
VisiQuest MANUALS

Programming Services Volume 2

Data Services

AccuSoft Corp.
www.accusoft.com



Program Services Volume II

Chapter 1

Introduction

Copyright (c) AccuSoft Corporation, 2004. All rights reserved.





Chapter 1 - Introduction

A. Overview of Program Services

VisiQuest Program Services is a large group of libraries that are layered to provide the software developer
with a variety of programming interfaces that trade off reduced complexity against detailed control. Program
Services consists of three catagories: Foundation Services, Data Services, and GUI & Visualization Services.
Each Program Services category is comprised of one or more distinct libraries.

While this volume deals exclusively with Data Services, an overview of Program Services as a whole follows
in order to provide a context for understanding the role of Foundation Services.

Data Services

kappserv (libkaps.so)

kdataman (libkdms.so)

kgeom (libkgeom.so)

kapputils (libkapu.so)

B
O
O
T
S
T
R
A
PBasic & Operating

System Services Math Services
User Interface

Services Expression Services

xvlang (libxvl.so)

 FOUNDATION SERVICES 

D
A
T
A
S
E
R
V

 DATA SERVICES 

xvforms (libxvf.so)

xvutils (libxvu.so)

xvobjects (libxvo.so)

kwidgets (libkwd.so)

xvwidgets (libxvw.so)

D
E
S
I
G
N

xvisual (libsvs.so)

xvimage (libxvi.so)

xvannotate (libxva.so)

xvplot (libxvp.so) E
N
V
I
S
I
O
N

I
M
A
G
I
N
E

 GUI SERVICES   VISUALIZATION SERVICES 

kutils (libku.so)
klibc (libkc.so)

kmath (libklm.so)
kforms (libkvf.so)
kclui (libkclui.so) kexpr (libkexpr.so)

Figure 1: Program Services is comprised of libraries from the various VisiQuest toolboxes, bootstrap,
devel, dataser v, design, imagine, and envision. Foundation Services is part of the bootstrap toolbox,
and includes the klibc, kutils, klibm, and kexpr libraries. Data Services is provided in the dataser v tool-
box, and is made up of the kappserv, kapputils, kdataccess, kdataman, kjpg, kdatafmt, and kgeom
libraries. GUI and Visualization Services is in the design, imagine, and envision toolboxes, and
includes the kwidgets, xvforms, xvutils, xvwidgets, xvobjects, xvannotate, xvgraphics, xvimage, xvplot, xvi-
sual, klang, and xvlang libraries.

This volume (Volume II) deals exclusively with Data Services. Volumes I and III deal with Foundation Ser-
vices and GUI & Visualization Services, respectively.

1-1



Introduction Program Services Volume II - Chapter 1

B. Introduction to Data Services

Data Services consists of a collection of libraries that, together, comprise a powerful system for accessing and
manipulating data. The objective of Data Services is to provide the application programmer with the ability to
access and operate on data independent of its file format or its physical characteristics, such as size or data
type. Data Services is designed to address the needs of a large number of application domains including image
processing, signal processing, geometry visualization, and numerical analysis.

DATA PROCESSING

DATA 
OBJECT

DATA VISUALIZATION

4 2 1 2 4 5 1
1 4 5 3 9 5 6
2 3 2 1 2 3 5
1 2 3 5 5 4 5
2 3 1 4 5 6 7

Figure 2: Data Services implements a powerful and abstract data object. This data object is used by all
VisiQuest data processing and data visualization programs.

The Data Services Application Programming Interface (API) consists of a set of simple library functions that
provide access to an abstract data object. This API allows you to store and retrieve data from the data object
and to access characteristics of the data without having to worry about complicated data structures or intricate
file handling. This API encapsulates extensive functionality that efficiently handles data access and presenta-
tion. This allows you to concentrate on the details of implementing your specific algorithm rather than worry-
ing about how to access the data on which the algorithm is operating.

Many different application domains are able to utilize Data Services. Each domain performs all data access
through the Data Services API. Data is interpreted according to the data model dictated by the domain. Data
Services has a series of data models available, each of which is designed to meet the needs of a single domain
or family of domains. The most powerful of these is the polymorphic data model, which provides consistent
interpretation of data across many div erse domains. A geometry data model and a color data model are also
available.

Data presentation routines, embedded into the Data Services API, handle casting, padding, resizing, scaling,
and normalizing data. Data can be easily presented in whatever form is most convenient.

1-2



Introduction Program Services Volume II - Chapter 1

IMAGES VOLUMES SIGNALS MATRIX GEOMETRYANIMATIONS

A
p

p
lic

at
io

n
D

o
m

ai
n

s

4 5 7 2
2 3 5 2
2 8 6 5

4
5
8

Data Services Application Programming Interface (API)

data access presentation size
data type

mapping
validity

scaling
normalization

Polymorphic Model

PRIMITIVE LIST MAPS

Geometry Model Color Model

VALUE LOCATION TIME MASK
0 1 1 1 1
0 1 1 1 1
0 0 0 0 0

MAP

F
ile

 F
o

rm
at

 a
n

d
M

em
o

ry
 M

an
ag

em
en

t

file format independence

viff

arf
pnm

rast
xvimage

xpm
xwd

files

transport abstraction

shared 
memory

T
ra

n
sp

o
rt

 
In

d
ep

en
d

en
ce

pipes500 Megabytes

large data sets

Figure 3: Many div erse application programs can be written to use Data Services. A powerful polymor-
phic data model ensures consistent data interpretation across the diverse domains. The complexity of han-
dling data presentation is built into Data Services along with the ability to deal with large data sets and
numerous file formats. The underlying VisiQuest transport abstraction provides Data Services with trans-
port independence.

At the lowest level of Data Services is support for reading and writing several data file formats as well as a
memory management system for accessing very large data sets. The entire system is built on the VisiQuest
transport abstraction; data objects can be accessed independent of their underlying transport, whether it be a
file, pipe or shared memory. The functionality provided with Data Services empowers you to write highly ver-
satile and robust applications with a minimal amount of effort.

1-3



Introduction Program Services Volume II - Chapter 1

C. Application Programming Interface (API)

The Application Programming Interface (API) in Data Services is centered around an abstract data object
made available via the data type kobject. You declare a kobject just as you would any other variable. Once
declared, you can then open the object as either an input or output object, or create the object as a temporary
object. After that, you can access the object with a set of application-specific function calls. Access to the
object is done through primitives and attributes. †

Primitives are used to access data within the data object. Data is stored into the object and retrieved from the
object using put_data and get_data function calls. The primitive specified with each of these calls deter-
mines the amount of data being accessed as well as where in the overall data set that data is located. 1

Attributes are used to access meta-data within the data object. Meta-data is a term used loosely to cover char-
acteristics of the data such as size and data type as well as auxiliary information such as the date or a comment.
Additionally, meta-data refers to presentation information such as scaling factor or normalization range.
Attributes are assigned to and retrieved from an object using set_attribute and get_attribute func-
tion calls. Functions also exist for comparing attributes of two objects, copying attributes from one object to
another, and printing attributes from an object.

the data itself is 
accessed via data
primitives.

examples :
size, data type

examples :
line, plane, region

DATA 
OBJECT

4 2 1 2 4 5 1
1 4 5 3 9 5 6
2 3 2 1 2 3 5
1 2 3 5 5 4 5
2 3 1 4 5 6 7

kobject  input_object;
kobject  output_object;

get_attribute(input_object, <ATTRIBUTE>, &rvalue);
set_attribute(output_object, <ATTRIBUTE>, value;

data = get_data(input_object, <PRIMITIVE>, data);
process_data(data);
put_data(output_object, <PRIMITIVE>, data);

input_object = open_input("./data/dataset.pnm");
output_object = open_output("result.viff");

meta-data is accessed
via attributes - attributes
include characteristics of the
data, auxiliary data, and the data
presentation.

Figure 4: Data is contained within an abstract data object. This object is available for programming via
the abstract data type kobject. The kobject attributes are accessed via ’get’ and ’set’ attribute routines and
the kobject data is accessed via ’get’ and ’put’ data routines. The pseudo-code illustrates in general terms
how a data processing routine utilizes Data Services. An input and output object are opened. Relevant
attributes are transferred from the input to the output. Data is then retrieved from the input, processed,
and finally, stored in the output.

1
The purpose of the kobject data type is to hide the data structure used by Data Services from the calling application. The calling application

should not change, manipulate or even see the contents of the underlying data structure; thus, the use of the kobject. This technique is used by several

different libraries in VisiQuest system for the same reason. As such, depending on context, the kobject in question may be hiding different data struc-

tures. For example, the kobject is used by the kutils library to hide the data structure used for data transports, and by the kcms library to hide the data

structure used for software objects. The xvisual and xvwidgets libraries do a similar thing with the xvobject data type. By convention, abstract data

types that are hidden from the calling application are called "kobject" if they are not related to visual display, "xvobject" if they are.

1-4



Introduction Program Services Volume II - Chapter 1

The primitives and attributes vary according to the data model that is used. Each data model has its own set of
primitives and attributes. The specific primitives and attributes for each data model will be covered in depth in
later chapters. For now, it is sufficient to understand that data objects contain data, which can be accessed via
primitives, and meta-data, which can be accessed via attributes.

D. Overview of the Application Data Services

The upper level of Data Services is organized into a series of application-specific services, each with its own
data model. Each data model covers the needs of either a specific domain or those of a number of similar
domains. Note that even though the data models of each application service differ, the underlying philosophy,
design and Application Data Services of every service is similar. This means that once you’ve learned one
application service, you can easily learn the other application services simply by understanding their data mod-
els.

There are currently three application Data Services: Polymorphic Services, Geometry Services, and Color Ser-
vices. Polymorphic Services is designed to cover the majority of application-domains; the polymorphic data
model can store anything from signals to images and from animations to volumes. Geometry Services is
designed to cover the specific needs of the geometry domain; the geometry model provides a range of geomet-
ric primitives such as triangles and spheres, in addition to a number of volumetric primitives. Color Services is
an extension to Polymorphic Services with very specific functionality relating to colormaps.

If you are working with data that is raster-based in nature, consisting of discrete points in space and time, then
you should use Polymorphic Data Services. Polymorphic Data Services is designed for storing up to five-
dimensional data, meaning it is ideally suited for applications that need to access signals, images, matrices,
volumes, or animations. Explicit spatial and temporal information can also be stored to position the data in
space and time. This flexibility allows elevation data, for example, to be stored with a time series of registered
satellite images.

If you are working with data which is vector-based in nature, consisting of geometric shapes in space, then you
should use geometry data services. Geometry Data Services is designed for storing geometric primitives such
as lines, triangles and spheres, meaning it is ideally suited for visualization and annotation applications.
Geometry Data Services can be used for storing data such as a road map or an isosurface.

Finally, if you need to store extra color information, regardless of the nature of the data, you should use Color
Data Services. Color Data Services is designed to work in conjunction with Polymorphic Data Services and
Geometry Data Services by storing auxiliary color information and by generating and manipulating specialized
colormaps for use with mapped data.

Please note that the data models of these services overlap wherever possible. This overlap allows processing
routines written to one service to operate transparently on data from the other services. For example, a col-
ormap generated with Color Services can be utilized directly by geometry stored with Geometry Services. The
following sections will provide a brief overview of the application services. Each service will be covered in
detail in later chapters.

1-5



Introduction Program Services Volume II - Chapter 1

D.1. Polymorphic Data Services

Polymorphic Data Services is the most powerful of all the application data services. The polymorphic data
model implemented by this service is designed to encompass many application domains. This model can be
used to represent data for application domains as diverse as image processing, volume processing, signal pro-
cessing, computer vision and numerical analysis. By capitalizing on the commonality of data interpretation
across these different domains, the polymorphic model facilitates interoperability of data manipulation rou-
tines. In other words, a processing routine written with Polymorphic Services will be able to process data
objects containing anything from signals to images and from volumes to animations.

This section of the manual provides a general explanation of the polymorphic data model, as well as some
examples of how data sets from different processing domains are stored in the model. You can find specific
details about this model in Chapter 2, Polymorphic Data Services of this volume.

D.1.1. Polymorphic Data Model

The polymorphic data model is based on the premise that data sets are usually acquired from real-world phe-
nomena or generated to model the same. As such, the polymorphic model consists of data that exists in three-
dimensional space and one-dimensional time. You can picture the model most easily as a time-series of vol-
umes in space. This time-series of volumes is represented by five different data segments. Each segment of
data has a specific meaning dictating how it should be interpreted. Specifically, these five segments are value,
location, time, mask and map. All of these segments are optional; a data object may contain any combination
of them and still conform to the polymorphic model.

The value segment is the primary data segment, consisting of data element vectors organized implicitly into a
time-series of volumes. The value data may be given explicit positioning in space and time with the location
and time segments. The remaining two segments are provided for convenience. The mask segment is used to
mark the validity of each point of value data. The map segment is provided as an extension to the value data;
the value data can be used to index into the map data.

1-6



Introduction Program Services Volume II - Chapter 1

1
0

VALUE Data

4NaN

21
14

3

TIME Data

1
1

1

volume of 
vector data

in space

volumes through time

value data
may index
into a map

element vector

0
1
2
3
4

MAP Data

places
each

volume
explicitly
in time

LOCATION Data

Z
X

Y

places each
vector from

single volume
explicitly
in space

T0 T1 T2 TN

value element
vector

mask element
vector

MASK Data marks data
validity

location data
vector

Figure 5: An overview of the Polymorphic Data Model. The polymorphic model consists of five data
segments, each segment serving a specific purpose. The value segment consists of data element vectors
organized into a time-series of volumes. The volume of value data can be given explicit locations in space
with the location segment; one location vector is provided for each value vector in a single volume. The
volumes of value data can be given explicit locations in time with the time segment; a time-stamp may be
given for each volume in time. A mask segment is available for marking value data validity. A map seg-
ment is also provided; the value data can be used to index into the map data.

D.1.2. Value Data

The value data segment is the primary storage segment in the polymorphic data model. Most of the data
manipulation routines are specifically geared toward processing the data stored in this segment. In an imaging
context, the individual pixel RGB values would be stored here. In a signal context, regularly sampled signal
amplitudes would be stored here.

1-7



Introduction Program Services Volume II - Chapter 1

The value segment consists of a time-series of volumes where each volume is composed of element vectors.
Each element vector is composed of a number of value points. The size of the value segment is determined by
the width, height, and depth of the volume, by the number of volumes through time, and by the number of
points in the element vector.

value element
vector each element has an implicit 

position in the value dataelements
42421143

width

h
ei

g
h

t

depth

time

(W,H,D,T,E) = 3

VALUE Data

Figure 6: Polymorphic Value Data. The value segment of the polymorphic model is best pictured as a
time-series of volumes. Each volume consists of element vectors oriented implicitly along the width,
height, depth, time, and elements dimensions. Each element vector can be indexed by a four-dimensional
designator while each specific value comprising the element vector can be indexed by a five-dimensional
designator.

D.1.3. Location Data

The value element vectors in the value segment are stored implicitly in a regularly gridded fashion. Explicit
location information can be added using the location segment. If the value data is irregularly sampled in
space, the explicit location of each sample can be stored here. Specifically, the information stored in this seg-
ment serves to explicitly position the value data in explicit space.

The location segment consists of a volume of location vectors. The width, height, and depth of the volume are
identical to the volume size of the value segment. Different location grid types are supported. A curvilinear
grid allows for explicit locations to be specified for each vector in the value data. A rectilinear grid allows for
explicit locations to be given for the width, height, and depth axes. A uniform grid allows for explicit location
corner markers to be specified. Note that the location data only explicitly positions a single volume; the posi-
tion then holds for each volume through time.

LOCATION Data

Entire Value Vector is positioned 
by a Location Vector (X,Y,Z)

value data
vector

This position holds for the value
element vector over all time

42421143

42421148

location data
vector

dimension

ZYX

width

h
ei

g
h

t

depth

VALUE Data

Figure 7: Polymorphic Location Data. The location segment of the polymorphic model is used to explic-
itly position the volume vectors in space. The location segment consists of a volume of location vectors;
the width, height, and depth of this volume is shared from the value segment. The location vector is of
size dimension.

1-8



Introduction Program Services Volume II - Chapter 1

D.1.4. Time Data

Explicit time information can be added using the time segment. If each volume of value data is irregularly
sampled in time, an explicit timestamp for each volume can be stored here. This is useful in animations where
each frame of the animation occurs at a different time.

The time segment consists of a linear array of timestamps. The number of timestamps matches the time size of
the value segment.

TIME Data

VALUE Data

T
1

T
N

T
2

T
3

Figure 8: Polymorphic Time Data. The time segment of the polymorphic model is used to explicitly
position the value volumes in time. The location segment consists of a linear array of time stamps; the
number of timestamps is equivalent to the time size of the value segment.

D.1.5. Mask Data

The mask segment is available for flagging invalid values in the value segment. If a processing routine pro-
duces values, such as NaN or Infinity, these values can be flagged in the mask data so that later routines can
avoid processing them. A mask point of zero is used to mark invalid value points, while a mask point of one is
used to mark valid value points.

The mask segment identically mirrors the value segment in size; there is one mask point for each value point.
Thus, a value in any giv en element vector at any giv en location or time can be marked as invalid.

mask points mark validity on
positionally identical value points

width

h
ei

g
h

t

depth

time

MASK Data
mask element vector

elements

14

1
1

1

21
3

0
1

NaN4

value element vector

Figure 9: Polymorphic Mask Data. The mask segment of the polymorphic model is used to mark data
validity of the value points. The mask segment is exactly the same size as the value segment.

1-9



Introduction Program Services Volume II - Chapter 1

D.1.6. Map Data

In cases where the value data contains redundant vectors that are duplicated in different positions within the
volume, the map segment may be used. The value vectors are replaced with values which index into the map;
the map then contains the actual data vectors. In this sense, the map is an extension of the value segment.

The map segment consists of a number of width-height planes. The values from the value segment map into
the map height indices. The map vector runs along the map width. A simple map would consist of just a sin-
gle width-height plane; a more complicated map would have a width-height plane for every depth, time, and
element plane in the value segment. This provides a great deal of mapping flexibility. For example, every
plane in a volume or every image in an animation could have a separate map.

value points index into the
map height

map width

m
ap

 h
ei

g
h

t

MAP Data

VALUE Data

value data
vector

42421143

0
1
2
3
4
5
6
7

Figure 10: Polymorphic Map Data. The map segment of the polymorphic model is used store a lookup-
table of map vectors. Values in the value segment are then used as indices into the map; the value points
map to indices along the map height. The map vector runs along the map width. A number of map width
x map height planes may exist; the map size may match the depth, time, and element size of the value seg-
ment by specifying the appropriate map depth, map time and map elements.

D.1.7. Polymorphic Example 1 : Storage of an RGB Image

This example illustrates the storage of a simple RGB image. This image utilizes only the value segment. The
image is 512 pixels wide by 480 pixels high. The pixels are stored along width and height in the value seg-
ment. The depth and time size of the value segment are each 1. The RGB values for each pixel are stored
down elements; thus the element size is 3. The other segments are not used.

1-10



Introduction Program Services Volume II - Chapter 1

width = 512

h
ei

g
h

t 
= 

48
0

depth = 1
time = 1

elements = 3

VALUE data
No LOCATION data
No TIME data
No MASK data
No MAP data

B
G

R

D.1.8. Polymorphic Example 2 : Storage of a Signal

This example illustrates the storage of a regularly-sampled time signal. The sampled points are stored in the
value segment along time, thus the time size is equal to the number of samples N. The width, height, depth,
and element sizes are all 1. The other segments are not used.

VALUE data
No LOCATION data
No TIME data
No MASK data
No MAP data

t0 tN-1

width = 1
height = 1
depth = 1
elements = 1

time = N 

values points represent sampled signal amplitudes
and are stored down the time dimension

D.1.9. Polymorphic Example 3 : Storage of an Animation with RGB Colormap

This example illustrates the storage of a mapped animation. The frames of animations are stored in six width x
height value planes through time. The depth and element size of the value segment are one. Each point in the
value segment maps into the map segment. The values index into the map height; there are 256 available RGB
vectors in this example. Because the map contains RGB values, the map width is three. This map segment
contains a single colormap for each frame of animation, thus the map time is 6. If the map time had been 1,
then the entire animation would have referred to a single colormap. The time segment is used to store times-
tamps for each frame of the animation. The mask and location segments are not utilized.

1-11



Introduction Program Services Volume II - Chapter 1

width = 250

h
ei

g
h

t 
= 

19
2 

depth = 1

elements = 1
VALUE data

No LOCATION data
No MASK datatime = 6

time = 6
TIME data 13

time 0

18 23 29 34 36

time 1 time 2 time 3 time 4 time 5

MAP data 8

map time 0

RGB

map width = 3 (RGB)
map height = 256
map depth = 1
map time = 6
map elements = 1

2

map time 1

RGB

6

map time 2

RGB

4

map time 3

RGB

9 0

map time 4 map time 5

RGB RGB

D.2. Geometry Data Services

Geometry Data Services is designed to meet the specific needs of geometry and volume storage. The geome-
try data model implemented by this service supports the storage and retrieval of a number of geometric primi-
tives, such as spheres, triangles and lines. Other non-geometric primitives such as octmeshes and textures are
also supported. This section of the manual provides a general explanation of the geometry data model, as well
as an example of how a geometry data set is stored. You can find specific details about this model in Chapter
3, Geometry Data Services of this volume.

D.2.1. Geometry Data Model

The geometry model is centered around a primitive list. This list is able to store any combination of geometric
primitives such as spheres or polylines. Each geometric primitive consists one or more different types of data,
such as location data and color data. The types of data required depend on the primitive; all primitives hav e
location and most have color while only some have radii or normals. Most data is explicitly provided,
although colors may be provided indirectly via a colormap. Quadmesh and octmesh primitives, which are not
illustrated here, are also available. These mesh primitives are overlaid on top of the polymorphic data model.
Thus, from the point of view of the polymorphic data model, a quadmesh will appear to be an image, and an
octmesh will appear to be a volume.

1-12



Introduction Program Services Volume II - Chapter 1

PRIMITIVE LIST

color index
-or- 

color vector

L
O

C
A

T
IO

N
  D

at
a

C
O

L
O

R
  D

at
a

R
A

D
IU

S
  D

at
a

radius value

R

L
O

C
A

T
IO

N
  D

at
a

C
O

L
O

R
  D

at
a

3
color index

-or- 
color vectorZ

Y

location data
vector

X

L
O

C
A

T
IO

N
  D

at
a

C
O

L
O

R
  D

at
a

N
O

R
M

A
L

  D
at

a

T
E

X
T

U
R

E
 C

O
O

R
D

  D
at

a

N3
N2

N1
5

normal data
vector

T2
T1

texture coordinate
vector

color index
-or- 

color vector

KGEOM_TRIANGLES_DISJOINT KGEOM_SPHERES KGEOM_POLYLINE_CONNECTED 

4

location data
vector

Z
Y

X

location data
vector

Z
Y

X

Figure 11: An overview of the Geometry Data Model. The geometry model consists primarily of a prim-
itive list. Geometric primitives are stored and retrieved from this list. Each geometric primitive is an
aggregate of different types of data. For example, a spheres primitive consists of location data, color data
and radius data. Please note that a single spheres primitive contains multiple spheres. Most data is
explicitly given for each primitive. Color data however may consist either of explicit color vectors or of
indices into a colormap. This figure does not illustrate any of the mesh primitives.

D.2.2. Geometry Example: Storage of Geometry Primitives

This example illustrates the storage of an isosurface and a bounding box. The isosurface is constructed from
many thousands of disjoint triangles. The triangles composing the isosurface are stored in the first primitive on
the list. Please note that the triangles in this one primitive could have been broken into separate primitives if
so desired. The bounding box surrounding the isosurface simply consists of 12 disjoint lines. These are stored
in the last primitive on the list.

ISOSURFACE

BOUNDING BOX

PRIMITIVE 0

PRIMITIVE 1

KGEOM_TRIANGLES_DISJOINT

KGEOM_POLYLINE_DISJOINT

1785 Triangles

12 Lines

ISOSURFACE

BOUNDING BOX

1-13



Introduction Program Services Volume II - Chapter 1

D.3. Color Data Services

Color Data Services provides very specific functionality related to color data. The color data model imple-
mented by this service provides a number of automatically generated standard colormaps as well as a number
of colormap operations that can be utilized with polymorphic or geometric colormap data. It also provides a
number of color interpretation attributes, which indicate how the color vectors in a data object should be inter-
preted. This section provides a general explanation of the colormap data model. You can find specific details
about this model in Chapter 4, Color Data Services of this volume.

1-14



Introduction Program Services Volume II - Chapter 1

D.3.1. Color Data Model

The color model provides both autocolor procedures and colormap operations. An autocolor procedure, when
invoked, creates a colormap according to the given autocolor scheme. A colormap operation, when invoked,
will take an action on the existing colormap. In both cases, the original colormap is saved. The color model
also provides a mechanism for storing the current colorspace model of the data and determining whether or not
the color vectors contain an alpha channel for storing opacity information.

AUTOCOLOR
PROCEDURES

Grey Scale
Equalize
Stretch
Standard Deviation
Rainbox
Disjoint Greycode
Greycode
3-3-2

RGB Cube
RGB Triangles
RGB Spiral
HLS Sprial
HSV Rings
HLS RIngs
RGB Distance
CIE DIagram
Density Slice

0
1
2
3
4

MAP Data

COLORMAP 
OPERATIONS 

Invert
Invert Original
Random
Reverse
Rotate Left
Rotate Right
Band Rotate Left
Band Rotate Right
Swap Red/Green
Swap Red/Blue
Swap Green/Blue

Red Filter
Green Filter
Blue Filter
Chain Left
Chain Right
Rotate Red Left
Rotate Red Right
Rotate Green Left
Rotate Green Right
Roate Blue Left
Rotate Blue Right

image or geometry
refering to map

0
1
2
3
4

ORIGINAL MAP Data

original map
is saved

Figure 12: An overview of the Color Data Model. The color model provides both autocolor procedures
and colormap operations. Autocolor procedures replace the existing map, while colormap operations
operate on the existing map. In both cases, the original colormap is saved. The map can be used by both
polymorphic and geometry data.

E. Data Access Presentation

Data Services has the ability to present the data stored within a data object in a variety of different ways. Data
can be cast, resized, normalized, or scaled on access. The API to this functionality is provided by a number of
data presentation attributes. By setting the appropriate attributes, Data Services returns the data to you in the
form that you find the most convenient. In order to understand how the attributes are used, it is necessary to
understand how the data object is divided into a presentation layer and a physical layer.

E.1. Presentation and Physical Layers

A data object can be thought of in terms of two layers: a presentation layer and a physical layer. Attributes at
the physical layer typically describe the actual physical characteristics of the data. Attributes at the presenta-
tion layer typically dictate how the data is to be accessed. For example, there is a physical data type attribute
which indicates what data type the data is actually stored in, and a presentation data type attribute which indi-
cates what data type the data should be presented in. If the presentation data type is set to integer, while the
physical data type is set to short, then the data will be cast from short to integer on retrieval and from integer to
short on storage.

This presentation capability is handled by the data pipeline. This pipeline consists of a number of stages,
where each stage is designed to handle a single component of the presentation. Data passes through this

1-15



Introduction Program Services Volume II - Chapter 1

pipeline during put_data and get_data calls. Only the pipeline stages that are necessary to present the
data as requested will be invoked for any giv en data access. Thus, the data presentation capability can be
bypassed if speed is important.

2
3
4
5
1
3
5
7
6
8
7
9
3
7
8
6
3
0
2
9
5
9
8
6
7
2
1
9
8
4
6
7
2
9

disk

PRESENTATION
LAYER

"how the data appears to you"

DATA TYPE = KBYTE
  WIDTH = 256

    HEIGHT = 269    

PHYSICAL
LAYER

"how the data is stored"

application code

DATA PIPELINE
normalizing

transposing

scaling

padding

casting

resizing

DATA TYPE = KINT
  WIDTH = 180  

    HEIGHT = 160      

 
p
u
t
_
d
a
t
a
 

 
g
e
t
_
d
a
t
a
 

"uses pipeline stages to
transform data as it is being 

accessed"

Figure 13: A data object can be thought of as having two layers, a presentation layer and a physical layer.
Attributes at the physical layer determine the storage characteristics of the data, such as its size and data
type. Attributes at the presentation layer determine the presentation characteristics of the data. On
access, data is passed through a data pipeline, which transforms the data according to the presentation
attributes. Each presentation attribute corresponds to a stage in the data pipeline; only the necessary
stages are invoked on data access.

E.2. Reference Objects

Data Services provides you with the ability to create reference objects. A reference object is simply a new
presentation layer on an existing data object. A reference object will share the same physical layer as the orig-
inal object, and as such, will share all the data and the corresponding physical attributes of the original data set.
However, the reference object will have its own presentation layer with its own copy of all the presentation
attributes. This provides you with the ability to have multiple views of the same data set in a single program.
It provides a mechanism by which a single data set can be accessed in two different contexts simultaneously.
This powerful concept has a number of uses. Reference objects are most commonly used to limit side effects
in data processing libraries, or to provide multiple views of a single data set in an interactive program.

1-16



Introduction Program Services Volume II - Chapter 1

kobject  original;
kobject  reference;

orignal = open("file");
.
.
.
reference = reference(original);

original reference

PHYSICAL
LAYER

5 4 3 2 1 3 4 5
1 2 5 6 6 9 8 2

DATA TYPE = KBYTE

PRESENTATION
LAYER

DATA TYPE = KINT

PRESENTATION
LAYER

DATA TYPE = KFLOAT

Figure 14: An illustration of Reference Objects. It is sometimes useful to have access to multiple ver-
sions of a given data set. By using reference objects, you can avoid having multiple copies of the data and
have instead a single physical copy of the data with multiple presentations. Each reference object has its
own presentation layer, but they all share a common physical layer. References are made from an original
object.

F. File Format Support

Data Services transparently supports numerous file formats. The details of file format support are hidden in
the Application Programming Interface (API) in Data Services. When you open up an input data object, the
file formats layer of Data Services will check the underlying file to determine if it is one of its supported file
formats. If it is, the data contained in the file will be made available through a number of data segments. You
can then access the data through the various application data models that overlay these segments. With this
abstraction, you can open a data object and process it without having to consider its underlying data format.

MAPVALUEMASKTIME LOCATION

PBM
FORMAT

Polymorphic Model Color Model

File Format Layer

Data Segments

Application Models

KDF
FORMAT

VIFF
FORMAT

Figure 15: Data Services transparently supports a number of data file formats. The file format layer
understands how to read and write several different formats, and is able to present the data to Data Ser-
vices in the form of different data segments. These data segments are then accessed through the different
application data models.

1-17



Introduction Program Services Volume II - Chapter 1

F.1. Supported Formats

Data Services has support for the following file formats.

Data Services Supported Formats
Name File Format Description
KDF VisiQuest Data Format
JPEG Independent JPEG Group
PNM Portable Anymap File Formats
PCX Paintbrush Format
Rast Sun Raster
Xbm X Bitmap
Xpm X Pixmap
Xwd X Window Dump
Avs AVS Image Format
Arf Another Raster Format
Ascii Ascii formatted data
Raw Raw data
Eps Encapsulated Postscript (output only)

F.2. Format Storage Issues

Please note that not all formats are capable of storing all segments. For example, the PBM format is only able
to store map and value data. Thus, if you create a data object with explicit location data and then save the
object using the PBM format, your location data will be lost. The VisiQuest KDF format is the only supported
format which is capable of generally supporting all data segments and attributes. Please also note, however,
that since most of the supported formats are designed for storing images, this is typically not a limitation if you
are working with image data. In these cases, the file format support provides you with the ability to seamlessly
store your data in formats usable by other software systems.

1-18



Introduction Program Services Volume II - Chapter 1

G. Large Data Sets

With other systems, the entire data set is read from disk and placed into memory for processing. This does not
work with large data sets, where the amount of data stored on disk exceeds the amount of memory available.
Data Services takes a better approach with its treatment of large data sets. If the amount of data in a file
exceeds the amount of memory available, then Data Services will read into memory only the data that you
specifically request. With Data Services, it is possible to write programs to process large data sets.

BIG DISK SMALL MEMORY

1000 Gigabytes
1 Megabyte

Figure 16: Data Services provides the ability to operate on large data sets. If the entire data set will not
fit into memory, then only the data that is requested on any giv en data access call will be read from the
disk. Routines written with data services that never request more data than can be stored in memory will
be able to process large sets.

H. Data Services Organization

Data Services consists primarily of two services: Application Data Services and Data Management Services.
Application Data Services encompasses Polymorphic Data Services, Geometry Data Services, and Color Data
Services. Application Data Services contains all the public, high-level functionality of Data Services and is
typically the only data service you need to be aware of. Data Management Services contains the segment and
attribute infrastructure of Data Services, along with the Data Presentation Pipeline. Its API, while publicly
available, is intended only for advanced users who wish to bypass the data models imposed by the Application
Data Services. Below these two services are the File Format libraries. These libraries, which contain no pub-
licly available functions, handles the reading and writing of the different supported data formats.

1-19



Introduction Program Services Volume II - Chapter 1

Application Application Application
Application

FILE FORMAT SUPPORT

FOUNDATION SERVICES

kformats

basic

advanced

APPLICATION SERVICES

POLYMORPHIC
DATA SERVICES

GEOMETRY
DATA SERVICES

COLOR
DATA SERVICES

kpds kcolor kgeom

DATA MANAGEMENT SERVICES
D

A
T

A
 S

E
R

V
IC

E
S

kjpeg

kdataman kdataccess

Figure 17: An illustration of the organization of Data Services. Data Services consists of multiple lay-
ered libraries. The uppermost layer contains the Application Data Services libraries (kappserv and
kgeom). The kappserv library contains Polymorphic Data Services and Color Data Services while the
kgeom library contains Geometry Data Services. Below these libraries is the Data Management Services
layer. This layer contains the segment and attribute infrastructure of Data Services as well as the Data
Presentation Pipeline. This layer is broken into two libraries, kdataman and kdataccess. The lowest
library in Data Services is the File Format library. This library contains readers and writers for all the
underlying data formats supported by Data Services. Support for the JPEG format is contained within its
own library. Most programmers should only use the application services.

1-20



Table of Contents

A. Overview of Program Services . . . . . . . . . . . . . . . . . . . . . .  1-1
B. Introduction to Data Services . . . . . . . . . . . . . . . . . . . . . . .  1-2
C. Application Programming Interface (API) . . . . . . . . . . . . . . . . . . .  1-4
D. Overview of the Application Data Services . . . . . . . . . . . . . . . . . .  1-5

D.1. Polymorphic Data Services . . . . . . . . . . . . . . . . . . . . . .  1-6
D.1.1. Polymorphic Data Model . . . . . . . . . . . . . . . . . . . . .  1-6
D.1.2. Value Data . . . . . . . . . . . . . . . . . . . . . . . . . .  1-7
D.1.3. Location Data . . . . . . . . . . . . . . . . . . . . . . . . .  1-8
D.1.4. Time Data . . . . . . . . . . . . . . . . . . . . . . . . . .  1-9
D.1.5. Mask Data . . . . . . . . . . . . . . . . . . . . . . . . . .  1-9
D.1.6. Map Data . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10
D.1.7. Polymorphic Example 1 : Storage of an RGB Image . . . . . . . . . . . . 1-10
D.1.8. Polymorphic Example 2 : Storage of a Signal . . . . . . . . . . . . . . . 1-11
D.1.9. Polymorphic Example 3 : Storage of an Animation with RGB Colormap . . . . . . 1-11

D.2. Geometry Data Services . . . . . . . . . . . . . . . . . . . . . . . 1-12
D.2.1. Geometry Data Model . . . . . . . . . . . . . . . . . . . . . . 1-12
D.2.2. Geometry Example: Storage of Geometry Primitives . . . . . . . . . . . . 1-13

D.3. Color Data Services . . . . . . . . . . . . . . . . . . . . . . . . 1-14
D.3.1. Color Data Model . . . . . . . . . . . . . . . . . . . . . . . 1-15

E. Data Access Presentation . . . . . . . . . . . . . . . . . . . . . . . . 1-15
E.1. Presentation and Physical Layers . . . . . . . . . . . . . . . . . . . . 1-15
E.2. Reference Objects . . . . . . . . . . . . . . . . . . . . . . . . . 1-16

F. File Format Support . . . . . . . . . . . . . . . . . . . . . . . . . . 1-17
F.1. Supported Formats . . . . . . . . . . . . . . . . . . . . . . . . . 1-18
F.2. Format Storage Issues . . . . . . . . . . . . . . . . . . . . . . . . 1-18

G. Large Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-19
H. Data Services Organization . . . . . . . . . . . . . . . . . . . . . . . 1-19

- i -



Introduction Program Services Volume II - Chapter 1

This page left intentionally blank

- ii -



Program Services Volume II

Chapter 2

Polymorphic Data Services

Copyright (c) AccuSoft Corporation, 2004. All rights reserved.





Chapter 2 - Polymorphic Data Services

A. Introduction

Chapter 1 introduced the concept of an Application-Specific Data Service, which is an Application Program-
ming Interface (API) that is customized for a specific data processing domain or a specific type of interaction
with data. Polymorphic Data Services is an Application- Specific Data Service that provides full access to and
full utilization of the Polymorphic Data Model.

The ability of programs to operate equally well on data from a broad range of application domains is referred
to as polymorphism. For example, if a program can operate on rasterized image data as well as sampled sig-
nals or matrices, then it is polymorphic. The Polymorphic Data Model is a framework for interpreting data
that is based on an idealization of the physical universe (please see below). Thus, this model provides a uni-
form interpretation of data independent of any specific application domain. The model can represent data
acquired or generated for applications as diverse as image processing, signal processing, computer vision,
numerical analysis, and volume visualization.

IMAGES VOLUMES SIGNALS MATRIXANIMATIONS

A
p

p
lic

at
io

n
D

o
m

ai
n

s

4 5 7 2
2 3 5 2
2 8 6 5

4
5
8

Polymorphic Data Model

VALUE LOCATION TIME MASK

0 1 1 1 1

0 1 1 1 1

0 0 0 0 0

MAP

Figure 1: The Polymorphic Data Model is designed to encompass a broad range of scientific application
domains. Images, signals, volumes, animations, and matrices can all be stored within this model.

Polymorphic Data Services provides an API that can be easily applied to a wide variety of application
domains. However, while the other application services present a model in a form that is more customized for
a specific-application domain (such as Geometry Visualization or Color Interpretation), this application service
is free of the limitations that may be imposed by such narrow domain-specific interpretations of data.

The remainder of this chapter consists of six sections: (1) an in-depth discussion of the Polymorphic Data
Model and (2) how to interact with it, (3) a discussion of the philosophy behind the Polymorphic Data Services
API, (4) definitions of the data primitives, (5) definitions of the data attributes and (6) descriptions of the Poly-
morphic Data Services functions.

2-1



Polymorphic Data Services Program Services Volume II - Chapter 2

B. The Polymorphic Data Model

The Polymorphic Data Model is a standardized interpretation that is applied to data that has been sampled
from physical phenomena, or that has been artificially generated to emulate physical phenomena. In this
model, data is represented as a number of sets, or vectors of information that exist in three-dimensional space
and one-dimensional time. Using this model, a vector of data can be thought of as consisting of one or more
values that exist at a specific location in space-time. Each data point can be considered to be valid or invalid.
This collection of properties implies that up to four storage components may be necessary in order to represent
the data. For convenience, these "components" are referred to as segments.

The four segments that are required to fully represent the model are: value , which serves as the primary source
of data in the model; mask , which provides validity information for each point in the value , segment; and
location and time , which together provide explicit world-coordinate placement in three-dimensional space and
one-dimensional time. In addition to these four segments, a fifth segment, map , is present in the model
because it provides exceptional storage compression for quantized data and is a useful representation when
visualizing data. These data segments are all interrelated, but are generally accessed independently. These
data segments are related together via a set of four indices; w, h, d, t . The aggregation of these data ( value ,
mask , map , location , and time ) allow implicit and explicit data to be dealt with in a convenient manner. Fig-
ure 2 illustrates each of the data segments while Figure 3 illustrates the association between the segments with
respect to the four indices.

1
0

VALUE Data

4NaN

21
14

3

TIME Data

1
1

1

volume of 
vector data

in space

volumes through time

value data
may index
into a map

element vector

0
1
2
3
4

MAP Data

places
each

volume
explicitly
in time

LOCATION Data

Z
X

Y

places each
vector from

single volume
explicitly
in space

T0 T1 T2 TN

value element
vector

mask element
vector

MASK Data marks data
validity

location data
vector

Figure 2: The Polymorphic Data Model consists of five data segments, with each segment serving a spe-
cific purpose. The value segment consists of data element vectors organized into a time-series of vol-
umes. The volume of value data can be given explicit locations in space with the location segment; one
location vector is provided for each value vector in a single volume. The volumes of value data can be
given explicit locations in time with the time segment; a time-stamp may be given for each volume in
time. A mask segment is available for marking value data validity.

2-2



Polymorphic Data Services Program Services Volume II - Chapter 2

Data is stored or retrieved via simple function calls in units that are referred to as primitives. Meta-data, or
information which describes the data and helps to provide an interpretation for it (such as its data type or a
color space model) are referred to as attributes and are similarly manipulated with simple function calls.

value
vector

E

value element
MW

MT

MD

MH

(w,h,d,t)

W, H, D, T

Value Data
Map Data

location
vector

N

location 
element

W*H*D

Location Data

time 
vector

T

Time Data

ME

(w,h,d)
(t)

Note that the map vector that is
chosen is a function of the value
element, V(w,h,d,t,e), and the 
D, T, and E indices

Note that the Mask Data is organized
the same as the Value Data

map
vector

(d,t,e)

Figure 3: The Polymorphic Data Model is comprised of five data components. The components are
related through their indices.

The values in a data vector are acquired from, or reside in, four-dimensional space-time. This is based on the
premise that data sets are usually acquired from, or modeled after the physical world. These data vectors exist
in one data segment of the model called the value data. Each value data vector is accessed via four indices,
hence it exists in four-dimensional space-time. Along with this value data, it is convenient to have associated
mask data. Within this mask data there exist a number of mask values, one for every data vector in the value
data. These mask values are used for marking data validity. When a data set’s org anization in location and
time is implicit, simplified representations are allowed. For example, an image having no explicitly defined
properties is stored as an array of pixels or pixel vectors. Implied relationships between the data sets as well as
the implied spatial and temporal locations of the data sets are inherently defined by their arrangement. When
these relationships or locations are explicit, a more complicated data representation is needed. This need is
satisfied by the location and time data.

2-3



Polymorphic Data Services Program Services Volume II - Chapter 2

Often, spatially different data vectors will contain identical data elements. If the number of distinct element
combinations is relatively small, it makes sense to keep them in a separate list. That way, rather than contain-
ing multiple copies of similar data, the value data could instead contain simply an index that maps into that
separate list. This way, the size of the value data can be reduced without reducing the information content.
This mapping functionality is provided through the map data. When taken together, the value , mask , map ,
location and time data form the complete Polymorphic Data Model. The programmer that uses Polymorphic
Data Services is given access to all of these defined data segments, and it is actually the decision of the pro-
grammer to determine or choose the details of the interpretation of the data beyond the stated relationships of
the data segments.

The explicit location data can also be accessed according to the values of w , h , and d , although this relation-
ship is not enforced. If the programmer chooses to interpret the location indices in this way, then for each
unique three-dimensional position in the value and mask data, there will exist an explicit location vector. Sim-
ilarly, the explicit time data can also be accessed according to the value of t . If this interpretation is used, then
for each unique one-dimensional time in the value and mask data, there can exist an explicit time value. Thus,
it is up to the programmer to provide an interpretation of the location and time data.

B.1. Value Data

The value data segment is the primary storage segment in the Polymorphic Data Model. Most of the data
manipulation routines are specifically designed to process the data stored in this segment. The value segment
is used to hold value vectors, which are sets of data of the same size and type, located explicitly or implicitly
in time and space. To simplify the following discussion, value vectors will be defined as having only one
dimension, though they can be N-dimensional. The value data can then be represented as value vectors in
four-dimensional space and time, with each value vector having e elements . In this context, three of the
dimensions define the spatial location, and one defines the time dimension of a value vector. Data values can
be then accessed within the value vector by indexing into the elements .

value element
vector each element has an implicit 

position in the value dataelements
42421143

width

h
ei

g
h

t

depth

time

(W,H,D,T,E) = 3

VALUE Data

Figure 4: Polymorphic Value Data. The value segment of the Polymorphic Data Model is best pictured
as a time-series of volumes. Each volume consists of element vectors oriented implicitly along width,
height, depth, time and elements. Each element can be indexed directly by a 5-tuple position.

When the location and time of data are implicitly defined, the ordering of the value vectors can express rela-
tive location and relative time (i.e., which value vector is next to which value vector). Therefore, implicit loca-
tion and time information is intrinsically contained in the value data. If any of these properties is not implied,
the explicit data to provide the information can be stored in the time and/or location data.

2-4



Polymorphic Data Services Program Services Volume II - Chapter 2

B.2. Mask

The mask data contain zero and non-zero values located explicitly or implicitly in time and space. Each mask
data value corresponds in four-dimensional time and space with a value vector (if the value data is present).
Like the value data, the mask data itself is five-dimensional; three for space, one for time, and one for the
mask data set, or mask vector. The programmer can access points, lines, planes and volumes of mask data.

mask points mark validity on
positionally identical value points

width

h
ei

g
h

t

depth

time

MASK Data
mask element vector

elements

14

1
1

1

21
3

0
1

NaN4

value element vector

Figure 5: Polymorphic Mask Data. The mask segment of the Polymorphic Data Model is used to mark
data validity of the value points. The mask segment is exactly the same size as the value segment.

The programmer can use the mask data as a convenient method for indicating the validity of value data. The
number of values in the mask data is equal to the number of values in the value data (if the value data is
present). Like all data segments of the data object, the mask data is optional.

All of the mask data and value data orientation, position and size attributes should be made the same for pro-
cessing the data object correctly. The dimensions of the mask and value data must be the same. It is not
enforced while actually processing the data object, i.e. it is possible to have different sizes for the value and
mask data, but before the data object is closed the dimensions should be the same. When accessing the mask
data and the value , it is important to have the orientation and position the same for each so the accessed data
vectors correspond.

B.3. Map

The value data may optionally represent references to data that are held in the map data. In this case, each
value in the value data acts as a pointer or index to a map vector located in the map data. The map data is
five-dimensional; map width( mw ) is the dimension on which the map vector is defined. The other four dimen-
sions are defined as the map height (mh) , map elements (me) , map depth (md) , and map time (mt) dimen-
sions. The map height corresponds with the number of discrete values between the maximum and minimum
values allowed in the map data. Note that this map height is a limited by the value data’s data storage type.
For example, byte storage in the value data corresponds with a maximum range of 256. Note also that it is not
possible to have maps associated with floating-point data at this time.

2-5



Polymorphic Data Services Program Services Volume II - Chapter 2

value points index into the
map height

map width

m
ap

 h
ei

g
h

t

MAP Data

VALUE Data

value data
vector

42421143

0
1
2
3
4
5
6
7

Figure 6: Polymorphic Map Data. The map segment of the Polymorphic Data Model is used store a
lookup table of map vectors. Values in the value segment are then used as indices into the map; the value
points map to indices along the map height. The map vector runs along the map width. A number of map
width x map height planes may exists; the map size may match the depth, time and element size of the
value segment by specifying the appropriate map depth, map time, and map elements.

A map vector is similar to a value vector in the value data except that it is accessed using a different set of
indices. The programmer can access vectors of map values using mh , me , md and mt to specify the vector.

Figure 1 shows how a point of value data and its position are used to index into the map data. The value of the
point is typically used as mh , but is not tied to mh , me is tied to e from the value or mask data or set to 1, ms is
set to 1 or tied to either the w , h , or d common index, and mt is tied to t common index or set to 1.

Location Segment Time SegmentValue Segment

vector
point
line
plane
volume
region

vector
point
line
plane

vector
point
line

w, h, d, t
w, h, d, t, e
h, d, t, e
d, t, e
t, e
w, h, d, t, e
and size

w, h, d
w, h, d, n
w, h, d
N.A. all elements

t
t
N.A. all elements

Map Segment

vector
point
line
plane
volume

mh, me, md, mt
mw, mh, me, md, mt
mh, me, md, mt
me, md, mt
md, mt

mh = value of point
         at (w,h,d,t,e)
mw = used for set of
          mapels
me = 1 or E
md = 1 or D
mt  = 1 or T

Figure 7: Another view of the Polymorphic Data Model and the interrelationships between each data
type. The diagram also lists the indices and primitives of each data segment.

B.4. Location

When the relative location implied by the accessing order of the value data is insufficient for defining location
information, explicit location data is required. When using explicit location data, each value vector in the
value data has a corresponding location vector in the location data. Each collection of value vectors has a
specific time, but a value vector’s explicit spatial location can NOT change with time. In other words, when

2-6



Polymorphic Data Services Program Services Volume II - Chapter 2

the time dimension is greater than one, the same location data will be applied for all time.

LOCATION Data

Entire Value Vector is positioned 
by a Location Vector (X,Y,Z)

value data
vector

This position holds for the value
element vector over all time

42421143

42421148

location data
vector

dimension

ZYX

width

h
ei

g
h

t

depth

VALUE Data

Figure 8: Polymorphic Location Data. The location segment of the Polymorphic Data Model is used to
explicitly position the volume vectors in space. The location segment consists of a volume of location
vectors; the width, height, and depth of this volume is shared from the value segment. The location vector
is of size dimension.

The location data is made up of location vectors, one per value vector. The number of location vectors is
equal to the product of width * height * depth. The size or dimensionality ( n ) of a location vector is assigned
using the size attribute of the location data. A specific point of a location data is found using w , h , d , n , while
a specific location vector is found using the indices w , h and d . For three-dimensional location data, n would
be 3. Thus a location vector is tied to a value vector via the w , h and d common indices illustrated at the cen-
ter of Figure 2.

B.5. Time

When the relative time implied by the accessing order of the value data is insufficient, explicit time data is
required. Such a circumstance can occur when the value data is irregularly sampled in time. The time vector
is indexed using t and is a single element of data specifying explicit time of a value vector located at w , h and
d .

TIME Data

VALUE Data

T
1

T
N

T
2

T
3

Figure 9: Polymorphic Time Data. The time segment of the Polymorphic Data Model is used to explic-
itly position the value volumes in time. The location segment consists of a linear array of time stamps;
the number of timestamps is equivalent to the time size of the value segment.

2-7



Polymorphic Data Services Program Services Volume II - Chapter 2

C. Interaction with the Polymorphic Data Model

Polymorphic Data Services provides a set of standard units of access for data that is held in a kobject .
Throughout this chapter, these units are referred to as primitives. The basic primitives that are available are:
points, lines, planes, and volumes. In addition to these, Polymorphic Data Services defines three other special-
ized primitives: vectors, regions, and all.

The properties of the data accessed via the function calls listed in Section G, Functions Provided By Polymor-
phic Data Services of this chapter are controlled by the attributes of the data presented in Section F, Attributes
Defined by the Polymorphic Data Model of this chapter. It may be tempting for the reader to associate terms
like signal and image to the terms line and planes. The reader may also desire examples in the context of sig-
nals and images. However, the generalized Data Object implemented as the kobject is not defined in terms
of images and signals, since these concepts are too specific. Sub-classed data models can be defined and built
from the more general PDS being presented here to create programming models for application-specific areas
as discussed in earlier chapters.

C.1. Presentation of the Data Object

Polymorphic Data Services has the ability to present the data stored within a data object in a variety of ways.
Data can be cast, resized, normalized, scaled, or re-oriented on access. The API to this functionality is pro-
vided by a number of attributes. By setting the appropriate attributes, Polymorphic Data Services will return
the data in the form that is most convenient to process. In order to understand how the presentation attributes
are used, it is necessary to understand how the data object is divided into a presentation layer and physical
layer.

2
3
4
5
1
3
5
7
6
8
7
9
3
7
8
6
3
0
2
9
5
9
8
6
7
2
1
9
8
4
6
7
2
9

disk

PRESENTATION
LAYER

"how the data appears to you"

DATA TYPE = KBYTE
  WIDTH = 256

    HEIGHT = 269    

PHYSICAL
LAYER

"how the data is stored"

application code

DATA PIPELINE
normalizing

transposing

scaling

padding

casting

resizing

DATA TYPE = KINT
  WIDTH = 180  

    HEIGHT = 160      

 
p
u
t
_
d
a
t
a
 

 
g
e
t
_
d
a
t
a
 

"uses pipeline stages to
transform data as it is being 

accessed"

Figure 10: A data object can be thought of as having two layers, a presentation layer and a physical
layer. Attributes at the physical layer determine the storage characteristics of the data, such as its size
and data type. Attributes at the presentation layer determine the presentation characteristics of the data.
On access, data is passed through a data pipeline which transforms the data according to the presentation
attributes. Each presentation attribute corresponds to a stage in the data pipeline; only the necessary
stages are invoked on data access.

2-8



Polymorphic Data Services Program Services Volume II - Chapter 2

A data object can be thought of in terms of two layers: a presentation layer and a physical layer. Attributes at
the physical layer typically describe the actual stored characteristics of the data. Attributes at the presentation
layer typically dictate how the data is to be accessed. For example, there is a physical data type attribute that
indicates in which data type the data is actually stored and a presentation data type attribute that indicates in
which data type the data should be presented. If the presentation data type is set to integer while the physical
data type is set to short, then the data will be cast from short to integer on retrieval and from integer to short on
storage.

The following sections outline the different mechanisms that are available for customizing data access.

C.2. Casting

The casting feature provided by Polymorphic Data Services is used to change the data type from the type
stored to another data type that is more suitable for processing. This process is nearly automatic. What is
involved is setting the data type of the segment that is being operated on to the desired processing data type
with a call to kpds_set_attribute() or kpds_set_attributes() . Afterward, all data retrieved with
kpds_get_data() will be returned to the user in the data type specified, regardless of the stored data type. If
operating on an output object, then setting the data type of the output object to something different from the
data type being stored informs Polymorphic Data Services that any data being written via a call to
kpds_put_data() will be given in the specified data type, but should be cast before being written out.

The casting feature is performed via the ANSI C cast operation. Since ANSI C does not dictate the behavior
of certain lossy cast operations such as signed information cast to an unsigned data type, the behavior of this
operation in certain circumstances can be different from platform to platform.

C.3. Scaling and Normalization

Scaling and normalization are two activities that alter the range of data when presented to the user. These
operations are often necessary when processing data where an algorithm operates better on a limited range of
data. After indicating that scaling or normalization is to occur, any call to kpds_get_data() will cause the
range of the data to be altered before it returned to the calling program. The attribute KPDS_VALUE_SCALING
(and similar attributes for the other polymorphic segments) determines what kind of range alteration is to
occur. The default value for this attribute is KNONE , which indicates that no scaling whatsoever is to occur.
Other legal values for this attribute are KSCALE and KNORMALIZE .

When the scaling attribute is set to KSCALE , then the range of the data is controlled by two attributes:
KPDS_VALUE_SCALE_FACTOR and KPDS_VALUE_SCALE_OFFSET . The range change is computed by apply-
ing the scale factor first to each data point, then adding the scale offset.

When the scaling attribute is set to KNORMALIZE , the range of the data is controlled by two other attributes:
KPDS_VALUE_NORM_MIN and KPDS_VALUE_NORM_MAX . These two attributes indicate the minimum and
maximum magnitude of the data. The effective scale factor and offset are computed by examining every point
in the primitive that was accessed via kpds_get_data() or kpds_put_data() . Thus, this is not a global
normalization over the entire set, but rather a local normalization over the extent of the data being accessed.

It is important to note the order in which all of these presentation changes are applied. The normalize and
scale operations occur after the cast operation if the cast operation is converting to a "higher order" data type,
i.e. a data type that has a higher range or precision. If casting from a higher order data type to a lower order
data type, i.e., one that has less range or precision, then the Normalization or scaling occurs before the cast

2-9



Polymorphic Data Services Program Services Volume II - Chapter 2

operation.

C.4. Padding and Interpolation

Padding and interpolation are operations that change the apparent size of the data set being accesssed. These
operations are useful in circumstances in which a particular size of data is required in order for an algorithm to
function properly, such as a Fast Fourier Transform or in instances in which two operands must be the same
size in order for the algorithm to behave in a predictable manner, such as an addition operation. Other
instances where interpolation is useful is in visual applications for zooming or panning windows. This behav-
ior is controlled by an attribute called KPDS_VALUE_INTERPOLATE . This attribute can be set to one of three
values: KNONE , KPAD , or KINTERPOLATE . The default value of this attribute is KPAD . When this attribute is
set to KNONE , it indicates that access of data outside of the physical bounds of the data set should not be per-
mitted. If a program attempts to access data that lies beyond the bounds of the data set in this mode, Polymor-
phic Data Services will generate an error.

If set to use the KPAD mode, Polymorphic Data Services will allow access of data outside of the physical
bounds of the data set. Any data that is retrieved that is not part of the data set will be set to a constant value
indicated by the KPDS_VALUE_PAD_VALUE attribute. This attribute takes two double arguments that repre-
sent the real and imaginary component. The imaginary component is only used if the data type being returned
is complex.

If the presentation size is set to be larger than the physical size, then any data that falls outside of the bounds of
the data set will similarly be set to this pad value. This mode also allows the presentation size to be set to a
value that is smaller than the physical size. In this mode, data outside of the presentation size is clipped, i.e., it
is not accessible.

If the KPDS_VALUE_INTERPOLATE attribute is set to KZERO_ORDER , then this indicates that the difference in
the presentation size and the physical size of the data segment should be rectified via a zero-order-hold (i.e.,
pixel replication) interpolation. Currently this is the only true interpolation mode available in Data Services.
If the presentation size is larger than the physical size, then an adjacent data point is replicated for each point
that does not exist in the interpolated data set. If the presentation size is smaller than the physical size, then the
data set is sub-sampled to produce a smaller version of the original data.

C.5. Conversion of Complex Data

Complex conversion can be thought of as an extension to casting. However, since the process of converting
data from a complex data type to a non-complex data type, or vice-versa, is uniquely lossy, this capability is
provided as a separate feature so that its behavior can be more easily controlled.

This control is provided via the KPDS_VALUE_COMPLEX_CONVERT attribute (and its sister attributes for each
of the other polymorphic segments). This attribute determines how to translate real valued data into complex
data. For example, if the KPDS_VALUE_COMPLEX_CONVERT attribute is set to AccuSoftEAL, the real valued
data will be interpreted as the real part of the complex pair. Similarly, a setting of KIMAGINARY instructs
Data Services to interpret the data as the imaginary component. In either case, the other component of the pair
is set to zero. When KPDS_VALUE_COMPLEX_CONVERT is set to KMAGNITUDE, then the magnitude of the
complex pair is set to the value of the data. Currently, this is performed by setting the phase to 0 radians.
Thus, KMAGNITUDE has the same effect as AccuSoftEAL. If the KPDS_VALUE_COMPLEX_CONVERT
attribute is set to KPHASE, then the real valued data is interpreted as radian data and the magnitude is set to

2-10



Polymorphic Data Services Program Services Volume II - Chapter 2

1.0.

When complex data is returned to the application from Data Services, it will be in the form of a kcomplex or
kdcomplex. There is a complete set of operator functions available for operating on these data types. These
functions are available in the kmath library. When operating on complex data, the application programmer is
encouraged to refer to the kmath library for information on complex operations.

C.6. Map Evaluation

The map segment is typically used as a means to reduce the overall space of a data set. It contains vectors of
information that are referenced by indices in the value segment. This representation is ideal for some applica-
tions such as color manipulation or visualization, but this representation is not usually convenient for data pro-
cessing operators. Polymorphic Data Services provides a means of mapping the indices in the value segment
through the map segment "on the fly" during data access with kpds_get_data() . The affect is that size of
the KELEMENTS axis of the value segment is multiplied by the size of the MAP_WIDTH axis of the map seg-
ment. The KELEMENTS axis will now contain true data instead of indices into the map data.

This behavior, by default, is disabled. To enable automatic mapping of data, the KPDS_MAP_ENABLE attribute
should be set to KMAPPED . If no map data exists, then this attribute is ignored.

This functionality, while powerful in the sense that it can drastically simplify writing a fully polymorphic oper-
ator, has a significant overhead. This is because mapping data is inherently a random access process, and Poly-
morphic Data Services must provide a fully general solution. If performance is critical to an application, it is
advisable to perform this operation manually, because typical applications can make simplifying assumptions
about the nature of the data and the maps that cannot be made by Polymorphic Data Services.

C.7. Mask Evaluation

Another operation provided by Polymorphic Data Services that simplifies writing polymorphic operators is
dynamic evaluation of mask information. By default, the mask segment is ignored, and the programmer must
write applicatons to interpret the mask manually. By setting the KPDS_MASKED_VALUE_PRESENTATION to
KUSE_SUBSTITUTE_VALUE , Polymorphic Data Services will replace every data point in the value segment
that has a corresponding 0 value in the mask segment to the value specified in the KPDS_MASK_SUBSTI-
TUTE_VALUE attribute. This functionality is useful when there is an "identity" value that can be used in place
of invalid data without adversely affecting the results of a computation. For example, in visualization, it might
be reasonable to replace all invalid data with a pixel of a particular color. Using this functionality, this capabil-
ity is trivial to implement.

Similar to map evaluation, this functionality adds overhead to the retrieval of data. However, since the mask
segment is accessed the same way that the value segment is accessed, the overhead is not as severe.

C.8. Axis Assignment

The polymorphic data model is organized around an axis system that defines three spatial dimensions: width ,
height , and depth . Polymorphic Data Services provides an attribute called KPDS_AXIS_ASSIGNMENT that
allows these three spatial axes to be reordered or reassigned. This means that a program can change the mean-
ing of the width axis to mean the height axis. This is useful for applications such as a matrix transposition
operation. By simply swapping the width with the height , a transpose operation is affected at the time of data

2-11



Polymorphic Data Services Program Services Volume II - Chapter 2

access. This operation does not alter data, but rather alters its interpretation and the way in which it is
accessed.

C.9. Data Ranging

When interpreting a dataset, it is often useful to understand what the possible range of the data is. For
instance, when displaying a dataset as a grayscale image, the minimum data value can be mapped to black and
the maximum value can be mapped to white. However, there typically is no way to determine what range a
data set occupies without examining each data point. Even then, the actual available data may not occupy the
entire expected range. The KPDS_DATA_RANGE and KPDS_DATA_FORMAT attributes provides a method for
storing the range.

The KPDS_DATA_RANGE attribute allows data objects to carry along a theoretical range. This attribute is not
automatically created for an object. If it does not exist, then there is no expected range.

The KPDS_DATA_FORMAT attribute provides a front end for KPDS_DATA_RANGE that defines many common
predefined data ranges. A program can check this attribute first to see if the KPDS_DATA_RANGE attribute
should be examined. Predefined data ranges are:

KNONE: raw data
KUBYTE: 0 - 255
KUSHORT: 0 - 65535
KFLOAT: 0 - 1
KUSERDEFINED: User-defined range; must have been set

using KPDS_DATA_RANGE.

The routine kapu_scale_data sets the KPDS_VALUE_SCALE_OFFSET and KPDS_VALUE_SCALE_FACTOR
attributes so that data accessed will be scaled to the indicated range. Scaling will be applied to either the value
or the map segment as appropriate.

The routine kapu_minmax finds the minimum and maximum values for a data primitive.

A usage example is shown below.

kpds_get_attribute(src_obj, KPDS_DATA_FORMAT, &data_format);

if (data_format != KFLOAT))
kapu_scale_data(src_obj, 0.0, 1.0);

kpds_set_attribute(dst_obj, KPDS_DATA_FORMAT, KFLOAT);

Please note that these attributes are newly implemented and not widely used through the existing VisiQuest
system.

C.10. Reference Objects

Polymorphic Data Services provides you with the ability to create reference objects. A reference object is
simply a new presentation layer on an existing data object. A reference object will share the same physical
layer as the original object, and thus will share all the data and the corresponding physical attributes of the
original data set. However the reference object will have its own presentation layer with its own copy of all the

2-12



Polymorphic Data Services Program Services Volume II - Chapter 2

presentation attributes. This provides you with the ability to have multiple views of the same data set in a sin-
gle program. It provides a mechanism by which a single data set can be accessed in two different contexts
simultaneously. This powerful concept has a number of uses. Reference Objects are most commonly used to
limit side effects in data processing libraries, or to provide multiple views of a single data set in an interactive
program. Figure 11 illustrates this concept.

kobject  original;
kobject  reference;

orignal = open("file");
.
.
.
reference = reference(original);

original reference

PHYSICAL
LAYER

5 4 3 2 1 3 4 5
1 2 5 6 6 9 8 2

DATA TYPE = KBYTE

PRESENTATION
LAYER

DATA TYPE = KINT

PRESENTATION
LAYER

DATA TYPE = KFLOAT

Figure 11: An illustration of Reference Objects. It is sometimes useful to have access to multiple ver-
sions of a given data set. By using reference objects, you can avoid having multiple copies of the data and
instead have a single physical copy of the data with multiple presentations. Each reference object has its
own presentation layer, but they all share a common physical layer. References are made from an original
object.

