by the location dim
attribute. The number of locationsis specified by
thenverts attribute.
float * An optional array of colors. The color data will
cols contain either RGB or RGBa vectors depending
on how thehas_alpha attributeis set. The num-
ber of colorswill be affected by the 1ayout
attribute.
float * An array of normals. The number of normals will
norms be affected by the 1ayout attribute. The dimen-
sionality of the normalsis set by the 1oca-
tion_dim attribute.
float * An array of texture coordinates. The dimension-
tcoords dity of the texture coordinatesis specified by the
texture coord dim atribute.

3-18

Table 12: Geometry Primitives and Attributes

Primitive Component Description
Name or Attribute
int This attribute specifies the number of verticesin
nverts the connected or digjoint polytriangles.
Default: unspecified
char * This attribute will provide a file name from which
texture the KGEOM_TEXTURE2D primitive associated
with this primitive can be obtained.
Default: NULL
KGEOM_SPHERES A list of spheres, where the number of spheresis
equal to the value specified by thenverts
attribute.
float * An array of vertex locations. The dimension of
locs thelocationsisset by the location dim
attribute. The number of locationsis specified by
thenverts attribute.
float * An optional array of colors. The color data will
cols contain either RGB or RGBa vectors depending
on how the has_alpha attribute is set.
float * A 1D array of sphere radii.
radii
int This attribute specifies the number of sphere cen-
nverts ters.
Default: unspecified
KGEOM_CYLINDERS A list of cylinders, where the number of cylinders
isequa tonverts /2.
float * An array of vertex locations. The dimension of
locs thelocationsis set by the location dim
attribute. The number of locationsis specified by
the nverts attribute.
float * Arrays of cylinder top and bottom radii.
radl
float *
rad2
float * An optional array of colors. The color data will
cols contain either RGB or RGBa vectors depending
on how the has_alpha attributeis set. The num-
ber of colorswill be affected by the 1ayout
attribute.
int This value is the number of cylinders times two.
nverts Default: unspecified
KGEOM_DIRECTED POINTS The number of directed pointsis given by the
value of thenverts attribute.

3-19

Table 12: Geometry Primitives and Attributes

Primitive Component Description
Name or Attribute
float * An array of vertex locations. The dimension of
locs thelocationsis set by the location dim
attribute. The number of locationsis specified by
thenverts attribute.
float * An optional array of colors. The color data will
cols contain either RGB or RGBa vectors depending
on how thehas_alpha attributeis set.
float * An array of normals. The dimensionality of the
norms normalsis set by the location dim attribute.
int This attribute specifies the number of directed
nverts points.
Default: unspecified
KGEOM_TEXT A list of null terminated strings.

kstring *

strings

An array of strings.

kstring *

An array of font names, one for each string.

fonts
float * Thereis an array each for text location, offsets,
locs ups, and flows. The dimensionality of the loca-
float * tionsisset by the location dim attribute. Each
offsets string has alocation vector, an offset vector, an
float * up vector, and a flow vector which indicates what
ups direction to draw thetext in.
float *
flows
float * There are optional arrays of text foreground and
cols background colors, one foreground and back-
float * ground color vector for each string.
bgcols The color datawill contain either RGB or RGBa
vectors depending on how the has_alpha
attribute is set.
int This attribute specifies the number of strings.
nverts Default: unspecified
KGEOM_MARKERS A list of markers.
float * An array of vertex locations. The dimension of
locs thelocationsis set by the location dim
attribute. The number of locationsis specified by
the nverts attribute.
float * There are optional arrays of marker foreground
cols and background colors, one foreground and back-
float * ground color vector for each marker. The color
bgcols datawill contain either RGB or RGBa vectors

depending on how the has_alpha attributeis set.

3-20

Table 12: Geometry Primitives and Attributes

Primitive Component Description
Name or Attribute
int This attribute specifies the number of markers.
nverts Default: unspecified
int This attribute can have the value of
makertype KMARKER SQUARE, KMARKER TRIANGLE,
KMARKER CROSS, KMARKER BOW_TIE,
KMARKER ARC, KMARKER DIAMOND,
KMARKER CIRCLE, KMARKER V,
KMARKER HEXAGON, KMARKER X,
KMARKER DOT, KMARKER CARET,
KMARKER POINT, KMARKER DAGGER, Of
KMARKER BOX.
Default: KMARKER SQUARE
KGEOM_POLYGON A single polygon, where the value of the nverts
attribute specifies the number of verticesin the
polygon, which is one more than the number of
line segments in the polygon.
float * An array of vertex locations. The dimension of
locs thelocationsis set by the location dim
attribute. The number of locationsis specified by
thenverts attribute.
float * Thereis an optional array of polygon foreground
cols colors. The number of foreground colors will
float * either be equal to nverts Thereisaso asingle
bgcol optional background color. The color data will
contain either RGB or RGBa vectors depending
on how thehas_alpha attributeis set.
int This attribute specifies the number of verticesin
nverts the polygon.
Default: unspecified
int This attribute specifies the line type.
linetype Default: 1
int This attribute specifies the line width.
linewidth Default: 1
KGEOM_RECTANGLES A list of rectangles, where the value of the
nverts attribute specifies the number of rectan-
glesdivided by two.
float * Each rectangle has a minimum corner vertex and
locs amaximum corner vertex. Each vertex hasa

location vector. The dimension of the locationsis
set by the location dim attribute. The number
of locationsis specified by thenverts attribute.

3-21

Table 12: Geometry Primitives and Attributes

Primitive Component Description
Name or Attribute
float * Each rectangle has an optional line color vector
cols and afill color vector. The color datawill con-
float * tain either RGB or RGBa vectors depending on
bgcols how the has_alpha attributeis set.
int This attribute specifies the number of verticesin
nverts therectanglelist. The number of rectanglesis
nverts / 2.
Default: unspecified
int This attribute specifies the line type.
linetype Default: 1
int This attribute specifies the line width.
linewidth Default: 1
KGEOM_ELLIPSES A list of ellipses, where the value of the nverts
attribute specifies the number of ellipses.
float * Each ellipse has a center vertex location vector.
locs The dimension of the locationsis set by the
location_dim atribute. The number of loca
tionsis specified by the nverts attribute.
float * Each ellipse has a major and minor axis. The
radl number of axis vectorsis given by the value of
float * the nverts attribute.
rad2
float * Each ellipse has an optional line color vector and
cols afill color vector. The color datawill contain
float * either RGB or RGBa vectors depending on how
bgcols thehas_alpha attributeis set.
int This attribute specifies the number of verticesin
nverts thelist of elipses.
Default: unspecified
int This attribute specifies the line type.
linetype Default: 1
int This attribute specifies the line width.
linewidth Default: 1
KGEOM_QUADMESH A 2D mesh of data.
float * Quadmeshes consist of width by height loca
locs tions. The dimension of the locationsis set by
the location dim attribute. The number of
locationsis specified by the nverts attribute.
float * An optional array of colors. The color data will
cols contain either RGB or RGBa vectors depending

on how the has_alpha attribute is set. The num-
ber of colorswill be affected by the 1ayout
attribute.

3-22

Table 12: Geometry Primitives and Attributes

Primitive Component Description
Name or Attribute
float * An array of normals. The number of normalswill
norms be affected by the 1ayout attribute. The dimen-
sionality of the normalsis set by the 1oca-
tion_ dim attribute.
float * An array of texture coordinates. The dimension-
tcoords aity of the texture coordinatesis specified by the
texture coord_dim attribute.
int These attributes specify the number of points
width available in the quadmesh.
height Default: unspecified
char * This attribute will provide afile name from which
texture the KGEOM_TEXTURE2D primitive associated
with this primitive can be obtained.
Default: NULL
KGEOM_OCTMESH A 3D mesh of data.
float * Octmeshes consist of width by height by
locs depth locations. The dimension of the locations
isset by the location dim attribute. The num-
ber of locations is specified by the nverts
attribute.
kubyte * An optional array of colors. The color data will
cols contain either RGB or RGBa vectors depending
on how the has_alpha attribute is set. The num-
ber of colorswill be affected by the 1ayout
attribute.
float * An array of normals. The number of normalswill
norms be affected by the 1ayout attribute. The dimen-
sionality of the normalsis set by the 1oca-
tion_dim attribute.
float * An array of texture coordinates. The dimension-
tcoords dity of the texture coordinatesis specified by the
texture coord dim atribute.
int These attributes specify the number of points
width available in the quadmesh.
height Default: unspecified
depth
char * This attribute will provide afile name from which
texture the KGEOM_TEXTURE2D primitive associated
with this primitive can be obtained.
Default: NULL
KGEOM_TEXTURE2D A 2D texture of colors.

3-23

Table 12: Geometry Primitives and Attributes

Primitive Component Description
Name or Attribute
kubyte * An array of colors. The color datawill contain
cols either RGB or RGBa vectors depending on how
thehas_alpha attributeis set.
int These attributes specify the number of points
width availablein the 2D texture.
height Default: unspecified
KGEOM_TEXTURE3D A 3D texture of colors.
kubyte * An array of colors. The color datawill contain
cols either RGB or RGBa vectors depending on how
thehas_alpha attributeis set.
int These attributes specify the number of points
width available in the 3D texture.
height Default: unspecified
depth
KGEOM_TEXTURE2D A 2D texture of colors.
kubyte * An array of colors. The color datawill contain
cols either RGB or RGBa vectors depending on how
thehas_alpha attributeis set.
int These attributes specify the number of points
width availablein the 2D texture.
height Default: unspecified
KGEOM VIEW XFORM A viewing transformation.
float A transformation matrix to apply to the current
matrix[16] viewing position.
Default: identify matrix
KGEOM_OBJECT_XFORM A transformation to be applied to a particular
object.
kstring The name of the object to apply the transfor-
name maiton to.
Default: NULL
float The transformation matrix to apply to the object’s
matrix[16] locations.

Default: identity matrix

float An additional trandlation to apply to the object.
translate [3] Default: [0.0 0.0 0.0]
int Indicates if the transformation is relative to the
relative current position or specifies an absolute transfor-
mation.
Default: KRELATIVE
KGEOM_CAMERA_ ORIENTATION A camera specification to use when rendering.
float The current eye position of the camera.
eye[3] Default: [0.0 0.0 0.0]

3-24

Table 12: Geometry Primitives and Attributes

Primitive Component Description
Name or Attribute

float The current position to point the camera at.
at [3] Default: [0.00.0 1.0]

float The current up direction
up [3] Default: [0.0 1.0 0.0]

float Specifiesthe field of view of the camerain
field of view degrees.

Default: 90.0

float Specifies the near clip plane.
hither Default: -1.0

float Specifies the far clip plane.
yon Default: 1.0

int Specifiesif the rendering should be done with a

projection

parallel or perspective projection.
Default: KPROJECTION_PERSPECTIVE

int

is_stereo

Specifiesif stereo rendering should be done.
Default: FALSE

float
eye distance

Specifies the distance between the two stereo
cameras.
Default: 0.0

float
focal length

Specifies the distance to the intersection between
the viewing directions of the the two stereo cam-
eras.

Default: 1.0

KGEOM_VR_EVENT

An event from avirtua reality device.

int

have button events

Thisis TRUE if any button events are present.
Default: FALSE

int

have_rotations

Thisis TRUE if any rotation events are present
Default: FALSE

int

have translations

Thisis TRUE if any trandation events are present
Default: FALSE

float
rotate [3]

This specifies an XY Z rotation.
Default: [0.0 0.0 0.0]

float
translate[3]

This specifies an XY Z trandlation.
Default: [0.0 0.0 0.0]

int
buttons [9]

This specifies the state of 9 buttonson aVR
device. A value of 1 impliesthat the button is
pressed.

Default: [000000000]

int

clock

A clock value from the VR device.
Default: 0

KGEOM_OBJECT

Another geometry object

3-25

Table 12: Geometry Primitives and Attributes

Primitive Component Description
Name or Attribute
kgeom object * This primitive will contain a pointer to another
object geometry object. In general, this primitive should

not be used. It will be hidden in the use of the
kgeom add_primitive () and
kgeom get primitive () functionswhen
they are used with another geometry object.
Default: NULL

A.5. Geometry Service Functions

A.5.1. Object Functions

Geometry data and attributes are stored and retrieved from a geometry object. The following functions allow
you to create a new geometry object, write and read a geometry object to and from afile or transport, copy a
geometry abject, or free a geometry object. Geometry objects are represented by pointers to the data structure
kgeom object.

» kgeom _new_object() - construct a new geometry object
* kgeom write_object() - write a geometry object

» kgeom_read_object() - read a geometry object

* kgeom_copy_object() - copy a geometry object

» kgeom blast_object() - free a geometry object

A.5.2. kgeom_new_object() — construct a new geometry object

Synopsis
kgeom object *
kgeom new object (void)

Returns

a pointer to the constructed object on success, NULL on failure

Description
This function will construct a new geometry object structure and initialize all of its fields with their
default values.

Once constructed, the fields of this geometry object can be assigned specific values. For a complete

3-26

explanation of these fields, see the kgeom_object man page.
Geometry Primitives and Primitive Lists

A geometry primitive contains geometric data which describes a shape in space. Lines, triangles, and
spheres, are all considered to be geometric primitives. For a complete description of all the geometry
primitives, see the kgeom_primitive man page.

Each geometry object contains alist of such geometry primitives. New primitives can be created using
the function kgeom new primitive (). Once a new primitive has been created and its data
assigned, it can be added to the primitive list of the object using the function kgeom add primi-
tive (). A corresponding function kgeom remove primitive () alowsyou to remove aprim-
itive from the primitive list of an object.

The number of primitives which have been added to the primitive list of an object is returned by the
function kgeom number primitives (). A primitive at a specific position in the primitive list
can beretrieved using the function kgeom get primitive ().

The primitive functions should be the only means used for accessing the primitives on a primitive list.
Even though the primitive list of the geometry object could be acccessed directly, it should be consid-
ered to be private. By using the primitive list function calls, you can be certain to maintain the
integrity of the primitive list.

Reading and Writing Geometry Objects

A geometry object can be written out to a file, or other transport using the function
kgeom write object (). Thisfunction will write out all the object and primitive information to
a specified file.

Geometry that has been stored in a file can be read back with the function
kgeom read object (). This function will construct a new object into which it will read the
geometry; it is not necessary to pre-construct an object with the kgeom new_object () function
prior to reading.

Other Geometry Object Functions

A geometry object can be copied using the function kgeom copy object ().

A geometry object can be destroyed with a call to the function kgeom geom blast object ().

This will destroy the object and all of its primitives, freeing all associated memory. Be careful not to
access any of the geometry object’s data after blasting it.

Examples
This simple code illustrates how a new geometry object would be constructed :

kgeom_object * obyj;

3-27

obj = kgeom_new_object();

A.5.3. kgeom_write_object() — write a geometry object

Synopsis
int
kgeom write object (kgeom object *object, char *filename)

Input Arguments
object
geometry object to write
filename
filename to write geometry object to.

Returns
TRUE on success, FAL SE otherwise

Description
This function will write the given geometry object to a specified file. The object can later be read
from that file using the kgeom read object () function.
This function will write everything contained in the geometry object to thefile. All the object informa-
tion will be written followed by the information and data contained in each primitive in the object’s
primitive list.

After the object has been written, you may freeit using the kgeom blast object () function.

Examples
The following code would be used to write a geometry aobject out to the file "datakgm":

kgeom_object * geom,

{/ presumably some primitives would be added here

kgeom write object(geom, "data.kgm™);

3-28

A.5.4. kgeom_read_object() — read a geometry object

Synopsis
kgeom object *
kgeom read object (char *filename)

Input Arguments
filename
filename to read geometry from

Returns

pointer to a new geometry object containing the geometry data contained in the file, NULL otherwise
Description

This function will read an entire geometry object object from the specified file.

If the file does not contain a valid geometry object, then it will be closed and nothing will be returned.

If it does contain a valid header, then a new object containing the geometry data from the file will be
returned.

Examples
The following code would be used to read in a geometry object from the file "data.kgm”:

kgeom_object * geom,;

geom = kgeom read object("data.kgm™);

3-29

A.5.5. kgeom_copy_object() — copy a geometry object

Synopsis
kgeom object *
kgeom copy object (kgeom object *object, kgeom object *new object)

Input Arguments
object
geometry object to copy

Output Arguments
new_object
a pointer to geometry object that will serve as a destination for the copy. If NULL, then a new destina-
tion abject will be alocated.

Returns
copy of object

Description
This function will copy the given geometry object, creating a duplicate of the object as well as of al
the object’s primitives. All the data contained in each of the object’s primitives will be copied as well.

If desired, a preallocated object can be provided as the destination for the copy. Any data or primitives
which may have existed in the destination prior to calling this routine will be destroyed.

If no destination object is provided, one will be allocated and returned.

3-30

A.5.6. kgeom_blast _object() — free a geometry object

Synopsis
void
kgeom blast object (kgeom object *object)

Input Arguments
object
geometry object to destroy

Description
This function will destroy the given geometry object, first freeing all the primitives on the object’s
primitive list, and then freeing the object itself.

Note that geometry services will free all the primitives and data pointers within the geometry object.
Since geometry services will try to free all memory pointed to by the geometry object, be careful not to
place any static primitives or point to static arrays of data from within the geometry object. 1f geome-
try servicestriesto free a statically allocated pieces of memory, it will result in afatal error.

If you wish to keep any component of the geometry object in memory, simply remove it from the
geometry object prior to calling this function. For instance, to keep a primitive from an object in mem-
ory after the object has been destroyed, that primitive could first be removed with the
kgeom remove primitive () function. Similarly, to keep aparticular array of datafrom aprim-
itive in memory after the associated primitive has been destroyed, the pointer to that array could be
assigned to NULL. This routine will only free the primitives and data pointers which are seen within
the object.

A.5.7. Primitive Functions

Geometry data is stored specifically in geometry primitive structures. The following functions are available
for creating, copying, and freeing geometry primitives.

» kgeom _new_primitive() - construct a new geometry primitive
» kgeom copy_primitive() - copy a geometry primitive
*» kgeom_blast_primitive() - destroy a geometry primitive

A.5.8. kgeom_new_primitive() — construct a new geometry primitive

3-31

Synopsis
kgeom primitive *
kgeom new primitive (int type)

Input Arguments

type
type of primitive to construct

Returns
apointer to the constructed primitive on success, NULL on failure

Description
This function will construct a new geometry primitive structure of the given type and initialize all
default values.

A geometry primitive contains geometric data which describes a shape in space. Lines, triangles, and
spheres, are all considered to be geometric primitives. Each "type" of primitive is actually represented
by adistinct structure; these structures have been unioned into a common kgeom primitive struc-
ture.

Thetype of primitiveis declared on instantiation, asin this example :

kgeom primitive *prim;

prim = kgeom new primitive (KGEOM POLYLINE CONNECTED) ;

The type of primitive is tracked in atype field which is common to all the primitive structures. It can
aways be accessed as prim- >type from any primitive structure.

For a complete description of all the types of geometry primitives, see the kgeom primitive man page,
or consult the Data Services Manual : Programming Services Volume

Note that a geometry primitive is not limited to a single instance of a shape. For example, a single
spheres primitive can contain many spheres and a single polyline primitive can contain many lines.

The data within a primitive consists of several components; the predominate component which actually
defines the size and position of the geometry is the location data. The location data consists of alist of
vertices. The number of these vertices is a specified by a field within the primitive and is a defining
characteristic for most geometry primitives.

Additional components which may be present in a geometry primitive are color, normals, or texture
coordinates. All components except for the location component are optional in any given geometry
primitive.

Most the fields of a geometry primitive are pointers to allocated arrays which contain these compo-

nents. The size of these arrays is implied from the number of vertices present in the geometry primi-
tive, and the presentation characteristics (layout, location_dim, texture_coord_dim, and has_alpha) set

3-32

in the associated geometry object. Most data within a geometry primitive will be floating point.

Geometric datais always stored "elements first", with the vectors forming the leading dimension of the
array. For example, 3D location vertices will be stored in the order XYZXYZXYZ...

The number of location vertices is by definition the number of vertices in the primitive. The size of
each vertex will be determined by the location_dim field of the associated object.

The number of color and normal vectors will be a function of the number of vertices, but will vary
depending on the primitive and the layout field of associated geometry object. For example, a digoint
polyline primitive will have 1 color per vertex for aKPER_VERTEX layout, but will have 1 color per
line for aKPER_LINE primitive.

The size of each color vector will either be 3 (for RGB), of 4 (for RGBa) if the has_apha field of the
associated object is TRUE. The size of each normal vector will match the size of location_dim field in
the associated object.

If texture coordinate vectors are present, the number of texture coordinates must match the number of
vertices in the primitive. The size of each texture coordinate will be determined by the tex-
ture_coord_dim field of the associated object.

If the modeling_space field of the associated object is set to KNDC_SPACE, the location data will be
interpreted as normalized device coordinates and thus should range between 0.0 and 1.0.

Color data is represented by RGB vectors with three floats determining the red, green, and blue inten-
sity. These numbers should range from 0.0 to 1.0, with 1.0 implying maximum intensity. If an alpha
component is present it will determine the transparency of the primitive. It also should range from 0.0
to 1.0, with 0.0 implying that the primitive is totally transparent, and 1.0 implying that the primitive is
totally opague.
Since the fields of a geometry primitive vary from type to type, we must specify the type of primitive
we are working with in order to access the components of the primitive structure. For example, if we
had a spheres primitive, we would have to do the following to access the specific sphere fields :

kgeom primitive *prim;

prim = kgeom new primitive (KGEOM_ SPHERES) ;

// specify that we want 45 spheres

prim->spheres.nverts = 45;

This can aternatively be done by casting the structure to its specific primitive type asfollows :

kgeom_ spheres *s;

s = (kgeom_spheres *) kgeom_new_primitive(KGEOM_SPHEREYS);

3-33

// specify that we want 45 spheres
s->nverts = 45;
Primitives can be cast to any type at any time, but you should be sure that you cast back to the genera

kgeom primitive * type before passing aspecific primitiveinto any functions which take a prim-
itive argument.

A.5.9. kgeom_copy_primitive() — copy a geometry primitive

Synopsis
kgeom primitive *
kgeom copy primitive(
kgeom object *object,
kgeom primitive *primitive,
kgeom primitive *new primitive)

Input Arguments
object
object to which original primitive belongs
primitive
primitive to copy

Output Arguments
new primitive
apointer to geometry primitive that will serve as a destination for the copy. If NULL, then a new desti-
nation primitive will be allocated.

Returns
copy of primitive

Description
This routine will copy a given primitive and all associated data into another primitive structure. |If
another primitive structure is not provided for the destination of the copy, a new one will be con-
structed.

The abject presentation is used to determine how much datais present in the primitive, so make certain
the has alpha, layout, location _dim, and other fields correctly reflect the data in the primitive. The
copied primitive will not be added to the object, so you are free to destroy it or add it to another object.

A.5.10. kgeom_blast_primitive() — destroy a geometry primitive

Synopsis
int
kgeom blast primitive (kgeom primitive *primitive)

Input Arguments
primitive
primitive to free

Returns
TRUE on success, FAL SE otherwise

Description
This routine will free a given primitive and all associated data.

Note that geometry services will free all the data pointers within the geometry primitive. Because of
this, be careful not to point to static arrays of data within the geometry primitive. If geometry services
triesto free a statically allocated array, it will result in afatal error.

A.5.11. Primitive List Functions

Geometry datais stored and retrieved from a primitive list contained within a geometry object. The following
functions alow you to add and remove primitives from a primitive list, as well as determine the number of
primitives contained therein.

» kgeom add primitive() - add a primitive to a geometry object
» kgeom get_primitive() - get a primitive from a geometry object
* kgeom_number_primitives() - count the number of primitives in the given object

A.5.12. kgeom_add_primitive() — add a primitive to a geometry object

Synopsis
int
kgeom_add_primitive (
kgeom object *object,
kgeom primitive *primitive)

3-35

Input Arguments
object
object to add primitive to
primitive
primitive to add

Returns
TRUE on success, FALSE on failure

Description
This function will add the given primitive to the end of the primitive list of the given object.

Geometry Primitives and Primitive Lists

A geometry primitive contains geometric data which describes a shape in space. Lines, triangles, and
spheres, are al considered to be geometric primitives. For a complete description of all the geometry
primitives, see the kgeom primitive man page.

Each geometry object contains alist of such geometry primitives. New primitives can be created using
the function kgeom _new primitive (). Thefunction kgeom remove primitive () alows
you to remove a primitive from the primitive list of an object after it has been added. At any time, the
number of primitives which have been added to the primitive list of an object can be determined by the
function kgeom number primitives (). A primitive a any given position can be retrieved
using the function kgeom get primitive ().

The primitive functions should be the only means used for accessing the primitives on a primitive list.
Even though the primitive list of the geometry object could be acccessed directly, it should be consid-
ered to be private. By using the primitive list function calls, you can be certain to maintain the
integrity of the primitive list.

A.5.13. kgeom_get primitive() — get a primitive from a geometry object

Synopsis
kgeom primitive *
kgeom get primitive (
kgeom object *object,

int position)
Input Arguments
object
object to retrieve primitive from
position

position in list from which the primitive should be retrieved

3-36

Returns
TRUE on success, FALSE on failure

Description
This routine will get the primitive from the specified position in the primitive list. If the position is out-
side the bounds of the primitive list then aNULL pointer will be returned.

Geometry Primitives and Primitive Lists

A geometry primitive contains geometric data which describes a shape in space. Lines, triangles, and
spheres, are all considered to be geometric primitives. For a complete description of all the geometry
primitives, see the kgeom_primitive man page.

Each geometry object contains alist of such geometry primitives. New primitives can be created using
the function kgeom new primitive (). Once a new primitive has been created and its data
assigned, it can be added to the primitive list of the object using the function kgeom add primi-
tive (). A corresponding function kgeom remove primitive () allowsyou toremoveaprim-
itive from the primitive list of an object. The number of primitives which have been added to the prim-
itive list of an object isreturned by the function kgeom number primitives().

The primitive functions should be the only means used for accessing the primitives on a primitive list.
Even though the primitive list of the geometry object could be acccessed directly, it should be consid-
ered to be private. By using the primitive list function calls, you can be certain to maintain the
integrity of the primitive list.

A.5.14. kgeom_number_primitives() — count the number of primitives in the given object

Synopsis
int
kgeom number primitives(kgeom object *object)

Input Arguments
object
object to count primitivesin
Returns
the number of primitives contained in the object
Description

This function will return the number of primitives contained in the primitive list of the given object.

Geometry Primitives and Primitive Lists

3-37

A geometry primitive contains geometric data which describes a shape in space. Lines, triangles, and
spheres, are al considered to be geometric primitives. For a complete description of all the geometry
primitives, see the kgeom primitive man page.

Each geometry object contains alist of such geometry primitives. New primitives can be created using
the function kgeom _new primitive (). Thefunction kgeom remove primitive () alows
you to remove a primitive from the primitive list of an object after it has been added. A primitive at
any given position can be retrieved using the function kgeom get primitive ().

The primitive functions should be the only means used for accessing the primitives on a primitive list.
Even though the primitive list of the geometry object could be acccessed directly, it should be consid-
ered to be private. By using the primitive list function calls, you can be certain to maintain the
integrity of the primitive list.

A.5.15. Specialized Reading and Writing Functions

The following functions are used for doing incremental reads and writes of a data object. In general, these
functions should only be used if you wish to keep a single geometry primitive in memory at one time. The
kgeom write object andkgeom read object will call these functionsinternally.

» kgeom _start_writing_object() - write the first part of a geometry object
» kgeom write primitive() - write a geometry primitive

* kgeom _finish_writing_object() - write the last part of a geometry object
*» kgeom_done_writing() - close associated file after writing

» kgeom_start_reading_object() - read the first part of a geometry object
» kgeom read primitive() - read a geometry primitive

* kgeom finish _reading_object() - read the last part of a geometry object
» kgeom done reading() - close associated file after reading

A.5.16. kgeom_start writing_object() — write the first part of a geometry object

Synopsis
int
kgeom start writing object (kgeom object *object)

Input Arguments

object
geometry object to write

3-38

Returns
TRUE on success, FAL SE otherwise

Description
This routine will write the first part of a geometry object to the open fid. It should be followed by a
write of all the primitives, and then by afinish of the object.

In general, the kgeom write object () function should be used instead of this function. This
function has been made public to provide complete flexibility for writing a geometry object. It should
only be used when you wish to write a geometry object primitive-by-primitive. More information on
thisisavailableinthekgeom write primitive () man page.

The first part of a geometry object contains information which will be needed to later read the geome-
try primitive data. Specificaly, the layout, location_dim, texture _coord dim, and has_alphafields are
written as the first part of the object.

All other information contained within the geometry object is written after the primitives by the
kgeom finish writing object () call.

The fid internal to the geometry object specifies the file to which the the object will be written. In gen-
eral, thisfid is set when the geometry header iswritten by thekgeom write header () function.

A.5.17. kgeom_write_primitive() — write a geometry primitive

Synopsis
int
kgeom write primitive(
kgeom_object *object,
kgeom primitive *primitive)

Input Arguments
object
object to which primitive belongs
primitive
primitive to write

Returns
TRUE on success, FAL SE otherwise

Description
This routine will write a given primitive and all associated data to the file indicated by the provided
object.

3-39

In general, the kgeom write object () function should be used instead of this function. This
function has been made public to provide complete flexibility for writing a geometry object. It should
only be used when you wish to write a geometry object primitive-by-primitive.
If you wish to use this function to write out a primitive at a time, you should follow this sequence to
write out the the object:

kgeom write header (object, "filename");

kgeom start writing object (object) ;
At this point, you can start writing out individual primitives using the kgeom write primi-

tive () function. Thefileto be written tois determined from the open fid inside the object.

When you are done writing primitives, finish with the following calls:

kgeom finish writing object (object) ;

kgeom done writing(object) ;

The object presentation is used to determine how much data is present in the primitive, so make sure
the has_alpha, layout, location_dim, and other fields are set correctly. These should be valid before the
cal to kgeom start writing object () ismade. The primitive does not have to be present
on the object’s primitive list to be written.

A.5.18. kgeom_finish_writing_object() — write the last part of a geometry object

Synopsis
int
kgeom finish writing object (kgeom object *object)

Input Arguments
object

geometry object to write

Returns

TRUE on success, FAL SE otherwise

Description

This routine will terminate the primitive list by writing a-1 to an open fid. It will then write out all the

3-40

object specific information.

In general, the kgeom write object () function should be used instead of this function. This
function has been made public to provide complete flexibility for writing a geometry object. It should
only be used when you wish to write a geometry object primitive-by-primitive. More information on
thisisavailableinthekgeom write primitive () man page.

The first part of a geometry object should have aready been written by a cal to
kgeom start writing object (). That cal would have written any information which would
be needed to later read the geometry primitive data. Specifically, the layout, location_dim, tex-
ture_coord_dim, and has_alphafields of the object would already have been written out as the first part
of the object.

All other information contained within the geometry object is written after the primitives by this call.

Thefid internal to the geometry object specifies the file to which the the object will be written. In gen-
eral, thisfid is set when the geometry header iswritten by thekgeom write header () function.

A.5.19. kgeom_done_writing() — close associated file after writing

Synopsis

int kgeom done writing(kgeom object *object)

Input Arguments
object

geometry object to write filename - filename to write header to

Returns

TRUE on success, FAL SE otherwise

Description

This function will close the file associated with the geometry object after a write has been completed.

In general, the kgeom write object () function should be used instead of this function. This
function has been made public to provide complete flexibility for writing a geometry object. It should
only be used when you wish to write a geometry object primitive-by-primitive. More information on
thisisavailableinthekgeom write primitive () man page.

The fid internal to the geometry object specifies the file which will be closed. In general, thisfid is set
when the geometry header was written by the kgeom write header () function.

341

A.5.20

. kgeom_start_reading_object() — read the first part of a geometry object

Synopsis

int
kge

om_start reading object (kgeom object *object)

Input Arguments
object

geometry object to read

Returns

TRUE on success, FAL SE otherwise

Description

This routine will read the first part of a geometry object from an open fid. It should be followed by a
read of all the primitives, and then by afinish of the object.