C.11. Auto Incrementing

The auto-increment feature provided by Data Services maintains corresponding positions in most of the seg-
ments in an abstract data object. For example, if a plane of data is obtained from the value segment of an
object then the position in the value data segment is incremented prior to the next read so that the next plane
will be obtained. At the same time, any segments with indices tied to the value segment’s indices are updated
accordingly. For example, the width, height, and depth indices in the location segment will be incremented so
that a read from the location segment will result in location data that corresponds to the value data already
obtained.

An increment and update operation is performed prior to any second consecutive read or write operation on a
segment. This ensures that data can be obtained from every segment necessary before an Increment operation
is performed.

State information is maintained internally for each segment to help to determine when it is appropriate to per-
form an increment operation. Whenever the position attributes ( KPDS_VALUE_POSITION ,
KPDS_MASK_POSITION , KPDS_MAP_POSITION , KPDS_LOCATION_POSITION , KPDS_TIME_POSITION)
are set using kpds_set_attribute or kpds_set_attributes the segment whose position is being set
will reset the state information. This means that after setting the position, the next read or write operation will
not perform a pre-increment.

2-13



Polymorphic Data Services Program Services Volume II - Chapter 2

D. The Application Programming Interface (API)

This section presents an overview of the Polymorphic Data Services Application Programming Interface
(API). It will demonstrate how an object is instantiated, how its attributes are manipulated, how the data is
processed and how the object is closed.

An application that manipulates data using the Polymorphic Data Services will be processing data that can be
used by other application services using the Polymorphic Data Model.

1. The first step is to instantiate the source and destination data objects. The source object is opened
using kpds_open_input_object() (for read only). As such, all changes done to the
source object do not effect the permanent transport. The destination object is opened with
kpds_open_output_object() (for write only). All changes to the destination object will
be stored in the permanent transport.

/*
* source object
*/

source_object = kpds_open_input_object("name");

/*
* destination object
*/

destination_object = kpds_open_output_object("name2");

2. This example processes only the value data, but the object may contain map, mask, time, or loca-
tion data and data/object attributes. So that data and attribute settings are not lost, the destination
object will be made into a copy of the source object. The kpds_copy_object() function
copies all object data and attributes from the source object to the destination object, so it is not
necessary to copy the data and attributes individually. By doing this, it is possible to avoid the
side effect of losing data and attributes that could be used by other routines later in some series of
processing steps.

/*
* copy object
*/

kpds_copy_object(source_object, destination_object);

3. The data will be processed using vector units, where a vector is defined to span the element
dimension of the value segment. The attribute KPDS_VALUE_VECTOR_INFO will tell us the num-
ber of data elements contained in each vector, as well as the number of vectors contained in the
entire data set,

kpds_get_attribute(source_object, KPDS_VALUE_VECTOR_INFO,
&vector_size, &num_vectors);

4. The next step is to set the values of the attributes of the Polymorphic Data Model and its primi-
tives so that the data is properly presented, managed and accessed. The following invocations of
kpds_set_attribute() will cause the source data to be converted to double, and when data
is put to the destination object via kpds_put_data(), it will be converted to float. As stated

2-14



Polymorphic Data Services Program Services Volume II - Chapter 2

above in step 1, since the source object was opened with kpds_open_input_object(), the
actual data in the permanent transport is not changed to double. It is converted to double by data
services when kpds_get_data() is called. However, the destination object was opened with
kpds_open_output_object(), so the data in the permanent transport will be stored as
float when the kpds_put_data() is called. By setting the KPDS_VALUE_DATA_TYPE on the
source object, we can write our process_data() so that it only needs to process double data
and does not have to handle multiple data types.

kpds_set_attribute(source_object, KPDS_VALUE_DATA_TYPE, KDOUBLE);
kpds_set_attribute(destination_object, KPDS_VALUE_DATA_TYPE, KFLOAT);

5. Now that the source and destination objects have been set up, instantiated and the attributes
appropriately manipulated, the data can be processed. The data object may contain one vector,
but most likely it will have a series of vectors as defined by the Polymorphic Data Model. There-
fore, the for loop will process each vector. It is important to note that a vector may not be very
large so a data primitive that obtains larger parts of the data may be desired. See Tables 5 for
more primitives that can be used to access the value data. A vector is a good size to use if it is
important to process large data sets.

The kpds_get_data() and kpds_put_data() functions are auto-incrementing. These
functions automatically increment the position attribute of the primitive being accessed so that the
next execution of kpds_get_data() and kpds_put_data() access data at the next con-
secutive position, i.e., the next vector. Therefore, it is not necessary to set the position for the two
objects using the KPDS_VALUE_POSITION attribute. The default for the position is 0 for all
dimensions (width, height, etc.) when the object is instantiated, so we do not have to set the initial
position either. See Tables 6 through 10 for attribute defaults.

double *vector = NULL;
for (i=0, i<num_vectors, i++) {

vector = (double *) kpds_get_data(reference_object, KPDS_VALUE_VECTOR,
(kaddr) vector);

/*
* your application function
*/

process_data(vector, vector_size);
kpds_put_data(destination_object, KPDS_VALUE_VECTOR, (kaddr) vector);

}

The vector variable is set to NULL initially so that the function kpds_get_data() will allo-
cate the memory for the initial vector of data. Every call after thatthe call to that vector will have
a valid address so that kpds_get_data() will just replace the data contained in vector with
the new vector and not allocate more memory. See Section G, "Functions Provided By Polymor-
phic Data Services" of this chapter for more information on the behavior of
kpds_get_data().

6. Finally, the data objects should be closed with the Polymorphic Data Services
kpds_close_object() function. This will store the destination object in the permanent
transport and free up memory used by Data Services for the objects.

kpds_close_object(destination_object);
kpds_close_object(source_object);

2-15



Polymorphic Data Services Program Services Volume II - Chapter 2

This next example will show the steps needed when creating a data part in a data object. It will instantiate an
object, create a data part, manipulate some attributes, generate data and then close the object.

1. The first step is to instantiate the destination data object as we did in step 1 of the above example
using kpds_open_output_object().

/*
* destination object
*/

destination_object = kpds_open_output_object("name");

2. To create the value data part, the routine kpds_create_value() is used. It will create value
data that obeys the Polymorphic Data Model.

/*
* create value data
*/

kpds_create_value(destination_object);

3. The kpds_create_value() does not set the size of the data or the data type, so they must
be set before any kpds_get_data() or kpds_get_data() calls are done. Setting the size
and data type must be done after any kpds_create_xxx() calls. To set the size and data
type, kpds_set_attributes() is used. In this case, the data type will be double and the
value data will be 200 x 200 x 1 x 1 x 3.

kpds_set_attributes(source_object,
KPDS_VALUE_DATA_TYPE, KDOUBLE,
KPDS_VALUE_SIZE, 200, 200, 1, 1, 3,
NULL);

Now we hav e specified the minimum amount of information about the value data, size and data
type, so that Polymorphic Data Services can manipulate it.

4. Now to generate the data, in this case the data primitive KPDS_VALUE_VECTOR is used. We
declare an array the size that matches the elements of the data, 3. The product of the width and
the height give us the number of element vectors to store in the value data, 200 x 200. Putting the
data into the destination object with the routine kpds_put_data().

double element_vector[3];
for (i=0, i < 200 * 200, i++) {

/*
* call a function to generate an element vector for each element of data.
*/

generate_data(element_vector);
kpds_put_data(destination_object, KPDS_VALUE_VECTOR,

(kaddr)element_vector);
}

5. Finally, the data object should be closed with a call to the kpds_close_object() function.
This will close the source object for reading, write out/save the destination object, and free up any
memory that was used by Data Services.

kpds_close_object(destination_object);

2-16



Polymorphic Data Services Program Services Volume II - Chapter 2

E. Polymorphic Primitives

Data is retrieved and stored in data objects via primitives. Primitives are data units that have been defined to
allow easy access of the associated data. Tw o functions have been provided for accessing primitives of data,
kpds_get_data() and kpds_put_data() . These functions take three arguments. The first argument is
the object associated with the data, the second argument is the primitive that is desired and the third argument
is a pointer to a data buffer that is to be written to or read from.

The kpds_get_data() and kpds_put_data() functions auto-increment the position indices, or
attributes, of the primitive being addressed. The indices column in the following tables lists the indices that
are used to set or get individual primitive positions. The order of the indices in the table specifies how the data
is organized in the Polymorphic Data Model.

The kpds get_data call will return a type kaddr. Note that the kaddr type is a generic pointer that is
intended to be cast to the proper built-in type or data structure. For example, the data returned should be cast
to the proper type as in Step 5 of Section D, "The Application Programming Interface," in this chapter.

E.1. Value Primitives

Table 1 lists the primitives defined by the polymorphic model for value data. These primitives are stored in
and retrieved from the value data using the kpds_put_data() and kpds_get_data() functions respec-
tively.

Table 1 - Value Primitives

Default
Primitive Dimension Indexing Description

KPDS_VALUE_POINT 0D w, h, d,

t, e

A pointer to a single value data point. The location
of the data point is specified by the
KPDS_VALUE_POSITION attribute. After ev ery
get/put pair, or consecutive get or put operations, the
position attribute KPDS_VALUE_POSITION will be
automatically incremented to the next point.

1D w, h, d, tKPDS_VALUE_VECTOR A pointer to a vector of value data. The location of
the vector is specified by the KPDS_VALUE_POSI-
TION attribute. The orientation of a vector can not be
changed. You will always get a vector on the e direc-
tion. After ev ery get/put pair, or consecutive get or
put operations, the position attribute
KPDS_VALUE_POSITION will be automatically incre-
mented to the next vector.

2-17



Polymorphic Data Services Program Services Volume II - Chapter 2

Table 1 - Value Primitives

Default
Primitive Dimension Indexing Description

1D h, d, t, eKPDS_VALUE_LINE A pointer to a line of value data. The orientation of a
line with respect to the Polymorphic Data Model can
be changed by using the KPDS_AXIS_ASSIGNMENT
attribute. The position index associated with the
width axis will be set to zero and the entire length
along that axis will be operated on when a get/put is
performed. The other attribute that can affect the
behavior of a get or put operation involving a line is
the KPDS_VALUE_OFFSET attribute. This attribute
forces an adjustment of the position in which a unit
of data begins. For example, an offset of (1, 0, 0, 0,
0) will cause the beginning of a line to begin at posi-
tion 1 rather than position zero, and the end of the
line to exceed the size along the width axis by one.
After every get/put pair, or consecutive get or put
operations, the position attribute
KPDS_VALUE_POSITION will be automatically incre-
mented to the next line.

2D d, t, eKPDS_VALUE_PLANE A pointer to a plane of value data. The orientation of
a value plane with respect to the Polymorphic Data
Model is along width and height. What is defined as
width and height can be changed using the
KPDS_AXIS_ASSIGNMENT attribute. The position
indices associated with the width and height axes will
be set to zero and the entire length along each axis
will be operated on when a get/put is performed. The
other attribute that can affect the behavior of a get or
put operation involving a plane is the
KPDS_VALUE_OFFSET attribute. This attribute forces
an adjustment of the position in which a unit of data
begins. For example, an offset of (1, 1, 0, 0, 0) will
cause the beginning of a plane to begin at position 1
on both the width and height axes rather than position
zero, and the end of the plane to exceed the size in
both directions direction by one. After every get/put
pair, or consecutive get or put operations, the position
attribute KPDS_VALUE_POSITION will be automati-
cally incremented to the next plane.

2-18



Polymorphic Data Services Program Services Volume II - Chapter 2

Table 1 - Value Primitives

Default
Primitive Dimension Indexing Description

3D t, eKPDS_VALUE_VOLUME A pointer to a volume of value data. The orientation
of a value volume with respect to the Polymorphic
Data Model can be changed by using the
KPDS_AXIS_ASSIGNMENT attribute. The position
indices associated with the width, height, and depth
axes will be set to zero and the entire length along
each axis will be operated on when a get/put is per-
formed. The other attribute that can affect the behav-
ior of a get or put operation involving a volume is the
KPDS_VALUE_OFFSET attribute. This attribute forces
an adjustment of the position in which a unit of data
begins. For example, an offset of (1, 1, 1, 0, 0) will
cause the beginning of a volume to begin at position
1 on the width, height, and depth axes rather than
position zero, and the end of the volume to exceed the
size in both directions direction by one. After every
get/put pair, or consecutive get or put operations, the
position attribute KPDS_VALUE_POSITION will be
automatically incremented to the next volume.

5D N.A.KPDS_VALUE_REGION A pointer to a region of value data. The upper left-
hand corner is specified by the KPDS_VALUE_POSI-
TION and KPDS_VALUE_OFFSET attribute. The size
is specified by the KPDS_VALUE_REGION_SIZE
attribute. After ev ery get/put pair, or consecutive get
or put operations, the position attribute
KPDS_VALUE_POSITION will be automatically incre-
mented to the next region.

5D N.A.KPDS_VALUE_ALL A pointer to all of the value data.

1D N.A.KPDS_VALUE_HISTOGRAM A pointer to the histogram for a region of the value
data. The upper left-hand corner is specified by the
KPDS_VALUE_HIST_POSITION attribute. The size is
specified by the KPDS_VALUE_HIST_REGION_SIZE
attribute. The number of bins is specified by the
KPDS_VALUE_HIST_NUMBINS attribute. The range
of the histogram is specified by the
KPDS_VALUE_HIST_RANGE attribute.

E.2. Mask Primitives

Table 2 lists the primitives defined by the Polymorphic Data Model for mask data. These primitives are stored
in and retrieved from the mask data using the kpds_put_data() and kpds_get_data() functions
respectively.

2-19



Polymorphic Data Services Program Services Volume II - Chapter 2

Table 2 - Mask Primitives

Primitive Dimension Default Indexing Description
0D w, h, d, t, eKPDS_MASK_POINT A pointer to a single mask point. The location of the

data point is specified by the KPDS_MASK_POSITION
attribute. After ev ery get/put pair, or consecutive get
or put operations, the position attribute
KPDS_MASK_POSITION will be automatically incre-
mented to the next point.

1D w, h, d, tKPDS_MASK_VECTOR A pointer to a vector of mask data. The location of
the vector is specified by the KPDS_MASK_POSITION
attribute. The orientation of a vector can not be
changed. You will always get a vector on the e direc-
tion. After ev ery get/put pair, or consecutive get or
put operations, the position attribute
KPDS_MASK_POSITION will be automatically incre-
mented to the next vector.

1D h, d, t, eKPDS_MASK_LINE A pointer to a line of mask data. The orientation of a
line with respect to the Polymorphic Data Model can
be changed by using the KPDS_AXIS_ASSIGNMENT
attribute. The position index associated with the
width axis will be set to zero and the entire length
along that axis will be operated on when a get/put is
performed. The other attribute that can affect the
behavior of a get or put operation involving a line is
the KPDS_MASK_OFFSET attribute. This attribute
forces an adjustment of the position in which a unit
of data begins. For example, an offset of (1, 0, 0, 0,
0) will cause the beginning of a line to begin at posi-
tion 1 rather than position zero, and the end of the
line to exceed the size along the width axis by one.
After every get/put pair, or consecutive get or put
operations, the position attribute KPDS_MASK_POSI-
TION will be automatically incremented to the next
line.

2-20



Polymorphic Data Services Program Services Volume II - Chapter 2

Table 2 - Mask Primitives

Primitive Dimension Default Indexing Description
2D d, t, eKPDS_MASK_PLANE A pointer to a plane of mask data. The orientation of

a mask plane with respect to the Polymorphic Data
Model is along width and height. What is defined as
width and height can be changed using the
KPDS_AXIS_ASSIGNMENT attribute. The position
indices associated with the width and height axes will
be set to zero and the entire length along each axis
will be operated on when a get/put is performed. The
other attribute that can affect the behavior of a get or
put operation involving a plane is the
KPDS_MASK_OFFSET attribute. This attribute forces
an adjustment of the position in which a unit of data
begins. For example, an offset of (1, 1, 0, 0, 0) will
cause the beginning of a plane to begin at position 1
on both the width and height axes rather than position
zero, and the end of the plane to exceed the size in
both directions direction by one. After every get/put
pair, or consecutive get or put operations, the position
attribute KPDS_MASK_POSITION will be automati-
cally incremented to the next plane.

3D t, eKPDS_MASK_VOLUME A pointer to a volume of mask data. The orientation
of a mask volume with respect to the Polymorphic
Data Model can be changed by using the
KPDS_AXIS_ASSIGNMENT attribute. The position
indices associated with the width, height, and depth
axes will be set to zero and the entire length along
each axis will be operated on when a get/put is per-
formed. The other attribute that can affect the behav-
ior of a get or put operation involving a volume is the
KPDS_MASK_OFFSET attribute. This attribute forces
an adjustment of the position in which a unit of data
begins. For example, an offset of (1, 1, 1, 0, 0) will
cause the beginning of a volume to begin at position
1 on the width, height, and depth axes rather than
position zero, and the end of the volume to exceed the
size in both directions direction by one. After every
get/put pair, or consecutive get or put operations, the
position attribute KPDS_MASK_POSITION will be
automatically incremented to the next volume.

2-21



Polymorphic Data Services Program Services Volume II - Chapter 2

Table 2 - Mask Primitives

Primitive Dimension Default Indexing Description
5D N.A.KPDS_MASK_REGION A pointer to a region of mask data. The upper left-

hand corner is specified by the KPDS_MASK_POSI-
TION and KPDS_MASK_OFFSET attribute. The size is
specified by the KPDS_MASK_REGION_SIZE
attribute. After ev ery get/put pair, or consecutive get
or put operations, the position attribute
KPDS_MASK_POSITION will be automatically incre-
mented to the next region.

5D N.A.KPDS_MASK_ALL A pointer to all of the mask data.

E.3. Map Primitives

Table 3 lists the primitives defined by the polymorphic model for map data. These primitives are stored in
and retrieved from the map data using the kpds_put_data() and kpds_get_data() functions respec-
tively.

Table 3 - Map Primitives

Default
Primitive Dimension Indexing Description

KPDS_MAP_POINT 0D mw, mh, me,

md, mt

A pointer to a single map point. The location of the
data point is specified by the KPDS_MAP_POSITION
attribute. After ev ery get/put pair, or consecutive get
or put operations, the position attribute
KPDS_MAP_POSITION will be automatically incre-
mented to the next point.

1D mh, me, md, mtKPDS_MAP_VECTOR A pointer to a vector of map data. The location of the
vector is specified by the KPDS_MAP_POSITION
attribute. The orientation of a vector can not be
changed. You will always get a vector on the mw
direction. After ev ery get/put pair, or consecutive get
or put operations, the position attribute
KPDS_MAP_POSITION will be automatically incre-
mented to the next vector.

2-22



Polymorphic Data Services Program Services Volume II - Chapter 2

Table 3 - Map Primitives

Default
Primitive Dimension Indexing Description

1D mh, me, md, mtKPDS_MAP_LINE A pointer to a line of map data. The orientation of a
line with respect to the Polymorphic Data Model can
be changed by using the KPDS_AXIS_ASSIGNMENT
attribute. The position index associated with the
width axis will be set to zero and the entire length
along that axis will be operated on when a get/put is
performed. The other attribute that can affect the
behavior of a get or put operation involving a line is
the KPDS_MAP_OFFSET attribute. This attribute
forces an adjustment of the position in which a unit
of data begins. For example, an offset of (1, 0, 0, 0,
0) will cause the beginning of a line to begin at posi-
tion 1 rather than position zero, and the end of the
line to exceed the size along the width axis by one.
After every get/put pair, or consecutive get or put
operations, the position attribute KPDS_MAP_POSI-
TION will be automatically incremented to the next
line.

2D me, md, mtKPDS_MAP_PLANE A pointer to a plane of map data. The orientation of a
map plane with respect to the Polymorphic Data
Model is along width and height. What is defined as
width and height can be changed using the
KPDS_AXIS_ASSIGNMENT attribute. The position
indices associated with the width and height axes will
be set to zero and the entire length along each axis
will be operated on when a get/put is performed. The
other attribute that can affect the behavior of a get or
put operation involving a plane is the
KPDS_MAP_OFFSET attribute. This attribute forces
an adjustment of the position in which a unit of data
begins. For example, an offset of (1, 1, 0, 0, 0) will
cause the beginning of a plane to begin at position 1
on both the width and height axes rather than position
zero, and the end of the plane to exceed the size in
both directions direction by one. After every get/put
pair, or consecutive get or put operations, the position
attribute KPDS_MAP_POSITION will be automatically
incremented to the next plane.

2-23



Polymorphic Data Services Program Services Volume II - Chapter 2

Table 3 - Map Primitives

Default
Primitive Dimension Indexing Description

3D md, mtKPDS_MAP_VOLUME A pointer to a volume of map data. The orientation
of a map volume with respect to the Polymorphic
Data Model can be changed by using the
KPDS_AXIS_ASSIGNMENT attribute. The position
indices associated with the width, height and depth
axes will be set to zero and the entire length along
each axis will be operated on when a get/put is per-
formed. The other attribute that can affect the behav-
ior of a get or put operation involving a volume is the
KPDS_MAP_OFFSET attribute. This attribute forces
an adjustment of the position in which a unit of data
begins. For example, an offset of (1, 1, 1, 0, 0) will
cause the beginning of a volume to begin at position
1 on the width, height, and depth axes rather than
position zero, and the end of the volume to exceed the
size in both directions direction by one. After every
get/put pair, or consecutive get or put operations, the
position attribute KPDS_MAP_POSITION will be auto-
matically incremented to the next volume.

5D N.A.KPDS_MAP_REGION A pointer to a region of data. The upper left-hand
corner is specified by the KPDS_MAP_POSITION and
KPDS_MAP_OFFSET attributes. The size is specified
by the KPDS_MAP_REGION_SIZE attribute. After
ev ery get/put pair, or consecutive get or put opera-
tions, the position attribute KPDS_MAP_POSITION
will be automatically incremented to the next region.

5D N.A.KPDS_MAP_ALL A pointer to all of the map data.

E.4. Location Primitives

The different segments of Polymorphic Data Services are organized into arrays of data of up to five dimen-
sions. Elements in these arrays are always accessible by their implicit position within the array. For many
applications, such as image processing, this implicit positioning is sufficient. It is enough to know that the ele-
ments are arranged into a regular grid, and the size of the grid describes the size of the dataset. However, for
some applications, such as satellite image registration, it is important to have a more explicit description of the
location of the data points. For example, an image may correspond to an explicit location on the Earth or the
pixels may be many meters or even many kilometers across.

The location segment is provided to address the need for storing such explicit location information. The loca-
tion segment can be used to store explicit location vectors which position the value segment in some space.
The size of the location segment will match the size of the value segment in the width, height and depth
dimension. If multiple volumes are present down the time dimension, each volume will be positioned at the
same explicit location through time.

2-24



Polymorphic Data Services Program Services Volume II - Chapter 2

Conceptually, the location segment will contain an explicit location vector for every element vector in the
value segment. In practice, storing a single vector for every position along width, height and depth may be
more then necessary, depending on the implicit arrangement of the data. Consider the case where all points in
the value segment are uniformly spaced across a regular grid. In this case, it would be sufficient to store only a
begin and end location to indicate the span of the value segment in explicit space. The explicit location of
ev ery vector in the value segment can then be derived based on its implicit position in the value segment. This
is the motivation for support of the different location grids in Data Services.

VALUE POINT VALUE AND 
EXPLICIT LOCATION POINT

KUNIFORM KRECTILINEAR KCURVILINEAR

Figure 12: Illustration of uniform, rectilinear and curvilinear location data for the two-dimensional case.
The dots represent value segment points, and the circles represent where explicit location information is
provided. With each successive type of grid, increasing amounts of explicit location data must be pro-
vided. Thus, the dependence on the implicit organization of the data is reduced. Uniform location data
consists only of two points, but is entirely dependent on the uniform spacing across the implicit dimen-
sions to have meaning. Rectilinear location data is similar to a uniform grid, except that the spacing along
each dimension may vary. Curvilinear location data consists of a specified point for every value segment
position, and has no dependence on the implicit organization of the data.

Support is provided for for three different types of location grids. These grid types are UNIFORM, RECTI-
LINEAR, and CURVILINEAR.

A uniform grid consists of two explicit location points which signify a begin and end point which
defines a span in explicit space. The explicit position of each point is then derived from the implicit
position within the value segment.

A rectilinear grid is similar to a uniform grid, except that the spacing along each dimension may
vary. To specify a rectilinear grid, it is necessary to specify the explicit spacing along the width,
height, and depth axis. Note that the time segment is actually just a rectilinear specification down
the time dimension. The explicit position of each point is formed from the explicit coordinates
provided along each implicit axis.

A curvilinear grid has no dependence on the implicit organization of the data. A curvilinear grid
requires that a unique explicit position be provided for every implicit position. This has been the
standard interface for specifying location data for data services in previous versions. Because of its
generality, a curvilinear grid is created by default if no grid is explicitly specified.

2-25



Polymorphic Data Services Program Services Volume II - Chapter 2

Note that since uniform and rectilinear grids are tied to the implicit width-height-depth organization of the
data, they are limited to three-space when deriving explicit location information. For convenience, this three-
space is said to exist over (x,y,z), with x corresponding to the width dimension, y to the height dimension and z
to the depth dimension. The dimension can be defined to be smaller than three, if appropriate for a specific
application. For example, a satellite image may just have explicit uniform location information defined over
only x and y. If explicit positioning for more than three dimensions, a curvilinear grid must be used.

It is not possible to mix the different types of grids over different implicit dimensions. For example, it is not
possible to specify a uniform width and a rectilinear height. When a grid is specified, it will apply to the entire
location segment.

E.4.1. Creating Location

The type of location grid must be specified prior to the creation of the location segment using the
KPDS_LOCATION_GRID attribute. This attribute can have the value of KUNIFORM , AccuSoftECTILINEAR ,
or KCURVILINEAR . This attribute can also have the value of KNONE , when no location segment is present and
no grid type has been specified.

The following example illustrates the creation of a uniform location segment :

kpds_set_attribute(object, KPDS_LOCATION_GRID, KUNIFORM);
kpds_create_location(object);

If no grid type is set and the location segment is created, it will be created as curvilinear by default. Once cre-
ated, the grid type cannot be changed. The KPDS_LOCATION_GRID attribute should not be set at any time
after the location segment has been created. If a different grid type is desired, the location segment should be
first destroyed with a call to kpds_destroy_location and then recreated with the new grid type.

E.4.2. Location Primitives

Table 4 lists the primitives defined by the Polymorphic Data Model for location data. These primitives are
stored in and retrieved from the location data using the kpds_put_data() and kpds_get_data() func-
tions, respectively. There are different primitives provided for accessing the data from each type of location
grid.

Table 4a - Curvilinear Location Primitives

Default
Primitive Dim’n Indexing Description

0D w, h, d, nKPDS_LOCATION_POINT A pointer to a single location data point. The loca-
tion of the data point is specified by the KPDS_LOCA-
TION_POSITION attribute. After ev ery get/put pair,
or consecutive get or put operations, the position
attribute KPDS_LOCATION_POSITION will be auto-
matically incremented to the next point.

2-26



Polymorphic Data Services Program Services Volume II - Chapter 2

Table 4a - Curvilinear Location Primitives

Default
Primitive Dim’n Indexing Description

1D w, h, dKPDS_LOCATION_VECTOR A pointer to a vector of location data. The location
of the vector is specified by the KPDS_LOCA-
TION_POSITION attribute. The orientation of a vec-
tor cannot be changed. You will always get a vector
on the n direction. After ev ery get/put pair or consec-
utive get or put operations, the position attribute
KPDS_LOCATION_POSITION will be automatically
incremented to the next vector.

1D h, d, nKPDS_LOCATION_LINE A pointer to a line of location data. The orientation
of a line with respect to the Polymorphic Data Model
is along width. What is defined as width can be
changed using the KPDS_AXIS_ASSIGNMENT
attribute. The position index associated with the
width axis will be set to zero and the entire length
along that axis will be operated on when a get/put is
performed.

The other attribute that can affect the behavior of a
get or put operation involving a line is the
KPDS_LOCATION_OFFSET attribute. This attribute
forces an adjustment of the position in which a unit
of data begins. For example, an offset of (1, 0, 0, 0)
will cause the beginning of a line to begin at position
1 rather than position zero, and the end of the line to
exceed the size in the along the width axis by one.
After every get/put pair, or consecutive get or put
operations, the position attribute KPDS_LOCA-
TION_POSITION will be automatically incremented
to the next line.

2-27



Polymorphic Data Services Program Services Volume II - Chapter 2

Table 4a - Curvilinear Location Primitives

Default
Primitive Dim’n Indexing Description

2D d, nKPDS_LOCATION_PLANE A pointer to a plane of location data. The orientation
of a location plane with respect to the Polymorphic
Data Model is along width and height. What is
defined as width and height can be changed using the
KPDS_AXIS_ASSIGNMENT attribute. The position
indices associated with the width and height axes will
be set to zero and the entire length along each axis
will be operated on when a get/put is performed. The
other attribute that can affect the behavior of a get or
put operation involving a plane is the KPDS_LOCA-
TION_OFFSET attribute. This attribute forces an
adjustment of the position in which a unit of data
begins. For example, an offset of (1, 1, 0, 0) will
cause the beginning of a plane to begin at position 1
on both the width and height axes rather than position
zero, and the end of the plane to exceed the size in
both directions direction by one. After every get/put
pair, or consecutive get or put operations, the position
attribute KPDS_LOCATION_POSITION will be auto-
matically incremented to the next plane.

3D nKPDS_LOCATION_VOLUME A pointer to a volume of location data. The orienta-
tion of a location volume with respect to the Poly-
morphic Data Model can be changed by using the
KPDS_AXIS_ASSIGNMENT attribute. The position
indices associated with the width, height, and depth
axes will be set to zero and the entire length along
each axis will be operated on when a get/put is per-
formed. The other attribute that can affect the behav-
ior of a get or put operation involving a volume is the
KPDS_LOCATION_OFFSET attribute. This attribute
forces an adjustment of the position in which a unit
of data begins. For example, an offset of (1, 1, 1, 0)
will cause the beginning of a volume to begin at posi-
tion 1 on the width, height, and depth axes rather than
position zero, and the end of the volume to exceed the
size in both directions direction by one. After every
get/put pair, or consecutive get or put operations, the
position attribute KPDS_LOCATION_POSITION will
be automatically incremented to the next volume.

2-28



Polymorphic Data Services Program Services Volume II - Chapter 2

Table 4a - Curvilinear Location Primitives

Default
Primitive Dim’n Indexing Description

4D N.A.KPDS_LOCATION_REGION A pointer to a region of location data. The upper left-
hand corner is specified by the KPDS_LOCA-
TION_POSITION and KPDS_LOCATION_OFFSET

attributes. The size is specified by the KPDS_LOCA-
TION_REGION_SIZE attribute. After ev ery get/put
pair, or consecutive get or put operations, the position
attribute KPDS_LOCATION_POSITION will be auto-
matically incremented to the next region.

4D N.A.KPDS_LOCATION_ALL A pointer to all of the location data.

Rectilinear location data has primitives which allow the specification of an explicit array of data down each
dimension. These primitives are specified over the location width, height and depth dimensions. In essence,
these primitives are analogous to the primitives for the time segment. The regular location position, offset and
size attributes are used with rectilinear location data, with the width component affecting the width primitives,
the height component affecting the height primitives and the depth component affecting the depth primitives.
Data for each dimension must be stored or retrieved with a separate put_data or get_data call and the corre-
sponding primitive for that dimension.

Table 4b - Rectilinear Location Primitives

Default
Primitive Dim’n Indexing Description

0D w, h, d, nKPDS_LOCATION_WIDTH_POINT

KPDS_LOCATION_HEIGHT_POINT

KPDS_LOCATION_DEPTH_POINT

A pointer to a single rectilinear location data point.
The location of the data point is specified by the cor-
responding component of the KPDS_LOCA-
TION_POSITION attribute. The dimension compo-
nent of the position attribute is not relevant for recti-
linear location data.

1D N.A.KPDS_LOCATION_WIDTH_REGION

KPDS_LOCATION_HEIGHT_REGION

KPDS_LOCATION_DEPTH_REGION

A pointer to a region of rectilinear location data. The
upper left-hand corner is specified by the
KPDS_LOCATION_POSITION and KPDS_LOCA-

TION_OFFSET attributes. The size is specified by the
KPDS_LOCATION_REGION_SIZE attribute.

1D N.A.KPDS_LOCATION_WIDTH_ALL

KPDS_LOCATION_HEIGHT_ALL

KPDS_LOCATION_DEPTH_ALL

A pointer to all of the rectilinear location data along a
certain dimension.

Uniform location data actually does not have any primitives associated with it. The explicit begin and end
points are specified via the attributes KPDS_LOCATION_BEGIN and KPDS_LOCATION_END . These attributes
are only available if uniform location data is present. A uniform location segment must be created before these
attributes can be set.

2-29



Polymorphic Data Services Program Services Volume II - Chapter 2

Uniform Location Attributes

Attribute Legal Definition
and Default Values

KPDS_LOCATION_BEGIN

double

w 0.0

h 0.0

d 0.0

This attribute represents an explicit begin marker point for

the Polymorphic Data Model. This begin point maps to the

implicit origin of the data model. This attribute can only be

set if uniform location data has been explicitly created with

a kpds_create_location call. See also: KPDS_LOCA-

TION_END.

Persistence: permanent

KPDS_LOCATION_END

double

w 0.0

h 0.0

d 0.0

This attribute represents an explicit end marker point for

the Polymorphic Data Model. This end point maps to the

implicit extent of the data model. This attribute can only be

set if uniform location data has been explicitly created with

a kpds_create_location call. See also: KPDS_LOCA-

TION_END .

Persistence: permanent

E.4.3. Presentation of Location Data

In order to minimize the complexity of processing incoming location data, functionality has been provided
which can present any type of location grid as curvilinear location data. Unlike any other presentation capabil-
ities in Data Services, it is not necessary to set any presentation attributes to invoke this capability. It is
embedded into the primitive access routines and will automatically be invoked on a kpds_get_datacall.

To process location data, a program minimally can just get curvilinear location primitives. If the location seg-
ment actually consists of uniform or rectilinear location data, it will be presented back through the curvilinear
primitives as if the data actually was stored as curvilinear. If only uniform or rectilinear location data is
present, the contents of that vector will automatically be constructed and returned via the kpds_get_data
call. So, for example, it is always possible to get any giv en curvilinear location vector using the KPDS_LOCA-
TION_VECTOR primitive, reg ardless of the grid type of the data being stored.

In general, any more explicit form of location data can be retrieved when a less explicit form is present. Thus,
this presentation capability works for rectilinear location data as well. Uniform data can be retrieved, if
desired, as rectilinear location data. Note that it is never possible to retrieve a less explicit form of location
data when a more explicit form is present. For example, you could never retrieve uniform location primitives
from curvilinear location data. Furthermore, this presentation functionality also only works for data retrieval,
not for data storage. Clearly, it is not possible to store a set of explicit curvilinear location points as uniform
data because it may not actually be uniformly spaced.

2-30



Polymorphic Data Services Program Services Volume II - Chapter 2

E.5. Time Primitives

Table 5 lists the primitives defined by the polymorphic model for time data. These primitives are stored in
and retrieved from the time data using the kpds_put_data() and kpds_get_data() functions respec-
tively.

Table 5 - Time Primitives

Primitive Dimension Default Indexing Description
0D tKPDS_TIME_POINT A pointer to a single time point. The location of the

data point is specified by the KPDS_TIME_POSITION
attribute. After ev ery get/put pair, or consecutive get
or put operations, the position attribute
KPDS_TIME_POSITION will be automatically incre-
mented to the next point.

1D N.A.KPDS_TIME_REGION A pointer to a region of time data. The starting point
is specified by the KPDS_TIME_POSITION and
KPDS_TIME_OFFSET attributes. The size is specified
by the KPDS_TIME_REGION_SIZE attribute. After
ev ery get/put pair, or consecutive get or put opera-
tions, the position attribute KPDS_TIME_POSITION
will be automatically incremented to the next region.

1D N.A.KPDS_TIME_ALL A pointer to all of the time data.

F. Attributes Defined by the Polymorphic Data Model

Table 6 lists the attributes defined by the Polymorphic Data Model and Table 7 describes these attributes in
detail. Each attribute is associated with a particular component of the data object, such as the mask. The
attributes are stored and retrieved using kpds_set_attribute() and kpds_get_attribute()
respectively.

kpds_set_attribute(obj2, KPDS_VALUE_SIZE, width, height, depth, time, elements);
kpds_get_attribute(obj1, KPDS_VALUE_SIZE, &width, &height, &depth, &time, &elements);

The kpds_get_attribute() and kpds_set_attribute() functions have variable argument lists as
specified in the data model attribute table that follows in Table 6.

The last three functions listed — kpds_get_attributes(), kpds_set_attributes(), and
kpds_match_attributes() — are multiple attribute functions, and the argument lists for these must be
NULL terminated. See the corresponding function descriptions in Section G for more information on usage.

Each column in the tables that follow are defined as follows:

Attribute and Default — This is the attribute name and the data type of the attribute’s value(s) and suggested
variable names to use for multi-variable attributes, like KPDS_VALUE_SIZE. The attribute order is given, and
the default value for the variable(s). If the default is read only then you cannot set or change the corresponding
attribute, but only read it. If the default is unknown, then you can set an input object to the stored value(s), or
you must set the attribute for objects created via kpds_create_object or output objects.

2-31



Polymorphic Data Services Program Services Volume II - Chapter 2

Legal Values — Where appropriate, a list of preprocessor symbols or a numerical range is given that indicates
the legal range of values for the attribute.

Description — A description of the attribute and how it should be used.

Persistence — This field indicates whether the attributes are stored when written to a file, or transient (not
stored) with the data. If the attribute is stored, then when the transport is re-opened, the value of the attribute
will be restored. If the attribute is transient, then it is only valid during the current processing of the data, and
when the object is opened, it is set to the default value.

2-32



Polymorphic Data Services Program Services Volume II - Chapter 2

F.1. Global Attributes

Global Attributes

Attribute Legal Definition
and Default Values

KPDS_ARCHITECTURE

int

architecture

KMACH_UNKNOWN

KMACH_LITTLE_ENDIAN_IEEE

KMACH_LITTLE_ENDIAN_VAX

KMACH_LITTLE_ENDIAN_64

KMACH_BIG_ENDIAN_IEEE

KMACH_BIG_ENDIAN_CRAY

This attribute is an integer value which encodes a descrip-

tion of the floating point and integer representation for the

machine which what used to generate the object. A set of

C defines are typically used when operating on the value of

this attribute in a program. Typically, this attribute is set

based on an examination of the input object, and is set to

the local architecture on an output object. The encoding

scheme and specific values for these defines can be found

in $BUILD/include/machine/kmachine.h .

Persistence: stored

KPDS_AXIS_ASSIGNMENT

int

w KWIDTH

h KHEIGHT

d KDEPTH

KWIDTH

KHEIGHT

KDEPTH

This attribute allows the width, height, and depth axes to be

reassigned to one-another to simplify visualization or pro-

cessing. The effect of reassigning axes is similar to trans-

posing a matrix.

Persistence: stored

KPDS_COMMENT

char *

comment NULL

This attribute is a NULL terminated string used to document

the object. This attribute is used by a user or programmer

to describe the origin or nature of the data set. When this

attribute is set, it overwrites anything previously held in this

attribute. Therefore, it is up to the programmer to first get

the comment attribute, append new information to it, and

then set the entire comment attribute, if prior comment

information is to be propagated. To clear the comment

attribute, pass in NULL

when setting the attribute. This attribute is copied with the

kpds_copy_object() and kpds_copy_object_attr()

calls.

Persistence: stored

2-33



Polymorphic Data Services Program Services Volume II - Chapter 2

Global Attributes

Attribute Legal Definition
and Default Values

KPDS_COUPLING

int

coupling See Note 1.

KCOUPLED

KDEMAND

KUNCOUPLED

When this attribute is set to KCOUPLED , changes to any

attribute that affects the physical representation of the data

(for example, data type, size, etc.) will be propagated to the

physical layer immediately. Otherwise, the presentation

layer is the only layer that is changed, --the physical layer

remains unchanged. The difference between KUNCOUPLED

and KDEMAND is that KDEMAND allows the

kpds_sync_object() function call to force an update of

the presentation and physical layers. When this attribute is

set to KUNCOUPLED , the calling the kpds_sync_object()

will not do anything. See kpds_sync_object() for more

information.

Persistence: transient

KPDS_DATA_FORMAT

int

data_format

KUBYTE

KUSHORT

KFLOAT

KUSERDEFINED

This attribute defines the format of data to be expected in

terms of predefined theoretical ranges. The actual range of

data may be within this range or outside of the range.

Persistence: stored

KPDS_DATA_RANGE

double

min

max

This attribute defines the theoretical range of data to be

expected. The actual range of data may be within this

range or outside of the range.

Persistence: stored

KPDS_DATE

char *

date current date

This attribute is a NULL terminated string used to record the

date of the creation of the data object. This attribute is

NOT copied by kpds_copy_attributes() . To assign

the current date as defined by computer system, pass in

NULL when setting the attribute. The date will be stored in

the default format of the UNIX date command ("day

month date HH:MM:SS timezone year", e.g. "Wed Mar 10

00:07:23 MST 1994")

Persistence: stored

2-34



Polymorphic Data Services Program Services Volume II - Chapter 2

Global Attributes

Attribute Legal Definition
and Default Values

KPDS_FORMAT

char *

format viff

kdf

viff

jpeg

pnm

pcx

xpm

xbm

xwd

eps

rast

avs

ascii

raw

This attribute specifies the file format that will be used with

the object. If the object is an input object, then this

attribute is automatically initialized to the file format that

the object is stored in. If the object is an output object, then

this attribute defaults to "viff", indicating that the output

data file will be a viff. On output objects, this attribute can

be set to any of the legal values. The result is that when the

object is closed, it will be written out in the format speci-

fied.

Persistence: stored

KPDS_FORMAT_DESCRIPTION

char *

description viff

N/A This (read-only) attribute retrieves the file format descrip-

tion that will describes the format associated with an object.

Persistence: transient

KPDS_HISTORY

char *

history NULL

This attribute is a string that describes the operations that

have been performed on the original data set that result in

the current data set. Typically, programs names and their

command line arguments are listed here to reproduce this

data set. This attribute will only be set if the KHOROS_HIS-

TORY environment variable is set.

Persistence: stored

KPDS_HISTORY_MODE

int

hmode

KAPPEND_HISTORY

KREPLACE_HISTORY

This attribute determines how the KPDS_HISTORY attribute

is interpreted when being set. If the history mode is set to

KAPPEND_HISTORY , then the string begin set will be

appended to the exisiting history string. If the history mode

is set to KREPLACE_HISTORY , then the string being set will

replace the existing history string.

Persistence: transient

KPDS_KERNEL_ORIGIN

int

w 0

h 0

d 0

t 0

e 0

This attribute is used to specify a "hot spot" in the data set

that is interpreted as the center point of a 5 dimensional

convolution kernel.

2-35



Polymorphic Data Services Program Services Volume II - Chapter 2

Global Attributes

Attribute Legal Definition
and Default Values

Persistence: stored

KPDS_MAPPING_MODE

int

mapping_mode KUNMAPPED

KMAPPED

KUNMAPPED

This attribute specifies how to interpret the map data if it is

present. The default interpretation KUNMAPPED means that

nothing is done with the map. It is then the responsibility

of the programmer to interpret or ignore the map. The

KMAPPED mode causes the map and value data to be

merged. This means that the map will not appear to be

present. Instead, the value data will assimilate the

attributes of the map data as appropriate. Furthermore, any

value data that is retrieved via a call to kpds_get_data

will be mapped through the map before being returned.

For example, the KPDS_VALUE_SIZE attribute will have its

KELEMENTS value multiplied by the KMAP_WIDTH size of

the map . The KPDS_VALUE_DATA_TYPE will actually take

the value of the KPDS_MAP_DATA_TYPE . Each value will

be used as an index into the map and used as the

KMAP_HEIGHT index. All get and and set attribute calls

will behave in this manner.

Persistence: transient

KPDS_MASKED_VALUE_PRESENTATION

int

mask_mode KUSE_ORIGINAL

KUSE_ORIGINAL

KUSE_SUBSTITUTE_VALUE

This attribute takes on one of two values: either

KUSE_ORIGINAL , or KUSE_SUBSTITUTE_VALUE . If set to

KUSE_ORIGINAL , then regardless of the mask value at a

given data point, the value returned for that data point is

what is stored there. If the attribute is set to KUSE_SUB-

STITUTE_VALUE , then the KPDS_MASK_SUBSTI-

TUTE_VALUE will replace any value data point that has a 0

mask.

Persistence: transient

KPDS_MASK_SUBSTITUTE_VALUE

double

real 1.0

imag 0.0

This value is used to replace value data whose mask indi-

cates that it is invalid data. It is only used when the

KPDS_MASKED_VALUE_PRESENTATION is set to

KUSE_SUBSTITUTE_VALUE .

Persistence: stored

KPDS_NAME

char *

name

This attribute is used to obtain the filename associated with

the specified data object. This is that name passed in to

kpds_open_object , kpds_open_output_object , or

kpds_open_input_object . Objects that are instantiated

with kpds_create_object do not have a filename. In

such instances, this attribute’s value is NULL .

Persistence: stored

2-36



Polymorphic Data Services Program Services Volume II - Chapter 2

Global Attributes

Attribute Legal Definition
and Default Values

KPDS_POINT_SIZE

double

w 1.0

h 1.0

d 1.0

t 1.0

e 1.0

> 0.0 This attribute indicates the physical dimension in world

coordinates of a point in the data set. A single sampled

point represents a continuous volume of data in world coor-

dinate space. This attribute indicates the size of that vol-

ume.

Persistence: stored

KPDS_SUBOBJECT_POSITION

int

w 0

h 0

d 0

t 0

e 0

This is the offset of the current data object in a parent

object. Typically the value of this attribute will be {0, 0, 0,

0, 0}, but if this object was extracted from a "parent

object", via kextract or other means, then this attribute will

indicate the position in the parent object from which this

region was extracted. It is intended to be used to automate

the process of reinserting the object into its parent once

region-of-interest processing is complete.

Persistence: stored

2-37



Polymorphic Data Services Program Services Volume II - Chapter 2

F.2. Value Segment Attributes

Value Segment Attributes

Attribute Legal Definition
and Default Values

KPDS_VALUE_COMPLEX_CONVERT

int

convert KREAL

KIMAGINARY

KMAGNITUDE

KPHASE

KREAL

KMAGSQ

KMAGSQP1

KLOGMAG

KLOGMAGP1

This attribute specifies how complex data should be con-

verted. If it is converted to a "lower" data type, this

attribute specifies how to down-convert the data. For exam-

ple if the data is actually complex, but the presentation

attribute is byte, the complex data would first be converted

to the representation defined by this attribute, and then con-

verted to byte.

If the data is being converted from a "lower" data type to a

complex data type, this attribute defines how the data

should be interpreted — as the real or imaginary compo-

nent of the complex pair. KPHASE and KMAGNITUDE are

invalid values for up converting to complex, and will result

in an error.

Persistence: transient

KPDS_VALUE_DATA_TYPE

int

data_type

KBIT

KBYTE

KUBYTE

KSHORT

KUSHORT

KINT

KUINT

KLONG

KULONG

KFLOAT

KDOUBLE

KCOMPLEX

KDCOMPLEX

This attribute is used to get or set the data type, or numeri-

cal representation of the data. This data type will be the

presentation data type, not necessarily the physical data

type. See the KPDS_COUPLING attribute for more informa-

tion on how to control the presentation and physical data

types. When the application programmer specifies a pre-

sentation data type that is different than the actual data type

of the stored data, the get kpds_get_data function will

convert the data to return the requested data type. Like-

wise, the kpds_put_data function expects data that is in

the data type specified by this attribute to the output object,

and if the data being "put" is of a different type, it will be

converted. This attribute must be set for objects created via

kpds_create_object or output objects that are opened

with kpds_open_output_object or

kpds_open_object , or else the get and put data calls will

fail.

Persistence: stored

2-38



Polymorphic Data Services Program Services Volume II - Chapter 2

Value Segment Attributes

Attribute Legal Definition
and Default Values

KPDS_VALUE_INCREMENT_SIZE

int

width

height

depth

num_volumes

This attribute is used to alter how the auto-increment state

machine behaves. Normally, the size of the data set is used

to dictate how position auto-advances from one position to

the next, based on the primitive being accessed. This

attribute, if set, will be used instead of the size of the data

set for controlling auto-advancement. One place where

such functionality is useful is when a smaller data set is

being inserted into a larger one. The larger destination data

set’s INCREMENT_SIZE attribute can be set to the size of

the smaller source data set so that the auto-advancement

stays synchronized across all dimensions.

Persistence: transient

KPDS_VALUE_INTERPOLATE

int

interpolate KPAD

KNONE

KPAD

KZERO_ORDER

KWRAP

This attribute specifies how the data should be presented if

the application program requests a size different from what

is physically stored. If the size requested is larger than the

physical size and the interpolation requested is KPAD the

pad value will be returned for all points outside of the phys-

ical size. If the size requested is smaller than the physical

size and the interpolation requested is KPAD the returned

data is clipped to the size requested. If the size requested is

larger than the physical size and the interpolation requested

is KZERO_ORDER the data is duplicated. If the size

requested is smaller than the physical size and the interpo-

lation requested is KZERO_ORDER the data is sub-sampled.

If the interpolation requested is KWRAP then the size change

will be resolved by duplicating the data set. If KWRAP is set,

then out-of-bounds data accesses will also be filled with

duplicated data. If the interpolate attribute is set to KNONE ,

an error will be returned if the program requests a size dif-

ferent from what is physically stored.

Persistence: transient

KPDS_VALUE_LINE_INFO

int

line_size

num_lines

This attribute will return the number of points in a line and

the number of lines in the dataset. The line size will be the

size of the width axis and the of lines number will be the

product of the other axes’ sizes.

Persistence: transient

KPDS_VALUE_NORM_MAX

double

norm_max

> norm_min This attribute specifies the maximum to be used when nor-

malizing data values. This attribute is used in conjunction

with the KPDS_*_NORM_MIN attribute, respectively, to

determine the bounds of a normalization operation. This

attribute comes into play when the KPDS_*_SCALING

attribute is set to KNORMALIZE .

2-39



Polymorphic Data Services Program Services Volume II - Chapter 2

Value Segment Attributes

Attribute Legal Definition
and Default Values

Persistence: transient

KPDS_VALUE_NORM_MIN

double

norm_min

< norm_max This attribute specifies the minimum to be used when nor-

malizing data values. This attribute is used in conjunction

with the KPDS_*_NORM_MAX attribute, respectively, to

determine the bounds of a normalization operation. This

attribute comes into play when the KPDS_*_SCALING

attribute is set to KNORMALIZE .

Persistence: transient

KPDS_VALUE_OFFSET

int

offset_w 0

offset_h 0

offset_d 0

offset_t 0

offset_e 0

+/- int These attribute values specify the offset into the data posi-

tion for all primitives. Offset values beyond the boundaries

of the data are valid.

Persistence: transient

KPDS_VALUE_OPTIMAL_REGION_SIZE

int

region_width

region_height

region_depth

region_time

region_elements

number_of_regions

> 0 This attribute will return the size of a region of data and the

number of such regions that is most efficient to process in

terms of performance and memory use. The

KPDS_*_REGION_SIZE attribute controls the size and dic-

tates the number of regions, which will always be rounded

up. See KPDS_*_REGION_SIZE for more information.

Persistence: transient

KPDS_VALUE_PAD_VALUE

double

real_value 0.0

imag_value 0.0

This attribute specifies the real (and imaginary) values of

the pad data if the KPDS_*_INTERPOLATE attribute is set to

KPAD , respectively. The double values must be specified,

whether the data is real or complex. The pad values will

internally be converted from double to the appropriate data

type.

The default pad value for location , map , time and value is

0. The default pad value for the mask is 1 because when

padding data, the padded portion of the value data should

initially be considered valid.

Persistence: transient

2-40



Polymorphic Data Services Program Services Volume II - Chapter 2

Value Segment Attributes

Attribute Legal Definition
and Default Values

KPDS_VALUE_PLANE_INFO

int

plane_width

plane_height

num_planes

This attribute will return the size of a plane of data in points

and the number of planes in the dataset. The plane size will

be the size of the width and height axes and the number

will be the product of the sizes of the other axes.

Persistence: transient

KPDS_VALUE_POSITION

int

w 0

h 0

d 0

t 0

e 0

+/- int The position attribute specifies four indices to locate a spe-

cific PRIMITIVE in the location data. w is width , h is

height , d is depth and n is dimension .

Persistence: transient

KPDS_VALUE_REGION_INFO

int

region_width

region_height

region_depth

region_time

region_elements

num_regions

This attribute will return the size of a region of data in

points and the number of regions in the data. The

KPDS_*_REGION_SIZE attribute controls the size and dic-

tates the number of regions, which will always be rounded

up. See KPDS_*_REGION_SIZE for more information.

Persistence: transient

KPDS_VALUE_REGION_SIZE

int

region_width 1

region_height 1

region_depth 1

region_time 1

region_elements 1

> 0 These attribute values specify the size of the region being

processed. If the region size for one or more dimensions is

not a even multiple of the data size, then the pad value will

be returned by kpds_get_data for all data outside of the

data space, which is set by KPDS_*_PAD_VALUE . On a

kpds_put_data call, data points outside of the data space

will be truncated. E.g. if the object width is 512 and the

region width is 200, then getting the first two regions will

return the data for those regions. The next get will return

the remaining 112 points from the data in the width direc-

tion with the remaining 88 points set to the pad value. On a

put for this same setup, the first two puts will place full

regions into the data object, but the last put will place only

the first 112 points into the data object in the width direc-

tion and the last 88 points are truncated.

Persistence: transient

2-41



Polymorphic Data Services Program Services Volume II - Chapter 2

Value Segment Attributes

Attribute Legal Definition
and Default Values

KPDS_VALUE_SCALE_FACTOR

double

scale_factor 1.0

This attribute specifies the scaling factor to be used when

scaling data values. This attribute comes into play when

the KPDS_*_SCALING attribute is set to KSCALE , respec-

tively.

Persistence: transient

KPDS_VALUE_SCALE_OFFSET

double

offset_real 0.0

offset_imaginary 0.0

This attribute specifies the scaling offset to be used when

scaling data values. This attribute comes into play when

the KPDS_*_SCALING attribute is set to KSCALE , respec-

tively.

Persistence: transient

KPDS_VALUE_SCALING

int

scaling KNONE

KNONE

KNORMALIZE

KSCALE

This attribute specifies whether scaling or normalization

should be performed.

If KSCALE is specified for the value data, values will be

scaled, according to the KPDS_VALUE_SCALE_FACTOR and

KPDS_VALUE_SCALE_OFFSET attributes. If KNORMALIZE

is specified for the value data, values will be normalized

using the KPDS_VALUE_NORM_MIN and

KPDS_VALUE_NORM_MAX attributes. If this attribute is set

to KNONE for the value data, values will not be scaled or

normalized. The same is true for the map and mask data.

They will use their respective scale factor & offset and nor-

malize minimum & maximum attributes.

Persistence: transient

KPDS_VALUE_SIZE

int

width

height

depth

time

elements

> 0 This attribute specifies the size of the dimensions width ,

height , depth , elements , time , location dimension , map

width , map height , map elements , map depth map time .

When the application programmer specifies a size larger

than the actual size of stored data, the get functions will

sub-sampled, clipped, padded or duplicated the data to

present the program with the requested amount, see the

attribute KPDS_VALUE_INTERPOLATE for more details.

The put functions store exactly the size that the physical

attributes will allow even if the amount of data "put" (set by

the presentation attributes) is different. This attribute must

be set for objects created via kpds_create_object or

output objects else get/put data calls will fail.

The size of the mask and value data is identical. The time

size is shared between the time , mask and value data. The

width , height depth are shared between the location , mask

value data.

2-42



Polymorphic Data Services Program Services Volume II - Chapter 2

Value Segment Attributes

Attribute Legal Definition
and Default Values

Persistence: transient

KPDS_VALUE_VECTOR_INFO

int

plane_size

num_vectors

This attribute will return the number of points in a vector of

data and the number of vectors in the dataset. The vector

vector definition for the data primitive. For

KPDS_VALUE_VECTOR_INFO , the size is the size of the ele-

ment vector and the number is the product of the remaining

dimensions.

Persistence: transient

KPDS_VALUE_VOLUME_INFO

int

width

height

depth

num_volumes

This attribute will return the size of a volume of data in

points and the number of volumes in the dataset. The vol-

ume size will be the size of the width, height, and depth

axes. The number volumes will be the product of the sizes

of the remaining axes.

Persistence: transient

2-43



Polymorphic Data Services Program Services Volume II - Chapter 2

F.3. Mask Segment Attributes

Mask Segment Attributes

Attribute Legal Definition
and Default Values

KPDS_MASK_DATA_TYPE

int

data_type

KBIT

KBYTE

KUBYTE

KSHORT

KUSHORT

KINT

KUINT

KLONG

KULONG

KFLOAT

KDOUBLE

KCOMPLEX

KDCOMPLEX

This attribute is used to get or set the data type, or numeri-

cal representation of the data. This data type will be the

presentation data type, not necessarily the physical data

type. See the KPDS_COUPLING attribute for more informa-

tion on how to control the presentation and physical data

types. When the application programmer specifies a pre-

sentation data type that is different than the actual data type

of the stored data, the get kpds_get_data function will

convert the data to return the requested data type. Like-

wise, the kpds_put_data function expects data that is in

the data type specified by this attribute to the output object,

and if the data being "put" is of a different type, it will be

converted. This attribute must be set for objects created via

kpds_create_object or output objects that are opened

with kpds_open_output_object or

kpds_open_object , or else the get and put data calls will

fail.

Persistence: stored

KPDS_MASK_INCREMENT_SIZE

int

width

height

depth

num_volumes

This attribute is used to alter how the auto-increment state

machine behaves. Normally, the size of the data set is used

to dictate how position auto-advances from one position to

the next, based on the primitive being accessed. This

attribute, if set, will be used instead of the size of the data

set for controlling auto-advancement. One place where

such functionality is useful is when a smaller data set is

being inserted into a larger one. The larger destination data

set’s INCREMENT_SIZE attribute can be set to the size of

the smaller source data set so that the auto-advancement

stays synchronized across all dimensions.

Persistence: transient

2-44



Polymorphic Data Services Program Services Volume II - Chapter 2

Mask Segment Attributes

Attribute Legal Definition
and Default Values

KPDS_MASK_INTERPOLATE

int

interpolate KPAD

KNONE

KPAD

KZERO_ORDER

KWRAP

This attribute specifies how the data should be presented if

the application program requests a size different from what

is physically stored. If the size requested is larger than the

physical size and the interpolation requested is KPAD the

pad value will be returned for all points outside of the phys-

ical size. If the size requested is smaller than the physical

size and the interpolation requested is KPAD the returned

data is clipped to the size requested. If the size requested is

larger than the physical size and the interpolation requested

is KZERO_ORDER the data is duplicated. If the size

requested is smaller than the physical size and the interpo-

lation requested is KZERO_ORDER the data is sub-sampled.

If the interpolation requested is KWRAP then the size change

will be resolved by duplicating the data set. If KWRAP is set,

then out-of-bounds data accesses will also be filled with

duplicated data. If the interpolate attribute is set to KNONE ,

an error will be returned if the program requests a size dif-

ferent from what is physically stored.

Persistence: transient

KPDS_MASK_LINE_INFO

int

line_size

num_lines

This attribute will return the number of points in a line and

the number of lines in the dataset. The line size will be the

size of the width axis and the of lines number will be the

product of the other axes’ sizes.

Persistence: transient

KPDS_MASK_OFFSET

int

offset_w 0

offset_h 0

offset_d 0

offset_t 0

offset_e 0

+/- int These attribute values specify the offset into the data posi-

tion for all primitives. Offset values beyond the boundaries

of the data are valid.

Persistence: transient

KPDS_MASK_OPTIMAL_REGION_SIZE

int

region_width

region_height

region_depth

region_time

region_elements

number_of_regions

> 0 This attribute will return the size of a region of data and the

number of such regions that is most efficient to process in

terms of performance and memory use. The

KPDS_*_REGION_SIZE attribute controls the size and dic-

tates the number of regions, which will always be rounded

up. See KPDS_*_REGION_SIZE for more information.

2-45



Polymorphic Data Services Program Services Volume II - Chapter 2

Mask Segment Attributes

Attribute Legal Definition
and Default Values

Persistence: transient

KPDS_MASK_PAD_VALUE

double

pad_value 1.0

This attribute specifies the real (and imaginary) values of

the pad data if the KPDS_*_INTERPOLATE attribute is set to

KPAD , respectively. The double values must be specified,

whether the data is real or complex. The pad values will

internally be converted from double to the appropriate data

type.

The default pad value for location , map , time and value is

0. The default pad value for the mask is 1 because when

padding data, the padded portion of the value data should

initially be considered valid.

Persistence: transient

KPDS_MASK_PLANE_INFO

int

plane_width

plane_height

num_planes

This attribute will return the size of a plane of data in points

and the number of planes in the dataset. The plane size will

be the size of the width and height axes and the number

will be the product of the sizes of the other axes.

Persistence: transient

KPDS_MASK_POSITION

int

w 0

h 0

d 0

t 0

e 0

+/- int The position attribute specifies four indices to locate a spe-

cific PRIMITIVE in the location data. w is width , h is

height , d is depth and n is dimension .

Persistence: transient

KPDS_MASK_REGION_INFO

int

region_width

region_height

region_depth

region_time

region_elements

num_regions

This attribute will return the size of a region of data in

points and the number of regions in the data. The

KPDS_*_REGION_SIZE attribute controls the size and dic-

tates the number of regions, which will always be rounded

up. See KPDS_*_REGION_SIZE for more information.

Persistence: transient

2-46



Polymorphic Data Services Program Services Volume II - Chapter 2

Mask Segment Attributes

Attribute Legal Definition
and Default Values

KPDS_MASK_REGION_SIZE

int

region_width 1

region_height 1

region_depth 1

region_time 1

region_elements 1

> 0 These attribute values specify the size of the region being

processed. If the region size for one or more dimensions is

not a even multiple of the data size, then the pad value will

be returned by kpds_get_data for all data outside of the

data space, which is set by KPDS_*_PAD_VALUE . On a

kpds_put_data call, data points outside of the data space

will be truncated. E.g. if the object width is 512 and the

region width is 200, then getting the first two regions will

return the data for those regions. The next get will return

the remaining 112 points from the data in the width direc-

tion with the remaining 88 points set to the pad value. On a

put for this same setup, the first two puts will place full

regions into the data object, but the last put will place only

the first 112 points into the data object in the width direc-

tion and the last 88 points are truncated.

Persistence: transient

KPDS_MASK_SIZE

int

width

height

depth

time

elements

> 0 This attribute specifies the size of the dimensions width ,

height , depth , elements , time , location dimension , map

width , map height , map elements , map depth map time .

When the application programmer specifies a size larger

than the actual size of stored data, the get functions will

sub-sampled, clipped, padded or duplicated the data to

present the program with the requested amount, see the

attribute KPDS_VALUE_INTERPOLATE for more details.

The put functions store exactly the size that the physical

attributes will allow even if the amount of data "put" (set by

the presentation attributes) is different. This attribute must

be set for objects created via kpds_create_object or

output objects else get/put data calls will fail.

The size of the mask and value data is identical. The time

size is shared between the time , mask and value data. The

width , height depth are shared between the location , mask

value data.

Persistence: stored

KPDS_MASK_VECTOR_INFO

int

vector_length

num_vectors

This attribute will return the number of points in a vector of

data and the number of vectors in the dataset. The vector

vector definition for the data primitive. For

KPDS_VALUE_VECTOR_INFO , the size is the size of the ele-

ment vector and the number is the product of the remaining

dimensions.