In general, thekgeom read object () function should be used instead of this function. This func-
tion has been made public to provide complete flexibility for reading a geometry object. It should only
be used when you wish to read a geometry object primitive-by-primitive. More information on thisis
availableinthe kgeom read primitive () man page.

Thefirst part of a geometry object contains information which is needed to read the geometry primitive
data. Specifically, the layout, location_dim, texture_coord_dim, and has_alphafields are read in as the
first part of the object.

All other information contained within the geometry object is read after the primitives by the
kgeom finish reading object () call.

Thefid internal to the geometry object specifies the file from which the the object will beread. I1n gen-
eral, thisfid is set when the geometry header isread by the kgeom read header () function.

A.5.21. kgeom_read_primitive() — read a geometry primitive

Synopsis
kgeom primitive *
kgeom read primitive (kgeom object *object)

Input Arguments
object

object to which primitive will belong

3-42

Returns
new primitive with primitive data from file

Description
This routine will read a given primitive and all associated data from the file indicated by the provided
object. A new primitive will be constructed for this.
In general, the kgeom write object () function should be used instead of this function. This
function has been made public to provide complete flexibility for reading a geometry object. It should
only be used when you wish to read a geometry object primitive-by-primitive.
If you wish to use this function to read in a primitive at a time, you should follow this sequence to
reading the object:

object = kgeom read header ("filename") ;

If this has returned a valid object, then the object itself can be read. The next call will read in all the
specific information

kgeom start reading object (object) ;

At this point, you can start reading in individual primitives using the kgeom read primitive ()
function. Thefile to be read from is determined from the open fid inside the object. This function will
return NULL if there are no more primitives to read.

After al primitives have been read, finish with the following calls:

kgeom finish reading object (object) ;

kgeom done reading(object) ;
The object presentation is used to determine how much data is present in the primitive. The call to
kgeom start reading object () should haveinitialized these fields appropriately. The primi-

tive will not be added to the object, so you are free to destroy it or add it to a different object if you
choose.

3-43

A.5.22. kgeom_finish_reading_object() — read the last part of a geometry object

Synopsis
int
kgeom finish reading object (kgeom object *object)

Input Arguments
object
geometry object to read

Returns
TRUE on success, FAL SE otherwise

Description
This routine will read in all the object specific information.

In genera, thekgeom read object () function should be used instead of this function. This func-
tion has been made public to provide complete flexibility for reading a geometry object. It should only
be used when you wish to read in a geometry object primitive-by-primitive. More information on this
isavailableinthekgeom read primitive () man page.

Thefirst part of a geometry object should have aready been read by acall to kgeom start read-
ing object (). That cal would have read any information which was needed to read the geometry
primitive data. Specifically, the layout, location_dim, texture_coord_dim, and has_alpha fields of the
object would already have been read in as thefirst part of the object.

All other information contained within the geometry object is read after the primitives by this call.

Thefid internal to the geometry object specifies the file from which the object will be read. In general,
thisfid is set when the geometry header isread by thekgeom read header () function.

A.5.23. kgeom_done_reading() — close associated file after reading

Synopsis

int kgeom done reading(kgeom object *object)
Input Arguments

object
geometry object to write filename - filename to write header to

3-44

Returns
TRUE on success, FAL SE otherwise

Description
This function will close the file associated with the geometry object after a read has been completed.

In general, thekgeom read object () function should be used instead of this function. This func-
tion has been made public to provide complete flexibility for reading a geometry object. It should only
be used when you wish to read a geometry object primitive-by-primitive. More information on thisis
availableinthekgeom read primitive () man page.

The fid internal to the geometry object specifies the file which will be closed. In general, thisfid is set
when the geometry header was read by the kgeom read_header () function.

3-45

This page left intentionally blank

3-46

Table of Contents

A.Geometry DataServices00 oo A2
A.l Introduction . . . s O |
A.1.1. The Geometry Data Model C e e s 32
A.1.1.1. Geometry Primitives . 32
A.1.12. VisiQuest Geometry Format 33
A.2. Overview of Geometry Service Primitives 33
A.3. The Application Programming Interface (API) s
A.3.1. Geometry Object Functions . . . e Y
A.3.2. Geometry Primitive Functions 38
A.3.3. Primitive List Functions . 39
A.3.4. Primitivesand DataVectors . 39
A341 LocationData .. .31
A342 ColorData .31
A343.NormaDaa. .31
A344 RadiusData31
A.3.4.5. Texture CoordinateData .31
A346.TextData.31
A.35 Examples]
A.3.5.1. Reading Geometry Data s S
A.3.5.2. Writing Geometry Data . . . I S
A.4. Geometry Primitives and Associated Attrlbutes . S 4
A.5. Geometry Service Functions .32
A.5.1. Object Functions326
A.5.2. kgeom _new_object() — construct anew geometry Obj ect326
A.5.3. kgeom write object() — writea geometryobject 328
A.5.4. kgeom read object() — read a geometry object 329
A.5.5. kgeom_copy_object() — copy ageometryobject 330
A.5.6. kgeom_blast_object() — freea geometryobject 331
A.5.7. Primitive Functions . . . T S Y |
A.5.8. kgeom _new_primitive() — construct anew geometry pr|m|t|ve G S H
A.5.9. kgeom copy_primitive() — copy a geometry primitive 334
A.5.10. kgeom_blast_primitive() — destroy a geometry primitive 335
A.5.11. Primitive List Functions . . . S 1)
A.5.12. kgeom_add_primitive() — add a pr|m|t|ve to ageometry object T 13
A.5.13. kgeom_get_primitive() — get a primitive from a geometry object 336
A.5.14. kgeom_number_primitives() — count the number of primitivesin the given Obj ect ... L 337
A.5.15. Specialized Reading and Writing Functions 338
A.5.16. kgeom_start_writing_object() — write the first part of ageometry ObJECt 338
A.5.17. kgeom_write_primitive() — write a geometry primitive . . . e e o033
A.5.18. kgeom_finish_writing_object() — write the last part of ageometry object 340
A.5.19. kgeom_done writing() — close associated file after writing . . . N]
A.5.20. kgeom_start_reading_object() — read the first part of a geometry obj ect ... L 342
A.5.21. kgeom_read primitive() — read a geometry primitive . . e e 342
A.5.22. kgeom _finish_reading_object() — read the last part of ageometry ObjeCt 344

A.5.23. kgeom_done_reading() — close associated file after reading 344

This page left intentionally blank

Program Services \Volume |

Chapter 4

Color Data Services

Copyright (c) AccuSoft Corporation, 2004. All rights reserved.

Chapter 4 - Color Data Services

A. Color Data Services

Color Data Services is designed to support the specific needs of storing information related to color and col-
ormaps. While the other application services are built around their own self-contained data models, Color
Data Services is intended to coexist with other data models. The attributes provided through Color Data Ser-
vices are designed to augment the functionality provided by Polymorphic Data Services and Geometry Data
Services. The additional attributes available with the Color Data Services data model allow you to specify how
value data vectors should be interpreted by visualization programs as well as providing you with a mechanism
for easily creating colormaps and operating on them.

Polymorphic VALUE data COLOR

-or- INTERPRETATION
Geometry COLOR data

refering to map

KCOLOR_COLORSPACE
KRGB

o

riginal map
is saved

MAP Data
KCOLOR_HAS ALPHA
2 Red Green Blue alpha TRUE
o T 1]
1 —_) —]
> 2
sl I 1 1]
4 SN iy SN i SN) S—
5
AUTOCOLOR Nesisnisslns COLORMAP
RGB Cube Grey Scale 111 Invert Red Filter
RGB Triangles Equalize 1 1 17 1 Invert Original Green Filter
RGB Spiral Stretch - — Random Blue Filter
HLS Sprial Standard Deviation T 1 Reverse Chain Left
HSV Rings Rainbox | Original MAP Data | Rotate Left Chain Right
HLS Rings Disjoint Greycode | } Rotate Right Rotate Red Left
RGB Distance Greycode } | Band Rotate Left Rotate Red Right
CIE Dlagram 3-3-2 | } Band Rotate Right Rotate Green Left
Density Slice | | Swap Red/Green Rotate Green Right
} | Swap Red/Blue Roate Blue Left
I } Swap Green/Blue Rotate Blue Right
i :
|
|
|
|

Figure 1: Color Data Services provides you with functionality specific to color data. Color interpretation
attributes provide information to visual applications indicating how to interpret the color vector informa
tion. Autocolor procedures and colormap operations, which generate new map data and operate on exist-
ing map data, are also available. Color Data Services is intended to be used in conjunction with other
Data Services, such as Polymorphic Data Services and Geometry Data Services.

4-1

A.1l. Application Programming Interface (API)

The Application Programming Interface (API) to Color Data Services operates on the same data object
abstraction that is used by all Data Services. An abstract data object, represented by the data type kobject, is
opened by either a Polymorphic Data Services or Geometry Data Services call. This data object is then oper-
ated on as it normally would be under that Data Service. When the extra functionality provided by Color Data
Services is required, you simply use one of the Color Data Services attribute functions instead of the usual
Polymorphic Data Services or Geometry Data Services attribute function calls. Functions are provided for set-
ting, getting, comparing, copying and printing color service attributes.

B. Color Attributes

The following table gives a complete list of the Color Attributes currently available. In future releases, the
functionality of these attributesis likely to be enhanced and new attributes added.

Color Attributes

Attribute Legal Definition
and Default Values
KCOLOR_COLORSPACE KNONE This attribute indicates the colorspace in which the datain
KGREY the element vectors of the value segment, or map segment
int KRGB if it is present, are stored.
colorspace KNONE KCMY
KYIQ
KHSV
KHLS

KIHS
KXYZ
KUVW
KUCSUVW
KUCSSOW
KUCSLab
KUCSLuv

KUSERDEFINED

Persistence: permanent

KCOLOR_HAS_ ALPHA This attribute indicates whether or not an aphavalueis
contained in the element vectors of the value segment, or
int map segment if it is present.

has_alpha FALSE

Persistence: permanent

4-2

Color Attributes

Attribute Legal Definition
and Default Values
KCOLOR_MAP_AUTOCOLOR KORIGINAL This attribute, when called, will create a colormap on an
KRGB_CUBE object using the specified autocoloring procedure. There

int

autocolor KORIGINAL

KRGB_TRIANGLE
KRGB_SPIRAL
KHLS_SPIRAL
KHSV_RINGS
KHLS_RINGS
KRGB_DISTANCE
KCIE_DIAGRAM
KDENSITY SLICE
KGREYSCALE
KEQUALIZE
KSTRETCH
KSTDDEV
KSA_PSEUDO
KRATINBOW
KDISJOINT
KGREYCODE
KMAP332

KRANDOM

are two types of autocolor mapping schemes available. The
first is positional mapping, in which the map values at any
position are generated only as a function of that position.
The second is data dependent mapping, in which the map
values at any position are generated as a function of the
value data. The specifics of each autocoloring procedure
were explained in earlier sections. The origina colormap,
if a colormap was present, is saved and can be restored by
setting this attribute to KORIGINAL. Note that the original
colormap will not be carried along with the data object
onceitisclosed.

Persistence: permanent

KCOLOR_MAP_ AUTOCOLOR_LIST

int

num

This attribute returns alist of strings indicating which map
autocoloring procedures are available. A number argument
indicates how many autocoloring procedures are included
inthelist.

Persistence: permanent

43

Color Attributes

operation KNONE KROW_ROTLEFT
KROW_ROTRIGHT
KCOL_ROTLEFT
KCOL_ROTRIGHT
KSWAP_REDGREEN

KSWAP_REDBLUE

Attribute Legal Definition
and Default Values
KCOLOR_MAP_OPERATION KINVERT This attribute, when called, will operate on the existing col-
KINVERT ORIG ormap within a data object using the specified colormap
int KREVERSE operation. A colormap operation will generate a new col-

ormap based on the valuesin the existing colormap. If an
object has no colormap, then setting this attribute will have
no effect.

The original colormap will be saved before it is altered by
any colormap operations and can be restored by setting the

KSWAP_GREENBLUE attribute KCOLORMAP OPERATIONS to KORIGINAL.
Note that the original colormap will not be carried along

with the data object onceit is closed.

KRED_FILTER
KGREEN_FILTER
KBLUE_FILTER
KCHAIN_ROTLEFT
KCHAIN_ROTRIGHT
KRED_ROTLEFT
KRED_ROTRIGHT
KGREEN_ROTLEFT
KGREEN_ROTRIGHT
KBLUE_ROTLEFT

KBLUE_ROTRIGHT

Persistence: permanent

This attribute returns alist of strings indicating which map
operations are available. A humber argument indicates how
int many autocoloring procedures are included in the list.

KCOLOR_MAP_ OPERATION_ LIST

num

Persistence: permanent

C. Color Interpretation

Color Data Services provides two color interpretation attributes, KCOLOR COLORSPACE and
KCOLOR_HAS ALPHA. The colorspace attribute indicates to visualization programs how the color vectors
should be interpreted. The colorspace model indicates how the value element vectors should be broken down
into colors. A colorspace of XNONE or KGREY indicates each element in a value vector represents a single
color, while a colorspace of KrRGB indicates that every three elementsin avalue vector represents a single color.
If the has apha attribute is set to true, then it is understood that every color also contains a value indicating an
opacity. So, if the colorspace was set to KRGB and has a pha was true, then every four elementsin a value vec-
tor would represent a single color. Note that these attributes provide extra information only. There is nothing
to prevent you from setting these attributes to values that do not make sense for your current data. For exam-
ple, if your element vector size is only two, nothing will prevent you from setting the colorspace model to be

4-4

KRGB even though a minimum element vector size of three is required.

D. Autocoloring Procedures and Colormap Operations

Color Data Services provides autocoloring procedures and colormap operations that can be used to operate on

the colormap of a data object. In an autocoloring procedure, the existing colormap is replaced with a prede-
fined colormap. In a colormap operation, the existing values in the colormap are modified according to a pre-
defined algorithm. For example, the RGB Cube autocoloring procedure replaces the red, green, and blue map
columns of the current colormap with the red, green, and blue map columns dictated by the RGB Cube algo-
rithm. In contrast, the Rotate Left colormap operation rotates each of the three columns in the existing col-
ormap to the left. The actual values contained in the map are unchanged.

D.1. Types of Autocoloring Procedures

There are two types of autocoloring procedures. The first type is positional mapping, where the map values at

any position in map are generated only as a function of that position. Positional mappings have no dependency
on the properties of the value data; dependency is only on the physical layout of the color map. RGB cube,
RGB triangle, RGB spiral, CIE diagram, and Gray scale are positional color maps. The second type is data
dependent mapping, in which the map values at any position in the map are generated as a function of the
value data. The colormap is generated according to the properties of the value data. For example, the density
dlice operation maps color according to the histogram of the image pixel values. RGB distance and density
dice are data dependent color maps.

D.2. Available Autocoloring Procedures

In al of the autocoloring procedures described below, the algorithm first finds the minimum and maximum
valuesin the original color map and then "stretches' them so that the resulting color map utilizes the minimum
and maximum ranges of each primary. Thisis done because it allows for better visual discrimination between
colorsin the enhanced image.

4-5

Autocoloring Procedures

Name Description
KORIGINAL This autocolor procedure restores the original color map that was contained in the input file when it
wasfirst read in.
KRGB_CUBE The RGB cube color map is apositional color map which maps the original values to a set of colors

that are determined by following the edges of the RGB color cube in a continuous manner. The
sides of the cube are traced starting from the blue corner in the following order.

RED MAGENTA

37 2 - RANGE | RED | GrReen | BLUE

YELLOW & _ L ___ BLAC/K 1 min->max min max
r E ! 2 max min max->min

' ! 3 max min->max min

WHITE. - _ a-- J BLUE 4 max->min max min
0 . 5 min max min->max

z : 6 min max->min max

_»/
GREEN 5 CYAN

The minimum and maximum values in the original color map are found aong with the number of
colors, N. N isthenisdivided by six which is the number of sides of the RGB cube that are traced.
This sets up six ranges with N/6 steps in each range. When the number of colors in the original
color map is not a factor of six, the difference is made up in the sixth range. Colors are assigned to
these ranges according to the following rules, where min is the minimum primary value (usually
0.0), max is the maximum value (usually 1.0), and min -> max means that the values of that pri-
mary are ranged between the minimum and maximum values, or vise versa (max -> min). The
minimum and maximum values in the original map are assigned the color blue (0.0,0.0,1.0).

KRGB_TRIANGLE

The RGB triangle color map is a positional color map which maps the original values to a set of
colors that are determined by following the edges of the RGB color cube in adisjoint manner. The
sides of the cube are traced starting from the blue corner in the following order.

RED 1 MAGENTA
2%) RANGE | RED | GREEN | BLUE
YELLOW ¥ _ L ___ BLAC/K 1 max min min->max
f‘ E ' 2 max min->max min
3 ' ! 3 min->max max min
WHITE. - - a-- _J BLUE 4 min max min->max
L ' 5 min->max min max
GREEN 4—»" 6 min min->max max

The minimum and maximum values in the original color map are found along with the number of
colors, N. N isthenisdivided by six which isthe number of sides of the RGB cube that are traced.
This sets up six ranges with N/6 steps in each range. When the number of colors in the original
color map is not a factor of six, the difference is made up in the sixth range. Colors are assigned to
these ranges according to the following rules, where min is the minimum primary value (usually
0.0), max is the maximum value (usually 1.0), and min -> max means that the values of that pri-
mary are ranged between the minimum and maximum values, or vise versa (max -> min). The
minimum value in the origina map is assigned the color red (1.0,0.0,0.0), and the maximum value
is assigned the color blue (0.0,0.0,1.0).

4-6

Autocoloring Procedures

Name Description

KRGB_SPIRAL The RGB spira colormap is a quadratic mapping that maps colors as a spira which encircles the
grey line from black to white.

MAGENTA
7

YELLOW

BLUE

Sl N

KHLS_SPIRAL The HLS spiral colormap is constructed by incrementing the lightness, saturation, and hue from 0.0
to 1.0.

KHSV_RINGS The HSV rings colormap is constructed by incrementing the saturation and value by fixed incre-
ments and then varying the hue from 0.0 to 1.0 for each increment. This forms a ring for each
increment. The number of rings is dependent on the number of colors being generated.

\Y

GREEN YELLOW

4-7

Autocoloring Procedures

Name

Description

KHLS_RINGS

The HLS rings colormap is constructed by incrementing the lightness and saturation by fixed incre-
ments and then varying the hue from 0.0 to 1.0. Thisformsaring for each increment. The number
of rings is dependent on the number of colors being generated.

KRGB_DISTANCE

The RGB distance colormap is a data dependent color map operation which assigns the red and
green components of the color map according to characteristics of the image's histogram, and the
blue component according to pixel intensities. The red primary components are determined by cal-
culating a delta variance for each cell of the original color map, and the green components accord-
ing to adelta mean calculation for each cell. The method of assigning colorsis reviewed below.

1. Calculate mean pixel value of the histogram.
2. Calculate calculate the average variance of the histogram.
3. Assigning the Red color map:

Calculate a delta variance value for each cell in the original color map. Thisis done by subtracting
the average variance of the image's histogram from the number of pixels in the image which have
that cell’s color This will give a delta variance value for each cell in the original color map. The
minimum and maximum delta variance values are found and the minimum is mapped to zero of the
red primary and the maximum value is mapped to 1.0 of the red primary. All other cells are
assigned red values between 0.0 and 1.0 according to their delta variance value multiplied by a vari-
ance scaling factor.

4. Assigning the Green Color map:

Calculate a delta mean value for each cell in the original color map. Thisis done by subtracting the
mean pixel value of the image's histogram from the number of pixels in the image which have that
cell’s color Thiswill give a delta mean value for each cell in the original color map. The minimum
and maximum delta mean values are found and the minimum is mapped to zero of the green pri-
mary and the maximum value is mapped to 1.0 of the green primary. All other cells are assigned
green values between 0.0 and 1.0 according to their delta mean value multiplied by a mean scaling
factor.

5. Assigning the Blue Color map:

The blue color map is assigned directly from the intensity values of the image. The lowest intensity
value is mapped to 0.0 and the highest intensity value is assigned 1.0. All other intensities are
given blue values between 0.0 and 1.0.

4-8

Autocoloring Procedures

Name

Description

KCIE_DIAGRAM

The CIE Diagram color map is a positional color mapping scheme which maps the origina values
to a set of colorsthat are determined by following the edges of atriangle in the RGB color cubein a
continuous path. The vertices of this triangle are the red, green, and blue primaries, and the order
in which the sides are traced is from red, to blue, to green, to red.

RED , MAGENTA
,)
YELLOW % L - “\BL RANGE RED GREEN BLUE
. 1 max->min min min->max
i 2 min min->max | max->min
3 min->max | max->min min

GREEN

The minimum and maximum values in the original color map are found along with the number of
colors, N. N isthen is divided by three which is the number of sides in the triangle that will be
traced. This sets up three ranges with N/3 steps in each range. 1f the number of colorsin the origi-
nal color map is not a factor of three, the difference is made up in the third range. Colors are
assigned to these ranges according to the following rules, where min is the minimum primary value
(usually 0.0), max is the maximum value (usually 1.0), and min -> max means that the values of
that primary are ranged between the minimum and maximum values, or vice versa (max -> min).
The minimum and maximum valuesin the original map are assigned the color red (1.0,0.0,0.0).

KDENSITY SLICE

The density dlice is a data dependent color mapping algorithm which assigns colors according to
the distribution of the image’s histogram. When the histogram of the image is computed, the maxi-
mum number of pixels per cell isfound. Thisis used to determine the bin size for the density slic-
ing operation. Once the bin sizes have been determined, the histogram is searched for cells which
fall into each bin, and these pixel values are mapped to colors which vary from green to blue to red
(follows the first two legs of the CIE diagram triangle). Blue represents the cell with the fewest
number of pixelsin theimage, and red represents the cell with the highest number of pixels.

A simple example of density dlicing is given below. In the example histogram, there are 10 possi-
ble pixel values, or cells. The density slice will divide the histogram into 3 slices. Cells which
occupy enough pixels in the image to fall into bin 3 will be assigned red, those that fall into bin 2
will be green and those that fall into bin 1 will be blue. Therefore, in this example, pixels 3 and 8
will be red, pixels0, 4, 5, and 7 will be green, and pixels 1 and 6 will be blue.

oF [l _
PIXELS . .. __JBin2
Al LA e
01234546 7829
PIXEL VALUE

KGREYSCALE

The grey scale color map is position dependent and maps colors in the original color map to the
greys. Since greys are formed by setting red, green, and blue to the same value, the mapping occurs
in the RGB cube along the diagonal connecting black (0.0,0.0,0.0) and white (1.0,1.0,1.0).

49

Autocoloring Procedures

Name Description

KEQUALIZE This procedure does a global normalization on the map columns defining the red, green, and blue
values of the colormap. Thus, it computes the overal minimum and maximum values over the
three map columns, and then normalizes all red, green, and blue values to fall between the overall
minimum and the overall maximum.

KSTRETCH This procedure does a local normalization on the map columns defining the red, green, and blue
values of the colormap. It computes the minimums and maximums of the red, green, and blue val-
ues separately. It then normalizes the red values between the red minimum and red maximum, the
green values between the green minimum and green maximum, and the blue values between the
blue minimum and blue maximum.

KSTDDEV This procedure is not implemented yet.

KSA_PSEUDO This color map is based on an article found in Scientific American. The color map is designed to
convert a grey scale image and convert it to a color image of the same intensity. The algorithm
takes each entry and maps it to a corresponding red, green, blue value that has been chosen more
for it's aesthetics than it's quantitative value. The article was discovered by Joe Fogler who typed
in the value tables and added a few corrections to make the color map more aesthetically pleasing.

KRAINBOW The rainbow color map is position dependent and maps colors in the origina color map to arain-
bow by traversing through HSV space by fixing the the value and saturation to 1.0 and varying the
hue between 0.0 and 1.0.

KDISJOINT This colormap is constructed from a 3 bit disjoint code, where each successive value changes by

two bits. Each 3 bit value represents an RGB value. A bit of 1 implies that the maximum intensity
isused for that color and a bit of 0 implies that the color is not used. The final map is then interpo-
lated out from the greycode map to the provide the desired number of colors.

KGREYCODE This colormap is constructed from a 3 bit grey code, where each successive value changes by asin-
gle bit. Each 3 bit value represents an RGB value. A bit of 1 implies that the maximum intensity is
used for that color and a bit of 0 implies that the color is not used. The final map is then interpo-
lated out from the greycode map to the provide the desired number of colors.

KMAP332 Thisis a predefined colormap that uses three bits of primary for red, three bits of primary for green,
and two bit primary for blue. It istypically used for quickly mapping RGB images for 8-bit visual-
ization.

KRANDOM This creates a color map with totally random values. The routine assigns random values (0.0 - 1.0)

to each red, green, blue primary. The uniform random function w (xurng () is used to generate the
random numbers.

D.3. Available Colormap Operations

Recall that a colormap operation differs from an autocolor procedure in that it uses the values in the existing
colormap to define a new colormap, rather than simply replacing the existing colormap with a predefined col-
ormap. There are a number of colormap operations that may be used. The available colormap operations are
described in this section.

4-10

Colormap Operations

Name

Description

KINVERT

Selecting this button will invert whichever color map is currently being displayed. Thisis done by
subtracting each red, green, blue value from 1.0. (red, green, blue) -> (1.0-red, 1.0-green, 1.0-blue).

KINVERT ORIG

This assigns to an image a color map that is the original color map with inverted values.

KREVERSE

This colormap operation reverses each of the columns in the colormap. Thus, for colormaps of
height N, that the map values that used to be at 0 are now at N-1, the values that used to be at N-1
are now at zero; all map values between 0 and N-1 similarly have their positions switched.

KROW_ROTLEFT

This colormap operation does a rotation on each row of the map. For each RGB color, the green
color value will be moved to the red position, the blue value will be moved to the green position,
and the red value will be moved to the blue position.

RED GREEN BLUE

[
[
[

N = —j+—TF j&—-T T Jes

KROW_ROTRIGHT

This colormap operation does a rotation on each row of the map. For each RGB color, the green
color value will be moved to the red position, the blue value will be moved to the green position,
and the red value will be moved to the blue position.

RED GREEN BLUE

[
[
[

N = }F—=>[}F—>»[}—

KCOL_ROTLEFT

This colormap operation does a rotation on the height of each of the map columns. Thus, for col-
ormaps of height N, the map value a 0 is moved to 1, the map value at 1 is moved to 2, and so on;
the map value at N-1 is moved to O.

RED GREEN BLUE

HEE

N = O

KCOL_ROTRIGHT

This colormap operation does a rotation on the height of each of the map columns. Thus, for col-
ormaps of height N, the map value at N-1 is moved to N-2, the map value at N-2 is moved to N-3,
and so on; the map value at 0 is moved to N-1.

RED GREEN BLUE

28E

N = O

Z as

4-11

Colormap Operations

Name Description

KSWAP_REDGREEN This colormap operation swaps the positions of the red column and the green column.

RED GREEN BLU
=[]

w
m

i

i

| — Y o —

i

—

1
1
I_ll_l:
1
1

i

N R O

i

—

i

N t—

KSWAP REDBLUE This colormap operation swaps the positions of the red column and the blue column.

RED GREEN BLUE

[
[
[

KSWAP_GREENBLUE This colormap operation swaps the positions of the green column and the blue column.

RED GREEN BLUE
0 :l e— e—
L] —=—"Td—F 1=
[— —
2 O ==
: [— —
N O e e

— —

=

KRED FILTER This colormap operation sets al the values in the red map column to zero, thus removing the red
element from each of the map values.

Py
m
O
9]
Py
m
m
P
o)
—
[
m

o [[[
1 o] —1 —1
5] C [
. o] —1 —1
:] C [
N] 1 1
KGREEN FILTER This colormap operation sets al the values in the green map column to zero, thus removing the

green element from each of the map values.

Py
m
w)
®
Y
m
m
P
us]
—
C
m

o [o
, O &= =
O = O
2 s B e (R
N s B v R
T v I o R

4-12

[

Colormap Operations

Name

Description

KBLUE_FILTER

This colormap operation sets all the values in the blue map column to zero, thus removing the blue
element from each of the map values.

Py
m
O
®
Py
m
m
P
us]
-
C
m

o [O
P v I e R o
O O =

= =
N s B s (R
T o B e B o

KCHAIN_ ROTLEFT

This colormap operation does a rotation on the height of each map column, where each map value
is moved up one position, and the Oth map value of each column is moved to the last position of the
next column. Thus, for colormaps of height N, the red map value at N-1 is moved to N-2, the red
map value at N-2 is moved to N-3, and so on; the red map value at position 0 is moved to the green
map column, at position N-1.

RED GREEN BLUE

N B O

Z s

KCHAIN_ROTRIGHT

This colormap operation does a rotation on the height of each map column, where each map value
is moved back one position, and the last map value of each column is moved to the first position of
the next column. Thus, for colormaps of height N, the red map value at 0 is moved to 1, the red
map value at 1 is moved to 2, and so on; the red map value at N-1 is moved to the Oth position of
the green column.

RED GREEN BLUE

[N

N

KRED ROTLEFT

This colormap operation does a rotation on the height of the red map column. Thus, for colormaps
of height N, the red map value at N-1 is moved to N-2, the red map value at N-2 is moved to N-3,
and so on; the red map value at 0 is moved to N-1.

RED GREEN BLUE
0 o
. R —
" i —
: R —
= i —
N i R —

4-13

Colormap Operations

Name Description

KRED ROTRIGHT This colormap operation does a rotation on the height of the red map column. Thus, for colormaps
of height N, the red map value at 0 is moved to 1, the red map value at 1 is moved to 2, and so on;
the red map value at N-1 ismoved to 0.

RED GREEN BLUE
0 L] L]
1 1 1
5 L] L]
. 1 1
: L] L]
N 1 1

KGREEN ROTLEFT This colormap operation does a rotation on the height of the green map column. Thus, for col-

ormaps of height N, the green map value at N-1 is moved to N-2, the green map value at N-2 is
moved to N-3, and so on; the green map value at 0 is moved to N-1.

RED GREEN BLUE
o []
. =]
)]]
; []
:]]
N [1

KGREEN ROTRIGHT This colormap operation does a rotation on the height of the green map column. Thus, for col-
ormaps of height N, the green map value at 0 is moved to 1, the green map value at 1 is moved to 2,
and so on; the green map value at N-1 is moved to 0.

RED GREEN BLUE
0 1 1
1 1 1
2 1 1
. 1 1
: 1 1
N [1

KBLUE_ROTLEFT This colormap operation does a rotation on the height of the blue map column. Thus, for colormaps

of height N, the blue map value at N-1 is moved to N-2, the blue map value at N-2 is moved to N-3,
and so on; the blue map value at 0 is moved to N-1.

RED GREEN BLUE

1
Hooon

4-14

Colormap Operations

Name Description

KBLUE_ROTRIGHT This colormap operation does a rotation on the height of each of only the blue map column. Thus,
for colormaps of height N, the blue map value at 0 is moved to 1, the blue map value at 1 is moved
to 2, and so on; the blue map value at N-1 is moved to 0.

RE

@)

G

)
m

EEN BLUE

11
1N

E. Color Data Services Functions
All the functions available for Color Data Services are used for accessing color attributes from a data object.

* kcolor_set_attribute() - set the value of a color attribute in a data object.

* kcolor_set_attributes() - set multiple color attributes in a data object.

* kcolor_get_attribute() - get the values of a color attribute from a data object.

* kcolor_get attributes() - get multiple color attributes from a data object.

* kcolor_match_attribute() - compare a color attribute between two data objects.
* kcolor_match_attributes() - compare multiple attributes between two objects.

* kcolor_copy_attribute() - copy a color attribute from one data object to another.
* kcolor_copy_attributes() - copy multiple attributes from one object to another.
* keolor_query_attribute() - query characteristics of a color attribute.

* keolor_print_attribute() - print the value of a color attribute from a data object.
* kcolor_gamut_aobject() - perform color quantization of 1..4 plane images

E.1. kcolor_set attribute() — set the value of a color attribute in a data object.

Synopsis
int kcolor set attribute(
kobject object,
char *attribute,
kvalist)

Input Arguments
object
the data object into which the attribute’s value will be assigned

attribute
the attribute to set

kvalist
a variable argument list that contains the values that will be assigned to the different components

4-15

associated with that attribute.

The variable argument list takes the form:

ATTRIBUTE NAME, valuel [, value2, ...]

The number of value arguments in the variable argument list corresponds to the number of arguments
needed to set the attribute.

Returns
TRUE (1) on success, FAL SE (0) otherwise

Description
Thisfunction is used to assign the value of a color attribute to a data object.

This color service function should be used in conjunction with other application services such as poly-
morphic data services and geometry data services. This function will work on data objects opened or
created with either of those services.

Attributes are set by passing in the attribute name along with the value or variable containing the value
to assign to the attribute.

The following example illustrates the use of the set attribute call to assign two different color
attributes. The define xrae could have been passed in directly to set the colorspace attribute.
int colorspace = KRGB;
kcolor set attribute (object,
KCOLOR_COLORSPACE, colorspace) ;,

kcolor set attribute (object,
KCOLOR_MAP_ OPERATION, KROW_LEFT) ;

A complete list of color attributes can be found in Chapter 4 of Programming Services Volume l.

Restrictions
Calling this function with an incorrect number of arguments in the variable argument list will not cause
any compiler errors, but will often generate a segmentation fault.

4-16

E.2. kcolor_set_attributes() — set multiple color attributesin a data object.

Synopsis
int kcolor set attributes/(
kobject object,
kvalist)

Input Arguments
object
the data object into which the values of the attributes will be assigned

kvalist
NULL terminated variable argument list which contains a list of attributes, each attribute followed by
the values to assign to that attribute.

The variable argument list takes the form:

ATTRIBUTE NAMEl, valuel [, value2, ...J],
ATTRIBUTE NAME2, valuel, [, value2, ...J1,
.., NULL

The number of value arguments in the variable argument list for each attribute depends on the
attribute. The NULL at the end of the variable argument list serves as a flag indicating the end of the
list.

Be careful not to forget the NULL at the end of the list. Thisis acommon programming error which

unfortunately will not generate any compiler warnings.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
Thisfunction is used to assign the values of an arbitrary number of color attributes to a data object.

This color service function should be used in conjunction with other application services such as poly-
morphic data services and geometry data services. This function will work on data objects opened or
created with either of those services.

Attributes are set by passing in the attribute name along with the value or variable containing the value
to assign to the attribute.

The following example illustrates the use of a single set attributes call to assign two different color
attributes. The define xrea could have been passed in directly to set the colorspace attribute.

4-17

int colorspace = KRGB;

kcolor set attributes (object,

KCOLOR_COLORSPACE, colorspace,
KCOLOR_MAP OPERATION, KROW LEFT,
NULL) ;

A complete list of color attributes can be found in Chapter 4 of Programming Services Volume 1.

Restrictions

Cdlling this function with an incorrect number of arguments in the variable argument list will not cause
any compiler errors, but will often generate a segmentation fault.

E.3. kcolor_get_attribute() — get the values of a color attribute from a data object.

Synopsis

int kcolor get attribute(
kobject object,

char *attribute,
kvalist)

Input Arguments
object

the data object from which the attribute's value will be retrieved

attribute
the attribute to get

kvalist

avariable argument list that contains the addresses of variables which will be used to return the differ-
ent components associated with that attribute.

The variable argument list takes the form:

ATTRIBUTE NAME, &valuel [, &value2, ...]

The number of value arguments in the variable argument list corresponds to the number of arguments
needed to retrieve the attribute.

Returns
TRUE (1) on success, FALSE (0) otherwise

4-18

Description
Thisfunction is used to retrieve the value of aa color attribute from a data object.

This color service function should be used in conjunction with other application services such as poly-
morphic data services and geometry data services. This function will work on data objects opened or
created with either of those services.

Attributes are retrieved by passing in the address of a variable by which the attribute can be returned.
Note that any array attributes, such as strings, which are retrieved should not be altered or freed. The
pointer returned points to the actual internal storage array. A copy should be made if the values need
to be changed.

The following example illustrates the use of the get attribute call to retrieve two different color
attributes.

char **autocolor list;
int num;

int colorspace;

kcolor get attribute (object,
KCOLOR_AUTOCOLOR _LIST, &list, &num);
kcolor get attribute (object,
KCOLOR_COLORSPACE, &colorspace) ;

A complete list of color attributes can be found in Chapter 4 of Programming Services Volume ll.

Restrictions
Cdlling this function with an incorrect number of arguments in the variable argument list will not cause
any compiler errors, but will often generate a segmentation fault.

E.4. kcolor_get_attributes() — get multiple color attributes from a data object.

Synopsis
int kcolor get attributes(
kobject object,
kvalist)

Input Arguments

object
the data object from which the values of the attributes will be retrieved

4-19

Output Arguments
kvalist
NULL terminated variable argument list which contains a list of attributes, each attribute followed by
the addresses of variables which will be used to return the different components associated with that
attribute.

The variable argument list takes the form:

ATTRIBUTE NAMEl, &valuel [, &value2, ...],
ATTRIBUTE NAME2, &valuel, [, &value2, ...],
, NULL

The number of value arguments in the variable argument list for each attribute depends on the
attribute. The NULL at the end of the variable argument list serves as a flag indicating the end of the
list.

Be careful not to forget the NULL at the end of the list. Thisisacommon programming error which
unfortunately will not generate any compiler warnings.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
Thisfunction is used to retrieve the values of an arbitrary number of attributes from a data object.

This color service function should be used in conjunction with other application services such as poly-
morphic data services and geometry data services. This function will work on data objects opened or
created with either of those services.

Attributes are retrieved by passing in the address of a variable by which the attribute can be returned.
Note that any array attributes, such as strings, which are retrieved should not be altered or freed. The
pointer returned points to the actual internal storage array. A copy should be made if the values need
to be changed.

The following example illustrates the use of a single get attributes call to retrieve two different color
attributes.

char **autocolor list;
int num;

int colorspace;

kcolor get attributes (object,
KCOLOR_AUTOCOLOR_LIST, &list, &num,
KCOLOR_COLORSPACE, &colorspace,
NULL) ;

4-20

A complete list of color attributes can be found in Chapter 4 of Programming Services Volumell.

Restrictions
Calling this function with an incorrect number of arguments in the variable argument list will not cause
any compiler errors, but will often generate a segmentation fault.

E.5. kcolor_match_attribute() — compare a color attribute between two data objects.

Synopsis
int kcolor match_attribute
kobject objectl,
kobject object2,
char *attribute)

Input Arguments
objectl
the first data object containing the attribute to be compared

object2
the second data object containing the attribute to be compared

attribute
the attribute to be compared

Returns
TRUE (1) if the attribute matches, FALSE (0) otherwise

Description
Thisfunction is used to compare the value of a color attribute between two data objects.
This color service function should be used in conjunction with other application services such as poly-
morphic data services and geometry data services. This function will work on data objects opened or

created with either of those services.

If the value of the attribute in both objects is the same, then this function will return TRUE. If the val-
ues are different, then this function will return FALSE.

The following example illustrates the use of the match attribute call to compare two different color
attributes.

if (kcolor match attribute (objl, obj2, KCOLOR_COLORSPACE))

4-21

kprintf ("colorspace is the same in both objects");
if (kcolor match attribute(objl, obj2, KCOLOR MAP OPERATION))
kprintf ("colormap operation is the same in both objects");

A complete list of color attributes can be found in Chapter 4 of Programming Services Volume 1.

E.6. kcolor_match_attributes() — compare multiple attributes between two objects.

Synopsis
int kcolor match attributes(
kobject objectl,
kobject object2,
kvalist)

Input Arguments
objectl
the first data object containing the attributes to be compared

object2
the second data object containing the attributes to be compared

kvalist
NULL terminated variable argument list which contains alist of attributes to be compared.

The variable argument list takes the form:

ATTRIBUTE NAME1,
ATTRIBUTE NAME2,
.., NULL

Returns
TRUE (1) if all listed attributes match, FALSE (0) otherwise

Description

This function is used to compare the values of an arbitrary number of color attributes between two data
objects.

This color service function should be used in conjunction with other application services such as poly-

morphic data services and geometry data services. This function will work on data objects opened or
created with either of those services.

4-22

If the value of all attributes in both objects are the same, then this function will return TRUE. If any of
the values are different, then this function will return FALSE.

The following example illustrates the use of the match attributes call to compare two different color
attributes.

if (kcolor match attributes(objl, obj2,
KCOLOR_COLORSPACE,
KCOLOR_MAP_ OPERATION,
NULL))
kprintf ("colorspace and colormap operation are the same "
"in both objects");

A complete list of color attributes can be found in Chapter 4 of Programming Services Volume .

Restrictions
Calling this function and forgetting to NULL terminate the variable argument list will not cause any
compiler errors, but will often generate a segmentation fault.

E.7. kcolor_copy_attribute() — copy a color attribute from one data object to another.

Synopsis
int kcolor copy attribute(
kobject objectl,
kobject object2,

char *attribute)
Input Arguments
objectl

the object to use as the source for the copy

object2
the object to use as the destination for the copy

attribute
the attribute to be compared

Returns
TRUE (1) on success, FAL SE (0) otherwise

4-23

Description
Thisfunction is used to copy the value of a color attribute from one data object to ancther.

This color service function should be used in conjunction with other application services such as poly-
morphic data services and geometry data services. This function will work on data objects opened or
created with either of those services.

The following example illustrates the use of the copy attribute call to copy two different color
attributes.

kcolor copy attribute(objl, ob2, KCOLOR COLORSPACE) ;,
kcolor copy attribute(objl, obj2, KCOLOR MAP OPERATION) ;,

A complete list of color attributes can be found in Chapter 4 of Programming Services Volume .

E.8. kcolor_copy_attributes() — copy multiple attributes from one object to another.

Synopsis
int kcolor copy attributes(
kobject objectl,
kobject object2,
kvalist)

Input Arguments
objectl
the object to use as the source for the copy

object2
the object to use as the destination for the copy

kvalist
NULL terminated variable argument list which contains alist of attributes to be copied.

The variable argument list takes the form:

ATTRIBUTE NAME1,
ATTRIBUTE NAME2,
, NULL

4-24

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This function is used to copy the values of an arbitrary number of color attributes from one data object
to another.

This color service function should be used in conjunction with other application services such as poly-
morphic data services and geometry data services. This function will work on data objects opened or
created with either of those services.

The following example illustrates the use of the copy attributes call to compare two different color
attributes.

kcolor copy attributes(objl, obj2
KCOLOR_COLORSPACE,
KCOLOR_MAP_OPERATION,
NULL) ;

A complete list of color attributes can be found in Chapter 4 of Programming Services Volume 1.

Restrictions
Calling this function and forgetting to NULL terminate the variable argument list will not cause any
compiler errors, but will often generate a segmentation fault.

E.9. kcolor_query_attribute() — query characteristics of a color attribute.

Synopsis
int kcolor query attribute(
kobject object,
char *attribute,

int *num_args,
int *arg_ size,
int *data type,
int *permanent)
Input Arguments
object

the data object to be queried for the existence of the named attribute

attribute

4-25

the attribute to query

Output Arguments
num_args
number of arguments
arg size
size of the arguments, or NULL
data_type
datatype of the attribute
permanent
TRUE if the attribute is stored with the object, FALSE if the attribute is transient

Returns
TRUE (1) if attribute exists, FALSE (0) otherwise

Description

Thisfunction is used to query characteristics of a color attribute from a data object.
This color service function should be used in conjunction with other application services such as poly-
morphic data services and geometry data services. This function will work on data objects opened or
created with either of those services.
The following example illustrates the use of the query attribute call to determine the data type of the
colorspace attribute.

int data_type;

kcolor query attributes (object, KCOLOR_COLORSPACE,

NULL, NULL, &data_type, NULL) ;

A complete list of color attributes can be found in Chapter 4 of Programming Services Volume 1.

E.10. kcolor_print_attribute() — print the value of a color attribute from a data object.

Synopsis
int kcolor print attribute(
kobject object,
char *attribute,
kfile +*printfile)

4-26

Input Arguments
object
the data object containing the attribute to be printed

attribute
the attribute to print

printfile

afile or transport pointer opened with kfopen. kstdout and kstderr may be used to print to standard
out and standard error.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
Thisfunction is used to print the value of a color attribute from a data object to an output file.

This color service function should be used in conjunction with other application services such as poly-
morphic data services and geometry data services. This function will work on data objects opened or
created with either of those services.

The following example illustrates the use of the print attribute call to print the colorspace attribute to
the output file "outputfile”.

kfile *outfile = kfopen("outputfile");

kcolor print attributes(object, KCOLOR COLORSPACE, outfile);

A complete list of color attributes can be found in Chapter 4 of Programming Services Volume l.

E.11. kcolor_gamut_object() — perform color quantization of 1..4 plane images

Synopsis
int kcolor gamut object (
kobject src,
int ncolors,
int bits,
double fraction,
kobject dest)

Input Arguments
srcC

4-27

object to be color quanitized

ncolors
desired number of colors for result image, should be (1..65535)

bits
number of bits of resolution to keep from each color plane. Should be(1..8). Higher values give better
results but take longer and require more memory.

fraction
fraction of color splits to be base on the span of the color space versus the population count in the
color space. 1.0 means split only on span. 0.0 means split only on population. 0.0 is effectively a pop-
ularity contest. You will usually get best results somewhere around 0.5.

Output Arguments
dest
object to hold quantized result

Returns
TRUE (1) on success, FALSE (0) on failure

Description
kcolor_gamut_object uses a variation of Paul Heckbert’s median cut algorithm to perform color quanti-
zation of one, two, three, or four plane images producing a single-plane image with color map.

The quantization is performed by isolating clusters of "neighboring” color vectors in a four dimen-
sional histogram, with each axis being one of the color components. The clusters are obtained using a
modified version of Heckbert’s median cut. The true colors are then matched to the closest cluster, and
the input vector is then re-mapped to an n-color pseudo color image.

To keep the histogram from becoming exceedingly large (max of around 2724 bytes), one may need to
guantize the grey levels of the input bands to less than 8 hits. 6 bits (64 levels) gives results that are
reasonable in a short amount of time. The number of bits that are kept is called the color precision,
which can be specified at execution time. The genera tradeoff is that smaller precision is faster and
takes less memory, but it looks worse too. High precision takes longer and great gobs of memory, but
looks decent, provided that a reasonable number (say 128 or more) colors is specified. The execution
time is very dependent on the image statistics. In general, a small humber of colors is faster than a
large number of colors. In either case, if the image has good spatial color coherence, execution timeis
greatly reduced.

The allocation fraction controls how large areas of nearly the same color are handled. An allocation
fraction of 0.0 will cause the large areas to be broken into as many colors as possible with the largest
areas of a particular color range being broken first. An alocation fraction of 1.0 will attempt to pre-
serve the detail in the image by preserving the color range of al parts of the image at the expense of
smooth coloring of the larger areas. An allocation fraction of around 0.2 to 0.5 gives very good results
on most images.

If the input image contains less than the number of colors requested then the output image will contain

only the number of colors present in the input image. The color map will contain the number of entries
requested (meaning all colorsin the image) with any extra entries zero padded.

4-28

Multiple plane images are processed by quantizing each plane independently, generating a correspond-
ing plane of colorsin the map. Thus an input object with (w,h,d,t,e)=(512,480,10,10,4) will result in an
output object with avalue segment with dimensions (512,480,10,10,1) and a map segment with dimen-

sions (4,10,10,10,1).

4-29

This page left intentionally blank

4-30

Table of Contents

A. Color Data Services
A.1l Application Programmmg Interface (API)
B. Color Attributes . .
C. Color Interpretation .
D. Autocoloring Procedures and CoI ormap Operatl ons
D.1. Types of Autocoloring Procedures .
D.2. Available Autocol oring Procedures
D.3. Available Colormap Operations
E. Color Data Services Functions
E.1. kcolor_set_attribute() — set the value of a coI or attrl bute ina data Obj ect
E.2. kcolor_set_attributes() — set multiple color attributesin a data object.
E.3. kcolor_get_attribute() — get the values of a color attribute from a data object.
E.4. kcolor_get_attributes() — get multiple color attributes from a data object.
E.5. kcolor_match_attribute() — compare a color attribute between two data objects.
E.6. kcolor_match_attributes() — compare multiple attributes between two objects.

E.7. kcolor_copy_attribute() — copy a color attribute from one data object to another.

E.8. kcolor_copy_attributes() — copy multiple attributes from one object to another.
E.9. kcolor_query_attribute() — query characteristics of a color attribute.

E.10. kcolor_print_attribute() — print the value of a color attribute from a data object.

E.11. kcolor_gamut_object() — perform color quantization of 1..4 plane images .

4-1
4-2
4-2
4-4
4-5

4-5

. 4-10
. 4-15
. 4-15
. 4-17
. 4-18
. 4-19
. 4-21
. 4-22
. 4-23
. 4-24
. 4-25
. 4-26
. 4-27

This page left intentionally blank

Program Services \Volume |

Chapter 5

Data Management Services

Copyright (c) AccuSoft Corporation, 2004. All rights reserved.

Chapter 5 - Data Management Services

A. Introduction

Data Management Services is the infrastructure that provides data abstraction, large data set processing capa-
bility, attribute management, file format independence, and presentation facilities to the application services
described in preceding chapters. Data Management Services is not intended to be used as a general purpose
data access facility; that is the purpose of Polymorphic Data Services, described in Chapter 2.

Unlike application services, Data Management Services provides no management of the Polymorphic Data
Model. It is the purpose of Data Management Services to provide a basic framework for developing applica
tion services and to support the implementation of application-specific data models. Figure 1 illustrates the
association between application services and this Data Service.

Polymorphic Data Services Geometry Data Services Color Data Services
PRIMITIVE LIST
VALUE LOCATION TIME MASK MAP { ! T MAPS
P —— 01111 @ \/
zmm) [] [=]] [] "o E 1 =
o /

Data Management Services

q . size scaling padding
ata access presentation data type normalization interpolation

&

500 Megabytes

E shared 3
Ememory3

files

Transport
Independence

transport abstraction

File Format and
Memory Management

file format independence large data sets

Figure 1: Data Management Services is an infrastructure service provided primarily to facilitate devel op-
ment of application services.

An application service provides a data model that imposes an interpretation on specific segments and provides
domain specific functionality to better facilitate a particular style of interaction with a data object. Data Man-
agement Services, on the other hand, does not attempt to enforce any interpretation on a data object whatso-
ever. Furthermore, no association is enforced between any two segments. For example, the Polymorphic Data
Model dictates that the mask and the value segments will be the same size, and Polymorphic Data Services

5-1

enforces this policy. Data Management Services will not enforce this policy or any other policy that restricts
interaction with the data object.

Data Management Services implements three basic constructs: data objects, segments, and attributes. An
attribute can be associated with either an object or a segment. Segments exist as part of an object. Figure 2
illustrates the organization of a data object.

g DATA OBJECT SEGMENT SEGMENT SEGMENT A
e N N ™
Attributes Attributes Attributes
0 || a0 || D30
Attributes 00 |[[QA00 |[[Qaaa
D D D D Data Data Data
I I | | [|
S - AN AN J y

Figure 2: Data objects are implemented as a complex structure that contains any number of segments and
any number of attributes. Segments can similarly contain any number of segments.

B. Presentation of Data T

Data Management Services has the ability to present the data stored within a data object in a variety of ways.
Data can be cast, resized, normalized, scaled, or re-oriented on access. The API to this functionality is pro-
vided by a number of attributes. By setting the appropriate attributes, Data Management Services will return
the data in the form that is most convenient to process. In order to understand how the presentation attributes
are used, it is necessary to understand how the data object is divided into a presentation layer and physical

layer.

A data object can be thought of in terms of two layers: a presentation layer and a physical layer. Attributes at
the physical layer typically describe the actual stored characteristics of the data. Attributes at the presentation
layer typically dictate how the datais to be accessed. For example, there is a physical data type attribute indi-
cating the data type in which the data is actually stored, and a presentation data type attribute indicating in
which data type the data should be presented. If the presentation data type is set to integer, while the physical
datatype is set to short, then the data will be cast from short to integer on retrieval and from integer to short on
storage.

T Much of this discussion is similar to text in Chapters 1 and 2. It is repeated here in the context
of Data Management Services, but aside from the differences in AP, the functionality is nearly iden-
tical. One new section that was not presented in other chaptersis related to index order manipulation.

application code

PRESENTATION
DATA TYPE = KINT
WIDTH = 180
LAYER HEIGHT = 160
"how the data appears to you"
S
&
3
: |
DATA PIPELINE g s s
3 &
"uses pipeline stages to Tesizing o P
transform data as it is being 0o 3
accessed" 2 o
casting ey 2 I l
®
2
3

PHYSICAL
LAYER A

HEIGHT = 269
"how the data is stored"

Figure 3: A data object can be thought of as having two layers, a presentation layer and a physical layer.
Attributes at the physical layer determine the storage characteristics of the data, such as its size and data
type. Attributes at the presentation layer determine the presentation characteristics of the data. On
access, data is passed through a data pipeline which transforms the data according to the presentation
attributes. Each presentation attribute corresponds to a stage in the data pipeline; only the necessary
stages are invoked on data access.

The following sections outline the different mechanisms that are available for customizing data access.

B.1. Casting

The casting feature provided by Data Management Services is used to change the data type from the type
stored to another data type that is more suitable for processing. This processis nearly automatic. You have to
set the data type of the segment that is being operated on to the desired processing data type with a call to
kdms_set attribute() Or kdms set attributes(). Afteeward, al data retrieved with
kdms_get_data () will bereturned to the user in the data type specified, regardliess of the stored data type. If
operating on an output object, then setting the data type of the output object to something different from the
stored data type informs Data Management Services that any data being written with kdms_put_data () will
be given in the specified data type, but should be cast before being written out.

The casting feature is performed viathe ANSI C cast operation. Since ANSI C does not dictate the behavior
of certain lossy cast operations, such as signed information cast to an unsigned data type, the behavior of this
operation in certain circumstances can vary from platform to platform.

B.2. Scaling and Normalization

Scaling and normalization are two activities that alter the range of data when presented to the user. These
operations are often necessary when processing data where an algorithm operates better on a limited range of
data. After indicating that scaling or normalization is to occur, any cal to kdms_get_data () will cause the

range of the data to be altered before it is returned to the calling program. The attribute kKbMS_SCALING deter-
mines what kind of range ateration is to occur. The default value for this attribute is knoNE, which indicates
that no scaling whatsoever isto occur. Other legal values for this attribute are KSCALE and KNORMALIZE.

When the scaling attribute is set to xscaLg, then the range of the data is controlled by two attributes:
KDMS_SCALE FACTOR and KDMS_SCALE_OFFSET. The range change is computed by applying the scale fac-
tor first to each data point, then adding the scale offset.

When the scaling attribute is set to kNORMALIZE, then the range of the data is controlled by two other
attributes: kKbMS_NORM_MIN and KDMS_NORM MAX. These two attributes indicate the minimum and maximum
magnitude of the data. The effective scale factor and offset are computed by examining every point in the
primitive that was accessed via kdms _get data() OF kdms put data(). Thisis not a globa normaliza-
tion over the entire set, but rather alocal normalization over the extent of the data being accessed.

It is important to note the order in which each of these presentation changes is applied. The normalize and
scale operations occur after the cast operation if the cast operation is converting to a "higher order" data type,
i.e.,, adata type that has a higher range or precision. If casting from a higher order data type to a lower order
data type, one that has less range or precision, then the normalization or scaling occurs before the cast opera
tion.

B.3. Padding and Interpolation

Padding and interpolation are operations that change the apparent size of the data set being accessed. These
operations are useful in circumstances where a particular size of datais required in order for an algorithm to
function properly, such as a Fast Fourier Transform, or in instances in which two operands must be the same
size in order for the algorithm to behave in a predictable manner, such as an addition operation. Other
instances where interpolation is useful is in visual applications for zooming or panning windows. This behav-
ior is controlled by an attribute called xbMs INTERPOLATE. This attribute can be set to one of three values:
KNONE, KPAD, Or KINTERPOLATE. The default value of this attribute is kpab. When this attribute is set to
KNONE, it indicates that access of data outside of the physical bounds of the data set should not be permitted.
If aprogram attempts to access data that lies beyond the bounds of the data set in this mode, Data Management
Services will generate an error.

If set to use the kPAD mode, Data Management Services will allow access of data outside of the physical
bounds of the data set. Any data that is retrieved that is not part of the data set will be set to a constant value
indicated by the kbMs_PAD VALUE attribute. This attribute takes two double arguments that represent the
real and imaginary component. The imaginary component is only used if the data type being returned is com-
plex.

If the presentation size is set to be larger than the physical size, then any data that falls outside of the bounds of
the data set will be similarly set to this pad value. This mode also allows the presentation size to be set to a
value that is smaller than the physical size. In this mode, data outside of the presentation size is simply
clipped; i.e., itisnot accessible.

If the KDMS_INTERPOLATE attribute is set to KZERO ORDER, then this indicates that the difference in the pre-
sentation size and the physical size of the data segment should be rectified via a zero-order-hold (i.e., pixel
replication) interpolation. Currently thisis the only true interpolation mode available in Data Services. If the
presentation size is larger than the physical size, then an adjacent data point is replicated for each point that
does not exist in the interpolated data set. If the presentation size is smaller than the physical size, then the

data set is sub-sampled to produce a smaller version of the original data.

B.4. Conversion of Complex Data

Complex conversion can be thought of as an extension to casting. However, since the process of converting
data from a complex data type to a non-complex data type (or visa-versa) is uniquely lossy, this capability is
provided as a separate feature so that its behavior can be more easily controlled.

This control is provided via the KDMS COMPLEX CONVERT attribute (and its sister attributes for each of the
other polymorphic segments). This attribute determines how to trandate real valued data into complex data.
For example, if the KDMS COMPLEX CONVERT attribute is set to AccuSoftEAL, the real valued data will be
interpreted as the real part of the complex pair. Similarly, a setting of KIMAGINARY instructs data services to
interpret the data as the imaginary component. In either case, the other component of the pair is set to zero.
When XDMS_COMPLEX CONVERT iS Set to KMAGNITUDE, then the magnitude of the complex pair is set to the
value of the data. Currently, thisis performed by setting the phase to O radians. Thus, KMAGNITUDE has the
same effect asAccuSoftEAL. If the XxDMS COMPLEX CONVERT éttributeis set to KPHASE, then thereal val-
ued datais interpreted as radian data and the magnitude is set to 1.0.

When complex datais returned to the application from Data Services, it will be in the form of akcomplex or
kdcomplex. Thereisacomplete set of operator functions available for operating on these data types. These
functions are available in the kmath library. When operating on complex data, the application programmer is
encouraged to refer to the kmath library for information on complex operations.

B.5. Index Order Manipulation

Every data set has what isreferred as an index order. Index order describes the ordering of the axes associated
with the data in a segment in terms of how it is stored and retrieved. A two dimensional example of this con-
cept isillustrated in Figure 4.

— H—»
—W—

ol4]A
|01 3

1|58
H 4|5 7 w

ARE
AlBlc|D

37D

Figure 4: Two index orders associated with the same data. The left data set has an index order that is
W-H. The right data set has an H-W index order. Notice that the index order difference between the left
and right is effectively atranspose.

In Figure 4, the two data sets are identical--that is, they contain the same data, oriented in an identical fashion
across the W and H axes. In other words, given any point, its (W,H) coordinate is the same. Index order
merely describes the orientation of data when mapped into a linear address space such asin adatafileor in a
dataarray. Figure5 illustrates the how both data sets would be ordered in an array or file.

— H—»
- W —
olaa
| 123 ‘
1]5]B
H 5(6(7 w
2|6 |cC
l Blc|D l
3[7]D
I?ITITITITITI?ITI?WI?I?I
IAr(;ay01234567891011
e 4 v Vv 4 4 v v v v v b
[ofa]al1]s[B]2]6]c[3[7]D

Figure 5: Stored representation of both data setsin Figure 4.

This concept scales to higher dimensions. However, the notion of transposition fals apart. For example, 3
dimensional data oriented along W, H, and D axes can be represented in 6 different orderings: W-H-D, H-W-D,
D-H-W, W-D-H, H-D-W, and D-W-H. In fact, the number of unique index orderings N, is a function of the
dimensionality d: N = d!. Note that in the three dimensional case, most index orders are not transposes of one
another. The closest concept that can be used to describe the relationship between two index ordersis areflec-
tion of the data across an axisin N space.

Similar to size and datatype, index order can be different between the presentation of the data and its physical
representation. In such instances, a call to kdms _get data () Or kdms_put_data () resultsin a reflection
or transpose as described above. This capability isimportant because there is no standard orientation in which
data is stored in a file that is adhered to by al file formats. For example, even with rasterized RGB color
images, some file formats store the red, green and blue components as contiguous vectors, while others will
store the red plane as a contiguous band, followed by the green plane and finally by the blue plane. See Figure
6. Regardless of the stored representation of the data, atypical programmer will want to assume a single index
ordering so that algorithm development can be emphasized rather than data access.

r r r r

r r r r

r r r r

_<
oc|J]T)|]T|T
-
(=23 Hea Reny Ney
-
(=28 Bea Ren Ny
-
oclolo|lo

T |T |T |T
T |T|T |T
o |T|T |T
o |T|T |T

Figure 6: An example of the motivation for the index order capabilities provided by Data Management
Services: rasterized image storage. This figure depicts two common storage index orders of a single 4x4
image containing RGB triples for each pixel.

C. Attributes

There are two types of attributes in Data Management Services: (1) attributes that affect behavior of a single
segment in an object, and (2) attributes that affect the behavior of the whole object. For example, attributes
such as datatype and size are related to segments, but attributes such as the name of the file containing the data
arerelated to the object asawhole.

Table 1 below contains definitions for al of the predefined global attributes. When using
kdms_get attribute, kdms_set attribute, Or any other attribute function, the second argument to the
function specifies the segment that should be accessed for obtaining the specified attribute. For global
attributes, this argument should be set to KDMS OBJECT.

C.1. Global Attributes

Global Attributes

Attribute Legal Definition
and Default Values
KDMS_ARCHITECTURE KMACH_UNKNOWN This attribute is an integer value which encodes a descrip-
KMACH _LITTLE ENDIAN IEEE tion of the floating point and integer representation for the
int KMACH LITTLE_ ENDIAN VAX machine which what used to generate the object. A set of
architecture KMACH LITTLE ENDIAN 64 C defines are typically used when operating on the value of
KMACH BIG ENDIAN IEEE this attribute in a program. Typicaly, this attribute is set
KMACH_BIG_ENDIAN CRAY based on an examination of the input object, and is set to

the local architecture on an output object. The encoding
scheme and specific values for these defines can be found
iNn $BUILD/include/machine/kmachine.h.

Persistence: stored

KDMS_COMMENT This attribute is aNULL terminated string used to document
the object. Thisattribute is used by a user or programmer
char * to describe the origin or nature of the data set. When this
comment NULL attribute is set, it overwrites anything previously held in this

attribute. Therefore, it is up to the programmer to first get
the comment attribute, append new information to it, and
then set the entire comment attribute, if prior comment
information is to be propagated. To clear the comment
attribute, passin NULL

when setting the attribute. This attribute is copied with the
kdms_copy_object () function calls.

Persistence: stored

Global Attributes

Attribute
and Default

Legal
Values

Definition

KDMS_COUPLING

int

coupling See Note 1.