Persistence: transient

2-47



Polymorphic Data Services Program Services Volume II - Chapter 2

Mask Segment Attributes

Attribute Legal Definition
and Default Values

KPDS_MASK_VOLUME_INFO

int

width

height

depth

num_volumes

This attribute will return the size of a volume of data in

points and the number of volumes in the dataset. The vol-

ume size will be the size of the width, height, and depth

axes. The number volumes will be the product of the sizes

of the remaining axes.

Persistence: transient

2-48



Polymorphic Data Services Program Services Volume II - Chapter 2

F.4. Map Segment Attributes

Map Segment Attributes

Attribute Legal Definition
and Default Values

KPDS_MAP_COMPLEX_CONVERT

int

convert KREAL

KIMAGINARY

KMAGNITUDE

KPHASE

KREAL

KMAGSQ

KMAGSQP1

KLOGMAG

KLOGMAGP1

This attribute specifies how complex data should be con-

verted. If it is converted to a "lower" data type, this

attribute specifies how to down-convert the data. For exam-

ple if the data is actually complex, but the presentation

attribute is byte, the complex data would first be converted

to the representation defined by this attribute, and then con-

verted to byte.

If the data is being converted from a "lower" data type to a

complex data type, this attribute defines how the data

should be interpreted — as the real or imaginary compo-

nent of the complex pair. KPHASE and KMAGNITUDE are

invalid values for up converting to complex, and will result

in an error.

Persistence: transient

KPDS_MAP_DATA_TYPE

int

datatype

KBIT

KBYTE

KUBYTE

KSHORT

KUSHORT

KINT

KUINT

KLONG

KULONG

KFLOAT

KDOUBLE

KCOMPLEX

KDCOMPLEX

This attribute is used to get or set the data type, or numeri-

cal representation of the data. This data type will be the

presentation data type, not necessarily the physical data

type. See the KPDS_COUPLING attribute for more informa-

tion on how to control the presentation and physical data

types. When the application programmer specifies a pre-

sentation data type that is different than the actual data type

of the stored data, the get kpds_get_data function will

convert the data to return the requested data type. Like-

wise, the kpds_put_data function expects data that is in

the data type specified by this attribute to the output object,

and if the data being "put" is of a different type, it will be

converted. This attribute must be set for objects created via

kpds_create_object or output objects that are opened

with kpds_open_output_object or

kpds_open_object , or else the get and put data calls will

fail.

Persistence: stored

2-49



Polymorphic Data Services Program Services Volume II - Chapter 2

Map Segment Attributes

Attribute Legal Definition
and Default Values

KPDS_MAP_INCREMENT_SIZE

int

width

height

depth

time

elements

num_volumes

This attribute is used to alter how the auto-increment state

machine behaves. Normally, the size of the data set is used

to dictate how position auto-advances from one position to

the next, based on the primitive being accessed. This

attribute, if set, will be used instead of the size of the data

set for controlling auto-advancement. One place where

such functionality is useful is when a smaller data set is

being inserted into a larger one. The larger destination data

set’s INCREMENT_SIZE attribute can be set to the size of

the smaller source data set so that the auto-advancement

stays synchronized across all dimensions.

Persistence: transient

KPDS_MAP_INTERPOLATE

int

interpolate KPAD

KNONE

KPAD

KZERO_ORDER

KWRAP

This attribute specifies how the data should be presented if

the application program requests a size different from what

is physically stored. If the size requested is larger than the

physical size and the interpolation requested is KPAD the

pad value will be returned for all points outside of the phys-

ical size. If the size requested is smaller than the physical

size and the interpolation requested is KPAD the returned

data is clipped to the size requested. If the size requested is

larger than the physical size and the interpolation requested

is KZERO_ORDER the data is duplicated. If the size

requested is smaller than the physical size and the interpo-

lation requested is KZERO_ORDER the data is sub-sampled.

If the interpolation requested is KWRAP then the size change

will be resolved by duplicating the data set. If KWRAP is set,

then out-of-bounds data accesses will also be filled with

duplicated data. If the interpolate attribute is set to KNONE ,

an error will be returned if the program requests a size dif-

ferent from what is physically stored.

Persistence: transient

KPDS_MAP_LINE_INFO

int

line_size

num_lines

This attribute will return the number of points in a line and

the number of lines in the dataset. The line size will be the

size of the width axis and the of lines number will be the

product of the other axes’ sizes.

Persistence: transient

KPDS_MAP_NORM_MAX

double

norm_max

> norm_min This attribute specifies the maximum to be used when nor-

malizing data values. This attribute is used in conjunction

with the KPDS_*_NORM_MIN attribute, respectively, to

determine the bounds of a normalization operation. This

attribute comes into play when the KPDS_*_SCALING

attribute is set to KNORMALIZE .

2-50



Polymorphic Data Services Program Services Volume II - Chapter 2

Map Segment Attributes

Attribute Legal Definition
and Default Values

Persistence: transient

KPDS_MAP_NORM_MIN

double

norm_min

< norm_max This attribute specifies the minimum to be used when nor-

malizing data values. This attribute is used in conjunction

with the KPDS_*_NORM_MAX attribute, respectively, to

determine the bounds of a normalization operation. This

attribute comes into play when the KPDS_*_SCALING

attribute is set to KNORMALIZE .

Persistence: transient

KPDS_MAP_OFFSET

int

mw 0

mh 0

md 0

mt 0

me 0

+/- int These attribute values specify the offset into the data posi-

tion for all primitives. Offset values beyond the boundaries

of the data are valid.

Persistence: transient

KPDS_MAP_OPTIMAL_REGION_SIZE

int

region_width

region_height

region_depth

region_time

region_elements

number_of_regions

> 0 This attribute will return the size of a region of data and the

number of such regions that is most efficient to process in

terms of performance and memory use. The

KPDS_*_REGION_SIZE attribute controls the size and dic-

tates the number of regions, which will always be rounded

up. See KPDS_*_REGION_SIZE for more information.

Persistence: transient

KPDS_MAP_PAD_VALUE

double

real 0.0

imag 0.0

This attribute specifies the real (and imaginary) values of

the pad data if the KPDS_*_INTERPOLATE attribute is set to

KPAD , respectively. The double values must be specified,

whether the data is real or complex. The pad values will

internally be converted from double to the appropriate data

type.

The default pad value for location , map , time and value is

0. The default pad value for the mask is 1 because when

padding data, the padded portion of the value data should

initially be considered valid.

Persistence: transient

2-51



Polymorphic Data Services Program Services Volume II - Chapter 2

Map Segment Attributes

Attribute Legal Definition
and Default Values

KPDS_MAP_PLANE_INFO

int

map_plane_width

map_plane_height

num_planes

This attribute will return the size of a plane of data in points

and the number of planes in the dataset. The plane size will

be the size of the width and height axes and the number

will be the product of the sizes of the other axes.

Persistence: transient

KPDS_MAP_POSITION

int

mw 0

mh 0

md 0

mt 0

me 0

The position attribute specifies four indices to locate a spe-

cific PRIMITIVE in the location data. w is width , h is

height , d is depth and n is dimension .

Persistence: transient

KPDS_MAP_REGION_INFO

int

region_width

region_height

region_depth

region_time

region_elements

num_regions

This attribute will return the size of a region of data in

points and the number of regions in the data. The

KPDS_*_REGION_SIZE attribute controls the size and dic-

tates the number of regions, which will always be rounded

up. See KPDS_*_REGION_SIZE for more information.

Persistence: transient

KPDS_MAP_REGION_SIZE

int

region_width 1

region_height 1

region_depth 1

region_time 1

region_elements 1

> 0 These attribute values specify the size of the region being

processed. If the region size for one or more dimensions is

not a even multiple of the data size, then the pad value will

be returned by kpds_get_data for all data outside of the

data space, which is set by KPDS_*_PAD_VALUE . On a

kpds_put_data call, data points outside of the data space

will be truncated. E.g. if the object width is 512 and the

region width is 200, then getting the first two regions will

return the data for those regions. The next get will return

the remaining 112 points from the data in the width direc-

tion with the remaining 88 points set to the pad value. On a

put for this same setup, the first two puts will place full

regions into the data object, but the last put will place only

the first 112 points into the data object in the width direc-

tion and the last 88 points are truncated.

Persistence: transient

2-52



Polymorphic Data Services Program Services Volume II - Chapter 2

Map Segment Attributes

Attribute Legal Definition
and Default Values

KPDS_MAP_SCALE_FACTOR

double

scale_factor

1.0 This attribute specifies the scaling factor to be used when

scaling data values. This attribute comes into play when

the KPDS_*_SCALING attribute is set to KSCALE , respec-

tively.

Persistence: transient

KPDS_MAP_SCALE_OFFSET

double

offset_real 0.0

offset_imaginary 0.0

This attribute specifies the scaling offset to be used when

scaling data values. This attribute comes into play when

the KPDS_*_SCALING attribute is set to KSCALE , respec-

tively.

Persistence: transient

KPDS_MAP_SCALING

int

scaling KNONE

KNONE

KNORMALIZE

KSCALE

This attribute specifies whether scaling or normalization

should be performed.

If KSCALE is specified for the value data, values will be

scaled, according to the KPDS_VALUE_SCALE_FACTOR and

KPDS_VALUE_SCALE_OFFSET attributes. If KNORMALIZE

is specified for the value data, values will be normalized

using the KPDS_VALUE_NORM_MIN and

KPDS_VALUE_NORM_MAX attributes. If this attribute is set

to KNONE for the value data, values will not be scaled or

normalized. The same is true for the map and mask data.

They will use their respective scale factor & offset and nor-

malize minimum & maximum attributes.

Persistence: transient

KPDS_MAP_SIZE

int

map_width

map_height

map_depth

map_time

map_elements

> 0 This attribute specifies the size of the dimensions width ,

height , depth , elements , time , location dimension , map

width , map height , map elements , map depth map time .

When the application programmer specifies a size larger

than the actual size of stored data, the get functions will

sub-sampled, clipped, padded or duplicated the data to

present the program with the requested amount, see the

attribute KPDS_VALUE_INTERPOLATE for more details.

The put functions store exactly the size that the physical

attributes will allow even if the amount of data "put" (set by

the presentation attributes) is different. This attribute must

be set for objects created via kpds_create_object or

output objects else get/put data calls will fail.

The size of the mask and value data is identical. The time

size is shared between the time , mask and value data. The

width , height depth are shared between the location , mask

value data.

2-53



Polymorphic Data Services Program Services Volume II - Chapter 2

Map Segment Attributes

Attribute Legal Definition
and Default Values

Persistence: stored

KPDS_MAP_VECTOR_INFO

int

vector_length

num_vectors

This attribute will return the number of points in a vector of

data and the number of vectors in the dataset. The vector

vector definition for the data primitive. For

KPDS_VALUE_VECTOR_INFO , the size is the size of the ele-

ment vector and the number is the product of the remaining

dimensions.

Persistence: transient

KPDS_MAP_VOLUME_INFO

int

map_width

map_height

map_depth

num_volumes

This attribute will return the size of a volume of data in

points and the number of volumes in the dataset. The vol-

ume size will be the size of the width, height, and depth

axes. The number volumes will be the product of the sizes

of the remaining axes.

Persistence: transient

2-54



Polymorphic Data Services Program Services Volume II - Chapter 2

F.5. Location Segment Attributes

Location Segment Attributes

Attribute Legal Definition
and Default Values

KPDS_LOCATION_BEGIN

double

w 0.0

h 0.0

d 0.0

This attribute represents an explicit begin marker point for

the polymorphic data model. This begin point maps to the

implicit origin of the data model. This attribute can only be

set if uniform location data has been explicitly created with

a kpds_create_location call. See also: KPDS_LOCA-

TION_END.

Persistence: transient

KPDS_LOCATION_COMPLEX_CONVERT

int

convert KREAL

KIMAGINARY

KMAGNITUDE

KPHASE

KREAL

KMAGSQ

KMAGSQP1

KLOGMAG

KLOGMAGP1

This attribute specifies how complex data should be con-

verted. If it is converted to a "lower" data type, this

attribute specifies how to down-convert the data. For exam-

ple if the data is actually complex, but the presentation

attribute is byte, the complex data would first be converted

to the representation defined by this attribute, and then con-

verted to byte.

If the data is being converted from a "lower" data type to a

complex data type, this attribute defines how the data

should be interpreted — as the real or imaginary compo-

nent of the complex pair. KPHASE and KMAGNITUDE are

invalid values for up converting to complex, and will result

in an error.

Persistence: transient

KPDS_LOCATION_DATA_TYPE

int

datatype

KBIT

KBYTE

KUBYTE

KSHORT

KUSHORT

KINT

KUINT

KLONG

KULONG

KFLOAT

KDOUBLE

KCOMPLEX

KDCOMPLEX

This attribute is used to get or set the data type, or numeri-

cal representation of the data. This data type will be the

presentation data type, not necessarily the physical data

type. See the KPDS_COUPLING attribute for more informa-

tion on how to control the presentation and physical data

types. When the application programmer specifies a pre-

sentation data type that is different than the actual data type

of the stored data, the get kpds_get_data function will

convert the data to return the requested data type. Like-

wise, the kpds_put_data function expects data that is in

the data type specified by this attribute to the output object,

and if the data being "put" is of a different type, it will be

converted. This attribute must be set for objects created via

kpds_create_object or output objects that are opened

with kpds_open_output_object or

kpds_open_object , or else the get and put data calls will

fail.

Persistence: stored

2-55



Polymorphic Data Services Program Services Volume II - Chapter 2

Location Segment Attributes

Attribute Legal Definition
and Default Values

KPDS_LOCATION_END

double

w 0.0

h 0.0

d 0.0

This attribute represents an explicit end marker point for

the polymorphic data model. This end point maps to the

implicit extent of the data model. This attribute can only be

set if uniform location data has been explicitly created with

a kpds_create_location call. See also: KPDS_LOCA-

TION_BEGIN .

Persistence: transient

KPDS_LOCATION_GRID

int

grid_type

KNONE

KUNIFORM

KRECTILINEAR

KCURVILINEAR

The location grid attribute specifies the grid type to use

when creating the location data. This attribute should be

set before a kpds_create_location operation. By

default, if the location data type is KNONE and location data

is created, a curvilinear location grid will be created and

this attribute will be set to KCURVILINEAR.

Persistence: permanent

KPDS_LOCATION_INCREMENT_SIZE

int

width

height

depth

num_volumes

This attribute is used to alter how the auto-increment state

machine behaves. Normally, the size of the data set is used

to dictate how position auto-advances from one position to

the next, based on the primitive being accessed. This

attribute, if set, will be used instead of the size of the data

set for controlling auto-advancement. One place where

such functionality is useful is when a smaller data set is

being inserted into a larger one. The larger destination data

set’s INCREMENT_SIZE attribute can be set to the size of

the smaller source data set so that the auto-advancement

stays synchronized across all dimensions.

Persistence: transient

2-56



Polymorphic Data Services Program Services Volume II - Chapter 2

Location Segment Attributes

Attribute Legal Definition
and Default Values

KPDS_LOCATION_INTERPOLATE

int

interpolate KPAD

KNONE

KPAD

KZERO_ORDER

KWRAP

This attribute specifies how the data should be presented if

the application program requests a size different from what

is physically stored. If the size requested is larger than the

physical size and the interpolation requested is KPAD the

pad value will be returned for all points outside of the phys-

ical size. If the size requested is smaller than the physical

size and the interpolation requested is KPAD the returned

data is clipped to the size requested. If the size requested is

larger than the physical size and the interpolation requested

is KZERO_ORDER the data is duplicated. If the size

requested is smaller than the physical size and the interpo-

lation requested is KZERO_ORDER the data is sub-sampled.

If the interpolation requested is KWRAP then the size change

will be resolved by duplicating the data set. If KWRAP is set,

then out-of-bounds data accesses will also be filled with

duplicated data. If the interpolate attribute is set to KNONE ,

an error will be returned if the program requests a size dif-

ferent from what is physically stored.

Persistence: transient

KPDS_LOCATION_LINE_INFO

int

line_size

num_lines

This attribute will return the number of points in a line and

the number of lines in the dataset. The line size will be the

size of the width axis and the of lines number will be the

product of the other axes’ sizes.

Persistence: transient

KPDS_LOCATION_NORM_MAX

double

norm_max

> norm_min This attribute specifies the maximum to be used when nor-

malizing data values. This attribute is used in conjunction

with the KPDS_*_NORM_MIN attribute, respectively, to

determine the bounds of a normalization operation. This

attribute comes into play when the KPDS_*_SCALING

attribute is set to KNORMALIZE .

Persistence: transient

KPDS_LOCATION_NORM_MIN

double

norm_min unknown

< norm_max This attribute specifies the minimum to be used when nor-

malizing data values. This attribute is used in conjunction

with the KPDS_*_NORM_MAX attribute, respectively, to

determine the bounds of a normalization operation. This

attribute comes into play when the KPDS_*_SCALING

attribute is set to KNORMALIZE .

Persistence: transient

2-57



Polymorphic Data Services Program Services Volume II - Chapter 2

Location Segment Attributes

Attribute Legal Definition
and Default Values

KPDS_LOCATION_OFFSET

int

w 0

h 0

d 0

n 0

+/- int These attribute values specify the offset into the data posi-

tion for all primitives. Offset values beyond the boundaries

of the data are valid.

Persistence: transient

KPDS_LOCATION_OPTIMAL_REGION_SIZE

int

w

h

d

dim

num_regions

> 0 This attribute will return the size of a region of data and the

number of such regions that is most efficient to process in

terms of performance and memory use. The

KPDS_*_REGION_SIZE attribute controls the size and dic-

tates the number of regions, which will always be rounded

up. See KPDS_*_REGION_SIZE for more information.

Persistence: transient

KPDS_LOCATION_PAD_VALUE

double

real 0.0

imag 0.0

This attribute specifies the real (and imaginary) values of

the pad data if the KPDS_*_INTERPOLATE attribute is set to

KPAD , respectively. The double values must be specified,

whether the data is real or complex. The pad values will

internally be converted from double to the appropriate data

type.

The default pad value for location , map , time and value is

0. The default pad value for the mask is 1 because when

padding data, the padded portion of the value data should

initially be considered valid.

Persistence: transient

KPDS_LOCATION_PLANE_INFO

int

w

h

num_planes

This attribute will return the size of a plane of data in points

and the number of planes in the dataset. The plane size will

be the size of the width and height axes and the number

will be the product of the sizes of the other axes.

Persistence: transient

2-58



Polymorphic Data Services Program Services Volume II - Chapter 2

Location Segment Attributes

Attribute Legal Definition
and Default Values

KPDS_LOCATION_POSITION

int

w 0

h 0

d 0

n 0

+/- int The position attribute specifies four indices to locate a spe-

cific PRIMITIVE in the location data. w is width , h is

height , d is depth and n is dimension .

Persistence: transient

KPDS_LOCATION_REGION_INFO

int

w

h

d

dim

num_regions

This attribute will return the size of a region of data in

points and the number of regions in the data. The

KPDS_*_REGION_SIZE attribute controls the size and dic-

tates the number of regions, which will always be rounded

up. See KPDS_*_REGION_SIZE for more information.

Persistence: transient

KPDS_LOCATION_REGION_SIZE

int

w 1

h 1

d 1

dim 1

> 0 These attribute values specify the size of the region being

processed. If the region size for one or more dimensions is

not a even multiple of the data size, then the pad value will

be returned by kpds_get_data for all data outside of the

data space, which is set by KPDS_*_PAD_VALUE . On a

kpds_put_data call, data points outside of the data space

will be truncated. E.g. if the object width is 512 and the

region width is 200, then getting the first two regions will

return the data for those regions. The next get will return

the remaining 112 points from the data in the width direc-

tion with the remaining 88 points set to the pad value. On a

put for this same setup, the first two puts will place full

regions into the data object, but the last put will place only

the first 112 points into the data object in the width direc-

tion and the last 88 points are truncated.

Persistence: transient

KPDS_LOCATION_SCALE_FACTOR

double

scale_factor 1.0

This attribute specifies the scaling factor to be used when

scaling data values. This attribute comes into play when

the KPDS_*_SCALING attribute is set to KSCALE , respec-

tively.

Persistence: transient

2-59



Polymorphic Data Services Program Services Volume II - Chapter 2

Location Segment Attributes

Attribute Legal Definition
and Default Values

KPDS_LOCATION_SCALE_OFFSET

double

real 0.0

offset 0.0

This attribute specifies the scaling offset to be used when

scaling data values. This attribute comes into play when

the KPDS_*_SCALING attribute is set to KSCALE , respec-

tively.

Persistence: transient

KPDS_LOCATION_SCALING

int

scaling KNONE

KNONE

KNORMALIZE

KSCALE

This attribute specifies whether scaling or normalization

should be performed.

If KSCALE is specified for the value data, values will be

scaled, according to the KPDS_VALUE_SCALE_FACTOR and

KPDS_VALUE_SCALE_OFFSET attributes. If KNORMALIZE

is specified for the value data, values will be normalized

using the KPDS_VALUE_NORM_MIN and

KPDS_VALUE_NORM_MAX attributes. If this attribute is set

to KNONE for the value data, values will not be scaled or

normalized. The same is true for the map and mask data.

They will use their respective scale factor & offset and nor-

malize minimum & maximum attributes.

Persistence: transient

KPDS_LOCATION_SIZE

int

w

h

d

dim

> 0 This attribute specifies the size of the dimensions width ,

height , depth , elements , time , location dimension , map

width , map height , map elements , map depth map time .

When the application programmer specifies a size larger

than the actual size of stored data, the get functions will

sub-sampled, clipped, padded or duplicated the data to

present the program with the requested amount, see the

attribute KPDS_VALUE_INTERPOLATE for more details.

The put functions store exactly the size that the physical

attributes will allow even if the amount of data "put" (set by

the presentation attributes) is different. This attribute must

be set for objects created via kpds_create_object or

output objects else get/put data calls will fail.

The size of the mask and value data is identical. The time

size is shared between the time , mask and value data. The

width , height depth are shared between the location , mask

value data.

Persistence: stored

KPDS_LOCATION_VECTOR_INFO

int

vector_length

num_vectors

This attribute will return the number of points in a vector of

data and the number of vectors in the dataset. The vector

vector definition for the data primitive. For

KPDS_VALUE_VECTOR_INFO , the size is the size of the ele-

ment vector and the number is the product of the remaining

dimensions.

2-60



Polymorphic Data Services Program Services Volume II - Chapter 2

Location Segment Attributes

Attribute Legal Definition
and Default Values

Persistence: transient

KPDS_LOCATION_VOLUME_INFO

int

w

h

d

num_volumes

This attribute will return the size of a volume of data in

points and the number of volumes in the dataset. The vol-

ume size will be the size of the width, height, and depth

axes. The number volumes will be the product of the sizes

of the remaining axes.

Persistence: transient

F.6. Time Segment Attributes

Time Segment Attributes

Attribute Legal Definition
and Default Values

KPDS_TIME_COMPLEX_CONVERT

int

convert KREAL

KIMAGINARY

KMAGNITUDE

KPHASE

KREAL

KMAGSQ

KMAGSQP1

KLOGMAG

KLOGMAGP1

This attribute specifies how complex data should be con-

verted. If it is converted to a "lower" data type, this

attribute specifies how to down-convert the data. For exam-

ple if the data is actually complex, but the presentation

attribute is byte, the complex data would first be converted

to the representation defined by this attribute, and then con-

verted to byte.

If the data is being converted from a "lower" data type to a

complex data type, this attribute defines how the data

should be interpreted — as the real or imaginary compo-

nent of the complex pair. KPHASE and KMAGNITUDE are

invalid values for up converting to complex, and will result

in an error.

Persistence: transient

2-61



Polymorphic Data Services Program Services Volume II - Chapter 2

Time Segment Attributes

Attribute Legal Definition
and Default Values

KPDS_TIME_DATA_TYPE

int

datatype

KBIT

KBYTE

KUBYTE

KSHORT

KUSHORT

KINT

KUINT

KLONG

KULONG

KFLOAT

KDOUBLE

KCOMPLEX

KDCOMPLEX

This attribute is used to get or set the data type, or numeri-

cal representation of the data. This data type will be the

presentation data type, not necessarily the physical data

type. See the KPDS_COUPLING attribute for more informa-

tion on how to control the presentation and physical data

types. When the application programmer specifies a pre-

sentation data type that is different than the actual data type

of the stored data, the get kpds_get_data function will

convert the data to return the requested data type. Like-

wise, the kpds_put_data function expects data that is in

the data type specified by this attribute to the output object,

and if the data being "put" is of a different type, it will be

converted. This attribute must be set for objects created via

kpds_create_object or output objects that are opened

with kpds_open_output_object or

kpds_open_object , or else the get and put data calls will

fail.

Persistence: stored

KPDS_TIME_INCREMENT_SIZE

int

width

height

depth

num_volumes

This attribute is used to alter how the auto-increment state

machine behaves. Normally, the size of the data set is used

to dictate how position auto-advances from one position to

the next, based on the primitive being accessed. This

attribute, if set, will be used instead of the size of the data

set for controlling auto-advancement. One place where

such functionality is useful is when a smaller data set is

being inserted into a larger one. The larger destination data

set’s INCREMENT_SIZE attribute can be set to the size of

the smaller source data set so that the auto-advancement

stays synchronized across all dimensions.

Persistence: transient

2-62



Polymorphic Data Services Program Services Volume II - Chapter 2

Time Segment Attributes

Attribute Legal Definition
and Default Values

KPDS_TIME_INTERPOLATE

int

interpolate KPAD

KNONE

KPAD

KZERO_ORDER

KWRAP

This attribute specifies how the data should be presented if

the application program requests a size different from what

is physically stored. If the size requested is larger than the

physical size and the interpolation requested is KPAD the

pad value will be returned for all points outside of the phys-

ical size. If the size requested is smaller than the physical

size and the interpolation requested is KPAD the returned

data is clipped to the size requested. If the size requested is

larger than the physical size and the interpolation requested

is KZERO_ORDER the data is duplicated. If the size

requested is smaller than the physical size and the interpo-

lation requested is KZERO_ORDER the data is sub-sampled.

If the interpolation requested is KWRAP then the size change

will be resolved by duplicating the data set. If KWRAP is set,

then out-of-bounds data accesses will also be filled with

duplicated data. If the interpolate attribute is set to KNONE ,

an error will be returned if the program requests a size dif-

ferent from what is physically stored.

Persistence: transient

KPDS_TIME_NORM_MAX

double

norm_max

> norm_min This attribute specifies the maximum to be used when nor-

malizing data values. This attribute is used in conjunction

with the KPDS_*_NORM_MIN attribute, respectively, to

determine the bounds of a normalization operation. This

attribute comes into play when the KPDS_*_SCALING

attribute is set to KNORMALIZE .

Persistence: transient

KPDS_TIME_NORM_MIN

double

norm_min

< norm_max This attribute specifies the minimum to be used when nor-

malizing data values. This attribute is used in conjunction

with the KPDS_*_NORM_MAX attribute, respectively, to

determine the bounds of a normalization operation. This

attribute comes into play when the KPDS_*_SCALING

attribute is set to KNORMALIZE .

Persistence: transient

KPDS_TIME_OFFSET

int

offset_time 0

+/- int These attribute values specify the offset into the data posi-

tion for all primitives. Offset values beyond the boundaries

of the data are valid.

Persistence: transient

2-63



Polymorphic Data Services Program Services Volume II - Chapter 2

Time Segment Attributes

Attribute Legal Definition
and Default Values

KPDS_TIME_OPTIMAL_REGION_SIZE

int

t

num

This attribute will return the size of a region of data and the

number of such regions that is most efficient to process in

terms of performance and memory use. The

KPDS_*_REGION_SIZE attribute controls the size and dic-

tates the number of regions, which will always be rounded

up. See KPDS_*_REGION_SIZE for more information.

Persistence: transient

KPDS_TIME_PAD_VALUE

double

real_value 0.0

imag_value 0.0

This attribute specifies the real (and imaginary) values of

the pad data if the KPDS_*_INTERPOLATE attribute is set to

KPAD , respectively. The double values must be specified,

whether the data is real or complex. The pad values will

internally be converted from double to the appropriate data

type.

The default pad value for location , map , time and value is

0. The default pad value for the mask is 1 because when

padding data, the padded portion of the value data should

initially be considered valid.

Persistence: transient

KPDS_TIME_POSITION

int

t 0

+/- int This attribute specifies the real (and imaginary) values of

the pad data if the KPDS_*_INTERPOLATE attribute is set to

KPAD , respectively. The double values must be specified,

whether the data is real or complex. The pad values will

internally be converted from double to the appropriate data

type.

The default pad value for location , map , time and value is

0. The default pad value for the mask is 1 because when

padding data, the padded portion of the value data should

initially be considered valid.

Persistence: transient

KPDS_TIME_REGION_INFO

int

region_time

num_regions

This attribute will return the size of a region of data in

points and the number of regions in the data. The

KPDS_*_REGION_SIZE attribute controls the size and dic-

tates the number of regions, which will always be rounded

up. See KPDS_*_REGION_SIZE for more information.

Persistence: transient

2-64



Polymorphic Data Services Program Services Volume II - Chapter 2

Time Segment Attributes

Attribute Legal Definition
and Default Values

KPDS_TIME_REGION_SIZE

int

region_time 1

> 0 These attribute values specify the size of the region being

processed. If the region size for one or more dimensions is

not a even multiple of the data size, then the pad value will

be returned by kpds_get_data for all data outside of the

data space, which is set by KPDS_*_PAD_VALUE . On a

kpds_put_data call, data points outside of the data space

will be truncated. E.g. if the object width is 512 and the

region width is 200, then getting the first two regions will

return the data for those regions. The next get will return

the remaining 112 points from the data in the width direc-

tion with the remaining 88 points set to the pad value. On a

put for this same setup, the first two puts will place full

regions into the data object, but the last put will place only

the first 112 points into the data object in the width direc-

tion and the last 88 points are truncated.

Persistence: transient

KPDS_TIME_SCALE_FACTOR

double

scale_factor 1.0

This attribute specifies the scaling factor to be used when

scaling data values. This attribute comes into play when

the KPDS_*_SCALING attribute is set to KSCALE , respec-

tively.

Persistence: transient

KPDS_TIME_SCALE_OFFSET

double

offset_real 0.0

offset_imaginary 0.0

This attribute specifies the scaling offset to be used when

scaling data values. This attribute comes into play when

the KPDS_*_SCALING attribute is set to KSCALE , respec-

tively.

Persistence: transient

KPDS_TIME_SCALING

int

scaling KNONE

KNONE

KNORMALIZE

KSCALE

This attribute specifies whether scaling or normalization

should be performed.

If KSCALE is specified for the value data, values will be

scaled, according to the KPDS_VALUE_SCALE_FACTOR and

KPDS_VALUE_SCALE_OFFSET attributes. If KNORMALIZE

is specified for the value data, values will be normalized

using the KPDS_VALUE_NORM_MIN and

KPDS_VALUE_NORM_MAX attributes. If this attribute is set

to KNONE for the value data, values will not be scaled or

normalized. The same is true for the map and mask data.

They will use their respective scale factor & offset and nor-

malize minimum & maximum attributes.

Persistence: transient

2-65



Polymorphic Data Services Program Services Volume II - Chapter 2

Time Segment Attributes

Attribute Legal Definition
and Default Values

KPDS_TIME_SIZE

int

t

> 0 This attribute specifies the size of the dimensions width ,

height , depth , elements , time , location dimension , map

width , map height , map elements , map depth map time .

When the application programmer specifies a size larger

than the actual size of stored data, the get functions will

sub-sampled, clipped, padded or duplicated the data to

present the program with the requested amount, see the

attribute KPDS_VALUE_INTERPOLATE for more details.

The put functions store exactly the size that the physical

attributes will allow even if the amount of data "put" (set by

the presentation attributes) is different. This attribute must

be set for objects created via kpds_create_object or

output objects else get/put data calls will fail.

The size of the mask and value data is identical. The time

size is shared between the time , mask and value data. The

width , height depth are shared between the location , mask

value data.

Persistence: stored

G. Functions Provided by Polymorphic Data Services

The API functions that are provided by Polymorphic Data Services are described below. They are organized
into sections according to their classification as management, data, or attribute operators.

Note: The multiple attribute functions kpds_get_attributes(), kpds_match_attributes(), and
kpds_set_attributes() require a NULL at the end of the variable argument list to indicate the end of
the list.

G.1. Object Management

• kpds_open_input_object() - open an input object for reading
• kpds_open_output_object() - open an output object for writing
• kpds_create_object() - create a temporary data object.
• kpds_create_object_attr() - create an attribute associated the data object.
• kpds_destroy_object_attr() - destroy an attribute associated with the data object.
• kpds_open_object() - create an object associated with an input or output transport.
• kpds_close_object() - close an open data object.
• kpds_reference_object() - create a reference of a data object.
• kpds_copy_object() - copy all data and attributes from one object to another.
• kpds_copy_object_attr() - copy all presentation attributes from one data object to another.
• kpds_copy_object_data() - copy all data from one object to another object.
• kpds_copy_remaining_data() - copy remaining data from source to destination
• kpds_sync_object() - synchronize physical and presentation layers of a data object.

2-66



Polymorphic Data Services Program Services Volume II - Chapter 2

G.1.1. kpds_open_input_object() — open an input object for reading

Synopsis
kobject kpds_open_input_object(

char *name)

Input Arguments
name

a string that contains the path name of a file or transport that will be associated with the object.

Returns
a kobject on success, KOBJECT_INVALID on failure.

Description
This function is a simplified interface to the kpds_open_object function. It differs from
kpds_open_object in that it assumes that the object is read-only and its transport has permanence. If a
permanent file is not desired (i.e. the object is going to be used as temporary storage, and will not be
used by any other process) then the kpds_create_object function call should be used instead.

The argument to this function is the transport or file name. This argument indicates the name of the
transport that is associated with the object. The transport name can be any leg al VisiQuest transport
description. While this will usually be a regular UNIX file name, it is also possible to specify such
things as shared memory pointers, memory map pointers, sockets, streams, and even transports on
other machines. For more information on the syntax of a VisiQuest transport name, refer to the online
man page for the VisiQuest function kopen. For more information about opening an object, see
kpds_open_object.

The presentation index order will be set to KWIDTH, KHEIGHT, KDEPTH, KTIME and KELE-
MENTS for the value and mask data, to KMAP_WIDTH, KMAP_HEIGHT, KMAP_ELEMENTS,
KMAP_SPATIAL and KMAP_TIME for the map data and KWIDTH, KHEIGHT, KDEPTH and KDI-
MENSION for the location data. The only way to get the index order to reflect the stored index order
of the data is to call kpds_sync_object. See the man page for kpds_sync_object for more information.

Because this function opens an input object, the KPDS_COUPLING attribute is set to
KPDS_UNCOUPLED.

This function is equivalent to:

kpds_open_object(name, KOBJ_READ)

2-67



Polymorphic Data Services Program Services Volume II - Chapter 2

G.1.2. kpds_open_output_object() — open an output object for writing

Synopsis
kobject kpds_open_output_object(

char *name)

Input Arguments
name

a string that contains the path name of a file or transport that will be associated with the object.

Returns
a kobject on success, KOBJECT_INVALID on failure.

Description
This function is a simplified interface to the kpds_open_object function. It differs from
kpds_open_object in that it assumes that the object is write-only and its transport has permanence. If a
permanent file is not desired (i.e. the object is going to be used as temporary storage, and will not be
used by any other process) then the kpds_create_object function call should be used instead.

The argument to this function is the transport or file name. This argument indicates the name of the
transport that is associated with the object. The transport name can be any leg al khoros transport
description. While this will usually be a regular UNIX file name, it is also possible to specify such
things as shared memory pointers, memory map pointers, sockets, streams, and even transports on
other machines. For more information on the syntax of a VisiQuest transport name, refer to the online
man page for the VisiQuest function kopen. For more information about opening objects, see
kpds_open_object.

The default index order will be set to KWIDTH, KHEIGHT, KDEPTH, KTIME and KELEMENTS
for the value and mask data, to KMAP_WIDTH, KMAP_HEIGHT, KMAP_ELEMENTS,
KMAP_SPATIAL and KMAP_TIME for the map data and KWIDTH, KHEIGHT, KDEPTH and KDI-
MENSION for the location data.

This function is equivalent to:

kpds_open_object(name, KOBJ_WRITE)

2-68



Polymorphic Data Services Program Services Volume II - Chapter 2

G.1.3. kpds_create_object() — create a temporary data object.

Synopsis
kobject kpds_create_object(void)

Returns
kobject on success, KOBJECT_INVALID upon failure

Description
This function is used to instantiate a data object (kobject) when it will only be used for temporary stor-
age of information. If you are intending to process an object that already exists as a file or transport
(input), or you are planning on saving the kobject to a file or transport (output), then the appropriate
routines to use are kpds_open_input_object, kpds_open_output_object, or kpds_open_object.

This function creates an instance of a data object that will have associated with it a temporary transport
that will be used for buffering large amounts of data. This temporary transport will be automatically
removed when the process terminates. There is no way to rename the temporary file or replace the
temporary file with a permanent one.

The kpds_create_object function call creates what is essentially a "blank" object. That is, the object
will initially have no data and all attributes will be initialized to default values or to an initialized state.
The default values for attributes are described in the Khoros 2.0 Programming Services Volume 2
Manual.

An object that is created with this function call behaves similarly to an output object that is created
with the kpds_open_output_object function call, i.e. the object initially has no data or attributes. Thus,
it is necessary to create the location, map, mask, time and/or value data and initialize attributes such as
size and datatype prior to using the object.

G.1.4. kpds_create_object_attr() — create an attribute associated the data object.

Synopsis
int kpds_create_object_attr(

kobject object,
char *attribute,
int num_args,
int arg_size,
int data_type,
int permanent,
int shared)

2-69



Polymorphic Data Services Program Services Volume II - Chapter 2

Input Arguments
object

the object on which to instantiate the new attribute.

attribute
attribute identifier string. This identifier must be unique for the given segment.

numargs - number of arguments in the attribute; must be > 0;

argsize - number of units of the data type for each attribute argument must be > 0;

datatype - data type of the attribute can be KBIT, KUBYTE, KBYTE, KUSHORT, KSHORT,
KUINT, KINT, KULONG, KLONG, KFLOAT KDOUBLE, KCOMPLEX, KDCOMPLEX, or
KSTRING

permanent
TRUE if attribute is permanent.

shared
TRUE if attribute is shared

Returns
TRUE on success, FALSE otherwise

Description
The purpose of this routine is to provide the programmer with a mechanism for creating attributes that
are specific to the program being written. The attribute created will be associated with the data object
itself and not with the Value, Mask, Map, Location or Time data.

The second argument to this function is the name of the attribute to be created specified as a string. If
the attribute specified already exists then this function will return FALSE.

The datatype argument indicates the data type of all the elements associated with the attribute. It take
on any of the following values: KUBYTE, KBYTE, KUSHORT, KSHORT, KUINT, KINT,
KULONG, KLONG, KFLOAT , KDOUBLE, KCOMPLEX, or KDCOMPLEX. Any other value is
considered illegal. Passing this argument with an illegal value will force this function to return
FALSE.

The numargs argument indicates how many of elements of the type "datatype" will be contained in the
attribute. This information is necessary so that Polymorphic Services can allocate sufficient memory
to store the attribute. A negative or 0 value passed in will force this function to return FALSE.

The argsize argument indicates the size of each element, (i.e. you could be passing in a pointer to an
array of integers or several arrays if num greater than 1). This information is necessary so that Poly-
morphic Services can allocate sufficient memory to store the attribute. This argument specifies the
length of the array that needs to be allocated.

The last argument, permanent, indicates whether the attribute should be saved when the data object is

2-70



Polymorphic Data Services Program Services Volume II - Chapter 2

closed and being stored in a permanent transport. It should be set to TRUE if the attribute is perma-
nent and FALSE if the attribute is transient.

For example, calling this function as follows:

kpds_create_object_attr(object, "Nose", 1, 10, KFLOAT , FALSE);

will create an attribute called "Nose" that contains 10 floats that are accessed as a single array. A call
to kpds_get_attribute might look like this:

float *array;
kpds_get_attribute(object, "Nose", &array);

Restrictions
The length variable indicates the length of all the attribute elements. If different size length are
desired, different attributes must be created.

G.1.5. kpds_destroy_object_attr() — destroy an attribute associated with the data object.

Synopsis
int kpds_destroy_object_attr(

kobject object,
char *attribute)

Input Arguments
object

the object that contains the attribute.
attribute

the name of the attribute to destroy.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
The purpose of this routine is to provide the programmer with a mechanism for deleting attributes that
were previously created with a call to kpds_create_object_attr.

2-71



Polymorphic Data Services Program Services Volume II - Chapter 2

The name argument specifies the name of the attribute to be destroyed. This function will fail if the
attribute is one of the predefined KPDS attributes or if the specified attribute does not exist.

G.1.6. kpds_open_object() — create an object associated with an input or output transport.

Synopsis
kobject kpds_open_object(

char *name,
int flags)

Input Arguments
name

a string that contains the path name of a file or transport that will be associated with the object.

flags
how the object is to be opened. A bitwise OR of KOBJ_READ, KOBJ_WRITE, KOBJ_RAW as
described above.

Returns
kobject on success, KOBJECT_INVALID upon failure

Description
This function is used to instantiate a data object (kobject) that is associated with a permanent file or
transport. If a permanent file is not desired (i.e. the object is going to be used as temporary storage,
and will not be used by any other process) then the kpds_create_object function call should be used
instead.

The first argument to this function is the transport or file name. This argument indicates the name of
the transport that is associated with the object. The transport name can be any leg al khoros transport
description. While this will usually be a regular UNIX file name, it is also possible to specify such
things as shared memory pointers, memory map pointers, sockets, streams, and even transports on
other machines. For more information on the syntax of a VisiQuest transport name, refer to the online
man page for the VisiQuest function kopen.

The second argument to the kpds_open_object function call, flags, is used to provide polymorphic ser-
vices with specific information about how the object is going to be manipulated. The flags argument is
analogous to kopen’s flags argument. The flags argument is constructed by bitwise OR’ing predefined
values from the following list:

KOBJ_READ - Open an existing file or transport for reading (input). By using this flag, you are
indicating that the file or transport exists and that it contains valid data. If it
does not exist, or the data is not recognized, then an error message will be gener-
ated and this function will return KOBJECT_INVALID.

2-72



Polymorphic Data Services Program Services Volume II - Chapter 2

KOBJ_WRITE - Open a file or transport for writing (output). By using this flag, you are indicat-
ing that any data that you write to the object will be stored in the file or transport
specified.

KOBJ_RAW -  When an object is opened, data services usually attempts to recognize the file
format by examining the first part of the file. By setting this value, you will
bypass this operation, forcing the file to be read as raw unformatted data.

These flags can be combined arbitrarily to determine how the file or transport is
opened and subsequently manipulated. This is done by bitwise OR’ing any
combination of these options. For example KOBJ_READ | KOBJ_WRITE will
result in a read/write file object. This implies that the file already exists and will
be read from using kpds_get_data and written to using kpds_put_data. When
kpds_close is called, the changes that are a result of calls to kpds_put_data will
be stored to the file or transport.

However, if you intend to open an output object, but you need to occasionally
read data from it that you have already written, it is not necessary to specify
KOBJ_READ (in fact, doing so may result result in an error if the file or trans-
port does not already exist).

Likewise, it is possible to call kpds_put_data on an input object (one which was
opened without the KOBJ_WRITE flag). If this is done, then subsequent calls
to kpds_get_data on a region that has been written to will contain the new data.
However, the file or transport that is associated with this input object will not be
changed. Thus, the KOBJ_READ and KOBJ_WRITE flags only indicate what
operations are allowed on the permanent file or transport that is associated with
the object, not what operations are allowable on the object itself.

If KOBJ_READ is specified, then the Data Services will attempt to recognize
the file format automatically. If it fails, then this function will return KOB-
JECT_INVALID, indicating that it was unable to open the object, unless the
KOBJ_RAW flag was also specified, in which case, it will assume that the input
file is simply raw data. The structured file formats that are currently recognized
are VIFF (The Khoros 2.0 standard file format), Viff (The Khoros 1.0 standard
file format, which was referred to as VIFF in Khoros 1.0), Pnm (Portable Any
Map, which includes PBM, PGM, and PNM), and Sun Raster.

The default index order will be set to KWIDTH, KHEIGHT, KDEPTH, KTIME
and KELEMENTS for the value and mask data, to KMAP_WIDTH,
KMAP_HEIGHT, KMAP_ELEMENTS, KMAP_DEPTH and KMAP_TIME
for the map data and KWIDTH, KHEIGHT, KDEPTH and KDIMENSION for
the location data. The only way to get the index order to reflect the stored index
order of the data is to call kpds_sync_object. See the man page for
kpds_sync_object for more information.

2-73



Polymorphic Data Services Program Services Volume II - Chapter 2

Restrictions
The KOBJ_RAW flag will have unpredictable results if it is combined with the KOBJ_WRITE flag.
This limitation will be removed in a later release of the Khoros 2.0 system.

G.1.7. kpds_close_object() — close an open data object.

Synopsis
int kpds_close_object(

kobject object)

Input Arguments
object

the object to be closed.

Returns
TRUE (1) if object is closed successfully, FALSE (0) otherwise

Description
This function is called on an object when all interaction with the object is complete. In addition to
freeing resources that were used to manage the object, this function also writes any component of the
data set that has not yet been written and may alter index order and datatype of the data to that is sup-
ported by the file format.

If the object was created with the kpds_reference_object function call, or if another object was created
as a reference of the one being closed, then the object might be sharing some of its resources with
other objects. If this is the case, then those shared resources will not be freed, but rather they will be
disassociated from the object being closed. Thus, closing an object does not affect any other object.

G.1.8. kpds_reference_object() — create a reference of a data object.

Synopsis
kobject kpds_reference_object(

kobject object)

Input Arguments
object

2-74



Polymorphic Data Services Program Services Volume II - Chapter 2

the object to be referenced.

Returns
a kobject that is a reference of the input object on success, KOBJECT_INVALID upon failure

Description
This function is used to create a reference object for a data object that can be treated as a second inde-
pendent data object under most circumstances. A referenced object is similar conceptually to a sym-
bolic link in a UNIX file system in most respects. For example, getting data from an input object and a
reference of the object will result in the same data. Data that is put on an output object can then be
accessed from any of that object’s references.

The similarity ends there. Once an object is referenced, the two resulting objects are equivalent--there
is no way to distinguish which was the original. In fact, closing the original does not in any way affect
the reference, and visa-versa.

kpds_reference_object creates a new object that has presentation attributes that are independent of the
original object’s presentation attributes. The presentation attributes are UNCOUPLED from the physi-
cal attributes, see the description found in Table 4 in Chapter 6 of the the VisiQuest Programmer’s Man-
ual on the KPDS_COUPLING attribute for more information. The two objects (or more if there are
several calls to kpds_reference_object) share all physical data.

The default index order will be set to KWIDTH, KHEIGHT, KDEPTH, KTIME and KELEMENTS
for the value and mask data, to KMAP_WIDTH, KMAP_HEIGHT, KMAP_ELEMENTS,
KMAP_DEPTH and KMAP_TIME for the map data and KWIDTH, KHEIGHT, KDEPTH and KDI-
MENSION for the location data.

G.1.9. kpds_copy_object() — copy all data and attributes from one object to another.

Synopsis
int kpds_copy_object(

kobject source_object,
kobject destination_object)

Input Arguments
source_object

the object that serves as a source for the data and attributes.

Output Arguments
destination_object

2-75



Polymorphic Data Services Program Services Volume II - Chapter 2

the object that will serve as a destination in the copy operation.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
kpds_copy_object copies all physical & presentation attributes and all data from the source_object to
the destination_object. This means that all the attributes and data (not just those that are part of the
polymorphic data model) are copied. For example, the source object may contain data and attributes
that one of the other services (geometry, numerical, etc.) uses. These will also be copied.

G.1.10. kpds_copy_remaining_data() — copy remaining data from source to destination

Synopsis
int kpds_copy_remaining_data(

kobject source_object,
kobject destination_object)

Input Arguments
source_object

the source object

Output Arguments
destination_object

the destination object

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
kpds_copy_remaining_data copies any data that has not been previously written to in the destination
from a specified source.

2-76



Polymorphic Data Services Program Services Volume II - Chapter 2

G.1.11. kpds_copy_object_attr() — copy all presentation attributes from one data object to
another.

Synopsis
int
kpds_copy_object_attr(

kobject source,
kobject destination)

Input Arguments
source

the object that serves as the source for the attributes.

Output Arguments
destination

the object that serves as the destination for the operation.

Returns
TRUE on success, FALSE otherwise

Description
This function copies all presentation attributes from the source_object to the destination_object. This
means that all the attributes of the object will be copied (not just parts of the polymorphic data model)
as well. For example, the source object may contain attributes that one of the other services (geometry,
numerical, etc.) uses. These will also be copied. Segments present in the source object will be created
in the destination object if they are not already present.

There are three attributes for each data component (i.e. Value, Mask, etc.) that are affected by this
function call in a special way: KPDS_*_SIZE, KPDS_*_DAT A_TYPE, and
KPDS_*_INDEX_ORDER. These attributes are used to define how the data is stored. When this
function is called, these attributes will appear to change to the user, but the storage of the data will only
be affected if the KPDS_COUPLING attribute is set to KCOUPLED.

For more information on the behavior of attributes, please refer to kpds_sync_object,
kpds_get_attribute and kpds_set_attribute.

G.1.12. kpds_copy_object_data() — copy all data from one object to another object.

2-77



Polymorphic Data Services Program Services Volume II - Chapter 2

Synopsis
int kpds_copy_object_data(

kobject source_object,
kobject destination_object)

Input Arguments
source_object

the object that serves as a source for the data.

Output Arguments
destination_object

the object that will serve as a destination in the copy operation.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This function copies all of the data associated with the source_object to the destination_object. This
means that all of the data in the object will be copied, not just the data associated with the polymorphic
data model (Value, Mask, Map, Location and Time data). For example, the source object may contain
data that one of the other services (such as geometry services or color services.) use. These data will
also be copied.

This routine will create all of the data in the destination_object that do not exist. It will initialize two
attributes that are used to define the physical storage the of the data: KPDS_*_SIZE, and
KPDS_*_DAT A_TYPE. If the data already exists in the destination_object, then the data will be
replaced with what is in the source_object. In this case, the data type and size will not be changed. As
the data is copied from the source to the destination, it will be cast and resized to fit the destination.
The attribute that is used to control how the resize occurs is KPDS_*_INTERPOLATE. This attribute
can take on the values KNONE indicating that no resize should occur (if resize is necessary, then this
function will fail); KPAD, indicating that the data should be padded with the KPDS_*_PAD_VALUE
if the source object is larger than the source, or clipped if the destination is smaller than the source; or
KZERO_ORDER, which indicates that a zero-order hold interpolation (pixel replication) should occur.

G.1.13. kpds_sync_object() — synchronize physical and presentation layers of a data object.

Synopsis
int kpds_sync_object(

kobject object,
int direction)

2-78



Polymorphic Data Services Program Services Volume II - Chapter 2

Input Arguments
object

data object to be re-synchronized.
direction

the desired direction of the synchronization. the legal values are KPRES2PHYS, which indicates that
the physical layer will be updated to correspond to the presentation layer; and KPHYS2PRES, which
indicates that the presentation layer will be updated to correspond to the physical layer.

Returns
TRUE (1) if object sync’ed, FALSE (0) otherwise

Description
This function is used to update physical attributes of the entire data object to match those of the pre-
sentation layer, or visa-versa.

When an attribute is set via kpds_set_attribute(s) or kpds_copy_object_attr, the presentation version of
the attribute is the only thing that is directly manipulated. The KPDS_COUPLING attribute is used at
that time to determine if the physical attribute should be updated to correspond to its value at the pre-
sentation level or vice versa. The KPDS_COUPLING attribute can take on one of three values: KUN-
COUPLED, KCOUPLED, or KDEMAND. If it is set to KUNCOUPLED or KDEMAND, then Poly-
morphic Services will not update the physical layer. If the attribute is set to KCOUPLED, then Poly-
morphic Services immediately updates the physical layer any time kpds_set_attribute(s) is called. If
the attribute is set to KDEMAND, then this updating will only occur when kpds_sync_object is called.
If the KPDS_COUPLING attribute is set to KUNCOUPLED, then this routine will simply return and
an error message will be returned.

G.2. Data Functions

• kpds_get_data() - retrieve data from a data object.
• kpds_put_data() - store data in a data object.

G.2.1. kpds_get_data() — retrieve data from a data object.

Synopsis
kaddr
kpds_get_data(

kobject object,
char *primitive,
kaddr data)

Input Arguments
object

the object that will serve as the source for the data to be retrieved.

2-79



Polymorphic Data Services Program Services Volume II - Chapter 2

primitive
a description of the unit of data desired.

data
a pointer to the region of memory that will serve as a destination for the data. If this value is NULL,
then sufficient space for this operation will be allocated to return the data. The data type kaddr is used
because it represents a generic data pointer.

Output Arguments
data

if "data" is not initially NULL, then the memory that it points to will be filled with the requested data.

Returns
If "data" is not initially NULL, then the data space pointed to by "data" will be returned on success. If
the "data" argument is NULL, then a new pointer to the requested data will be returned. Unsuccessful
calls to this routine are indicated by a return value of NULL.

Description
This function is used to retrieve a unit of data, referred to as a "primitive", from a data object.

Data within a data object is accessed in terms of the polymorphic data model. The polymorphic data
model contains 5 different data segments: value, mask, location, map, and time. Data is retrieved from
an object by using a segment-specific primitive.

The first argument to this function is the data object from which the data should be retrieved.

The second argument is the data primitive which should be retrieved.

Data primitives are accessed relative to the position and offset attributes. For instance, the position and
offset at which a value primitive will be accessed are determined by the attributes
KPDS_VALUE_POSITION and KPDS_VALUE_OFFSET.

Successive calls to kpds_get_data cause an automatic increment of the position attribute. The position
is incremented by the amount of data contained in the primitive. This allows kpds_get_data to be
called repeatedly in order to traverse all data within a data segment. For example, successive calls to
get KPDS_VALUE_PLANE primitives will return successive planes down depth, time, and then ele-
ments.

Below is a list of the types of primitives that are available:

point - specifies that a single value will be returned. Successive calls to kpds_get_data
will result in adjacent points being returned, as described above. An example of
a point primitive is KPDS_VALUE_POINT.

line - specifies that a one-dimensional unit of data will be returned. The direction of a
line is always along the width of the dataset. An example of a line primitive is
KPDS_VALUE_LINE.

2-80



Polymorphic Data Services Program Services Volume II - Chapter 2

plane - specifies that a two-dimensional unit of data will be returned. The plane is
defined along the width and height of the segment. An example of a plane prim-
itive is KPDS_VALUE_PLANE.

volume - specifies that a three-dimensional unit of data will be returned. The volume is
defined along the width, height, and depth of the segment. An example of a vol-
ume primitive is KPDS_VALUE_VOLUME.

region - specifies that a n-dimensional unit of data will be returned. The n varies from
segment to segment and is based on the dimensionality of the segment being
accessed. For example, the value segment will be 5-dimensional, so n is 5 for
the value segment. A region upper corner is specified by the current position
(for the value segment, this is a five-tuple). The size of the region is given by a
region size attribute (such as KPDS_VALUE_REGION_SIZE) which must be
set prior to using this primitive. An example of a region primitive is
KPDS_VALUE_REGION.

all - specifies that all data for the specified segment should be returned. An example
of an all primitive is KPDS_VALUE_ALL. Note that position and offset do not
affect this primitive.

vector - specifies that a one-dimensional unit of data should be returned. An example of
a vector primitive is KPDS_VALUE_VECTOR.

For the five segments each has a different dimension that specifies a vector.
Below is a list of the data segments and their associated vector definition:

VALUE - KELEMENTS
MASK - KELEMENTS
MAP - KWIDTH
LOCATION - KDIMENSION
TIME - KTIME

The third argument, "data", serves as both an input and an output argument. As
input, it dictates whether kpds_get_data must allocate space sufficient for the
operation. If the argument is NULL, then memory will be allocated to store the
data primitive requested. A pointer to that memory will be returned. If this
argument is not NULL, then kpds_get_data assumes that the "data" argument is
a pointer to a sufficient amount of memory with the correct dimensionality for
the primitive (no memory allocation occurs). In this case, if this routine returns
successfully, then the return value is the pointer "data".

2-81



Polymorphic Data Services Program Services Volume II - Chapter 2

Restrictions
This routine assumes that if the argument "data" is not NULL, then it contains the appropriate amount
of memory with the appropriate dimensionality for the requested primitive.

G.2.2. kpds_put_data() — store data in a data object.

Synopsis
int
kpds_put_data(

kobject object,
char *primitive,
kaddr data)

Input Arguments
object

the data object that will serve as a destination for the data.
primitive

a description of the unit of data in the argument "data".
data

a pointer to the region of memory that will be stored.

Returns
TRUE on success, FALSE otherwise

Description
This function is used to store a unit of data, referred to as a "primitive", into a data object.

Data within a data object is accessed in terms of the polymorphic data model. The polymorphic data
model contains 5 different data segments: value, mask, location, map, and time. Data is stored in an
object by using a segment-specific primitive.

The first argument to this function is the data object in which the data should be stored.

The second argument is the data primitive which should be stored.

Data primitives are accessed relative to the position and offset attributes. For instance, the position and
offset at which a value primitive will be accessed are determined by the attributes
KPDS_VALUE_POSITION and KPDS_VALUE_OFFSET.

Successive calls to kpds_get_data cause an automatic increment of the position attribute. The position
is incremented by the amount of data contained in the primitive. This allows kpds_put_data to be
called repeatedly in order to traverse all data within a data segment. For example, successive calls to
get KPDS_VALUE_PLANE primitives will store successive planes down depth, time, and then

2-82



Polymorphic Data Services Program Services Volume II - Chapter 2

elements.

Below is a list of the types of primitives that are available:

point - specifies that a single value will be stored. Successive calls to kpds_put_data
will result in adjacent points being stored, as described above. An example of a
point primitive is KPDS_VALUE_POINT.

line - specifies that a one-dimensional unit of data will be stored. The direction of a
line is always along the width of the dataset. An example of a line primitive is
KPDS_VALUE_LINE.

plane - specifies that a two-dimensional unit of data will be stored. The plane is defined
along the width and height of the segment. An example of a plane primitive is
KPDS_VALUE_PLANE.

volume - specifies that a three-dimensional unit of data will be stored. The volume is
defined along the width, height, and depth of the segment. An example of a vol-
ume primitive is KPDS_VALUE_VOLUME.

region - specifies that a n-dimensional unit of data will be stored. The n varies from seg-
ment to segment and is based on the dimensionality of the segment being
accessed. For example, the value segment will be 5-dimensional, so n is 5 for
the value segment. A region upper corner is specified by the current position
(for the value segment, this is a five-tuple). The size of the region is given by a
region size attribute (such as KPDS_VALUE_REGION_SIZE) which must be
set prior to using this primitive. An example of a region primitive is
KPDS_VALUE_REGION.

all - specifies that all data for the specified segment should be stored. An example of
an all primitive is KPDS_VALUE_ALL. Note that position and offset do not
affect this primitive.

vector - specifies that a one-dimensional unit of data will be stored. An example of a
vector primitive is KPDS_VALUE_VECTOR.

For the five segments each has a different dimension that specifies a vector.
Below is a list of the data segments and their associated vector definition:

VALUE - KELEMENTS
MASK - KELEMENTS
MAP - KWIDTH
LOCATION - KDIMENSION
TIME - KTIME

2-83



Polymorphic Data Services Program Services Volume II - Chapter 2

The third argument is the data to be stored. This must be a non-NULL pointer
to valid data of the appropriate size (as defined, for example, by the
KPDS_VALUE_SIZE attribute) and data type (as defined, for example, by the
KPDS_VALUE_DAT A_TYPE attribute).

The data is copied out of the data array on storage, so it can be overwritten or
freed after the kpds_put_data call.

G.3. Attribute Functions

• kpds_copy_attribute() - copy an attribute from one object to another
• kpds_copy_attributes() - copy multiple attributes from one object to another.
• kpds_get_attribute() - get the value of an attribute from a data object
• kpds_get_attributes() - get the values of multiple attributes from a data object
• kpds_match_attribute() - returns TRUE if the same attribute in two objects match.
• kpds_match_attributes() - returns true if the list of segment attributes in two objects match.
• kpds_print_attribute() - print the value of an attribute from a data object.
• kpds_query_attribute() - get information about an attribute
• kpds_set_attribute() - set the values of an attribute in a data object
• kpds_set_attributes() - set the values of multiple attributes in a data object.

G.3.1. kpds_copy_attribute() — copy an attribute from one object to another

Synopsis
int
kpds_copy_attribute(

kobject object1,
kobject object2,
char *attribute)

Input Arguments
object1

the object to copy from
object2

the object to copy to
attribute

the attribute to copy

Returns
TRUE on success, FALSE otherwise

Description
This function is used to copy a single attribute from one object to another object.

2-84



Polymorphic Data Services Program Services Volume II - Chapter 2

Data Services manages two versions of some of the attributes associated with each object. These
attributes are the size and data type. Internally, the two versions of these attributes are referred to as
the physical attribute and the presentation attribute. Typically, the programmer has access to only the
presentation versions of these attributes. The physical attributes are set indirectly depending on the
setting of KPDS_COUPLING. See kpds_get_data for a description of how the presentation and physi-
cal attributes affect interaction with the data object.

Other attributes are classified as either shared or unshared. Shared attributes are stored at the physical
layer of the attribute, and thus can be shared by multiple references of the data object (see kpds_refer-
ence_object for more information about references). Unshared attributes, on the other hand, can only
be used by the local object (see kpds_query_attribute for information on how to determine whether an
attribute is shared or unshared).

This function accepts a source object, a destination object, and an attribute name. If the attribute exists
in the source object, then it will be copied to the destination object. If the attribute does not exist in the
source object, then an error condition is returned.

A complete list of the polymorphic attributes can be found in Chapter 2 of Programming Services Vol-
ume II.

G.3.2. kpds_copy_attributes() — copy multiple attributes from one object to another.

Synopsis
int
kpds_copy_attributes(

kobject object1,
kobject object2,
kvalist)

Input Arguments
object1

the object to copy from
object2

the object to copy to va_alist - NULL terminated list of attribute names to copy.

Returns
TRUE on success, FALSE otherwise

Description
This function is used to copy multiple attributes from one object to another. The attributes should be
provided in a NULL terminated variable argument list.

Data Services manages two versions of some of the attributes associated with each object. These

2-85



Polymorphic Data Services Program Services Volume II - Chapter 2

attributes are the size and data type. Internally, the two versions of these attributes are referred to as
the physical attribute and the presentation attribute. Typically, the programmer has access to only the
presentation versions of these attributes. The physical attributes are set indirectly depending on the
setting of KPDS_COUPLING. See kpds_get_data for a description of how the presentation and physi-
cal attributes affect interaction with the data object.

Other attributes are classified as either shared or unshared. Shared attributes are stored at the physical
layer of the attribute, and thus can be shared by multiple references of the data object (see kpds_refer-
ence_object for more information about references). Unshared attributes, on the other hand, can only
be used by the local object (see kpds_query_attribute for information on how to determine whether an
attribute is shared or unshared).

This function accepts a source object, a destination object, and a list of attribute names. The last argu-
ment to this function must be NULL. If it is not NULL, then the behavior of this function will be
unpredictable (the NULL argument is used as a sentinal to indicate the end of the variable argument
list. If the sentinal is not present, then this function will continue to attempt to pull arguments off of
the stack, until it finds a NULL). If each of the attributes exist in the source object, then it will be
copied to the destination object. If an attribute does not exist in the source object, then an error condi-
tion is returned. In the event that an attribute does not exist, then the remainder of the attributes on the
list will not be copied.

A complete list of the polymorphic attributes can be found in Chapter 2 of Programming Services Vol-
ume II.

G.3.3. kpds_get_attribute() — get the value of an attribute from a data object

Synopsis
int
kpds_get_attribute(

kobject object,
char *attribute,
kvalist)

Input Arguments
object

the object from which to retrieve the specified attribute. This must be a legal kobject that has been
opened or instantiated by an appropriate kpds function call, such as kpds_open_object or kpds_refer-
ence.

attribute
the name of the attribute to retrieve. this is a character string that is the name of an existing attribute in
the object. There are a large number of predefined KPDS attributes. Users can also create attributes
via the kpds_create_attribute function call.