KCOUPLED
KDEMAND

KUNCOUPLED

When this attribute is set to KcouPLED, changesto any
attribute that affects the physical representation of the data
(for example, data type, size, etc.) will be propagated to the
physical layer immediately. Otherwise, the presentation
layer isthe only layer that is changed, --the physical layer
remains unchanged. The difference between kuNCOUPLED
and xDEMAND is that xDEMAND allows the kdms_sync ()
function call to force an update of the presentation and
physical layers. When this attribute is set to KUNCOUPLED,
the calling the kams_sync () will not do anything. See
kdms_sync () for more information.

Persistence: transient

KDMS_DATE

char *

date current date

This attribute is aNULL terminated string used to record the
date of the creation of the data object. Thisattributeis
NOT copied by kdms_copy_object () . To assign the cur-
rent date as defined by computer system, pass in NULL
when setting the attribute. The date will be stored in the
default format of the UNIX date command ("'day month
date HH:MM:SS timezone year", e.g. "Wed Mar 10
00:07:23 MST 1994")

Persistence: stored

KDMS_FLAGS

int

flags KNONE

KOBJ_READ
KOBJ_WRITE
KOBJ_HEADERLESS

KOBJ_RAW

This attribute returns the flags used when opening the data
object. kdms_input automatically sets koBJ READ and
kdms_output automatically sets koBJ WRITE when
called. When used in kdms_open, the legal values can be
OR'd together to change the behavior of the object. For
example, ORing together k0oBJ READ and KOBJ RAW
together will causefilesto beread in asraw data. This
attribute is available so that a process can customize its
interaction with an object based on how it was opened.

Persistence: transient

KDMS_FORMAT

char *

format viff

kdf
viff
jpeg
pnm
pcx
xpm
xbm
xwd
eps
rast
avs
ascii

raw

This attribute specifies the file format that will be used with
the object. If the object is an input object, then this
attribute is automatically initialized to the file format that
the object isstored in. If the object is an output object, then
this attribute defaults to "viff", indicating that the output
datafilewill be aviff. On output objects, this attribute can
be set to any of the legal values. Theresult isthat when the
object isclosed, it will be written out in the format speci-
fied.

Global Attributes

Attribute
and Default

Legal
Values

Definition

Persistence: stored

KDMS FORMAT DESCRIPTION

char *

description viff

N/A

This (read-only) attribute retrieves the file format descrip-
tion that will describes the format associated with an object.

Persistence: transient

KDMS_NAME

char *

name

This attribute is used to obtain the filename associated with
the specified data object. Thisisthat name passedin to
kdms_open, kdms_output, Of kdms_input. Objectsthat
areinstantiated with kdms_create do not have afilename.
In such instances, this attribute’s value isNULL.

Persistence: stored

KDMS RAW OFFSET

int
offset 0

This attribute specifies an offset to use when opening raw
datafilesfor reading. Thefile pointer will be moved to the
offset specified before the reading begins. The offset isin
bytes.

Persistence: transient

Table 2 below contains definitions for all of the predefined segment attributes.

C.2. Segment Attributes

Segment Attributes
Attribute Legal Definition
and Default Values

KDMS_BUFFER_THRESHOLD

int
threshold 2097152 bytes

This attribute is used to specify the largest number of bytes
that should be allocated for buffering datain memory. This
number is used to determine the size and geometry of a
buffer that is used to minimize transport access. Thus, it
has alarge impact on the performance of a process using to
determine the size and geometry of the kbmMs_oPTI-

MAL REGION SIZE.

Persistence: transient

Segment Attributes

Attribute Legal Definition
and Default Values
KDMS_COMPLEX_CONVERT KIMAGINARY This attribute specifies how complex data should be con-
KMAGNITUDE verted. If itisconverted to a"lower" datatype, this
int KPHASE attribute specifies how to down-convert the data. For exam-
convert KREAL KREAL pleif the datais actually complex, but the presentation

KMAGSQ attribute is byte, the complex data would first be converted

KMAGSQP1 to the representation defined by this attribute, and then con-

KLOGMAG verted to byte.

KLOGMAGP1 If the dataiis being converted from a"lower" datatypeto a
complex data type, this attribute defines how the data
should be interpreted — as the real or imaginary compo-
nent of the complex pair. KPHASE and KMAGNITUDE are
invalid values for up converting to complex, and will result
in an error.

Persistence: transient
KDMS_DATA TYPE KBIT This attribute is used to get or set the data type, or numeri-
KBYTE cal representation of thedata. This datatype will be the
int KUBYTE presentation data type, not necessarily the physical data
datatype KSHORT type. Seethe xpMs_couPLING éttribute for more informa-

KUSHORT tion on how to control the presentation and physical data

KINT types. When the application programmer specifies a pre-

KUINT sentation data type that is different than the actual datatype

KLONG of the stored data, the get kdms_get_data function will

KULONG convert the data to return the requested data type. Like-

KFLOAT wise, the kdms_put_data function expects datathat isin

KDOUBLE the data type specified by this attribute to the output object,

KCOMPLEX and if the databeing "put" is of adifferent type, it will be

KDCOMPLEX converted. This attribute must be set for objects created via

kdms_create OF output objects that are opened with
kpds_output Of kpds_open, or else the get and put data
calswill fail.

Persistence: stored

KDMS DIMENSION

int

dim

This attribute is used to get or set the dimensionality of a
data segment. For example, asignal isa1-D data set, so a
specia segment to store asingle signal could have a dimen-
sionality of 1.

Persistence: stored

5-10

Segment Attributes

Attribute
and Default

Legal
Values

Definition

KDMS_INDEX_ ORDER

int *

order

This attribute specifies the ordering of indices of the seg-
ment to set the orientation of how datais stored and
retrieved. When the application programmer specifies a
presentation index order different than the actual index
order of the stored data by setting this attribute, the get
functions will acquire the data using the presentation index
order. This attribute also dictates the interpretation of the
KDMS_SIZE and KDMS_OPTIMAL REGION SIZE attributes.
For example, if the index order iSKWIDTH, KDEPTH,
KHEIGHT on a3 dimensiona segment, then in the size array
used when setting or getting the kbMs_S1ZE attribute, the
arguments will be width, depth, and height, in that order.

Persistence: stored

KDMS INTERPOLATE

int
interpolate KPAD

KNONE
KPAD

KZERO_ORDER

This attribute specifies how the data should be presented if
the application program requests a size different from what
is physically stored. If the size requested is larger than the
physical size and the interpolation requested is kpaD the
pad value will be returned for all points outside of the phys-
ical size. If the size requested is smaller than the physical
size and the interpolation requested is kpaD the returned
datais clipped to the size requested. If the size requested is
larger than the physical size and the interpolation requested
iSKZERO_ORDER the datais duplicated. If thesize
requested is smaller than the physical size and the interpo-
lation requested iSkzERO_ORDER the data is sub-sampled.
If the interpolate attribute is set to xNONE, an error will be
returned if the program requests a size different from what
is physically stored.

Persistence: transient

KDMS NORM MAX

double

norm max

> norm_min

This attribute specifies the maximum to be used when nor-
malizing datavalues. This attribute is used in conjunction
with the kbMs_NORM_MIN attribute, respectively, to deter-
mine the bounds of a normalization operation. This
attribute comes into play when the kbMs_scaLING attribute
iS set to KNORMALIZE.

Persistence: transient

KDMS_NORM MIN

double

norm min unknown

< norm_max

This attribute specifies the minimum to be used when nor-
malizing datavalues. This attribute is used in conjunction
with the kbMs_NORM_Max attribute, respectively, to deter-
mine the bounds of a normalization operation. This
attribute comes into play when the kbMs_SCALING attribute
iS set to KNORMALIZE.

Persistence: transient

5-11

Segment Attributes

Attribute Legal Definition
and Default Values
KDMS_OFFSET This attribute specifies arelative offset from zero of the ori-
gin of thedataset. Thisvauewill be added to the begin
int * and end corner markers on al get and put data operations.
offset o, 0, 0, 0, O
Persistence: transient
KDMS_OPTIMAL REGION SIZE >0 This attribute will return the size of aregion of data and the
number of such regions that is most efficient to processin
int * terms of performance and memory use. The number of val-
sizes uesin theinteger array isn+1, where nis the dimension of
the segment. Thefirst n entries correspond to the axes of
the data set and the last entry in the array is the number
such regions in the segment.
Persistence: transient
KDMS_PAD VALUE This attribute specifies the real (and imaginary) values of
the pad dataif the kbMS INTERPOLATE attributeis set to
double KPAD, respectively. The double values must be specified,
real whether the dataisreal or complex. The pad valueswill
imag internally be converted from double to the appropriate data
type.
Persistence: transient
KDMS_PHYSICAL DATA TYPE KBIT This attribute is used to get the data type, or numerical rep-
KBYTE resentation of the data at the physical level. Ordinarily,
int KUBYTE attribute setting and getting retrieve the presentation value
dim KSHORT of an attribute. However, there are some rare instances
KUSHORT where direct access to the physical representation of the
KINT datais necessary, but it is desirable to maintain the existing
KUINT presentation attributes. Otherwise, this attribute is identical
KLONG toxoMs DATA_TYPE. Itisthe difference between the
KULONG value of this attribute and the value of the
KFLOAT KDMS_DATA TYPE attribute that will cause a cast operation
KDOUBLE to occur during callsto kpds_get_data () and
KCOMPLEX kpds_put_data() .
KDCOMPLEX

Persistence: stored

5-12

Segment Attributes

Attribute
and Default

Legal
Values

Definition

KDMS_PHYSICAL_DIMENSION

int

dim

>

This attribute is used to get the dimensionality of the data at
the physical level. Ordinarily, attribute setting and getting
retrieve the presentation value of an attribute. However,
there are some rare instances where direct access to the
physical representation of the datais necessary, but it is
desirable to maintain the existing presentation attributes.
Otherwise, this attribute is identical to KbDMS_DIMENSION.
Currently, there should be no difference between this value
and the value of KDMS_DIMENSION.

Persistence: stored

KDMS_PHYSICAL INDEX ORDER

int *

order

This attribute is used to get the index order of the data at
the physical level. Ordinarily, attribute setting and getting
retrieve the presentation value of an attribute. However,
there are some rare instances where direct access to the
physical representation of the data is necessary, but it is
desirable to maintain the existing presentation attributes.
Otherwise, this attribute isidentical to

KDMS_INDEX ORDER. It isthe difference between the
value of this attribute and the value of the

KDMS_INDEX ORDER attribute that can cause are-ordering
of the data, similar to amatrix transposition during callsto
kpds_get data() andkpds_put_data() .

Persistence: stored

KDMS_PHYSICAL_ SIZE

int *

size

This attribute is used to get the size of the data at the physi-
cal level. Ordinarily, attribute setting and getting retrieve
the presentation value of an attribute. However, there are
some rare instances where direct access to the physical rep-
resentation of the data is necessary, but it is desirable to
maintain the existing presentation attributes. Otherwise,
thisattribute isidentical to koms_s1zE. Itisthedifference
between the value of this attribute and the value of the
KDMS_SIZE attribute that can cause an interpolation or
padding to occur during callsto kpds get data () and
kpds put data () based on the value of the
KDMS_INTERPOLATE attribute.

Persistence: stored

KDMS_SCALE_FACTOR

double

scale factor 1.0

This attribute specifies the scaling factor to be used when
scaling datavalues. This attribute comesinto play when
the kDMS_SCALING attribute is set to KSCALE, respectively.

Persistence: transient

5-13

Segment Attributes

Attribute
and Default

Legal
Values

Definition

KDMS_SCALE_OFFSET

double
real
offset

This attribute specifies the scaling offset to be used when
scaling datavalues. This attribute comesinto play when
the kDMS_SCALING attribute is set to KSCALE, respectively.

Persistence: transient

KDMS SCALING

int
scaling KNONE

KNONE
KNORMALIZE

KSCALE

This attribute specifies whether scaling or normalization
should be performed.

If kscaLE is specified for a segment, data values from that
segment will be scaled, according to the
KDMS_SCALE_FACTOR and KDMS_SCALE_OFFSET
attributes. If xNORMALIZE is specified for a segment, data
values from that segment will be normalized using the
KDMS_NORM_MIN and KDMS_NORM_MAX attributes. If this
attribute is set to knonE for the a segment, data values from
that segment will not be scaled or normalized.

Persistence: transient

KDMS_SIZE

int *

size

This attribute specifies the size of the axes of a data seg-
ment. When the application programmer specifiesasize
larger than the actual size of stored data, the get functions
will sub-sampled, clipped, padded or duplicated the data to
present the program with the requested amount, see the
attribute xoMs_ INTERPOLATE for more details. The put
functions store exactly the size that the physical attributes
will allow even if the amount of data"put" (set by the pre-
sentation attributes) is different. This attribute must be set
for objects created viakpds _create object Or output
objects else get/put data calls will fail.

Persistence: stored

KDMS_TRANSFERABLE

int
dim TRUE

TRUE

FALSE

This attribute is used to determine if a segment is copied to
adestination viakdms_copy_object () . If settothen
kdms_copy_object () will copy the segment to the desti-
nation object. If it isset to FALSE, then it will not be
copied with the other segmentsin the data set. This capa-
bility is used to some applications to store information
which will beinvalid if other data segments are operated
on, such as statistical information.

Persistence: stored

5-14

D. Functions Provided By Data Management Services

The multiple attribute functions kpds get attributes(), kpds match attributes (), and
kpds set attributes () requirea NULL at the end of the variable argument list to indicate the end of

thelist.

D.1. Object Management

» kdms_create() - create atemporary data object.

» kdms_open() - create an object associated with an input or output transport.

» kdms_clos&() - close an open data object.

 kdms_reopen() - associate new data with an existing object

» kdms_reference() - create areference of a data object.

» kdms_sync() - synchronize physical and presentation layers of a data abject.

» kdms_update _references() - update segment presentation of all reference objects.

» kdms_close_hook() - insert a service to be called when an object is closed.

» kdms_reference list() - return aklist of references.

» kdms _get segment_names() - get an array of segment names for the object specified.

D.1.1.

kdms_create() — create a temporary data object.

Synopsis
kobject
kdms_create (void)

Returns

kobject on success, KOBJECT _INVALID upon failure

Description

kdms_create is used to instantiate a data object (kobject) when it will only be used for temporary stor-
age of information. If you are intending to process an object that already exists as a file or transport
(input), or you are planning on saving the kobject to a file or transport (output), then the appropriate
routines to use are kdms_input, kdms_output, or kdms_open.

This function creates an instance of a data object that will have associated with it atemporary transport
that will be used for buffering large amounts of data. This temporary transport will be automatically
removed when the process terminates. There is no way to rename the temporary file or replace the
temporary file with a permanent one.

The kdms_create function call creates what is essentially a "blank" object. That is, the object will ini-
tialy have no segments, and almost all global attributes will be initialized to default values. If a
default is not appropriate, then the attribute will be uninitialized. The default values for attributes are
described in Chapter 5 of Program Services Volume 2. of the Khoros 2.0 Manual.

An object that is created with this function call behaves similarly to an output object that is created
with the kdms_output function call. Thus, it is necessary to create each segment that is desired and

5-15

initialize attributes such as size and datatype prior to using the object.

D.1.2. kdms_open() — create an object associated with an input or output transport.

Synopsis
kobject
kdms_open (
char *name,
int flags)

Input Arguments
name
astring that contains the path name of afile or transport that will be associated with the object.

flags
how the object is to be opened. a combination of KOBJ READ, KOBJ WRITE, KOBJ RAW as
described above.

Returns
kobject on success, KOBJECT INVALID upon failure

Description
kdms_open is used to instantiate a data object (kobject) that is assocated with a permanent file or trans-
port. If a permanent file is not desired (i.e. the object is going to be used as temporary storage, and
will not be used by any other process) then the kdms_create function call should be used instead.

The first argument to this function is the transport or file name. This argument indicates the name of
the transport that is associated with the object. The transport name can be any legal khoros transport
description. While this will usually be a regular UNIX file name, it is also possible to specify such
things as shared memory pointers, memory map pointers, sockets, streams, and even transports on
other machines. For more information on the syntax of a VisiQuest transport name, refer to the online
man page for the VisiQuest function kopen.

The second argument to the kdms_open function call is used to provide data services with specific
information about how the object is going to be manipulated. The flags argument is analogous to
kopen's flags argument. The flags argument is constructed by bitwise OR’ing predefined values from
the following list:

KOBJ READ
Open an existing file or transport for reading (input). By using this flag, you are
indicating that the file or transport exists and that it contains valid data. If it does
not exist, or the data is not recognized, then an error message will be generated

5-16

and this function will return KOBJECT _INVALID.

KOBJ WRITE
Open afile or transport for writing (output). By using this flag, you are indicating
that any data that you write to the object will be stored in the file or transport spec-
ified.

KOBJ RAW
When an object is opened, data services usually attempts to recognize the file for-
mat by examining the first part of the file. By setting this value, you will bypass
this operation, forcing thefile to be read as raw unformatted data.

These flags can be combined arbitrarily (with the exceptions given above) to alter the interpretation of
the file or transport. For example, specifying both KOBJ READ and KOBJ WRITE will result in a
read/write file object. This implies that the file already exists and will be read from using
kdms_get data and written to using kdms_put_data. When kdms_close is called, the changes that are
aresult of calsto kdms_put_datawill be stored to thefile.

However, if you intend to open an output object, but you need to occationally read data from it that you
have already written, it is not necessary to specify KOBJ READ (in fact, doing so may result result in
an error if the file or transport does not already exist).

Likewise, it is possible to call kdms_put_data on an input object (one which was opened without the
KOBJ_WRITE flag). If thisis done, then subsequent calls to kdms_get_data on a region that has been
written to will contain the new data. However, the file that is associated with this input object will not
be changed. Thus, the KOBJ READ and KOBJ WRITE flags only indicate what operations are
allowed on the permanent file that is associated with the object, not what operations are allowable on
the object itself.

If KOBJ_READ is specified, then the Data Services will attempt to recognize the file format automati-
cally. If it fails, then this function will return KOBJECT _INVALID, indicating that it was unable to
open the object, unless the KOBJ RAW flag was also specified, in which case, it will assume that the
input file is ssimply headerless data. The structured file formats that are currently recognized are Kdf
(The Khoros 2.0 standard file format), Viff (The Khoros 1.0 standard file format, Pnm (Portable Any
Map, which includes PBM, PGM, and PNM), and Sun Raster.

Restrictions
The KOBJ RAW flag will have unpredictable results if it is combined with the KOBJ WRITE flag.
This limitation will be removed in alater release of the Khoros 2.0 system.

The Kdbm file format has a bug in it that prevents it from being used on a stream base output. This
will be fixed in afuture release of the Khoros 2.0 system.

5-17

D.1.3. kdms_close() — close an open data object.

Synopsis
int
kdms close (kobject object)

Input Arguments
object
the object to be closed.

Returns
TRUE on success, FAL SE otherwise

Description
This function is called on an object when all interaction with the object is completed. In addition to
freeing resources that were used to manage the object, this function aso, performs any "last minute"
manipulation on the file or transport that is associated with the object.

If the object was created with the kdms_reference function call, or if another object was created as a
reference of the one being closed, then the object might be sharing some of its resources with other
objects. If thisis the case, then those shared resources will not be freed, but rather they will be disas-
sociated from the object being closed. Thus, closing an object does not affect any other object.

D.1.4. kdms_reopen() — associate new data with an existing object

Synopsis
kobject
kdms_reopen (
kobject object,

char *name,
int flags)
Input Arguments
object

data object re-open filename - transport name of new data set to associate with the object.
flags

flags to use when opening the data set specified by the filename argument.

5-18

Returns
object (the input argument) on success, NULL on failure.

Description
This function is used to associate new stored data with an already open data object. This operation can
only be performed on an input object. This function is typically used in an interactive environment
when many references to replace the data set being operated on or visualized with a new data set, with-
out having to close al of the references and replace them with new ones.

D.1.5. kdms_reference() — create a reference of a data object.

Synopsis
kobject
kdms reference (kobject object)

Input Arguments
object
the abstract data object to be reference.

Returns
a kobject that is areference of the input object on success, KOBJECT _INVALID upon failure

Description
This function is used to create a reference of a data object that can be treated as a second independant
data object under most circumstances. A referenced object is similar conceptually to a symbolic link
inaUNIX file system in most respects. For example, getting data from an input object and a reference
of the object will result in the same data. Data that is put on an output object can then be gotten from
one of its references.

The similarity ends there. Once an object is referenced, the two resulting objects are equivel ant--there
is no way to distinguish the original from the reference. In fact, closing the original does not in any
way affect the reference, and visa-versa.

kdms_reference creates a new object that has presentation attributes that are independant of the origi-
nal object’s presentation attributes. The presentation attributes are UNCOUPLED from the physical
attributes, see the description found in Chapter 6 of the the VisiQuest Programmer’s Manual on the
KDMS_COUPLING attribute for more information. The two objects (or more if there are future calls
to kdms_reference) share all physical resources.

5-19

D.1.6. kdms_sync() — synchronize physical and presentation layers of a data object.

Synopsis
int
kdms_sync (
kobject object,
char *segment,
int direction)

Input Arguments

object
data object to be resynchronized.

segment
segment re-synchronize. If thisisset to KDMS OBJECT, then all segments are re-synchronized.

direction
the desired direction of the synchronization. the legal values are KPRES2PHY S, which indicates that
the physical layer will be updated to correspond to the presentation layer; and KPHY S2PRES, which
indicates that the presentation layer will be updated to correspond to the physical layer.

Returns
TRUE on success, FAL SE otherwise

Description
This function is used to update physical attributes of a data object to match those of the presentation
layer, or visaversa. When an attribute is set viakdms_set_attribute(s) or kdms_copy_attribute(s) cals,
the presentation version of the attribute is the only thing that is directly manipulated. The
KDMS COUPLING attribute is used at that time to determine if the physical attribute should be
updated to correspond to its value at the presentation level. The KDMS_COUPLING attribute can
take on one of three values. KUNCOUPLED, KCOUPLED, or KDEMAND. If it is set to KUNCOU-
PLED or KDEMAND, then Data Services will not update the physical layer. If the attribute is set to
KCOUPLED, then data services immediately updates the physical layer. If the attribute is set to KDE-
MAND, then this updating will only occur when kdms _sync is called. If the KDMS COUPLING
attribute is set to KUNCOUPLED, then this routine will simply return, without issuing an error mes-

sage.

D.1.7. kdms_update_references() — update segment presentation of all reference objects.

Synopsis
int
kdms_update references (

5-20

kobject object,
char *segment)

Input Arguments
object
object containing segment to propagate.
segment
name of segment to be propagated.

Returns
TRUE on success, FAL SE otherwise

Description
This function propagates the values of the presentation attributes from the specified object and segment
to the corresponding segmentsin all of the object’s references.

D.1.8. kdms_close_hook() — insert a service to be called when an object is closed.

Synopsis
kfunc_int
kdms close hook(
kobject object,
int (*func) PROTO((kobject)))

Input Arguments
object
object to have close hook function added to.
func
function to set as close hook. This function has the following prototype: func(kobject).

Returns
The close_hook that was assigned prior to this new assignment.

Description
This function is used to insert a special function that is called immediately before an object is closed
(after a call to kdms_close) that can perform any cleanup that may be required before the object is
written if it is an output object.

5-21

D.1.9. kdms_reference_list() — return aklist of references.

Synopsis
klist *
kdms_reference list (kobject object)

Input Arguments
object
the object to get references of.

Returns
aklist * on success, NULL on failure.

Description
This function returns a klist of objects that are references of the object passed in as the argument to this
function. The object passed in will also be in this list. NOTE: This list is the one actually used by
KDMS to manage references. Destroying thislist will cause grief like you've never seen before.

D.1.10. kdms_get_segment_names() — get an array of segment names for the object specified.

Synopsis
char **
kdms get segment names (kobject object, int *number)

Input Arguments
object
the object to get the segment names from.

Output Arguments
number
the number of segments in the object (and thus, the number strings in the array that is returned.

Returns
an array of strings containing the names of the segments present in the object on success, NULL on
failure.

5-22

Description
Given an object, obtain an array of strings which are the names of all segments which exist in the
object.

D.2. Information

* kdms_support() - obtain alist of file formats supported by data services.

D.2.1. kdms_support() — obtain alist of file formats supported by data services.

Synopsis
char **
kdms_support (
int *num,
int list inputs,
int list_ outputs)

Input Arguments
list inputs
TRUE if formats with input support should be included in the list
list outputs
TRUE if formats with output support should be included in the list

Output Arguments
num
The number of formatsin the returned string array.

Returns
An array of strings (char **) containing alist of all formats that are currently defined in Data Services.

Description
Thisfunction is used to obtain alist of the file formats supported by the data abstraction.

D.3. Segment Management

« kdms_query_segment() - determine if a data segment is available.
» kdms_create_segment() - create a segment on a data object.

» kdms_destroy_segment() - destroy a segment from a data object.

* kdms_rename_segment() - rename a segment

5-23

D.3.1. kdms_query_segment() — determine if a data segment is available.

Synopsis
int
kdms_query segment (
kobject object,
char *segment)

Input Arguments
object
The object that segment may exist in.
segment
The name of segment to determine the existence of.

Returns
TRUE if the data segment exists, FAL SE otherwise

Description
This function is used to determine if a data segment in an object is available. It returns TRUE if the
data segment exists, FAL SE otherwise.

D.3.2. kdms_create_segment() — create a ssgment on a data object.

Synopsis
int
kdms create segment (
kobject object,
char *segment)

Input Arguments
object
The object to create the new segment in.
segment
The name of segment to create.

Returns
TRUE on success, FAL SE otherwise

5-24

Description
This function is used to create a segment that does not already exist in a data object. If the segment

already exists, then this function will generate an error.

D.3.3. kdms_destroy_segment() — destroy a segment from a data object.

Synopsis
int
kdms destroy segment (
kobject object,
char *segment)

Input Arguments
object
The object containing the segment to be destroyed.

segment
The name of segment to be destroyed.

Returns
TRUE on success, FAL SE otherwise

Description
This function is used to destroy an existing segment from a data object. Once a segment has been

destroyd, any data or attributes associated with that segment will be lost forever. A new segment can
be created in its place.

If the segment does not exist, then an error message will be issued.

D.3.4. kdms_rename_segment() — rename a segment

Synopsis
int
kdms_rename_segment (
kobject object,
char *oname,
char *nname)

5-25

Input Arguments
object
The object to rename a segment on. old_name - The current name of the segment to be renamed.
new_name - The new name of the segment.

Returns
TRUE if successful, FAL SE otherwise

Description
Thisfunction is used to rename a segment in an open object.

D.4. Attribute Management

» kdms_define_quasi_attribute() - define aquasi attribute

» kdms_define_attribute() - define an attribute for for a session

» kdms_undefine_attribute() - undefine a defined attribute

» kdms_query_attribute_definition() - determines if an attribute is defined.

» kdms_create_attribute() - instantiate an attribute

» kdms_destroy_attribute() - destroy an attribute

» kdms vset_attribute() - open varargs set attribute

e kdms vset_attributes() - set attributes on a kvalist

» kdms_set_attribute() - set the value of an attribute

» kdms_set_attributes() - sets the values of multiple attributes

» kdms_vget_attribute() - get asingle attribute on a kvalist

» kdms_vget_attributes() - get attributes on a kvalist

» kdms_get_attribute() - get the value of an attribute within a segment of an abstract object.

» kdms get_attributes() - gets the values of a variable number of attributes within a single segment of an
object.

* kdms_match_attribute() - returns TRUE if the same segment attribute in two abstract data objects match.
» kdms_vmatch_attributes() - returns true if the vararg list of segment attributes in two abstract data objects
match.

» kdms_match_attributes() - returnstrue if the list of segment attributes in two abstract data objects match.
» kdms_copy_attribute() - copy an attribute from a source object to a destination object.

» kdms_vcopy_attributes() - copy attributes given in akvalist

» kdms_copy_attributes() - copy attributes from a source object to a destination object.

» kdms_query_attribute() - get information about an attribute

* kdms_print_attribute() - print the value of an attribute

» kdms_get_attribute_names() - get alist of attributes from an object.

D.4.1. kdms_define_quasi_attribute() — define a quasi attribute

Synopsis

int kdms define quasi attribute(

5-26

char *association,
char *attribute,
kaddr client data,
kfunc_int *get,
kfunc _int *set,
kfunc_int *match,
kfunc_int *copy,
kfunc_int *query,
kfunc_int *print)

Input Arguments
association
string indicating where it is legal to to invoke the atttribute. NULL implies the attribute can be
invoked at the object level. A segment name implies that the attribute can only be invoked on that seg-
ment. The identifier KDMS ALL_SEGMENTS implies that the attribute can be invoked for any seg-
ment, but not for the object.

attribute
attribute string identifier.

client data
pointer to client data. Thisclient datawill be passed in to all the the routines for this attribute.

get
get handler function for this attribute. This function will be invoked whenever a kdms_get_attribute,
kdms_get_attributes, kdms_vget_attribute, or kdms_vget_attributes function is called and the given
segment matches the definition’s association.

The get handler declaration is of the form :

int get_handler(
kobject object,
ktoken association,
ktoken attribute,
kaddr client_data,
kva list *list)

The object is passed from the calling get function. The association is the tokenized representation of
the segment argument from the get function. The attribute is the tokenized representation of the
attribute name. The client_datais the client_data from this definition. The variable argument list is an
already opened varargs list which contains the pointers with which to return the attribute data. The
variable arguments can be pulled off with the kva arg() function. The list will be closed after this han-
dler returns. The return value of this handler will also be propogated up to be the return value of the
calling get function.

set
set handler function for this attribute. This function will be invoked whenever a kdms_set_attribute,

5-27

kdms_set_attributes, kdms vset_attribute, or kdms_vset_attributes function is caled and the given
segment matches the definition’s association.

The set handler declaration is of theform :

int set_handler(
kobject object,
ktoken association,
ktoken attribute,
kaddr client_data,
kva list *list)

The object is passed from the calling set function. The association is the tokenized representation of
the segment argument from the set function. The attribute is the tokenized representation of the
attribute name. The client_datais the client_data from this definition. The variable argument list is an
already opened varargs list which contains the data with which to set the attribute data. The variable
arguments can be pulled off with the kva arg() function. The list will be closed after this handler
returns. The return value of this handler will also be propogated up to be the return value of the call-
ing set function.

match
match handler function for this attribute. This function will be invoked whenever a
kdms_match_attribute, kdms _match_attributes, or kdms_vmatch_attributes function is called and the
given segment matches the definition’s association.

The match handler declaration is of the form :

int match_handler(
kobject objectl,
kobject object2,
ktoken association,
ktoken attribute,
kaddr client_datal,
kaddr client_data?)

The objectl and object2 arguments are passed from the calling match function. The association is the
tokenized representation of the segment argument from the match function. The attribute is the tok-
enized representation of the attribute name. The client_datal and client_data? arguments are from
from this definition. The return value of this handler will also be propogated up to be the return value
of the calling match function.

copy
copy handler function for this attribute. This function will be invoked whenever a

kdms_copy_attribute, kdms_copy_attributes, or kdms_vcopy_attributes function is called and the
given segment matches the definition’s association.

5-28

The copy handler declaration is of the form :

int copy_handler(
kobject objectl,
kobject object2,
ktoken association,
ktoken attribute,
kaddr client_datal,
kaddr client_data2)

The object1 and object2 arguments are passed from the calling copy function. The association is the
tokenized representation of the segment argument from the copy function. The attribute is the tok-
enized representation of the attribute name. The client_datal and client_data2 arguments are from
from this definition. The return value of this handler will also be propogated up to be the return value
of the calling copy function.

query
guery handler function for this attribute. This function will be invoked whenever a

kdms_query_attribute function is called and the given segment matches the definition’s association.