2-86



Polymorphic Data Services Program Services Volume II - Chapter 2

Returns
TRUE if the attribute was successfully retrieved, FALSE otherwise.

Description
This routine is used to get the value of an attribute from a data object.

Data Services manages two versions of some of the attributes associated with each object. These
attributes are the size and data type. Internally, the two versions of these attributes are referred to as
the physical attribute and the presentation attribute. Typically, the programmer has access to only the
presentation versions of these attributes. The physical attributes are set indirectly depending on the
setting of KPDS_COUPLING. See kpds_get_data for a description of how the presentation and physi-
cal attributes affect interaction with the data object.

Other attributes are classified as either shared or unshared. Shared attributes are stored at the physical
layer of the attribute, and thus can be shared by multiple references of the data object (see kpds_refer-
ence_object for more information about references). Unshared attributes, on the other hand, can only
be used by the local object (see kpds_query_attribute for information on how to determine whether an
attribute is shared or unshared).

This function accepts an object, the name of the attribute that is desired and the address of a location in
which to return the value of the attribute. Certain KPDS attributes require more than one argument in
order to return the entire attribute. For example, KPDS_VALUE_SIZE requires five (5) arguments.
Getting the KPDS_VALUE_DAT A_TYPE attribute might look like this:

kpds_get_attribute(object, KPDS_VALUE_DAT A_TYPE, &typ);

Getting the KPDS_VALUE_SIZE attribute, is a little more complex:

kpds_get_attribute(object, KPDS_VALUE_SIZE,
&w, &h, &d, &t, &e);

A complete list of the polymorphic attributes can be found in Chapter 2 of Programming Services Vol-
ume II.

G.3.4. kpds_get_attributes() — get the values of multiple attributes from a data object

Synopsis
int
kpds_get_attributes(

kobject object,
kvalist)

2-87



Polymorphic Data Services Program Services Volume II - Chapter 2

Input Arguments
object

the object from which to retrieve the specified attribute. This must be a legal kobject that has been
opened or instantiated by an appropriate kpds function call, such as kpds_open_object or kpds_refer-
ence.

Returns
TRUE if the attribute was successfully retrieved, FALSE otherwise.

Description
This function is used to retrieve the values of an arbitrary number of attributes from a data object.

Data Services manages two versions of some of the attributes associated with each object. These
attributes are the size and data type. Internally, the two versions of these attributes are referred to as
the physical attribute and the presentation attribute. Typically, the programmer has access to only the
presentation versions of these attributes. The physical attributes are set indirectly depending on the
setting of KPDS_COUPLING. See kpds_get_data for a description of how the presentation and physi-
cal attributes affect interaction with the data object.

Other attributes are classified as either shared or unshared. Shared attributes are stored at the physical
layer of the attribute, and thus can be shared by multiple references of the data object (see kpds_refer-
ence_object for more information about references). Unshared attributes, on the other hand, can only
be used by the local object (see kpds_query_attribute for information on how to determine whether an
attribute is shared or unshared).

This function accepts an object followed by a list of of arguments that alternate between an attribute
name and an address into which the attribute’s value will be stored. The last argument on this list is a
NULL which serves as a flag that indicates that no more attributes are present on the list. Certain
KPDS attributes require more than one address in order to return the entire attribute. For example,
KPDS_VALUE_SIZE requires five (5) arguments. For example,

kpds_get_attributes(object,
KPDS_VALUE_DAT A_TYPE, &typ,
KPDS_VALUE_SIZE, &w, &h, &d, &t, &e,
NULL);

The last argument to this function must be NULL. If it is not NULL, then the behavior of this function
will be unpredictable (the NULL argument is used as a sentinal to indicate the end of the variable argu-
ment list. If the sentinal is not present, then this function will continue to attempt to pull arguments off
of the stack, until it finds a NULL).

A complete list of the polymorphic attributes can be found in Chapter 2 of Programming Services Vol-
ume II.

2-88



Polymorphic Data Services Program Services Volume II - Chapter 2

G.3.5. kpds_match_attribute() — returns TRUE if the same attribute in two objects match.

Synopsis
int
kpds_match_attribute(

kobject object1,
kobject object2,
char *attr)

Input Arguments
object1

the first object on which to match the specified attribute
object2

the second object on which to match the specified attribute attribute - the attribute that will be com-
pared in the two objects.

Returns
There are three ways for this routine to return a FALSE: (1) if the attribute in the two objects does not
match; (2) if either object does not contain the specified attribute; (3) an error condition resulting from
an invalid object or segment. If none of these three conditions exist, then this function will return
TRUE.

Description
The purpose of this routine is to allow the programmer to compare a single in two data objects.

Data Services manages two versions of some of the attributes associated with each object. These
attributes are the size and data type. Internally, the two versions of these attributes are referred to as
the physical attribute and the presentation attribute. Typically, the programmer has access to only the
presentation versions of these attributes. The physical attributes are set indirectly depending on the
setting of KPDS_COUPLING. See kpds_get_data for a description of how the presentation and physi-
cal attributes affect interaction with the data object.

Other attributes are classified as either shared or unshared. Shared attributes are stored at the physical
layer of the attribute, and thus can be shared by multiple references of the data object (see kpds_refer-
ence_object for more information about references). Unshared attributes, on the other hand, can only
be used by the local object (see kpds_query_attribute for information on how to determine whether an
attribute is shared or unshared).

This routine will return TRUE if the specified attribute has the same value in both of the objects. This
routine will return FALSE if the attribute does not have the same value in both of of the objects.
kpds_match_attribute will also return FALSE if the attribute does not exist in either or both of the
objects.

A complete list of the polymorphic attributes can be found in Chapter 2 of Programming Services Vol-
ume II.

2-89



Polymorphic Data Services Program Services Volume II - Chapter 2

G.3.6. kpds_match_attributes() — returns true if the list of segment attributes in two objects
match.

Synopsis
int
kpds_match_attributes(

kobject object1,
kobject object2,
kvalist)

Input Arguments
object1

the first object on which to match the specified attributes
object2

the second object on which to match the specified attributes va_alist - variable argument list, that con-
tains an arbitrarily long list of attributes followed a NULL. It takes the form:

ATTRIBUTE_NAME1, ATTRIBUTE_NAME2, ..., NULL

Returns
There are three ways for this routine to return a FALSE: (1) if any of the attributes between the two
objects do not match; (2) if either object does not contain one or more of the specified attributes; (3) an
error condition resulting from an invalid object or segment. If none of these three conditions exist,
then this function will return TRUE.

Description
The purpose of this routine is to allow the programmer to compare multiple attributes in two object.

Data Services manages two versions of some of the attributes associated with each object. These
attributes are the size and data type. Internally, the two versions of these attributes are referred to as
the physical attribute and the presentation attribute. Typically, the programmer has access to only the
presentation versions of these attributes. The physical attributes are set indirectly depending on the
setting of KPDS_COUPLING. See kpds_get_data for a description of how the presentation and physi-
cal attributes affect interaction with the data object.

Other attributes are classified as either shared or unshared. Shared attributes are stored at the physical
layer of the attribute, and thus can be shared by multiple references of the data object (see kpds_refer-
ence_object for more information about references). Unshared attributes, on the other hand, can only
be used by the local object (see kpds_query_attribute for information on how to determine whether an
attribute is shared or unshared).

This routine will return TRUE if all of the specified attributes have the same value in the objects. This
routine will return FALSE if any of the attributes do not match kpds_match_attributes will also return
FALSE if any of the attributes do not exist in either or both of the two objects.

2-90



Polymorphic Data Services Program Services Volume II - Chapter 2

The last argument to this function must be NULL. If it is not NULL, then the behavior of this function
will be unpredictable (the NULL argument is used as a sentinal to indicate the end of the variable argu-
ment list. If the sentinal is not present, then this function will continue to attempt to pull arguments off
of the stack, until it finds a NULL).

A complete list of the polymorphic attributes can be found in Chapter 2 of Programming Services Vol-
ume II.

G.3.7. kpds_print_attribute() — print the value of an attribute from a data object.

Synopsis
int
kpds_print_attribute(

kobject object,
char *attribute,
kfile *printfile)

Input Arguments
object

the object containing the attribute
attribute

the attribute to print
printfile

the open kfile to print to

Returns
TRUE on success, FALSE otherwise

Description
This function is used to print the value of an attribute from a data object to an output file.

This function is typically used by such programs as kprdata to print out the values of attributes in an
object.

G.3.8. kpds_query_attribute() — get information about an attribute

Synopsis
int
kpds_query_attribute(

2-91



Polymorphic Data Services Program Services Volume II - Chapter 2

kobject object,
char *attribute,
int *num_args,
int *arg_size,
int *data_type,
int *permanent)

Input Arguments
object

the object with the attribute
attribute

name of the attribute to be queried.
num_args

number of arguments in this attribute
arg_size

size of each argument in this attribute.
data_type

datatype of the attribute
permanent

is the attribute stored or transient? The return value will be either TRUE or FALSE

Returns
TRUE if attribute exists, FALSE otherwise

Description
This function is used for two purposes: (1) to determine the existence of an attribute; and (2) to obtain
the characteristics of the attribute.

Data Services manages two versions of some of the attributes associated with each object. These
attributes are the size and data type. Internally, the two versions of these attributes are referred to as
the physical attribute and the presentation attribute. Typically, the programmer has access to only the
presentation versions of these attributes. The physical attributes are set indirectly depending on the
setting of KPDS_COUPLING. See kpds_get_data for a description of how the presentation and physi-
cal attributes affect interaction with the data object.

Other attributes are classified as either shared or unshared. Shared attributes are stored at the physical
layer of the attribute, and thus can be shared by multiple references of the data object (see kpds_refer-
ence_object for more information about references). Unshared attributes, on the other hand, can only
be used by the local object.

The difference between shared and unshared attributes is abstracted from the user at the PDS level.
The permanent attributes are generally shared, and the non-permanent attributes are generally non-
shared. Permanent attributes are attributes that will be stored as part of an output object when it is
written. Any attributes that are retrieved when an object is opened are also permanent attributes. Non-
permanent attributes exist only while the program that is operating on the object is executing.

The datatype argument indicates what kind of information is stored in the attribute. Attributes can be
one of the following data types: KBYTE, KUBYTE, KSHORT, KUSHORT, KINT, KUINT, KLONG,

2-92



Polymorphic Data Services Program Services Volume II - Chapter 2

KULONG, KFLOAT , KDOUBLE, KCOMPLEX, or KDCOMPLEX.

The num_args argument indicates how many arguments must be passed in an argument list to one of
the attribute functions.

The size arguments indicates the number of units of the data type there are in each argument. This
argument allows arrays of information to be stored as attributes.

Any arguments after object, segment, and attribute name can be set to NULL if the user does not need
these values.

G.3.9. kpds_set_attribute() — set the values of an attribute in a data object

Synopsis
int
kpds_set_attribute(

kobject object,
char *attribute,
kvalist)

Input Arguments
object

the object in which to set the specified attribute. This must be a legal kobject that has been opened or
instantiated by an appropriate kpds function call, such as kpds_open_object or kpds_reference.

attribute
the name of the attribute to set. this is a character string that is the name of an existing attribute in the
object. There are a large number of predefined KPDS attributes. Users can also create attributes via
the kpds_create_attribute function call. va_alist - a C variable argument list that contains value or
values of the specified attribute.

Returns
TRUE if the attribute was successfully set, FALSE otherwise.

Description
This function is used to assign the value of a attribute to a data object.

Data Services manages two versions of some of the attributes associated with each object. These
attributes are the size and data type. Internally, the two versions of these attributes are referred to as
the physical attribute and the presentation attribute. Typically, the programmer has access to only the
presentation versions of these attributes. The physical attributes are set indirectly depending on the
setting of KPDS_COUPLING. See kpds_get_data for a description of how the presentation and physi-
cal attributes affect interaction with the data object.

2-93



Polymorphic Data Services Program Services Volume II - Chapter 2

Other attributes are classified as either shared or unshared. Shared attributes are stored at the physical
layer of the attribute, and thus can be shared by multiple references of the data object (see kpds_refer-
ence_object for more information about references). Unshared attributes, on the other hand, can only
be used by the local object (see kpds_query_attribute for information on how to determine whether an
attribute is shared or unshared).

This function accepts an object, the name of the attribute that is desired and the value of the attribute.
Certain KPDS attributes require more than one value in order to set the entire attribute. For example,
KPDS_VALUE_SIZE requires five (5) arguments. For example, setting the
KPDS_VALUE_DAT A_TYPE attribute might look like this:

kpds_set_attribute(object, KPDS_VALUE_DAT A_TYPE, KFLOAT);

Setting the KPDS_VALUE_SIZE attribute, is a little more complex:

kpds_set_attribute(object, KPDS_VALUE_SIZE,
100, 100, 1, 1, 1);

A complete list of the polymorphic attributes can be found in Chapter 2 of Programming Services Vol-
ume II.

G.3.10. kpds_set_attributes() — set the values of multiple attributes in a data object.

Synopsis
int
kpds_set_attributes(

kobject object,
kvalist)

Input Arguments
object

the object in which to set the specified attribute. This must be a legal kobject that has been opened or
instantiated by an appropriate kpds function call, such as kpds_open_object or kpds_reference.

Returns
TRUE if the attribute was successfully retrieved, FALSE otherwise.

Description
This function is used to assign the values of an arbitrary number of attributes to a data object.

2-94



Polymorphic Data Services Program Services Volume II - Chapter 2

Data Services manages two versions of some of the attributes associated with each object. These
attributes are the size and data type. Internally, the two versions of these attributes are referred to as
the physical attribute and the presentation attribute. Typically, the programmer has access to only the
presentation versions of these attributes. The physical attributes are set indirectly depending on the
setting of KPDS_COUPLING. See kpds_get_data for a description of how the presentation and physi-
cal attributes affect interaction with the data object.

Other attributes are classified as either shared or unshared. Shared attributes are stored at the physical
layer of the attribute, and thus can be shared by multiple references of the data object (see kpds_refer-
ence_object for more information about references). Unshared attributes, on the other hand, can only
be used by the local object (see kpds_query_attribute for information on how to determine whether an
attribute is shared or unshared).

This function accepts an object followed by a list of of arguments that alternate between an attribute
name and values that the specified attribute is to be set to. The last argument on this list is a NULL
which serves as a flag that indicates that no more attributes are present on the list. Certain KPDS
attributes require more than one value in order to return the entire attribute. For example,
KPDS_VALUE_SIZE requires five (5) arguments. For example,

kpds_set_attributes(object,
KPDS_VALUE_DAT A_TYPE, KFLOAT ,
KPDS_VALUE_SIZE, 100, 100, 1, 1, 1,
NULL);

The last argument to this function must be NULL. If it is not NULL, then the behavior of this function
will be unpredictable (the NULL argument is used as a sentinal to indicate the end of the variable argu-
ment list. If the sentinal is not present, then this function will continue to attempt to pull arguments off
of the stack, until it finds a NULL).

A complete list of the polymorphic attributes can be found in Chapter 2 of Programming Services Vol-
ume II.

G.4. Location Functions

• kpds_copy_location() - copy the location segment from one object to another.
• kpds_copy_location_attr() - copy all location attributes from one object to another object.
• kpds_copy_location_data() - copy all location data from one object to another object.
• kpds_create_location() - create a location segment within a data object.
• kpds_destroy_location() - destroy the location segment in a data object.
• kpds_query_location() - determine if the location segment exists in a data object.

2-95



Polymorphic Data Services Program Services Volume II - Chapter 2

G.4.1. kpds_copy_location() — copy the location segment from one object to another.

Synopsis
int kpds_copy_location(

kobject object1,
kobject object2,
int copy_through_presentation)

Input Arguments
object1

the object that serves as a source for the location segment.

copy_through_presentation
if set to TRUE, the copy will be performed through the presentation of the source and destination
objects. if set to FALSE, the copy will be a direct copy of the physical data.

Output Arguments
object2

the object that will serve as a destination for the copy operation.

Returns
TRUE if copy was successful, FALSE otherwise

Description
This function copies all of the attributes and data contained in the location segment of one object into
the location segment contained in another object. If the location segment exists in the destination
object, then its data will be replaced with the data from the source object. If the location segment does
not exist in the destination object, it will be created.

All location segment attributes will be copied from one object to the other. This includes presentation
attributes, such as position and offset.

The location data can be optionally copied through the presentations of the two data objects. This
implies that any presentation stages which are normally invoked during a kpds_get_data on the source
object or a kpds_put_data call on the destination object will be used for the copy.

Any of the following presentation stages can be invoked on either the source object or the destination
object : casting, scaling, normalizing, padding, and interpolating.

The following presentation stages can be invoked on only the source object : axis assignment, position,
and offset. The resulting copy will be transposed to be in the default axis ordering. The resulting copy
will also appear to be shifted by the source position and offset.

The resulting copy will contain data in the most explicit grid type between the source and the

2-96



Polymorphic Data Services Program Services Volume II - Chapter 2

destination.

For example, if the destination grid type is curvilinear, and the source grid type is uniform, the result-
ing copy will contain curvilinear data. However, if the destination grid type is uniform, and the source
grid type is curvilinear, then the destination must be curvilinear. In general, the copy can not contain
less data than is contained in the source.

If the destination grid type is not set, then the copy will preserve the source grid type.

These presentation stages are brought into the data pipeline by setting the appropriate presentation
attributes on the data objects. Please see the chapter on polymorphic data services in the data services
manual for more information on the various presentation attributes.

The following example may help in visualizing the process. The source object has a presentation data
type different from the physical data type, and a presentation size different from the physical size. The
destination object only has a different presentation and physical data type.

source -> interpolating -> casting -|...| -> casting -> destination

In the above example, the data resulting from the copy will be interpolated to a new size and cast to a
new data type. When being copied into the destination object, the data will be cast yet again before it
finally is stored.

If the presentation and physical layers of the destination object are coupled then the destination
attributes will be ignored and the source presentation attributes will be propogated to the destination
physical layer. The copy, in essence, will be performed only through the source presentation, with the
destination physical and presentation layers taking on the characteristics of the source presentation.
By default, output objects are not coupled, so this behavior is typical.

The copy need not be performed using the presentation. If the data is not copied through the presenta-
tion, the destination data will be a direct copy of the physical source data. The physical size and data
type of the location segment will be reflected in the destination data object from the source to the desti-
nation since they describe the physical state of the data. The grid type of the destination will always
match the grid type of the source in this case.

This function is equivalent to performing successive calls to kpds_copy_location_attr and
kpds_copy_location_data.

G.4.2. kpds_copy_location_attr() — copy all location attributes from one object to another
object.

Synopsis
int kpds_copy_location_attr(

kobject object1,

2-97



Polymorphic Data Services Program Services Volume II - Chapter 2

kobject object2)

Returns
TRUE if copy was successful, FALSE otherwise

Description
This function copies all the location attributes from one object to another object.

If the destination object does not contain a location segment, then this function will create a location
segment, and initialize its size and data type attributes to those in the source object. If the location data
already exists in the destination object, then the presentation attributes will be set to the source object’s
settings.

The destination’s physical attributes will change depending on the coupling of the data objects. If the
destination is coupled, then the physical attributes will be changed as well. Any data contained in the
destination will be cast, rescaled, or resized to match its new physical attributes.

G.4.3. kpds_copy_location_data() — copy all location data from one object to another object.

Synopsis
int kpds_copy_location_data(

kobject object1,
kobject object2,
int copy_through_presentation)

Input Arguments
object1

the object that serves as a source for the data.

copy_through_presentation
if set to TRUE, the copy will be performed through the presentation of the source and destination
objects. if set to FALSE, the copy will be a direct copy of the physical data.

Output Arguments
object2

the object that will serve as a destination for the copy operation.

Returns
TRUE if copy was successful, FALSE otherwise

2-98



Polymorphic Data Services Program Services Volume II - Chapter 2

Description
This function copies all of the data contained in the location segment of one object into the location
segment contained in another object. If the location segment exists in the destination object, then its
data will be replaced with the data from the source object. If the location segment does not exist in the
destination object, it will be created.

The location data can be optionally copied through the presentations of the two data objects. This
implies that any presentation stages which are normally invoked during a kpds_get_data on the source
object or a kpds_put_data call on the destination object will be used for the copy.

Any of the following presentation stages can be invoked on either the source object or the destination
object : casting, scaling, normalizing, padding, and interpolating.

The following presentation stages can be invoked on only the source object : axis assignment, position,
and offset. The resulting copy will be transposed to be in the default axis ordering. The resulting copy
will also appear to be shifted by the source position and offset.

The resulting copy will contain data in the most explicit grid type between the source and the destina-
tion.

For example, if the destination grid type is curvilinear, and the source grid type is uniform, the result-
ing copy will contain curvilinear data. However, if the destination grid type is uniform, and the source
grid type is curvilinear, then the destination must be curvilinear. In general, the copy can not contain
less data than is contained in the source.

If the destination grid type is not set, then the copy will preserve the source grid type.

These presentation stages are brought into the data pipeline by setting the appropriate presentation
attributes on the data objects. Please see the chapter on polymorphic data services in the data services
manual for more information on the various presentation attributes.

The following example may help in visualizing the process. The source object has a presentation data
type different from the physical data type, and a presentation size different from the physical size. The
destination object only has a different presentation and physical data type.

source -> interpolating -> casting -|...| -> casting -> destination

In the above example, the data resulting from the copy will be interpolated to a new size and cast to a
new data type. When being copied into the destination object, the data will be cast yet again before it
finally is stored.

If the presentation and physical layers of the destination object are coupled then the destination
attributes will be ignored and the source presentation attributes will be propogated to the destination
physical layer. The copy, in essence, will be performed only through the source presentation, with the
destination physical and presentation layers taking on the characteristics of the source presentation.
By default, output objects are not coupled, so this behavior is typical.

The copy need not be performed using the presentation. If the data is not copied through the

2-99



Polymorphic Data Services Program Services Volume II - Chapter 2

presentation, the destination data will be a direct copy of the physical source data. The physical size
and data type of the location segment will be reflected in the destination data object from the source to
the destination since they describe the physical state of the data. The grid type of the destination will
always match the grid type of the source in this case.

G.4.4. kpds_create_location() — create a location segment within a data object.

Synopsis
int kpds_create_location(

kobject object)

Input Arguments
object

object in which to create the location segment.

Returns
TRUE if the location segment was successfully created, FALSE otherwise

Description
This function is used to create a location segment within a specified data object. The size of the loca-
tion segment will be initialized to match any the sizes shared with any other polymorphic segments.

Either uniform, rectilinear, or curvilinear location grids can be created. The attribute KPDS_LOCA-
TION_GRID should be set to the desired grid type of either KUNIFORM, KRECTILINEAR, or
KCURVILINEAR, before calling kpds_create_location(). By default, if the grid attribute is not set,
curvilinear location will be created.

It is considered an error to create a location segment if the object already contains one.

G.4.5. kpds_destroy_location() — destroy the location segment in a data object.

Synopsis
int kpds_destroy_location(

kobject object)

Input Arguments
object

object from which to remove the location segment.

2-100



Polymorphic Data Services Program Services Volume II - Chapter 2

Returns
TRUE if the location segment is successfully destroyed, FALSE otherwise

Description
This function is used to destroy the location segment contained within an object. Once the location
segment has been destroyed, any data or attributes associated with the location data will be lost forever.
A new location segment can be created in its place with the function kpds_create_location.

If the location segment does not exist in the specified object, it is considered to be an error.

G.4.6. kpds_query_location() — determine if the location segment exists in a data object.

Synopsis
int kpds_query_location(

kobject object)

Input Arguments
object

data object to be queried.

Returns
TRUE if the location segment exists, FALSE otherwise

Description
This function is used to determine if the location segment exists in a data object. If location segment
exists in the specified object, then this function will return TRUE. If the object is invalid, or location
data does not exist in the object, then this function will return FALSE.

G.5. Map Functions

• kpds_copy_map() - copy the map segment from one object to another.
• kpds_copy_map_attr() - copy all map attributes from one object to another object.
• kpds_copy_map_data() - copy all map data from one object to another object.
• kpds_create_map() - create a map segment within a data object.
• kpds_destroy_map() - destroy the map segment in a data object.
• kpds_query_map() - determine if the map segment exists in a data object.

2-101



Polymorphic Data Services Program Services Volume II - Chapter 2

G.5.1. kpds_copy_map() — copy the map segment from one object to another.

Synopsis
int kpds_copy_map(

kobject object1,
kobject object2,
int copy_through_presentation)

Input Arguments
object1

the object that serves as a source for the map segment.

copy_through_presentation
if set to TRUE, the copy will be performed through the presentation of the source and destination
objects. if set to FALSE, the copy will be a direct copy of the physical data.

Output Arguments
object2

the object that will serve as a destination for the copy operation.

Returns
TRUE if copy was successful, FALSE otherwise

Description
This function copies all of the attributes and data contained in the map segment of one object into the
map segment contained in another object. If the map segment exists in the destination object, then its
data will be replaced with the data from the source object. If the map segment does not exist in the
destination object, it will be created.

All map segment attributes will be copied from one object to the other. This includes presentation
attributes, such as position and offset.

If the mapping mode is set to map the data, the map segment will appear not to be present and this call
will fail.

The map data can be optionally copied through the presentations of the two data objects. This implies
that any presentation stages which are normally invoked during a kpds_get_data on the source object
or a kpds_put_data call on the destination object will be used for the copy.

Any of the following presentation stages can be invoked on either the source object or the destination
object : casting, scaling, normalizing, padding, and interpolating.

The following presentation stages can be invoked on only the source object : axis assignment, position,
and offset. The resulting copy will be transposed to be in the default axis ordering. The resulting copy

2-102



Polymorphic Data Services Program Services Volume II - Chapter 2

will also appear to be shifted by the source position and offset.

These presentation stages are brought into the data pipeline by setting the appropriate presentation
attributes on the data objects. Please see the chapter on polymorphic data services in the data services
manual for more information on the various presentation attributes.

The following example may help in visualizing the process. The source object has a presentation data
type different from the physical data type and a presentation size different from the physical size. The
destination object only has a different presentation and physical data type.

source -> interpolating -> casting -|...| -> casting -> destination

In the above example, the data resulting from the copy will be interpolated to a new size and cast to a
new data type before being copied into the destination object. When being copied into the destination
object, the data will be cast yet again before it finally is stored.

If the presentation and physical layers of the destination object are coupled then the destination
attributes will be ignored and the source presentation attributes will be propogated to the destination
physical layer. The copy, in essence, will be performed only through the source presentation, with the
destination physical and presentation layers taking on the characteristics of the source presentation.
By default, output objects are not coupled, so this behavior is typical.

The copy need not be performed using the presentation. If the data is not copied through the presenta-
tion, the destination data will be a direct copy of the physical source data. The physical size and data
type of the map segment will be reflected in the destination data object from the source to the destina-
tion since they describe the physical state of the data.

This function is equivalent to performing successive calls to kpds_copy_map_attr and
kpds_copy_map_data.

G.5.2. kpds_copy_map_attr() — copy all map attributes from one object to another object.

Synopsis
int kpds_copy_map_attr(

kobject object1,
kobject object2)

Returns
TRUE if copy was successful, FALSE otherwise

Description
This function copies all the map attributes from one object to another object.

2-103



Polymorphic Data Services Program Services Volume II - Chapter 2

If the destination object does not contain a map segment, then this function will create a map segment,
and initialize its size and data type attributes to those in the source object. If the map data already
exists in the destination object, then the presentation attributes will be set to the source object’s set-
tings.

The destination’s physical attributes will change depending on the coupling of the data objects. If the
destination is coupled, then the physical attributes will be changed as well. Any data contained in the
destination will be cast, rescaled, or resized to match its new physical attributes.

If the mapping mode is set to map the data. then this function will not copy the map attributes.

2-104



Polymorphic Data Services Program Services Volume II - Chapter 2

G.5.3. kpds_copy_map_data() — copy all map data from one object to another object.

Synopsis
int kpds_copy_map_data(

kobject object1,
kobject object2,
int copy_through_presentation)

Input Arguments
object1

the object that serves as a source for the data.

copy_through_presentation
if set to TRUE, the copy will be performed through the presentation of the source and destination
objects. if set to FALSE, the copy will be a direct copy of the physical data.

Output Arguments
object2

the object that will serve as a destination for the copy operation.

Returns
TRUE if copy was successful, FALSE otherwise

Description
This function copies all of the data contained in the map segment of one object into the map segment
contained in another object. If the map segment exists in the destination object, then its data will be
replaced with the data from the source object. If the map segment does not exist in the destination
object, it will be created.

The map data can be optionally copied through the presentations of the two data objects. This implies
that any presentation stages which are normally invoked during a kpds_get_data on the source object
or a kpds_put_data call on the destination object will be used for the copy.

When copying through the presentation, if the mapping mode is set to map the data, the map segment
will appear not to be present and this call will fail. The copy will work normally if not copying
through the presentations.

Any of the following presentation stages can be invoked on either the source object or the destination
object : casting, scaling, normalizing, padding, and interpolating.

The following presentation stages can be invoked on only the source object : axis assignment, position,
and offset. The resulting copy will be transposed to be in the default axis ordering. The resulting copy
will also appear to be shifted by the source position and offset.

2-105



Polymorphic Data Services Program Services Volume II - Chapter 2

These presentation stages are brought into the data pipeline by setting the appropriate presentation
attributes on the data objects. Please see the chapter on polymorphic data services in the data services
manual for more information on the various presentation attributes.

The following example may help in visualizing the process. The source object has a presentation data
type different from the physical data type and a presentation size different from the physical size. The
destination object only has a different presentation and physical data type.

source -> interpolating -> casting -|...| -> casting -> destination

In the above example, the data resulting from the copy will be interpolated to a new size and cast to a
new data type before being copied into the destination object. When being copied into the destination
object, the data will be cast yet again before it finally is stored.

If the presentation and physical layers of the destination object are coupled then the destination
attributes will be ignored and the source presentation attributes will be propogated to the destination
physical layer. The copy, in essence, will be performed only through the source presentation, with the
destination physical and presentation layers taking on the characteristics of the source presentation.
By default, output objects are not coupled, so this behavior is typical.

The copy need not be performed using the presentation. If the data is not copied through the presenta-
tion, the destination data will be a direct copy of the physical source data. The physical size and data
type of the map segment will be reflected in the destination data object from the source to the destina-
tion since they describe the physical state of the data. Again, if not copying through the presentation,
the copy will ignore the mapping mode of the object.

G.5.4. kpds_create_map() — create a map segment within a data object.

Synopsis
int kpds_create_map(

kobject object)

Input Arguments
object

object in which to create the map segment.

Returns
TRUE if the map segment was successfully created, FALSE otherwise

Description
This function is used to create a map segment within a specified data object. The map segment can not

2-106



Polymorphic Data Services Program Services Volume II - Chapter 2

be created if mapping mode is set to map the value data.

It is considered an error to create a map segment if the object already contains one.

G.5.5. kpds_destroy_map() — destroy the map segment in a data object.

Synopsis
int kpds_destroy_map(

kobject object)

Input Arguments
object

object from which to remove the map segment.

Returns
TRUE if the map segment is successfully destroyed, FALSE otherwise

Description
This function is used to destroy the map segment contained within an object. Once the map segment
has been destroyed, any data or attributes associated with the map data will be lost forever. A new map
segment can be created in its place with the function kpds_create_map.

If the mapping mode is set to map the data. then this function will not destroy the map. This is
because destroying the map when operating in this mode would cause an inconsistency in the interpre-
tation of the value data. KPDS_MAPPING_MODE is an attribute which, when set to KMAPPED,
causes the map data to be unmapped into the value data. For example, if you are operating on a
pseudo-colored image, and set mapping mode, the result will be that the value data will appear to be a
true-color image.

G.5.6. kpds_query_map() — determine if the map segment exists in a data object.

Synopsis
int kpds_query_map(

kobject object)

Input Arguments
object

data object to be queried.

2-107



Polymorphic Data Services Program Services Volume II - Chapter 2

Returns
TRUE if the map segment exists, FALSE otherwise

Description
This function is used to determine if the map segment exists in a data object. If map segment exists in
the specified object, then this function will return TRUE. If the object is invalid, or map data does not
exist in the object, then this function will return FALSE.

When the mapping mode is set to map the data, the data object will always appear to not contain a
map.

G.6. Mask Functions

• kpds_copy_mask() - copy the mask segment from one object to another.
• kpds_copy_mask_attr() - copy all mask attributes from one object to another object.
• kpds_copy_mask_data() - copy all mask data from one object to another object.
• kpds_create_mask() - create a mask segment within a data object.
• kpds_destroy_mask() - destroy the mask segment in a data object.
• kpds_query_mask() - determine if the mask segment exists in a data object.

G.6.1. kpds_copy_mask() — copy the mask segment from one object to another.

Synopsis
int kpds_copy_mask(

kobject object1,
kobject object2,
int copy_through_presentation)

Input Arguments
object1

the object that serves as a source for the mask segment.

copy_through_presentation
if set to TRUE, the copy will be performed through the presentation of the source and destination
objects. if set to FALSE, the copy will be a direct copy of the physical data.

Output Arguments
object2

the object that will serve as a destination for the copy operation.

Returns
TRUE if copy was successful, FALSE otherwise

2-108



Polymorphic Data Services Program Services Volume II - Chapter 2

Description
This function copies all of the attributes and data contained in the mask segment of one object into the
mask segment contained in another object. If the mask segment exists in the destination object, then
its data will be replaced with the data from the source object. If the mask segment does not exist in the
destination object, it will be created.

All mask segment attributes will be copied from one object to the other. This includes presentation
attributes, such as position and offset.

The mask data can be optionally copied through the presentations of the two data objects. This implies
that any presentation stages which are normally invoked during a kpds_get_data on the source object
or a kpds_put_data call on the destination object will be used for the copy.

Any of the following presentation stages can be invoked on either the source object or the destination
object : casting, scaling, normalizing, padding, and interpolating.

The following presentation stages can be invoked on only the source object : mapping, axis assign-
ment, position, and offset. The resulting copy will be mapped through the map and transposed to be in
the default axis ordering. The resulting copy will also appear to be shifted by the source position and
offset.

These presentation stages are brought into the data pipeline by setting the appropriate presentation
attributes on the data objects. Please see the chapter on polymorphic data services in the data services
manual for more information on the various presentation attributes.

The following example may help in visualizing the process. The source object has a presentation data
type different from the physical data type, and a presentation size different from the physical size. The
destination object only has a different presentation and physical data type.

source -> interpolating -> casting -|...| -> casting -> destination

In the above example, the data resulting from the copy will be interpolated to a new size and cast to a
new data type before being copied into the destination object. When being copied into the destination
object, the data will be cast yet again before it finally is stored.

If the presentation and physical layers of the destination object are coupled then the destination
attributes will be ignored and the source presentation attributes will be propogated to the destination
physical layer. The copy, in essence, will be performed only through the source presentation, with the
destination physical and presentation layers taking on the characteristics of the source presentation.
By default, output objects are not coupled, so this behavior is typical.

The copy need not be performed using the presentation. If the data is not copied through the presenta-
tion, the destination data will be a direct copy of the physical source data. The physical size and data
type of the mask segment will be reflected in the destination data object from the source to the destina-
tion since they describe the physical state of the data.

This function is equivalent to performing successive calls to kpds_copy_mask_attr and
kpds_copy_mask_data.

2-109



Polymorphic Data Services Program Services Volume II - Chapter 2

G.6.2. kpds_copy_mask_attr() — copy all mask attributes from one object to another object.

Synopsis
int kpds_copy_mask_attr(

kobject object1,
kobject object2)

Returns
TRUE if copy was successful, FALSE otherwise

Description
This function copies all the mask attributes from one object to another object.

If the destination object does not contain a mask segment, then this function will create a mask seg-
ment, and initialize its size and data type attributes to those in the source object. If the mask data
already exists in the destination object, then the presentation attributes will be set to the source object’s
settings.

The destination’s physical attributes will change depending on the coupling of the data objects. If the
destination is coupled, then the physical attributes will be changed as well. Any data contained in the
destination will be cast, rescaled, or resized to match its new physical attributes.

G.6.3. kpds_copy_mask_data() — copy all mask data from one object to another object.

Synopsis
int kpds_copy_mask_data(

kobject object1,
kobject object2,
int copy_through_presentation)

Input Arguments
object1

the object that serves as a source for the data.

copy_through_presentation
if set to TRUE, the copy will be performed through the presentation of the source and destination
objects. if set to FALSE, the copy will be a direct copy of the physical data.

Output Arguments
object2

2-110



Polymorphic Data Services Program Services Volume II - Chapter 2

the object that will serve as a destination for the copy operation.

Returns
TRUE if copy was successful, FALSE otherwise

Description
This function copies all of the data contained in the mask segment of one object into the mask segment
contained in another object. If the mask segment exists in the destination object, then its data will be
replaced with the data from the source object. If the mask segment does not exist in the destination
object, it will be created.

The mask data can be optionally copied through the presentations of the two data objects. This implies
that any presentation stages which are normally invoked during a kpds_get_data on the source object
or a kpds_put_data call on the destination object will be used for the copy.

Any of the following presentation stages can be invoked on either the source object or the destination
object : casting, scaling, normalizing, padding, and interpolating.

The following presentation stages can be invoked on only the source object : mapping, axis assign-
ment, position, and offset. The resulting copy will be set to the size it appears to be when mapping
mode is set to mapped, and will be transposed to be in the default axis ordering. The resulting copy
will also appear to be shifted by the source position and offset.

These presentation stages are brought into the data pipeline by setting the appropriate presentation
attributes on the data objects. Please see the chapter on polymorphic data services in the data services
manual for more information on the various presentation attributes.

The following example may help in visualizing the process. The source object has a presentation data
type different from the physical data type, and a presentation size different from the physical size. The
destination object only has a different presentation and physical data type.

source -> interpolating -> casting -|...| -> casting -> destination

In the above example, the data resulting from the copy will be interpolated to a new size and cast to a
new data type before being copied into the destination object. When being copied into the destination
object, the data will be cast yet again before it finally is stored.

If the presentation and physical layers of the destination object are coupled then the destination
attributes will be ignored and the source presentation attributes will be propogated to the destination
physical layer. The copy, in essence, will be performed only through the source presentation, with the
destination physical and presentation layers taking on the characteristics of the source presentation.
By default, output objects are not coupled, so this behavior is typical.

The copy need not be performed using the presentation. If the data is not copied through the presenta-
tion, the destination data will be a direct copy of the physical source data. The physical size and data
type of the mask segment will be reflected in the destination data object from the source to the

2-111



Polymorphic Data Services Program Services Volume II - Chapter 2

destination since they describe the physical state of the data.

G.6.4. kpds_create_mask() — create a mask segment within a data object.

Synopsis
int kpds_create_mask(

kobject object)

Input Arguments
object

object in which to create the mask segment.

Returns
TRUE if the mask segment was successfully created, FALSE otherwise

Description
This function is used to create a mask segment within a specified data object. The size of the mask
segment will be initialized to match any the sizes shared with any other polymorphic segments.

Note that the pad value for this segment is initalized to 1. This is done so that padded data is marked
as valid according to the mask segment.

It is considered an error to create a mask segment if the object already contains one.

G.6.5. kpds_destroy_mask() — destroy the mask segment in a data object.

Synopsis
int kpds_destroy_mask(

kobject object)

Input Arguments
object

object from which to remove the mask segment.

Returns
TRUE if the mask segment is successfully destroyed, FALSE otherwise

2-112



Polymorphic Data Services Program Services Volume II - Chapter 2

Description
This function is used to destroy the mask segment contained within an object. Once the mask segment
has been destroyed, any data or attributes associated with the mask data will be lost forever. A new
mask segment can be created in its place with the function kpds_create_mask.

If the mask segment does not exist in the specified object, it is considered to be an error.

G.6.6. kpds_query_mask() — determine if the mask segment exists in a data object.

Synopsis
int kpds_query_mask(

kobject object)

Input Arguments
object

data object to be queried.

Returns
TRUE if the mask segment exists, FALSE otherwise

Description
This function is used to determine if the mask segment exists in a data object. If mask segment exists
in the specified object, then this function will return TRUE. If the object is invalid, or mask data does
not exist in the object, then this function will return FALSE.

G.7. Time Functions

• kpds_copy_time() - copy the time segment from one object to another.
• kpds_copy_time_attr() - copy all time attributes from one object to another object.
• kpds_copy_time_data() - copy all time data from one object to another object.
• kpds_create_time() - create a time segment within a data object.
• kpds_destroy_time() - destroy the time segment in a data object.
• kpds_query_time() - determine if the time segment exists in a data object.

G.7.1. kpds_copy_time() — copy the time segment from one object to another.

Synopsis
int kpds_copy_time(

2-113



Polymorphic Data Services Program Services Volume II - Chapter 2

kobject object1,
kobject object2,
int copy_through_presentation)

Input Arguments
object1

the object that serves as a source for the time segment.

copy_through_presentation
if set to TRUE, the copy will be performed through the presentation of the source and destination
objects. if set to FALSE, the copy will be a direct copy of the physical data.

Output Arguments
object2

the object that will serve as a destination for the copy operation.

Returns
TRUE if copy was successful, FALSE otherwise

Description
This function copies all of the attributes and data contained in the time segment of one object into the
time segment contained in another object. If the time segment exists in the destination object, then its
data will be replaced with the data from the source object. If the time segment does not exist in the
destination object, it will be created.

All time segment attributes will be copied from one object to the other. This includes presentation
attributes, such as position and offset.

The time data can be optionally copied through the presentations of the two data objects. This implies
that any presentation stages which are normally invoked during a kpds_get_data on the source object
or a kpds_put_data call on the destination object will be used for the copy.

Any of the following presentation stages can be invoked on either the source object or the destination
object : casting, scaling, normalizing, padding, and interpolating.

The following presentation stages can be invoked on only the source object : position, and offset. The
resulting copy will appear to be shifted by the source position and offset.

These presentation stages are brought into the data pipeline by setting the appropriate presentation
attributes on the data objects. Please see the chapter on polymorphic data services in the data services
manual for more information on the various presentation attributes.

The following example may help in visualizing the process. The source object has a presentation data
type different from the physical data type and a presentation size different from the physical size. The
destination object only has a different presentation and physical data type.

2-114



Polymorphic Data Services Program Services Volume II - Chapter 2

source -> interpolating -> casting -|...| -> casting -> destination

In the above example, the data resulting from the copy will be interpolated to a new size and cast to a
new data type before being copied into the destination object. When being copied into the destination
object, the data will be cast yet again before it finally is stored.

If the presentation and physical layers of the destination object are coupled then the destination
attributes will be ignored and the source presentation attributes will be propogated to the destination
physical layer. The copy, in essence, will be performed only through the source presentation, with the
destination physical and presentation layers taking on the characteristics of the source presentation.
By default, output objects are not coupled, so this behavior is typical.

The copy need not be performed using the presentation. If the data is not copied through the presenta-
tion, the destination data will be a direct copy of the physical source data. The physical size and data
type of the time segment will be reflected in the destination data object from the source to the destina-
tion since they describe the physical state of the data.

This function is equivalent to performing successive calls to kpds_copy_time_attr and
kpds_copy_time_data.

G.7.2. kpds_copy_time_attr() — copy all time attributes from one object to another object.

Synopsis
int kpds_copy_time_attr(

kobject object1,
kobject object2)

Returns
TRUE if copy was successful, FALSE otherwise

Description
This function copies all the time attributes from one object to another object.

If the destination object does not contain a time segment, then this function will create a time segment,
and initialize its size and data type attributes to those in the source object. If the time data already
exists in the destination object, then the presentation attributes will be set to the source object’s set-
tings.

The destination’s physical attributes will change depending on the coupling of the data objects. If the
destination is coupled, then the physical attributes will be changed as well. Any data contained in the
destination will be cast, rescaled, or resized to match its new physical attributes.

2-115



Polymorphic Data Services Program Services Volume II - Chapter 2

G.7.3. kpds_copy_time_data() — copy all time data from one object to another object.

Synopsis
int kpds_copy_time_data(

kobject object1,
kobject object2,
int copy_through_presentation)

Input Arguments
object1

the object that serves as a source for the data.

copy_through_presentation
if set to TRUE, the copy will be performed through the presentation of the source and destination
objects. if set to FALSE, the copy will be a direct copy of the physical data.

Output Arguments
object2

the object that will serve as a destination for the copy operation.

Returns
TRUE if copy was successful, FALSE otherwise

Description
This function copies all of the data contained in the time segment of one object into the time segment
contained in another object. If the time segment exists in the destination object, then its data will be
replaced with the data from the source object. If the time segment does not exist in the destination
object, it will be created.

The time data can be optionally copied through the presentations of the two data objects. This implies
that any presentation stages which are normally invoked during a kpds_get_data on the source object
or a kpds_put_data call on the destination object will be used for the copy.

Any of the following presentation stages can be invoked on either the source object or the destination
object : casting, scaling, normalizing, padding, and interpolating.

The following presentation stages can be invoked on only the source object : position, and offset. The
resulting copy will appear to be shifted by the source position and offset.

These presentation stages are brought into the data pipeline by setting the appropriate presentation
attributes on the data objects. Please see the chapter on polymorphic data services in the data services
manual for more information on the various presentation attributes.

The following example may help in visualizing the process. The source object has a presentation data
type different from the physical data type and a presentation size different from the physical size. The

2-116



Polymorphic Data Services Program Services Volume II - Chapter 2

destination object only has a different presentation and physical data type.

source -> interpolating -> casting -|...| -> casting -> destination

In the above example, the data resulting from the copy will be interpolated to a new size and cast to a
new data type before being copied into the destination object. When being copied into the destination
object, the data will be cast yet again before it finally is stored.

If the presentation and physical layers of the destination object are coupled then the destination
attributes will be ignored and the source presentation attributes will be propogated to the destination
physical layer. The copy, in essence, will be performed only through the source presentation, with the
destination physical and presentation layers taking on the characteristics of the source presentation.
By default, output objects are not coupled, so this behavior is typical.

The copy need not be performed using the presentation. If the data is not copied through the presenta-
tion, the destination data will be a direct copy of the physical source data. The physical size and data
type of the time segment will be reflected in the destination data object from the source to the destina-
tion since they describe the physical state of the data.

G.7.4. kpds_create_time() — create a time segment within a data object.

Synopsis
int kpds_create_time(

kobject object)

Input Arguments
object

object in which to create the time segment.

Returns
TRUE if the time segment was successfully created, FALSE otherwise

Description
This function is used to create a time segment within a specified data object. The size of the time seg-
ment will be initialized to match any the time size shared with the other polymorphic segments.

It is considered an error to create a time segment if the object already contains one.

2-117



Polymorphic Data Services Program Services Volume II - Chapter 2

G.7.5. kpds_destroy_time() — destroy the time segment in a data object.

Synopsis
int kpds_destroy_time(

kobject object)

Input Arguments
object

object from which to remove the time segment.

Returns
TRUE if the time segment is successfully destroyed, FALSE otherwise

Description
This function is used to destroy the time segment contained within an object. Once the time segment
has been destroyed, any data or attributes associated with the time data will be lost forever. A new
time segment can be created in its place with the function kpds_create_time.

If the time segment does not exist in the specified object, it is considered to be an error.

G.7.6. kpds_query_time() — determine if the time segment exists in a data object.

Synopsis
int kpds_query_time(

kobject object)

Input Arguments
object

data object to be queried.

Returns
TRUE if the time segment exists, FALSE otherwise

Description
This function is used to determine if the time segment exists in a data object. If time segment exists in
the specified object, then this function will return TRUE. If the object is invalid, or time data does not
exist in the object, then this function will return FALSE.

2-118



Polymorphic Data Services Program Services Volume II - Chapter 2

G.8. Value Functions

• kpds_copy_value() - copy the value segment from one object to another.
• kpds_copy_value_attr() - copy all value attributes from one object to another object.
• kpds_copy_value_data() - copy all value data from one object to another object.
• kpds_create_value() - create a value segment within a data object.
• kpds_destroy_value() - destroy the value segment in a data object.
• kpds_query_value() - determine if the value segment exists in a data object.

G.8.1. kpds_copy_value() — copy the value segment from one object to another.

Synopsis
int kpds_copy_value(

kobject object1,
kobject object2,
int copy_through_presentation)

Input Arguments
object1

the object that serves as a source for the value segment.

copy_through_presentation
if set to TRUE, the copy will be performed through the presentation of the source and destination
objects. if set to FALSE, the copy will be a direct copy of the physical data.

Output Arguments
object2

the object that will serve as a destination for the copy operation.

Returns
TRUE if copy was successful, FALSE otherwise

Description
This function copies all of the attributes and data contained in the value segment of one object into the
value segment contained in another object. If the value segment exists in the destination object, then
its data will be replaced with the data from the source object. If the value segment does not exist in the
destination object, it will be created.

All value segment attributes will be copied from one object to the other. This includes presentation
attributes, such as position and offset.

The value data can be optionally copied through the presentations of the two data objects. This implies
that any presentation stages which are normally invoked during a kpds_get_data on the source object
or a kpds_put_data call on the destination object will be used for the copy.

2-119



Polymorphic Data Services Program Services Volume II - Chapter 2

Any of the following presentation stages can be invoked on either the source object or the destination
object : casting, scaling, normalizing, padding, and interpolating.

The following presentation stages can be invoked on only the source object : mapping, axis assign-
ment, position, and offset. The resulting copy will be mapped through the map and transposed to be in
the default axis ordering. The resulting copy will also appear to be shifted by the source position and
offset.

These presentation stages are brought into the data pipeline by setting the appropriate presentation
attributes on the data objects. Please see the chapter on polymorphic data services in the data services
manual for more information on the various presentation attributes.

The following example may help in visualizing the process. The source object has mapping mode set
to map the data, a presentation data type different from the physical data type, and a presentation size
different from the physical size. The destination object only has a different presentation and physical
data type.

source -> casting -> mapping -|...| -> casting -> destination

In the above example, the data resulting from the copy will be cast to a new data type and mapped
through the object’s map before being copied into the destination object. When being copied into the
destination object, the data will be cast yet again before it finally is stored.

If the presentation and physical layers of the destination object are coupled then the destination
attributes will be ignored and the source presentation attributes will be propogated to the destination
physical layer. The copy, in essence, will be performed only through the source presentation, with the
destination physical and presentation layers taking on the characteristics of the source presentation.
By default, output objects are not coupled, so this behavior is typical.

The copy need not be performed using the presentation. If the data is not copied through the presenta-
tion, the destination data will be a direct copy of the physical source data. The physical size and data
type of the value segment will be reflected in the destination data object from the source to the destina-
tion since they describe the physical state of the data.

This function is equivalent to performing successive calls to kpds_copy_value_attr and
kpds_copy_value_data.

G.8.2. kpds_copy_value_attr() — copy all value attributes from one object to another object.

Synopsis
int kpds_copy_value_attr(

kobject sobject,
kobject dobject)

2-120



Polymorphic Data Services Program Services Volume II - Chapter 2

Input Arguments
sobject

the object that serves as a source for the attributes.

Output Arguments
dobject

the object that serves as a destination for the operation.

Returns
TRUE if copy was successful, FALSE otherwise

Description
This function copies all the value attributes from one object to another object.

If the destination object does not contain a value segment, then this function will create a value seg-
ment, and initialize its size and data type attributes to those in the source object. If the value data
already exists in the destination object, then the presentation attributes will be set to the source object’s
settings.

The destination’s physical attributes will change depending on the coupling of the data objects. If the
destination is coupled, then the physical attributes will be changed as well. Any data contained in the
destination will be cast, rescaled, or resized to match its new physical attributes.

2-121



Polymorphic Data Services Program Services Volume II - Chapter 2

G.8.3. kpds_copy_value_data() — copy all value data from one object to another object.

Synopsis
int kpds_copy_value_data(

kobject object1,
kobject object2,
int copy_through_presentation)

Input Arguments
object1

the object that serves as a source for the data.

copy_through_presentation
if set to TRUE, the copy will be performed through the presentation of the source and destination
objects. if set to FALSE, the copy will be a direct copy of the physical data.

Output Arguments
object2

the object that will serve as a destination for the copy operation.

Returns
TRUE if copy was successful, FALSE otherwise

Description
This function copies all of the data contained in the value segment of one object into the value segment
contained in another object. If the value segment exists in the destination object, then its data will be
replaced with the data from the source object. If the value segment does not exist in the destination
object, it will be created.

The value data can be optionally copied through the presentations of the two data objects. This implies
that any presentation stages which are normally invoked during a kpds_get_data on the source object
or a kpds_put_data call on the destination object will be used for the copy.

Any of the following presentation stages can be invoked on either the source object or the destination
object : casting, scaling, normalizing, padding, and interpolating.

The following presentation stages can be invoked on only the source object : mapping, axis assign-
ment, position, and offset. The resulting copy will be mapped through the map and transposed to be in
the default axis ordering. The resulting copy will also appear to be shifted by the source position and
offset.

These presentation stages are brought into the data pipeline by setting the appropriate presentation
attributes on the data objects. Please see the chapter on polymorphic data services in the data services
manual for more information on the various presentation attributes.

2-122



Polymorphic Data Services Program Services Volume II - Chapter 2

The following example may help in visualizing the process. The source object has mapping mode set
to map the data, a presentation data type different from the physical data type, and a presentation size
different from the physical size. The destination object only has a different presentation and physical
data type.

source -> casting -> mapping -|...| -> casting -> destination

In the above example, the data resulting from the copy will be cast to a new data type and mapped
through the object’s map before being copied into the destination object. When being copied into the
destination object, the data will be cast yet again before it finally is stored.

If the presentation and physical layers of the destination object are coupled then the destination
attributes will be ignored and the source presentation attributes will be propogated to the destination
physical layer. The copy, in essence, will be performed only through the source presentation, with the
destination physical and presentation layers taking on the characteristics of the source presentation.
By default, output objects are not coupled, so this behavior is typical.

The copy need not be performed using the presentation. If the data is not copied through the presenta-
tion, the destination data will be a direct copy of the physical source data. The physical size and data
type of the value segment will be reflected in the destination data object from the source to the destina-
tion since they describe the physical state of the data.

G.8.4. kpds_create_value() — create a value segment within a data object.

Synopsis
int kpds_create_value(

kobject object)

Input Arguments
object

object in which to create the value segment.

Returns
TRUE if the value segment was successfully created, FALSE otherwise

Description
This function is used to create a value segment within a specified data object. The size of the value
segment will be initialized to match any the sizes shared with any other polymorphic segments.

It is considered an error to create a value segment if the object already contains one.

2-123



Polymorphic Data Services Program Services Volume II - Chapter 2

G.8.5. kpds_destroy_value() — destroy the value segment in a data object.

Synopsis
int kpds_destroy_value(

kobject object)

Input Arguments
object

object from which to remove the value segment.

Returns
TRUE if the value segment is successfully destroyed, FALSE otherwise

Description
This function is used to destroy the value segment contained within an object. Once the value segment
has been destroyed, any data or attributes associated with the value data will be lost forever. A new
value segment can be created in its place with the function kpds_create_value.

If the value segment does not exist in the specified object, it is considered to be an error.

G.8.6. kpds_query_value() — determine if the value segment exists in a data object.

Synopsis
int kpds_query_value(

kobject object)

Input Arguments
object

data object to be queried.

Returns
TRUE if the value segment exists, FALSE otherwise

Description
This function is used to determine if the value segment exists in a data object. If value segment exists
in the specified object, then this function will return TRUE. If the object is invalid, or value data does
not exist in the object, then this function will return FALSE.

2-124



Polymorphic Data Services Program Services Volume II - Chapter 2

This page left intentionally blank

2-125



Table of Contents

A. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-1
B. The Polymorphic Data Model . . . . . . . . . . . . . . . . . . . . . .  2-2

B.1. Value Data . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-4
B.2. Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-5
B.3. Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-5
B.4. Location . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-6
B.5. Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-7

C. Interaction with the Polymorphic Data Model . . . . . . . . . . . . . . . . .  2-8
C.1. Presentation of the Data Object . . . . . . . . . . . . . . . . . . . . .  2-8
C.2. Casting . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-9
C.3. Scaling and Normalization . . . . . . . . . . . . . . . . . . . . . .  2-9
C.4. Padding and Interpolation . . . . . . . . . . . . . . . . . . . . . . 2-10
C.5. Conversion of Complex Data . . . . . . . . . . . . . . . . . . . . . 2-10
C.6. Map Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 2-11
C.7. Mask Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 2-11
C.8. Axis Assignment . . . . . . . . . . . . . . . . . . . . . . . . . 2-11
C.9. Data Ranging . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12
C.10. Reference Objects . . . . . . . . . . . . . . . . . . . . . . . . 2-12
C.11. Auto Incrementing . . . . . . . . . . . . . . . . . . . . . . . . 2-13

D. The Application Programming Interface (API) . . . . . . . . . . . . . . . . . 2-14
E. Polymorphic Primitives . . . . . . . . . . . . . . . . . . . . . . . . 2-17

E.1. Value Primitives . . . . . . . . . . . . . . . . . . . . . . . . . 2-17
E.2. Mask Primitives . . . . . . . . . . . . . . . . . . . . . . . . . 2-19
E.3. Map Primitives .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-22
E.4. Location Primitives . . . . . . . . . . . . . . . . . . . . . . . . 2-24

E.4.1. Creating Location . . . . . . . . . . . . . . . . . . . . . . . 2-26
E.4.2. Location Primitives .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-26
E.4.3. Presentation of Location Data . . . . . . . . . . . . . . . . . . . . 2-30

E.5. Time Primitives .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-31
F. Attributes Defined by the Polymorphic Data Model . . . . . . . . . . . . . . . . 2-31

F.1. Global Attributes . . . . . . . . . . . . . . . . . . . . . . . . . 2-33
F.2. Value Segment Attributes . . . . . . . . . . . . . . . . . . . . . . . 2-38
F.3. Mask Segment Attributes . . . . . . . . . . . . . . . . . . . . . . . 2-44
F.4. Map Segment Attributes . . . . . . . . . . . . . . . . . . . . . . . 2-49
F.5. Location Segment Attributes . . . . . . . . . . . . . . . . . . . . . . 2-55
F.6. Time Segment Attributes . . . . . . . . . . . . . . . . . . . . . . . 2-61

G. Functions Provided by Polymorphic Data Services . . . . . . . . . . . . . . . . 2-66
G.1. Object Management . . . . . . . . . . . . . . . . . . . . . . . . 2-66

G.1.1. kpds_open_input_object() — open an input object for reading . . . . . . . . . . 2-67
G.1.2. kpds_open_output_object() — open an output object for writing . . . . . . . . . 2-68
G.1.3. kpds_create_object() — create a temporary data object. . . . . . . . . . . . . 2-69
G.1.4. kpds_create_object_attr() — create an attribute associated the data object. . . . . . . 2-69
G.1.5. kpds_destroy_object_attr() — destroy an attribute associated with the data object. . . . . 2-71
G.1.6. kpds_open_object() — create an object associated with an input or output transport. . . . . 2-72
G.1.7. kpds_close_object() — close an open data object. . . . . . . . . . . . . . . 2-74
G.1.8. kpds_reference_object() — create a reference of a data object. . . . . . . . . . . 2-74
G.1.9. kpds_copy_object() — copy all data and attributes from one object to another. . . . . . 2-75

- i -



Polymorphic Data Services Program Services Volume II - Chapter 2

G.1.10. kpds_copy_remaining_data() — copy remaining data from source to destination . . . . 2-76
G.1.11. kpds_copy_object_attr() — copy all presentation attributes from one data object to

another. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-77
G.1.12. kpds_copy_object_data() — copy all data from one object to another object. . . . . . 2-77
G.1.13. kpds_sync_object() — synchronize physical and presentation layers of a data object. . . . 2-78

G.2. Data Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 2-79
G.2.1. kpds_get_data() — retrieve data from a data object. . . . . . . . . . . . . . 2-79
G.2.2. kpds_put_data() — store data in a data object. . . . . . . . . . . . . . . . 2-82

G.3. Attribute Functions . . . . . . . . . . . . . . . . . . . . . . . . 2-84
G.3.1. kpds_copy_attribute() — copy an attribute from one object to another . . . . . . . . 2-84
G.3.2. kpds_copy_attributes() — copy multiple attributes from one object to another. . . . . . 2-85
G.3.3. kpds_get_attribute() — get the value of an attribute from a data object . . . . . . . . 2-86
G.3.4. kpds_get_attributes() — get the values of multiple attributes from a data object . . . . . 2-87
G.3.5. kpds_match_attribute() — returns TRUE if the same attribute in two objects match. . . . . 2-89
G.3.6. kpds_match_attributes() — returns true if the list of segment attributes in two objects match.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-90
G.3.7. kpds_print_attribute() — print the value of an attribute from a data object. . . . . . . 2-91
G.3.8. kpds_query_attribute() — get information about an attribute . . . . . . . . . . . 2-91
G.3.9. kpds_set_attribute() — set the values of an attribute in a data object . . . . . . . . 2-93
G.3.10. kpds_set_attributes() — set the values of multiple attributes in a data object. . . . . . . 2-94

G.4. Location Functions . . . . . . . . . . . . . . . . . . . . . . . . 2-95
G.4.1. kpds_copy_location() — copy the location segment from one object to another. . . . . . 2-96
G.4.2. kpds_copy_location_attr() — copy all location attributes from one object to another object.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-97
G.4.3. kpds_copy_location_data() — copy all location data from one object to another object.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-98
G.4.4. kpds_create_location() — create a location segment within a data object. . . . . . . . 2-100
G.4.5. kpds_destroy_location() — destroy the location segment in a data object. . . . . . . . 2-100
G.4.6. kpds_query_location() — determine if the location segment exists in a data object. . . . . 2-101

G.5. Map Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 2-101
G.5.1. kpds_copy_map() — copy the map segment from one object to another. . . . . . . . . 2-102
G.5.2. kpds_copy_map_attr() — copy all map attributes from one object to another object. . . . . 2-103
G.5.3. kpds_copy_map_data() — copy all map data from one object to another object. . . . . . 2-105
G.5.4. kpds_create_map() — create a map segment within a data object. . . . . . . . . . 2-106
G.5.5. kpds_destroy_map() — destroy the map segment in a data object. . . . . . . . . . 2-107
G.5.6. kpds_query_map() — determine if the map segment exists in a data object. . . . . . . 2-107

G.6. Mask Functions . . . . . . . . . . . . . . . . . . . . . . . . . 2-108
G.6.1. kpds_copy_mask() — copy the mask segment from one object to another. . . . . . . . 2-108
G.6.2. kpds_copy_mask_attr() — copy all mask attributes from one object to another object.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-110
G.6.3. kpds_copy_mask_data() — copy all mask data from one object to another object. . . . . 2-110
G.6.4. kpds_create_mask() — create a mask segment within a data object. . . . . . . . . 2-112
G.6.5. kpds_destroy_mask() — destroy the mask segment in a data object. . . . . . . . . . 2-112
G.6.6. kpds_query_mask() — determine if the mask segment exists in a data object. . . . . . . 2-113

G.7. Time Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 2-113
G.7.1. kpds_copy_time() — copy the time segment from one object to another. . . . . . . . 2-113
G.7.2. kpds_copy_time_attr() — copy all time attributes from one object to another object. . . . . 2-115
G.7.3. kpds_copy_time_data() — copy all time data from one object to another object. . . . . . 2-116
G.7.4. kpds_create_time() — create a time segment within a data object. . . . . . . . . . 2-117
G.7.5. kpds_destroy_time() — destroy the time segment in a data object. . . . . . . . . . 2-118

- ii -



Polymorphic Data Services Program Services Volume II - Chapter 2

G.7.6. kpds_query_time() — determine if the time segment exists in a data object. . . . . . . 2-118
G.8. Value Functions . . . . . . . . . . . . . . . . . . . . . . . . . 2-119

G.8.1. kpds_copy_value() — copy the value segment from one object to another. . . . . . . . 2-119
G.8.2. kpds_copy_value_attr() — copy all value attributes from one object to another object.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-120
G.8.3. kpds_copy_value_data() — copy all value data from one object to another object. . . . . 2-122
G.8.4. kpds_create_value() — create a value segment within a data object. . . . . . . . . 2-123
G.8.5. kpds_destroy_value() — destroy the value segment in a data object. . . . . . . . . 2-124
G.8.6. kpds_query_value() — determine if the value segment exists in a data object. . . . . . . 2-124

- iii -



Polymorphic Data Services Program Services Volume II - Chapter 2

This page left intentionally blank

- iv -



Program Services Volume II

Chapter 3

Geometry Data Services

Copyright (c) AccuSoft Corporation, 2004. All rights reserved.





Chapter 3 - Geometry Data Services

A. Geometry Data Services

A.1. Introduction

Geometry services provides a general mechanism for the storage and retrieval of geometry data. In terms of
data visualization, geometry data describes the shape and position of structures in space. Geometry data there-
fore consists primarily of spatial information in the form of explicit location data. Furthermore, geometry data
may also include data which does not have any direct bearing on the spatial description of the structure; color,
normal, and texture data are examples. In addition to geometry data, volumetric data is also supported since it
too describes structures in space. Finally, geometry services also allows you to store attributes such as a name
or opacity value with the data.

With geometry services, geometry data is stored and retrieved from a data structure. The structure fields
describe the geometry data model. In contrast with the other VisiQuest data services, geometry data services
provides you with direct access to the geometry data structure. Data is stored in a geometry object by assign-
ing the data pointer to a field of a structure. Attributes are stored by assigning the appropriate fields of a struc-
ture.

DATA 
OBJECT

DATA 
OBJECT

DATA 
OBJECT

Figure 1: Geometry Services supports the storage and retrieval of geometric data. Geometric data is
constructed and stored in a data object. This data can later be retrieved for processing or rendering.
Geometry services supports geometric data as well as volumetric data.

An image is produced from geometry through a process called rendering. Since a generic geometry service
that directly encompassed the needs of many different types of renderers would have too large a scope, geome-
try services does not attempt to support renderer-specific information. The goal of geometry services is simply
to provide a programming framework for processing geometry that separates the creation and storage of geom-

3-1



Geometry Data Services Program Services Volume II - Chapter 3

etry data from the manipulation and rendering of geometry.

A.1.1. The Geometry Data Model

The geometry data model is centered around the concept of a primitive list. Each geometry object contains a
single primitive list. Geometry primitives can be added to or removed from this primitive list. A geometry
primitive is defined simply to be a grouping of data with a specific geometric interpretation. For example, a
polyline or a triangle strip are considered to be geometry primitives. Hierarchical geometry structures may be
created by placing one geometry object on the primitive list of another object.

In addition to geometry primitives, a geometry object may contain a number of geometry attributes. These
attributes are represented by fields within the geometry object structure. Some of these attributes describe
global characteristics of the data and apply to all the primitives in the object as a collective group. Examples
of these object-level attributes are the bounding box or the object color. Primitives also have attributes. These
are represented by the structure fields within a primitive structure. Examples of these primitive level attributes
are the number of vertices in a primitive, or the line type of a primitive.

A.1.1.1. Geometry Primitives

Geometry primitives in a basic sense can be thought of as an aggregation of different data components, such
as location data and color data, that represent a geometric construct. Other data components that are encoun-
tered are normals, texture coordinates, and radii. There are many types of geometry primitives, ranging from
surface primitives, such as connected triangles, to annotation primitives, such as text, to volumetric primi-
tives, such as an octmesh.

KGEOM_SPHERES

LOCATION  Data
XYZ  XYZ  XYZ ....

COLOR  Data
RGB RGB RGB ...

RADIUS  Data
R1  R2  R3  R4...

KGEOM_TRIANGLES_DISJOINT

LOCATION  Data
XYZ  XYZ  XYZ ....

COLOR  Data
RGB RGB RGB ...

NORMAL Data

LOCATION  Data
XYZ  XYZ  XYZ ....

COLOR  Data
RGB RGB RGB ...

KGEOM_QUADMESH

NORMAL Data
XYZ XYZ XYZ ...

KGEOM_OBJECT

primitives

nverts nvertswidth
height

name

ambient_color
diffuse_color
specular_color
specular_exponent

min, max
center
color
opacity

The Geometry Object contains object-specific 
characteristics and a linear list of primitives.  These
primitives may define geometry, or may be another
object which contains it’s own primitive list.  The
object-specific attributes are contained here.

The Geometry Primitives in an object’s
primitive list contain the specific data which defines
the geometry in space.

XYZ XYZ XYZ ...

Figure 2: An overview of the Geometry Data Model. A geometry object contains a primitive list. Geo-
metric primitives are stored and retrieved from this list. Each geometric primitive is an aggregate of dif-
ferent types of data; for example, a spheres primitive consists of location data, color data, and radius data.
Note that a single spheres primitive contains multiple spheres.

3-2



Geometry Data Services Program Services Volume II - Chapter 3

Primitives can be combined and stored in any combination within a single object. For example, a connected
polyline can be combined with a list of spheres and a list of directed points and placed into a single data
object. These primitives are all added to the geometry object’s primitive list.

A.1.1.2. VisiQuest Geometry Format

A new file format was created for the storage of geometry objects. This new VisiQuest Geometry format is
simply a reflection of the geometry object stored in a file. It can be identified by the filename extension "kgm,"
or by the first 5 bytes, which will spell "kgeom."

A.2. Overview of Geometry Service Primitives

Geometry services supports a number of different geometric primitives: quadmesh primitives, octmesh primi-
tives, two- and three-dimensional texture primitives, as well as other informational primitives.

For the purposes of the following descriptions, the term vertex is used to describe a point in space-an (x,y,z)
point. The location data, which defines the object in space, consists of a series of these points, or vertices. The
term line is defined to be any vector between two connected vertices. The term face is the surface defined by
three or more connected vertices that is bounded by the edges connecting those vertices. Colors and normals
may exist either per vertex, per line, or per face, while other data, such as texture coords, always exist per ver-
tex.

The following table contains descriptions of the geometry primitives provided by geometry services.

Geometry Primitives
Name Description and Diagram

KGEOM_POLYLINE_DISJOINT A disjoint polyline uses N vertices, where N is greater than 1, to con-
struct N/2 lines. Every two vertices represent the end points of a line
segment.

vertices

KGEOM_POLYLINE_CONNECTED A connected polyline uses N vertices, where N is greater than 1, to con-
struct N-1 lines. A line segment connects each adjacent vertex. The
first and the last vertices indicate the beginning and the end of the line.

vertices

begin

end

3-3



Geometry Data Services Program Services Volume II - Chapter 3

Geometry Primitives
Name Description and Diagram

KGEOM_TRIANGLES_DISJOINT A disjoint polytriangle uses N vertices, where N is greater than 2, to
construct N/3 triangles. Every three vertices represent a single triangle.

vertices
edge

KGEOM_TRIANGLES_CONNECTED A connected polytriangle uses N vertices, where N is greater than 2, to
construct N-2 triangles. The first and last vertices indicate the begin-
ning and the end of the polytriangle.

vertices

implied edge
explicit edge

begin end

KGEOM_SPHERES A list of spheres uses N vertices to represent the centers of N spheres.
Each sphere has a corresponding radius to indicate its size.

vertices
radii

KGEOM_CYLINDERS A list of disjoint cylinders uses N vertices to construct N/2 cylinders. A
cylinder has top radius and bottom radius. If one or the other radii is
zero, the the cylinder becomes a cone.

vertices

top 
radius

bottom
radius radii

KGEOM_DIRECTED_POINTS A list of disjoint discrete points with normals.

vertices
directions

3-4



Geometry Data Services Program Services Volume II - Chapter 3

Geometry Primitives
Name Description and Diagram

KGEOM_ELLIPSES A list of ellipses uses N vertices to represent the centers of N ellipses.
Each ellipses has a corresponding major and minor radius to indicate its
size.

vertices

major axis
minor axis

KGEOM_MARKERS A list of disjoint annotation markers of fixed size. For example, a cross
hatch or a diamond are markers. These can be thought of as 1D primi-
tives in space.

vertices

KGEOM_POLYGON A single two-dimensional polygon defined to be line segments connect-
ing N vertices together. The connectivity of vertices is implied by the
vertex order.

vertices

KGEOM_RECTANGLES A list of rectangles uses N vertices to construct N/2 rectangles. Every
two points define the opposing corners of a rectangle.

vertices

KGEOM_TEXT A list of disjoint text strings. Each text string has a vertex describing its
origin, and three vectors describing an up direction from the vertex, a
flow direction from the vertex, and an offset from the vertex.

vertex

up

flow

A Text String
offset

3-5



Geometry Data Services Program Services Volume II - Chapter 3

Geometry Primitives
Name Description and Diagram

KGEOM_QUADMESH A quadmesh is a surface formed by a collection of adjacent quadrilater-
als. The adjacency, or connectivity, between these quadrliaterals is
implied by the two parametric dimensions of width and height. Explicit
location vertices are provided to place the quadmesh in space.

vertices

KGEOM_OCTMESH An octmesh is a volume formed by a collection of adjacent hexahedra.
The adjacency, or connectivity between these hexahedra is implied by
the three parametric dimensions of width, height, and depth. Explicit
locations of vertices are provided to place the quadmesh in space. The
number of locations needed to place the mesh in space is dependent on
the meshtype.

vertices

KGEOM_TEXTURE2D A two-dimensional texture is a two-dimensional array of values vectors
or colors. The 2d texture primitives are not true geometry primitives,
but are accessed through geometry services for ease of programming.
The connectivity between colors is implied by their order across the
two parametric dimensions of width and height.

3-6



Geometry Data Services Program Services Volume II - Chapter 3

Geometry Primitives
Name Description and Diagram

KGEOM_TEXTURE3D A three-dimensional texture is a three-dimensional array of values or
colors. The 3d texture primitives are not true geometry primitives, but
are accessed through geometry services for ease of programming. The
connectivity between colors is implied by their order across the three
parametric dimensions of width, height, and depth.

KGEOM_OBJECT An object primitive is used when placing one geometry object onto the
primitive list of another. This allows the construction of geometric
hierarchies. Circular dependencies where two geometry objects are
each on the primitive list of the other are not supported.

KGEOM_OBJECT_XFORM An object transform primitive can be used to specify a transformation
directed at some specific, named object. This is would be used, for
example, to externally control the transformation of an object external
to a rendering program.

KGEOM_VIEW_XFORM A view transform primitive can be used to specify a viewing transfor-
mation. This is would be used, for example, to externally control the
viewing position external to a rendering program.

KGEOM_CAMERA_ORIENTATION A camera orientation primitive can be used to specify the specific ori-
entation and characteristics of a camera. This is would be used, for
example, to externally control a camera position external to a rendering
program.

KGEOM_VR_EVENT A vr event primitive is used to send vr specific information from a vr
device routine to the rendering routine. It contains information on the
current state of the vr device, such as direction of movement, are there
any "buttons" being pressed, and so forth.

A.3. The Application Programming Interface (API)

The application programming interface to geometry services consists primarily of constructor and destructor
functions for creating and destroying geometry objects and geometry primitives. Functions are also available
for writing a geometry object to a file and reading it back.

A.3.1. Geometry Object Functions

A geometry object is represented by a pointer to a kgeom_object structure. A geometry object can be
instantiated by constructing a new empty object, or by reading in an existing object from a file or other

3-7



Geometry Data Services Program Services Volume II - Chapter 3

transport. A new empty object is constructed by the function kgeom_new_object() and an existing data
object can be read from a file using the function kgeom_read(). Once you have a structure filled out, you
can write it to a file using the kgeom_write() function. And finally, once you are done with the object, you
can destroy it and free its resources using the kgeom_blast_object() function.

The following examples illustrate the use of these functions:

kgeom_object *obj;

/* read in some geometry from a file */
obj = kgeom_read("geometry.geom");

/* do something interesting with the geometry */

/* free up the geometry object when we’re done with it */
kgeom_blast_object(obj);

Alternatively, if we wanted to create some new geometry and write it to a file, we could use the following
code.

kgeom_object *obj;

/* create a new geometry object */
obj = kgeom_new_object();

/* create some geometry to go in the object here */

/* once we have the geometry, we can write it out */
kgeom_write(obj, "new_geometry.geom");

/* and we can free it up now that we’re done writing it */
kgeom_blast_object(obj);

The attributes of the geometry object are stored as the fields of the geometry object structure. These fields are
publically accessible; an attribute of a geometry object is set simply by assigning the appropriate structure
field. For instance, the following code can be used to set the opacity and name attribute of a geometry object :

obj->opacity = 0.5;
obj->name = kstrdup("Isosurface");

Note that any string attributes should be duplicated when assigned to the geometry object. In general, geome-
try services will assume that any data or attributes which are pointed to by the geometry object can be safely
freed when the kgeom_blast_object() function is called.

A.3.2. Geometry Primitive Functions

A geometry primitive is represented by a pointer to a kgeom_primitive structure. As with a geometry
object, a geometry primitive can be instantiated either explicitly with the kgeom_new_primitive() func-
tion, or implicitly when a geometry object is read in from a file. The kgeom_new_primitive function
takes the type of primitive as its single argument. Each geometry primitive actually has its own distinct struc-
ture; the geometry primitive structure is simply a union of all the different primitive structures.

Since the fields of a geometry primitive vary from type to type, the type of primitive being used must be speci-
fied in order to access the components of the primitive structure. For example, to access a spheres primitive,

3-8



Geometry Data Services Program Services Volume II - Chapter 3

the following syntax should be used :

kgeom_primitive *prim;

prim = kgeom_new_primitive(KGEOM_SPHERES);

/* specify that we want 45 spheres */

prim->spheres.nverts = 45;

Alternatively, this can be done by casting the structure to its specific primitive type as follows :

kgeom_spheres *s;
s = (kgeom_spheres *) kgeom_new_primitive(KGEOM_SPHERES);
/* specify that we want 45 spheres */
s->nverts = 45;

Primitives can be cast to any type at any time, but you should be sure that you cast back to the general
kgeom_primitive type before passing a specific primitive into any functions which take a primitive argu-
ment.

A.3.3. Primitive List Functions

Geometry primitives must be stored on the primitive list of an object in order to be written to a file. Once a
new primitive has been created and its data assigned, it can be added to the primitive list of an object using the
function kgeom_add_primitive(). A corresponding function kgeom_remove_primitive()
allows you to remove a primitive from the primitive list.

The number of primitives which have been added to the primitive list of an object is returned by the function
kgeom_number_primitives(). A primitive at a specific position in the primitive list can be retrieved
using the function kgeom_get_primitive(). Note that another geometry object contained on the primi-
tive list of this object will be considered to be a single primitive. The entire subobject will be returned by the
kgeom_get_primitive function and the primitives contained in the subobject will not be considered
when counting the number of primitives in the given object.

These primitive list functions should be the only means used for accessing the primitives on a primitive list.
Even though the primitive list of the geometry object could be accessed directly from the fields of the geome-
try object, it should be considered to be private.

A.3.4. Primitives and Data Vectors

Geometry services provides some flexibility in the organization of the data that is stored for a geometry primi-
tive. The actual amount of data contained in any giv en primitive for a particular component is dependent on a
number of different attributes, as well as the primitive itself. This section will illustrate the attributes that dic-
tate the amount of data present. Once you have a general understanding of these attributes, the specifics of
determining how much data is present for a particular primitive will follow.

Note that there are many object-level attributes which will affect the amount of data present in a given primi-
tive. The object whose primitive list contains a given primitive is generally assumed to dictate the object-level

3-9



Geometry Data Services Program Services Volume II - Chapter 3

attributes to that primitive. This also implies that all the primitives on the primitive list of an object will share
the same attributes. It is not possible to have two line primitives with different layouts on the same primitive
list, for instance.

It is also important to note the following: Data are always organized into a linear array of data vertices.
Even multi-dimensional data, such as quadmesh data, will be handled as a linear array of data. The values
composing each vertex are always the leading index in this array. For example a series of (x,y,z) points will be
arranged xyzxyzxyzxyz in the linear array.

A.3.4.1. Location Data

Location data consists of a series of vertices that position a primitive in space. Location data is required by
nearly all primitives. Location data is always of type float.

The number of location vertices in any giv en primitive is determined by the nverts primitive attribute. The
only exceptions to this are the mesh and texture primitives, which have their own width, height, and depth
attributes. The size of each location vertex is determined by the location_dim object attribute. This
attribute is by default set to 3 to indicate (x,y,z) vertices.

A.3.4.2. Color Data

Color data is used to provide color to a primitive. Color data is optional. Color data is always of type float.

The number of color vectors will be a function of the nverts primitive attribute, but may also vary depending
on the layout object attribute. For example, a disjoint polyline primitive will have 1 color per vertex for a
KPER_VERTEX layout, but will have 1 color per line for a KPER_LINE primitive.

Color vectors generally contain three floats for storing red, green, and blue intensities, although if the object-
level attribute has_alpha is set to TRUE, the color vector will contain an extra float which indicates opacity.
These numbers should range from 0.0 to 1.0, with 1.0 implying maximum intensity. If an alpha component is
present, it also should range from 0.0 to 1.0, with 0.0 implying that the primitive is totally transparent, and 1.0
implying that the primitive is totally opaque.

A.3.4.3. Normal Data

Normal data consists of a series of vectors that give extra directional and orientation information to a geometry
primitive. Normal data is optional. Normal data is always of type float.

The number of normal vectors will be a function of the nverts primitive attribute, but may also vary depend-
ing on the layout object attribute. For example, a disjoint triangles primitive will have 1 normal per vertex
for a KPER_VERTEX layout, but will have 1 normal per triangle for a KPER_FACE primitive. The size of
each location vertex is determined by the location_dim object attribute. This attribute is by default set to 3

3-10



Geometry Data Services Program Services Volume II - Chapter 3

to indicate that the normals exist in (x,y,z) space.

A.3.4.4. Radius Data

Radius data consists of a series of values that are interpreted to be the radii of a list of spheres. Radius data is
optional. Radius data is of type float. The number of radii in any giv en primitive is determined by the
nverts primitive attribute.

A.3.4.5. Texture Coordinate Data

Te xture coordinate data consists of a series of coordinates that are used to index into a separate texture map.
Te xture coordinate data is optional. Te xture coordinate data will be of type float.

The number of texture coordinates in any giv en primitive is determined by the nverts primitive attribute. The
only exceptions to this are the mesh and texture primitives, which have their own width, height, and depth
attributes. The size of each texture coordinate is determined by the texture_coord_dim object attribute.
This attribute is by default set to 2 to indicate (u,v) texture coordinates which index into a 2D texture map.

A.3.4.6. Text Data

Te xt data consists of an array of text strings. Te xt data may be optional depending on the primitive. The num-
ber of text strings in a text primitive is determined by the nverts primitive attribute. Each text string is
always a NULL terminated char* .

A.3.5. Examples

The examples given below illustrate the use of geometry services for reading existing geometry data from a
data file, as well as the use of geometry services in storing data to a new file.

A.3.5.1. Reading Geometry Data

The following example presents a simple model of how a  program should open up a data object and read the
contents of the primitive list using geometry services.

The first step is to declare the necessary variables and read in the geometry object. The geometry object is
read with the kgeom_read() call.

kgeom_object *obj;
int i, number, nverts;
float *locs = NULL;
float *cols = NULL;
float *rads = NULL;

obj = kgeom_read("input.file");

The next step is to determine if there is geometry contained within this data object. We will use the
kgeom_number_primitives() function to determine whether or not the data object contains any primitives.

number = kgeom_number_primitives(obj);

3-11



Geometry Data Services Program Services Volume II - Chapter 3

if (number == 0)
{

kprintf("No geometry in here!");
kgeom_blast_object(obj);
kexit(KEXIT_SUCCESS);

}

Next, we will loop through the primitive list and process all geometry primitives that we understand. For each
geometry primitive, we will examine the data as well as the number of vertices contained in the data. In this
example, we will cast the more general kgeom_primitive data structure to more specific primitive structures.
Once all the primitives are processed, we will free the geometry object using the kgeom_blast_object(). For
the sake of brevity, we will only consider spheres and disjoint polylines. Also, after retrieving the data, it is
likely that it would be processed in some fashion. However, here the data is just examined for the sake of illus-
tration.

for (i = 0; i < number; i++)
{

kgeom_primitive *primitive = kgeom_get_primitive(obj, i);

switch (primitive->type)
{

case KGEOM_SPHERES :
{

kgeom_spheres *spheres = (kgeom_spheres *) primitive;

nverts = spheres->nverts;
locs = spheres->locs;
cols = spheres->cols;
rads = spheres->rads;

/* presumably something interesting would be done here */

} break;

case KGEOM_POLYLINE_DIS :
{

kgeom_polyline *lines = (kgeom_polyline *) primitive;

nverts = lines->nverts;
locs = lines->locs;
cols = lines->cols;

/* presumably something interesting would be done here */

} break;

default:
kprintf("Sample code doesn’t recognize that primitive");

}
}

/* this will free the geometry object and all of its data */
kgeom_blast_object(obj);

It is important to be aware that the data pointers within each geometry primitive will be freed when the geome-
try object is blasted. To keep the data in memory beyond this, we must either duplicate the data or assign the

3-12



Geometry Data Services Program Services Volume II - Chapter 3

data pointers in the primitive to NULL before blasting the object.

A.3.5.2. Writing Geometry Data

The example below presents a simple model of how a program should output geometry into a data file using
geometry services.

The first step is to declare the necessary variables and open the output data object. The new geometry object is
allocated with the kgeom_new_object() call.

kobject *obj;
kgeom_primitive *primitive;

obj = kgeom_new_object();

At this time, we may want to set some interesting attributes on the data object. For example, we may wish to
assign the name of the geometry object.

obj->name = kstrdup("cool dataset");

For the most part, the default object attribute values will be sufficient. However, if we want to set any specific
attributes that will determine the amount of data in an object, we should do so now. For this example, we will
set the layout attribute to dictate that we wish to only have PER_FACE data contained in this geometry object.

obj->layout = KPER_FACE;

We can now begin to create our primitives and add them to the data object. Some components of a geometry
primitive are optional. If we have no data to put for these components, we may leave them pointing to NULL.
After we are done adding all the primitives, we then write the object with the kgeom_write_object() function
and free it using the kgeom_blast_object() function.

/*-- add the first primitive -- sphere list with 10 spheres --*/
primitive = kgeom_new_primitive(KGEOM_SPHERES);
primitive->spheres.nverts = 10;
primitive->spheres.locs =

cool_function_to_get_sphere_locations();
primitive->spheres.rads =

cool_function_to_get_sphere_radii();
kgeom_add_primitive(obj, primitive);

/*-- add the second primitive
-- disjoint line with 3 line segments --*/

primitive = kgeom_new_primitive(KGEOM_POLYLINE_DIS);
primitive->polyline.nverts = 6;
primitive->polyline.locs =

cool_function_to_get_line_locations();
kgeom_add_primitive(obj, primitive);

/*-- add the third primitive
-- disjoint triangles with 4 triangles --*/

primitive = kgeom_new_primitive(KGEOM_TRIANGLES_DIS);
primitive->triangles.nverts = 12;
primitive->triangles.locs =

cool_function_to_get_line_locations();
primitive->triangles.norms =

cool_function_to_get_calculate_norms();
kgeom_add_primitive(obj, primitive);

3-13



Geometry Data Services Program Services Volume II - Chapter 3

kgeom_write_object(obj, "output.file");
kgeom_blast_object(obj);

Note that we did not need to free any of the primitives; they will all be freed as part of the geometry object in
the kgeom_blast_object() call.

Object-Level Attributes

Attribute Legal Definition
and Default Values

ambient_color

float

ambient_color[3] [.25 .25 .25]

0.0 < 1.0 An object’s ambient reflectance is com-

bined source, and is equally scattered

throughout a scene. These values indi-

cate the amount of reflected incoming

ambient light in each of the R, G, and B

components. The value will range from

0.0 to 1.0 where 0.0 implies complete

absorbtion of all ambient light.

Persistence: stored

center

float

center[3]

This attribute is the center point of the

extent of the geometry contained in this

object. The attribute has_center

must also be set to TRUE to indicate

that there is a center point present.

Persistence: stored

color

float

color[3] [1.0 1.0 1.0]

0.0 < 1.0 This attribute is an RGB object color

which will dictate the object color in

the absence of any primitive color. The

attribute has_color must also be set

to TRUE to indicate that there is an

object level color present.

Persistence: stored

diffuse_color

float

diffuse_color[3] [.5 .5 .5]

0.0 < 1.0 An object’s diffuse reflectance is com-

bined 0.0 to 1.0 where 0.0 implies com-

plete absorbtion of all diffuse light.

Persistence: stored

has_alpha

unsigned char

has_alpha FALSE

TRUE

FALSE

This attribute indicates that opacity val-

ues are present in this object. This will

imply that all primitive color vectors

are of size 4, and tht the opacity

object attribute should be interpreted.

Persistence: stored

3-14



Geometry Data Services Program Services Volume II - Chapter 3

Object-Level Attributes

Attribute Legal Definition
and Default Values

has_bounding_box

unsigned char

has_bounding_box FALSE

TRUE

FALSE

This attribute indicates that a bounding

box is present in the min and max

attributes. The min and max attributes

define opposing corners of the bound-

ing box.

Persistence: stored

has_center

unsigned char

has_center FALSE

TRUE

FALSE

This attribute indicates that a center is

present in the center attribute of this

object.

Persistence: stored

has_color

unsigned char

has_color FALSE

TRUE

FALSE

This attribute indicates that a color is

present in the color attribute of this

object.

Persistence: stored

has_matrix

unsigned char

has_matrix FALSE

TRUE

FALSE

This attribute indicates that a matrix is

present in the matrix attribute of this

object.

Persistence: stored

layout

int

layout NULL

KPER_VERTEX

KPER_LINE

KPER_FACE

KPER_CELL

The primitives in the object can have

per vertex, per face, or per line data.

This attribute specifies if color and nor-

mal vectors are associated with a ver-

tex, face or edge.

Persistence: stored

location_dim

int

location_dim 3

> 1 This attribute specifies the dimensional-

ity of the location vertices. A dimen-

sion of 2 would imply a 2D space with

locations specified in x and y. A

dimension size of 3 would imply a 3D

space with locations specified in x, y,

and z.

Persistence: stored

3-15



Geometry Data Services Program Services Volume II - Chapter 3

Object-Level Attributes

Attribute Legal Definition
and Default Values

matrix

float

matrix[16]

This attribute is the 4x4 transformation

matrix which should be applied to the

location coordinates of the object. The

attribute has_matrix must also be

set to TRUE to indicate that there is a

matrix present.

Persistence: stored

max

float

max[3]

This attribute is the maximum corner of

the bounding box which defines extent

of the geometry contained in this

object. The attribute min must also be

set along with this attribute to fully

define the bounding box. The attribute

has_bounding_box must also be

set to TRUE to indicate that there is a

bounding box present.

Persistence: stored

min

float

min[3]

This attribute is the minimum corner of

the bounding box which defines extent

of the geometry contained in this

object. The attribute max must also be

set along with this attribute to fully

define the bounding box. The attribute

has_bounding_box must also be

set to TRUE to indicate that there is a

bounding box present.

Persistence: stored

modeling_space

float

modeling_space KWORLD_SPACE

KWORLD_SPACE

KNDC_SPACE

The modeling space attribute defines

the coordinate space in which the loca-

tion data is defined. A value of

KNDC_SPACE implies that all location

data should be in normalized device

coordinates and will range between 0.0

and 1.0.

Persistence: stored

opacity

float

opacity 1.0

0.0 < 1.0 The opacity attribute is a real number

between 0.0 and 1.0 where 0.0 implies

that the object is completely transpar-

ent. It should only be interpreted if the

has_alpha attribute is set to TRUE.

Persistence: stored

3-16



Geometry Data Services Program Services Volume II - Chapter 3

Object-Level Attributes

Attribute Legal Definition
and Default Values

specular_color

float

specular_color[3] [.25 .25 .25]

0.0 < 1.0 An object’s specular reflectance is com-

bined and like diffuse reflection, is

brighter as the incident angle nears per-

pindicular. Howev er, unlike diffuse

reflectance, specular reflectance is

reflected away from the object in a par-

ticular direction (the reflected direction

is the mirror angle of the angle between

the surface normal and this incident

direction). These values indicate the

amount of reflected specular light in

each of the R, G, and B components.

The values may range from 0.0 and 1.0

where 0.0 implies no specular reflec-

tion.

Persistence: stored

specular_exponent

float

specular_exponent 10.0

0.0 < 200.0 Controls the sharpness of specular

highlights

Persistence: stored

texture_coord_dim

int

texture_coord_dim 2

> 1 This attribute specifies the dimensional-

ity of the texture coordinate vertices. A

dimension of 2 would imply a 2D space

with locations specified in u and v. A

dimension size of 3 would imply a 3D

space with locations specified in u, v,

and w.

Persistence: stored

visible

int

visible TRUE

TRUE

FALSE

The boolean attribute is a flag which

specifies whether the object is visible or

not.

Persistence: stored

A.4. Geometry Primitives and Associated Attributes

The data associated with each primitive consists of multiple data components. For example, a
KGEOM_SPHERES primitive consists of location data, color data, and radii data. These data components are
assigned to the primitive structure.

3-17



Geometry Data Services Program Services Volume II - Chapter 3

The following table presents each primitive in turn, first listing the data pointers, then specifying the primi-
tive’s attributes. Note that the double lines in the table delineate these two parts of the primitive specification.

Table 12: Geometry Primitives and Attributes

Primitive Component Description
Name or Attribute

KGEOM_POLYLINE_DISCONNECTED

KGEOM_POLYLINE_CONNECTED

A disjoint polyline KGEOM_POLYLINE_DISCON-

NECTED with N vertices results in N/2 lines. A

connected polyline KGEOM_POLYLINE_CON-

NECTED with N vertices results in N-1 lines.

float *

locs

An array of vertex locations. The dimension of

the locations is set by the location_dim

attribute. The number of locations is specified by

the nverts attribute.

float *

cols

An optional array of colors. The color data will

contain either RGB or RGBa vectors depending

on how the has_alpha attribute is set. The num-

ber of colors will be affected by the layout

attribute.

int

nverts

This value specifies the number of vertices.

Default: unspecified

int

linetype

This attribute specifies the line type.

Default: 1

int

linewidth

This attribute specifies the line width.

Default: 1

KGEOM_TRIANGLES_DISJOINT

KGEOM_TRIANGLES_CONNECTED

A disjoint polytriangles primtive with N vertices

can construct N/3 triangles. A connected polytri-

angles primitive with N vertices can construct

N-2 triangles.

float *

locs

An array of vertex locations. The dimension of

the locations is set by the location_dim

attribute. The number of locations is specified by

the nverts attribute.

float *

cols

An optional array of colors. The color data will

contain either RGB or RGBa vectors depending

on how the has_alpha attribute is set. The num-

ber of colors will be affected by the layout

attribute.

float *

norms

An array of normals. The number of normals will

be affected by the layout attribute. The dimen-

sionality of the normals is set by the loca-

tion_dim attribute.

float *

tcoords

An array of texture coordinates. The dimension-

ality of the texture coordinates is specified by the

texture_coord_dim attribute.

3-18



Geometry Data Services Program Services Volume II - Chapter 3

Table 12: Geometry Primitives and Attributes

Primitive Component Description
Name or Attribute

int

nverts

This attribute specifies the number of vertices in

the connected or disjoint polytriangles.

Default: unspecified

char *

texture

This attribute will provide a file name from which

the KGEOM_TEXTURE2D primitive associated

with this primitive can be obtained.

Default: NULL

KGEOM_SPHERES A list of spheres, where the number of spheres is

equal to the value specified by the nverts

attribute.

float *

locs

An array of vertex locations. The dimension of

the locations is set by the location_dim

attribute. The number of locations is specified by

the nverts attribute.

float *

cols

An optional array of colors. The color data will

contain either RGB or RGBa vectors depending

on how the has_alpha attribute is set.

float *

radii

A 1D array of sphere radii.

int

nverts

This attribute specifies the number of sphere cen-

ters.

Default: unspecified

KGEOM_CYLINDERS A list of cylinders, where the number of cylinders

is equal to nverts / 2.

float *

locs

An array of vertex locations. The dimension of

the locations is set by the location_dim

attribute. The number of locations is specified by

the nverts attribute.

float *

rad1

float *

rad2

Arrays of cylinder top and bottom radii.

float *

cols

An optional array of colors. The color data will

contain either RGB or RGBa vectors depending

on how the has_alpha attribute is set. The num-

ber of colors will be affected by the layout

attribute.

int

nverts

This value is the number of cylinders times two.

Default: unspecified

KGEOM_DIRECTED_POINTS The number of directed points is given by the

value of the nverts attribute.

3-19



Geometry Data Services Program Services Volume II - Chapter 3

Table 12: Geometry Primitives and Attributes

Primitive Component Description
Name or Attribute

float *

locs

An array of vertex locations. The dimension of

the locations is set by the location_dim

attribute. The number of locations is specified by

the nverts attribute.

float *

cols

An optional array of colors. The color data will

contain either RGB or RGBa vectors depending

on how the has_alpha attribute is set.

float *

norms

An array of normals. The dimensionality of the

normals is set by the location_dim attribute.

int

nverts

This attribute specifies the number of directed

points.

Default: unspecified

KGEOM_TEXT A list of null terminated strings.

kstring *

strings

An array of strings.

kstring *

fonts

An array of font names, one for each string.

float *

locs

float *

offsets

float *

ups

float *

flows

There is an array each for text location, offsets,

ups, and flows. The dimensionality of the loca-

tions is set by the location_dim attribute. Each

string has a location vector, an offset vector, an

up vector, and a flow vector which indicates what

direction to draw the text in.

float *

cols

float *

bgcols

There are optional arrays of text foreground and

background colors, one foreground and back-

ground color vector for each string.

The color data will contain either RGB or RGBa

vectors depending on how the has_alpha

attribute is set.

int

nverts

This attribute specifies the number of strings.

Default: unspecified

KGEOM_MARKERS A list of markers.

float *

locs

An array of vertex locations. The dimension of

the locations is set by the location_dim

attribute. The number of locations is specified by

the nverts attribute.

float *

cols

float *

bgcols

There are optional arrays of marker foreground

and background colors, one foreground and back-

ground color vector for each marker. The color

data will contain either RGB or RGBa vectors

depending on how the has_alpha attribute is set.

3-20



Geometry Data Services Program Services Volume II - Chapter 3

Table 12: Geometry Primitives and Attributes

Primitive Component Description
Name or Attribute

int

nverts

This attribute specifies the number of markers.

Default: unspecified

int

makertype

This attribute can have the value of

KMARKER_SQUARE, KMARKER_TRIANGLE,

KMARKER_CROSS, KMARKER_BOW_TIE,

KMARKER_ARC, KMARKER_DIAMOND,

KMARKER_CIRCLE, KMARKER_V,

KMARKER_HEXAGON, KMARKER_X,

KMARKER_DOT, KMARKER_CARET,

KMARKER_POINT, KMARKER_DAGGER, or

KMARKER_BOX.

Default: KMARKER_SQUARE

KGEOM_POLYGON A single polygon, where the value of the nverts

attribute specifies the number of vertices in the

polygon, which is one more than the number of

line segments in the polygon.

float *

locs

An array of vertex locations. The dimension of

the locations is set by the location_dim

attribute. The number of locations is specified by

the nverts attribute.

float *

cols

float *

bgcol

There is an optional array of polygon foreground

colors. The number of foreground colors will

either be equal to nverts There is also a single

optional background color. The color data will

contain either RGB or RGBa vectors depending

on how the has_alpha attribute is set.

int

nverts

This attribute specifies the number of vertices in

the polygon.

Default: unspecified

int

linetype

This attribute specifies the line type.

Default: 1

int

linewidth

This attribute specifies the line width.

Default: 1

KGEOM_RECTANGLES A list of rectangles, where the value of the

nverts attribute specifies the number of rectan-

gles divided by two.

float *

locs

Each rectangle has a minimum corner vertex and

a maximum corner vertex. Each vertex has a

location vector. The dimension of the locations is

set by the location_dim attribute. The number

of locations is specified by the nverts attribute.

3-21



Geometry Data Services Program Services Volume II - Chapter 3

Table 12: Geometry Primitives and Attributes

Primitive Component Description
Name or Attribute

float *

cols

float *

bgcols

Each rectangle has an optional line color vector

and a fill color vector. The color data will con-

tain either RGB or RGBa vectors depending on

how the has_alpha attribute is set.

int

nverts

This attribute specifies the number of vertices in

the rectangle list. The number of rectangles is

nverts / 2.

Default: unspecified

int

linetype

This attribute specifies the line type.

Default: 1

int

linewidth

This attribute specifies the line width.

Default: 1

KGEOM_ELLIPSES A list of ellipses, where the value of the nverts

attribute specifies the number of ellipses.

float *

locs

Each ellipse has a center vertex location vector.

The dimension of the locations is set by the

location_dim attribute. The number of loca-

tions is specified by the nverts attribute.

float *

rad1

float *

rad2

Each ellipse has a major and minor axis. The

number of axis vectors is given by the value of

the nverts attribute.

float *

cols

float *

bgcols

Each ellipse has an optional line color vector and

a fill color vector. The color data will contain

either RGB or RGBa vectors depending on how

the has_alpha attribute is set.

int

nverts

This attribute specifies the number of vertices in

the list of ellipses.

Default: unspecified

int

linetype

This attribute specifies the line type.

Default: 1

int

linewidth

This attribute specifies the line width.

Default: 1

KGEOM_QUADMESH A 2D mesh of data.

float *

locs

Quadmeshes consist of width by height loca-

tions. The dimension of the locations is set by

the location_dim attribute. The number of

locations is specified by the nverts attribute.

float *

cols

An optional array of colors. The color data will

contain either RGB or RGBa vectors depending

on how the has_alpha attribute is set. The num-

ber of colors will be affected by the layout

attribute.

3-22



Geometry Data Services Program Services Volume II - Chapter 3

Table 12: Geometry Primitives and Attributes

Primitive Component Description
Name or Attribute

float *

norms

An array of normals. The number of normals will

be affected by the layout attribute. The dimen-

sionality of the normals is set by the loca-

tion_dim attribute.

float *

tcoords

An array of texture coordinates. The dimension-

ality of the texture coordinates is specified by the

texture_coord_dim attribute.

int

width

height

These attributes specify the number of points

available in the quadmesh.

Default: unspecified

char *

texture

This attribute will provide a file name from which

the KGEOM_TEXTURE2D primitive associated

with this primitive can be obtained.

Default: NULL

KGEOM_OCTMESH A 3D mesh of data.

float *

locs

Octmeshes consist of width by height by

depth locations. The dimension of the locations

is set by the location_dim attribute. The num-

ber of locations is specified by the nverts

attribute.

kubyte *

cols

An optional array of colors. The color data will

contain either RGB or RGBa vectors depending

on how the has_alpha attribute is set. The num-

ber of colors will be affected by the layout

attribute.

float *

norms

An array of normals. The number of normals will

be affected by the layout attribute. The dimen-

sionality of the normals is set by the loca-

tion_dim attribute.

float *

tcoords

An array of texture coordinates. The dimension-

ality of the texture coordinates is specified by the

texture_coord_dim attribute.

int

width

height

depth

These attributes specify the number of points

available in the quadmesh.

Default: unspecified

char *

texture

This attribute will provide a file name from which

the KGEOM_TEXTURE2D primitive associated

with this primitive can be obtained.

Default: NULL

KGEOM_TEXTURE2D A 2D texture of colors.

3-23



Geometry Data Services Program Services Volume II - Chapter 3

Table 12: Geometry Primitives and Attributes

Primitive Component Description
Name or Attribute

kubyte *

cols

An array of colors. The color data will contain

either RGB or RGBa vectors depending on how

the has_alpha attribute is set.

int

width

height

These attributes specify the number of points

available in the 2D texture.

Default: unspecified

KGEOM_TEXTURE3D A 3D texture of colors.

kubyte *

cols

An array of colors. The color data will contain

either RGB or RGBa vectors depending on how

the has_alpha attribute is set.

int

width

height

depth

These attributes specify the number of points

available in the 3D texture.

Default: unspecified

KGEOM_TEXTURE2D A 2D texture of colors.

kubyte *

cols

An array of colors. The color data will contain

either RGB or RGBa vectors depending on how

the has_alpha attribute is set.

int

width

height

These attributes specify the number of points

available in the 2D texture.

Default: unspecified

KGEOM_VIEW_XFORM A viewing transformation.

float

matrix[16]

A transformation matrix to apply to the current

viewing position.

Default: identify matrix

KGEOM_OBJECT_XFORM A transformation to be applied to a particular

object.

kstring

name

The name of the object to apply the transfor-

maiton to.

Default: NULL

float

matrix[16]

The transformation matrix to apply to the object’s

locations.

Default: identity matrix

float

translate[3]

An additional translation to apply to the object.

Default: [0.0 0.0 0.0]

int

relative

Indicates if the transformation is relative to the

current position or specifies an absolute transfor-

mation.

Default: KRELATIVE

KGEOM_CAMERA_ORIENTATION A camera specification to use when rendering.

float

eye[3]

The current eye position of the camera.

Default: [0.0 0.0 0.0]

3-24



Geometry Data Services Program Services Volume II - Chapter 3

Table 12: Geometry Primitives and Attributes

Primitive Component Description
Name or Attribute

float

at[3]

The current position to point the camera at.

Default: [0.0 0.0 1.0]

float

up[3]

The current up direction

Default: [0.0 1.0 0.0]

float

field_of_view

Specifies the field of view of the camera in

degrees.

Default: 90.0

float

hither

Specifies the near clip plane.

Default: -1.0

float

yon

Specifies the far clip plane.

Default: 1.0

int

projection

Specifies if the rendering should be done with a

parallel or perspective projection.

Default: KPROJECTION_PERSPECTIVE

int

is_stereo

Specifies if stereo rendering should be done.

Default: FALSE

float

eye_distance

Specifies the distance between the two stereo

cameras.

Default: 0.0

float

focal_length

Specifies the distance to the intersection between

the viewing directions of the the two stereo cam-

eras.

Default: 1.0

KGEOM_VR_EVENT An event from a virtual reality device.

int

have_button_events

This is TRUE if any button events are present.

Default: FALSE

int

have_rotations

This is TRUE if any rotation events are present

Default: FALSE

int

have_translations

This is TRUE if any translation events are present

Default: FALSE

float

rotate[3]

This specifies an XYZ rotation.

Default: [0.0 0.0 0.0]

float

translate[3]

This specifies an XYZ translation.

Default: [0.0 0.0 0.0]

int

buttons[9]

This specifies the state of 9 buttons on a VR

device. A value of 1 implies that the button is

pressed.

Default: [0 0 0 0 0 0 0 0 0]

int

clock

A clock value from the VR device.

Default: 0

KGEOM_OBJECT Another geometry object

3-25



Geometry Data Services Program Services Volume II - Chapter 3

Table 12: Geometry Primitives and Attributes

Primitive Component Description
Name or Attribute

kgeom_object *

object

This primitive will contain a pointer to another

geometry object. In general, this primitive should

not be used. It will be hidden in the use of the

kgeom_add_primitive() and

kgeom_get_primitive() functions when

they are used with another geometry object.

Default: NULL

A.5. Geometry Service Functions

A.5.1. Object Functions

Geometry data and attributes are stored and retrieved from a geometry object. The following functions allow
you to create a new geometry object, write and read a geometry object to and from a file or transport, copy a
geometry object, or free a geometry object. Geometry objects are represented by pointers to the data structure
kgeom_object.

• kgeom_new_object() - construct a new geometry object
• kgeom_write_object() - write a geometry object
• kgeom_read_object() - read a geometry object
• kgeom_copy_object() - copy a geometry object
• kgeom_blast_object() - free a geometry object

A.5.2. kgeom_new_object() — construct a new geometry object

Synopsis
kgeom_object *
kgeom_new_object(void)

Returns
a pointer to the constructed object on success, NULL on failure

Description
This function will construct a new geometry object structure and initialize all of its fields with their
default values.

Once constructed, the fields of this geometry object can be assigned specific values. For a complete

3-26



Geometry Data Services Program Services Volume II - Chapter 3

explanation of these fields, see the kgeom_object man page.

Geometry Primitives and Primitive Lists

A geometry primitive contains geometric data which describes a shape in space. Lines, triangles, and
spheres, are all considered to be geometric primitives. For a complete description of all the geometry
primitives, see the kgeom_primitive man page.

Each geometry object contains a list of such geometry primitives. New primitives can be created using
the function kgeom_new_primitive(). Once a new primitive has been created and its data
assigned, it can be added to the primitive list of the object using the function kgeom_add_primi-
tive(). A corresponding function kgeom_remove_primitive() allows you to remove a prim-
itive from the primitive list of an object.

The number of primitives which have been added to the primitive list of an object is returned by the
function kgeom_number_primitives(). A primitive at a specific position in the primitive list
can be retrieved using the function kgeom_get_primitive().

The primitive functions should be the only means used for accessing the primitives on a primitive list.
Even though the primitive list of the geometry object could be acccessed directly, it should be consid-
ered to be private. By using the primitive list function calls, you can be certain to maintain the
integrity of the primitive list.

Reading and Writing Geometry Objects

A geometry object can be written out to a file, or other transport using the function
kgeom_write_object(). This function will write out all the object and primitive information to
a specified file.

Geometry that has been stored in a file can be read back with the function
kgeom_read_object(). This function will construct a new object into which it will read the
geometry; it is not necessary to pre-construct an object with the kgeom_new_object() function
prior to reading.

Other Geometry Object Functions

A geometry object can be copied using the function kgeom_copy_object().

A geometry object can be destroyed with a call to the function kgeom_geom_blast_object().
This will destroy the object and all of its primitives, freeing all associated memory. Be careful not to
access any of the geometry object’s data after blasting it.

Examples
This simple code illustrates how a new geometry object would be constructed :

kgeom_object *obj;

3-27



Geometry Data Services Program Services Volume II - Chapter 3

obj = kgeom_new_object();

A.5.3. kgeom_write_object() — write a geometry object

Synopsis
int
kgeom_write_object(kgeom_object *object, char *filename)

Input Arguments
object

geometry object to write
filename

filename to write geometry object to.

Returns
TRUE on success, FALSE otherwise

Description
This function will write the given geometry object to a specified file. The object can later be read
from that file using the kgeom_read_object() function.

This function will write everything contained in the geometry object to the file. All the object informa-
tion will be written followed by the information and data contained in each primitive in the object’s
primitive list.

After the object has been written, you may free it using the kgeom_blast_object() function.

Examples
The following code would be used to write a geometry object out to the file "data.kgm":

kgeom_object *geom;

// presumably some primitives would be added here

kgeom_write_object(geom, "data.kgm");

3-28



Geometry Data Services Program Services Volume II - Chapter 3

A.5.4. kgeom_read_object() — read a geometry object

Synopsis
kgeom_object *
kgeom_read_object(char *filename)

Input Arguments
filename

filename to read geometry from

Returns
pointer to a new geometry object containing the geometry data contained in the file, NULL otherwise

Description
This function will read an entire geometry object object from the specified file.

If the file does not contain a valid geometry object, then it will be closed and nothing will be returned.
If it does contain a valid header, then a new object containing the geometry data from the file will be
returned.

Examples
The following code would be used to read in a geometry object from the file "data.kgm":

kgeom_object *geom;

geom = kgeom_read_object("data.kgm");

3-29



Geometry Data Services Program Services Volume II - Chapter 3

A.5.5. kgeom_copy_object() — copy a geometry object

Synopsis
kgeom_object *
kgeom_copy_object(kgeom_object *object, kgeom_object *new_object)

Input Arguments
object

geometry object to copy

Output Arguments
new_object

a pointer to geometry object that will serve as a destination for the copy. If NULL, then a new destina-
tion object will be allocated.

Returns
copy of object

Description
This function will copy the given geometry object, creating a duplicate of the object as well as of all
the object’s primitives. All the data contained in each of the object’s primitives will be copied as well.

If desired, a preallocated object can be provided as the destination for the copy. Any data or primitives
which may have existed in the destination prior to calling this routine will be destroyed.

If no destination object is provided, one will be allocated and returned.

3-30



Geometry Data Services Program Services Volume II - Chapter 3

A.5.6. kgeom_blast_object() — free a geometry object

Synopsis
void
kgeom_blast_object(kgeom_object *object)

Input Arguments
object

geometry object to destroy

Description
This function will destroy the given geometry object, first freeing all the primitives on the object’s
primitive list, and then freeing the object itself.

Note that geometry services will free all the primitives and data pointers within the geometry object.
Since geometry services will try to free all memory pointed to by the geometry object, be careful not to
place any static primitives or point to static arrays of data from within the geometry object. If geome-
try services tries to free a statically allocated pieces of memory, it will result in a fatal error.

If you wish to keep any component of the geometry object in memory, simply remove it from the
geometry object prior to calling this function. For instance, to keep a primitive from an object in mem-
ory after the object has been destroyed, that primitive could first be removed with the
kgeom_remove_primitive() function. Similarly, to keep a particular array of data from a prim-
itive in memory after the associated primitive has been destroyed, the pointer to that array could be
assigned to NULL. This routine will only free the primitives and data pointers which are seen within
the object.

A.5.7. Primitive Functions

Geometry data is stored specifically in geometry primitive structures. The following functions are available
for creating, copying, and freeing geometry primitives.

• kgeom_new_primitive() - construct a new geometry primitive
• kgeom_copy_primitive() - copy a geometry primitive
• kgeom_blast_primitive() - destroy a geometry primitive

A.5.8. kgeom_new_primitive() — construct a new geometry primitive

3-31



Geometry Data Services Program Services Volume II - Chapter 3

Synopsis
kgeom_primitive *
kgeom_new_primitive(int type)

Input Arguments
type

type of primitive to construct

Returns
a pointer to the constructed primitive on success, NULL on failure

Description
This function will construct a new geometry primitive structure of the given type and initialize all
default values.

A geometry primitive contains geometric data which describes a shape in space. Lines, triangles, and
spheres, are all considered to be geometric primitives. Each "type" of primitive is actually represented
by a distinct structure; these structures have been unioned into a common kgeom_primitive struc-
ture.

The type of primitive is declared on instantiation, as in this example :

kgeom_primitive *prim;

prim = kgeom_new_primitive(KGEOM_POLYLINE_CONNECTED);

The type of primitive is tracked in a type field which is common to all the primitive structures. It can
always be accessed as prim->type from any primitive structure.

For a complete description of all the types of geometry primitives, see the kgeom_primitive man page,
or consult the Data Services Manual : Programming Services Volume II

Note that a geometry primitive is not limited to a single instance of a shape. For example, a single
spheres primitive can contain many spheres and a single polyline primitive can contain many lines.

The data within a primitive consists of several components; the predominate component which actually
defines the size and position of the geometry is the location data. The location data consists of a list of
vertices. The number of these vertices is a specified by a field within the primitive and is a defining
characteristic for most geometry primitives.

Additional components which may be present in a geometry primitive are color, normals, or texture
coordinates. All components except for the location component are optional in any giv en geometry
primitive.

Most the fields of a geometry primitive are pointers to allocated arrays which contain these compo-
nents. The size of these arrays is implied from the number of vertices present in the geometry primi-
tive, and the presentation characteristics (layout, location_dim, texture_coord_dim, and has_alpha) set

3-32



Geometry Data Services Program Services Volume II - Chapter 3

in the associated geometry object. Most data within a geometry primitive will be floating point.

Geometric data is always stored "elements first", with the vectors forming the leading dimension of the
array. For example, 3D location vertices will be stored in the order XYZXYZXYZ...

The number of location vertices is by definition the number of vertices in the primitive. The size of
each vertex will be determined by the location_dim field of the associated object.

The number of color and normal vectors will be a function of the number of vertices, but will vary
depending on the primitive and the layout field of associated geometry object. For example, a disjoint
polyline primitive will have 1 color per vertex for a KPER_VERTEX layout, but will have 1 color per
line for a KPER_LINE primitive.

The size of each color vector will either be 3 (for RGB), of 4 (for RGBa) if the has_alpha field of the
associated object is TRUE. The size of each normal vector will match the size of location_dim field in
the associated object.

If texture coordinate vectors are present, the number of texture coordinates must match the number of
vertices in the primitive. The size of each texture coordinate will be determined by the tex-
ture_coord_dim field of the associated object.

If the modeling_space field of the associated object is set to KNDC_SPACE, the location data will be
interpreted as normalized device coordinates and thus should range between 0.0 and 1.0.

Color data is represented by RGB vectors with three floats determining the red, green, and blue inten-
sity. These numbers should range from 0.0 to 1.0, with 1.0 implying maximum intensity. If an alpha
component is present it will determine the transparency of the primitive. It also should range from 0.0
to 1.0, with 0.0 implying that the primitive is totally transparent, and 1.0 implying that the primitive is
totally opaque.

Since the fields of a geometry primitive vary from type to type, we must specify the type of primitive
we are working with in order to access the components of the primitive structure. For example, if we
had a spheres primitive, we would have to do the following to access the specific sphere fields :

kgeom_primitive *prim;

prim = kgeom_new_primitive(KGEOM_SPHERES);

// specify that we want 45 spheres

prim->spheres.nverts = 45;

This can alternatively be done by casting the structure to its specific primitive type as follows :

kgeom_spheres *s;

s = (kgeom_spheres *) kgeom_new_primitive(KGEOM_SPHERES);

3-33



Geometry Data Services Program Services Volume II - Chapter 3

// specify that we want 45 spheres

s->nverts = 45;

Primitives can be cast to any type at any time, but you should be sure that you cast back to the general
kgeom_primitive * type before passing a specific primitive into any functions which take a prim-
itive argument.

A.5.9. kgeom_copy_primitive() — copy a geometry primitive

Synopsis
kgeom_primitive *
kgeom_copy_primitive(

kgeom_object *object,
kgeom_primitive *primitive,
kgeom_primitive *new_primitive)

Input Arguments
object

object to which original primitive belongs
primitive

primitive to copy

Output Arguments
new_primitive

a pointer to geometry primitive that will serve as a destination for the copy. If NULL, then a new desti-
nation primitive will be allocated.

Returns
copy of primitive

Description
This routine will copy a given primitive and all associated data into another primitive structure. If
another primitive structure is not provided for the destination of the copy, a new one will be con-
structed.

The object presentation is used to determine how much data is present in the primitive, so make certain
the has_alpha, layout, location_dim, and other fields correctly reflect the data in the primitive. The
copied primitive will not be added to the object, so you are free to destroy it or add it to another object.

3-34



Geometry Data Services Program Services Volume II - Chapter 3

A.5.10. kgeom_blast_primitive() — destroy a geometry primitive

Synopsis
int
kgeom_blast_primitive(kgeom_primitive *primitive)

Input Arguments
primitive

primitive to free

Returns
TRUE on success, FALSE otherwise

Description
This routine will free a given primitive and all associated data.

Note that geometry services will free all the data pointers within the geometry primitive. Because of
this, be careful not to point to static arrays of data within the geometry primitive. If geometry services
tries to free a statically allocated array, it will result in a fatal error.

A.5.11. Primitive List Functions

Geometry data is stored and retrieved from a primitive list contained within a geometry object. The following
functions allow you to add and remove primitives from a primitive list, as well as determine the number of
primitives contained therein.

• kgeom_add_primitive() - add a primitive to a geometry object
• kgeom_get_primitive() - get a primitive from a geometry object
• kgeom_number_primitives() - count the number of primitives in the given object

A.5.12. kgeom_add_primitive() — add a primitive to a geometry object

Synopsis
int
kgeom_add_primitive(

kgeom_object *object,
kgeom_primitive *primitive)

3-35



Geometry Data Services Program Services Volume II - Chapter 3

Input Arguments
object

object to add primitive to
primitive

primitive to add

Returns
TRUE on success, FALSE on failure

Description
This function will add the given primitive to the end of the primitive list of the given object.

Geometry Primitives and Primitive Lists

A geometry primitive contains geometric data which describes a shape in space. Lines, triangles, and
spheres, are all considered to be geometric primitives. For a complete description of all the geometry
primitives, see the kgeom_primitive man page.

Each geometry object contains a list of such geometry primitives. New primitives can be created using
the function kgeom_new_primitive(). The function kgeom_remove_primitive() allows
you to remove a primitive from the primitive list of an object after it has been added. At any time, the
number of primitives which have been added to the primitive list of an object can be determined by the
function kgeom_number_primitives(). A primitive at any giv en position can be retrieved
using the function kgeom_get_primitive().

The primitive functions should be the only means used for accessing the primitives on a primitive list.
Even though the primitive list of the geometry object could be acccessed directly, it should be consid-
ered to be private. By using the primitive list function calls, you can be certain to maintain the
integrity of the primitive list.

A.5.13. kgeom_get_primitive() — get a primitive from a geometry object

Synopsis
kgeom_primitive *
kgeom_get_primitive(

kgeom_object *object,
int position)

Input Arguments
object

object to retrieve primitive from
position

position in list from which the primitive should be retrieved

3-36



Geometry Data Services Program Services Volume II - Chapter 3

Returns
TRUE on success, FALSE on failure

Description
This routine will get the primitive from the specified position in the primitive list. If the position is out-
side the bounds of the primitive list then a NULL pointer will be returned.

Geometry Primitives and Primitive Lists

A geometry primitive contains geometric data which describes a shape in space. Lines, triangles, and
spheres, are all considered to be geometric primitives. For a complete description of all the geometry
primitives, see the kgeom_primitive man page.

Each geometry object contains a list of such geometry primitives. New primitives can be created using
the function kgeom_new_primitive(). Once a new primitive has been created and its data
assigned, it can be added to the primitive list of the object using the function kgeom_add_primi-
tive(). A corresponding function kgeom_remove_primitive() allows you to remove a prim-
itive from the primitive list of an object. The number of primitives which have been added to the prim-
itive list of an object is returned by the function kgeom_number_primitives().

The primitive functions should be the only means used for accessing the primitives on a primitive list.
Even though the primitive list of the geometry object could be acccessed directly, it should be consid-
ered to be private. By using the primitive list function calls, you can be certain to maintain the
integrity of the primitive list.

A.5.14. kgeom_number_primitives() — count the number of primitives in the given object

Synopsis
int
kgeom_number_primitives(kgeom_object *object)

Input Arguments
object

object to count primitives in

Returns
the number of primitives contained in the object

Description
This function will return the number of primitives contained in the primitive list of the given object.

Geometry Primitives and Primitive Lists

3-37



Geometry Data Services Program Services Volume II - Chapter 3

A geometry primitive contains geometric data which describes a shape in space. Lines, triangles, and
spheres, are all considered to be geometric primitives. For a complete description of all the geometry
primitives, see the kgeom_primitive man page.

Each geometry object contains a list of such geometry primitives. New primitives can be created using
the function kgeom_new_primitive(). The function kgeom_remove_primitive() allows
you to remove a primitive from the primitive list of an object after it has been added. A primitive at
any giv en position can be retrieved using the function kgeom_get_primitive().

The primitive functions should be the only means used for accessing the primitives on a primitive list.
Even though the primitive list of the geometry object could be acccessed directly, it should be consid-
ered to be private. By using the primitive list function calls, you can be certain to maintain the
integrity of the primitive list.

A.5.15. Specialized Reading and Writing Functions

The following functions are used for doing incremental reads and writes of a data object. In general, these
functions should only be used if you wish to keep a single geometry primitive in memory at one time. The
kgeom_write_object and kgeom_read_object will call these functions internally.

• kgeom_start_writing_object() - write the first part of a geometry object
• kgeom_write_primitive() - write a geometry primitive
• kgeom_finish_writing_object() - write the last part of a geometry object
• kgeom_done_writing() - close associated file after writing

• kgeom_start_reading_object() - read the first part of a geometry object
• kgeom_read_primitive() - read a geometry primitive
• kgeom_finish_reading_object() - read the last part of a geometry object
• kgeom_done_reading() - close associated file after reading

A.5.16. kgeom_start_writing_object() — write the first part of a geometry object

Synopsis
int
kgeom_start_writing_object(kgeom_object *object)

Input Arguments
object

geometry object to write

3-38



Geometry Data Services Program Services Volume II - Chapter 3

Returns
TRUE on success, FALSE otherwise

Description
This routine will write the first part of a geometry object to the open fid. It should be followed by a
write of all the primitives, and then by a finish of the object.

In general, the kgeom_write_object() function should be used instead of this function. This
function has been made public to provide complete flexibility for writing a geometry object. It should
only be used when you wish to write a geometry object primitive-by-primitive. More information on
this is available in the kgeom_write_primitive() man page.

The first part of a geometry object contains information which will be needed to later read the geome-
try primitive data. Specifically, the layout, location_dim, texture_coord_dim, and has_alpha fields are
written as the first part of the object.

All other information contained within the geometry object is written after the primitives by the
kgeom_finish_writing_object() call.

The fid internal to the geometry object specifies the file to which the the object will be written. In gen-
eral, this fid is set when the geometry header is written by the kgeom_write_header() function.

A.5.17. kgeom_write_primitive() — write a geometry primitive

Synopsis
int
kgeom_write_primitive(

kgeom_object *object,
kgeom_primitive *primitive)

Input Arguments
object

object to which primitive belongs
primitive

primitive to write

Returns
TRUE on success, FALSE otherwise

Description
This routine will write a given primitive and all associated data to the file indicated by the provided
object.

3-39



Geometry Data Services Program Services Volume II - Chapter 3

In general, the kgeom_write_object() function should be used instead of this function. This
function has been made public to provide complete flexibility for writing a geometry object. It should
only be used when you wish to write a geometry object primitive-by-primitive.

If you wish to use this function to write out a primitive at a time, you should follow this sequence to
write out the the object:

kgeom_write_header(object, "filename");

kgeom_start_writing_object(object);

At this point, you can start writing out individual primitives using the kgeom_write_primi-
tive() function. The file to be written to is determined from the open fid inside the object.

When you are done writing primitives, finish with the following calls :

kgeom_finish_writing_object(object);

kgeom_done_writing(object);

The object presentation is used to determine how much data is present in the primitive, so make sure
the has_alpha, layout, location_dim, and other fields are set correctly. These should be valid before the
call to kgeom_start_writing_object() is made. The primitive does not have to be present
on the object’s primitive list to be written.

A.5.18. kgeom_finish_writing_object() — write the last part of a geometry object

Synopsis
int
kgeom_finish_writing_object(kgeom_object *object)

Input Arguments
object

geometry object to write

Returns
TRUE on success, FALSE otherwise

Description
This routine will terminate the primitive list by writing a -1 to an open fid. It will then write out all the

3-40



Geometry Data Services Program Services Volume II - Chapter 3

object specific information.

In general, the kgeom_write_object() function should be used instead of this function. This
function has been made public to provide complete flexibility for writing a geometry object. It should
only be used when you wish to write a geometry object primitive-by-primitive. More information on
this is available in the kgeom_write_primitive() man page.

The first part of a geometry object should have already been written by a call to
kgeom_start_writing_object(). That call would have written any information which would
be needed to later read the geometry primitive data. Specifically, the layout, location_dim, tex-
ture_coord_dim, and has_alpha fields of the object would already have been written out as the first part
of the object.

All other information contained within the geometry object is written after the primitives by this call.

The fid internal to the geometry object specifies the file to which the the object will be written. In gen-
eral, this fid is set when the geometry header is written by the kgeom_write_header() function.

A.5.19. kgeom_done_writing() — close associated file after writing

Synopsis
int kgeom_done_writing(kgeom_object *object)

Input Arguments
object

geometry object to write filename - filename to write header to

Returns
TRUE on success, FALSE otherwise

Description
This function will close the file associated with the geometry object after a write has been completed.

In general, the kgeom_write_object() function should be used instead of this function. This
function has been made public to provide complete flexibility for writing a geometry object. It should
only be used when you wish to write a geometry object primitive-by-primitive. More information on
this is available in the kgeom_write_primitive() man page.

The fid internal to the geometry object specifies the file which will be closed. In general, this fid is set
when the geometry header was written by the kgeom_write_header() function.

3-41



Geometry Data Services Program Services Volume II - Chapter 3

A.5.20. kgeom_start_reading_object() — read the first part of a geometry object

Synopsis
int
kgeom_start_reading_object(kgeom_object *object)

Input Arguments
object

geometry object to read

Returns
TRUE on success, FALSE otherwise

Description
This routine will read the first part of a geometry object from an open fid. It should be followed by a
read of all the primitives, and then by a finish of the object.

In general, the kgeom_read_object() function should be used instead of this function. This func-
tion has been made public to provide complete flexibility for reading a geometry object. It should only
be used when you wish to read a geometry object primitive-by-primitive. More information on this is
available in the kgeom_read_primitive() man page.

The first part of a geometry object contains information which is needed to read the geometry primitive
data. Specifically, the layout, location_dim, texture_coord_dim, and has_alpha fields are read in as the
first part of the object.

All other information contained within the geometry object is read after the primitives by the
kgeom_finish_reading_object() call.

The fid internal to the geometry object specifies the file from which the the object will be read. In gen-
eral, this fid is set when the geometry header is read by the kgeom_read_header() function.