The query handler declaration is of the form :

int query_handler(
kobject object,
ktoken association,
ktoken attribute,
kaddr client_data,
int *num_args,
int *arg size,
int *data type,
int *permanent)

The object is passed in from the calling query function. The association is the tokenized representa
tion of the segment argument from the query function. The attribute is the tokenized representation of
the attribute name. The client_data argument is from from this definition. The num_args argument
can be used to return the expected number of arguments for this attribute. The arg_size argument can
be used to return the expected argument size for this attribute. The data type argument can be used to
return the expected data type for this attribute. The permanent argument can be used to indicate if this
attribute is stored or not. Note that it is up to the programmer to ensure that the values which the han-
dler returns for any of those arguments matches what is going to be processed in the get and set han-
dliers. The return value of this handler will be propogated up to be the return value of the calling query
function. In general, avalue of TRUE isinterpreted to mean that the attribute "exists'.

print

print handler function for this attribute. This function will be invoked whenever a
kdms print_attribute function is called and the given segment matches the definition’s association.

5-29

The print handler declaration is of the form :

int print_handler(
kobject object,
ktoken association,
ktoken attribute,
kaddr client_data,
kfile *outfile)

The object is passed in from the calling print function. The association is the tokenized representation
of the segment argument from the print function. The attribute is the tokenized representation of the
attribute name. The client_data argument is from from this definition. The outfile argument is the
(hopefully) open khoros transort which this handler can use to print the attribute to. The return value
of this handler will be propogated up to be the return value of the calling print function.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description

This routine will define a data services quasi-attribute for a session. A quasi-attribute is one which
does not technically have any data associated with it, but one for which a given action will be invoked.
From the higher level programmer’s point of view, a quasi-attribute will behave identically to a generic
attribute. The higher-level function calls will be identical. That is, the same get, set, match, query, and
print attribute functions will work on both quasi-attributes and generic attributes. Quasi-attributes are
provided smply to alow an application service programmer the ability to provide their own custom
functionality for an attribute.

This quasi-attribute definition will be used to determine what action should be taken on a get, set,
match, copy or print attribute call. On any kdms attribute call for this attribute, the relevant action han-
dler provided in this definition will be called or invoked.

This attribute definition is distinguished by the attribute name provided here. The name must be a
string, unique for the given association.

In each attribute call, a segment argument will be provided to give scope to the attribute. The associa-
tion given in this definition is used to determine the allowable scope of the attribute. Attributes can be
either scoped to the main object (object-level) or scoped to any of the object’s data segments (segment-
level).

The provided association is simply a string. A NULL association indicates that the attribute can only
be invoked when NULL is passed in as the segment argument. An association of KDMS_ALL_SEG-
MENTS indicates that the attribute can be invoked at the segment level for any segment name except
for NULL. If a specific segment name, such as "value" is given for the association, then the attribute
can only invoked when "value" is provided as the segment name.

This quasi-attribute can be undefined with the kdms_undefine_attribute call.

5-30

D.4.2. kdms_define_attribute() — define an attribute for for a session

Synopsis

int kdms_define attribute(

char *association,
char *attribute,
int numargs,

int argsize,
int datatype,
int permanent,
int shared,
kvalist)
Input Arguments
association

string indicating where it islegal to to create the atttribute. NULL implies the attribute can be instanti-
ated at the abject level. A segment name implies that the attribute can only be established on that seg-
ment. The identifier KDMS ALL_SEGMENTS implies that the attribute can be established on any
segment, but not on the object.

attribute
attribute string identifier

numargs
number of argumentsin the attribute; must be > 0;

argsize
number of units of the data type for each attribute argument must be > 0;

datatype
data type of the attribute can be KBIT, KUBYTE, KBYTE, KUSHORT, KSHORT, KUINT, KINT,
KULONG, KLONG, KFLOAT KDOUBLE, KCOMPLEX, KDCOMPLEX, or KSTRING

permanent
TRUE if attribute is permanent

shared
TRUE if attribute is shared

kvalist
the default value in a variable argument list containing data in the form :

valuel [, value, ...]

The list should consist of "numarg" arguments, where each argument is of "argsize” size of "datatype”

5-31

datatype.

Returns
TRUE on success, FAL SE otherwise

Description
This routine will define a data services attribute for asession. This attribute definition will be used as a
template for creating instances of the attribute on an actual data object. This creation will be implicit
when the attribute is accessed by any other kdms attribute routine.

The attribute definition is distinguished by the given attribute name. The name must be a string,
unique for the given association. The attribute acts as storage for multiple argument values. Each
attribute argument can be of any size (> 0) or datatype. The number of arguments, the argument size,
and the datatype are all specified in this definition.

Attributes can be permanent, implying that they are stored to the disk when the object is closed. Tech-
nically, a permanent attribute will only be stored if the underlying file format has the capacity for stor-
ing it. Seethe man page for kdatafmt for more information of file formats.

Attributes can be either created on the main object (object-level) or created on any of the object’s data
segments (segment-level). Whether an attribute is created at the object-level or at the segment-level is
determined by the attribute definition’s association.

The provided association is simply a string. A NULL association indicates that the attribute can only
be created at the object-level. An association of KDMS _ALL_SEGMENTS indicates that the attribute
can be created at the segment level on any segment name. If a specific segment name, such as "vaue'
is given for the association, then the attribute can only created on the "value" segment.

The attribute can be either permanent or transient. Permanent impiles that when the object is closed, a
representation of the attribute will be written out to the disk. Note that this representation completely
describes the attribute, and it will be possible to read this attribute later in another session even if it has
not been defined there.

In addition to being created either at the object or segment level, an attribute can also be created at the
physical or presentation level.

Changes to physical level attributes are visible to all references of the data object and are termed as
"shared" attributes. Changes to presentation level attributes are visible only to the reference object on
which the change was made, and thus the attribute is termed as "unshared”. Since all references may
have potentially different values, unshared attributes may not be permanent.

A default must be provided. This default must consist of the proper number of arguments where each
argument is of the same size and data type specified in the definition. This default will be used when
initializing any attributes created from this definition.

This attribute can be undefined with the kdms_undefine_attribute call.

5-32

D.4.3. kdms_undefine_attribute() — undefine a defined attribute

Synopsis

int kdms_undefine attribute(

char *association,
char *attribute)

Input Arguments
association

string indicating the scope of the attribute. The same association that was used to define the attribute
must be used here.

attribute
attribute string identifier

Returns
TRUE on success, FAL SE otherwise

Description

This function will remove an attribute definition from the definition list. The attribute definition corre-
sponding to the given association and attribute name will be removed. This has no effect on any

attribute which may have already been instantiated on an object. This function can be used to undefine
both generic and quasi attributes.

D.4.4. kdms_query_attribute_definition() — determinesif an attribute is defined.

Synopsis

int kdms query attribute definition(

char *association,
char *attribute)

Input Arguments
association

string indicating the scope of the attribute. The same association that was used to define the attribute
must be used here.

5-33

attribute
attribute string identifier

Returns
TRUE if attribute is defined, FAL SE otherwise

Description
This function will check to see if an attribute is defined on the definition list. The attribute definition
corresponding to the given association and attribute name will be searched for.

D.4.5. kdms_create_attribute() — instantiate an attribute

Synopsis

int kdms create attribute(

kobject object,

char *segment,
char *attribute,
int numargs,
int argsize,
int datatype,
int permanent,
int shared)
Input Arguments
object

the object on which to instantiate the new attribute.

segment
segment identifier string specifying which segment to create the attribute in. If NULL, then the
attribute will be created at the object level.

attribute
attribute identifier string. Thisidentifier must be unique for the given segment.

numargs
number of argumentsin the attribute must be > 0;

argsize
number of units of the data type for each attribute argument must be > 0;

datatype

data type of the attribute can be KBIT, KUBYTE, KBYTE, KUSHORT, KSHORT, KUINT, KINT,
KULONG, KLONG, KFLOAT KDOUBLE, KCOMPLEX, KDCOMPLEX, or KSTRING

permanent
TRUE if attribute is permanent.

shared
TRUE if attribute is shared

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This routine provides the programmer with a mechanism for creating attributes specific to a program
being written.

The attribute acts as storage for multiple argument values. Each attribute argument can be of any size
or datatype. The number of arguments, the argument size, and the data type are all specified here.

The attributes can be either created on the main object (object-level) or created on any of the object’s
data segments (segment-level). Whether the attribute is created at the object-level or at the segment-
level is determined by the segment argument. |If the segment argument is NULL, then the attribute will
be instantiated at the object-level. Otherwise, the attribute will be instantiated on the specified seg-
ment, if it exists. If an attribute with the same name and scope already exists, then this function will
fail.

The attribute can be either permanent or transient. Permanent impiles that when the object is closed, a
representation of the attribute will be written out to the disk.

In addition to being created either at the abject or segment level, the attribute can also be created at the
physical or presentation level.

Changes to physical level attributes are visible to all references of the data object and are termed as
"shared" attributes. Changes to presentation level attributes are visible only to the reference object on
which the change was made, and thus the attribute is termed as "unshared". Since all references may
have potentially different values, unshared attributes may not be permanent.

An initial value must be provided. Thisinitial value must consist of the proper number of arguments
where each argument is of the same size and data type specified in this call.

The attribute can be destroyed with the kdms_destroy_attribute function.

Restrictions
This attribute will override any defined attributes with the same name and scope.

5-35

D.4.6. kdms_destroy_attribute() — destroy an attribute

Synopsis

int kdms destroy attribute

kobject object,

char *segment,
char *attribute)
Input Arguments
object

the object with the attribute to destroy

segment

the segment which contains the attribute. If thisis NULL, then the attribute is assumed to exist at the
object level.

attribute
string identifying the name of the attribute to destroy.

Returns
TRUE on success, FAL SE otherwise

Description
This routine provides the programmer with a mechanism for destroying an instantiation of an attribute.

The segment argument is used to indicate which segment the attribute exists in. If the segment argu-
ment isSNULL, then the attribute is assumed to exist at the object level.

If the attribute is not physically instantiated on the object, then it can not be destroyed. In general, this

routine should only be used to destroy attributes that have been explicitly created with a kdms cre-
ate attribute call.

D.4.7. kdms_vset_attribute() — open varargs set attribute

Synopsis
int
kdms_vset_attribute
kobject object,

5-36

char *gegment,
char *attribute,
kva list *1list)

Input Arguments
object
object to set the attribute on
segment
name of segment to set the attribute on.
attribute
name of the attribute to set va list - avalist containing the values of the attribute.

[nput:

Returns
TRUE on success, FAL SE otherwise

Description
This routine allows the programmer to set the value of an attribute associated with a data object.

Data services manages two sets of attributes with each object. Internally, they are referred to as the
physical attributes and the presentation attributes. The presentation version of an attribute is the value
that is desired by the programmer. The corresponding physical attribute is what is physically stored on
the file or transport associated with the object. If the two versions of an attribute result in different pre-
sentations of data, then data services automatically translates the data from the physical interpretation
to the presentation interpretation, or visa-versa, as appropriate. For example, if the data type attribute
(KDMS_DATA_TYPE) is physically unsigned int (KULONG), but the presentation value of that
attribute is float (KFLOAT), then data services will retrieve the data from the object and and cast it to
float before returning it to the user. Similar behavior will occur for attributes such as index order
(KDMS_INDEX_ORDER) and size (KDMS_SIZE).

The presentation attributes are settable at any time throughout a object’s lifetime. The physical
attributes, however, at some point are locked and thereafter cannot change. An object that was opened
as an input object (viakdms_input or kdms_open) hasits physical attributes locked immediately.

The effect of setting the attribute is immediate. For example, if this routine is used to set the
KDMS_DATATY PE attribute, then any future access of the data in this image will involve data of the
specified data type.

If the segment argument is NULL, then this instructs kdms_set_attribute to set a global attribute, if

available. In either case, if the attribute does not exist, then this routine returns FALSE, indicating a
failure.

5-37

D.4.8. kdms_vset_attributes() — set attributes on a kvalist

Synopsis
int
kdms_vset_attributes(
kobject object,
char *segment,
kva list *1list)

Input Arguments
object
object to set the attribute on
segment
name of segment to set the attribute on. va list - avalist containing attributes and their values.

Returns
TRUE on success, FAL SE otherwise

Description
This routine alows the programmer to set the values of multiple attributes associated with a data
object.

Data services manages two sets of attributes with each object. Internally, they are referred to as the
physical attributes and the presentation attributes. The presentation version of an attribute is the value
that is desired by the programmer. The corresponding physical attribute is what is physically stored on
the file or transport associated with the object. If the two versions of an attribute result in different pre-
sentations of data, then data services automatically translates the data from the physical interpretation
to the presentation interpretation, or visa-versa, as appropriate. For example, if the data type attribute
(KDMS_DATA_TYPE) is physically unsigned int (KULONG), but the presentation value of that
attribute is float (KFLOAT), then data services will retrieve the data from the object and and cast it to
float before returning it to the user. Similar behavior will occur for attributes such as index order
(KDMS_INDEX_ORDER) and size (KDMS_SIZE).

The presentation attributes are settable at any time throughout a object’s lifetime. The physical
attributes, however, at some point are locked and thereafter cannot change. An object that was opened
as an input object (viakdms_input or kdms_open) hasits physical attributes locked immediately.

The effect of setting the attribute is immediate. For example, if this routine is used to set the
KDMS DATATY PE attribute, then any future access of the data in this image will involve data of the
specified data type.

If the segment argument is NULL, then this instructs kdms_set_attribute to set a global attribute, if

available. In either case, if the attribute does not exist, then this routine returns FALSE, indicating a
failure.

5-38

D.4.9. kdms_set_attribute() — set the value of an attribute

Synopsis
int
kdms_set attribute(
kobject object,

char *segment,
char *attribute,
kvalist)
Input Arguments
object
the object that isinvolved in the set attribute operation.
segment

the data segment whose attribute is being set. va aist - variable argument list, that contains an
attribute followed by any values associated with that attribute. It takes the form:

ATTRIBUTE_NAME, valuel [, value2, ...]

The number of value arguments in the variable argument list depends on the specific attribute. For
example, KDMS DATATY PE takes only one value, but KDMS_SIZE takes five values.

Returns
TRUE on success, FAL SE otherwise

Description
This routine alows the programmer to set the value of an attribute associated with a data object.

Data services manages two sets of attributes with each object. Internally, they are referred to as the
physical attributes and the presentation attributes. The presentation version of an attribute is the value
that is desired by the programmer. The corresponding physical attribute is what is physically stored on
the file or transport associated with the object. If the two versions of an attribute result in different pre-
sentations of data, then data services automatically translates the data from the physical interpretation
to the presentation interpretation, or visa-versa, as appropriate. For example, if the data type attribute
(KDMS_DATA_TYPE) is physically unsigned int (KULONG), but the presentation value of that
attribute is float (KFLOAT), then data services will retrieve the data from the object and and cast it to
float before returning it to the user. Similar behavior will occur for attributes such as index order
(KDMS_INDEX_ORDER) and size (KDMS_SIZE).

The presentation attributes are settable at any time throughout a object’s lifetime. The physical
attributes, however, at some point are locked and thereafter cannot change. An object that was opened
as an input object (viakdms_input or kdms_open) hasits physical attributes locked immediately.

The effect of setting the attribute is immediate. For example, if this routine is used to set the
KDMS DATATY PE attribute, then any future access of the data in this image will involve data of the

5-39

specified data type.

If the segment argument is NULL, then this instructs kdms_set_attribute to set a global attribute, if
available. In either case, if the attribute does not exist, then this routine returns FALSE, indicating a
failure.

D.4.10. kdms_set_attributes() — sets the values of multiple attributes

Synopsis
int
kdms_set attributes
kobject object,
char *segment,
kvalist)

Input Arguments
object
the object that isinvolved in the set attribute operation.
segment
the data segment whose attribute is being set. va alist - variable argument list, that contains a set of
attributes, each followed by any values associated with that attribute. 1t takes the form:

ATTRIBUTE_NAMEL, valuel [, value?, ...], ATTRIBUTE_NAME2, valuel,[, value2, ...],

The number of value arguments in variable argument list for each attribute depends on the specific
attribute. For example, KDMS_DATATY PE takes only one value, but KDMS_SIZE takes five values.
The NULL at the end of the variable argument list serves as a flag indicating the end of the list to
kdms_set _attributes.

Returns
TRUE on success, FAL SE otherwise

Description
The purpose of thisroutineis to set the values of multiple attributes of a data object.

Data services manages two sets of attributes with each object. Internally, they are referred to as the
physical attributes and the presentation attributes. The presentation version of an attribute is the value
that is desired by the programmer. The corresponding physical attribute is what is physically stored on
the file or transport associated with the object. If the two versions of an attribute result in different pre-
sentations of data, then data services automatically translates the data from the physical interpretation
to the presentation interpretation, or visa-versa, as appropriate. For example, if the data type attribute
(KDMS_DATA_TYPE) is physically unsigned int (KULONG), but the presentation value of that
attribute is float (KFLOAT), then data services will retrieve the data from the object and and cast it to

5-40

float before returning it to the user. Similar behavior will occur for attributes such as index order
(KDMS_INDEX_ORDER) and size (KDMS_SIZE).

The presentation attributes are settable at any time throughout a object’s lifetime. The physical
attributes, however, at some point are locked and thereafter cannot change. An object that was opened
as an input object (viakdms_input or kdms_open) hasits physical attributes locked immediately.

The effect of setting an attribute is immediate. For example, if this routine is used to set the
KDMS DATA_TYPE attribute, then any future access of the data in thisimage will involve data of the
specified data type.

If the segment argument is NULL, then this instructs kdms_set_attributes to get a series of global
attributes, if available. In either case, if an attribute does not exist, then this routine returns FALSE,
indicating afailure.

D.4.11. kdms_vget_attribute() — get a single attribute on a kvalist

Synopsis
int
kdms vget attribute(
kobject object,
char *gsegment,
char *attribute,
kva list *1list)

Returns
TRUE on success, FAL SE otherwise

Description
The purpose of thisroutine is to allow the programmer to get the value of an attribute associated with a
data object.

Data services manages two sets of attributes with each object. Internally, they are referred to as the
physical attributes and the presentation attributes. The presentation version of an attribute is the value
that is desired by the programmer. The corresponding physical attribute is what is physically stored on
the file or transport associated with the object. If the two versions of an attribute result in different pre-
sentations of data, then data services automatically translates the data from the physical interpretation
to the presentation interpretation, or visa-versa, as appropriate. For example, if the data type attribute
(KDMS DATA _TYPE) is physically unsigned int (KULONG), but the presentation value of that
attribute is float (KFLOAT), then data services will retrieve the data from the object and and cast it to
float before returning it to the user. Similar behavior will occur for attributes such as index order
(KDMS_INDEX_ORDER) and size (KDMS_SIZE).

The presentation attributes are settable at any time throughout a object’s lifetime. The physical

5-41

attributes, however, at some point are locked and thereafter cannot change. An object that was opened
as an input object (viakdms_input or kdms_open) hasits physical attributes locked immediately.

If the segment argument is NULL, then this instructs kdms get attribute to get a global attribute, if
available. In either case, if the attribute does not exist, then this routine returns FALSE, indicating a
failure.

D.4.12. kdms_vget_attributes() — get attributes on a kvalist

Synopsis
int
kdms_vget attributes(
kobject object,
char *segment,
kva list *1list)

Returns
TRUE on success, FAL SE otherwise

Description
The purpose of this routine is to allow the programmer to get the values of multiple attributes associ-
ated with a data object

Data services manages two sets of attributes with each object. Internally, they are referred to as the
physical attributes and the presentation attributes. The presentation version of an attribute is the value
that is desired by the programmer. The corresponding physical attribute is what is physically stored on
the file or transport associated with the object. If the two versions of an attribute result in different pre-
sentations of data, then data services automatically translates the data from the physical interpretation
to the presentation interpretation, or visa-versa, as appropriate. For example, if the data type attribute
(KDMS_DATA_TYPE) is physically unsigned int (KULONG), but the presentation value of that
attribute is float (KFLOAT), then data services will retrieve the data from the object and and cast it to
float before returning it to the user. Similar behavior will occur for attributes such as index order
(KDMS_INDEX_ORDER) and size (KDMS_SIZE).

The presentation attributes are settable at any time throughout a object’s lifetime. The physical
attributes, however, at some point are locked and thereafter cannot change. An object that was opened
as an input object (viakdms_input or kdms_open) hasits physical attributes locked immediately.

If the segment argument is NULL, then this instructs kdms_set_attributes to get a series of global

attributes, if available. In either case, if an attribute does not exist, then this routine returns FALSE,
indicating afailure.

5-42

D.4.13. kdms_get_attribute() — get the value of an attribute within a segment of an abstract
object.

Synopsis
int
kdms get attribute(
kobject object,
char *segment,
char *attribute,
kvalist)

Input Arguments
object
the object that isinvolved in the get attribute operation.
segment
the data segment whose attribute is being retrieved. va alist - variable argument list, that contains an
attribute followed by any addresses that will be filled out with the values associated with that attribute.
The variable argument list takes the form:

ATTRIBUTE_NAME, &valuel [, &value2, ..]

The number of value arguments in variable argument list depends on the specific attribute. For exam-
ple, KDMS_DATATY PE requires one value, but KDMS_SIZE requires five values.

Returns
TRUE on success, FAL SE otherwise

Description
The purpose of thisroutine is to allow the programmer to get the value of an attribute associated with a
data object.

Data services manages two sets of attributes with each object. Internally, they are referred to as the
physical attributes and the presentation attributes. The presentation version of an attribute is the value
that is desired by the programmer. The corresponding physical attribute is what is physically stored on
the file or transport associated with the object. If the two versions of an attribute result in different pre-
sentations of data, then data services automatically translates the data from the physical interpretation
to the presentation interpretation, or visa-versa, as appropriate. For example, if the data type attribute
(KDMS _DATA_TYPE) is physically unsigned int (KULONG), but the presentation value of that
attribute is float (KFLOAT), then data services will retrieve the data from the object and and cast it to
float before returning it to the user. Similar behavior will occur for attributes such as index order
(KDMS_INDEX_ORDER) and size (KDMS_SIZE).

The presentation attributes are settable at any time throughout a object’s lifetime. The physical

attributes, however, at some point are locked and thereafter cannot change. An object that was opened
as an input object (viakdms_input or kdms_open) hasits physical attributes locked immediately.

5-43

If the segment argument is NULL, then this instructs kdms_get_attribute to get a global attribute, if
available. In either case, if the attribute does not exist, then this routine returns FALSE, indicating a
failure.

D.4.14

. kdms_get_attributes() — gets the values of a variable number of attributes within a sin-

gle segment of an object.

Synopsis

int

kdms_get_attributes

kobject object,
char *segment,
kvalist)

Input Arguments
object

the object that isinvolved in the set attribute operation.

segment

the data segment whose attribute is being retrieved. va aist - avariable argument list that contains a
set attributes, each followed by addresses to variables that will be assigned with values associated with
that attribute. The variable argument list takes the form:

ATTRIBUTE_NAMEL, &vauel [, &value?, ...], ATTRIBUTE_NAMEZ2, &vauel,[, &vaue, ...],

The number of value arguments in the variable argument list for each attribute depends on the specific
attribute. For example, KDMS _DATATY PE takes only one value, but KDMS SIZE takes multiple
values. The NULL at the end of the variable argument list serves as aflag indicating the end of the list
to kdms_get_attributes.

Returns

TRUE on success, FAL SE otherwise

Description

The purpose of this routine is to allow the programmer to get the values of multiple attributes associ-
ated with a data object

Data services manages two sets of attributes with each object. Internally, they are referred to as the
physical attributes and the presentation attributes. The presentation version of an attribute is the value
that is desired by the programmer. The corresponding physical attribute is what is physically stored on
the file or transport associated with the object. If the two versions of an attribute result in different pre-
sentations of data, then data services automatically translates the data from the physical interpretation
to the presentation interpretation, or visa-versa, as appropriate. For example, if the data type attribute
(KDMS _DATA_TYPE) is physically unsigned int (KULONG), but the presentation value of that

5-44

attribute is float (KFLOAT), then data services will retrieve the data from the object and and cast it to
float before returning it to the user. Similar behavior will occur for attributes such as index order
(KDMS_INDEX_ORDER) and size (KDMS_SIZE).

The presentation attributes are settable at any time throughout a object’s lifetime. The physical
attributes, however, at some point are locked and thereafter cannot change. An object that was opened
as an input object (viakdms_input or kdms_open) hasits physical attributes locked immediately.

If the segment argument is NULL, then this instructs kdms set attributes to get a series of global
attributes, if available. In either case, if an attribute does not exist, then this routine returns FALSE,
indicating afailure.

Restrictions
Use only asdirected...

D.4.15. kdms_match_attribute() — returns TRUE if the same segment attribute in two abstract
data objects match.

Synopsis
int
kdms_match attribute(
kobject objectl,
kobject object2,
char *segment,
char *attribute)

Input Arguments
objectl
the first abstract data object on which to match the specified attribute
object2
the second abstract data object on which to match the specified attribute
segment
the data segment in each abstract data object in which we will be matching the attribute.
attribute
the attribute that will be compared in the two objects.

Returns
There are three ways for this routine to return a FALSE: (1) if the attribute in the two objects does not
match; (2) if either object does not contain the specified attribute; (3) an error condition resulting from
an invalid object or segment. If none of these three conditions exist, then this function will return
TRUE.

5-45

Description
The purpose of this routine is to allow the programmer to compare a single attribute between two data
objects.

Data services manages two sets of attributes with each object. Internally, they are referred to as the
physical attributes and the presentation attributes. The presentation version of an attribute is the value
that is desired by the programmer. The corresponding physical attribute is what is physically stored on
the file or transport associated with the object. If the two versions of an attribute result in different pre-
sentations of data, then data services automatically translates the data from the physical interpretation
to the presentation interpretation, or visa-versa, as appropriate. For example, if the data type attribute
(KDMS_DATA_TYPE) is physically unsigned int (KULONG), but the presentation value of that
attribute is float (KFLOAT), then data services will retrieve the data from the object and and cast it to
float before returning it to the user. Similar behavior will occur for attributes such as index order
(KDMS_INDEX_ORDER) and size (KDMS_SIZE).

The presentation attributes are settable at any time throughout a object’s lifetime. The physical
attributes, however, at some point are locked and thereafter cannot change. An object that was opened
as an input object (viakdms_input or kdms_open) hasits physical attributes locked immediately.

This routine will return TRUE if the specified attribute has the same value in both of the abstract data
objects. This routine will return FALSE if the attribute does not have the same value in both of of the
objects kdms_match_attribute will also return FALSE if the attribute does not exist in either or both of
the objects.

If the segment argument is NULL, then that implies that the attribute is a a global attribute in each of
the abstract data objects.

5-46

D.4.16. kdms_vmatch_attributes() — returnstrue if the vararg list of segment attributes in two
abstract data objects match.

Synopsis
int
kdms_vmatch attributes(
kobject objectl,
kobject object2,
char *segment,
kva_list *1list)

Input Arguments

objectl
the first abstract data object on which to match the specified attributes

object2
the second abstract data object on which to match the specified attributes

segment
the data segment in each abstract data object in which we will be matching the attributes.

list
variable argument list, that contains an arbitrarily long list of attributes followed a NULL. It takes the
form:

ATTRIBUTE_NAMEL, ATTRIBUTE_NAMEZ, ..., NULL

Returns
There are three ways for this routine to return a FALSE: (1) if any of the attributes between the two
objects do not match; (2) if either object does not contain one or more of the specified attributes; (3) an
error condition resulting from an invalid object or segment. If none of these three conditions exist,
then this function will return TRUE.

Description
The purpose of thisroutine isto alow the programmer to compare multiple attributes in two object.

This routine will return TRUE if all of the specified attributes have the same value in the objects. This
routine will return FALSE if any of the attributes do not match kdms_match_attributes will also return
FALSE if any of the attributes do not exist in either or both of the two objects.

Data services manages two sets of attributes with each object. Internally, they are referred to as the
physical attributes and the presentation attributes. The presentation version of an attribute is the value
that is desired by the programmer. The corresponding physical attribute is what is physically stored on
the file or transport associated with the object. If the two versions of an attribute result in different pre-
sentations of data, then data services automatically translates the data from the physical interpretation
to the presentation interpretation, or visa-versa, as appropriate. For example, if the data type attribute
(KDMS _DATA_TYPE) is physically unsigned int (KULONG), but the presentation value of that
attribute is float (KFLOAT), then data services will retrieve the data from the object and and cast it to

5-47

float before returning it to the user. Similar behavior will occur for attributes such as index order
(KDMS_INDEX_ORDER) and size (KDMS_SIZE).

The presentation attributes are settable at any time throughout a object’s lifetime. The physical
attributes, however, at some point are locked and thereafter cannot change. An object that was opened
as an input object (viakdms_input or kdms_open) hasits physical attributes locked immediately.

If the segment argument is NULL, then that implies that the attributes are global attributes in each of
the abstract data objects.

D.4.17. kdms_match_attributes() — returns true if the list of segment attributes in two abstract
data objects match.

Synopsis
int
kdms_match attributes(
kobject objectl,
kobject object2,
char *segment,
kvalist)

Input Arguments
objectl

thefirst abstract data object on which to match the specified attributes
object2

the second abstract data object on which to match the specified attributes
segment

the data segment in each abstract data object in which we will be matching the attributes. va alist -

variable argument list, that contains an arbitrarily long list of attributes followed a NULL. It takesthe
form:

ATTRIBUTE_NAMEL, ATTRIBUTE_NAMEZ, ..., NULL

Returns

There are three ways for this routine to return a FALSE: (1) if any of the attributes between the two
objects do not match; (2) if either object does not contain one or more of the specified attributes; (3) an
error condition resulting from an invalid object or segment. If none of these three conditions exist,
then this function will return TRUE.

Description
The purpose of thisroutine isto alow the programmer to compare multiple attributes in two object.

This routine will return TRUE if all of the specified attributes have the same value in the objects. This

5-48

routine will return FALSE if any of the attributes do not match kdms_match_attributes will also return
FALSE if any of the attributes do not exist in either or both of the two objects.

Data services manages two sets of attributes with each object. Internally, they are referred to as the
physical attributes and the presentation attributes. The presentation version of an attribute is the value
that is desired by the programmer. The corresponding physical attribute is what is physically stored on
the file or transport associated with the object. If the two versions of an attribute result in different pre-
sentations of data, then data services automatically translates the data from the physical interpretation
to the presentation interpretation, or visa-versa, as appropriate. For example, if the data type attribute
(KDMS DATA _TYPE) is physically unsigned int (KULONG), but the presentation value of that
attribute is float (KFLOAT), then data services will retrieve the data from the object and and cast it to
float before returning it to the user. Similar behavior will occur for attributes such as index order
(KDMS_INDEX_ORDER) and size (KDMS_SIZE).

The presentation attributes are settable at any time throughout a object’s lifetime. The physical
attributes, however, at some point are locked and thereafter cannot change. An object that was opened
as an input object (viakdms_input or kdms_open) hasits physical attributes locked immediately.

If the segment argument is NULL, then that implies that the attributes are global attributes in each of
the abstract data objects.

D.4.18. kdms_copy_attribute() — copy an attribute from a source object to a destination
object.

Synopsis
int
kdms copy attribute (
kobject objectl,
kobject object2,
char *segment,
char *attribute)

Input Arguments
objectl
the source for the copy operation
object2
the destination for the copy operation
segment
the segment which contains the object to be copied.
attribute
the attribute to be copied.

Returns
TRUE on success, FAL SE otherwise.

5-49

Description
Thisfunction is used to copy a single attribute from one object to another object.

Data Services manages two versions of some of the attributes associated with each object. These
attributes are the size and data type. Internally, the two versions of these attributes are referred to as
the physical attribute and the presentation attribute. Typically, the programmer has access to only the
presentation versions of these attributes. The physical attributes are set indirectly depending on the
setting of KPDS_VALUE_COUPLING. See kpds get_data for a description of how the presentation
and physical attributes affect interaction with the data object.

Other attributes are classified as either shared or unshared. Shared attributes are stored at the physical
layer of the attribute, and thus can be shared by multiple references of the data object (see kpds_refer-
ence_object for more information about references). Unshared attributes, on the other hand, can only
be used by the local object (see kpds_query_attribute for information on how to determine whether an
attribute is shared or unshared).

This function accepts a source object, a destination object, and an attribute name. If the attribute exists
in the source object, then it will be copied to the destination object. If the attribute does not exist in the
source object, then an error condition is returned.

D.4.19. kdms_vcopy_attributes() — copy attributes given in a kvalist

Synopsis
int
kdms vcopy attributes(
kobject objectl,
kobject object2,
char *gsegment,
kva list *1list)

Input Arguments

objectl
the source for the copy operation

object2
the destination for the copy operation

segment
the segment which contains the object to be copied. kvalist - A NULL terminated variable argument
list of attributesto be copied.

Returns
TRUE on success, FAL SE otherwise.

5-50

Description
This function is used to copy multiple attributes given a variable argument list containing a list
attributes to copy.

Data Services manages two versions of some of the attributes associated with each object. These
atributes are the size and data type. Internally, the two versions of these attributes are referred to as
the physical attribute and the presentation attribute. Typically, the programmer has access to only the
presentation versions of these attributes. The physical attributes are set indirectly depending on the
setting of KPDS VALUE _COUPLING. See kpds get data for a description of how the presentation
and physical attributes affect interaction with the data object.

Other attributes are classified as either shared or unshared. Shared attributes are stored at the physical
layer of the attribute, and thus can be shared by multiple references of the data object (see kpds_refer-
ence_object for more information about references). Unshared attributes, on the other hand, can only
be used by the local object (see kpds_query_attribute for information on how to determine whether an
attribute is shared or unshared).

This function accepts a source object, a destination object, and an attribute name. If the attribute exists
in the source object, then it will be copied to the destination object. If the attribute does not exist in the
source object, then an error condition is returned.

D.4.20. kdms_copy_attributes() — copy attributes froma source object to a destination object.

Synopsis
int
kdms copy attributes(
kobject objectl,
kobject object2,
char *segment,
kvalist)

Input Arguments
objectl
the source for the copy operation
object2
the destination for the copy operation
segment
the segment which contains the object to be copied.
kvalist
A NULL terminated variable argument list of attributes to be copied.

Returns
TRUE on success, FAL SE otherwise.

5-51

Description

This function is used to copy multiple attributes given a variable argument list containing a list
attributes to copy.

Data Services manages two versions of some of the attributes associated with each object. These
atributes are the size and data type. Internally, the two versions of these attributes are referred to as
the physical attribute and the presentation attribute. Typically, the programmer has access to only the
presentation versions of these attributes. The physical attributes are set indirectly depending on the
setting of KPDS VALUE _COUPLING. See kpds get data for a description of how the presentation
and physical attributes affect interaction with the data object.

Other attributes are classified as either shared or unshared. Shared attributes are stored at the physical
layer of the attribute, and thus can be shared by multiple references of the data object (see kpds_refer-
ence_object for more information about references). Unshared attributes, on the other hand, can only
be used by the local object (see kpds_query_attribute for information on how to determine whether an
attribute is shared or unshared).

This function accepts a source object, a destination object, and an attribute name. If the attribute exists
in the source object, then it will be copied to the destination object. If the attribute does not exist in the
source object, then an error condition is returned.

D.4.21

. kdms_query_attribute() — get information about an attribute

Synopsis

int

kdms query attribute(

kobject object,

char *gsegment,
char *attribute,
int *numargs,
int *argsize,
int *datatype,
int *permanent)
Input Arguments
object

the object with the attribute being queried

segment
the segment that the attribute is stored in. If this argument is NULL, then the attribute is global to the
object. name - name of the attribute to be queried.

numargs

number of argumentsin this attribute

argsize

size of each argument in this attribute.

datatype

5-52

datatype of the attribute
permanent
is the attribute stored or transient? The return value will be either TRUE or FALSE

Returns
TRUE if attribute exists, FAL SE otherwise

Description
This function is used for two purposes:. (1) to determine the existence of an attribute; and (2) to obtain
the characteristics of the attribute.

Data Services manages two versions of some of the attributes associated with each object. These
atributes are the size and data type. Internally, the two versions of these attributes are referred to as
the physical attribute and the presentation attribute. Typically, the programmer has access to only the
presentation versions of these attributes. The physical attributes are set indirectly depending on the
setting of KDMS_COUPLING. See kpds get datafor a description of how the presentation and phys-
ical attributes affect interaction with the data object.

Other attributes are classified as either shared or unshared. Shared attributes are stored at the physical
layer of the attribute, and thus can be shared by multiple references of the data object (see kpds_refer-
ence_object for more information about references). Unshared attributes, on the other hand, can only
be used by the local object.

The difference between shared and unshared attributes is abstracted from the user at the PDS level.
The permanent attributes are generally shared, and the non-permanent attributes are generally non-
shared. Permanent attributes are attributes that will be stored as part of an output object when it is
written. Any attributes that are retrieved when an object is opened are also permanent attributes. Non-
permanent attributes exist only while the program that is operating on the object is executing.

The datatype argument indicates what kind of information is stored in the attribute. Attributes can be
one of the following data types. KBYTE, KUBY TE, KSHORT, KUSHORT, KINT, KUINT, KLONG,
KULONG, KFLOAT, KDOUBLE, KCOMPLEX, or KDCOMPLEX.

The numargs argument indicates how many arguments must be passed in an argument list to one of the
attribute functions.

The argsize arguments indicates the number of units of the data type there are in each argument. This
argument allows arrays of information to be stored as attributes.

D.4.22. kdms_print_attribute() — print the value of an attribute

Synopsis

int

5-53

kdms_print_attribute(
kobject object,
char *segment,
char *attribute,
kfile “*printfile)

Input Arguments
object
the object containing the attribute
segment

the segment in the object which contains the attribute.
attribute

the attribute to print
printfile

the open kfileto print to

Returns
TRUE on success, FAL SE otherwise

Description
Thisfunction is used to print a single attribute to an open kfile.

This function is typicaly used by such programs as kprdata to print out the values of attributes in an
object.

D.4.23. kdms_get_attribute_names() — get a list of attributes from an object.

Synopsis
char **
kdms get attribute names (
kobject object,
char *segment,
char *filter,

int permanent,
int *number)
Input Arguments
object

the object to get the attribute names from.

segment
the segment to get the attribute names from. If NULL, then get the object-level names.

filter
aregular expression filter. Only attribute names passing the filter will be returned in the list.

permanent
TRUE if only permanent attributes should be included in the list

Output Arguments
number
the number of attribute names that are being returned

Returns
an array of attribute names

Description
This function returns a list of attributes associated with the specified segment. If the segment is
NULL, then it returns alist of the attributes for the object.

The allowable regular expression syntax is:

Match any single character except newline

* Match the preceding character or range
of characters 0 or moretimes. The
matching includesitemswithinal...].

[...] or["..] Matchesany one character contained within
the brackets. If the first character after
the’[’ isthe’]’, then it isincluded in
the characters to match. If thefirst
character after the’[" isa’™, then it
will match all characters NOT included in
the[]. The’-" will indicate arange of
characters. For example, [a-z] specifies
all characters between and including the
ascii values’a and’'zZ'. If the’-’
followsthe'[" or isright beforethe ']’
then it isinterpreted literally.

If thisisthefirst character of the
regular expression, it matches the beginning
of theline.

$ If thisisthe last character of the

regular expression, it matches the end of
theline.

5-55

\ This escapes the meaning of a special character.

The array that is returned must be freed by the user using the call karray_free.

5-56

D.5. Interactivity Management

» kdms_add_callback() - add a callback associated with an object’s data or attribute.
» kdms_remove_callback() - remove a callback associated with an object’s data or attribute.

D.5.1. kdms_add_callback() — add a callback associated with an object’s data or attribute.

Synopsis
int
kdms _add callback(
kobject object,
char *gsegment,
char *type,
kfunc_void callfunc,
kaddr clientData)
Input Arguments
object
The object to add callback to.
segment
The segment in object to add callback to. If NULL, then it is considered an object callback.
type
The type of callback to add.
callfunc
The function to call when the callback occurs.
clientData

Any clientdata to be passed to the callfunc.

Returns
TRUE on success, FAL SE otherwise

Description
This function is used to add a callback on a segment in a data object so that operations can be per-
formed and monitored in an event driven environment.

A callback is a mechanism for operating on a data object whenever an asynchronous event occurs
rather than in a strictly sequential manner. This function is particularly useful in conjunction with
kdms reference. The callbacks operate on the data, which is shared between referenced objects. Thus
object A can set a callback such that when data get changed via object B, operations can be performed
on object A.

The abject and segment arguments are used to specify which segment and object will have the callback
added to.

The type argument specifies what kind of callback should be added. This argument may take on the

5-57

following values:

If the segment specified is NULL, then the callback is placed on the entire object. Currently, only

KDMS CALLBACK_CHANGE - generate a callback whenever data
on the specified segment is changed
(viakdms_put_data or kdms_copy_data).

KDMS_CALLBACK_ACCESS - generate a callback whenever data
on the specified segment is accessed
(viakdms_get data or kdms_copy_data).

KDMS CALLBACK_DELETE - generate a callback whenever the
segment specified is about to be
deleted, either through a

kdms_destroy_segment() call, or
viaakdms_close().

KDMS CALLBACK_DESTROY - generate a callback whenever the
last instance of an object or

segment is about to be closed.

KDMS _CALLBACK_SAVE - generate a callback whenever the
specified segment is about to be
changed. Thisissimilar tothe
KDMS_CALLBACK_CHANGE, except that
the callback is generated before
the data is changed rather than
afterward.

DELETE and DESTROY callbacks can be placed on an object.

The callback mechanims in Data Services are analogous to the callback mechanisms that are available
in the Xvwidget library or in Xt. The motivation for callbacks in Data Services is that they facilitate
functionality in the Xvisua library, where they allow different visual objectstied to a single data object

to communicate with each other.

Restrictions

Only KDMS CALLBACK_DELETE and KDMS CALLBACK_DESTROY callbacks work for

objects.

D.5.2. kdms_remove_callback() — remove a callback associated with an object’s data or

attribute.

Synopsis

int

kdms remove callback (
kobject object,

5-58

char *gegment,

char *type,

kfunc void callfunc,

kaddr clientData)

Input Arguments

object

object to add callback to.
segment

segment in object to add callback to.
type

type of callback to add.
callfunc

function to call when callback occurs.
clientData

datato be passed to callfunc.

Returns
TRUE on success, FAL SE otherwise

Description
This function is used to remove a callback that was previously added on a segment in a data object so
that operations can be performed and monitored in an event driven environment.

This function will not remove a callback unless al of the arguments that are passed to it are the same
as those passed to the kdms_create callback previously. This allows for multiple callbacks that are
similar in nature to be removed without confusion.

A callback is a mechanism for operating on a data object whenever an asynchronous event occurs
rather than in a strictly sequential manner. This function is particularly useful in conjunction with
kdms_reference. The callbacks operate on the data, which is shared between referenced objects. Thus
object A can set a callback such that when data get changed via object B, operations can be performed
on object A.

The object and segment arguments are used to specify which segment and object will have the callback
added to.

The type argument specifies what kind of callback should be added. This argument may take on the
following values:

KDMS CALLBACK_CHANGE - generate a callback whenever data
on the specified segment is changed
(viakdms_put_dataor kdms_copy_data).

KDMS _CALLBACK_ACCESS - generate a callback whenever data
on the specified segment is accessed
(viakdms_get_dataor kdms_copy_data).

KDMS CALLBACK_DELETE - generate a callback whenever the

5-59

segment specified is about to be
deleted, either through a
kdms_destroy segment() call, or
viaakdms_close().
KDMS_CALLBACK_DESTROY - generate a callback whenever the
last instance of an object or
segment is about to be closed.
KDMS CALLBACK_SAVE - generate a callback whenever the
specified segment is about to be
changed. Thisissimilar to the
KDMS _CALLBACK_CHANGE, except that
the callback is generated before
the datais changed rather than
afterward.

If the segment specified is NULL, then the callback is placed on the entire object. Currently, only
DELETE and DESTROY callbacks can be placed on an object.

The callback mechanims in Data Services are analogous to the callback mechanisms that are available
in the Xvwidget library or in Xt. The motivation for callbacks in Data Services is that they facilitate
functionality in the Xvisual library, where they allow different visual objectstied to a single data object
to communicate with each other.

Restrictions
Only KDMS CALLBACK_DELETE and KDMS CALLBACK_DESTROY callbacks work for
objects.

D.6. Data Manipulation

« kdms_get_data() - get data from data object
» kdms_put_data() - put data into object
» kdms_copy_remaining_data() - copy remaining data

D.6.1. kdms_get_data() — get data from data object

Synopsis
kaddr
kdms_get data(
kobject object,

char *gegment,
int *begin,
int *end,

kaddr data)

5-60

Input Arguments

object

the object from which the data will be obtained.
segment

the segment from which the data will be obtained.
begin

the begin marker of the region of datato be retrieved.
end

the end marker of the region of datato be retrieved.
data

a pointer to the region of memory that will serve as a destination for the data. If this valueis NULL,
then sufficient space for this operation will be allocated for this operation. The data type kaddr is used
because it indicates a generic data pointer.

Returns
If "data" is not initially NULL, then the data space pointed to by "data”’ will be returned on success. If
the "data" argument is NULL, then a new pointer to the requested data will be returned. Unsuccessful
callsto thisroutine are indicated by areturn value of NULL.

Description

kdms get datais used to obtain data that is stored in a data object. The datathat isretrieved is desig-
nated by two "corner-markers'. These are arrays which contain N integer values, where N is the
dimensionality of the segment (the dimensionality of a segment can be determined with the
KDMS _DIMENSION attribute). All values in begin argument must be less than or equal to their cor-
responding value in the end argument. In a two dimensional case, the begin marker is the upper left
corner and the end marker is the lower right corner of a rectangle that is obtained with this function
call. The coordinate origin isthe upper, left, front corner of the data set extended to N-space. The cor-
ner markers are specified in the index order that the data set is presented in.

Restrictions
This routine assumes that if the argument "data’ is not NULL, then it contains the appropriate amount
of memory with the appropriate dimensionality for the requested primitive.

D.6.2. kdms_put_data() — put data into object

Synopsis
int
kdms put data(
kobject object,

char *gsegment,
int *begin,
int *end,

5-61

kaddr data)

Input Arguments

object

the object from which the data will be stored.
segment

the segment from which the data will be stored.
begin

the begin marker of the region of datato be retrieved.
end

the end marker of the region of datato be retrieved.
data

apointer to the region of memory that will serve asa

Returns
TRUE (1) on success, FALSE (0) otherwise

Description

kdms_put_datais used to store data that into a data object. The datathat is stored is designated by two
"corner-markers’. These are arrays which contain N integer values, where N is the dimensionality of
the segment (the dimensionality of a segment can be determined with the KDMS DIMENSION
attribute). All values in begin argument must be less than or equal to their corresponding value in the
end argument. In atwo dimensional case, the begin marker is the upper left corner and the end marker
isthe lower right corner of arectangle that is obtained with this function call. The coordinate originis
the upper, left, front corner of the data set extended to N-space. The corner markers are specified in
the index order that the data set is presented in.

D.6.3. kdms_copy_remaining_data() — copy remaining data

Synopsis
int
kdms copy remaining data(
kobject sobject,
kobject dobject)

Input Arguments
sobject
object to get datafrom
dobject
object to copy datato

5-62

Description
kdms_copy_remaining_data copies any data from segments which are instantiated in both the source
and destination objects and have not yet had their data modified in the destination.

5-63

This page left intentionally blank

5-64

Table of Contents

A. Introduction
B. Presentation of Data T
B.1. Casting .
B.2. Scaling and Normalrzatron
B.3. Padding and Interpolation
B.4. Conversion of Complex Data
B.5. Index Order Manipulation
C. Attributeso
C.1. Global Attrrbutes
C.2. Segment Attributes
D. Functions Provided By Data Management Servr ces.
D.1. Object Management .
D.1.1. kdms_create() — createa terr‘porary data Obj ect
D.1.2. kdms_open() — create an object associated with an input or output transport
D.1.3. kdms_close() — close an open data object. .
D.1.4. kdms_reopen() — associate new data with an existing Obj ect .
D.1.5. kdms_reference() — create a reference of a data object.
D.1.6. kdms_sync() — synchronize physical and presentation layers of a data object
D.1.7. kdms_update references() — update segment presentation of all reference objects.
D.1.8. kdms_close_hook() — insert a service to be called when an object is closed.
D.1.9. kdms_reference list() — return a klist of references. :
D.1.10. kdms_get_segment_names() — get an array of segment names for the Obj ect specrfred.

D 2 Informatlon . .
D.2.1. kdms_support() — obtarn a Irst of frle formats supported by data services.
D.3. Segment Management . .
D.3.1. kdms_query_segment() — determl ne |f a data segment |savarlable
D.3.2. kdms_create_segment() — create a segment on a data object.
D.3.3. kdms_destroy_segment() — destroy a segment from a data object.
D.3.4. kdms_rename_segment() — rename a segment .
D.4. Attribute Management
D.4.1. kdms_define_quasi attrrbute() — defrnea quasr attrrbute
D.4.2. kdms_define_attribute() — define an attribute for for a session
D.4.3. kdms_undefine_attribute() — undefine a defined attribute :
D.4.4. kdms_query_attribute_definition() — determinesif an attribute |sdef|ned
D.4.5. kdms create attribute() — instantiate an attribute .
D.4.6. kdms_destroy_attribute() — destroy an attribute
D.4.7. kdms_vset_attribute() — open varargs set attribute
D.4.8. kdms_vset_attributes() — set attributes on a kvalist
D.4.9. kdms_set_attribute() — set the value of an attribute
D.4.10. kdms_set_attributes() — sets the values of multiple attributes
D.4.11. kdms vget_attribute() — get a single attribute on a kvalist .
D.4.12. kdms vget_attributes() — get attributes on a kvalist .
D.4.13. kdms_get_attribute() — get the value of an attribute within a segment of an abstract Obj ect

D .4.14. kdms_get_attri butes() — gets the val ues of a variabl e number of attri butes vvithi na si ngl e

segment of an object.

5-2
5-3
5-3
5-4

5-5
5-7

5-9

. 515
. 515
. 515
. 516
. 518
. 518
. 519
. 520
. 520
. 521
. 522

. 522
. 523
. 523
. 523
. 524
. 524
. 525
. 525
. 526
. 526
. 531
. 533
. 533
. 534
. 5-36
. 536
. 5-38
. 5-39
. 540
. 541
. 542

. 543

. 544

D.4.15. kdms_match_attribute() — returns TRUE if the same segment attribute in two abstract
data objects match. . .

D.4.16. kdms vmatch attrl butes() — returns true |f the vararg Irst of segment attrrbutes in two
abstract data objects match.

D.4.17. kdms_match_attri butes() — returns true if the Irst of segment attrrbut% in two abstract
data objects match. .

D.4.18. kdms_copy_ aItrl bute() — copy an attrlbute from a source object to a deatr natlon Obj ect

D 4 19 kdms vcopy attrlbutes() — copy attrrbutes grven ina kvaJrst

D.4.20. kdms_copy_attributes() — copy attributes froma source object to a desti natron obJect
D.4.21. kdms_query_attribute() — get information about an attribute

D.4.22. kdms_print_attribute() — print the value of an attribute .

D.4.23. kdms_get_attribute_names() — get a list of attributes from an obj ect

D.5. Interactivity Management .
D.5.1. kdms_add callback() — add a callback assocrated wrth an obJect s data or attrrbute

D.5.2 kdms_remove_cal Iback() — remove a callback associated with an object’s data or attribute.

D 6 DataManr pulatlon
D.6.1. kdms get data() — get data from data Obj ect
D.6.2. kdms put_data() — put data into object .
D.6.3. kdms_copy_remaining_data() — copy remaining data

. 545

. 547

. 548

. 549
. 550

. 551
. 5-52
. 553
. 554
. 557
. 5-57

. 5-58
. 560
. 560
. 561
. 5-62

Program Services \Volume |

Chapter 6

Structure Support

Copyright (c) AccuSoft Corporation, 2004. All rights reserved.

Chapter 6 - Structure Support

A. Overview

This document details the support provided in VisiQuest for the storage and retrieval of complex data struc-
tures. Data structures are defined within VisiQuest to be new "datatypes.” Thisis similar to the notion of data
types in C. Just as a variable could be declared as an int or a float, it could also be declared to be of some
structure type. This notion, applied to Data Services, introduces the idea of structure attributes. One of the
characteristics of an attribute is its data type. By creating a Data Services attribute to be of a defined structure
data type, variables of that structure can be stored and retrieved from that attribute. This allows structures to
be passed from one program to another via Data Services objects.

Structures are defined by creating a structure specification file. This file, by convention, has an .x extension.
Once a specification has been created, a program called kgenstruct parses the file and generates two files. The
first file generated is a C header file which contains the actual data structures to be used within your own C
code. The second file generated is a C code file containing writer and reader routines which can flatten an
instance of the defined structure from memory to afile, and unflatten the structure from the file back into mem-
ory. Routines for comparing and freeing the defined structure are also generated, along with a definition rou-
tine which initializes the structure as a new type in VisiQuest.

Create Structure Generate Header Define Structure
Specification and Read/Write Code To Create New Data Type

AN
AN

kobject obj;
struct hypo *foobar;

io hypo.c raetine h
kgenstruct efine hypo();

/*-- create hypo structure and fill it out --%*/

foobar = (struct hypo *) kmalloc (sizeof (struct hypo)) ;

int KTYPE_HYPO;

kdefine_h?po(); foobar->position = 10;

foobar->type = 5;
foobar->next = NULL;

struct hypo

int position;
float type;

hypo *next; /*-- open an output object and store the hypo --*/

obj = kpds open output object ("filename.out") ;

kpds_create_object_attr(obj, "hypolist", 1, 1,
KTYPE HYPO, TRUE, TRUE);

R struct hypo
- in posicion; [EdS-ssractribuce(oby, typolisct, foomar;
io _hypo.h float type; pds_ _ob] i)

hypo *next;

extern int KTYPE_HYPO;

Figure 1: This picture overviews the generation of reader and writer code by kgenstruct from a structure
spec file, and how the generated code is used to define a new data type in VisiQuest. The example illus-
trates an attribute of the defined structure type being created and set on a data object.

A structure is defined by internally associating the reader and writer routines with a type identifier. This type
identifier is analogous to the VisiQuest type identifiers for standard C data types, such as KINT and KFLOAT.
The type identifier and the routine which initializes it are generated for you by kgenstruct. By convention, the

type identifier has the same name as the structure, prepended by kTypE . Thus for a structure "matrix", the
type identifier kTyPE MATRIX Will be created. This type identifier would be initialized by calling the defini-
tion routinekdefine matrix() .

The generated routines read and write the structure in pieces, breaking the structure down by fields. Each field
iswritten using the VisiQuest generic read and write calls. These calls provide the machine conversion capabil-
ity necessary to write data in the native format for one architecture and convert the data while it is being read
into the native format for a different architecture. Pointers are traversed on reading and writing using special
pointer read and write calls. The write call manages the addresses of what is being pointed at, ensuring that
items being pointed at are not written more than once. The read call then manages the addresses of what is
being read, reconnecting pointers to restore the structure as it existed before being written. This capability
allows for the storage and retrieval of very complicated structures with cyclic and redundant pointer dependen-
cies.

B. Passing Structures Between Programs

Structures can be passed from one program to in several ways: either by writing the structure to and reading
the structure from a VisiQuest transport, by storing the structures in a data services object, or by sending the
structures down a data services stream.

Structure may be passed
from one process to another
using several methods.

writes structure . reads structure
using ...via a khoros transport... using
kwrite_generic kread_generic
sets attribute a gets atFribute
on output from input

data object ... Via an 'attrlbut_e in data object
a data services object....

OR
'l 'l
to output . X X from input
data stream ... Via an attribute in data stream

a data services stream...

Figure 2: This figure illustrates the basic concept of how a structures may be passed from one routine to
another in VisiQuest.

The trangport mechanism is simple. The writing process ssimply opens a VisiQuest transport using the kopen
function, and then writes the structure to the transport using the kwrite generic function. The reading pro-
cess then opens the tranport and reads the structure using the kread_generic function.

The data object mechanism in Data Services allows the creation of attributes of any data type. For structures,
the defined structure type identifier can be used to specify the data type of an attribute. To pass a structure
from one program to another, a program simply open an output object, creates or defines an attribute of a struc-
ture type, and then stores the structure with a standard Data Services set attribute call. Other programs which
also have the structure data type defined can then open the object and retrieve the attribute.

The data stream is similar to the data object paradigm, except that a Data Services stream is used instead of an
object.

C. Structure Specification File

A structure is added as a new data type by specifying it within a structure specification file. A structure speci-
fication file will appear to be syntactically very much like aregular C header file. In fact, you can likely trans-
fer any structures you may aready be using directly from a header file into a specification file with little or no
change. These files are different, however, from C header files in that they are never directly included by your
C code. A code generator, kgenstruct, will parse the specification file and generate an actual C header which
you should include. Additionally, kgenstruct will also generate a C source code file which you should either
compileinto your program, or compile into alibrary which other programs will link against.

C.1. Creating a Structure Specification File

A structure specification file is considered to be a source file in a Software Object. It can be created from the
software object editor Composer by using the Add File to Object operation under the File Operations pulldown
menu for SOURCE objects. The file you create should end with a’.x’. This extension indicates that the fileis
a structure specification file. Once created, the new specification file will be listed as one of the Source Code
filesin thefilelist, and can be edited using the Edit operation under the File Operations pulldown menu.

C.2. Kgenstruct

Kgenstruct should be run once your specification file is completed. This program is best invoked as an opera-
tion in Composer. This operation is available as a "kmake struct” rule and can be accessed from the Com-
mands menu, on Console option, Make button. Note that, if you are working outside of composer, it can also
be run from the command line. When run from the command line, this program takes a toolbox and object
name argument.

This program is a ported and heavily modified version of rpcgen. Assuch, it is capable of parsing nearly all of
RPCL, a protocol description language which is an extension of the XDR definition language. It islikely that
any structure specification files which you may have been using with rpcgen can be used directly with kgen-
struct to migrate your code to VisiQuest.

C.3. What is Generated?

kgenstruct generates two files from the specification : a header file and a C code file. The naming convention
for thesefilesisto prepend io_ to the name of the specification file. Thus, for a specification matrix.x, the files

6-3

io_matrix.c and io_matrix.h will be generated. The generated .h file should be included by any programs
which need to use the structure. Thisisthe actual C definition which you will write your source code to.

The generated .c file will contain several routines for handling each structure specified in the specification file.
For each structure, a reader routine, a writer routine, a comparison routine and a free routine will be generated.
A type handle to use to signify the use of the structure as a data type to other VisiQuest routinesis also gener-
ated. Thistype handle will be named after the structure namein all capitals, prepended by kTypE . A defini-
tion routine which initializes the type identifier is also generated. This routine will be named after the struc-
ture name, prepended by kdefine and will take no arguments. It should be called prior to any use of your
structure with any VisiQuest routines.

The reader, writer, comparison, and free routines which are generated will be associated with the type identifier
through the generated define routine. Once defined, the structure can be treated as a new data type through
various foundation library routines. For example, the comparison and free routines can be accessed via the
foundation routines kstruct compare () and kstruct_ free (). Additionaly, the kread generic()
and kwrite generic () calswill now understand the structure identifier and will be able to read and write
structures, just as they now read and write other data types. It is not recommended that these routines be used
directly for reading and writing structures. Data Services attributes are instead recommended for reading and
writing structures.

One final note : always make changes to the specification file and then regenerate the header and code files.
Never edit the generated files directly. Any changes you might make to the generated files will be overwritten
and lost the next time you regenerate from your specification.

C.4. Software Object Types

If the specification file is part of a library object, the generated C code file will be generated in that library’s
source directory, and the generated header file will be added to the library’s public include directory. This
approach should be taken for structures which will be used by multiple programs. The structure specification
and generated structure define routine will be in acommon library. Each program needing to use the structures
should include the library’s include file and link against the library.

If the specification file is part of any other type of software object, the generated C code and header files will
be generated in the software object’s source directory. Note also that kgenstruct can be used on .x files outside
of the context of VisiQuest, in which case the generated C code and header is generated in the local directory.

C.5. Specification Language

The specification language is, with few exceptions, very similar to C. For the most part, the C syntax which
you are already used to will beidentical to the specification syntax used in the specification file.

More than one structure can be included in a specification file. Multiple specifications per file are allowed. In
addition to allowing structure specifications, typedefs, enumerations, and constants can also be specified.

These are detailed bel ow.

C.5.1. Definitions

A specification file syntactically consists of a series of definitions. Each definition should be separated by a
semi-colon:

definition-list:
definition ;
definition ;
definition-list

There are five types of definitions allowed :

O Structures
O Typedefs
O Symbolic Constants

0 Enumerations

There are no order dependencies in the specification file: structures, typedefs, constants, and enumerations can
appear in any order. Types or variables should generally be defined before they are used.

C.5.1.1. Structures

Structures are declared as they arein C:

struct-definition:
struct struct-ident {
declaration-list
}

declaration-list
declaration ;
declaration ; declaration-list

For example, a structure for an RGB color would be declared in the specification file as follows :

struct color
float red;
float green;
float blue;

bi

Thiswould generate the following in the header file :

struct color
float red;
float green;

float blue;

}i
extern int KTYPE COLOR;
int kdefine color PROTO ((void)) ;

For this example, the generated structure corresponds exactly with the specified structure. The integer
KTYPE_COLOR isatypeidentifier which isinitialized by the function kdefine color ().

C.5.1.2. Typedefs

Typedefs are also declared asthey arein C:

typedef declaration;

Typedefs generate a type identifier and also must be defined. Note that in defining the typedef of a structure,
the structure will also be defined. Thusit isonly necessary to call the define routine for the typedef.

For example, the following typedef defines a color type corresponding to the color structure specified in earlier

typedef color color t;

Thiswould generate the following in the header file :

typedef color color t;
extern int KTYPE COLOR_T;
int kdefine color t PROTO((void)) ;

For this example, calling the kdefine color t() cal would initialize the xTYyPE COLOR T and
KTYPE COLOR identifiers. From then on, either identifier could be used when dealing with color structures.

Note that in addition to structures, any regular C data type can be typedef’ed. In all cases, a define routine will
be created and must be called before the type identifier can be used.

C.5.1.3. Symbolic Constants

The declaration of symbolic constantsis also similar to the regular C syntax:

const const-ident = integer

The generated constant produces a corresponding #def ine in the generated header file.

For example, the following symbolic constant in the specification defines a maximum size to be used, perhaps,
in declaring arrays.

const MAX SIZE = 1024;

Thiswould generate the following in the header file:

#define MAX SIZE 1024

This #define is available for use in any declarations subsequent to the constant declaration. Thisis handled
by the C preprocessor when the code which includes the header file is compiled.

C.5.1.4. Enumerations

Enumeration declarations are also smilar to C :

enum-definition:
enum enum-ident {
enum-value-list

}

enum-value-list:
enum-value
enum-value , enum-value-list

enum-value:
enum-value-ident
enum-value-ident = value

For example, the following enumeration might be declared to define interpolation types :
enum interpolation {
NONE = O,
ZERO_ORDER = 1,
FIRST ORDER = 2

}i

Thiswould generate the following in the header file:

enum interpolation {
NONE = 0,
ZERO_ORDER = 1,
FIRST ORDER = 2,

typedef enum interpolation interpolation;
extern int KTYPE INTERPOLATION;
int kdefine interpolation PROTO ((void)) ;

Notice that enumerations get typedef’'ed to allow you to use them as a data type. A corresponding
KTYPE INTERPOLATION is aso generated along with a define routine allowing you to define the enumerated
type as anew VisiQuest data type.

C.5.2. Declarations

Declarations are the basic component of a specification. For instance, structures are composed of component
fields, each field consisting of a variable declaration. Even typedefs define a type name for a declaration. For
the most part, these declarations are similar to C.

There are four basic declarations allowed:

O Simple
O Fixed Array
O Variable Array

O Pointer

With the exception of variable arrays, these are all identical to C.