A.5.21. kgeom_read_primitive() — read a geometry primitive

Synopsis
kgeom_primitive *
kgeom_read_primitive(kgeom_object *object)

Input Arguments
object

object to which primitive will belong

3-42



Geometry Data Services Program Services Volume II - Chapter 3

Returns
new primitive with primitive data from file

Description
This routine will read a given primitive and all associated data from the file indicated by the provided
object. A new primitive will be constructed for this.

In general, the kgeom_write_object() function should be used instead of this function. This
function has been made public to provide complete flexibility for reading a geometry object. It should
only be used when you wish to read a geometry object primitive-by-primitive.

If you wish to use this function to read in a primitive at a time, you should follow this sequence to
reading the object:

object = kgeom_read_header("filename");

If this has returned a valid object, then the object itself can be read. The next call will read in all the
specific information

kgeom_start_reading_object(object);

At this point, you can start reading in individual primitives using the kgeom_read_primitive()
function. The file to be read from is determined from the open fid inside the object. This function will
return NULL if there are no more primitives to read.

After all primitives hav e been read, finish with the following calls :

kgeom_finish_reading_object(object);

kgeom_done_reading(object);

The object presentation is used to determine how much data is present in the primitive. The call to
kgeom_start_reading_object() should have initialized these fields appropriately. The primi-
tive will not be added to the object, so you are free to destroy it or add it to a different object if you
choose.

3-43



Geometry Data Services Program Services Volume II - Chapter 3

A.5.22. kgeom_finish_reading_object() — read the last part of a geometry object

Synopsis
int
kgeom_finish_reading_object(kgeom_object *object)

Input Arguments
object

geometry object to read

Returns
TRUE on success, FALSE otherwise

Description
This routine will read in all the object specific information.

In general, the kgeom_read_object() function should be used instead of this function. This func-
tion has been made public to provide complete flexibility for reading a geometry object. It should only
be used when you wish to read in a geometry object primitive-by-primitive. More information on this
is available in the kgeom_read_primitive() man page.

The first part of a geometry object should have already been read by a call to kgeom_start_read-
ing_object(). That call would have read any information which was needed to read the geometry
primitive data. Specifically, the layout, location_dim, texture_coord_dim, and has_alpha fields of the
object would already have been read in as the first part of the object.

All other information contained within the geometry object is read after the primitives by this call.

The fid internal to the geometry object specifies the file from which the object will be read. In general,
this fid is set when the geometry header is read by the kgeom_read_header() function.

A.5.23. kgeom_done_reading() — close associated file after reading

Synopsis
int kgeom_done_reading(kgeom_object *object)

Input Arguments
object

geometry object to write filename - filename to write header to

3-44



Geometry Data Services Program Services Volume II - Chapter 3

Returns
TRUE on success, FALSE otherwise

Description
This function will close the file associated with the geometry object after a read has been completed.

In general, the kgeom_read_object() function should be used instead of this function. This func-
tion has been made public to provide complete flexibility for reading a geometry object. It should only
be used when you wish to read a geometry object primitive-by-primitive. More information on this is
available in the kgeom_read_primitive() man page.

The fid internal to the geometry object specifies the file which will be closed. In general, this fid is set
when the geometry header was read by the kgeom_read_header() function.

3-45



Geometry Data Services Program Services Volume II - Chapter 3

This page left intentionally blank

3-46



Table of Contents

A. Geometry Data Services . . . . . . . . . . . . . . . . . . . . . . . .  3-1
A.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-1

A.1.1. The Geometry Data Model . . . . . . . . . . . . . . . . . . . .  3-2
A.1.1.1. Geometry Primitives .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-2
A.1.1.2. VisiQuest Geometry Format . . . . . . . . . . . . . . . . . . .  3-3

A.2. Overview of Geometry Service Primitives .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-3
A.3. The Application Programming Interface (API) . . . . . . . . . . . . . . . .  3-7

A.3.1. Geometry Object Functions . . . . . . . . . . . . . . . . . . . .  3-7
A.3.2. Geometry Primitive Functions . . . . . . . . . . . . . . . . . . .  3-8
A.3.3. Primitive List Functions . . . . . . . . . . . . . . . . . . . . .  3-9
A.3.4. Primitives and Data Vectors . . . . . . . . . . . . . . . . . . . .  3-9

A.3.4.1. Location Data . . . . . . . . . . . . . . . . . . . . . . . 3-10
A.3.4.2. Color Data . . . . . . . . . . . . . . . . . . . . . . . . 3-10
A.3.4.3. Normal Data . . . . . . . . . . . . . . . . . . . . . . . . 3-10
A.3.4.4. Radius Data . . . . . . . . . . . . . . . . . . . . . . . . 3-11
A.3.4.5. Texture Coordinate Data . . . . . . . . . . . . . . . . . . . . 3-11
A.3.4.6. Text Data . . . . . . . . . . . . . . . . . . . . . . . . . 3-11

A.3.5. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11
A.3.5.1. Reading Geometry Data . . . . . . . . . . . . . . . . . . . . 3-11
A.3.5.2. Writing Geometry Data . . . . . . . . . . . . . . . . . . . . 3-13

A.4. Geometry Primitives and Associated Attributes . . . . . . . . . . . . . . . 3-17
A.5. Geometry Service Functions . . . . . . . . . . . . . . . . . . . . . 3-26

A.5.1. Object Functions . . . . . . . . . . . . . . . . . . . . . . . . 3-26
A.5.2. kgeom_new_object() — construct a new geometry object . . . . . . . . . . . . 3-26
A.5.3. kgeom_write_object() — write a geometry object . . . . . . . . . . . . . . 3-28
A.5.4. kgeom_read_object() — read a geometry object . . . . . . . . . . . . . . 3-29
A.5.5. kgeom_copy_object() — copy a geometry object . . . . . . . . . . . . . . 3-30
A.5.6. kgeom_blast_object() — free a geometry object . . . . . . . . . . . . . . 3-31
A.5.7. Primitive Functions . . . . . . . . . . . . . . . . . . . . . . . 3-31
A.5.8. kgeom_new_primitive() — construct a new geometry primitive . . . . . . . . . . 3-31
A.5.9. kgeom_copy_primitive() — copy a geometry primitive . . . . . . . . . . . . 3-34
A.5.10. kgeom_blast_primitive() — destroy a geometry primitive . . . . . . . . . . . 3-35
A.5.11. Primitive List Functions . . . . . . . . . . . . . . . . . . . . . 3-35
A.5.12. kgeom_add_primitive() — add a primitive to a geometry object . . . . . . . . . 3-35
A.5.13. kgeom_get_primitive() — get a primitive from a geometry object . . . . . . . . . 3-36
A.5.14. kgeom_number_primitives() — count the number of primitives in the given object . . . . 3-37
A.5.15. Specialized Reading and Writing Functions . . . . . . . . . . . . . . . 3-38
A.5.16. kgeom_start_writing_object() — write the first part of a geometry object . . . . . . . 3-38
A.5.17. kgeom_write_primitive() — write a geometry primitive . . . . . . . . . . . . 3-39
A.5.18. kgeom_finish_writing_object() — write the last part of a geometry object . . . . . . 3-40
A.5.19. kgeom_done_writing() — close associated file after writing . . . . . . . . . . 3-41
A.5.20. kgeom_start_reading_object() — read the first part of a geometry object . . . . . . . 3-42
A.5.21. kgeom_read_primitive() — read a geometry primitive . . . . . . . . . . . . 3-42
A.5.22. kgeom_finish_reading_object() — read the last part of a geometry object . . . . . . 3-44
A.5.23. kgeom_done_reading() — close associated file after reading . . . . . . . . . . 3-44

- i -



Geometry Data Services Program Services Volume II - Chapter 3

This page left intentionally blank

- ii -



Program Services Volume II

Chapter 4

Color Data Services

Copyright (c) AccuSoft Corporation, 2004. All rights reserved.





Chapter 4 - Color Data Services

A. Color Data Services

Color Data Services is designed to support the specific needs of storing information related to color and col-
ormaps. While the other application services are built around their own self-contained data models, Color
Data Services is intended to coexist with other data models. The attributes provided through Color Data Ser-
vices are designed to augment the functionality provided by Polymorphic Data Services and Geometry Data
Services. The additional attributes available with the Color Data Services data model allow you to specify how
value data vectors should be interpreted by visualization programs as well as providing you with a mechanism
for easily creating colormaps and operating on them.

0
1
2
3
4
5
6

MAP Data

Polymorphic VALUE data

Geometry COLOR data

2

KCOLOR_COLORSPACE

KCOLOR_HAS_ALPHA

alphaRed Green Blue

KRGB

TRUE

refering to map

- or -
COLOR

INTERPRETATION

COLORMAP 
OPERATIONS 

Invert
Invert Original
Random
Reverse
Rotate Left
Rotate Right
Band Rotate Left
Band Rotate Right
Swap Red/Green
Swap Red/Blue
Swap Green/Blue

Red Filter
Green Filter
Blue Filter
Chain Left
Chain Right
Rotate Red Left
Rotate Red Right
Rotate Green Left
Rotate Green Right
Roate Blue Left
Rotate Blue Right

AUTOCOLOR
PROCEDURES

Grey Scale
Equalize
Stretch
Standard Deviation
Rainbox
Disjoint Greycode
Greycode
3-3-2

RGB Cube
RGB Triangles
RGB Spiral
HLS Sprial
HSV Rings
HLS RIngs
RGB Distance
CIE DIagram
Density Slice

Original MAP Data

Original map
is saved

Figure 1: Color Data Services provides you with functionality specific to color data. Color interpretation
attributes provide information to visual applications indicating how to interpret the color vector informa-
tion. Autocolor procedures and colormap operations, which generate new map data and operate on exist-
ing map data, are also available. Color Data Services is intended to be used in conjunction with other
Data Services, such as Polymorphic Data Services and Geometry Data Services.

4-1



Color Data Services Program Services Volume II - Chapter 4

A.1. Application Programming Interface (API)

The Application Programming Interface (API) to Color Data Services operates on the same data object
abstraction that is used by all Data Services. An abstract data object, represented by the data type kobject, is
opened by either a Polymorphic Data Services or Geometry Data Services call. This data object is then oper-
ated on as it normally would be under that Data Service. When the extra functionality provided by Color Data
Services is required, you simply use one of the Color Data Services attribute functions instead of the usual
Polymorphic Data Services or Geometry Data Services attribute function calls. Functions are provided for set-
ting, getting, comparing, copying and printing color service attributes.

B. Color Attributes

The following table gives a complete list of the Color Attributes currently available. In future releases, the
functionality of these attributes is likely to be enhanced and new attributes added.

Color Attributes

Attribute Legal Definition
and Default Values

KCOLOR_COLORSPACE

int

colorspace KNONE

KNONE

KGREY

KRGB

KCMY

KYIQ

KHSV

KHLS

KIHS

KXYZ

KUVW

KUCSUVW

KUCSSOW

KUCSLab

KUCSLuv

KUSERDEFINED

This attribute indicates the colorspace in which the data in

the element vectors of the value segment, or map segment

if it is present, are stored.

Persistence: permanent

KCOLOR_HAS_ALPHA

int

has_alpha FALSE

This attribute indicates whether or not an alpha value is

contained in the element vectors of the value segment, or

map segment if it is present.

Persistence: permanent

4-2



Color Data Services Program Services Volume II - Chapter 4

Color Attributes

Attribute Legal Definition
and Default Values

KCOLOR_MAP_AUTOCOLOR

int

autocolor KORIGINAL

KORIGINAL

KRGB_CUBE

KRGB_TRIANGLE

KRGB_SPIRAL

KHLS_SPIRAL

KHSV_RINGS

KHLS_RINGS

KRGB_DISTANCE

KCIE_DIAGRAM

KDENSITY_SLICE

KGREYSCALE

KEQUALIZE

KSTRETCH

KSTDDEV

KSA_PSEUDO

KRAINBOW

KDISJOINT

KGREYCODE

KMAP332

KRANDOM

This attribute, when called, will create a colormap on an

object using the specified autocoloring procedure. There

are two types of autocolor mapping schemes available. The

first is positional mapping, in which the map values at any

position are generated only as a function of that position.

The second is data dependent mapping, in which the map

values at any position are generated as a function of the

value data. The specifics of each autocoloring procedure

were explained in earlier sections. The original colormap,

if a colormap was present, is saved and can be restored by

setting this attribute to KORIGINAL. Note that the original

colormap will not be carried along with the data object

once it is closed.

Persistence: permanent

KCOLOR_MAP_AUTOCOLOR_LIST

int

num

This attribute returns a list of strings indicating which map

autocoloring procedures are available. A number argument

indicates how many autocoloring procedures are included

in the list.

Persistence: permanent

4-3



Color Data Services Program Services Volume II - Chapter 4

Color Attributes

Attribute Legal Definition
and Default Values

KCOLOR_MAP_OPERATION

int

operation KNONE

KINVERT

KINVERT_ORIG

KREVERSE

KROW_ROTLEFT

KROW_ROTRIGHT

KCOL_ROTLEFT

KCOL_ROTRIGHT

KSWAP_REDGREEN

KSWAP_REDBLUE

KSWAP_GREENBLUE

KRED_FILTER

KGREEN_FILTER

KBLUE_FILTER

KCHAIN_ROTLEFT

KCHAIN_ROTRIGHT

KRED_ROTLEFT

KRED_ROTRIGHT

KGREEN_ROTLEFT

KGREEN_ROTRIGHT

KBLUE_ROTLEFT

KBLUE_ROTRIGHT

This attribute, when called, will operate on the existing col-

ormap within a data object using the specified colormap

operation. A colormap operation will generate a new col-

ormap based on the values in the existing colormap. If an

object has no colormap, then setting this attribute will have

no effect.

The original colormap will be saved before it is altered by

any colormap operations and can be restored by setting the

attribute KCOLORMAP_OPERATIONS to KORIGINAL.

Note that the original colormap will not be carried along

with the data object once it is closed.

Persistence: permanent

KCOLOR_MAP_OPERATION_LIST

int

num

This attribute returns a list of strings indicating which map

operations are available. A number argument indicates how

many autocoloring procedures are included in the list.

Persistence: permanent

C. Color Interpretation

Color Data Services provides two color interpretation attributes, KCOLOR_COLORSPACE and
KCOLOR_HAS_ALPHA. The colorspace attribute indicates to visualization programs how the color vectors
should be interpreted. The colorspace model indicates how the value element vectors should be broken down
into colors. A colorspace of KNONE or KGREY indicates each element in a value vector represents a single
color, while a colorspace of KRGB indicates that every three elements in a value vector represents a single color.
If the has alpha attribute is set to true, then it is understood that every color also contains a value indicating an
opacity. So, if the colorspace was set to KRGB and has alpha was true, then every four elements in a value vec-
tor would represent a single color. Note that these attributes provide extra information only. There is nothing
to prevent you from setting these attributes to values that do not make sense for your current data. For exam-
ple, if your element vector size is only two, nothing will prevent you from setting the colorspace model to be

4-4



Color Data Services Program Services Volume II - Chapter 4

KRGB ev en though a minimum element vector size of three is required.

D. Autocoloring Procedures and Colormap Operations

Color Data Services provides autocoloring procedures and colormap operations that can be used to operate on
the colormap of a data object. In an autocoloring procedure, the existing colormap is replaced with a prede-
fined colormap. In a colormap operation, the existing values in the colormap are modified according to a pre-
defined algorithm. For example, the RGB Cube autocoloring procedure replaces the red, green, and blue map
columns of the current colormap with the red, green, and blue map columns dictated by the RGB Cube algo-
rithm. In contrast, the Rotate Left colormap operation rotates each of the three columns in the existing col-
ormap to the left. The actual values contained in the map are unchanged.

D.1. Types of Autocoloring Procedures

There are two types of autocoloring procedures. The first type is positional mapping, where the map values at
any position in map are generated only as a function of that position. Positional mappings have no dependency
on the properties of the value data; dependency is only on the physical layout of the color map. RGB cube,
RGB triangle, RGB spiral, CIE diagram, and Gray scale are positional color maps. The second type is data
dependent mapping, in which the map values at any position in the map are generated as a function of the
value data. The colormap is generated according to the properties of the value data. For example, the density
slice operation maps color according to the histogram of the image pixel values. RGB distance and density
slice are data dependent color maps.

D.2. Available Autocoloring Procedures

In all of the autocoloring procedures described below, the algorithm first finds the minimum and maximum
values in the original color map and then "stretches" them so that the resulting color map utilizes the minimum
and maximum ranges of each primary. This is done because it allows for better visual discrimination between
colors in the enhanced image.

4-5



Color Data Services Program Services Volume II - Chapter 4

Autocoloring Procedures

Name Description

KORIGINAL This autocolor procedure restores the original color map that was contained in the input file when it

was first read in.

KRGB_CUBE The RGB cube color map is a positional color map which maps the original values to a set of colors

that are determined by following the edges of the RGB color cube in a continuous manner. The

sides of the cube are traced starting from the blue corner in the following order.

YELLOW 

RED 

GREEN CYAN 

BLUE

MAGENTA

1

2

4

6

3
BLACK

WHITE

5

RANGE
1
2
3
4
5
6

RED
min->max

max
max

max->min
min
min

GREEN
min
min

min->max
max
max

max->min

BLUE
max

max->min
min
min

min->max
max

The minimum and maximum values in the original color map are found along with the number of

colors, N. N is then is divided by six which is the number of sides of the RGB cube that are traced.

This sets up six ranges with N/6 steps in each range. When the number of colors in the original

color map is not a factor of six, the difference is made up in the sixth range. Colors are assigned to

these ranges according to the following rules, where min is the minimum primary value (usually

0.0), max is the maximum value (usually 1.0), and min -> max means that the values of that pri-

mary are ranged between the minimum and maximum values, or vise versa (max -> min). The

minimum and maximum values in the original map are assigned the color blue (0.0,0.0,1.0).

KRGB_TRIANGLE The RGB triangle color map is a positional color map which maps the original values to a set of

colors that are determined by following the edges of the RGB color cube in a disjoint manner. The

sides of the cube are traced starting from the blue corner in the following order.

YELLOW 

RED 

GREEN CYAN 

BLUE

MAGENTA

5

1

3
6

2
BLACK

WHITE

4

RANGE
1
2
3
4
5
6

RED
max
max

min->max
min

min->max
min

GREEN
min

min->max
max
max
min

min->max

BLUE
min->max

min
min

min->max
max
max

The minimum and maximum values in the original color map are found along with the number of

colors, N. N is then is divided by six which is the number of sides of the RGB cube that are traced.

This sets up six ranges with N/6 steps in each range. When the number of colors in the original

color map is not a factor of six, the difference is made up in the sixth range. Colors are assigned to

these ranges according to the following rules, where min is the minimum primary value (usually

0.0), max is the maximum value (usually 1.0), and min -> max means that the values of that pri-

mary are ranged between the minimum and maximum values, or vise versa (max -> min). The

minimum value in the original map is assigned the color red (1.0,0.0,0.0), and the maximum value

is assigned the color blue (0.0,0.0,1.0).

4-6



Color Data Services Program Services Volume II - Chapter 4

Autocoloring Procedures

Name Description

KRGB_SPIRAL The RGB spiral colormap is a quadratic mapping that maps colors as a spiral which encircles the

grey line from black to white.

WHITE

YELLOW 

RED 

GREEN CYAN 

BLUE

MAGENTA

BLACK

KHLS_SPIRAL The HLS spiral colormap is constructed by incrementing the lightness, saturation, and hue from 0.0

to 1.0.

S

L

BLACK

YELLOW GREEN

RED 
CYAN 

BLUE MAGENTA

WHITE

KHSV_RINGS The HSV rings colormap is constructed by incrementing the saturation and value by fixed incre-

ments and then varying the hue from 0.0 to 1.0 for each increment. This forms a ring for each

increment. The number of rings is dependent on the number of colors being generated.

YELLOW GREEN

RED 
CYAN 

BLUE

S

V

BLACK

MAGENTA

4-7



Color Data Services Program Services Volume II - Chapter 4

Autocoloring Procedures

Name Description

KHLS_RINGS The HLS rings colormap is constructed by incrementing the lightness and saturation by fixed incre-

ments and then varying the hue from 0.0 to 1.0. This forms a ring for each increment. The number

of rings is dependent on the number of colors being generated.

S

L

BLACK

YELLOW GREEN

RED 
CYAN 

BLUE MAGENTA

WHITE

KRGB_DISTANCE The RGB distance colormap is a data dependent color map operation which assigns the red and

green components of the color map according to characteristics of the image’s histogram, and the

blue component according to pixel intensities. The red primary components are determined by cal-

culating a delta variance for each cell of the original color map, and the green components accord-

ing to a delta mean calculation for each cell. The method of assigning colors is reviewed below.

1. Calculate mean pixel value of the histogram.

2. Calculate calculate the average variance of the histogram.

3. Assigning the Red color map:

Calculate a delta variance value for each cell in the original color map. This is done by subtracting

the average variance of the image’s histogram from the number of pixels in the image which have

that cell’s color This will give a delta variance value for each cell in the original color map. The

minimum and maximum delta variance values are found and the minimum is mapped to zero of the

red primary and the maximum value is mapped to 1.0 of the red primary. All other cells are

assigned red values between 0.0 and 1.0 according to their delta variance value multiplied by a vari-

ance scaling factor.

4. Assigning the Green Color map:

Calculate a delta mean value for each cell in the original color map. This is done by subtracting the

mean pixel value of the image’s histogram from the number of pixels in the image which have that

cell’s color This will give a delta mean value for each cell in the original color map. The minimum

and maximum delta mean values are found and the minimum is mapped to zero of the green pri-

mary and the maximum value is mapped to 1.0 of the green primary. All other cells are assigned

green values between 0.0 and 1.0 according to their delta mean value multiplied by a mean scaling

factor.

5. Assigning the Blue Color map:

The blue color map is assigned directly from the intensity values of the image. The lowest intensity

value is mapped to 0.0 and the highest intensity value is assigned 1.0. All other intensities are

given blue values between 0.0 and 1.0.

4-8



Color Data Services Program Services Volume II - Chapter 4

Autocoloring Procedures

Name Description

KCIE_DIAGRAM The CIE Diagram color map is a positional color mapping scheme which maps the original values

to a set of colors that are determined by following the edges of a triangle in the RGB color cube in a

continuous path. The vertices of this triangle are the red, green, and blue primaries, and the order

in which the sides are traced is from red, to blue, to green, to red.

YELLOW 

RED 

GREEN CYAN 

BLUE

MAGENTA

BLACK

WHITE

RANGE
1
2
3

RED
max->min

min
min->max

GREEN
min

min->max
max->min

BLUE
min->max
max->min

min

1

2

3

The minimum and maximum values in the original color map are found along with the number of

colors, N. N is then is divided by three which is the number of sides in the triangle that will be

traced. This sets up three ranges with N/3 steps in each range. If the number of colors in the origi-

nal color map is not a factor of three, the difference is made up in the third range. Colors are

assigned to these ranges according to the following rules, where min is the minimum primary value

(usually 0.0), max is the maximum value (usually 1.0), and min -> max means that the values of

that primary are ranged between the minimum and maximum values, or vice versa (max -> min).

The minimum and maximum values in the original map are assigned the color red (1.0,0.0,0.0).

KDENSITY_SLICE The density slice is a data dependent color mapping algorithm which assigns colors according to

the distribution of the image’s histogram. When the histogram of the image is computed, the maxi-

mum number of pixels per cell is found. This is used to determine the bin size for the density slic-

ing operation. Once the bin sizes have been determined, the histogram is searched for cells which

fall into each bin, and these pixel values are mapped to colors which vary from green to blue to red

(follows the first two legs of the CIE diagram triangle). Blue represents the cell with the fewest

number of pixels in the image, and red represents the cell with the highest number of pixels.

A simple example of density slicing is given below. In the example histogram, there are 10 possi-

ble pixel values, or cells. The density slice will divide the histogram into 3 slices. Cells which

occupy enough pixels in the image to fall into bin 3 will be assigned red, those that fall into bin 2

will be green and those that fall into bin 1 will be blue. Therefore, in this example, pixels 3 and 8

will be red, pixels 0, 4, 5, and 7 will be green, and pixels 1 and 6 will be blue.

PIXEL VALUE

NUMBER
OF

PIXELS

0 1 2 3 4 5 6 7 8 9

Bin 1

Bin 2

Bin 3

KGREYSCALE The grey scale color map is position dependent and maps colors in the original color map to the

greys. Since greys are formed by setting red, green, and blue to the same value, the mapping occurs

in the RGB cube along the diagonal connecting black (0.0,0.0,0.0) and white (1.0,1.0,1.0).

4-9



Color Data Services Program Services Volume II - Chapter 4

Autocoloring Procedures

Name Description

KEQUALIZE This procedure does a global normalization on the map columns defining the red, green, and blue

values of the colormap. Thus, it computes the overall minimum and maximum values over the

three map columns, and then normalizes all red, green, and blue values to fall between the overall

minimum and the overall maximum.

KSTRETCH This procedure does a local normalization on the map columns defining the red, green, and blue

values of the colormap. It computes the minimums and maximums of the red, green, and blue val-

ues separately. It then normalizes the red values between the red minimum and red maximum, the

green values between the green minimum and green maximum, and the blue values between the

blue minimum and blue maximum.

KSTDDEV This procedure is not implemented yet.

KSA_PSEUDO This color map is based on an article found in Scientific American. The color map is designed to

convert a grey scale image and convert it to a color image of the same intensity. The algorithm

takes each entry and maps it to a corresponding red, green, blue value that has been chosen more

for it’s aesthetics than it’s quantitative value. The article was discovered by Joe Fogler who typed

in the value tables and added a few corrections to make the color map more aesthetically pleasing.

KRAINBOW The rainbow color map is position dependent and maps colors in the original color map to a rain-

bow by traversing through HSV space by fixing the the value and saturation to 1.0 and varying the

hue between 0.0 and 1.0.

KDISJOINT This colormap is constructed from a 3 bit disjoint code, where each successive value changes by

two bits. Each 3 bit value represents an RGB value. A bit of 1 implies that the maximum intensity

is used for that color and a bit of 0 implies that the color is not used. The final map is then interpo-

lated out from the greycode map to the provide the desired number of colors.

KGREYCODE This colormap is constructed from a 3 bit grey code, where each successive value changes by a sin-

gle bit. Each 3 bit value represents an RGB value. A bit of 1 implies that the maximum intensity is

used for that color and a bit of 0 implies that the color is not used. The final map is then interpo-

lated out from the greycode map to the provide the desired number of colors.

KMAP332 This is a predefined colormap that uses three bits of primary for red, three bits of primary for green,

and two bit primary for blue. It is typically used for quickly mapping RGB images for 8-bit visual-

ization.

KRANDOM This creates a color map with totally random values. The routine assigns random values (0.0 - 1.0)

to each red, green, blue primary. The uniform random function W(kurng() is used to generate the

random numbers.

D.3. Available Colormap Operations

Recall that a colormap operation differs from an autocolor procedure in that it uses the values in the existing
colormap to define a new colormap, rather than simply replacing the existing colormap with a predefined col-
ormap. There are a number of colormap operations that may be used. The available colormap operations are
described in this section.

4-10



Color Data Services Program Services Volume II - Chapter 4

Colormap Operations

Name Description

KINVERT Selecting this button will invert whichever color map is currently being displayed. This is done by

subtracting each red, green, blue value from 1.0. (red, green, blue) -> (1.0-red, 1.0-green, 1.0-blue).

KINVERT_ORIG This assigns to an image a color map that is the original color map with inverted values.

KREVERSE This colormap operation reverses each of the columns in the colormap. Thus, for colormaps of

height N, that the map values that used to be at 0 are now at N-1, the values that used to be at N-1

are now at zero; all map values between 0 and N-1 similarly have their positions switched.

KROW_ROTLEFT This colormap operation does a rotation on each row of the map. For each RGB color, the green

color value will be moved to the red position, the blue value will be moved to the green position,

and the red value will be moved to the blue position.

RED GREEN BLUE
0
1
2

N

...
KROW_ROTRIGHT This colormap operation does a rotation on each row of the map. For each RGB color, the green

color value will be moved to the red position, the blue value will be moved to the green position,

and the red value will be moved to the blue position.

RED GREEN BLUE
0
1
2

N

...

KCOL_ROTLEFT This colormap operation does a rotation on the height of each of the map columns. Thus, for col-

ormaps of height N, the map value at 0 is moved to 1, the map value at 1 is moved to 2, and so on;

the map value at N-1 is moved to 0.

RED GREEN BLUE
0
1
2

N

...

KCOL_ROTRIGHT This colormap operation does a rotation on the height of each of the map columns. Thus, for col-

ormaps of height N, the map value at N-1 is moved to N-2, the map value at N-2 is moved to N-3,

and so on; the map value at 0 is moved to N-1.

RED GREEN BLUE
0
1
2

N

...

4-11



Color Data Services Program Services Volume II - Chapter 4

Colormap Operations

Name Description

KSWAP_REDGREEN This colormap operation swaps the positions of the red column and the green column.

RED GREEN BLUE
0
1
2

N

...

KSWAP_REDBLUE This colormap operation swaps the positions of the red column and the blue column.

RED GREEN BLUE
0
1
2

N

...

KSWAP_GREENBLUE This colormap operation swaps the positions of the green column and the blue column.

RED GREEN BLUE
0
1
2

N

...

KRED_FILTER This colormap operation sets all the values in the red map column to zero, thus removing the red

element from each of the map values.

RED GREEN BLUE
0
1
2

N

...

0

0

0

0

0

0

KGREEN_FILTER This colormap operation sets all the values in the green map column to zero, thus removing the

green element from each of the map values.

RED GREEN BLUE
0
1
2

N

...

0

0

0

0

0

0

4-12



Color Data Services Program Services Volume II - Chapter 4

Colormap Operations

Name Description

KBLUE_FILTER This colormap operation sets all the values in the blue map column to zero, thus removing the blue

element from each of the map values.

RED GREEN BLUE
0
1
2

N

...

0

0

0

0

0

0

KCHAIN_ROTLEFT This colormap operation does a rotation on the height of each map column, where each map value

is moved up one position, and the 0th map value of each column is moved to the last position of the

next column. Thus, for colormaps of height N, the red map value at N-1 is moved to N-2, the red

map value at N-2 is moved to N-3, and so on; the red map value at position 0 is moved to the green

map column, at position N-1.

RED GREEN BLUE
0
1
2

N
...

KCHAIN_ROTRIGHT This colormap operation does a rotation on the height of each map column, where each map value

is moved back one position, and the last map value of each column is moved to the first position of

the next column. Thus, for colormaps of height N, the red map value at 0 is moved to 1, the red

map value at 1 is moved to 2, and so on; the red map value at N-1 is moved to the 0th position of

the green column.

RED GREEN BLUE
0
1
2

N

...

KRED_ROTLEFT This colormap operation does a rotation on the height of the red map column. Thus, for colormaps

of height N, the red map value at N-1 is moved to N-2, the red map value at N-2 is moved to N-3,

and so on; the red map value at 0 is moved to N-1.

RED GREEN BLUE
0
1
2

N

...

4-13



Color Data Services Program Services Volume II - Chapter 4

Colormap Operations

Name Description

KRED_ROTRIGHT This colormap operation does a rotation on the height of the red map column. Thus, for colormaps

of height N, the red map value at 0 is moved to 1, the red map value at 1 is moved to 2, and so on;

the red map value at N-1 is moved to 0.

RED GREEN BLUE
0
1
2

N

...

KGREEN_ROTLEFT This colormap operation does a rotation on the height of the green map column. Thus, for col-

ormaps of height N, the green map value at N-1 is moved to N-2, the green map value at N-2 is

moved to N-3, and so on; the green map value at 0 is moved to N-1.

RED GREEN BLUE
0
1
2

N

...
KGREEN_ROTRIGHT This colormap operation does a rotation on the height of the green map column. Thus, for col-

ormaps of height N, the green map value at 0 is moved to 1, the green map value at 1 is moved to 2,

and so on; the green map value at N-1 is moved to 0.

RED GREEN BLUE
0
1
2

N

...

KBLUE_ROTLEFT This colormap operation does a rotation on the height of the blue map column. Thus, for colormaps

of height N, the blue map value at N-1 is moved to N-2, the blue map value at N-2 is moved to N-3,

and so on; the blue map value at 0 is moved to N-1.

RED GREEN BLUE
0
1
2

N

...

4-14



Color Data Services Program Services Volume II - Chapter 4

Colormap Operations

Name Description

KBLUE_ROTRIGHT This colormap operation does a rotation on the height of each of only the blue map column. Thus,

for colormaps of height N, the blue map value at 0 is moved to 1, the blue map value at 1 is moved

to 2, and so on; the blue map value at N-1 is moved to 0.

RED GREEN BLUE
0
1
2

N

...

E. Color Data Services Functions

All the functions available for Color Data Services are used for accessing color attributes from a data object.

• kcolor_set_attribute() - set the value of a color attribute in a data object.
• kcolor_set_attributes() - set multiple color attributes in a data object.
• kcolor_get_attribute() - get the values of a color attribute from a data object.
• kcolor_get_attributes() - get multiple color attributes from a data object.
• kcolor_match_attribute() - compare a color attribute between two data objects.
• kcolor_match_attributes() - compare multiple attributes between two objects.
• kcolor_copy_attribute() - copy a color attribute from one data object to another.
• kcolor_copy_attributes() - copy multiple attributes from one object to another.
• kcolor_query_attribute() - query characteristics of a color attribute.
• kcolor_print_attribute() - print the value of a color attribute from a data object.
• kcolor_gamut_object() - perform color quantization of 1..4 plane images

E.1. kcolor_set_attribute() — set the value of a color attribute in a data object.

Synopsis
int kcolor_set_attribute(

kobject object,
char *attribute,
kvalist)

Input Arguments
object

the data object into which the attribute’s value will be assigned

attribute
the attribute to set

kvalist
a variable argument list that contains the values that will be assigned to the different components

4-15



Color Data Services Program Services Volume II - Chapter 4

associated with that attribute.

The variable argument list takes the form:

ATTRIBUTE_NAME, value1 [, value2, ...]

The number of value arguments in the variable argument list corresponds to the number of arguments
needed to set the attribute.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This function is used to assign the value of a color attribute to a data object.

This color service function should be used in conjunction with other application services such as poly-
morphic data services and geometry data services. This function will work on data objects opened or
created with either of those services.

Attributes are set by passing in the attribute name along with the value or variable containing the value
to assign to the attribute.

The following example illustrates the use of the set attribute call to assign two different color
attributes. The define KRGB could have been passed in directly to set the colorspace attribute.

int colorspace = KRGB;

kcolor_set_attribute(object,

KCOLOR_COLORSPACE, colorspace);,

kcolor_set_attribute(object,

KCOLOR_MAP_OPERATION, KROW_LEFT);

A complete list of color attributes can be found in Chapter 4 of Programming Services Volume II.

Restrictions
Calling this function with an incorrect number of arguments in the variable argument list will not cause
any compiler errors, but will often generate a segmentation fault.

4-16



Color Data Services Program Services Volume II - Chapter 4

E.2. kcolor_set_attributes() — set multiple color attributes in a data object.

Synopsis
int kcolor_set_attributes(

kobject object,
kvalist)

Input Arguments
object

the data object into which the values of the attributes will be assigned

kvalist
NULL terminated variable argument list which contains a list of attributes, each attribute followed by
the values to assign to that attribute.

The variable argument list takes the form:

ATTRIBUTE_NAME1, value1 [, value2, ...],

ATTRIBUTE_NAME2, value1,[, value2, ...],

..., NULL

The number of value arguments in the variable argument list for each attribute depends on the
attribute. The NULL at the end of the variable argument list serves as a flag indicating the end of the
list.

Be careful not to forget the NULL at the end of the list. This is a common programming error which
unfortunately will not generate any compiler warnings.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This function is used to assign the values of an arbitrary number of color attributes to a data object.

This color service function should be used in conjunction with other application services such as poly-
morphic data services and geometry data services. This function will work on data objects opened or
created with either of those services.

Attributes are set by passing in the attribute name along with the value or variable containing the value
to assign to the attribute.

The following example illustrates the use of a single set attributes call to assign two different color
attributes. The define KRGB could have been passed in directly to set the colorspace attribute.

4-17



Color Data Services Program Services Volume II - Chapter 4

int colorspace = KRGB;

kcolor_set_attributes(object,

KCOLOR_COLORSPACE, colorspace,

KCOLOR_MAP_OPERATION, KROW_LEFT,

NULL);

A complete list of color attributes can be found in Chapter 4 of Programming Services Volume II.

Restrictions
Calling this function with an incorrect number of arguments in the variable argument list will not cause
any compiler errors, but will often generate a segmentation fault.

E.3. kcolor_get_attribute() — get the values of a color attribute from a data object.

Synopsis
int kcolor_get_attribute(

kobject object,
char *attribute,
kvalist)

Input Arguments
object

the data object from which the attribute’s value will be retrieved

attribute
the attribute to get

kvalist
a variable argument list that contains the addresses of variables which will be used to return the differ-
ent components associated with that attribute.

The variable argument list takes the form:

ATTRIBUTE_NAME, &value1 [, &value2, ...]

The number of value arguments in the variable argument list corresponds to the number of arguments
needed to retrieve the attribute.

Returns
TRUE (1) on success, FALSE (0) otherwise

4-18



Color Data Services Program Services Volume II - Chapter 4

Description
This function is used to retrieve the value of a a color attribute from a data object.

This color service function should be used in conjunction with other application services such as poly-
morphic data services and geometry data services. This function will work on data objects opened or
created with either of those services.

Attributes are retrieved by passing in the address of a variable by which the attribute can be returned.
Note that any array attributes, such as strings, which are retrieved should not be altered or freed. The
pointer returned points to the actual internal storage array. A copy should be made if the values need
to be changed.

The following example illustrates the use of the get attribute call to retrieve two different color
attributes.

char **autocolor_list;

int num;

int colorspace;

kcolor_get_attribute(object,

KCOLOR_AUTOCOLOR_LIST, &list, &num);

kcolor_get_attribute(object,

KCOLOR_COLORSPACE, &colorspace);

A complete list of color attributes can be found in Chapter 4 of Programming Services Volume II.

Restrictions
Calling this function with an incorrect number of arguments in the variable argument list will not cause
any compiler errors, but will often generate a segmentation fault.

E.4. kcolor_get_attributes() — get multiple color attributes from a data object.

Synopsis
int kcolor_get_attributes(

kobject object,
kvalist)

Input Arguments
object

the data object from which the values of the attributes will be retrieved

4-19



Color Data Services Program Services Volume II - Chapter 4

Output Arguments
kvalist

NULL terminated variable argument list which contains a list of attributes, each attribute followed by
the addresses of variables which will be used to return the different components associated with that
attribute.

The variable argument list takes the form:

ATTRIBUTE_NAME1, &value1 [, &value2, ...],

ATTRIBUTE_NAME2, &value1,[, &value2, ...],

..., NULL

The number of value arguments in the variable argument list for each attribute depends on the
attribute. The NULL at the end of the variable argument list serves as a flag indicating the end of the
list.

Be careful not to forget the NULL at the end of the list. This is a common programming error which
unfortunately will not generate any compiler warnings.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This function is used to retrieve the values of an arbitrary number of attributes from a data object.

This color service function should be used in conjunction with other application services such as poly-
morphic data services and geometry data services. This function will work on data objects opened or
created with either of those services.

Attributes are retrieved by passing in the address of a variable by which the attribute can be returned.
Note that any array attributes, such as strings, which are retrieved should not be altered or freed. The
pointer returned points to the actual internal storage array. A copy should be made if the values need
to be changed.

The following example illustrates the use of a single get attributes call to retrieve two different color
attributes.

char **autocolor_list;

int num;

int colorspace;

kcolor_get_attributes(object,

KCOLOR_AUTOCOLOR_LIST, &list, &num,

KCOLOR_COLORSPACE, &colorspace,

NULL);

4-20



Color Data Services Program Services Volume II - Chapter 4

A complete list of color attributes can be found in Chapter 4 of Programming Services Volume II.

Restrictions
Calling this function with an incorrect number of arguments in the variable argument list will not cause
any compiler errors, but will often generate a segmentation fault.

E.5. kcolor_match_attribute() — compare a color attribute between two data objects.

Synopsis
int kcolor_match_attribute(

kobject object1,
kobject object2,
char *attribute)

Input Arguments
object1

the first data object containing the attribute to be compared

object2
the second data object containing the attribute to be compared

attribute
the attribute to be compared

Returns
TRUE (1) if the attribute matches, FALSE (0) otherwise

Description
This function is used to compare the value of a color attribute between two data objects.

This color service function should be used in conjunction with other application services such as poly-
morphic data services and geometry data services. This function will work on data objects opened or
created with either of those services.

If the value of the attribute in both objects is the same, then this function will return TRUE. If the val-
ues are different, then this function will return FALSE.

The following example illustrates the use of the match attribute call to compare two different color
attributes.

if (kcolor_match_attribute(obj1, obj2, KCOLOR_COLORSPACE))

4-21



Color Data Services Program Services Volume II - Chapter 4

kprintf("colorspace is the same in both objects");

if (kcolor_match_attribute(obj1, obj2, KCOLOR_MAP_OPERATION))

kprintf("colormap operation is the same in both objects");

A complete list of color attributes can be found in Chapter 4 of Programming Services Volume II.

E.6. kcolor_match_attributes() — compare multiple attributes between two objects.

Synopsis
int kcolor_match_attributes(

kobject object1,
kobject object2,
kvalist)

Input Arguments
object1

the first data object containing the attributes to be compared

object2
the second data object containing the attributes to be compared

kvalist
NULL terminated variable argument list which contains a list of attributes to be compared.

The variable argument list takes the form:

ATTRIBUTE_NAME1,

ATTRIBUTE_NAME2,

..., NULL

Returns
TRUE (1) if all listed attributes match, FALSE (0) otherwise

Description
This function is used to compare the values of an arbitrary number of color attributes between two data
objects.

This color service function should be used in conjunction with other application services such as poly-
morphic data services and geometry data services. This function will work on data objects opened or
created with either of those services.

4-22



Color Data Services Program Services Volume II - Chapter 4

If the value of all attributes in both objects are the same, then this function will return TRUE. If any of
the values are different, then this function will return FALSE.

The following example illustrates the use of the match attributes call to compare two different color
attributes.

if (kcolor_match_attributes(obj1, obj2,

KCOLOR_COLORSPACE,

KCOLOR_MAP_OPERATION,

NULL))

kprintf("colorspace and colormap operation are the same "

"in both objects");

A complete list of color attributes can be found in Chapter 4 of Programming Services Volume II.

Restrictions
Calling this function and forgetting to NULL terminate the variable argument list will not cause any
compiler errors, but will often generate a segmentation fault.

E.7. kcolor_copy_attribute() — copy a color attribute from one data object to another.

Synopsis
int kcolor_copy_attribute(

kobject object1,
kobject object2,
char *attribute)

Input Arguments
object1

the object to use as the source for the copy

object2
the object to use as the destination for the copy

attribute
the attribute to be compared

Returns
TRUE (1) on success, FALSE (0) otherwise

4-23



Color Data Services Program Services Volume II - Chapter 4

Description
This function is used to copy the value of a color attribute from one data object to another.

This color service function should be used in conjunction with other application services such as poly-
morphic data services and geometry data services. This function will work on data objects opened or
created with either of those services.

The following example illustrates the use of the copy attribute call to copy two different color
attributes.

kcolor_copy_attribute(obj1, ob2, KCOLOR_COLORSPACE);,

kcolor_copy_attribute(obj1, obj2, KCOLOR_MAP_OPERATION);,

A complete list of color attributes can be found in Chapter 4 of Programming Services Volume II.

E.8. kcolor_copy_attributes() — copy multiple attributes from one object to another.

Synopsis
int kcolor_copy_attributes(

kobject object1,
kobject object2,
kvalist)

Input Arguments
object1

the object to use as the source for the copy

object2
the object to use as the destination for the copy

kvalist
NULL terminated variable argument list which contains a list of attributes to be copied.

The variable argument list takes the form:

ATTRIBUTE_NAME1,

ATTRIBUTE_NAME2,

..., NULL

4-24



Color Data Services Program Services Volume II - Chapter 4

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This function is used to copy the values of an arbitrary number of color attributes from one data object
to another.

This color service function should be used in conjunction with other application services such as poly-
morphic data services and geometry data services. This function will work on data objects opened or
created with either of those services.

The following example illustrates the use of the copy attributes call to compare two different color
attributes.

kcolor_copy_attributes(obj1, obj2

KCOLOR_COLORSPACE,

KCOLOR_MAP_OPERATION,

NULL);

A complete list of color attributes can be found in Chapter 4 of Programming Services Volume II.

Restrictions
Calling this function and forgetting to NULL terminate the variable argument list will not cause any
compiler errors, but will often generate a segmentation fault.

E.9. kcolor_query_attribute() — query characteristics of a color attribute.

Synopsis
int kcolor_query_attribute(

kobject object,
char *attribute,
int *num_args,
int *arg_size,
int *data_type,
int *permanent)

Input Arguments
object

the data object to be queried for the existence of the named attribute

attribute

4-25



Color Data Services Program Services Volume II - Chapter 4

the attribute to query

Output Arguments
num_args

number of arguments
arg_size

size of the arguments, or NULL
data_type

data type of the attribute
permanent

TRUE if the attribute is stored with the object, FALSE if the attribute is transient

Returns
TRUE (1) if attribute exists, FALSE (0) otherwise

Description
This function is used to query characteristics of a color attribute from a data object.

This color service function should be used in conjunction with other application services such as poly-
morphic data services and geometry data services. This function will work on data objects opened or
created with either of those services.

The following example illustrates the use of the query attribute call to determine the data type of the
colorspace attribute.

int data_type;

kcolor_query_attributes(object, KCOLOR_COLORSPACE,

NULL, NULL, &data_type, NULL);

A complete list of color attributes can be found in Chapter 4 of Programming Services Volume II.

E.10. kcolor_print_attribute() — print the value of a color attribute from a data object.

Synopsis
int kcolor_print_attribute(

kobject object,
char *attribute,
kfile *printfile)

4-26



Color Data Services Program Services Volume II - Chapter 4

Input Arguments
object

the data object containing the attribute to be printed

attribute
the attribute to print

printfile
a file or transport pointer opened with kfopen. kstdout and kstderr may be used to print to standard
out and standard error.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This function is used to print the value of a color attribute from a data object to an output file.

This color service function should be used in conjunction with other application services such as poly-
morphic data services and geometry data services. This function will work on data objects opened or
created with either of those services.

The following example illustrates the use of the print attribute call to print the colorspace attribute to
the output file "outputfile".

kfile *outfile = kfopen("outputfile");

kcolor_print_attributes(object, KCOLOR_COLORSPACE, outfile);

A complete list of color attributes can be found in Chapter 4 of Programming Services Volume II.

E.11. kcolor_gamut_object() — perform color quantization of 1..4 plane images

Synopsis
int kcolor_gamut_object (

kobject src,
int ncolors,
int bits,
double fraction,
kobject dest )

Input Arguments
src

4-27



Color Data Services Program Services Volume II - Chapter 4

object to be color quanitized
ncolors

desired number of colors for result image, should be (1..65535)
bits

number of bits of resolution to keep from each color plane. Should be(1..8). Higher values give better
results but take longer and require more memory.

fraction
fraction of color splits to be base on the span of the color space versus the population count in the
color space. 1.0 means split only on span. 0.0 means split only on population. 0.0 is effectively a pop-
ularity contest. You will usually get best results somewhere around 0.5.

Output Arguments
dest

object to hold quantized result

Returns
TRUE (1) on success, FALSE (0) on failure

Description
kcolor_gamut_object uses a variation of Paul Heckbert’s median cut algorithm to perform color quanti-
zation of one, two, three, or four plane images producing a single-plane image with color map.

The quantization is performed by isolating clusters of "neighboring" color vectors in a four dimen-
sional histogram, with each axis being one of the color components. The clusters are obtained using a
modified version of Heckbert’s median cut. The true colors are then matched to the closest cluster, and
the input vector is then re-mapped to an n-color pseudo color image.

To keep the histogram from becoming exceedingly large (max of around 2ˆ24 bytes), one may need to
quantize the grey lev els of the input bands to less than 8 bits. 6 bits (64 levels) gives results that are
reasonable in a short amount of time. The number of bits that are kept is called the color precision,
which can be specified at execution time. The general tradeoff is that smaller precision is faster and
takes less memory, but it looks worse too. High precision takes longer and great gobs of memory, but
looks decent, provided that a reasonable number (say 128 or more) colors is specified. The execution
time is very dependent on the image statistics. In general, a small number of colors is faster than a
large number of colors. In either case, if the image has good spatial color coherence, execution time is
greatly reduced.

The allocation fraction controls how large areas of nearly the same color are handled. An allocation
fraction of 0.0 will cause the large areas to be broken into as many colors as possible with the largest
areas of a particular color range being broken first. An allocation fraction of 1.0 will attempt to pre-
serve the detail in the image by preserving the color range of all parts of the image at the expense of
smooth coloring of the larger areas. An allocation fraction of around 0.2 to 0.5 gives very good results
on most images.

If the input image contains less than the number of colors requested then the output image will contain
only the number of colors present in the input image. The color map will contain the number of entries
requested (meaning all colors in the image) with any extra entries zero padded.

4-28



Color Data Services Program Services Volume II - Chapter 4

Multiple plane images are processed by quantizing each plane independently, generating a correspond-
ing plane of colors in the map. Thus an input object with (w,h,d,t,e)=(512,480,10,10,4) will result in an
output object with a value segment with dimensions (512,480,10,10,1) and a map segment with dimen-
sions (4,10,10,10,1).

4-29



Color Data Services Program Services Volume II - Chapter 4

This page left intentionally blank

4-30



Table of Contents

A. Color Data Services . . . . . . . . . . . . . . . . . . . . . . . . .  4-1
A.1. Application Programming Interface (API) . . . . . . . . . . . . . . . . .  4-2

B. Color Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-2
C. Color Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . .  4-4
D. Autocoloring Procedures and Colormap Operations . . . . . . . . . . . . . . .  4-5

D.1. Types of Autocoloring Procedures . . . . . . . . . . . . . . . . . . . .  4-5
D.2. Available Autocoloring Procedures . . . . . . . . . . . . . . . . . . .  4-5
D.3. Available Colormap Operations . . . . . . . . . . . . . . . . . . . . 4-10

E. Color Data Services Functions . . . . . . . . . . . . . . . . . . . . . . 4-15
E.1. kcolor_set_attribute() — set the value of a color attribute in a data object. . . . . . . . . 4-15
E.2. kcolor_set_attributes() — set multiple color attributes in a data object. . . . . . . . . . 4-17
E.3. kcolor_get_attribute() — get the values of a color attribute from a data object. . . . . . . . 4-18
E.4. kcolor_get_attributes() — get multiple color attributes from a data object. . . . . . . . . 4-19
E.5. kcolor_match_attribute() — compare a color attribute between two data objects. . . . . . . 4-21
E.6. kcolor_match_attributes() — compare multiple attributes between two objects. . . . . . . 4-22
E.7. kcolor_copy_attribute() — copy a color attribute from one data object to another. . . . . . . 4-23
E.8. kcolor_copy_attributes() — copy multiple attributes from one object to another. . . . . . . 4-24
E.9. kcolor_query_attribute() — query characteristics of a color attribute. . . . . . . . . . 4-25
E.10. kcolor_print_attribute() — print the value of a color attribute from a data object. . . . . . . 4-26
E.11. kcolor_gamut_object() — perform color quantization of 1..4 plane images . . . . . . . . 4-27

- i -



Color Data Services Program Services Volume II - Chapter 4

This page left intentionally blank

- ii -



Program Services Volume II

Chapter 5

Data Management Services

Copyright (c) AccuSoft Corporation, 2004. All rights reserved.





Chapter 5 - Data Management Services

A. Introduction

Data Management Services is the infrastructure that provides data abstraction, large data set processing capa-
bility, attribute management, file format independence, and presentation facilities to the application services
described in preceding chapters. Data Management Services is not intended to be used as a general purpose
data access facility; that is the purpose of Polymorphic Data Services, described in Chapter 2.

Unlike application services, Data Management Services provides no management of the Polymorphic Data
Model. It is the purpose of Data Management Services to provide a basic framework for developing applica-
tion services and to support the implementation of application-specific data models. Figure 1 illustrates the
association between application services and this Data Service.

Polymorphic Data Services

VALUE LOCATION TIME MASK

0 1 1 1 1

0 1 1 1 1

0 0 0 0 0

MAP MAPS

Color Data Services
PRIMITIVE LIST

Geometry Data Services

F
ile

 F
o

rm
at

 a
n

d
M

em
o

ry
 M

an
ag

em
en

t

file format independence

viff

arf
pnm

rast
xvimage

xpm
xwd

files

transport abstraction

shared 
memory

T
ra

n
sp

o
rt

 
In

d
ep

en
d

en
ce

pipes500 Megabytes

large data sets

Data Management Services

data access presentation
size

data type
scaling

normalization
padding

interpolation

Figure 1: Data Management Services is an infrastructure service provided primarily to facilitate develop-
ment of application services.

An application service provides a data model that imposes an interpretation on specific segments and provides
domain specific functionality to better facilitate a particular style of interaction with a data object. Data Man-
agement Services, on the other hand, does not attempt to enforce any interpretation on a data object whatso-
ev er. Furthermore, no association is enforced between any two segments. For example, the Polymorphic Data
Model dictates that the mask and the value segments will be the same size, and Polymorphic Data Services

5-1



Data Management Services Program Services Volume II - Chapter 5

enforces this policy. Data Management Services will not enforce this policy or any other policy that restricts
interaction with the data object.

Data Management Services implements three basic constructs: data objects, segments, and attributes. An
attribute can be associated with either an object or a segment. Segments exist as part of an object. Figure 2
illustrates the organization of a data object.

Attributes

Data

SEGMENT

Attributes

Data

SEGMENT

Attributes

Data

SEGMENT

Attributes

DATA OBJECT

Figure 2: Data objects are implemented as a complex structure that contains any number of segments and
any number of attributes. Segments can similarly contain any number of segments.

B. Presentation of Data †

Data Management Services has the ability to present the data stored within a data object in a variety of ways.
Data can be cast, resized, normalized, scaled, or re-oriented on access. The API to this functionality is pro-
vided by a number of attributes. By setting the appropriate attributes, Data Management Services will return
the data in the form that is most convenient to process. In order to understand how the presentation attributes
are used, it is necessary to understand how the data object is divided into a presentation layer and physical
layer.

A data object can be thought of in terms of two layers: a presentation layer and a physical layer. Attributes at
the physical layer typically describe the actual stored characteristics of the data. Attributes at the presentation
layer typically dictate how the data is to be accessed. For example, there is a physical data type attribute indi-
cating the data type in which the data is actually stored, and a presentation data type attribute indicating in
which data type the data should be presented. If the presentation data type is set to integer, while the physical
data type is set to short, then the data will be cast from short to integer on retrieval and from integer to short on
storage.

† Much of this discussion is similar to text in Chapters 1 and 2. It is repeated here in the context
of Data Management Services, but aside from the differences in API, the functionality is nearly iden-
tical. One new section that was not presented in other chapters is related to index order manipulation.

5-2



Data Management Services Program Services Volume II - Chapter 5

2
3
4
5
1
3
5
7
6
8
7
9
3
7
8
6
3
0
2
9
5
9
8
6
7
2
1
9
8
4
6
7
2
9

disk

PRESENTATION
LAYER

"how the data appears to you"

DATA TYPE = KBYTE
  WIDTH = 256

    HEIGHT = 269    

PHYSICAL
LAYER

"how the data is stored"

application code

DATA PIPELINE
normalizing

transposing

scaling

padding

casting

resizing

DATA TYPE = KINT
  WIDTH = 180  

    HEIGHT = 160      

 
p
u
t
_
d
a
t
a
 

 
g
e
t
_
d
a
t
a
 

"uses pipeline stages to
transform data as it is being 

accessed"

Figure 3: A data object can be thought of as having two layers, a presentation layer and a physical layer.
Attributes at the physical layer determine the storage characteristics of the data, such as its size and data
type. Attributes at the presentation layer determine the presentation characteristics of the data. On
access, data is passed through a data pipeline which transforms the data according to the presentation
attributes. Each presentation attribute corresponds to a stage in the data pipeline; only the necessary
stages are invoked on data access.

The following sections outline the different mechanisms that are available for customizing data access.

B.1. Casting

The casting feature provided by Data Management Services is used to change the data type from the type
stored to another data type that is more suitable for processing. This process is nearly automatic. You hav e to
set the data type of the segment that is being operated on to the desired processing data type with a call to
kdms_set_attribute() or kdms_set_attributes() . Afterward, all data retrieved with
kdms_get_data() will be returned to the user in the data type specified, regardless of the stored data type. If
operating on an output object, then setting the data type of the output object to something different from the
stored data type informs Data Management Services that any data being written with kdms_put_data() will
be given in the specified data type, but should be cast before being written out.

The casting feature is performed via the ANSI C cast operation. Since ANSI C does not dictate the behavior
of certain lossy cast operations, such as signed information cast to an unsigned data type, the behavior of this
operation in certain circumstances can vary from platform to platform.

B.2. Scaling and Normalization

Scaling and normalization are two activities that alter the range of data when presented to the user. These
operations are often necessary when processing data where an algorithm operates better on a limited range of
data. After indicating that scaling or normalization is to occur, any call to kdms_get_data() will cause the

5-3



Data Management Services Program Services Volume II - Chapter 5

range of the data to be altered before it is returned to the calling program. The attribute KDMS_SCALING deter-
mines what kind of range alteration is to occur. The default value for this attribute is KNONE , which indicates
that no scaling whatsoever is to occur. Other legal values for this attribute are KSCALE and KNORMALIZE .

When the scaling attribute is set to KSCALE , then the range of the data is controlled by two attributes:
KDMS_SCALE_FACTOR and KDMS_SCALE_OFFSET . The range change is computed by applying the scale fac-
tor first to each data point, then adding the scale offset.

When the scaling attribute is set to KNORMALIZE, then the range of the data is controlled by two other
attributes: KDMS_NORM_MIN and KDMS_NORM_MAX . These two attributes indicate the minimum and maximum
magnitude of the data. The effective scale factor and offset are computed by examining every point in the
primitive that was accessed via kdms_get_data() or kdms_put_data() . This is not a global normaliza-
tion over the entire set, but rather a local normalization over the extent of the data being accessed.

It is important to note the order in which each of these presentation changes is applied. The normalize and
scale operations occur after the cast operation if the cast operation is converting to a "higher order" data type,
i.e., a data type that has a higher range or precision. If casting from a higher order data type to a lower order
data type, one that has less range or precision, then the normalization or scaling occurs before the cast opera-
tion.

B.3. Padding and Interpolation

Padding and interpolation are operations that change the apparent size of the data set being accessed. These
operations are useful in circumstances where a particular size of data is required in order for an algorithm to
function properly, such as a Fast Fourier Transform, or in instances in which two operands must be the same
size in order for the algorithm to behave in a predictable manner, such as an addition operation. Other
instances where interpolation is useful is in visual applications for zooming or panning windows. This behav-
ior is controlled by an attribute called KDMS_INTERPOLATE . This attribute can be set to one of three values:
KNONE , KPAD , or KINTERPOLATE . The default value of this attribute is KPAD . When this attribute is set to
KNONE , it indicates that access of data outside of the physical bounds of the data set should not be permitted.
If a program attempts to access data that lies beyond the bounds of the data set in this mode, Data Management
Services will generate an error.

If set to use the KPAD mode, Data Management Services will allow access of data outside of the physical
bounds of the data set. Any data that is retrieved that is not part of the data set will be set to a constant value
indicated by the KDMS_PAD_VALUE attribute. This attribute takes two double arguments that represent the
real and imaginary component. The imaginary component is only used if the data type being returned is com-
plex.

If the presentation size is set to be larger than the physical size, then any data that falls outside of the bounds of
the data set will be similarly set to this pad value. This mode also allows the presentation size to be set to a
value that is smaller than the physical size. In this mode, data outside of the presentation size is simply
clipped; i.e., it is not accessible.

If the KDMS_INTERPOLATE attribute is set to KZERO_ORDER , then this indicates that the difference in the pre-
sentation size and the physical size of the data segment should be rectified via a zero-order-hold (i.e., pixel
replication) interpolation. Currently this is the only true interpolation mode available in Data Services. If the
presentation size is larger than the physical size, then an adjacent data point is replicated for each point that
does not exist in the interpolated data set. If the presentation size is smaller than the physical size, then the

5-4



Data Management Services Program Services Volume II - Chapter 5

data set is sub-sampled to produce a smaller version of the original data.

B.4. Conversion of Complex Data

Complex conversion can be thought of as an extension to casting. However, since the process of converting
data from a complex data type to a non-complex data type (or visa-versa) is uniquely lossy, this capability is
provided as a separate feature so that its behavior can be more easily controlled.

This control is provided via the KDMS_COMPLEX_CONVERT attribute (and its sister attributes for each of the
other polymorphic segments). This attribute determines how to translate real valued data into complex data.
For example, if the KDMS_COMPLEX_CONVERT attribute is set to AccuSoftEAL, the real valued data will be
interpreted as the real part of the complex pair. Similarly, a setting of KIMAGINARY instructs data services to
interpret the data as the imaginary component. In either case, the other component of the pair is set to zero.
When KDMS_COMPLEX_CONVERT is set to KMAGNITUDE, then the magnitude of the complex pair is set to the
value of the data. Currently, this is performed by setting the phase to 0 radians. Thus, KMAGNITUDE has the
same effect as AccuSoftEAL. If the KDMS_COMPLEX_CONVERT attribute is set to KPHASE, then the real val-
ued data is interpreted as radian data and the magnitude is set to 1.0.

When complex data is returned to the application from Data Services, it will be in the form of a kcomplex or
kdcomplex. There is a complete set of operator functions available for operating on these data types. These
functions are available in the kmath library. When operating on complex data, the application programmer is
encouraged to refer to the kmath library for information on complex operations.

B.5. Index Order Manipulation

Every data set has what is referred as an index order. Index order describes the ordering of the axes associated
with the data in a segment in terms of how it is stored and retrieved. A two dimensional example of this con-
cept is illustrated in Figure 4.

0 1 2 3

4 5 6 7

A B C D

 W 

 H

0 4 A

1 5 B

2 6 C

  H 

 W

3 7 D

Figure 4: Tw o index orders associated with the same data. The left data set has an index order that is
W-H. The right data set has an H-W index order. Notice that the index order difference between the left
and right is effectively a transpose.

In Figure 4, the two data sets are identical--that is, they contain the same data, oriented in an identical fashion
across the W and H axes. In other words, given any point, its (W,H) coordinate is the same. Index order
merely describes the orientation of data when mapped into a linear address space such as in a data file or in a
data array. Figure 5 illustrates the how both data sets would be ordered in an array or file.

5-5



Data Management Services Program Services Volume II - Chapter 5

0 1 2 3

4 5 6 7

A B C D

 W 

 H

0 4 A

1 5 B

2 6 C

  H 

 W

3 7 D

0 1 2 3 4 5 6 7 A B C D

0 4 A 1 5 B 2 6 C 3 7 D

0 1 2 3 4 5 6 7 8 9 10 11Array
Index

Figure 5: Stored representation of both data sets in Figure 4.

This concept scales to higher dimensions. However, the notion of transposition falls apart. For example, 3
dimensional data oriented along W, H, and D axes can be represented in 6 different orderings: W-H-D, H-W-D,
D-H-W, W-D-H, H-D-W, and D-W-H. In fact, the number of unique index orderings $N$, is a function of the
dimensionality d: N = d!. Note that in the three dimensional case, most index orders are not transposes of one
another. The closest concept that can be used to describe the relationship between two index orders is a reflec-
tion of the data across an axis in N space.

Similar to size and data type, index order can be different between the presentation of the data and its physical
representation. In such instances, a call to kdms_get_data() or kdms_put_data() results in a reflection
or transpose as described above. This capability is important because there is no standard orientation in which
data is stored in a file that is adhered to by all file formats. For example, even with rasterized RGB color
images, some file formats store the red, green and blue components as contiguous vectors, while others will
store the red plane as a contiguous band, followed by the green plane and finally by the blue plane. See Figure
6. Regardless of the stored representation of the data, a typical programmer will want to assume a single index
ordering so that algorithm development can be emphasized rather than data access.

r r r r

r r r r

r r r r

r r r r

g g g g

g g g g

g g g g

g g g g

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

r g b r g b r g b r g b

r g b

r g b

r g b

r g b

r g b

r g b

r g b

r g b

r g b

r g b

r g b

r g b

Figure 6: An example of the motivation for the index order capabilities provided by Data Management
Services: rasterized image storage. This figure depicts two common storage index orders of a single 4x4
image containing RGB triples for each pixel.

5-6



Data Management Services Program Services Volume II - Chapter 5

C. Attributes

There are two types of attributes in Data Management Services: (1) attributes that affect behavior of a single
segment in an object, and (2) attributes that affect the behavior of the whole object. For example, attributes
such as data type and size are related to segments, but attributes such as the name of the file containing the data
are related to the object as a whole.

Table 1 below contains definitions for all of the predefined global attributes. When using
kdms_get_attribute , kdms_set_attribute , or any other attribute function, the second argument to the
function specifies the segment that should be accessed for obtaining the specified attribute. For global
attributes, this argument should be set to KDMS_OBJECT .

C.1. Global Attributes

Global Attributes

Attribute Legal Definition
and Default Values

KDMS_ARCHITECTURE

int

architecture

KMACH_UNKNOWN

KMACH_LITTLE_ENDIAN_IEEE

KMACH_LITTLE_ENDIAN_VAX

KMACH_LITTLE_ENDIAN_64

KMACH_BIG_ENDIAN_IEEE

KMACH_BIG_ENDIAN_CRAY

This attribute is an integer value which encodes a descrip-

tion of the floating point and integer representation for the

machine which what used to generate the object. A set of

C defines are typically used when operating on the value of

this attribute in a program. Typically, this attribute is set

based on an examination of the input object, and is set to

the local architecture on an output object. The encoding

scheme and specific values for these defines can be found

in $BUILD/include/machine/kmachine.h .

Persistence: stored

KDMS_COMMENT

char *

comment NULL

This attribute is a NULL terminated string used to document

the object. This attribute is used by a user or programmer

to describe the origin or nature of the data set. When this

attribute is set, it overwrites anything previously held in this

attribute. Therefore, it is up to the programmer to first get

the comment attribute, append new information to it, and

then set the entire comment attribute, if prior comment

information is to be propagated. To clear the comment

attribute, pass in NULL

when setting the attribute. This attribute is copied with the

kdms_copy_object() function calls.

Persistence: stored

5-7



Data Management Services Program Services Volume II - Chapter 5

Global Attributes

Attribute Legal Definition
and Default Values

KDMS_COUPLING

int

coupling See Note 1.

KCOUPLED

KDEMAND

KUNCOUPLED

When this attribute is set to KCOUPLED , changes to any

attribute that affects the physical representation of the data

(for example, data type, size, etc.) will be propagated to the

physical layer immediately. Otherwise, the presentation

layer is the only layer that is changed, --the physical layer

remains unchanged. The difference between KUNCOUPLED

and KDEMAND is that KDEMAND allows the kdms_sync()

function call to force an update of the presentation and

physical layers. When this attribute is set to KUNCOUPLED ,

the calling the kdms_sync() will not do anything. See

kdms_sync() for more information.

Persistence: transient

KDMS_DATE

char *

date current date

This attribute is a NULL terminated string used to record the

date of the creation of the data object. This attribute is

NOT copied by kdms_copy_object() . To assign the cur-

rent date as defined by computer system, pass in NULL

when setting the attribute. The date will be stored in the

default format of the UNIX date command ("day month

date HH:MM:SS timezone year", e.g. "Wed Mar 10

00:07:23 MST 1994")

Persistence: stored

KDMS_FLAGS

int

flags KNONE

KOBJ_READ

KOBJ_WRITE

KOBJ_HEADERLESS

KOBJ_RAW

This attribute returns the flags used when opening the data

object. kdms_input automatically sets KOBJ_READ and

kdms_output automatically sets KOBJ_WRITE when

called. When used in kdms_open , the legal values can be

OR’d together to change the behavior of the object. For

example, ORing together KOBJ_READ and KOBJ_RAW

together will cause files to be read in as raw data. This

attribute is available so that a process can customize its

interaction with an object based on how it was opened.

Persistence: transient

KDMS_FORMAT

char *

format viff

kdf

viff

jpeg

pnm

pcx

xpm

xbm

xwd

eps

rast

avs

ascii

raw

This attribute specifies the file format that will be used with

the object. If the object is an input object, then this

attribute is automatically initialized to the file format that

the object is stored in. If the object is an output object, then

this attribute defaults to "viff", indicating that the output

data file will be a viff. On output objects, this attribute can

be set to any of the legal values. The result is that when the

object is closed, it will be written out in the format speci-

fied.

5-8



Data Management Services Program Services Volume II - Chapter 5

Global Attributes

Attribute Legal Definition
and Default Values

Persistence: stored

KDMS_FORMAT_DESCRIPTION

char *

description viff

N/A This (read-only) attribute retrieves the file format descrip-

tion that will describes the format associated with an object.

Persistence: transient

KDMS_NAME

char *

name

This attribute is used to obtain the filename associated with

the specified data object. This is that name passed in to

kdms_open , kdms_output , or kdms_input . Objects that

are instantiated with kdms_create do not have a filename.

In such instances, this attribute’s value is NULL .

Persistence: stored

KDMS_RAW_OFFSET

int

offset 0

This attribute specifies an offset to use when opening raw

data files for reading. The file pointer will be moved to the

offset specified before the reading begins. The offset is in

bytes.

Persistence: transient

Table 2 below contains definitions for all of the predefined segment attributes.

C.2. Segment Attributes

Segment Attributes

Attribute Legal Definition
and Default Values

KDMS_BUFFER_THRESHOLD

int

threshold 2097152 bytes

> 0 This attribute is used to specify the largest number of bytes

that should be allocated for buffering data in memory. This

number is used to determine the size and geometry of a

buffer that is used to minimize transport access. Thus, it

has a large impact on the performance of a process using to

determine the size and geometry of the KDMS_OPTI-

MAL_REGION_SIZE .

Persistence: transient

5-9



Data Management Services Program Services Volume II - Chapter 5

Segment Attributes

Attribute Legal Definition
and Default Values

KDMS_COMPLEX_CONVERT

int

convert KREAL

KIMAGINARY

KMAGNITUDE

KPHASE

KREAL

KMAGSQ

KMAGSQP1

KLOGMAG

KLOGMAGP1

This attribute specifies how complex data should be con-

verted. If it is converted to a "lower" data type, this

attribute specifies how to down-convert the data. For exam-

ple if the data is actually complex, but the presentation

attribute is byte, the complex data would first be converted

to the representation defined by this attribute, and then con-

verted to byte.

If the data is being converted from a "lower" data type to a

complex data type, this attribute defines how the data

should be interpreted — as the real or imaginary compo-

nent of the complex pair. KPHASE and KMAGNITUDE are

invalid values for up converting to complex, and will result

in an error.

Persistence: transient

KDMS_DATA_TYPE

int

datatype

KBIT

KBYTE

KUBYTE

KSHORT

KUSHORT

KINT

KUINT

KLONG

KULONG

KFLOAT

KDOUBLE

KCOMPLEX

KDCOMPLEX

This attribute is used to get or set the data type, or numeri-

cal representation of the data. This data type will be the

presentation data type, not necessarily the physical data

type. See the KDMS_COUPLING attribute for more informa-

tion on how to control the presentation and physical data

types. When the application programmer specifies a pre-

sentation data type that is different than the actual data type

of the stored data, the get kdms_get_data function will

convert the data to return the requested data type. Like-

wise, the kdms_put_data function expects data that is in

the data type specified by this attribute to the output object,

and if the data being "put" is of a different type, it will be

converted. This attribute must be set for objects created via

kdms_create or output objects that are opened with

kpds_output or kpds_open , or else the get and put data

calls will fail.

Persistence: stored

KDMS_DIMENSION

int

dim

This attribute is used to get or set the dimensionality of a

data segment. For example, a signal is a 1-D data set, so a

special segment to store a single signal could have a dimen-

sionality of 1.

Persistence: stored

5-10



Data Management Services Program Services Volume II - Chapter 5

Segment Attributes

Attribute Legal Definition
and Default Values

KDMS_INDEX_ORDER

int *

order

This attribute specifies the ordering of indices of the seg-

ment to set the orientation of how data is stored and

retrieved. When the application programmer specifies a

presentation index order different than the actual index

order of the stored data by setting this attribute, the get

functions will acquire the data using the presentation index

order. This attribute also dictates the interpretation of the

KDMS_SIZE and KDMS_OPTIMAL_REGION_SIZE attributes.

For example, if the index order is KWIDTH , KDEPTH ,

KHEIGHT on a 3 dimensional segment, then in the size array

used when setting or getting the KDMS_SIZE attribute, the

arguments will be width, depth, and height, in that order.

Persistence: stored

KDMS_INTERPOLATE

int

interpolate KPAD

KNONE

KPAD

KZERO_ORDER

This attribute specifies how the data should be presented if

the application program requests a size different from what

is physically stored. If the size requested is larger than the

physical size and the interpolation requested is KPAD the

pad value will be returned for all points outside of the phys-

ical size. If the size requested is smaller than the physical

size and the interpolation requested is KPAD the returned

data is clipped to the size requested. If the size requested is

larger than the physical size and the interpolation requested

is KZERO_ORDER the data is duplicated. If the size

requested is smaller than the physical size and the interpo-

lation requested is KZERO_ORDER the data is sub-sampled.

If the interpolate attribute is set to KNONE , an error will be

returned if the program requests a size different from what

is physically stored.

Persistence: transient

KDMS_NORM_MAX

double

norm_max

> norm_min This attribute specifies the maximum to be used when nor-

malizing data values. This attribute is used in conjunction

with the KDMS_NORM_MIN attribute, respectively, to deter-

mine the bounds of a normalization operation. This

attribute comes into play when the KDMS_SCALING attribute

is set to KNORMALIZE .

Persistence: transient

KDMS_NORM_MIN

double

norm_min unknown

< norm_max This attribute specifies the minimum to be used when nor-

malizing data values. This attribute is used in conjunction

with the KDMS_NORM_MAX attribute, respectively, to deter-

mine the bounds of a normalization operation. This

attribute comes into play when the KDMS_SCALING attribute

is set to KNORMALIZE .

Persistence: transient

5-11



Data Management Services Program Services Volume II - Chapter 5

Segment Attributes

Attribute Legal Definition
and Default Values

KDMS_OFFSET

int *

offset 0, 0, 0, 0, 0

This attribute specifies a relative offset from zero of the ori-

gin of the data set. This value will be added to the begin

and end corner markers on all get and put data operations.

Persistence: transient

KDMS_OPTIMAL_REGION_SIZE

int *

sizes

> 0 This attribute will return the size of a region of data and the

number of such regions that is most efficient to process in

terms of performance and memory use. The number of val-

ues in the integer array is n+1, where n is the dimension of

the segment. The first n entries correspond to the axes of

the data set and the last entry in the array is the number

such regions in the segment.

Persistence: transient

KDMS_PAD_VALUE

double

real 0.0

imag 0.0

This attribute specifies the real (and imaginary) values of

the pad data if the KDMS_INTERPOLATE attribute is set to

KPAD , respectively. The double values must be specified,

whether the data is real or complex. The pad values will

internally be converted from double to the appropriate data

type.

Persistence: transient

KDMS_PHYSICAL_DATA_TYPE

int

dim

KBIT

KBYTE

KUBYTE

KSHORT

KUSHORT

KINT

KUINT

KLONG

KULONG

KFLOAT

KDOUBLE

KCOMPLEX

KDCOMPLEX

This attribute is used to get the data type, or numerical rep-

resentation of the data at the physical level. Ordinarily,

attribute setting and getting retrieve the presentation value

of an attribute. However, there are some rare instances

where direct access to the physical representation of the

data is necessary, but it is desirable to maintain the existing

presentation attributes. Otherwise, this attribute is identical

to KDMS_DATA_TYPE . It is the difference between the

value of this attribute and the value of the

KDMS_DATA_TYPE attribute that will cause a cast operation

to occur during calls to kpds_get_data() and

kpds_put_data() .

Persistence: stored

5-12



Data Management Services Program Services Volume II - Chapter 5

Segment Attributes

Attribute Legal Definition
and Default Values

KDMS_PHYSICAL_DIMENSION

int

dim

> 0 This attribute is used to get the dimensionality of the data at

the physical level. Ordinarily, attribute setting and getting

retrieve the presentation value of an attribute. However,

there are some rare instances where direct access to the

physical representation of the data is necessary, but it is

desirable to maintain the existing presentation attributes.

Otherwise, this attribute is identical to KDMS_DIMENSION .

Currently, there should be no difference between this value

and the value of KDMS_DIMENSION .

Persistence: stored

KDMS_PHYSICAL_INDEX_ORDER

int *

order

This attribute is used to get the index order of the data at

the physical level. Ordinarily, attribute setting and getting

retrieve the presentation value of an attribute. However,

there are some rare instances where direct access to the

physical representation of the data is necessary, but it is

desirable to maintain the existing presentation attributes.

Otherwise, this attribute is identical to

KDMS_INDEX_ORDER . It is the difference between the

value of this attribute and the value of the

KDMS_INDEX_ORDER attribute that can cause a re-ordering

of the data, similar to a matrix transposition during calls to

kpds_get_data() and kpds_put_data() .

Persistence: stored

KDMS_PHYSICAL_SIZE

int *

size

This attribute is used to get the size of the data at the physi-

cal level. Ordinarily, attribute setting and getting retrieve

the presentation value of an attribute. However, there are

some rare instances where direct access to the physical rep-

resentation of the data is necessary, but it is desirable to

maintain the existing presentation attributes. Otherwise,

this attribute is identical to KDMS_SIZE . It is the difference

between the value of this attribute and the value of the

KDMS_SIZE attribute that can cause an interpolation or

padding to occur during calls to kpds_get_data() and

kpds_put_data() based on the value of the

KDMS_INTERPOLATE attribute.

Persistence: stored

KDMS_SCALE_FACTOR

double

scale_factor 1.0

This attribute specifies the scaling factor to be used when

scaling data values. This attribute comes into play when

the KDMS_SCALING attribute is set to KSCALE , respectively.

Persistence: transient

5-13



Data Management Services Program Services Volume II - Chapter 5

Segment Attributes

Attribute Legal Definition
and Default Values

KDMS_SCALE_OFFSET

double

real 0.0

offset 0.0

This attribute specifies the scaling offset to be used when

scaling data values. This attribute comes into play when

the KDMS_SCALING attribute is set to KSCALE , respectively.

Persistence: transient

KDMS_SCALING

int

scaling KNONE

KNONE

KNORMALIZE

KSCALE

This attribute specifies whether scaling or normalization

should be performed.

If KSCALE is specified for a segment, data values from that

segment will be scaled, according to the

KDMS_SCALE_FACTOR and KDMS_SCALE_OFFSET

attributes. If KNORMALIZE is specified for a segment, data

values from that segment will be normalized using the

KDMS_NORM_MIN and KDMS_NORM_MAX attributes. If this

attribute is set to KNONE for the a segment, data values from

that segment will not be scaled or normalized.

Persistence: transient

KDMS_SIZE

int *

size

> 0 This attribute specifies the size of the axes of a data seg-

ment. When the application programmer specifies a size

larger than the actual size of stored data, the get functions

will sub-sampled, clipped, padded or duplicated the data to

present the program with the requested amount, see the

attribute KDMS_INTERPOLATE for more details. The put

functions store exactly the size that the physical attributes

will allow even if the amount of data "put" (set by the pre-

sentation attributes) is different. This attribute must be set

for objects created via kpds_create_object or output

objects else get/put data calls will fail.

Persistence: stored

KDMS_TRANSFERABLE

int

dim TRUE

TRUE

FALSE

This attribute is used to determine if a segment is copied to

a destination via kdms_copy_object() . If set to then

kdms_copy_object() will copy the segment to the desti-

nation object. If it is set to FALSE , then it will not be

copied with the other segments in the data set. This capa-

bility is used to some applications to store information

which will be invalid if other data segments are operated

on, such as statistical information.

Persistence: stored

5-14



Data Management Services Program Services Volume II - Chapter 5

D. Functions Provided By Data Management Services

The multiple attribute functions kpds_get_attributes(), kpds_match_attributes(), and
kpds_set_attributes() require a NULL at the end of the variable argument list to indicate the end of
the list.

D.1. Object Management

• kdms_create() - create a temporary data object.
• kdms_open() - create an object associated with an input or output transport.
• kdms_close() - close an open data object.
• kdms_reopen() - associate new data with an existing object
• kdms_reference() - create a reference of a data object.
• kdms_sync() - synchronize physical and presentation layers of a data object.
• kdms_update_references() - update segment presentation of all reference objects.
• kdms_close_hook() - insert a service to be called when an object is closed.
• kdms_reference_list() - return a klist of references.
• kdms_get_segment_names() - get an array of segment names for the object specified.

D.1.1. kdms_create() — create a temporary data object.

Synopsis
kobject
kdms_create(void)

Returns
kobject on success, KOBJECT_INVALID upon failure

Description
kdms_create is used to instantiate a data object (kobject) when it will only be used for temporary stor-
age of information. If you are intending to process an object that already exists as a file or transport
(input), or you are planning on saving the kobject to a file or transport (output), then the appropriate
routines to use are kdms_input, kdms_output, or kdms_open.

This function creates an instance of a data object that will have associated with it a temporary transport
that will be used for buffering large amounts of data. This temporary transport will be automatically
removed when the process terminates. There is no way to rename the temporary file or replace the
temporary file with a permanent one.

The kdms_create function call creates what is essentially a "blank" object. That is, the object will ini-
tially have no segments, and almost all global attributes will be initialized to default values. If a
default is not appropriate, then the attribute will be uninitialized. The default values for attributes are
described in Chapter 5 of Program Services Volume 2. of the Khoros 2.0 Manual.

An object that is created with this function call behaves similarly to an output object that is created
with the kdms_output function call. Thus, it is necessary to create each segment that is desired and

5-15



Data Management Services Program Services Volume II - Chapter 5

initialize attributes such as size and datatype prior to using the object.

D.1.2. kdms_open() — create an object associated with an input or output transport.

Synopsis
kobject
kdms_open(

char *name,
int flags)

Input Arguments
name

a string that contains the path name of a file or transport that will be associated with the object.

flags
how the object is to be opened. a combination of KOBJ_READ, KOBJ_WRITE, KOBJ_RAW as
described above.

Returns
kobject on success, KOBJECT_INVALID upon failure

Description
kdms_open is used to instantiate a data object (kobject) that is assocated with a permanent file or trans-
port. If a permanent file is not desired (i.e. the object is going to be used as temporary storage, and
will not be used by any other process) then the kdms_create function call should be used instead.

The first argument to this function is the transport or file name. This argument indicates the name of
the transport that is associated with the object. The transport name can be any leg al khoros transport
description. While this will usually be a regular UNIX file name, it is also possible to specify such
things as shared memory pointers, memory map pointers, sockets, streams, and even transports on
other machines. For more information on the syntax of a VisiQuest transport name, refer to the online
man page for the VisiQuest function kopen.

The second argument to the kdms_open function call is used to provide data services with specific
information about how the object is going to be manipulated. The flags argument is analogous to
kopen’s flags argument. The flags argument is constructed by bitwise OR’ing predefined values from
the following list:

KOBJ_READ
Open an existing file or transport for reading (input). By using this flag, you are
indicating that the file or transport exists and that it contains valid data. If it does
not exist, or the data is not recognized, then an error message will be generated

5-16



Data Management Services Program Services Volume II - Chapter 5

and this function will return KOBJECT_INVALID.

KOBJ_WRITE
Open a file or transport for writing (output). By using this flag, you are indicating
that any data that you write to the object will be stored in the file or transport spec-
ified.

KOBJ_RAW
When an object is opened, data services usually attempts to recognize the file for-
mat by examining the first part of the file. By setting this value, you will bypass
this operation, forcing the file to be read as raw unformatted data.

These flags can be combined arbitrarily (with the exceptions given above) to alter the interpretation of
the file or transport. For example, specifying both KOBJ_READ and KOBJ_WRITE will result in a
read/write file object. This implies that the file already exists and will be read from using
kdms_get_data and written to using kdms_put_data. When kdms_close is called, the changes that are
a result of calls to kdms_put_data will be stored to the file.

However, if you intend to open an output object, but you need to occationally read data from it that you
have already written, it is not necessary to specify KOBJ_READ (in fact, doing so may result result in
an error if the file or transport does not already exist).

Likewise, it is possible to call kdms_put_data on an input object (one which was opened without the
KOBJ_WRITE flag). If this is done, then subsequent calls to kdms_get_data on a region that has been
written to will contain the new data. However, the file that is associated with this input object will not
be changed. Thus, the KOBJ_READ and KOBJ_WRITE flags only indicate what operations are
allowed on the permanent file that is associated with the object, not what operations are allowable on
the object itself.

If KOBJ_READ is specified, then the Data Services will attempt to recognize the file format automati-
cally. If it fails, then this function will return KOBJECT_INVALID, indicating that it was unable to
open the object, unless the KOBJ_RAW flag was also specified, in which case, it will assume that the
input file is simply headerless data. The structured file formats that are currently recognized are Kdf
(The Khoros 2.0 standard file format), Viff (The Khoros 1.0 standard file format, Pnm (Portable Any
Map, which includes PBM, PGM, and PNM), and Sun Raster.

Restrictions
The KOBJ_RAW flag will have unpredictable results if it is combined with the KOBJ_WRITE flag.
This limitation will be removed in a later release of the Khoros 2.0 system.

The Kdbm file format has a bug in it that prevents it from being used on a stream base output. This
will be fixed in a future release of the Khoros 2.0 system.

5-17



Data Management Services Program Services Volume II - Chapter 5

D.1.3. kdms_close() — close an open data object.

Synopsis
int
kdms_close(kobject object)

Input Arguments
object

the object to be closed.

Returns
TRUE on success, FALSE otherwise

Description
This function is called on an object when all interaction with the object is completed. In addition to
freeing resources that were used to manage the object, this function also, performs any "last minute"
manipulation on the file or transport that is associated with the object.

If the object was created with the kdms_reference function call, or if another object was created as a
reference of the one being closed, then the object might be sharing some of its resources with other
objects. If this is the case, then those shared resources will not be freed, but rather they will be disas-
sociated from the object being closed. Thus, closing an object does not affect any other object.

D.1.4. kdms_reopen() — associate new data with an existing object

Synopsis
kobject
kdms_reopen(

kobject object,
char *name,
int flags)

Input Arguments
object

data object re-open filename - transport name of new data set to associate with the object.
flags

flags to use when opening the data set specified by the filename argument.

5-18



Data Management Services Program Services Volume II - Chapter 5

Returns
object (the input argument) on success, NULL on failure.

Description
This function is used to associate new stored data with an already open data object. This operation can
only be performed on an input object. This function is typically used in an interactive environment
when many references to replace the data set being operated on or visualized with a new data set, with-
out having to close all of the references and replace them with new ones.

D.1.5. kdms_reference() — create a reference of a data object.

Synopsis
kobject
kdms_reference(kobject object)

Input Arguments
object

the abstract data object to be reference.

Returns
a kobject that is a reference of the input object on success, KOBJECT_INVALID upon failure

Description
This function is used to create a reference of a data object that can be treated as a second independant
data object under most circumstances. A referenced object is similar conceptually to a symbolic link
in a UNIX file system in most respects. For example, getting data from an input object and a reference
of the object will result in the same data. Data that is put on an output object can then be gotten from
one of its references.

The similarity ends there. Once an object is referenced, the two resulting objects are equivelant--there
is no way to distinguish the original from the reference. In fact, closing the original does not in any
way affect the reference, and visa-versa.

kdms_reference creates a new object that has presentation attributes that are independant of the origi-
nal object’s presentation attributes. The presentation attributes are UNCOUPLED from the physical
attributes, see the description found in Chapter 6 of the the VisiQuest Programmer’s Manual on the
KDMS_COUPLING attribute for more information. The two objects (or more if there are future calls
to kdms_reference) share all physical resources.

5-19



Data Management Services Program Services Volume II - Chapter 5

D.1.6. kdms_sync() — synchronize physical and presentation layers of a data object.

Synopsis
int
kdms_sync(

kobject object,
char *segment,
int direction)

Input Arguments
object

data object to be resynchronized.
segment

segment re-synchronize. If this is set to KDMS_OBJECT, then all segments are re-synchronized.
direction

the desired direction of the synchronization. the legal values are KPRES2PHYS, which indicates that
the physical layer will be updated to correspond to the presentation layer; and KPHYS2PRES, which
indicates that the presentation layer will be updated to correspond to the physical layer.

Returns
TRUE on success, FALSE otherwise

Description
This function is used to update physical attributes of a data object to match those of the presentation
layer, or visa-versa. When an attribute is set via kdms_set_attribute(s) or kdms_copy_attribute(s) calls,
the presentation version of the attribute is the only thing that is directly manipulated. The
KDMS_COUPLING attribute is used at that time to determine if the physical attribute should be
updated to correspond to its value at the presentation level. The KDMS_COUPLING attribute can
take on one of three values: KUNCOUPLED, KCOUPLED, or KDEMAND. If it is set to KUNCOU-
PLED or KDEMAND, then Data Services will not update the physical layer. If the attribute is set to
KCOUPLED, then data services immediately updates the physical layer. If the attribute is set to KDE-
MAND, then this updating will only occur when kdms_sync is called. If the KDMS_COUPLING
attribute is set to KUNCOUPLED, then this routine will simply return, without issuing an error mes-
sage.

D.1.7. kdms_update_references() — update segment presentation of all reference objects.

Synopsis
int
kdms_update_references(

5-20



Data Management Services Program Services Volume II - Chapter 5

kobject object,
char *segment)

Input Arguments
object

object containing segment to propagate.
segment

name of segment to be propagated.

Returns
TRUE on success, FALSE otherwise

Description
This function propagates the values of the presentation attributes from the specified object and segment
to the corresponding segments in all of the object’s references.

D.1.8. kdms_close_hook() — insert a service to be called when an object is closed.

Synopsis
kfunc_int
kdms_close_hook(

kobject object,
int (*func) PROTO((kobject)))

Input Arguments
object

object to have close hook function added to.
func

function to set as close hook. This function has the following prototype: func(kobject).

Returns
The close_hook that was assigned prior to this new assignment.

Description
This function is used to insert a special function that is called immediately before an object is closed
(after a call to kdms_close) that can perform any cleanup that may be required before the object is
written if it is an output object.

5-21



Data Management Services Program Services Volume II - Chapter 5

D.1.9. kdms_reference_list() — return a klist of references.

Synopsis
klist *
kdms_reference_list(kobject object)

Input Arguments
object

the object to get references of.

Returns
a klist * on success, NULL on failure.

Description
This function returns a klist of objects that are references of the object passed in as the argument to this
function. The object passed in will also be in this list. NOTE: This list is the one actually used by
KDMS to manage references. Destroying this list will cause grief like you’ve nev er seen before.

D.1.10. kdms_get_segment_names() — get an array of segment names for the object specified.

Synopsis
char **
kdms_get_segment_names(kobject object, int *number)

Input Arguments
object

the object to get the segment names from.

Output Arguments
number

the number of segments in the object (and thus, the number strings in the array that is returned.

Returns
an array of strings containing the names of the segments present in the object on success, NULL on
failure.

5-22



Data Management Services Program Services Volume II - Chapter 5

Description
Given an object, obtain an array of strings which are the names of all segments which exist in the
object.

D.2. Information

• kdms_support() - obtain a list of file formats supported by data services.

D.2.1. kdms_support() — obtain a list of file formats supported by data services.

Synopsis
char **
kdms_support(

int *num,
int list_inputs,
int list_outputs)

Input Arguments
list_inputs

TRUE if formats with input support should be included in the list
list_outputs

TRUE if formats with output support should be included in the list

Output Arguments
num

The number of formats in the returned string array.

Returns
An array of strings (char **) containing a list of all formats that are currently defined in Data Services.

Description
This function is used to obtain a list of the file formats supported by the data abstraction.

D.3. Segment Management

• kdms_query_segment() - determine if a data segment is available.
• kdms_create_segment() - create a segment on a data object.
• kdms_destroy_segment() - destroy a segment from a data object.
• kdms_rename_segment() - rename a segment

5-23



Data Management Services Program Services Volume II - Chapter 5

D.3.1. kdms_query_segment() — determine if a data segment is available.

Synopsis
int
kdms_query_segment(

kobject object,
char *segment)

Input Arguments
object

The object that segment may exist in.
segment

The name of segment to determine the existence of.

Returns
TRUE if the data segment exists, FALSE otherwise

Description
This function is used to determine if a data segment in an object is available. It returns TRUE if the
data segment exists, FALSE otherwise.

D.3.2. kdms_create_segment() — create a segment on a data object.

Synopsis
int
kdms_create_segment(

kobject object,
char *segment)

Input Arguments
object

The object to create the new segment in.
segment

The name of segment to create.

Returns
TRUE on success, FALSE otherwise

5-24



Data Management Services Program Services Volume II - Chapter 5

Description
This function is used to create a segment that does not already exist in a data object. If the segment
already exists, then this function will generate an error.

D.3.3. kdms_destroy_segment() — destroy a segment from a data object.

Synopsis
int
kdms_destroy_segment(

kobject object,
char *segment)

Input Arguments
object

The object containing the segment to be destroyed.
segment

The name of segment to be destroyed.

Returns
TRUE on success, FALSE otherwise

Description
This function is used to destroy an existing segment from a data object. Once a segment has been
destroyd, any data or attributes associated with that segment will be lost forever. A new segment can
be created in its place.

If the segment does not exist, then an error message will be issued.

D.3.4. kdms_rename_segment() — rename a segment

Synopsis
int
kdms_rename_segment(

kobject object,
char *oname,
char *nname)

5-25



Data Management Services Program Services Volume II - Chapter 5

Input Arguments
object

The object to rename a segment on. old_name - The current name of the segment to be renamed.
new_name - The new name of the segment.

Returns
TRUE if successful, FALSE otherwise

Description
This function is used to rename a segment in an open object.

D.4. Attribute Management

• kdms_define_quasi_attribute() - define a quasi attribute
• kdms_define_attribute() - define an attribute for for a session
• kdms_undefine_attribute() - undefine a defined attribute
• kdms_query_attribute_definition() - determines if an attribute is defined.
• kdms_create_attribute() - instantiate an attribute
• kdms_destroy_attribute() - destroy an attribute
• kdms_vset_attribute() - open varargs set attribute
• kdms_vset_attributes() - set attributes on a kvalist
• kdms_set_attribute() - set the value of an attribute
• kdms_set_attributes() - sets the values of multiple attributes
• kdms_vget_attribute() - get a single attribute on a kvalist
• kdms_vget_attributes() - get attributes on a kvalist
• kdms_get_attribute() - get the value of an attribute within a segment of an abstract object.
• kdms_get_attributes() - gets the values of a variable number of attributes within a single segment of an
object.
• kdms_match_attribute() - returns TRUE if the same segment attribute in two abstract data objects match.
• kdms_vmatch_attributes() - returns true if the vararg list of segment attributes in two abstract data objects
match.
• kdms_match_attributes() - returns true if the list of segment attributes in two abstract data objects match.
• kdms_copy_attribute() - copy an attribute from a source object to a destination object.
• kdms_vcopy_attributes() - copy attributes given in a kvalist
• kdms_copy_attributes() - copy attributes from a source object to a destination object.
• kdms_query_attribute() - get information about an attribute
• kdms_print_attribute() - print the value of an attribute
• kdms_get_attribute_names() - get a list of attributes from an object.

D.4.1. kdms_define_quasi_attribute() — define a quasi attribute

Synopsis
int kdms_define_quasi_attribute(

5-26



Data Management Services Program Services Volume II - Chapter 5

char *association,
char *attribute,
kaddr client_data,
kfunc_int *get,
kfunc_int *set,
kfunc_int *match,
kfunc_int *copy,
kfunc_int *query,
kfunc_int *print)

Input Arguments
association

string indicating where it is legal to to inv oke the atttribute. NULL implies the attribute can be
invoked at the object level. A segment name implies that the attribute can only be invoked on that seg-
ment. The identifier KDMS_ALL_SEGMENTS implies that the attribute can be invoked for any seg-
ment, but not for the object.

attribute
attribute string identifier.

client_data
pointer to client data. This client data will be passed in to all the the routines for this attribute.

get
get handler function for this attribute. This function will be invoked whenever a kdms_get_attribute,
kdms_get_attributes, kdms_vget_attribute, or kdms_vget_attributes function is called and the given
segment matches the definition’s association.

The get handler declaration is of the form :

int get_handler(
kobject object,
ktoken association,
ktoken attribute,
kaddr client_data,
kva_list *list)

The object is passed from the calling get function. The association is the tokenized representation of
the segment argument from the get function. The attribute is the tokenized representation of the
attribute name. The client_data is the client_data from this definition. The variable argument list is an
already opened varargs list which contains the pointers with which to return the attribute data. The
variable arguments can be pulled off with the kva_arg() function. The list will be closed after this han-
dler returns. The return value of this handler will also be propogated up to be the return value of the
calling get function.

set
set handler function for this attribute. This function will be invoked whenever a kdms_set_attribute,

5-27



Data Management Services Program Services Volume II - Chapter 5

kdms_set_attributes, kdms_vset_attribute, or kdms_vset_attributes function is called and the given
segment matches the definition’s association.

The set handler declaration is of the form :

int set_handler(
kobject object,
ktoken association,
ktoken attribute,
kaddr client_data,
kva_list *list)

The object is passed from the calling set function. The association is the tokenized representation of
the segment argument from the set function. The attribute is the tokenized representation of the
attribute name. The client_data is the client_data from this definition. The variable argument list is an
already opened varargs list which contains the data with which to set the attribute data. The variable
arguments can be pulled off with the kva_arg() function. The list will be closed after this handler
returns. The return value of this handler will also be propogated up to be the return value of the call-
ing set function.

match
match handler function for this attribute. This function will be invoked whenever a
kdms_match_attribute, kdms_match_attributes, or kdms_vmatch_attributes function is called and the
given segment matches the definition’s association.

The match handler declaration is of the form :

int match_handler(
kobject object1,
kobject object2,
ktoken association,
ktoken attribute,
kaddr client_data1,
kaddr client_data2)

The object1 and object2 arguments are passed from the calling match function. The association is the
tokenized representation of the segment argument from the match function. The attribute is the tok-
enized representation of the attribute name. The client_data1 and client_data2 arguments are from
from this definition. The return value of this handler will also be propogated up to be the return value
of the calling match function.

copy
copy handler function for this attribute. This function will be invoked whenever a
kdms_copy_attribute, kdms_copy_attributes, or kdms_vcopy_attributes function is called and the
given segment matches the definition’s association.

5-28



Data Management Services Program Services Volume II - Chapter 5

The copy handler declaration is of the form :

int copy_handler(
kobject object1,
kobject object2,
ktoken association,
ktoken attribute,
kaddr client_data1,
kaddr client_data2)

The object1 and object2 arguments are passed from the calling copy function. The association is the
tokenized representation of the segment argument from the copy function. The attribute is the tok-
enized representation of the attribute name. The client_data1 and client_data2 arguments are from
from this definition. The return value of this handler will also be propogated up to be the return value
of the calling copy function.

query
query handler function for this attribute. This function will be invoked whenever a
kdms_query_attribute function is called and the given segment matches the definition’s association.

The query handler declaration is of the form :

int query_handler(
kobject object,
ktoken association,
ktoken attribute,
kaddr client_data,
int *num_args,
int *arg_size,
int *data_type,
int *permanent)

The object is passed in from the calling query function. The association is the tokenized representa-
tion of the segment argument from the query function. The attribute is the tokenized representation of
the attribute name. The client_data argument is from from this definition. The num_args argument
can be used to return the expected number of arguments for this attribute. The arg_size argument can
be used to return the expected argument size for this attribute. The data_type argument can be used to
return the expected data type for this attribute. The permanent argument can be used to indicate if this
attribute is stored or not. Note that it is up to the programmer to ensure that the values which the han-
dler returns for any of those arguments matches what is going to be processed in the get and set han-
dlers. The return value of this handler will be propogated up to be the return value of the calling query
function. In general, a value of TRUE is interpreted to mean that the attribute ’exists’.

print
print handler function for this attribute. This function will be invoked whenever a
kdms_print_attribute function is called and the given segment matches the definition’s association.

5-29



Data Management Services Program Services Volume II - Chapter 5

The print handler declaration is of the form :

int print_handler(
kobject object,
ktoken association,
ktoken attribute,
kaddr client_data,
kfile *outfile)

The object is passed in from the calling print function. The association is the tokenized representation
of the segment argument from the print function. The attribute is the tokenized representation of the
attribute name. The client_data argument is from from this definition. The outfile argument is the
(hopefully) open khoros transort which this handler can use to print the attribute to. The return value
of this handler will be propogated up to be the return value of the calling print function.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This routine will define a data services quasi-attribute for a session. A quasi-attribute is one which
does not technically have any data associated with it, but one for which a given action will be invoked.
From the higher level programmer’s point of view, a quasi-attribute will behave identically to a generic
attribute. The higher-level function calls will be identical. That is, the same get, set, match, query, and
print attribute functions will work on both quasi-attributes and generic attributes. Quasi-attributes are
provided simply to allow an application service programmer the ability to provide their own custom
functionality for an attribute.

This quasi-attribute definition will be used to determine what action should be taken on a get, set,
match, copy or print attribute call. On any kdms attribute call for this attribute, the relevant action han-
dler provided in this definition will be called or invoked.

This attribute definition is distinguished by the attribute name provided here. The name must be a
string, unique for the given association.

In each attribute call, a segment argument will be provided to give scope to the attribute. The associa-
tion given in this definition is used to determine the allowable scope of the attribute. Attributes can be
either scoped to the main object (object-level) or scoped to any of the object’s data segments (segment-
level).

The provided association is simply a string. A NULL association indicates that the attribute can only
be invoked when NULL is passed in as the segment argument. An association of KDMS_ALL_SEG-
MENTS indicates that the attribute can be invoked at the segment level for any segment name except
for NULL. If a specific segment name, such as "value" is given for the association, then the attribute
can only invoked when "value" is provided as the segment name.

This quasi-attribute can be undefined with the kdms_undefine_attribute call.

5-30



Data Management Services Program Services Volume II - Chapter 5

D.4.2. kdms_define_attribute() — define an attribute for for a session

Synopsis
int kdms_define_attribute(

char *association,
char *attribute,
int numargs,
int argsize,
int datatype,
int permanent,
int shared,
kvalist)

Input Arguments
association

string indicating where it is legal to to create the atttribute. NULL implies the attribute can be instanti-
ated at the object level. A segment name implies that the attribute can only be established on that seg-
ment. The identifier KDMS_ALL_SEGMENTS implies that the attribute can be established on any
segment, but not on the object.

attribute
attribute string identifier

numargs
number of arguments in the attribute; must be > 0;

argsize
number of units of the data type for each attribute argument must be > 0;

datatype
data type of the attribute can be KBIT, KUBYTE, KBYTE, KUSHORT, KSHORT, KUINT, KINT,
KULONG, KLONG, KFLOAT KDOUBLE, KCOMPLEX, KDCOMPLEX, or KSTRING

permanent
TRUE if attribute is permanent

shared
TRUE if attribute is shared

kvalist
the default value in a variable argument list containing data in the form :

value1 [, value2, ...]

The list should consist of "numarg" arguments, where each argument is of "argsize" size of "datatype"

5-31



Data Management Services Program Services Volume II - Chapter 5

data type.

Returns
TRUE on success, FALSE otherwise

Description
This routine will define a data services attribute for a session. This attribute definition will be used as a
template for creating instances of the attribute on an actual data object. This creation will be implicit
when the attribute is accessed by any other kdms attribute routine.

The attribute definition is distinguished by the given attribute name. The name must be a string,
unique for the given association. The attribute acts as storage for multiple argument values. Each
attribute argument can be of any size (> 0) or data type. The number of arguments, the argument size,
and the data type are all specified in this definition.

Attributes can be permanent, implying that they are stored to the disk when the object is closed. Tech-
nically, a permanent attribute will only be stored if the underlying file format has the capacity for stor-
ing it. See the man page for kdatafmt for more information of file formats.

Attributes can be either created on the main object (object-level) or created on any of the object’s data
segments (segment-level). Whether an attribute is created at the object-level or at the segment-level is
determined by the attribute definition’s association.

The provided association is simply a string. A NULL association indicates that the attribute can only
be created at the object-level. An association of KDMS_ALL_SEGMENTS indicates that the attribute
can be created at the segment level on any segment name. If a specific segment name, such as "value"
is given for the association, then the attribute can only created on the "value" segment.

The attribute can be either permanent or transient. Permanent impiles that when the object is closed, a
representation of the attribute will be written out to the disk. Note that this representation completely
describes the attribute, and it will be possible to read this attribute later in another session even if it has
not been defined there.

In addition to being created either at the object or segment level, an attribute can also be created at the
physical or presentation level.

Changes to physical level attributes are visible to all references of the data object and are termed as
"shared" attributes. Changes to presentation level attributes are visible only to the reference object on
which the change was made, and thus the attribute is termed as "unshared". Since all references may
have potentially different values, unshared attributes may not be permanent.

A default must be provided. This default must consist of the proper number of arguments where each
argument is of the same size and data type specified in the definition. This default will be used when
initializing any attributes created from this definition.

This attribute can be undefined with the kdms_undefine_attribute call.

5-32



Data Management Services Program Services Volume II - Chapter 5

D.4.3. kdms_undefine_attribute() — undefine a defined attribute

Synopsis
int kdms_undefine_attribute(

char *association,
char *attribute)

Input Arguments
association

string indicating the scope of the attribute. The same association that was used to define the attribute
must be used here.

attribute
attribute string identifier

Returns
TRUE on success, FALSE otherwise

Description
This function will remove an attribute definition from the definition list. The attribute definition corre-
sponding to the given association and attribute name will be removed. This has no effect on any
attribute which may have already been instantiated on an object. This function can be used to undefine
both generic and quasi attributes.

D.4.4. kdms_query_attribute_definition() — determines if an attribute is defined.

Synopsis
int kdms_query_attribute_definition(

char *association,
char *attribute)

Input Arguments
association

string indicating the scope of the attribute. The same association that was used to define the attribute
must be used here.

5-33



Data Management Services Program Services Volume II - Chapter 5

attribute
attribute string identifier

Returns
TRUE if attribute is defined, FALSE otherwise

Description
This function will check to see if an attribute is defined on the definition list. The attribute definition
corresponding to the given association and attribute name will be searched for.

D.4.5. kdms_create_attribute() — instantiate an attribute

Synopsis
int kdms_create_attribute(

kobject object,
char *segment,
char *attribute,
int numargs,
int argsize,
int datatype,
int permanent,
int shared)

Input Arguments
object

the object on which to instantiate the new attribute.

segment
segment identifier string specifying which segment to create the attribute in. If NULL, then the
attribute will be created at the object level.

attribute
attribute identifier string. This identifier must be unique for the given segment.

numargs
number of arguments in the attribute must be > 0;

argsize
number of units of the data type for each attribute argument must be > 0;

datatype

5-34



Data Management Services Program Services Volume II - Chapter 5

data type of the attribute can be KBIT, KUBYTE, KBYTE, KUSHORT, KSHORT, KUINT, KINT,
KULONG, KLONG, KFLOAT KDOUBLE, KCOMPLEX, KDCOMPLEX, or KSTRING

permanent
TRUE if attribute is permanent.

shared
TRUE if attribute is shared

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This routine provides the programmer with a mechanism for creating attributes specific to a program
being written.

The attribute acts as storage for multiple argument values. Each attribute argument can be of any size
or data type. The number of arguments, the argument size, and the data type are all specified here.

The attributes can be either created on the main object (object-level) or created on any of the object’s
data segments (segment-level). Whether the attribute is created at the object-level or at the segment-
level is determined by the segment argument. If the segment argument is NULL, then the attribute will
be instantiated at the object-level. Otherwise, the attribute will be instantiated on the specified seg-
ment, if it exists. If an attribute with the same name and scope already exists, then this function will
fail.

The attribute can be either permanent or transient. Permanent impiles that when the object is closed, a
representation of the attribute will be written out to the disk.

In addition to being created either at the object or segment level, the attribute can also be created at the
physical or presentation level.

Changes to physical level attributes are visible to all references of the data object and are termed as
"shared" attributes. Changes to presentation level attributes are visible only to the reference object on
which the change was made, and thus the attribute is termed as "unshared". Since all references may
have potentially different values, unshared attributes may not be permanent.

An initial value must be provided. This initial value must consist of the proper number of arguments
where each argument is of the same size and data type specified in this call.

The attribute can be destroyed with the kdms_destroy_attribute function.

Restrictions
This attribute will override any defined attributes with the same name and scope.

5-35



Data Management Services Program Services Volume II - Chapter 5

D.4.6. kdms_destroy_attribute() — destroy an attribute

Synopsis
int kdms_destroy_attribute(

kobject object,
char *segment,
char *attribute)

Input Arguments
object

the object with the attribute to destroy

segment
the segment which contains the attribute. If this is NULL, then the attribute is assumed to exist at the
object level.

attribute
string identifying the name of the attribute to destroy.

Returns
TRUE on success, FALSE otherwise

Description
This routine provides the programmer with a mechanism for destroying an instantiation of an attribute.

The segment argument is used to indicate which segment the attribute exists in. If the segment argu-
ment is NULL, then the attribute is assumed to exist at the object level.

If the attribute is not physically instantiated on the object, then it can not be destroyed. In general, this
routine should only be used to destroy attributes that have been explicitly created with a kdms_cre-
ate_attribute call.

D.4.7. kdms_vset_attribute() — open varargs set attribute

Synopsis
int
kdms_vset_attribute(

kobject object,

5-36



Data Management Services Program Services Volume II - Chapter 5

char *segment,
char *attribute,
kva_list *list)

Input Arguments
object

object to set the attribute on
segment

name of segment to set the attribute on.
attribute

name of the attribute to set va_list - a valist containing the values of the attribute.

Input:

Returns
TRUE on success, FALSE otherwise

Description
This routine allows the programmer to set the value of an attribute associated with a data object.

Data services manages two sets of attributes with each object. Internally, they are referred to as the
physical attributes and the presentation attributes. The presentation version of an attribute is the value
that is desired by the programmer. The corresponding physical attribute is what is physically stored on
the file or transport associated with the object. If the two versions of an attribute result in different pre-
sentations of data, then data services automatically translates the data from the physical interpretation
to the presentation interpretation, or visa-versa, as appropriate. For example, if the data type attribute
(KDMS_DAT A_TYPE) is physically unsigned int (KULONG), but the presentation value of that
attribute is float (KFLOAT), then data services will retrieve the data from the object and and cast it to
float before returning it to the user. Similar behavior will occur for attributes such as index order
(KDMS_INDEX_ORDER) and size (KDMS_SIZE).

The presentation attributes are settable at any time throughout a object’s lifetime. The physical
attributes, however, at some point are locked and thereafter cannot change. An object that was opened
as an input object (via kdms_input or kdms_open) has its physical attributes locked immediately.

The effect of setting the attribute is immediate. For example, if this routine is used to set the
KDMS_DAT ATYPE attribute, then any future access of the data in this image will involve data of the
specified data type.

If the segment argument is NULL, then this instructs kdms_set_attribute to set a global attribute, if
available. In either case, if the attribute does not exist, then this routine returns FALSE, indicating a
failure.

5-37



Data Management Services Program Services Volume II - Chapter 5

D.4.8. kdms_vset_attributes() — set attributes on a kvalist

Synopsis
int
kdms_vset_attributes(

kobject object,
char *segment,
kva_list *list)

Input Arguments
object

object to set the attribute on
segment

name of segment to set the attribute on. va_list - a valist containing attributes and their values.

Returns
TRUE on success, FALSE otherwise

Description
This routine allows the programmer to set the values of multiple attributes associated with a data
object.

Data services manages two sets of attributes with each object. Internally, they are referred to as the
physical attributes and the presentation attributes. The presentation version of an attribute is the value
that is desired by the programmer. The corresponding physical attribute is what is physically stored on
the file or transport associated with the object. If the two versions of an attribute result in different pre-
sentations of data, then data services automatically translates the data from the physical interpretation
to the presentation interpretation, or visa-versa, as appropriate. For example, if the data type attribute
(KDMS_DAT A_TYPE) is physically unsigned int (KULONG), but the presentation value of that
attribute is float (KFLOAT), then data services will retrieve the data from the object and and cast it to
float before returning it to the user. Similar behavior will occur for attributes such as index order
(KDMS_INDEX_ORDER) and size (KDMS_SIZE).

The presentation attributes are settable at any time throughout a object’s lifetime. The physical
attributes, however, at some point are locked and thereafter cannot change. An object that was opened
as an input object (via kdms_input or kdms_open) has its physical attributes locked immediately.

The effect of setting the attribute is immediate. For example, if this routine is used to set the
KDMS_DAT ATYPE attribute, then any future access of the data in this image will involve data of the
specified data type.

If the segment argument is NULL, then this instructs kdms_set_attribute to set a global attribute, if
available. In either case, if the attribute does not exist, then this routine returns FALSE, indicating a
failure.

5-38



Data Management Services Program Services Volume II - Chapter 5

D.4.9. kdms_set_attribute() — set the value of an attribute

Synopsis
int
kdms_set_attribute(

kobject object,
char *segment,
char *attribute,
kvalist)

Input Arguments
object

the object that is involved in the set attribute operation.
segment

the data segment whose attribute is being set. va_alist - variable argument list, that contains an
attribute followed by any values associated with that attribute. It takes the form:

ATTRIBUTE_NAME, value1 [, value2, ...]

The number of value arguments in the variable argument list depends on the specific attribute. For
example, KDMS_DAT ATYPE takes only one value, but KDMS_SIZE takes five values.

Returns
TRUE on success, FALSE otherwise

Description
This routine allows the programmer to set the value of an attribute associated with a data object.

Data services manages two sets of attributes with each object. Internally, they are referred to as the
physical attributes and the presentation attributes. The presentation version of an attribute is the value
that is desired by the programmer. The corresponding physical attribute is what is physically stored on
the file or transport associated with the object. If the two versions of an attribute result in different pre-
sentations of data, then data services automatically translates the data from the physical interpretation
to the presentation interpretation, or visa-versa, as appropriate. For example, if the data type attribute
(KDMS_DAT A_TYPE) is physically unsigned int (KULONG), but the presentation value of that
attribute is float (KFLOAT), then data services will retrieve the data from the object and and cast it to
float before returning it to the user. Similar behavior will occur for attributes such as index order
(KDMS_INDEX_ORDER) and size (KDMS_SIZE).

The presentation attributes are settable at any time throughout a object’s lifetime. The physical
attributes, however, at some point are locked and thereafter cannot change. An object that was opened
as an input object (via kdms_input or kdms_open) has its physical attributes locked immediately.

The effect of setting the attribute is immediate. For example, if this routine is used to set the
KDMS_DAT ATYPE attribute, then any future access of the data in this image will involve data of the

5-39



Data Management Services Program Services Volume II - Chapter 5

specified data type.

If the segment argument is NULL, then this instructs kdms_set_attribute to set a global attribute, if
available. In either case, if the attribute does not exist, then this routine returns FALSE, indicating a
failure.

D.4.10. kdms_set_attributes() — sets the values of multiple attributes

Synopsis
int
kdms_set_attributes(

kobject object,
char *segment,
kvalist)

Input Arguments
object

the object that is involved in the set attribute operation.
segment

the data segment whose attribute is being set. va_alist - variable argument list, that contains a set of
attributes, each followed by any values associated with that attribute. It takes the form:

ATTRIBUTE_NAME1, value1 [, value2, ...], ATTRIBUTE_NAME2, value1,[, value2, ...],

The number of value arguments in variable argument list for each attribute depends on the specific
attribute. For example, KDMS_DAT ATYPE takes only one value, but KDMS_SIZE takes five values.
The NULL at the end of the variable argument list serves as a flag indicating the end of the list to
kdms_set_attributes.

Returns
TRUE on success, FALSE otherwise

Description
The purpose of this routine is to set the values of multiple attributes of a data object.

Data services manages two sets of attributes with each object. Internally, they are referred to as the
physical attributes and the presentation attributes. The presentation version of an attribute is the value
that is desired by the programmer. The corresponding physical attribute is what is physically stored on
the file or transport associated with the object. If the two versions of an attribute result in different pre-
sentations of data, then data services automatically translates the data from the physical interpretation
to the presentation interpretation, or visa-versa, as appropriate. For example, if the data type attribute
(KDMS_DAT A_TYPE) is physically unsigned int (KULONG), but the presentation value of that
attribute is float (KFLOAT), then data services will retrieve the data from the object and and cast it to

5-40



Data Management Services Program Services Volume II - Chapter 5

float before returning it to the user. Similar behavior will occur for attributes such as index order
(KDMS_INDEX_ORDER) and size (KDMS_SIZE).

The presentation attributes are settable at any time throughout a object’s lifetime. The physical
attributes, however, at some point are locked and thereafter cannot change. An object that was opened
as an input object (via kdms_input or kdms_open) has its physical attributes locked immediately.

The effect of setting an attribute is immediate. For example, if this routine is used to set the
KDMS_DAT A_TYPE attribute, then any future access of the data in this image will involve data of the
specified data type.

If the segment argument is NULL, then this instructs kdms_set_attributes to get a series of global
attributes, if available. In either case, if an attribute does not exist, then this routine returns FALSE,
indicating a failure.

D.4.11. kdms_vget_attribute() — get a single attribute on a kvalist

Synopsis
int
kdms_vget_attribute(

kobject object,
char *segment,
char *attribute,
kva_list *list)

Returns
TRUE on success, FALSE otherwise

Description
The purpose of this routine is to allow the programmer to get the value of an attribute associated with a
data object.

Data services manages two sets of attributes with each object. Internally, they are referred to as the
physical attributes and the presentation attributes. The presentation version of an attribute is the value
that is desired by the programmer. The corresponding physical attribute is what is physically stored on
the file or transport associated with the object. If the two versions of an attribute result in different pre-
sentations of data, then data services automatically translates the data from the physical interpretation
to the presentation interpretation, or visa-versa, as appropriate. For example, if the data type attribute
(KDMS_DAT A_TYPE) is physically unsigned int (KULONG), but the presentation value of that
attribute is float (KFLOAT), then data services will retrieve the data from the object and and cast it to
float before returning it to the user. Similar behavior will occur for attributes such as index order
(KDMS_INDEX_ORDER) and size (KDMS_SIZE).

The presentation attributes are settable at any time throughout a object’s lifetime. The physical

5-41



Data Management Services Program Services Volume II - Chapter 5

attributes, however, at some point are locked and thereafter cannot change. An object that was opened
as an input object (via kdms_input or kdms_open) has its physical attributes locked immediately.

If the segment argument is NULL, then this instructs kdms_get_attribute to get a global attribute, if
available. In either case, if the attribute does not exist, then this routine returns FALSE, indicating a
failure.

D.4.12. kdms_vget_attributes() — get attributes on a kvalist

Synopsis
int
kdms_vget_attributes(

kobject object,
char *segment,
kva_list *list)

Returns
TRUE on success, FALSE otherwise

Description
The purpose of this routine is to allow the programmer to get the values of multiple attributes associ-
ated with a data object

Data services manages two sets of attributes with each object. Internally, they are referred to as the
physical attributes and the presentation attributes. The presentation version of an attribute is the value
that is desired by the programmer. The corresponding physical attribute is what is physically stored on
the file or transport associated with the object. If the two versions of an attribute result in different pre-
sentations of data, then data services automatically translates the data from the physical interpretation
to the presentation interpretation, or visa-versa, as appropriate. For example, if the data type attribute
(KDMS_DAT A_TYPE) is physically unsigned int (KULONG), but the presentation value of that
attribute is float (KFLOAT), then data services will retrieve the data from the object and and cast it to
float before returning it to the user. Similar behavior will occur for attributes such as index order
(KDMS_INDEX_ORDER) and size (KDMS_SIZE).

The presentation attributes are settable at any time throughout a object’s lifetime. The physical
attributes, however, at some point are locked and thereafter cannot change. An object that was opened
as an input object (via kdms_input or kdms_open) has its physical attributes locked immediately.

If the segment argument is NULL, then this instructs kdms_set_attributes to get a series of global
attributes, if available. In either case, if an attribute does not exist, then this routine returns FALSE,
indicating a failure.

5-42



Data Management Services Program Services Volume II - Chapter 5

D.4.13. kdms_get_attribute() — get the value of an attribute within a segment of an abstract
object.

Synopsis
int
kdms_get_attribute(

kobject object,
char *segment,
char *attribute,
kvalist)

Input Arguments
object

the object that is involved in the get attribute operation.
segment

the data segment whose attribute is being retrieved. va_alist - variable argument list, that contains an
attribute followed by any addresses that will be filled out with the values associated with that attribute.
The variable argument list takes the form:

ATTRIBUTE_NAME, &value1 [, &value2, ...]

The number of value arguments in variable argument list depends on the specific attribute. For exam-
ple, KDMS_DAT ATYPE requires one value, but KDMS_SIZE requires five values.

Returns
TRUE on success, FALSE otherwise

Description
The purpose of this routine is to allow the programmer to get the value of an attribute associated with a
data object.

Data services manages two sets of attributes with each object. Internally, they are referred to as the
physical attributes and the presentation attributes. The presentation version of an attribute is the value
that is desired by the programmer. The corresponding physical attribute is what is physically stored on
the file or transport associated with the object. If the two versions of an attribute result in different pre-
sentations of data, then data services automatically translates the data from the physical interpretation
to the presentation interpretation, or visa-versa, as appropriate. For example, if the data type attribute
(KDMS_DAT A_TYPE) is physically unsigned int (KULONG), but the presentation value of that
attribute is float (KFLOAT), then data services will retrieve the data from the object and and cast it to
float before returning it to the user. Similar behavior will occur for attributes such as index order
(KDMS_INDEX_ORDER) and size (KDMS_SIZE).

The presentation attributes are settable at any time throughout a object’s lifetime. The physical
attributes, however, at some point are locked and thereafter cannot change. An object that was opened
as an input object (via kdms_input or kdms_open) has its physical attributes locked immediately.

5-43



Data Management Services Program Services Volume II - Chapter 5

If the segment argument is NULL, then this instructs kdms_get_attribute to get a global attribute, if
available. In either case, if the attribute does not exist, then this routine returns FALSE, indicating a
failure.

D.4.14. kdms_get_attributes() — gets the values of a variable number of attributes within a sin-
gle segment of an object.

Synopsis
int
kdms_get_attributes(

kobject object,
char *segment,
kvalist)

Input Arguments
object

the object that is involved in the set attribute operation.
segment

the data segment whose attribute is being retrieved. va_alist - a variable argument list that contains a
set attributes, each followed by addresses to variables that will be assigned with values associated with
that attribute. The variable argument list takes the form:

ATTRIBUTE_NAME1, &value1 [, &value2, ...], ATTRIBUTE_NAME2, &value1,[, &value2, ...],

The number of value arguments in the variable argument list for each attribute depends on the specific
attribute. For example, KDMS_DAT ATYPE takes only one value, but KDMS_SIZE takes multiple
values. The NULL at the end of the variable argument list serves as a flag indicating the end of the list
to kdms_get_attributes.

Returns
TRUE on success, FALSE otherwise

Description
The purpose of this routine is to allow the programmer to get the values of multiple attributes associ-
ated with a data object

Data services manages two sets of attributes with each object. Internally, they are referred to as the
physical attributes and the presentation attributes. The presentation version of an attribute is the value
that is desired by the programmer. The corresponding physical attribute is what is physically stored on
the file or transport associated with the object. If the two versions of an attribute result in different pre-
sentations of data, then data services automatically translates the data from the physical interpretation
to the presentation interpretation, or visa-versa, as appropriate. For example, if the data type attribute
(KDMS_DAT A_TYPE) is physically unsigned int (KULONG), but the presentation value of that

5-44



Data Management Services Program Services Volume II - Chapter 5

attribute is float (KFLOAT), then data services will retrieve the data from the object and and cast it to
float before returning it to the user. Similar behavior will occur for attributes such as index order
(KDMS_INDEX_ORDER) and size (KDMS_SIZE).

The presentation attributes are settable at any time throughout a object’s lifetime. The physical
attributes, however, at some point are locked and thereafter cannot change. An object that was opened
as an input object (via kdms_input or kdms_open) has its physical attributes locked immediately.

If the segment argument is NULL, then this instructs kdms_set_attributes to get a series of global
attributes, if available. In either case, if an attribute does not exist, then this routine returns FALSE,
indicating a failure.

Restrictions
Use only as directed...

D.4.15. kdms_match_attribute() — returns TRUE if the same segment attribute in two abstract
data objects match.

Synopsis
int
kdms_match_attribute(

kobject object1,
kobject object2,
char *segment,
char *attribute)

Input Arguments
object1

the first abstract data object on which to match the specified attribute
object2

the second abstract data object on which to match the specified attribute
segment

the data segment in each abstract data object in which we will be matching the attribute.
attribute

the attribute that will be compared in the two objects.

Returns
There are three ways for this routine to return a FALSE: (1) if the attribute in the two objects does not
match; (2) if either object does not contain the specified attribute; (3) an error condition resulting from
an invalid object or segment. If none of these three conditions exist, then this function will return
TRUE.

5-45



Data Management Services Program Services Volume II - Chapter 5

Description
The purpose of this routine is to allow the programmer to compare a single attribute between two data
objects.

Data services manages two sets of attributes with each object. Internally, they are referred to as the
physical attributes and the presentation attributes. The presentation version of an attribute is the value
that is desired by the programmer. The corresponding physical attribute is what is physically stored on
the file or transport associated with the object. If the two versions of an attribute result in different pre-
sentations of data, then data services automatically translates the data from the physical interpretation
to the presentation interpretation, or visa-versa, as appropriate. For example, if the data type attribute
(KDMS_DAT A_TYPE) is physically unsigned int (KULONG), but the presentation value of that
attribute is float (KFLOAT), then data services will retrieve the data from the object and and cast it to
float before returning it to the user. Similar behavior will occur for attributes such as index order
(KDMS_INDEX_ORDER) and size (KDMS_SIZE).

The presentation attributes are settable at any time throughout a object’s lifetime. The physical
attributes, however, at some point are locked and thereafter cannot change. An object that was opened
as an input object (via kdms_input or kdms_open) has its physical attributes locked immediately.

This routine will return TRUE if the specified attribute has the same value in both of the abstract data
objects. This routine will return FALSE if the attribute does not have the same value in both of of the
objects kdms_match_attribute will also return FALSE if the attribute does not exist in either or both of
the objects.

If the segment argument is NULL, then that implies that the attribute is a a global attribute in each of
the abstract data objects.

5-46



Data Management Services Program Services Volume II - Chapter 5

D.4.16. kdms_vmatch_attributes() — returns true if the vararg list of segment attributes in two
abstract data objects match.

Synopsis
int
kdms_vmatch_attributes(

kobject object1,
kobject object2,
char *segment,
kva_list *list)

Input Arguments
object1

the first abstract data object on which to match the specified attributes
object2

the second abstract data object on which to match the specified attributes
segment

the data segment in each abstract data object in which we will be matching the attributes.
list

variable argument list, that contains an arbitrarily long list of attributes followed a NULL. It takes the
form:

ATTRIBUTE_NAME1, ATTRIBUTE_NAME2, ..., NULL

Returns
There are three ways for this routine to return a FALSE: (1) if any of the attributes between the two
objects do not match; (2) if either object does not contain one or more of the specified attributes; (3) an
error condition resulting from an invalid object or segment. If none of these three conditions exist,
then this function will return TRUE.

Description
The purpose of this routine is to allow the programmer to compare multiple attributes in two object.

This routine will return TRUE if all of the specified attributes have the same value in the objects. This
routine will return FALSE if any of the attributes do not match kdms_match_attributes will also return
FALSE if any of the attributes do not exist in either or both of the two objects.

Data services manages two sets of attributes with each object. Internally, they are referred to as the
physical attributes and the presentation attributes. The presentation version of an attribute is the value
that is desired by the programmer. The corresponding physical attribute is what is physically stored on
the file or transport associated with the object. If the two versions of an attribute result in different pre-
sentations of data, then data services automatically translates the data from the physical interpretation
to the presentation interpretation, or visa-versa, as appropriate. For example, if the data type attribute
(KDMS_DAT A_TYPE) is physically unsigned int (KULONG), but the presentation value of that
attribute is float (KFLOAT), then data services will retrieve the data from the object and and cast it to

5-47



Data Management Services Program Services Volume II - Chapter 5

float before returning it to the user. Similar behavior will occur for attributes such as index order
(KDMS_INDEX_ORDER) and size (KDMS_SIZE).

The presentation attributes are settable at any time throughout a object’s lifetime. The physical
attributes, however, at some point are locked and thereafter cannot change. An object that was opened
as an input object (via kdms_input or kdms_open) has its physical attributes locked immediately.

If the segment argument is NULL, then that implies that the attributes are global attributes in each of
the abstract data objects.

D.4.17. kdms_match_attributes() — returns true if the list of segment attributes in two abstract
data objects match.

Synopsis
int
kdms_match_attributes(

kobject object1,
kobject object2,
char *segment,
kvalist)

Input Arguments
object1

the first abstract data object on which to match the specified attributes
object2

the second abstract data object on which to match the specified attributes
segment

the data segment in each abstract data object in which we will be matching the attributes. va_alist -
variable argument list, that contains an arbitrarily long list of attributes followed a NULL. It takes the
form:

ATTRIBUTE_NAME1, ATTRIBUTE_NAME2, ..., NULL

Returns
There are three ways for this routine to return a FALSE: (1) if any of the attributes between the two
objects do not match; (2) if either object does not contain one or more of the specified attributes; (3) an
error condition resulting from an invalid object or segment. If none of these three conditions exist,
then this function will return TRUE.

Description
The purpose of this routine is to allow the programmer to compare multiple attributes in two object.

This routine will return TRUE if all of the specified attributes have the same value in the objects. This

5-48



Data Management Services Program Services Volume II - Chapter 5

routine will return FALSE if any of the attributes do not match kdms_match_attributes will also return
FALSE if any of the attributes do not exist in either or both of the two objects.

Data services manages two sets of attributes with each object. Internally, they are referred to as the
physical attributes and the presentation attributes. The presentation version of an attribute is the value
that is desired by the programmer. The corresponding physical attribute is what is physically stored on
the file or transport associated with the object. If the two versions of an attribute result in different pre-
sentations of data, then data services automatically translates the data from the physical interpretation
to the presentation interpretation, or visa-versa, as appropriate. For example, if the data type attribute
(KDMS_DAT A_TYPE) is physically unsigned int (KULONG), but the presentation value of that
attribute is float (KFLOAT), then data services will retrieve the data from the object and and cast it to
float before returning it to the user. Similar behavior will occur for attributes such as index order
(KDMS_INDEX_ORDER) and size (KDMS_SIZE).

The presentation attributes are settable at any time throughout a object’s lifetime. The physical
attributes, however, at some point are locked and thereafter cannot change. An object that was opened
as an input object (via kdms_input or kdms_open) has its physical attributes locked immediately.

If the segment argument is NULL, then that implies that the attributes are global attributes in each of
the abstract data objects.

D.4.18. kdms_copy_attribute() — copy an attribute from a source object to a destination
object.

Synopsis
int
kdms_copy_attribute(

kobject object1,
kobject object2,
char *segment,
char *attribute)

Input Arguments
object1

the source for the copy operation
object2

the destination for the copy operation
segment

the segment which contains the object to be copied.
attribute

the attribute to be copied.

Returns
TRUE on success, FALSE otherwise.

5-49



Data Management Services Program Services Volume II - Chapter 5

Description
This function is used to copy a single attribute from one object to another object.

Data Services manages two versions of some of the attributes associated with each object. These
attributes are the size and data type. Internally, the two versions of these attributes are referred to as
the physical attribute and the presentation attribute. Typically, the programmer has access to only the
presentation versions of these attributes. The physical attributes are set indirectly depending on the
setting of KPDS_VALUE_COUPLING. See kpds_get_data for a description of how the presentation
and physical attributes affect interaction with the data object.

Other attributes are classified as either shared or unshared. Shared attributes are stored at the physical
layer of the attribute, and thus can be shared by multiple references of the data object (see kpds_refer-
ence_object for more information about references). Unshared attributes, on the other hand, can only
be used by the local object (see kpds_query_attribute for information on how to determine whether an
attribute is shared or unshared).

This function accepts a source object, a destination object, and an attribute name. If the attribute exists
in the source object, then it will be copied to the destination object. If the attribute does not exist in the
source object, then an error condition is returned.

D.4.19. kdms_vcopy_attributes() — copy attributes given in a kvalist

Synopsis
int
kdms_vcopy_attributes(

kobject object1,
kobject object2,
char *segment,
kva_list *list)

Input Arguments
object1

the source for the copy operation
object2

the destination for the copy operation
segment

the segment which contains the object to be copied. kvalist - A NULL terminated variable argument
list of attributes to be copied.

Returns
TRUE on success, FALSE otherwise.

5-50



Data Management Services Program Services Volume II - Chapter 5

Description
This function is used to copy multiple attributes given a variable argument list containing a list
attributes to copy.

Data Services manages two versions of some of the attributes associated with each object. These
attributes are the size and data type. Internally, the two versions of these attributes are referred to as
the physical attribute and the presentation attribute. Typically, the programmer has access to only the
presentation versions of these attributes. The physical attributes are set indirectly depending on the
setting of KPDS_VALUE_COUPLING. See kpds_get_data for a description of how the presentation
and physical attributes affect interaction with the data object.

Other attributes are classified as either shared or unshared. Shared attributes are stored at the physical
layer of the attribute, and thus can be shared by multiple references of the data object (see kpds_refer-
ence_object for more information about references). Unshared attributes, on the other hand, can only
be used by the local object (see kpds_query_attribute for information on how to determine whether an
attribute is shared or unshared).

This function accepts a source object, a destination object, and an attribute name. If the attribute exists
in the source object, then it will be copied to the destination object. If the attribute does not exist in the
source object, then an error condition is returned.

D.4.20. kdms_copy_attributes() — copy attributes from a source object to a destination object.

Synopsis
int
kdms_copy_attributes(

kobject object1,
kobject object2,
char *segment,
kvalist)

Input Arguments
object1

the source for the copy operation
object2

the destination for the copy operation
segment

the segment which contains the object to be copied.
kvalist

A NULL terminated variable argument list of attributes to be copied.

Returns
TRUE on success, FALSE otherwise.

5-51



Data Management Services Program Services Volume II - Chapter 5

Description
This function is used to copy multiple attributes given a variable argument list containing a list
attributes to copy.

Data Services manages two versions of some of the attributes associated with each object. These
attributes are the size and data type. Internally, the two versions of these attributes are referred to as
the physical attribute and the presentation attribute. Typically, the programmer has access to only the
presentation versions of these attributes. The physical attributes are set indirectly depending on the
setting of KPDS_VALUE_COUPLING. See kpds_get_data for a description of how the presentation
and physical attributes affect interaction with the data object.

Other attributes are classified as either shared or unshared. Shared attributes are stored at the physical
layer of the attribute, and thus can be shared by multiple references of the data object (see kpds_refer-
ence_object for more information about references). Unshared attributes, on the other hand, can only
be used by the local object (see kpds_query_attribute for information on how to determine whether an
attribute is shared or unshared).

This function accepts a source object, a destination object, and an attribute name. If the attribute exists
in the source object, then it will be copied to the destination object. If the attribute does not exist in the
source object, then an error condition is returned.

D.4.21. kdms_query_attribute() — get information about an attribute

Synopsis
int
kdms_query_attribute(

kobject object,
char *segment,
char *attribute,
int *numargs,
int *argsize,
int *datatype,
int *permanent)

Input Arguments
object

the object with the attribute being queried

segment
the segment that the attribute is stored in. If this argument is NULL, then the attribute is global to the
object. name - name of the attribute to be queried.

numargs
number of arguments in this attribute

argsize
size of each argument in this attribute.

datatype

5-52



Data Management Services Program Services Volume II - Chapter 5

datatype of the attribute
permanent

is the attribute stored or transient? The return value will be either TRUE or FALSE

Returns
TRUE if attribute exists, FALSE otherwise

Description
This function is used for two purposes: (1) to determine the existence of an attribute; and (2) to obtain
the characteristics of the attribute.

Data Services manages two versions of some of the attributes associated with each object. These
attributes are the size and data type. Internally, the two versions of these attributes are referred to as
the physical attribute and the presentation attribute. Typically, the programmer has access to only the
presentation versions of these attributes. The physical attributes are set indirectly depending on the
setting of KDMS_COUPLING. See kpds_get_data for a description of how the presentation and phys-
ical attributes affect interaction with the data object.

Other attributes are classified as either shared or unshared. Shared attributes are stored at the physical
layer of the attribute, and thus can be shared by multiple references of the data object (see kpds_refer-
ence_object for more information about references). Unshared attributes, on the other hand, can only
be used by the local object.

The difference between shared and unshared attributes is abstracted from the user at the PDS level.
The permanent attributes are generally shared, and the non-permanent attributes are generally non-
shared. Permanent attributes are attributes that will be stored as part of an output object when it is
written. Any attributes that are retrieved when an object is opened are also permanent attributes. Non-
permanent attributes exist only while the program that is operating on the object is executing.

The datatype argument indicates what kind of information is stored in the attribute. Attributes can be
one of the following data types: KBYTE, KUBYTE, KSHORT, KUSHORT, KINT, KUINT, KLONG,
KULONG, KFLOAT , KDOUBLE, KCOMPLEX, or KDCOMPLEX.

The numargs argument indicates how many arguments must be passed in an argument list to one of the
attribute functions.

The argsize arguments indicates the number of units of the data type there are in each argument. This
argument allows arrays of information to be stored as attributes.

D.4.22. kdms_print_attribute() — print the value of an attribute

Synopsis
int

5-53



Data Management Services Program Services Volume II - Chapter 5

kdms_print_attribute(
kobject object,
char *segment,
char *attribute,
kfile *printfile)

Input Arguments
object

the object containing the attribute
segment

the segment in the object which contains the attribute.
attribute

the attribute to print
printfile

the open kfile to print to

Returns
TRUE on success, FALSE otherwise

Description
This function is used to print a single attribute to an open kfile.

This function is typically used by such programs as kprdata to print out the values of attributes in an
object.

D.4.23. kdms_get_attribute_names() — get a list of attributes from an object.

Synopsis
char **
kdms_get_attribute_names(

kobject object,
char *segment,
char *filter,
int permanent,
int *number)

Input Arguments
object

the object to get the attribute names from.

segment
the segment to get the attribute names from. If NULL, then get the object-level names.

5-54



Data Management Services Program Services Volume II - Chapter 5

filter
a regular expression filter. Only attribute names passing the filter will be returned in the list.

permanent
TRUE if only permanent attributes should be included in the list

Output Arguments
number

the number of attribute names that are being returned

Returns
an array of attribute names

Description
This function returns a list of attributes associated with the specified segment. If the segment is
NULL, then it returns a list of the attributes for the object.

The allowable regular expression syntax is :

. Match any single character except newline

* Match the preceding character or range
of characters 0 or more times. The
matching includes items within a [...].

[...] or [ˆ..] Matches any one character contained within
the brackets. If the first character after
the ’[’ is the ’]’, then it is included in
the characters to match. If the first
character after the ’[’ is a ’ˆ’, then it
will match all characters NOT included in
the []. The ’-’ will indicate a range of
characters. For example, [a-z] specifies
all characters between and including the
ascii values ’a’ and ’z’. If the ’-’
follows the ’[’ or is right before the ’]’
then it is interpreted literally.

ˆ If this is the first character of the
regular expression, it matches the beginning
of the line.

$ If this is the last character of the
regular expression, it matches the end of
the line.

5-55



Data Management Services Program Services Volume II - Chapter 5

\ This escapes the meaning of a special character.

The array that is returned must be freed by the user using the call karray_free.

5-56



Data Management Services Program Services Volume II - Chapter 5

D.5. Interactivity Management

• kdms_add_callback() - add a callback associated with an object’s data or attribute.
• kdms_remove_callback() - remove a callback associated with an object’s data or attribute.

D.5.1. kdms_add_callback() — add a callback associated with an object’s data or attribute.

Synopsis
int
kdms_add_callback(

kobject object,
char *segment,
char *type,
kfunc_void callfunc,
kaddr clientData)

Input Arguments
object

The object to add callback to.
segment

The segment in object to add callback to. If NULL, then it is considered an object callback.
type

The type of callback to add.
callfunc

The function to call when the callback occurs.
clientData

Any clientdata to be passed to the callfunc.

Returns
TRUE on success, FALSE otherwise

Description
This function is used to add a callback on a segment in a data object so that operations can be per-
formed and monitored in an event driven environment.

A callback is a mechanism for operating on a data object whenever an asynchronous event occurs
rather than in a strictly sequential manner. This function is particularly useful in conjunction with
kdms_reference. The callbacks operate on the data, which is shared between referenced objects. Thus
object A can set a callback such that when data get changed via object B, operations can be performed
on object A.

The object and segment arguments are used to specify which segment and object will have the callback
added to.

The type argument specifies what kind of callback should be added. This argument may take on the

5-57



Data Management Services Program Services Volume II - Chapter 5

following values:

KDMS_CALLBACK_CHANGE - generate a callback whenever data
on the specified segment is changed
(via kdms_put_data or kdms_copy_data).

KDMS_CALLBACK_ACCESS - generate a callback whenever data
on the specified segment is accessed
(via kdms_get_data or kdms_copy_data).

KDMS_CALLBACK_DELETE - generate a callback whenever the
segment specified is about to be
deleted, either through a

kdms_destroy_segment() call, or
via a kdms_close().

KDMS_CALLBACK_DESTROY - generate a callback whenever the
last instance of an object or

segment is about to be closed.
KDMS_CALLBACK_SAVE - generate a callback whenever the

specified segment is about to be
changed. This is similar to the
KDMS_CALLBACK_CHANGE, except that
the callback is generated before
the data is changed rather than
afterward.

If the segment specified is NULL, then the callback is placed on the entire object. Currently, only
DELETE and DESTROY callbacks can be placed on an object.

The callback mechanims in Data Services are analogous to the callback mechanisms that are available
in the Xvwidget library or in Xt. The motivation for callbacks in Data Services is that they facilitate
functionality in the Xvisual library, where they allow different visual objects tied to a single data object
to communicate with each other.

Restrictions
Only KDMS_CALLBACK_DELETE and KDMS_CALLBACK_DESTROY callbacks work for
objects.

D.5.2. kdms_remove_callback() — remove a callback associated with an object’s data or
attribute.

Synopsis
int
kdms_remove_callback(

kobject object,

5-58



Data Management Services Program Services Volume II - Chapter 5

char *segment,
char *type,
kfunc_void callfunc,
kaddr clientData)

Input Arguments
object

object to add callback to.
segment

segment in object to add callback to.
type

type of callback to add.
callfunc

function to call when callback occurs.
clientData

data to be passed to callfunc.

Returns
TRUE on success, FALSE otherwise

Description
This function is used to remove a callback that was previously added on a segment in a data object so
that operations can be performed and monitored in an event driven environment.

This function will not remove a callback unless all of the arguments that are passed to it are the same
as those passed to the kdms_create_callback previously. This allows for multiple callbacks that are
similar in nature to be removed without confusion.

A callback is a mechanism for operating on a data object whenever an asynchronous event occurs
rather than in a strictly sequential manner. This function is particularly useful in conjunction with
kdms_reference. The callbacks operate on the data, which is shared between referenced objects. Thus
object A can set a callback such that when data get changed via object B, operations can be performed
on object A.

The object and segment arguments are used to specify which segment and object will have the callback
added to.

The type argument specifies what kind of callback should be added. This argument may take on the
following values:

KDMS_CALLBACK_CHANGE - generate a callback whenever data
on the specified segment is changed
(via kdms_put_data or kdms_copy_data).

KDMS_CALLBACK_ACCESS - generate a callback whenever data
on the specified segment is accessed
(via kdms_get_data or kdms_copy_data).

KDMS_CALLBACK_DELETE - generate a callback whenever the

5-59



Data Management Services Program Services Volume II - Chapter 5

segment specified is about to be
deleted, either through a

kdms_destroy_segment() call, or
via a kdms_close().

KDMS_CALLBACK_DESTROY - generate a callback whenever the
last instance of an object or

segment is about to be closed.
KDMS_CALLBACK_SAVE - generate a callback whenever the

specified segment is about to be
changed. This is similar to the
KDMS_CALLBACK_CHANGE, except that
the callback is generated before
the data is changed rather than
afterward.

If the segment specified is NULL, then the callback is placed on the entire object. Currently, only
DELETE and DESTROY callbacks can be placed on an object.

The callback mechanims in Data Services are analogous to the callback mechanisms that are available
in the Xvwidget library or in Xt. The motivation for callbacks in Data Services is that they facilitate
functionality in the Xvisual library, where they allow different visual objects tied to a single data object
to communicate with each other.

Restrictions
Only KDMS_CALLBACK_DELETE and KDMS_CALLBACK_DESTROY callbacks work for
objects.

D.6. Data Manipulation

• kdms_get_data() - get data from data object
• kdms_put_data() - put data into object
• kdms_copy_remaining_data() - copy remaining data

D.6.1. kdms_get_data() — get data from data object

Synopsis
kaddr
kdms_get_data(

kobject object,
char *segment,
int *begin,
int *end,
kaddr data)

5-60



Data Management Services Program Services Volume II - Chapter 5

Input Arguments
object

the object from which the data will be obtained.
segment

the segment from which the data will be obtained.
begin

the begin marker of the region of data to be retrieved.
end

the end marker of the region of data to be retrieved.
data

a pointer to the region of memory that will serve as a destination for the data. If this value is NULL,
then sufficient space for this operation will be allocated for this operation. The data type kaddr is used
because it indicates a generic data pointer.

Returns
If "data" is not initially NULL, then the data space pointed to by "data" will be returned on success. If
the "data" argument is NULL, then a new pointer to the requested data will be returned. Unsuccessful
calls to this routine are indicated by a return value of NULL.

Description
kdms_get_data is used to obtain data that is stored in a data object. The data that is retrieved is desig-
nated by two "corner-markers". These are arrays which contain N integer values, where N is the
dimensionality of the segment (the dimensionality of a segment can be determined with the
KDMS_DIMENSION attribute). All values in begin argument must be less than or equal to their cor-
responding value in the end argument. In a two dimensional case, the begin marker is the upper left
corner and the end marker is the lower right corner of a rectangle that is obtained with this function
call. The coordinate origin is the upper, left, front corner of the data set extended to N-space. The cor-
ner markers are specified in the index order that the data set is presented in.

Restrictions
This routine assumes that if the argument "data" is not NULL, then it contains the appropriate amount
of memory with the appropriate dimensionality for the requested primitive.

D.6.2. kdms_put_data() — put data into object

Synopsis
int
kdms_put_data(

kobject object,
char *segment,
int *begin,
int *end,

5-61



Data Management Services Program Services Volume II - Chapter 5

kaddr data)

Input Arguments
object

the object from which the data will be stored.
segment

the segment from which the data will be stored.
begin

the begin marker of the region of data to be retrieved.
end

the end marker of the region of data to be retrieved.
data

a pointer to the region of memory that will serve as a

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
kdms_put_data is used to store data that into a data object. The data that is stored is designated by two
"corner-markers". These are arrays which contain N integer values, where N is the dimensionality of
the segment (the dimensionality of a segment can be determined with the KDMS_DIMENSION
attribute). All values in begin argument must be less than or equal to their corresponding value in the
end argument. In a two dimensional case, the begin marker is the upper left corner and the end marker
is the lower right corner of a rectangle that is obtained with this function call. The coordinate origin is
the upper, left, front corner of the data set extended to N-space. The corner markers are specified in
the index order that the data set is presented in.

D.6.3. kdms_copy_remaining_data() — copy remaining data

Synopsis
int
kdms_copy_remaining_data(

kobject sobject,
kobject dobject)

Input Arguments
sobject

object to get data from
dobject

object to copy data to

5-62



Data Management Services Program Services Volume II - Chapter 5

Description
kdms_copy_remaining_data copies any data from segments which are instantiated in both the source
and destination objects and have not yet had their data modified in the destination.

5-63



Data Management Services Program Services Volume II - Chapter 5

This page left intentionally blank

5-64



Table of Contents

A. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-1
B. Presentation of Data † . . . . . . . . . . . . . . . . . . . . . . . . .  5-2

B.1. Casting . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-3
B.2. Scaling and Normalization . . . . . . . . . . . . . . . . . . . . . .  5-3
B.3. Padding and Interpolation . . . . . . . . . . . . . . . . . . . . . .  5-4
B.4. Conversion of Complex Data . . . . . . . . . . . . . . . . . . . . .  5-5
B.5. Index Order Manipulation . . . . . . . . . . . . . . . . . . . . . .  5-5

C. Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-7
C.1. Global Attributes . . . . . . . . . . . . . . . . . . . . . . . . .  5-7
C.2. Segment Attributes . . . . . . . . . . . . . . . . . . . . . . . .  5-9

D. Functions Provided By Data Management Services . . . . . . . . . . . . . . . . 5-15
D.1. Object Management . . . . . . . . . . . . . . . . . . . . . . . . 5-15

D.1.1. kdms_create() — create a temporary data object. . . . . . . . . . . . . . . 5-15
D.1.2. kdms_open() — create an object associated with an input or output transport. . . . . . . 5-16
D.1.3. kdms_close() — close an open data object. . . . . . . . . . . . . . . . . 5-18
D.1.4. kdms_reopen() — associate new data with an existing object . . . . . . . . . . . 5-18
D.1.5. kdms_reference() — create a reference of a data object. . . . . . . . . . . . . 5-19
D.1.6. kdms_sync() — synchronize physical and presentation layers of a data object. . . . . . . 5-20
D.1.7. kdms_update_references() — update segment presentation of all reference objects. . . . . 5-20
D.1.8. kdms_close_hook() — insert a service to be called when an object is closed. . . . . . . 5-21
D.1.9. kdms_reference_list() — return a klist of references. . . . . . . . . . . . . . 5-22
D.1.10. kdms_get_segment_names() — get an array of segment names for the object specified.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-22
D.2. Information . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-23

D.2.1. kdms_support() — obtain a list of file formats supported by data services. . . . . . . . 5-23
D.3. Segment Management . . . . . . . . . . . . . . . . . . . . . . . 5-23

D.3.1. kdms_query_segment() — determine if a data segment is available. . . . . . . . . 5-24
D.3.2. kdms_create_segment() — create a segment on a data object. . . . . . . . . . . 5-24
D.3.3. kdms_destroy_segment() — destroy a segment from a data object. . . . . . . . . . 5-25
D.3.4. kdms_rename_segment() — rename a segment . . . . . . . . . . . . . . . 5-25

D.4. Attribute Management . . . . . . . . . . . . . . . . . . . . . . . 5-26
D.4.1. kdms_define_quasi_attribute() — define a quasi attribute . . . . . . . . . . . 5-26
D.4.2. kdms_define_attribute() — define an attribute for for a session . . . . . . . . . . 5-31
D.4.3. kdms_undefine_attribute() — undefine a defined attribute . . . . . . . . . . . 5-33
D.4.4. kdms_query_attribute_definition() — determines if an attribute is defined. . . . . . . 5-33
D.4.5. kdms_create_attribute() — instantiate an attribute . . . . . . . . . . . . . . 5-34
D.4.6. kdms_destroy_attribute() — destroy an attribute . . . . . . . . . . . . . . 5-36
D.4.7. kdms_vset_attribute() — open varargs set attribute . . . . . . . . . . . . . 5-36
D.4.8. kdms_vset_attributes() — set attributes on a kvalist . . . . . . . . . . . . . 5-38
D.4.9. kdms_set_attribute() — set the value of an attribute . . . . . . . . . . . . . 5-39
D.4.10. kdms_set_attributes() — sets the values of multiple attributes . . . . . . . . . . 5-40
D.4.11. kdms_vget_attribute() — get a single attribute on a kvalist . . . . . . . . . . . 5-41
D.4.12. kdms_vget_attributes() — get attributes on a kvalist . . . . . . . . . . . . . 5-42
D.4.13. kdms_get_attribute() — get the value of an attribute within a segment of an abstract object.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-43
D.4.14. kdms_get_attributes() — gets the values of a variable number of attributes within a single

segment of an object. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-44

- i -



Data Management Services Program Services Volume II - Chapter 5

D.4.15. kdms_match_attribute() — returns TRUE if the same segment attribute in two abstract
data objects match. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-45

D.4.16. kdms_vmatch_attributes() — returns true if the vararg list of segment attributes in two
abstract data objects match. . . . . . . . . . . . . . . . . . . . . . . . . . 5-47

D.4.17. kdms_match_attributes() — returns true if the list of segment attributes in two abstract
data objects match. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-48

D.4.18. kdms_copy_attribute() — copy an attribute from a source object to a destination object.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-49

D.4.19. kdms_vcopy_attributes() — copy attributes given in a kvalist . . . . . . . . . . 5-50
D.4.20. kdms_copy_attributes() — copy attributes from a source object to a destination object.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-51
D.4.21. kdms_query_attribute() — get information about an attribute . . . . . . . . . . 5-52
D.4.22. kdms_print_attribute() — print the value of an attribute . . . . . . . . . . . . 5-53
D.4.23. kdms_get_attribute_names() — get a list of attributes from an object. . . . . . . . 5-54

D.5. Interactivity Management . . . . . . . . . . . . . . . . . . . . . . 5-57
D.5.1. kdms_add_callback() — add a callback associated with an object’s data or attribute. . . . 5-57
D.5.2. kdms_remove_callback() — remove a callback associated with an object’s data or attribute.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-58
D.6. Data Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . 5-60

D.6.1. kdms_get_data() — get data from data object . . . . . . . . . . . . . . . 5-60
D.6.2. kdms_put_data() — put data into object . . . . . . . . . . . . . . . . . 5-61
D.6.3. kdms_copy_remaining_data() — copy remaining data . . . . . . . . . . . . 5-62

- ii -



Program Services Volume II

Chapter 6

Structure Support

Copyright (c) AccuSoft Corporation, 2004. All rights reserved.





Chapter 6 - Structure Support

A. Overview

This document details the support provided in VisiQuest for the storage and retrieval of complex data struc-
tures. Data structures are defined within VisiQuest to be new "data types." This is similar to the notion of data
types in C. Just as a variable could be declared as an int or a float, it could also be declared to be of some
structure type. This notion, applied to Data Services, introduces the idea of structure attributes. One of the
characteristics of an attribute is its data type. By creating a Data Services attribute to be of a defined structure
data type, variables of that structure can be stored and retrieved from that attribute. This allows structures to
be passed from one program to another via Data Services objects.

Structures are defined by creating a structure specification file. This file, by convention, has an .x extension.
Once a specification has been created, a program called kgenstr uct parses the file and generates two files. The
first file generated is a C header file which contains the actual data structures to be used within your own C
code. The second file generated is a C code file containing writer and reader routines which can flatten an
instance of the defined structure from memory to a file, and unflatten the structure from the file back into mem-
ory. Routines for comparing and freeing the defined structure are also generated, along with a definition rou-
tine which initializes the structure as a new type in VisiQuest.

Create Structure
Specification

hypo.x

Generate Header
and Read/Write Code

io_hypo.c

io_hypo.h

kgenstruct

struct hypo
{
   int    position;
   float  type;
   hypo  *next;
}

struct hypo
{
   int    position;
   float  type;
   hypo  *next;
}

extern int KTYPE_HYPO;

int KTYPE_HYPO;
kdefine_hypo();

Define Structure
To Create New Data Type

kobject obj;
struct hypo *foobar;

kdefine_hypo();

/*-- create hypo structure and fill it out --*/
foobar = (struct hypo *) kmalloc(sizeof(struct hypo));

foobar->position = 10;
foobar->type = 5;
foobar->next = NULL;

/*-- open an output object and store the hypo --*/
obj = kpds_open_output_object("filename.out");

kpds_create_object_attr(obj, "hypolist", 1, 1, 
                        KTYPE_HYPO, TRUE, TRUE); 

kpds_set_attribute(obj, "hypolist", foobar);
kpds_close_object(obj);

Figure 1: This picture overviews the generation of reader and writer code by kgenstr uct from a structure
spec file, and how the generated code is used to define a new data type in VisiQuest. The example illus-
trates an attribute of the defined structure type being created and set on a data object.

A structure is defined by internally associating the reader and writer routines with a type identifier. This type
identifier is analogous to the VisiQuest type identifiers for standard C data types, such as KINT and KFLOAT.
The type identifier and the routine which initializes it are generated for you by kgenstr uct. By convention, the

6-1



Structure Support Program Services Volume II - Chapter 6

type identifier has the same name as the structure, prepended by KTYPE_. Thus for a structure "matrix", the
type identifier KTYPE_MATRIX will be created. This type identifier would be initialized by calling the defini-
tion routine kdefine_matrix().

The generated routines read and write the structure in pieces, breaking the structure down by fields. Each field
is written using the VisiQuest generic read and write calls. These calls provide the machine conversion capabil-
ity necessary to write data in the native format for one architecture and convert the data while it is being read
into the native format for a different architecture. Pointers are traversed on reading and writing using special
pointer read and write calls. The write call manages the addresses of what is being pointed at, ensuring that
items being pointed at are not written more than once. The read call then manages the addresses of what is
being read, reconnecting pointers to restore the structure as it existed before being written. This capability
allows for the storage and retrieval of very complicated structures with cyclic and redundant pointer dependen-
cies.

B. Passing Structures Between Programs

Structures can be passed from one program to in several ways: either by writing the structure to and reading
the structure from a VisiQuest transport, by storing the structures in a data services object, or by sending the
structures down a data services stream.

Structure may be passed
from one process to another

using several methods.

... via an attribute in
a data services object....

...via a khoros transport...
writes structure

using
 kwrite_generic

reads structure
using

 kread_generic

sets attribute
on output

data object

gets attribute
from input
data object

OR

... via an attribute in
a data services stream...

writes attribute
to output

data stream

reads attribute
from input

data stream

OR

Figure 2: This figure illustrates the basic concept of how a structures may be passed from one routine to
another in VisiQuest.

6-2



Structure Support Program Services Volume II - Chapter 6

The transport mechanism is simple. The writing process simply opens a VisiQuest transport using the kopen
function, and then writes the structure to the transport using the kwrite_generic function. The reading pro-
cess then opens the tranport and reads the structure using the kread_generic function.

The data object mechanism in Data Services allows the creation of attributes of any data type. For structures,
the defined structure type identifier can be used to specify the data type of an attribute. To pass a structure
from one program to another, a program simply open an output object, creates or defines an attribute of a struc-
ture type, and then stores the structure with a standard Data Services set attribute call. Other programs which
also have the structure data type defined can then open the object and retrieve the attribute.

The data stream is similar to the data object paradigm, except that a Data Services stream is used instead of an
object.

C. Structure Specification File

A structure is added as a new data type by specifying it within a structure specification file. A structure speci-
fication file will appear to be syntactically very much like a regular C header file. In fact, you can likely trans-
fer any structures you may already be using directly from a header file into a specification file with little or no
change. These files are different, however, from C header files in that they are never directly included by your
C code. A code generator, kgenstr uct, will parse the specification file and generate an actual C header which
you should include. Additionally, kgenstr uct will also generate a C source code file which you should either
compile into your program, or compile into a library which other programs will link against.

C.1. Creating a Structure Specification File

A structure specification file is considered to be a source file in a Software Object. It can be created from the
software object editor Composer by using the Add File to Object operation under the File Operations pulldown
menu for SOURCE objects. The file you create should end with a ’.x’. This extension indicates that the file is
a structure specification file. Once created, the new specification file will be listed as one of the Source Code
files in the file list, and can be edited using the Edit operation under the File Operations pulldown menu.

C.2. Kgenstruct

Kgenstr uct should be run once your specification file is completed. This program is best invoked as an opera-
tion in Composer. This operation is available as a "kmake struct" rule and can be accessed from the Com-
mands menu, on Console option, Make button. Note that, if you are working outside of composer, it can also
be run from the command line. When run from the command line, this program takes a toolbox and object
name argument.

This program is a ported and heavily modified version of rpcgen. As such, it is capable of parsing nearly all of
RPCL, a protocol description language which is an extension of the XDR definition language. It is likely that
any structure specification files which you may have been using with rpcgen can be used directly with kgen-
str uct to migrate your code to VisiQuest.

C.3. What is Generated?

kgenstr uct generates two files from the specification : a header file and a C code file. The naming convention
for these files is to prepend io_ to the name of the specification file. Thus, for a specification matrix.x, the files

6-3



Structure Support Program Services Volume II - Chapter 6

io_matrix.c and io_matrix.h will be generated. The generated .h file should be included by any programs
which need to use the structure. This is the actual C definition which you will write your source code to.

The generated .c file will contain several routines for handling each structure specified in the specification file.
For each structure, a reader routine, a writer routine, a comparison routine and a free routine will be generated.
A type handle to use to signify the use of the structure as a data type to other VisiQuest routines is also gener-
ated. This type handle will be named after the structure name in all capitals, prepended by KTYPE_. A defini-
tion routine which initializes the type identifier is also generated. This routine will be named after the struc-
ture name, prepended by kdefine_ and will take no arguments. It should be called prior to any use of your
structure with any VisiQuest routines.

The reader, writer, comparison, and free routines which are generated will be associated with the type identifier
through the generated define routine. Once defined, the structure can be treated as a new data type through
various foundation library routines. For example, the comparison and free routines can be accessed via the
foundation routines kstruct_compare() and kstruct_free() . Additionally, the kread_generic()
and kwrite_generic() calls will now understand the structure identifier and will be able to read and write
structures, just as they now read and write other data types. It is not recommended that these routines be used
directly for reading and writing structures. Data Services attributes are instead recommended for reading and
writing structures.

One final note : always make changes to the specification file and then regenerate the header and code files.
Never edit the generated files directly. Any changes you might make to the generated files will be overwritten
and lost the next time you regenerate from your specification.

C.4. Software Object Types

If the specification file is part of a library object, the generated C code file will be generated in that library’s
source directory, and the generated header file will be added to the library’s public include directory. This
approach should be taken for structures which will be used by multiple programs. The structure specification
and generated structure define routine will be in a common library. Each program needing to use the structures
should include the library’s include file and link against the library.

If the specification file is part of any other type of software object, the generated C code and header files will
be generated in the software object’s source directory. Note also that kgenstr uct can be used on .x files outside
of the context of VisiQuest, in which case the generated C code and header is generated in the local directory.

C.5. Specification Language

The specification language is, with few exceptions, very similar to C. For the most part, the C syntax which
you are already used to will be identical to the specification syntax used in the specification file.

More than one structure can be included in a specification file. Multiple specifications per file are allowed. In
addition to allowing structure specifications, typedefs, enumerations, and constants can also be specified.

6-4



Structure Support Program Services Volume II - Chapter 6

These are detailed below.

C.5.1. Definitions

A specification file syntactically consists of a series of definitions. Each definition should be separated by a
semi-colon:

definition-list:
definition ;
definition ;
definition-list

There are five types of definitions allowed :

Structures

Typedefs

Symbolic Constants

Enumerations

There are no order dependencies in the specification file: structures, typedefs, constants, and enumerations can
appear in any order. Types or variables should generally be defined before they are used.

C.5.1.1. Structures

Structures are declared as they are in C:

struct-definition:
struct struct-ident {

declaration-list
}

declaration-list
declaration ;
declaration ; declaration-list

For example, a structure for an RGB color would be declared in the specification file as follows :

struct color {
float red;
float green;
float blue;

};

This would generate the following in the header file :

struct color {
float red;
float green;

6-5



Structure Support Program Services Volume II - Chapter 6

float blue;
};
extern int KTYPE_COLOR;
int kdefine_color PROTO((void));

For this example, the generated structure corresponds exactly with the specified structure. The integer
KTYPE_COLOR is a type identifier which is initialized by the function kdefine_color().

C.5.1.2. Typedefs

Typedefs are also declared as they are in C:

typedef declaration;

Typedefs generate a type identifier and also must be defined. Note that in defining the typedef of a structure,
the structure will also be defined. Thus it is only necessary to call the define routine for the typedef.

For example, the following typedef defines a color type corresponding to the color structure specified in earlier
:

typedef color color_t;

This would generate the following in the header file :

typedef color color_t;
extern int KTYPE_COLOR_T;
int kdefine_color_t PROTO((void));

For this example, calling the kdefine_color_t() call would initialize the KTYPE_COLOR_T and
KTYPE_COLOR identifiers. From then on, either identifier could be used when dealing with color structures.

Note that in addition to structures, any regular C data type can be typedef’ed. In all cases, a define routine will
be created and must be called before the type identifier can be used.

C.5.1.3. Symbolic Constants

The declaration of symbolic constants is also similar to the regular C syntax:

const const-ident = integer

The generated constant produces a corresponding #define in the generated header file.

For example, the following symbolic constant in the specification defines a maximum size to be used, perhaps,
in declaring arrays.

const MAX_SIZE = 1024;

This would generate the following in the header file :

#define MAX_SIZE 1024

6-6



Structure Support Program Services Volume II - Chapter 6

This #define is available for use in any declarations subsequent to the constant declaration. This is handled
by the C preprocessor when the code which includes the header file is compiled.

C.5.1.4. Enumerations

Enumeration declarations are also similar to C :

enum-definition:
enum enum-ident {

enum-value-list
}

enum-value-list:
enum-value
enum-value , enum-value-list

enum-value:
enum-value-ident
enum-value-ident = value

For example, the following enumeration might be declared to define interpolation types :

enum interpolation {
NONE = 0,
ZERO_ORDER = 1,
FIRST_ORDER = 2

};

This would generate the following in the header file :

enum interpolation {
NONE = 0,
ZERO_ORDER = 1,
FIRST_ORDER = 2,

};
typedef enum interpolation interpolation;
extern int KTYPE_INTERPOLATION;
int kdefine_interpolation PROTO((void));

Notice that enumerations get typedef’ed to allow you to use them as a data type. A corresponding
KTYPE_INTERPOLATION is also generated along with a define routine allowing you to define the enumerated
type as a new VisiQuest data type.

C.5.2. Declarations

Declarations are the basic component of a specification. For instance, structures are composed of component
fields, each field consisting of a variable declaration. Even typedefs define a type name for a declaration. For
the most part, these declarations are similar to C.

There are four basic declarations allowed:

6-7



Structure Support Program Services Volume II - Chapter 6

Simple

Fixed Array

Variable Array

Pointer

With the exception of variable arrays, these are all identical to C.

C.5.2.1. Simple Declaration

A simple declaration is a type identifier, followed by a variable identifier. These are propagated unchanged
into the header file.

For example, the simple declaration :

int foobar;

will appear identical in the header file.

C.5.2.2. Fixed Array Declaration

A fixed array declaration is simply a type identifier, followed by an variable identifier with the array size in
brackets. These are propagated unchanged to the header file.

For example, the simple declaration :

int choices[9];

will appear identical in the header file.

C.5.2.3. Variable Array

Since C contains no syntax to denote variable-sized arrays, a special syntax was created to support this. The
declaration is similar to fixed array declarations, only that angle brackets are used instead of square brackets.
If no number is specified between the angle brackets, the variable array can be any size. If a number is speci-
fied, then the variable array is limited to that size.

For example, the following two declarations illustrate two variable array declarations of type integer.

int x<MAX>; /* at most MAX elements */
int y<>; /* any number of elements */

From this specification, a structure which reflects the size of the allocated variable length array is generated.
This structure contains a _len field for storing the size and a _val field which points to the allocated array.
These component names will begin with the name of the declared variable.

6-8



Structure Support Program Services Volume II - Chapter 6

Thus, for the above example specification, the following will be generated in the header file :

struct {
unsigned int x_len;
int *x_val;

} x;
struct {

unsigned int y_len;
int *y_val;

} y;

It is up to the programmer to manage allocation of the _val field and to maintain the _len field so it correctly
reflects the size of the variable length array. Maintaining the _len field is important, as the generated structure
code uses that field to know how many elements are in the array, and thus, how many elements should be writ-
ten when the structure is stored.

C.5.2.4. Pointer Declaration

A pointer declaration consists of a type identifier, followed by an asterisk, followed by a variable identifier.
These are propagated unchanged into the header file.

For example, the pointer declaration :

int *next;

will appear identical in the header file.

Note that the pointers themselves will not be written and read, as they are just memory addresses. The pointer
is followed, with the single item being pointed being read and written.

Pointers are tracked for any giv en structure written out, so that multiple pointers to a single item are not fol-
lowed multiple times. These multiple pointers will be reconnected accordingly when the structure is read back
in.

C.5.2.5. Type Identifiers

The type identifiers used in any of these declarations can be any of the standard C data types, from unsigned
char to int to double. Additionally, they can be of any declared structure, typedef, or enumerated type.

Strings are treated as a special case, with a string being treated as a variable type identifier rather than an array
of bytes. The specific type identifier which should be used for string variables in the specification file is
kstring.

Internally, kstring is simply a typedef to char *. Note however that you must explicitly use kstring
instead of char *, as it will indicate to kgenstr uct that the generated code needs to specifically handle strings.

C.5.3. Structure Versioning

Structures often evolve and change in a typical software development process. This becomes critical when
reading and writing structures since, if a structure changed, previously written instances of that structure can
no longer be read. Because of this problem, support for adding a version number to each structure has been

6-9



Structure Support Program Services Volume II - Chapter 6

created. While structures version numbers are optional, their use provides the ability for recognizing mis-
matches between stored structures and defined structures. It provides a mechanism for the structure reading
code to recognize out-of-date structures. Without the versioning, the structure reader for the new structure
would try, probably unsuccessfully, to read the stored instance of the old structure.

A version number is specified after the structure name with the word "version" and a number. The following
example illustrates a 2.0 version of the structure "foobar".

struct foobar
version 2.0

{
int a;
int b;

};

Assuming a new field was added to this structure, it would be appropriate to change the version number :

struct foobar
version 2.1

{
int a;
int b;
int c;

};

The reading of a stored structure that is out of date with the currently defined version will fail. Note that a ver-
sioned structure will be considered different from a non-versioned structure, even though the actual structures
may be identical.

Typedefs of structures, when included in the same specification file as the structure being typedef’ed, will
inherit the version number of the structure. As with structures, a versioned typedef is considered different
from a non-versioned typedef.

C.5.4. C Preprocessing

Kgenstr uct passes each specification file through the C preprocessor before parsing it to generate code. This
allows you to use CPP directives within your .x file. For example, #include can be used to include other
specification files, or even header files, and #define can be used to define special symbols needed only in the
specification file.

C.5.4.1. Comments

C-style comments, beginning with /* and ending with */, are allowed within the specification and will be
ignored. For example, the following line would be ignored.

/* This line is considered a comment and will be ignored */

6-10



Structure Support Program Services Volume II - Chapter 6

C.5.4.2. Passing Directives to Header File

Lines beginning with "%" are passed through to the header file, without the "%". This allows you to customize
your generated header file with specific variables or C preprocessor directives. One potential use of this con-
struct would be to pass directives to extern structures for use with C++. The following example externs the
foobar structure.

%#ifdef _cplusplus
%extern "C" {
%endif
struct foobar {int a; int b};
%#ifdef _cplusplus
%}
%endif

C.5.5. Additional Notes

The program definition supported by rpcgen will be recognized by kgenstruct, but is not explcitly supported
and should be used at your own risk. he union construct is also not supported. The union construct, as used in
rpcgen, is not identical to the C union, but is instead used to handle conditional reading and writing.

C.5.6. Example Specification File

The following is an example of a specification file which illustrates many of the details explained earlier.

/**** example.x file
****
**** This file defines a bogus hypothesis and tile structure
**** for the purposes of illustrating a kgenstruct. Note that
**** the specification is practically identical to C.
****/

/* Note also that C comments are allowed in the specification. */

/**** Anything following a ’%’ will be passed through (without
**** the ’%’) to the generated header file io_example.h.
**** This is useful if you need to include any CPP directives
**** of your own.
****/

/**** For instance, the following line will generate a #include
**** in the .h file
****/

%#include "my_defines.h"

/****
**** HYPOTHESIS structure
****/

struct hypo
{

int position;
float probabilities[10];

float uncertainty<>;

6-11



Structure Support Program Services Volume II - Chapter 6

struct hypo *next;
};

/****
**** HYPOTHESIS typedef
****/

typedef struct hypo hypo_t;

/****
**** TILE structure
****/

struct tile
version 1.0

{
int id;
hypo_t hypos[10];

};

/****
**** TILE typedef
****/

typedef struct tile tile_t;

D. Data Services

Data Services provides access to an abstract data object. Typical access to a data object is in terms of one of
the defined data models, for example the polymorphic data model or the geometry data model. Each of these
data models, implemented in terms of an application service, is built on a basic infrastructure for storing data
segments and attributes. The ability to create segments and attributes is available to any programmer. In par-
ticular, the ability to create new attributes is encouraged as method of extending the existing data models to
support your specific data needs.

This capability is greatly strengthened by the ability to understand defined structures. Once a structure is
defined as a new data type, it is possible to store and retrieve instances of that structure from attributes in a
data object. An attribute of a structure data type can be defined or created, and then accessed using the stan-
dard get_attribute and set_attribute calls available with Data Services.

D.1. Attributes Characteristics

Attributes have a number of characteristics which define their behavior, but they are fundamentally distin-
guished by their name. Each attribute name is a unique string identifier, no two attributes can have the same
name. This name is typically #defined to some unique identifier.

The number of arguments in an attribute indicate whether the attribute consists of one or more arguments.
These arguments will correspond to multiple values or variables when being accessed, with each argument
being comma separated.

The argument size of each argument dictates whether each attribute argument is a single value, or an array of
values. Each argument will take on this characteristic.

The data type of an attribute dictates what data type each argument element will be. Each argument takes on
this data type. If an attribute contains an argument size greater than one, each argument will be an array of

6-12



Structure Support Program Services Volume II - Chapter 6

elements of this data type. The type identifier for a defined structure can be used to dictate the data type of an
attribute. It is recommended for structure attributes that the type identifier for the structure and not a type
identifier for a typedef of the structure is used to specify the data type.

The permanence of an attribute dictates whether the attribute should be stored to output when the object is
closed or not.

An attribute is considered to be shared if it exists at the physical level of a data object. This is useful if you are
working with reference objects. Data objects are divided into a physical level and a presentation level. Each
reference of a single data object will consist of unique presentation layer on top of a common physical layer.
Attributes at the physical layer are thus shared among all reference objects. Attributes at the presentation layer
are unique to each reference object and are thus not shared.

Note also that attributes are created within a data object at a specified scope. This is often termed to be the
association of the attribute. Attributes can be associated with either a specific data segment, or with the overall
data object. Attributes are most often associated with the data object, signified by a NULL association.

D.2. Attributes Management

Attributes can be instantiated in two different ways. The most direct way is to create the attribute. Create
routines exist within all the existing application services which allow you to create an attribute. The created
attribute exists only for the specific object in which it was created. The other way to instantiate an attribute is
to define the attribute. Once defined, an attribute will appear to exist over all objects. If a defined attribute is
retrieved from a data object which does not actually contain an instance of the attribute, an instance is created
before the attribute is accessed. This makes adding a set of attributes which will be widely used quite easy.
Note that the define attribute capability is only available with the kdms_define_attribute() call.

There are six specific functions for working with attributes which have either been defined or created. Ver-
sions of these calls exists for each of the application Data Services.

Get Attribute : assigns an attribute to a data object

Set Attribute : retrieves an attribute from a data object

Query Attribute : indicates if an attribute exists and returns its characteristics if it does

Copy Attribute : copies attribute values from one object to another

Match Attribute : compares attribute values across two objects

Print Attribute : prints attribute values

All these work as expected for structure attributes, with the exception of the print function, which will only
print the data type of the structure attribute.

D.3. Handling Undefined or Mismatched Versioned Structures

Data Services will only be able to read an structure attribute if the structure type identifier has been defined
before the data object is opened. In addition to being defined, the structure stored in the object must have the

6-13



Structure Support Program Services Volume II - Chapter 6

same version as the structure which has been defined. If the structure type identifier has not been defined, or
there is a version mismatch, Data Services will fail to read the attribute when the object is opened. This condi-
tion will generate an error message for you indicating the name of the attribute, and its type and version.

Beyond this, the data object will still be opened successfully, with all other attributes and data being available
within the program. The specific structure attribute which failed to read in, however, will not be instantiated in
the data object. The programmer can detect the absence of this attribute in one of two ways, depending
whether the attribute was created or defined.

If the attribute was defined, then a default value specified in the define attribute call will be returned when the
attribute is retrieved from the object. By defining the default value to be NULL, a programmer can then tell,
on retrieval of a NULL value, that the input object either did not contain the structure, or contained a mis-
matched version of the structure.

If the attribute is not defined, but instead was created in the previous routine, then it will simply just not exist
in the newly opened data object. Calls to retrieve the attribute will fail and query attribute calls will indicate
that the attribute does not exist.

Note that defined attributes appear to always exist, whether or not they are really physically instantiated on the
data object; a query attribute will always indicate that a defined attribute exists on any data object.

D.4. Nuances of Attribute Assignment

In general, attributes with an argument size of one are stored and retrieved by value. That is, a copy of the
value is made to internal storage when the attribute is set. A copy of the value in internal storage is made back
to the retrieving variable when the attribute is returned. This is true for all C data types.

The following example illustrates setting and getting a simple integer attribute of argument size one.

int set_value = 10;
int get_value;

kpds_set_attribute(object, ATTRIBUTE, set_value);
kpds_get_attribute(object, ATTRIBUTE, &get_value);

Attributes with an argument size greater than one are treated differently. Since each attribute argument is
really an array, there is a greater overhead involved in copying the attribute argument than a simple C assign-
ment. This copying cost is incurred on a set attribute. This is done to protect the data integrity; once set, the
data object has its own private copy of the attribute argument which you can not accidentally free. To avoid
some of the overhead of copying, returning attributes are passed by reference. That is, only a pointer to the
internal array is returned.

The following example illustrates setting and getting a simple integer attribute of argument size three.

int set_value[3] = {4, 5, 6};
int *get_value;

/* this will copy the set_value array to an internal array */
kpds_set_attribute(object, ATTRIBUTE, set_value);

/* this will return the pointer to an internal array */
kpds_get_attribute(object, ATTRIBUTE, &get_value);

6-14



Structure Support Program Services Volume II - Chapter 6

Structures are treated as a special case. Since allocated structures can not be passed on the stack, it is necessary
to pass the address of the structure, or a pointer to the structure. Structure arguments are handled in a manner
similar to array arguments. An internal copy of a structure will be made on a set attribute call and a pointer to
that internal array will be returned on a get attribute call.

The following example illustrates setting and getting a simple structure attribute with an argument size of one.

struct tile *set_tile;
struct tile *get_tile;

set_tile = (struct tile *) allocate_and_initialize_tile();

/* this will create an internal copy of the set_tile structure */
kpds_set_attribute(object, ATTRIBUTE, set_tile);

/* we can free this copy */
kfree(set_tile);

/* this will return the pointer to an internal structure */
kpds_get_attribute(object, ATTRIBUTE, &get_tile);

/* don’t free get_tile! */

D.5. Structure Storage within a Data Object

The actual unflattening and flattening of a structure attribute occurs when a data object is opened and closed.
When an input object is opened, any stored structure attributes which are defined are unflattened from the file
into memory. When an output object is closed, any structure attributes in that object are flattened from mem-
ory into the file. Note that any internal copies of the structure within the data object will be freed when the
data object is closed.

OUTPUT DATA
OBJECT

obj = kpds_open_output_object("data.file");

structure is flattened
directly to the file upon
the closing of the data object

kpds_set_attribute(obj, "hypolist", 
          foobar);

set attribute call will assign
a copy of structure

data.file

kpds_close_object(obj);

attributes
...

Figure 3: This picture illustrates the flattening of a structure attribute from memory to a file as a data
object is closed. Notice that when the attribute was stored, an internal copy of the structure was made.

6-15



Structure Support Program Services Volume II - Chapter 6

INPUT DATA
OBJECT

attributes
...

obj = kpds_open_input_object("data.file");structure is unflattened
directly from the file upon 
the opening of the data object

all necessary memory to
contain structure and anything
pointed to by the structure 
is allocated as the structure 
is read in

kpds_get_attribute(obj, "hypolist", 
          &foobar);

get attribute call will return
pointer to already allocated
structure

data.file

Figure 4: This picture illustrates the unflattening of a structure attribute from memory as a data object is
opened. Notice that when the attribute is retrieved, only a pointer to the already allocated structure is
returned.

The code dealing with data storage for a data object will store a machine identifier, using it appropriately so
that any flattened structures on one architecture can be unflattened appropriately on another. This machine
conversion will be entirely transparent to you when using Data Services.

Should you need to handle writing out flattened and unflattened versions of a structure yourself, there are calls
for performing the flattening and unflattening entirely in memory. These calls, kstruct_flatten and
kstruct_unflatten, will perform the flattening in the native machine format, so be careful to manage your
own machine conversion information when transporting the flattened structures across machines.

E. Tutorial : Creating a Structure Support Library

This tutorial will illustrate the creation of a structure specification and some corresponding library code for
initializing the structures. This tutorial is written assuming a library object named ATRDAT A has been created
and is being edited with Composer.

1. The first step is to create a structure specification file. We will create three structures within this
file. A specification file is created by adding a new SRC file in Composer using the "Add File to
Object" operation under the "File Operations" pulldown menu. Using this operation, add a file
named hypo.x.

2. The next step is to edit the specification file and add the structure specification. Using the "Edit"
operation under the "File Operations" pulldown menu, edit the file hypo.x and add the following
structure specification :

struct hypo
version 1.0

{
float height;

6-16



Structure Support Program Services Volume II - Chapter 6

int type;
float peaks<>;

};

struct hypo_list
version 1.0

{
struct hypo h;
struct hypo *next;

};

struct tile
version 1.0

{
int x;
int y;

}

typedef struct hypo_list hypo_list_t;
typedef struct tile tile_t;

3. Now that we have a specification file, generate code from it using the Make button found on the
on Console option from the Commands pulldown menu. This will invoke the program kgenstr uct
to parse the specification file hypo.x and generate two code files io_hypo.h and io_hypo.c.

4. The generated header file should be included by the library’s include file so that it is available
publicly. Edit the library’s include file, atrdata.h and add the following line in the #include
section.

#include "io_hypo.h"

5. We will want to define two data services attributes. For convenience, we will define two strings in
the atrdata.h file. Edit the library’s include file, atrdata.h and add the following line in the
#define section.

#define ATR_HYPO_LIST "atrHypoList"
#define ATR_TILE "atrTile"

6. Now, we need to create an initialization routine which will define the structures and define some
Data Services attributes. Create a new file called init_hypo.c and add in the following procedure.
This procedure will define the structures, and define a specific attributes for transporting them via
Data Services.

/*-----------------------------------------------------------
| Routine Name: init_stuctures
|
| Purpose: This routine will initialize the data types
| tile_t and hypo_list_t for use with data
| services in the rest of the program.
|
| The attributes ATR_HYPO_LIST and ATR_TILE
| will also be defined here.
|
| This routine should be called once as an
| initialization step for the rest of the program.
|

6-17



Structure Support Program Services Volume II - Chapter 6

| The type handlers for these will be
| KTYPE_TILE and KTYPE_HYPO_LIST.
------------------------------------------------------------*/
void init_structures(void)
{

static int initialized = FALSE;

if (!initialized) /*-- only initialize once --*/
{

initialized = TRUE;

/****
**** these define calls will recursively define the structures
**** hypo_list, hypo, and tile.
****/
kdefine_hypo_list_t();
kdefine_tile_t();

/****
**** define the two data services attributes. These
**** will each be single argument attributes with an
**** argument size of 1. We will associate it at the
**** object level and provide NULL as a default.
****/

kdms_define_attribute(NULL, ATR_HYPO_LIST, 1, 1, KTYPE_HYPO_LIST,
TRUE, TRUE, NULL);

kdms_define_attribute(NULL, ATR_TILE, 1, 1, KTYPE_TILE,
TRUE, TRUE, NULL);

}
return;

}

7. Be sure to properly prototype this generated routine by adding the following line to the atrdata.h
library include file in the routine definitions section.

void init_structures PROTO((void));

8. You can now compile the library. The routine init_structures() can now be used by any
routine which wants to have access to the the structure attributes ATR_HYPO_LIST and
ATR_TILE. Note that this initialization routine should be called first, before any other calls to
data services. If, for example, an object containing a hypo_list were opened before this routine
was called and the KTYPE_HYPO_LIST was defined, the hypo_list could not be read.

9. In a program linked against this library, you can access the ATR_HYPO_LIST and ATR_TILE
attributes transparently once you have called the init_structures() routine.

To write a hypo list on a Data Services object, simply use a set attribute call as shown in the fol-
lowing example. The declaration of the hypo list structure is shown as well, although presumably
the hypo list would be initialized to contain some useful information before the set attribute call.

kobject output_obj;
struct hypo_list_t *hypo_l;

output_obj = kpds_open_output_object("filename");

6-18



Structure Support Program Services Volume II - Chapter 6

kpds_set_attribute(output_obj, ATR_HYPO_LIST, hypo_l);
kpds_close_object(output_obj);

Note that the hypo will not be written to filename until the kpds_close_object() call.

10. The hypo list is read from a Data Services object in a similar manner. To retrieve a hypo list from
a Data Services object, simply use a get attribute call as shown in the following example. The
declaration of the hypo list structure is also shown.

kobject output_obj;
struct hypo_list_t *hypo_l = NULL ;

output_obj = kpds_open_input_object("filename");
kpds_get_attribute(output_obj, ATR_HYPO_LIST, &hypo_l);
kpds_close_object(output_obj);

Remember that this returns a pointer to the internal Data Services copy of the structure. As such,
it will be freed during kpds_close_object() call. The routine kstruct_duplicate() can
be used to make a copy of a structure, if a private copy which Data Services won’t free is needed.

6-19



Structure Support Program Services Volume II - Chapter 6

This page left intentionally blank

6-20



Table of Contents

A. Overview .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-1
B. Passing Structures Between Programs . . . . . . . . . . . . . . . . . . . .  6-2
C. Structure Specification File . . . . . . . . . . . . . . . . . . . . . . .  6-3

C.1. Creating a Structure Specification File . . . . . . . . . . . . . . . . . .  6-3
C.2. Kgenstruct . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-3
C.3. What is Generated? . . . . . . . . . . . . . . . . . . . . . . . .  6-3
C.4. Software Object Types . . . . . . . . . . . . . . . . . . . . . . .  6-4
C.5. Specification Language . . . . . . . . . . . . . . . . . . . . . . .  6-4

C.5.1. Definitions . . . . . . . . . . . . . . . . . . . . . . . . . .  6-5
C.5.1.1. Structures . . . . . . . . . . . . . . . . . . . . . . . . .  6-5
C.5.1.2. Typedefs . . . . . . . . . . . . . . . . . . . . . . . . .  6-6
C.5.1.3. Symbolic Constants . . . . . . . . . . . . . . . . . . . . .  6-6
C.5.1.4. Enumerations . . . . . . . . . . . . . . . . . . . . . . .  6-7

C.5.2. Declarations . . . . . . . . . . . . . . . . . . . . . . . . .  6-7
C.5.2.1. Simple Declaration . . . . . . . . . . . . . . . . . . . . . .  6-8
C.5.2.2. Fixed Array Declaration . . . . . . . . . . . . . . . . . . . .  6-8
C.5.2.3. Variable Array . . . . . . . . . . . . . . . . . . . . . . .  6-8
C.5.2.4. Pointer Declaration . . . . . . . . . . . . . . . . . . . . . .  6-9
C.5.2.5. Type Identifiers . . . . . . . . . . . . . . . . . . . . . . .  6-9

C.5.3. Structure Versioning . . . . . . . . . . . . . . . . . . . . . . .  6-9
C.5.4. C Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 6-10

C.5.4.1. Comments . . . . . . . . . . . . . . . . . . . . . . . . 6-10
C.5.4.2. Passing Directives to Header File . . . . . . . . . . . . . . . . . 6-11

C.5.5. Additional Notes . . . . . . . . . . . . . . . . . . . . . . . . 6-11
C.5.6. Example Specification File . . . . . . . . . . . . . . . . . . . . . 6-11

D. Data Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-12
D.1. Attributes Characteristics . . . . . . . . . . . . . . . . . . . . . . 6-12
D.2. Attributes Management . . . . . . . . . . . . . . . . . . . . . . . 6-13
D.3. Handling Undefined or Mismatched Versioned Structures . . . . . . . . . . . . 6-13
D.4. Nuances of Attribute Assignment . . . . . . . . . . . . . . . . . . . . 6-14
D.5. Structure Storage within a Data Object . . . . . . . . . . . . . . . . . . 6-15

E. Tutorial : Creating a Structure Support Library . . . . . . . . . . . . . . . . . 6-16

- i -



Structure Support Program Services Volume II - Chapter 6

This page left intentionally blank

- ii -



Program Services Volume II

Chapter 7

Streaming Data Services

Copyright (c) AccuSoft Corporation, 2004. All rights reserved.





Chapter 7 - Streaming Data Services

A. Introduction

Streaming Data Services provides a mechanism for the continuous transmission of data messages from one
data processing routine to another. Streaming Data Services was designed to have minimal overhead so that it
could be used for processing of data in real-time. Streaming Data Services allows multiple "channels" of data
to be multiplexed down a single data stream. The data being streamed down a channel can be of any VisiQuest
supported datatype. Arbitrary user-defined data structures can even be streamed.

Streaming Data Services provides access to a stream connection via an opaque data object represented by the
abstract data type kobject. A single stream connects two data processing operators which run simultaneously.
One process will continuously produce data which the other will continuously consume.

A data stream is either opened as a sending stream for writing or as an receiving stream for reading. A sending
data stream should be opened by one process for communication with a second process. The second process
should then open the same stream as a receiving stream. The first process then writes data to its sending
stream and the second process reads the same data from its receiving stream.

Microphone Gain Speaker

stream=/tmp/streamname

Figure 1: A data stream is used to continuously transmit data between two simultaneously running pro-
cesses. The stream is identified by a unique transport name. In VisiQuest, the transport type used to
transmit the stream can be changed by clicking on the connection between two glyphs.

Data can be written only to a sending stream and can be read only from a receiving stream. Communication
down a stream is thus unidirectional. The second process can not communicate back to the first process using
the same stream; a second stream must be created.

A VisiQuest transport name is used to identify the stream name. The sending filename should begin with the
prefix stream= to truly be a stream; the prefix should not be specified by the receiving process. Other transient
transport types, such as a UNIX-domain or TCP/IP sockets may also be used. Streaming data services will
automatically handle any machine conversion required when transmitting data between different architectures.
Other permanent transport types such as file or shared memory may be used, although this will cause all the
data written to the stream to be buffered into the transport.

7-1



Streaming Data Services Program Services Volume II - Chapter 7

Note: When editing a kroutine from guise, use stream= as the default file name for all streaming sending con-
nections. This will cause the connection type to automatically be a stream. The data being sent and received
consists of basic one-dimensional arrays. No specific structure is imposed on the data; it is up to the applica-
tion to enforce a more specific interpretation. To help with this, streaming data services supports user-defined
attributes which allow application-specific information to be passed down a data stream.

For example, while the data composing a two-dimensional image could be sent down a data stream, the down-
stream process would not be able to reconstruct the image without more specific information such as the image
width and height. Thus, an user could define attributes which describes the image width and height.

B. Streaming Data Model

Streaming Data Services provides both a writing and a reading process access to a stream. The stream allows
data to be sent from the writing process to the reading process. A writing process will communicate with a
reading process by sending data through a stream using the kds_write_data call. The reading process
receives this data using the kds_read_data call.

The data being sent with a kds_write_data call consists of a single linear array of data. This array is writ-
ten to the data stream where it can then be read by the reading process. Thus, even though the data is concep-
tually streaming continuously from one process to another, it is in reality transfered one array at a time. For
convenience, this array will often be referred to as a message. Note that streaming data services does no
buffering of data. Subsequent sends will block until the message from a previous send has been completely
received by the downstream process.

...132345152

Sending
Stream

kds_write_data

kobject o;

Writing Process

...132345152...

Receiving
Stream

kds_read_data

kobject i;

Reading Process

Figure 2: Data is written do a data stream using the kds_write_data call. That same data is read from
the stream in another process using the kds_read_data call. Each send consists of a linear array of data
called a message. Data can flow in only one direction down a stream.

A stream may contain multiple data channels which act as conduits for sending and receiving messages.
Channels may also act as conduits for additional, auxiliary information known as attributes.

Streams
A stream is represented by the abstract datatype kobject . A stream should either be opened as a
sending stream with the kds_open_send call, or as a receiving stream with the
kds_open_recv call. The single argument to either of these functions will be the transport
name over which the stream will be communicated; typically this should be prefixed with

7-2



Streaming Data Services