C.5.2.1. Simple Declaration

A simple declaration is a type identifier, followed by a variable identifier. These are propagated unchanged
into the header file.

For example, the smple declaration :

int foobar;

will appear identical in the header file.

C.5.2.2. Fixed Array Declaration

A fixed array declaration is simply a type identifier, followed by an variable identifier with the array size in
brackets. These are propagated unchanged to the header file.

For example, the smple declaration :

int choices[9];

will appear identical in the header file.

C.5.2.3. Variable Array

Since C contains no syntax to denote variable-sized arrays, a special syntax was created to support this. The
declaration is similar to fixed array declarations, only that angle brackets are used instead of sgquare brackets.
If no number is specified between the angle brackets, the variable array can be any size. If a number is speci-
fied, then the variable array islimited to that size.

For example, the following two declarations illustrate two variable array declarations of type integer.

int x<MAX>; /* at most MAX elements */
int y<>; /* any number of elements */

From this specification, a structure which reflects the size of the allocated variable length array is generated.
This structure contains a _1en field for storing the size and a _val field which points to the alocated array.
These component names will begin with the name of the declared variable.

Thus, for the above example specification, the following will be generated in the header file :

struct {
unsigned int x_ len;
int *x val;

}ox;

struct {
unsigned int y len;
int *y val;

by

It is up to the programmer to manage allocation of the va1l field and to maintain the 1en field so it correctly
reflects the size of the variable length array. Maintaining the 1len field isimportant, as the generated structure
code uses that field to know how many elements are in the array, and thus, how many elements should be writ-
ten when the structure is stored.

C.5.2.4. Pointer Declaration

A pointer declaration consists of a type identifier, followed by an asterisk, followed by a variable identifier.
These are propagated unchanged into the header file.

For example, the pointer declaration :
int *next;

will appear identical in the header file.

Note that the pointers themselves will not be written and read, as they are just memory addresses. The pointer
is followed, with the single item being pointed being read and written.

Pointers are tracked for any given structure written out, so that multiple pointers to a single item are not fol-
lowed multiple times. These multiple pointers will be reconnected accordingly when the structure is read back
in.

C.5.2.5. Type ldentifiers

The type identifiers used in any of these declarations can be any of the standard C data types, from unsigned
char to int to double. Additionally, they can be of any declared structure, typedef, or enumerated type.

Strings are treated as a specia case, with a string being treated as a variable type identifier rather than an array
of bytes. The specific type identifier which should be used for string variables in the specification file is

kstring.

Internally, kstring is simply a typedef to char *. Note however that you must explicitly use kstring
instead of char *, asit will indicate to kgenstruct that the generated code needs to specifically handle strings.

C.5.3. Structure Versioning

Structures often evolve and change in a typical software development process. This becomes critical when
reading and writing structures since, if a structure changed, previously written instances of that structure can
no longer be read. Because of this problem, support for adding a version number to each structure has been

6-9

created. While structures version numbers are optional, their use provides the ability for recognizing mis-
matches between stored structures and defined structures. It provides a mechanism for the structure reading
code to recognize out-of-date structures. Without the versioning, the structure reader for the new structure
would try, probably unsuccessfully, to read the stored instance of the old structure.

A version number is specified after the structure name with the word "version" and a number. The following
exampleillustrates a 2.0 version of the structure "foobar".

struct foobar
version 2.0

int a;
int b;

}i

Assuming a new field was added to this structure, it would be appropriate to change the version number :

struct foobar
version 2.1

int a;
int b;
int c;

bi

The reading of a stored structure that is out of date with the currently defined version will fail. Note that a ver-
sioned structure will be considered different from a non-versioned structure, even though the actual structures
may be identical.

Typedefs of structures, when included in the same specification file as the structure being typedef’ed, will
inherit the version number of the structure. As with structures, a versioned typedef is considered different
from a non-versioned typedef.

C.5.4. C Preprocessing

Kgenstruct passes each specification file through the C preprocessor before parsing it to generate code. This
allows you to use CPP directives within your .x file. For example, #include can be used to include other
specification files, or even header files, and #define can be used to define specia symbols needed only in the
specification file.

C.5.4.1. Comments
C-style comments, beginning with /* and ending with */, are alowed within the specification and will be

ignored. For example, the following line would be ignored.

/* This line is considered a comment and will be ignored */

6-10

C.5.4.2. Passing Directives to Header File

Lines beginning with "%" are passed through to the header file, without the "%". This allows you to customize
your generated header file with specific variables or C preprocessor directives. One potential use of this con-
struct would be to pass directives to extern structures for use with C++. The following example externs the
foobar structure.

s#ifdef cplusplus

sextern "C" {

$endif

struct foobar {int a; int b};

$#ifdef cplusplus

°
6}

%$endif

C.5.5. Additional Notes

The program definition supported by rpcgen will be recognized by kgenstruct, but is not explcitly supported
and should be used at your own risk. he union construct is also not supported. The union construct, asused in
rpcgen, is not identical to the C union, but isinstead used to handle conditional reading and writing.

C.5.6. Example Specification File
The following is an example of a specification file which illustrates many of the details explained earlier.

/**x*x example.x file

*k k%

x% This file defines a bogus hypothesis and tile structure
**** for the purposes of illustrating a kgenstruct. Note that

***x%x the specification is practically identical to C.
****/

/* Note also that C comments are allowed in the specification. */

/**x* Anything following a ’'%’ will be passed through (without
***x%* the '%’) to the generated header file io example.h.
x% This is useful if you need to include any CPP directives

***xx of your own.
****/

/**** For instance, the following line will generate a #include

x% in the .h file
****/

$#include "my defines.h"

/****

***%* HYPOTHESIS structure
****/

struct hypo

{
int position;
float probabilities[10];

float wuncertainty<s>;

6-11

struct hypo *next;

bi

/****

***x* HYPOTHESIS typedef

****/

typedef struct hypo hypo t;

/****

**%x* TILE structure
****/

struct tile
version 1.0

int id;
hypo t hypos[10];

Vi

/****

***xx TILE typedef

****/

typedef struct tile tile t;

D. Data Services

Data Services provides access to an abstract data object. Typical access to a data object is in terms of one of
the defined data models, for example the polymorphic data model or the geometry data model. Each of these
data models, implemented in terms of an application service, is built on a basic infrastructure for storing data
segments and attributes. The ability to create segments and attributes is available to any programmer. In par-
ticular, the ability to create new attributes is encouraged as method of extending the existing data models to
support your specific data needs.

This capability is greatly strengthened by the ability to understand defined structures. Once a structure is
defined as a new data type, it is possible to store and retrieve instances of that structure from attributes in a
data object. An attribute of a structure data type can be defined or created, and then accessed using the stan-
dard get_attribute and set_attribute calls available with Data Services.

D.1. Attributes Characteristics

Attributes have a number of characteristics which define their behavior, but they are fundamentaly distin-
guished by their name. Each attribute name is a unique string identifier, no two attributes can have the same
name. Thisnameistypicaly #defined to some unique identifier.

The number of arguments in an attribute indicate whether the attribute consists of one or more arguments.
These arguments will correspond to multiple values or variables when being accessed, with each argument
being comma separated.

The argument size of each argument dictates whether each attribute argument is a single value, or an array of
values. Each argument will take on this characteristic.

The data type of an attribute dictates what data type each argument element will be. Each argument takes on
this data type. If an attribute contains an argument size greater than one, each argument will be an array of

6-12

elements of this datatype. The type identifier for a defined structure can be used to dictate the data type of an
atribute. It is recommended for structure attributes that the type identifier for the structure and not a type
identifier for a typedef of the structure is used to specify the datatype.

The permanence of an attribute dictates whether the attribute should be stored to output when the object is
closed or not.

An attribute is considered to be shared if it exists at the physical level of adata object. Thisisuseful if you are
working with reference objects. Data objects are divided into a physical level and a presentation level. Each
reference of a single data object will consist of unique presentation layer on top of a common physical layer.
Attributes at the physical layer are thus shared among all reference objects. Attributes at the presentation layer
are unique to each reference object and are thus not shared.

Note also that attributes are created within a data object at a specified scope. This is often termed to be the
association of the attribute. Attributes can be associated with either a specific data segment, or with the overall
data object. Attributes are most often associated with the data object, signified by aNULL association.

D.2. Attributes Management

Attributes can be instantiated in two different ways. The most direct way is to create the attribute. Create
routines exist within all the existing application services which allow you to create an attribute. The created
attribute exists only for the specific object in which it was created. The other way to instantiate an attribute is
to define the attribute. Once defined, an attribute will appear to exist over al objects. If a defined attribute is
retrieved from a data object which does not actually contain an instance of the attribute, an instance is created
before the attribute is accessed. This makes adding a set of attributes which will be widely used quite easy.
Note that the define attribute capability is only available with the kdms define attribute () call.

There are six specific functions for working with attributes which have either been defined or created. Ver-
sions of these calls exists for each of the application Data Services.

Get Attribute : assigns an attribute to a data object

Set Attribute : retrieves an attribute from a data object

Query Attribute : indicatesif an attribute exists and returns its characteristics if it does
Copy Attribute : copies attribute values from one object to another

Match Attribute : compares attribute values across two objects

Print Attribute : prints attribute values

All these work as expected for structure attributes, with the exception of the print function, which will only
print the data type of the structure attribute.

D.3. Handling Undefined or Mismatched Versioned Structures

Data Services will only be able to read an structure attribute if the structure type identifier has been defined
before the data object is opened. In addition to being defined, the structure stored in the object must have the

6-13

same version as the structure which has been defined. If the structure type identifier has not been defined, or
there is aversion mismatch, Data Services will fail to read the attribute when the object is opened. This condi-
tion will generate an error message for you indicating the name of the attribute, and its type and version.

Beyond this, the data object will still be opened successfully, with all other attributes and data being available
within the program. The specific structure attribute which failed to read in, however, will not be instantiated in
the data object. The programmer can detect the absence of this attribute in one of two ways, depending
whether the attribute was created or defined.

If the attribute was defined, then a default value specified in the define attribute call will be returned when the
attribute is retrieved from the object. By defining the default value to be NULL, a programmer can then tell,
on retrieval of a NULL value, that the input object either did not contain the structure, or contained a mis-
matched version of the structure.

If the attribute is not defined, but instead was created in the previous routine, then it will simply just not exist
in the newly opened data object. Calls to retrieve the attribute will fail and query attribute calls will indicate
that the attribute does not exist.

Note that defined attributes appear to always exist, whether or not they are really physically instantiated on the
data object; a query attribute will always indicate that a defined attribute exists on any data object.

D.4. Nuances of Attribute Assignment

In general, attributes with an argument size of one are stored and retrieved by value. That is, a copy of the
value is made to internal storage when the attribute is set. A copy of the value in internal storage is made back
to the retrieving variable when the attribute is returned. Thisistruefor all C datatypes.

The following example illustrates setting and getting a simple integer attribute of argument size one.

int set value = 10;
int get value;

kpds_set_attribute (object, ATTRIBUTE, set_value);
kpds get attribute (object, ATTRIBUTE, &get value) ;

Attributes with an argument size greater than one are treated differently. Since each attribute argument is
really an array, there is a greater overhead involved in copying the attribute argument than a simple C assign-
ment. This copying cost is incurred on a set attribute. This is done to protect the data integrity; once set, the
data object has its own private copy of the attribute argument which you can not accidentally free. To avoid
some of the overhead of copying, returning attributes are passed by reference. That is, only a pointer to the
internal array is returned.

The following example illustrates setting and getting a simple integer attribute of argument size three.

int set valuel[3] = {4, 5, 6};
int *get value;

/* this will copy the set value array to an internal array */
kpds_set_attribute(object, ATTRIBUTE, set_ value);

/* this will return the pointer to an internal array */
kpds get attribute (object, ATTRIBUTE, &get value) ;

6-14

Structures are treated as a special case. Since alocated structures can not be passed on the stack, it is necessary
to pass the address of the structure, or a pointer to the structure. Structure arguments are handled in a manner
similar to array arguments. An internal copy of a structure will be made on a set attribute call and a pointer to
that internal array will be returned on a get attribute call.

The following example illustrates setting and getting a simple structure attribute with an argument size of one.

struct tile *set tile;
struct tile *get tile;

set_tile = (struct tile *) allocate_and_initialize_tile();

/* this will create an internal copy of the set tile structure */
kpds set attribute (object, ATTRIBUTE, set tile);

/* we can free this copy */
kfree(set_tile);

/* this will return the pointer to an internal structure */
kpds get attribute (object, ATTRIBUTE, &get tile);

/* don’'t free get tile! */

D.5. Structure Storage within a Data Object

The actual unflattening and flattening of a structure attribute occurs when a data object is opened and closed.
When an input object is opened, any stored structure attributes which are defined are unflattened from the file
into memory. When an output object is closed, any structure attributes in that object are flattened from mem-
ory into the file. Note that any internal copies of the structure within the data object will be freed when the
data object is closed.

obj = kpds open output object ("data.file");

OUTPUT DATA
OBJECT

attributes

kpds_set_attribute(obj, "hypolist",
foobar) ;

kpds close object (obj) ;

structure is flattened
directly to the file upon
the closing of the data object

set attribute call will assign
a copy of structure

data.file

Figure 3: This picture illustrates the flattening of a structure attribute from memory to a file as a data
object is closed. Notice that when the attribute was stored, an internal copy of the structure was made.

6-15

structure is unflattened obj = kpds_open input object ("data.file");

directly from the file upon
the opening of the data object

INPUT DATA
OBJECT

attributes

kpds_get_attribute(obj, "hypolist™",
&foobar) ;
all necessary memory to

contain structure and anything
pointed to by the structure
is allocated as the structure
is read in

get attribute call will return
pointer to already allocated
structure

—

data.file

Figure 4: This picture illustrates the unflattening of a structure attribute from memory as a data object is
opened. Noatice that when the attribute is retrieved, only a pointer to the already allocated structure is
returned.

The code dealing with data storage for a data object will store a machine identifier, using it appropriately so
that any flattened structures on one architecture can be unflattened appropriately on another. This machine
conversion will be entirely transparent to you when using Data Services.

Should you need to handle writing out flattened and unflattened versions of a structure yourself, there are calls
for performing the flattening and unflattening entirely in memory. These cals, kstruct flatten and
kstruct_unflatten, Will perform the flattening in the native machine format, so be careful to manage your
own machine conversion information when transporting the flattened structures across machines.

E. Tutorial : Creating a Structure Support Library

This tutorial will illustrate the creation of a structure specification and some corresponding library code for
initializing the structures. This tutorial is written assuming a library object named ATRDATA has been created
and is being edited with Composer.

1. Thefirst step isto create a structure specification file. We will create three structures within this
file. A specification file is created by adding a new SRC file in Composer using the "Add File to
Object" operation under the "File Operations’ pulldown menu. Using this operation, add a file
named hypo.x.

2. The next step is to edit the specification file and add the structure specification. Using the "Edit"
operation under the "File Operations' pulldown menu, edit the file hypo.x and add the following
structure specification :

struct hypo
version 1.0

float height;

6-16

int type;
float peaks<>;

}i

struct hypo list
version 1.0

struct hypo h;
struct hypo *next;

i

struct tile
version 1.0

int x;
int y;

}

typedef struct hypo list hypo list t;
typedef struct tile tile t;

Now that we have a specification file, generate code from it using the Make button found on the
on Console option from the Commands pulldown menu. This will invoke the program kgenstruct
to parse the specification file hypo.x and generate two code filesio_hypo.h and io_hypo.c.

The generated header file should be included by the library’s include file so that it is available
publicly. Edit the library’s include file, atrdata.h and add the following line in the #include
section.

#include "io hypo.h"

We will want to define two data services attributes. For convenience, we will define two stringsin
the atrdata.h file. Edit the library’s include file, atrdata.h and add the following line in the
#define section.

#define ATR HYPO LIST "atrHypoList"
#define ATR_TILE "atrTile"

Now, we need to create an initialization routine which will define the structures and define some
Data Services attributes. Create anew file called init_hypo.c and add in the following procedure.
This procedure will define the structures, and define a specific attributes for transporting them via
Data Services.

| Routine Name: init stuctures
Purpose: This routine will initialize the data types
tile_t and hypo list_t for use with data
services in the rest of the program.

will also be defined here.

This routine should be called once as an

|

|

|

|

|

| The attributes ATR _HYPO LIST and ATR_TILE

|

|

|

| initialization step for the rest of the program.
|

6-17

| The type handlers for these will be
| KTYPE TILE and KTYPE HYPO LIST.

void init structures (void)

{

static int initialized = FALSE;

if (!initialized) /*-- only initialize once --*/

{

initialized = TRUE;

/****

x% these define calls will recursively define the structures
**** hypo list, hypo, and tile.

*xkxKk [
kdefine hypo list t();
kdefine tile t();

/****

***x* define the two data services attributes. These
*x** will each be single argument attributes with an
**** grgument size of 1. We will associate it at the

**** object level and provide NULL as a default.
****/

kdms_define attribute (NULL, ATR HYPO LIST, 1, 1, KTYPE HYPO LIST,
TRUE, TRUE, NULL);

kdms define attribute (NULL, ATR TILE, 1, 1, KTYPE TILE,
TRUE, TRUE, NULL) ;

return;

Be sure to properly prototype this generated routine by adding the following line to the atrdata.h
library includefilein the routine definitions Section.

void init structures PROTO ((void)) ;

You can now compile the library. The routine init structures () can now be used by any
routine which wants to have access to the the structure attributes ATR HYPO LIST and
ATR_TILE. Note that this initialization routine should be called first, before any other calls to
data services. If, for example, an object containing a hypo_list were opened before this routine
was called and the KTYPE_HYPO_LIST was defined, the hypo_list could not be read.

In a program linked against this library, you can access the ATR_HYPO LIST and ATR TILE
attributes transparently once you have called the init structures () routine.

To write a hypo list on a Data Services object, simply use a set attribute call as shown in the fol-
lowing example. The declaration of the hypo list structure is shown as well, although presumably
the hypo list would be initialized to contain some useful information before the set attribute call.

kobject output obj;
struct hypo list t *hypo 1;

output obj = kpds open output object ("filename") ;

6-18

10.

kpds_set attribute (output obj, ATR HYPO LIST, hypo 1);
kpds_close object (output_ obj) ;

Note that the hypo will not be written to filename until the kpds close object () call.

The hypo list is read from a Data Services object in a similar manner. To retrieve ahypo list from
a Data Services object, simply use a get attribute call as shown in the following example. The
declaration of the hypo list structureis also shown.

kobject output_obj;
struct hypo list t *hypo 1 = NULL ;

output obj = kpds open input object ("filename") ;
kpds_get attribute (output obj, ATR HYPO LIST, &hypo 1);
kpds_close object (output obj) ;

Remember that this returns a pointer to the internal Data Services copy of the structure. As such,
it will be freed during kpds_close object () cal. Theroutine kstruct duplicate () can
be used to make a copy of a structure, if a private copy which Data Services won't free is needed.

6-19

This page left intentionally blank

6-20

Table of Contents

A. Overview . .
B. Passing Structures Between Programs .
C. Structure Specification File
C.1. Creating a Structure Specification F|Ie
C.2. Kgenstruct Coe e
C.3. What is Generated?
C.4. Software Object Types
C.5. Specification Language
C.5.1. Definitions .
C.5.1.1. Structures..
C.5.1.2. Typedefs . :
C.5.1.3. Symbolic Constants
C.5.1.4. Enumerations
C.5.2. Declarations . .
C.5.2.1. Simple Declaratlon
C.5.2.2. Fixed Array Declaration
C.5.2.3. Variable Array
C.5.2.4. Pointer Declaration .
C.5.2.5. Type Identifiers .
C.5.3. Structure Versioning .
C.5.4. C Preprocessing .
C.5.4.1. Comments
C.5.4.2. Passing Dlrectlvesto Header F|Ie
C.5.5. Additional Notes . o
C.5.6. Example Specification File .
D. Data Services. .
D.1. Attributes Characterlstlcs
D.2. Attributes Management
D.3. Handling Undefined or Mlsmatched Versr oned Structures
D.4. Nuances of Attribute Assignment .
D.5. Structure Storage within a Data Object
E. Tutorial : Creating a Structure Support Library

6-2
6-3

6-3
6-3
6-4
6-4
6-5
6-5
6-6
6-6
6-7

6-8
6-8

6-9
6-9

. 6-10
. 6-10
. 611
. 6-11
. 6-11
. 6-12
. 6-12
. 6-13
. 6-13
. 6-14
. 6-15
. 6-16

This page left intentionally blank

Program Services \Volume |

Chapter 7

Streaming Data Services

Copyright (c) AccuSoft Corporation, 2004. All rights reserved.

Chapter 7 - Streaming Data Services

A. Introduction

Streaming Data Services provides a mechanism for the continuous transmission of data messages from one
data processing routine to another. Streaming Data Services was designed to have minimal overhead so that it
could be used for processing of datain real-time. Streaming Data Services allows multiple "channels' of data
to be multiplexed down a single data stream. The data being streamed down a channel can be of any VisiQuest
supported datatype. Arbitrary user-defined data structures can even be streamed.

Streaming Data Services provides access to a stream connection via an opaque data object represented by the
abstract data type kobject. A single stream connects two data processing operators which run simultaneously.
One process will continuously produce data which the other will continuously consume.

A data stream is either opened as a sending stream for writing or as an receiving stream for reading. A sending
data stream should be opened by one process for communication with a second process. The second process
should then open the same stream as a receiving stream. The first process then writes data to its sending
stream and the second process reads the same data from its receiving stream.

stream=/tmp/streamname

” ” ”

Microphone Gain Speaker

Figure 1: A data stream is used to continuously transmit data between two simultaneously running pro-
cesses. The stream is identified by a unique transport name. In VisiQuest, the transport type used to
transmit the stream can be changed by clicking on the connection between two glyphs.

Data can be written only to a sending stream and can be read only from a receiving stream. Communication
down a stream is thus unidirectional. The second process can not communicate back to the first process using
the same stream; a second stream must be created.

A VisiQuest transport name is used to identify the stream name. The sending filename should begin with the
prefix stream= to truly be a stream; the prefix should not be specified by the receiving process. Other transient
trangport types, such as a UNIX-domain or TCP/IP sockets may also be used. Streaming data services will
automatically handle any machine conversion required when transmitting data between different architectures.
Other permanent transport types such as file or shared memory may be used, although this will cause all the
datawritten to the stream to be buffered into the transport.

Note: When editing a kroutine from guise, use stream= as the default file name for all streaming sending con-
nections. This will cause the connection type to automatically be a stream. The data being sent and received
consists of basic one-dimensional arrays. No specific structure is imposed on the data; it is up to the applica
tion to enforce a more specific interpretation. To help with this, streaming data services supports user-defined
attributes which allow application-specific information to be passed down a data stream.

For example, while the data composing a two-dimensional image could be sent down a data stream, the down-
stream process would not be able to reconstruct the image without more specific information such as the image
width and height. Thus, an user could define attributes which describes the image width and height.

B. Streaming Data Model

Streaming Data Services provides both a writing and a reading process access to a stream. The stream allows

data to be sent from the writing process to the reading process. A writing process will communicate with a
reading process by sending data through a stream using the kds write data call. The reading process
receivesthisdatausing thekds read data cal.

The data being sent with akds write data call consists of asingle linear array of data. This array is writ-
ten to the data stream where it can then be read by the reading process. Thus, even though the datais concep-
tually streaming continuously from one process to another, it is in reality transfered one array at a time. For
convenience, this array will often be referred to as a message. Note that streaming data services does no
buffering of data. Subsequent sends will block until the message from a previous send has been completely
received by the downstream process.

Writing Process Reading Process
kobject o; kobject i;
...132345 2345152...

kds write data kds read data
Sending Receiving
Stream Stream

Figure 2: Datais written do a data stream using the kds_write data call. That same dataisread from
the stream in another process using thekds_read data call. Each send consists of alinear array of data
called amessage. Data can flow in only one direction down a stream.

A stream may contain multiple data channels which act as conduits for sending and receiving messages.
Channels may also act as conduits for additional, auxiliary information known as attributes.

Streams
A stream is represented by the abstract datatype kobject. A stream should either be opened as a
sending stream with the kds open send call, or as a receiving stream with the
kds _open_recv cdl. The single argument to either of these functions will be the transport
name over which the stream will be communicated; typicaly this should be prefixed with

stream=. These callswill return avalid kobject on success or NULL on failure.

Channels
While multiple channels can be opened within a stream, data cannot be sent simultaneously down
multiple channels at the same time. Data down multiple channels is actually interleaved; each
subsequent kds_write data call may be sent down adifferent channel on the same stream.

For example, in the illustration below, three channels named A, B, and C are opened in the output
stream. The output stream first does a kds_write data cal with a message down channel A.
The next send is down channel B, the next down channel C, and so forth. Natice that the sending
stream is driving what is being received. Since no data is buffered, the receiving stream must
receive the messages in the order in which they have been sent.

Sending Receiving

Channels are opened only on sending streams. Once a channel is opened, attributes may be set on
the channel, and then the channel should be connected. Once the channel is connected, it will
automatically be opened and connected in the downstream input object. Thiswill be discussed in
more detail later.

Attributes
In addition to data, a channel may also act as a conduit for attributes. An attribute is a named
piece of information with a specific value. An attribute value may be assigned with a call to
kds_set_attribute Or its value retrieved with a call to kds get attribute. User-defined
attributes must be created explicitly on a channel with acall to kds_create attribute before
it can be accessed.

Attributes for Streaming Data Services are used to define a process's view of a channel rather than
being associated with the dataitself; it is possible for every process to have a different view (set of
attributes) associated with a channel and its data stream. A process may assigned an attribute
through functions such as kds _set_attribute, but this attribute only exists locally. The functions
kds_connect_channel and kds resend_attributes can be used to propagate local attributes to the
next downstream glyph which then become part of that glyph's local attributes. Attributes cannot
be propagated upstream.

Attributes typically should be created and set on a channel after it is opened but before it is con-
nected. The call to connect a channel sends all the attributes of the channel downstream. If cre-
ated before the kds_connect channel cal (or resent with kds_resend attributes) then
attributes need only be created on sending streams; the attributes will be created automatically on
the downstream receiving stream when they are received.

Each channel has one attribute which must be set. The attribute kxbs_DATATYPE dictates the
datatype of the messages sent down the channel. Once set, this attribute applies for the life of the
channel; it cannot be changed, even if the attributes are resent. Any of the VisiQuest standard
dataytypes listed on the left may be used when setting this attribute. User-defined datatypes may
be used as well if streaming of arbitrary structures is required. Note that the KDS DATATYPE
attribute exists inherently in each channel and does not need to be created.

KBIT
KBYTE
KUBYTE
KSHORT
KUSHORT
KINT
KUINT
KLONG
KULONG
KFLOAT
KDOUBLE
KCOMPLEX
KDCOMPLEX

Attributes generally have to be explicitly created on a sending channel before they can be set.
However, this can be avoided with attributes which are used frequently by defining them using the
kds define attribute call. A defined attribute will be automatically created on a call to
kds set_attribute, thus saving the explicit call to create the attribute. It is recommended
that common attribute definitions be placed in a single library to be shared among the multiple
streaming routines who need them. Not only will this avoid the extra step of having to create the
attribute before setting it, but it also guarantees that the attribute will be created with the same
characteristics within each routine.

C. Stream Functions

Depending on whether or not you are working with just a sending stream, just a receiving stream, or both a
sending and receiving stream, the function calls which should be used and the general programming model
will vary. The genera functions for sending and receiving streams are outlined below, with examples of how
each processing case should look provided at the end.

C.1. Sending Stream Functions

Data is communicated down a sending stream via channels. Channels are identified by a unique character
string. This string is provided when the channel is opened with akds_open channel cal. At thistime, the
KDS_DATATYPE attribute be set on the channel. This attribute will determine the datatype of the messages sent
with akds write data cal. All data sent over this channel must be of this datatype. This datatype will
hold for the life of the channel. If different datatypes are to be sent, then kBYTE can be used for the datatype,
but then the receiving channel must know how to interpret the data and there will not be automatic conversion
of datatypes between heterogeneous machines.

Other attributes may be created and set as needed after the channel has been opened. Once all attributes are set
on the channel, it should then be connected using the kds connect channel cal. Once connected, the
datatype and al other channel attributes will be sent downstream.

Channels should only be opened and connected on sending streams. Once a channel has been connected, it
will be automatically opened and connected within the downstream receiver. A channel may be closed on an
sending stream at any time using the kds_close channel cal. This will automatically close the channel
downstream as well. All channels are closed automatically when a stream is closed with the kds _close call.
Channels on receiving streams should never be explicitly closed.

Note that the channel name will be internally bound to a unique byte identifier within a stream. This byteis
sent at the beginning of each message to identify to which channel the message belongs. While this minimizes
the overhead in sending each message, it does impose a practical limit of 255 channels in each data stream.

* kds_open_send() - open a sending stream

* kds_open_channel() - open a sending channel

* kds_connect_channel() - connect an sending channel
* kds write _data() - write data down a sending channel
* kds_close_channel() - close a sending channel

* kds_close() - close a stream

C.1.1. kds_open_send() — open a sending stream

Synopsis
kobject
kds open send(kstring name)

Input Arguments
name
name of stream

Returns
kobject on success, NULL otherwise

Description
This function will open a stream for writing.

C.1.2. kds_open_channel() — open a sending channel

Synopsis
int
kds _open channel (
kobject object,
kstring channel)

Input Arguments
object
stream object to contain channel
channel
name of new channel to open

Returns
TRUE on success, FAL SE otherwise

Description
This function will open a channel within the given data stream. After the channel is opened, attributes
may be set using the kds_set_attribute function. When all attributes have been set, the channel may be
connected using the kds_connect_channel function.

Only channels on a sending stream should be opened. Receiving channels will be implicitly opened
within the select or the kds read data call.

C.1.3. kds_connect_channel() — connect an sending channel

Synopsis
int
kds_connect channel (
kobject object,
kstring channel)

Input Arguments
object
stream object to contain channel
channel
name of new channel to connect

Returns
TRUE on success, FAL SE otherwise

Description
This function will connect an open channel within the given data stream. After the channel is con-
nected, the datatype attribute may no longer be changed. The connect effectively transmits al
attributes which were set after the channel was opened. The KDS_DATATY PE attribute must have
been set before this call is made.

Only channels on sending streams should be opened. Receiving channels will be implicitly opened
within the select or the kds read data call.

C.1.4. kds_write_data() — write data down a sending channel

Synopsis
ssize t
kds _write data(
kobject object,
kstring channel,
kaddr data,
size t number)

Input Arguments
object
sending stream object
channel
channel associated with data
data
write data buffer
number
number of itemsin data buffer

Returns
number of items successfully sent or -1 on error

Description
Writes data to a channel on a sending stream. The datatype of the data to be transmitted down this
channel must have been set prior to the channel being connected.

C.1.5. kds_close_channel() — close a sending channel

Synopsis
int
kds close_ channel (
kobject object,
kstring channel)

Input Arguments
object
stream object to contain channel
channel

channel being closed

Returns
TRUE on success, FAL SE otherwise

Description
Close a sending channel, indicating that no further data will be written to it. This will signa to the

downstream process that this channel is being closed.

Only sending channels should be closed. Receiving channels will be implicitly closed within the select
or the kds read datacall.

C.1.6. kds_close() — close a stream

Synopsis
int
kds close (kobject object)

Input Arguments
object
stream abject to close

Returns
TRUE on success, FAL SE otherwise

Description
This function will close a stream.

C.2. Receiving Stream Functions

The order in which the messages arrive at the receiving stream is determined entirely by the order in which
they were sent from the upstream process. Since messages must be received in the order in which they were
sent, the reading process must receive each message as it arrives.

Thekds select channel call should be used on an receiving stream to determine the channel on which the
next incoming message is arriving. The kds _select channel cal will intercept each new incoming mes-
sage as it arrives and then indicate to the calling program to which channel it belongs. The calling program
must receive the data from the selected channel before any subsequent messages can be received.

* kds_open_recv() - open an receiving stream
* kds_select_channel() - select next receiving channel with available data
* kds _read_data() - read data from areceiving channel

C.2.1. kds_open_recv() — open an receiving stream

Synopsis
kobject
kds open recv(kstring name)

Input Arguments
name
name of stream

Returns
kobject on success, NULL otherwise

Description
This function will open a stream for reading.

C.2.2. kds_select_channel() — select next receiving channel with available data

Synopsis
kstring
kds select channel (kobject object)

Input Arguments
object
receiving stream object

Returns
channel - name of next channel to read from

Description
This function will select the next incoming channel with data available. A channel which has just con-

nected or a channel which as resent attributes will also return from this function.

C.2.3. kds_read_data() — read data from a receiving channel

Synopsis
ssize t
kds_read data(
kobject object,
kstring channel,
kaddr data,
size t number)

Input Arguments
object
receiving stream object
channel
channel associated with data
data
receive data buffer

number
the maximum number of elements of the channel datatype which can be read into the data buffer

Returns
number of items successfully received or -1 on error

7-10

Description
Reads data from a channel on areceiving stream.

C.3. Sending to Receiving Functions

These functions are used when relaying information from an incoming receiving stream to an outgoing sending
stream.

* kds_query_channel() - query a channel
* kds _relay_channel() - relay a channel to a sending stream
* kds_copy_channel() - copy a channel and associated data

C.3.1. kds_query_channel() — query a channel

Synopsis
int
kds_query channel (
kobject object,
kstring channel)

Input Arguments
object
stream object to check
channel
channel to check for

Returns
TRUE if channel is present, FAL SE otherwise

Description
Check to seeif achannel exists within a given data stream.

7-11

C.3.2. kds_relay_channel() — relay a channel to a sending stream

Synopsis
int
kds_relay channel (
kobject input,
kstring chan in,
kobject output,
kstring chan out)

Input Arguments
input
stream containing receiving channel
chan in
receiving channel
output
stream containing sending channel
chan out
sending channel

Returns
TRUE if sending channel is successfully relayed, FAL SE otherwise

Description
Connect an sending channel of the same datatype as the named receiving channel. Thiswill only copy
the datatype attribute from the receiving channel to the sending channel.

C.3.3. kds_copy_channel() — copy a channel and associated data

Synopsis
int
kds_ copy_ channel (
kobject input,
kstring chan in,
kobject output,
kstring chan out)

Input Arguments

input
stream containing receiving channel

7-12

chan_in

receiving channel
output

stream containing sending channel
chan out

sending channel

Returns
TRUE if channel is present, FAL SE otherwise

Description
Copy the data for a channel coming in from areceiving channel and writing out to an sending channel.
If the channel does not yet exist in the sending stream, it will be relayed from the receiving stream.

C.4. Attribute Functions

The following functions allow attributes to be defined or created on output streams, and then assigned and
retrieved from a stream. Note that attributes should be created and assigned before a stream is connected. The
act of connecting a stream will send al attributesin a channel downstream.

* kds_set_attribute() - set an attribute

* kds _get_attribute() - get an attribute

* kds _create attribute() - create an attribute

* kds delete attribute() - delete an attribute

* kds _delete attributes() - delete all attributes

* kds_define_attribute() - define an attribute

* kds_resend_attributes() - resend all attributes

* kds get_attribute_names() - get attribute names

C.4.1. kds_set_attribute() — set an attribute

Synopsis
int
kds set attribute(
kobject object,
kstring channel,
kstring attribute,
kvalist)

7-13

Input Arguments
object
stream abject containing channel
channel
name of channel associated with attribute
attribute
name of attribute to set

Returns
TRUE on success, FAL SE otherwise

Description
This function will set an attribute associated with a channel which can later written to a channel by

kds_connect_channel or kds resend_attributes.

C.4.2. kds_get_attribute() — get an attribute

Synopsis
int
kds_get attribute(
kobject object,
kstring channel,
kstring attribute,
kvalist)
Input Arguments
object
stream object containing channel
channel

name of channel associated with attribute

Output Arguments
attribute
name of attribute to get

Returns
TRUE on success, FAL SE otherwise

Description
This function will get an attribute either previously set by the same process or written to a channel iby

7-14

an upstream process using kds_connect_channel or kds_resend_attributes.

C.4.3. kds_create_attribute() — create an attribute

Synopsis

int

kds create attribute(
kobject object,
kstring channel,
kstring attribute,
int datatype,
size t argsize,
size t numargs)

Input Arguments

object

stream object containing the channel
channel

name of channel associated with attribute
attribute

name of attribute to create
datatype

datatype of attribute
argsize

size of each attribute argument
numargs

number of attribute arguments

Returns
TRUE on success, FAL SE otherwise

Description
This function will create an attribute associated with a channel in a specific stream object.

C.4.4. kds_delete_attribute() — delete an attribute

Synopsis
int
kds delete attribute(

7-15

kobject object,
kstring channel,
kstring attribute)

Input Arguments
object
stream object containing channel
channel
name of channel associated with attribute
attribute
name of attribute to create

Returns
TRUE on success, FAL SE otherwise

Description
This function will delete an attribute associated with a channel in a specific stream object.

Restrictions
Only deletes local attributes; will not delete downstream attributes written previously with kds_con-
nect_channel or kds resend_attributes.

C.4.5. kds_delete_attributes() — delete all attributes

Synopsis
int
kds_delete attributes(
kobject object,
kstring channel)

Input Arguments
object
stream abject containing channel
channel
name of channel

Returns
TRUE on success, FAL SE otherwise

7-16

Description

Thisfunction will delete al attributes from a specified channel within a specific stream object.

Restrictions

Only deletes local attributes; will not delete downstream attributes written previously with kds_con-
nect_channel or kds resend_attributes.

C.4.6. kds_define_attribute() — define an attribute

Synopsis

int

kds define attribute(
kstring channel,
kstring attribute,
int datatype,
size t argsize,
size t numargs,

kstring,
kstring,
kobject,
kobject,
kstring,
kstring,

kstring,
kstring,
kstring,
kstring,
kstring,
kstring,

int (*get) (kobject,
int (*set) (kobject,
int (*match) (kobject,
int (*copy) (kobject,
int (*query) (kobject,
int (*print) (kobject,
kaddr clientdata,
kvalist)
Input Arguments
channel
name of channel or NULL for object attribute
attribute
name of attribute to get
datatype
datatype of attribute
argsize
size of each attribute argument
numargs

number of attribute arguments
get

kaddr,
kaddr,
kaddr,
kaddr,
size t
kaddr,

get routine to use instead of default, NULL to use the default.

set

set routine to use instead of default, NULL to use the default.

match

match routine to use instead of default, NULL to use the default.

copy

7-17

kva 1list *),
kva 1list *),

kaddr, kstring),
kaddr, kstring),

*, size t *,
kfile *),

int *,

int *),

copy routine to use instead of default, NULL to use the defauilt.
query

guery routine to use instead of default, NULL to use the default.
print

print routine to use instead of default, NULL to use the default.
clientdata

client data to passin to the handler functions
kvalist

open variable argument list to default

Returns
TRUE on success, FAL SE otherwise

Description
This function will define an attribute associated with a channel over an entire session.

C.4.7. kds_resend_attributes() — resend all attributes

Synopsis
int
kds resend attributes(
kobject object,
kstring channel)

Input Arguments
object
stream object containing channel
channel
name of channel associated with attributes

Returns
TRUE on success, FAL SE otherwise

Description
Thisfunction will resend all the attributes from a sending stream for a specified channel.

7-18

C.4.8. kds_get_attribute_names() — get attribute names

Synopsis
kstring *
kds get attribute names (

kobject object,
kstring channel,
const kstring filter,
int *num)
Input Arguments
channel
name of channd to return attributes for
filter
a regular expression to use to as the search key for the attribute name. if it's NULL, al names are
returned.
Output Arguments
num

number of attribute names

Returns
astring array of attribute names

Description
This function will return the names of al attributes in a specified channel. A filter may be provided to
contrain the search.

C.5. Data Casting

Data can be implicitly cast on reading and writing by using the presentation attribute KDS PRESENTA-
TION DATATYPE.

On akds read data cal, the datais cast to this datatype from the physical datatype before being returned.
On a kds write_data call, the data is cast from this datatype to the actual physical datatype of the channel
before being written downstream. In either case, this datatype determines the type of data which should be
handled by the user. If not set or set to KNONE, no casting will occur.

This attribute only affects the channel in the local process. It is not propogated downstream. This attribute
will be copied from a recv stream to a send stream within a process by a kds copy channel or

7-19

kds _relay_channel call.

The attribute kbs_coMpPLEX_CONVERT dicates how complex data is handled during casting. If it is converted
to a"lower" datatype, this attribute specifies how to down-convert the data. For example if the data is actually
complex, but the presentation attribute is byte, the complex data would first be converted to the representation
defined by this attribute, and then converted to byte.

If the data is being converted from a "lower" data type to a complex data type, this attribute defines how the
data should be interpreted as the real or imaginary component of the complex pair. KPHASE and KMAGNITUDE
areinvalid values for up converting to complex, and will result in an error.

Reading and writing cast data occur using an internal statically allocated buffer. A new buffer can be set using
kds set_casting_buffer function.

C.5.1. kds_set casting_buffer() — assign a buffer to use when casting

Synopsis
void
kds set casting buffer(
kaddr Dbuffer,
size t buffer size)

Input Arguments
buffer
buffer to use for casting
buffer size
size of buffer to use for casting

Description
This function will assign a buffer to use for internally casting data on a kds read data or
kds write datacall. Casting occurs during these callsif the actual datatype of channel differs from the
presentation datatype. This buffer will be used for all casting operations done after the buffer is
assigned.

If a buffer is not assigned, an statically allocated internal buffer of 1024 bytes will be used. Assign-
ment of a NULL buffer of size O will cause streaming data services to revert to using this internal
buffer for casting.

An assigned buffer will NOT be freed by streaming data services. The user isresponsible for freeing it
at the end of the program.

7-20

D. Conversion routines

Two kroutines and associated library routines are provided for converting between Polymorphic Data Services
and Streaming Data Services. The kroutine ds2pds converts from Streaming Data Services to Polymorphic
Data Services. pds2ds converts from Polymorphic Data Services to Streaming Data Services. Note that
streams are supported as a polymorphic format; an incoming stream can be read by any polymoprhic data ser-
vicesroutine.

E. Sending Example

kobject o;

char *filename = "stream=/tmp/stream.ds"
int *ldata, *rdata;

int lnum, rnum;

/*-- open a new sending stream --*/

o = kds_open_send (filename) ;

/*-- open left channel, set the datatype of the channel, and connect --%*/
kds open channel (o, LEFT);

kds_set_attribute(o, LEFT, KDS_ DATATYPE, KINT) ;

kds_connect channel (o, LEFT) ;

/*-- open right channel, set the datatype of the channel, and connect --*/
kds open channel (o, RIGHT) ;

kds_set_attribute(o, RIGHT, KDS_DATATYPE, KINT) ;

kds connect channel (o, RIGHT) ;

/*-- while we have new left data and right data, send it downstream --*/
while (ldata = generate left data(&lnum) &&

rdata = generate right data(&rnum))
{

kds write data(o, LEFT, ldata, lnum);
kds write data(o, RIGHT, rdata, rnum);

}

/*-- close will close channels for us --*/
kds_close (o) ;

F. Receiving Example

kobject 1i;

char *filename = "stream=/tmp/stream.ds"

7-21

int datatype;

int data&lsgb;1024&rsqgb; ;

int nread;

/*-- open a new receiving stream --*/

i = kds_open recv(filename) ;

/*-- select the next available channel --*/
while (channel = kds select channel (i, &num))

{

kds_get_attribute (i, channel, KDS DATATYPE, &datatype);

/*-- only process integer data from the left channel --*/
if ((datatype == KINT) && (kstrcmp(channel, LEFT) == 0))

{

/*-- read no more than 1024 bytes --*/
nread = kds_read data(i, channel, (kaddr) data, 1024);

for (i = 0; 1 < nread; i++)

kprintf ("$d&bslash;", data&lsgb;i&rsgb;);
}

/*-- other data should just be discarded --*/
else
kds copy data(i, channel, NULL) ;

}

kds_close (i) ;

G. Sending and Receiving Example

int pending, datatype, nread;

kstring in file = "stream=/temp/in.ds";
kstring out file = stream=/temp/out.ds";
kstring ch in, *ch out = "out";

kobject src, dest;
kaddr *data;

/*-- open new sending and receiving streams --%*/
src = kds open recv(in file);
dest = kds_open send(out file);

/*-- select the next available channel --*/
while ((ch_in = kds_select channel (src, &pending)) != NULL)
{
if (pending == -1)
{
/*-- Copy the datatype and open and connect downstream channel --%*/

kds _get attribute(src, ch in, KDS DATATYPE, &datatype);
kds_relay_ channel (src, ch_in, dest);

}

else

{

7-22

data = kmalloc(pending * kdata size(datatype) ;
nread = kds_read data(src, ch in, data, pending) ;

/*-- Processing data goes here --%*/

kds_write data(dest, ch out, data, nread);
kfree (data) ;

}

kds close(src) ;
kds_close (dest) ;

7-23

This page left intentionally blank

7-24

Table of Contents

A.Introduction . . .
B. Streaming Data Model
C. Stream Functions .
C.1. Sending Stream Functions
C.1.1. kds_open_send() — open a sending stream
C.1.2. kds_open_channel() — open a sending channel .
C.1.3. kds_connect_channel() — connect an sending channel
C.1.4. kds_write_data() — write data down a sending channel
C.1.5. kds_close_channel() — close a sending channel
C.1.6. kds_close() — close a stream
C.2. Receiving Stream Functions . .
C.2.1. kds_open_recv() — open an receiving stream
C.2.2. kds_select_channel() — select next receiving channel wrth avarlable data
C.2.3. kds_read_data() — read data from a receiving channel .
C.3. Sending to Receiving Functions .
C.3.1. kds_query_channel() — query a channel
C.3.2. kds _relay_channel() — relay a channel to a sending stream
C.3.3. kds_copy_channel() — copy a channel and associated data
C.4. Attribute Functions Coe e
C.4.1. kds_set_attribute() — set an attribute .
C.4.2. kds_get_attribute() — get an attribute
C.4.3. kds_create_attribute() — create an attribute .
C.4.4. kds_delete_attribute() — delete an attribute .
C.4.5. kds_delete attributes() — delete all attributes
C.4.6. kds_define_attribute() — define an attribute .
C.4.7. kds_resend_attributes() — resend all attributes .
C.4.8. kds_get_attribute names() — get attribute names .
C.5. Data Casting)
C.5.1. kds_set_casting_| buffer() — assigna buffer to use When ca§| ng .
D. Conversion routines . e .
E. Sending Example
F. Receiving Example . .
G. Sending and Receiving Example

7-2
7-4
7-4
7-5

7-6
7-7

7-8
7-9

. 7-10
. 7-10
. 7-11
. 7-11
. 7-12
. 7-12
. 7-13
. 7-13
. 7-14
. 7-15
. 7-15
. 7-16
. 7-17
. 7-18
. 7-19
. 7-19
. 7-20
. 721
. 721
. 721
. 1-22

This page left intentionally blank

	 1 - Introduction
	 A - Overview of Program Services
	 B - Introduction to Data Services
	 C - Application Programming Interface (API)
	 D - Overview of the Application Data Services
	 D.1 - Polymorphic Data Services
	 D.1.1 - Polymorphic Data Model
	 D.1.2 - Value Data
	 D.1.3 - Location Data
	 D.1.4 - Time Data
	 D.1.5 - Mask Data
	 D.1.6 - Map Data
	 D.1.7 - Polymorphic Example 1 : Storage of an RGB Image
	 D.1.8 - Polymorphic Example 2 : Storage of a Signal
	 D.1.9 - Polymorphic Example 3 : Storage of an Animation with RGB Colormap

	 D.2 - Geometry Data Services
	 D.2.1 - Geometry Data Model
	 D.2.2 - Geometry Example: Storage of Geometry Primitives

	 D.3 - Color Data Services
	 D.3.1 - Color Data Model

	 E - Data Access Presentation
	 E.1 - Presentation and Physical Layers
	 E.2 - Reference Objects

	 F - File Format Support
	 F.1 - Supported Formats
	 F.2 - Format Storage Issues

	 G - Large Data Sets
	 H - Data Services Organization

	 2 - Polymorphic Data Services
	 A - Introduction
	 B - The Polymorphic Data Model
	 B.1 - Value Data
	 B.2 - Mask
	 B.3 - Map
	 B.4 - Location
	 B.5 - Time

	 C - Interaction with the Polymorphic Data Model
	 C.1 - Presentation of the Data Object
	 C.2 - Casting
	 C.3 - Scaling and Normalization
	 C.4 - Padding and Interpolation
	 C.5 - Conversion of Complex Data
	 C.6 - Map Evaluation
	 C.7 - Mask Evaluation
	 C.8 - Axis Assignment
	 C.9 - Data Ranging
	 C.10 - Reference Objects
	 C.11 - Auto Incrementing

	 D - The Application Programming Interface (API)
	 E - Polymorphic Primitives
	 E.1 - Value Primitives
	 E.2 - Mask Primitives
	 E.3 - Map Primitives
	 E.4 - Location Primitives
	 E.4.1 - Creating Location
	 E.4.2 - Location Primitives
	 E.4.3 - Presentation of Location Data

	 E.5 - Time Primitives

	 F - Attributes Defined by the Polymorphic Data Model
	 F.1 - Global Attributes
	 F.2 - Value Segment Attributes
	 F.3 - Mask Segment Attributes
	 F.4 - Map Segment Attributes
	 F.5 - Location Segment Attributes
	 F.6 - Time Segment Attributes

	 G - Functions Provided by Polymorphic Data Services
	 G.1 - Object Management
	 G.1.1 - kpds_open_input_object() open an input object for reading
	 G.1.2 - kpds_open_output_object() open an output object for writing
	 G.1.3 - kpds_create_object() create a temporary data object.
	 G.1.4 - kpds_create_object_attr() create an attribute associated the data object.
	 G.1.5 - kpds_destroy_object_attr() destroy an attribute associated with the data object.
	 G.1.6 - kpds_open_object() create an object associated with an input or output transport.
	 G.1.7 - kpds_close_object() close an open data object.
	 G.1.8 - kpds_reference_object() create a reference of a data object.
	 G.1.9 - kpds_copy_object() copy all data and attributes from one object to another.
	 G.1.10 - kpds_copy_remaining_data() copy remaining data from source to destination
	 G.1.11 - kpds_copy_object_attr() copy all presentation attributes from one data object to another.
	 G.1.12 - kpds_copy_object_data() copy all data from one object to another object.
	 G.1.13 - kpds_sync_object() synchronize physical and presentation layers of a data object.

	 G.2 - Data Functions
	 G.2.1 - kpds_get_data() retrieve data from a data object.
	 G.2.2 - kpds_put_data() store data in a data object.

	 G.3 - Attribute Functions
	 G.3.1 - kpds_copy_attribute() copy an attribute from one object to another
	 G.3.2 - kpds_copy_attributes() copy multiple attributes from one object to another.
	 G.3.3 - kpds_get_attribute() get the value of an attribute from a data object
	 G.3.4 - kpds_get_attributes() get the values of multiple attributes from a data object
	 G.3.5 - kpds_match_attribute() returns TRUE if the same attribute in two objects match.
	 G.3.6 - kpds_match_attributes() returns true if the list of segment attributes in two objects match.
	 G.3.7 - kpds_print_attribute() print the value of an attribute from a data object.
	 G.3.8 - kpds_query_attribute() get information about an attribute
	 G.3.9 - kpds_set_attribute() set the values of an attribute in a data object
	 G.3.10 - kpds_set_attributes() set the values of multiple attributes in a data object.

	 G.4 - Location Functions
	 G.4.1 - kpds_copy_location() copy the location segment from one object to another.
	 G.4.2 - kpds_copy_location_attr() copy all location attributes from one object to another object.
	 G.4.3 - kpds_copy_location_data() copy all location data from one object to another object.
	 G.4.4 - kpds_create_location() create a location segment within a data object.
	 G.4.5 - kpds_destroy_location() destroy the location segment in a data object.
	 G.4.6 - kpds_query_location() determine if the location segment exists in a data object.

	 G.5 - Map Functions
	 G.5.1 - kpds_copy_map() copy the map segment from one object to another.
	 G.5.2 - kpds_copy_map_attr() copy all map attributes from one object to another object.
	 G.5.3 - kpds_copy_map_data() copy all map data from one object to another object.
	 G.5.4 - kpds_create_map() create a map segment within a data object.
	 G.5.5 - kpds_destroy_map() destroy the map segment in a data object.
	 G.5.6 - kpds_query_map() determine if the map segment exists in a data object.

	 G.6 - Mask Functions
	 G.6.1 - kpds_copy_mask() copy the mask segment from one object to another.
	 G.6.2 - kpds_copy_mask_attr() copy all mask attributes from one object to another object.
	 G.6.3 - kpds_copy_mask_data() copy all mask data from one object to another object.
	 G.6.4 - kpds_create_mask() create a mask segment within a data object.
	 G.6.5 - kpds_destroy_mask() destroy the mask segment in a data object.
	 G.6.6 - kpds_query_mask() determine if the mask segment exists in a data object.

	 G.7 - Time Functions
	 G.7.1 - kpds_copy_time() copy the time segment from one object to another.
	 G.7.2 - kpds_copy_time_attr() copy all time attributes from one object to another object.
	 G.7.3 - kpds_copy_time_data() copy all time data from one object to another object.
	 G.7.4 - kpds_create_time() create a time segment within a data object.
	 G.7.5 - kpds_destroy_time() destroy the time segment in a data object.
	 G.7.6 - kpds_query_time() determine if the time segment exists in a data object.

	 G.8 - Value Functions
	 G.8.1 - kpds_copy_value() copy the value segment from one object to another.
	 G.8.2 - kpds_copy_value_attr() copy all value attributes from one object to another object.
	 G.8.3 - kpds_copy_value_data() copy all value data from one object to another object.
	 G.8.4 - kpds_create_value() create a value segment within a data object.
	 G.8.5 - kpds_destroy_value() destroy the value segment in a data object.
	 G.8.6 - kpds_query_value() determine if the value segment exists in a data object.

	 3 - Geometry Data Services
	 A - Geometry Data Services
	 A.1 - Introduction
	 A.1.1 - The Geometry Data Model

	 A.2 - Overview of Geometry Service Primitives
	 A.3 - The Application Programming Interface (API)
	 A.3.1 - Geometry Object Functions
	 A.3.2 - Geometry Primitive Functions
	 A.3.3 - Primitive List Functions
	 A.3.4 - Primitives and Data Vectors
	 A.3.5 - Examples

	 A.4 - Geometry Primitives and Associated Attributes
	 A.5 - Geometry Service Functions
	 A.5.1 - Object Functions
	 A.5.2 - kgeom_new_object() construct a new geometry object
	 A.5.3 - kgeom_write_object() write a geometry object
	 A.5.4 - kgeom_read_object() read a geometry object
	 A.5.5 - kgeom_copy_object() copy a geometry object
	 A.5.6 - kgeom_blast_object() free a geometry object
	 A.5.7 - Primitive Functions
	 A.5.8 - kgeom_new_primitive() construct a new geometry primitive
	 A.5.9 - kgeom_copy_primitive() copy a geometry primitive
	 A.5.10 - kgeom_blast_primitive() destroy a geometry primitive
	 A.5.11 - Primitive List Functions
	 A.5.12 - kgeom_add_primitive() add a primitive to a geometry object
	 A.5.13 - kgeom_get_primitive() get a primitive from a geometry object
	 A.5.14 - kgeom_number_primitives() count the number of primitives in the given object
	 A.5.15 - Specialized Reading and Writing Functions
	 A.5.16 - kgeom_start_writing_object() write the first part of a geometry object
	 A.5.17 - kgeom_write_primitive() write a geometry primitive
	 A.5.18 - kgeom_finish_writing_object() write the last part of a geometry object
	 A.5.19 - kgeom_done_writing() close associated file after writing
	 A.5.20 - kgeom_start_reading_object() read the first part of a geometry object
	 A.5.21 - kgeom_read_primitive() read a geometry primitive
	 A.5.22 - kgeom_finish_reading_object() read the last part of a geometry object
	 A.5.23 - kgeom_done_reading() close associated file after reading

	 4 - Color Data Services
	 A - Color Data Services
	 A.1 - Application Programming Interface (API)

	 B - Color Attributes
	 C - Color Interpretation
	 D - Autocoloring Procedures and Colormap Operations
	 D.1 - Types of Autocoloring Procedures
	 D.2 - Available Autocoloring Procedures
	 D.3 - Available Colormap Operations

	 E - Color Data Services Functions
	 E.1 - kcolor_set_attribute() set the value of a color attribute in a data object.
	 E.2 - kcolor_set_attributes() set multiple color attributes in a data object.
	 E.3 - kcolor_get_attribute() get the values of a color attribute from a data object.
	 E.4 - kcolor_get_attributes() get multiple color attributes from a data object.
	 E.5 - kcolor_match_attribute() compare a color attribute between two data objects.
	 E.6 - kcolor_match_attributes() compare multiple attributes between two objects.
	 E.7 - kcolor_copy_attribute() copy a color attribute from one data object to another.
	 E.8 - kcolor_copy_attributes() copy multiple attributes from one object to another.
	 E.9 - kcolor_query_attribute() query characteristics of a color attribute.
	 E.10 - kcolor_print_attribute() print the value of a color attribute from a data object.
	 E.11 - kcolor_gamut_object() perform color quantization of 1..4 plane images

	 5 - Data Management Services
	 A - Introduction
	 B - Presentation of Data
	 B.1 - Casting
	 B.2 - Scaling and Normalization
	 B.3 - Padding and Interpolation
	 B.4 - Conversion of Complex Data
	 B.5 - Index Order Manipulation

	 C - Attributes
	 C.1 - Global Attributes
	 C.2 - Segment Attributes

	 D - Functions Provided By Data Management Services
	 D.1 - Object Management
	 D.1.1 - kdms_create() create a temporary data object.
	 D.1.2 - kdms_open() create an object associated with an input or output transport.
	 D.1.3 - kdms_close() close an open data object.
	 D.1.4 - kdms_reopen() associate new data with an existing object
	 D.1.5 - kdms_reference() create a reference of a data object.
	 D.1.6 - kdms_sync() synchronize physical and presentation layers of a data object.
	 D.1.7 - kdms_update_references() update segment presentation of all reference objects.
	 D.1.8 - kdms_close_hook() insert a service to be called when an object is closed.
	 D.1.9 - kdms_reference_list() return a klist of references.
	 D.1.10 - kdms_get_segment_names() get an array of segment names for the object specified.

	 D.2 - Information
	 D.2.1 - kdms_support() obtain a list of file formats supported by data services.

	 D.3 - Segment Management
	 D.3.1 - kdms_query_segment() determine if a data segment is available.
	 D.3.2 - kdms_create_segment() create a segment on a data object.
	 D.3.3 - kdms_destroy_segment() destroy a segment from a data object.
	 D.3.4 - kdms_rename_segment() rename a segment

	 D.4 - Attribute Management
	 D.4.1 - kdms_define_quasi_attribute() define a quasi attribute
	 D.4.2 - kdms_define_attribute() define an attribute for for a session
	 D.4.3 - kdms_undefine_attribute() undefine a defined attribute
	 D.4.4 - kdms_query_attribute_definition() determines if an attribute is defined.
	 D.4.5 - kdms_create_attribute() instantiate an attribute
	 D.4.6 - kdms_destroy_attribute() destroy an attribute
	 D.4.7 - kdms_vset_attribute() open varargs set attribute
	 D.4.8 - kdms_vset_attributes() set attributes on a kvalist
	 D.4.9 - kdms_set_attribute() set the value of an attribute
	 D.4.10 - kdms_set_attributes() sets the values of multiple attributes
	 D.4.11 - kdms_vget_attribute() get a single attribute on a kvalist
	 D.4.12 - kdms_vget_attributes() get attributes on a kvalist
	 D.4.13 - kdms_get_attribute() get the value of an attribute within a segment of an abstract object.
	 D.4.14 - kdms_get_attributes() gets the values of a variable number of attributes within a single segment of an object.
	 D.4.15 - kdms_match_attribute() returns TRUE if the same segment attribute in two abstract data objects match.
	 D.4.16 - kdms_vmatch_attributes() returns true if the vararg list of segment attributes in two abstract data objects match.
	 D.4.17 - kdms_match_attributes() returns true if the list of segment attributes in two abstract data objects match.
	 D.4.18 - kdms_copy_attribute() copy an attribute from a source object to a destination object.
	 D.4.19 - kdms_vcopy_attributes() copy attributes given in a kvalist
	 D.4.20 - kdms_copy_attributes() copy attributes from a source object to a destination object.
	 D.4.21 - kdms_query_attribute() get information about an attribute
	 D.4.22 - kdms_print_attribute() print the value of an attribute
	 D.4.23 - kdms_get_attribute_names() get a list of attributes from an object.

	 D.5 - Interactivity Management
	 D.5.1 - kdms_add_callback() add a callback associated with an object's data or attribute.
	 D.5.2 - kdms_remove_callback() remove a callback associated with an object's data or attribute.

	 D.6 - Data Manipulation
	 D.6.1 - kdms_get_data() get data from data object
	 D.6.2 - kdms_put_data() put data into object
	 D.6.3 - kdms_copy_remaining_data() copy remaining data

	 6 - Structure Support
	 A - Overview
	 B - Passing Structures Between Programs
	 C - Structure Specification File
	 C.1 - Creating a Structure Specification File
	 C.2 - Kgenstruct
	 C.3 - What is Generated?
	 C.4 - Software Object Types
	 C.5 - Specification Language
	 C.5.1 - Definitions
	 C.5.2 - Declarations
	 C.5.3 - Structure Versioning
	 C.5.4 - C Preprocessing
	 C.5.5 - Additional Notes
	 C.5.6 - Example Specification File

	 D - Data Services
	 D.1 - Attributes Characteristics
	 D.2 - Attributes Management
	 D.3 - Handling Undefined or Mismatched Versioned Structures
	 D.4 - Nuances of Attribute Assignment
	 D.5 - Structure Storage within a Data Object

	 E - Tutorial : Creating a Structure Support Library

	 7 - Streaming Data Services
	 A - Introduction
	 B - Streaming Data Model
	 C - Stream Functions
	 C.1 - Sending Stream Functions
	 C.1.1 - kds_open_send() open a sending stream
	 C.1.2 - kds_open_channel() open a sending channel
	 C.1.3 - kds_connect_channel() connect an sending channel
	 C.1.4 - kds_write_data() write data down a sending channel
	 C.1.5 - kds_close_channel() close a sending channel
	 C.1.6 - kds_close() close a stream

	 C.2 - Receiving Stream Functions
	 C.2.1 - kds_open_recv() open an receiving stream
	 C.2.2 - kds_select_channel() select next receiving channel with available data
	 C.2.3 - kds_read_data() read data from a receiving channel

	 C.3 - Sending to Receiving Functions
	 C.3.1 - kds_query_channel() query a channel
	 C.3.2 - kds_relay_channel() relay a channel to a sending stream
	 C.3.3 - kds_copy_channel() copy a channel and associated data

	 C.4 - Attribute Functions
	 C.4.1 - kds_set_attribute() set an attribute
	 C.4.2 - kds_get_attribute() get an attribute
	 C.4.3 - kds_create_attribute() create an attribute
	 C.4.4 - kds_delete_attribute() delete an attribute
	 C.4.5 - kds_delete_attributes() delete all attributes
	 C.4.6 - kds_define_attribute() define an attribute
	 C.4.7 - kds_resend_attributes() resend all attributes
	 C.4.8 - kds_get_attribute_names() get attribute names

	 C.5 - Data Casting
	 C.5.1 - kds_set_casting_buffer() assign a buffer to use when casting

	 D - Conversion routines
	 E - Sending Example
	 F - Receiving Example
	 G - Sending and Receiving Example

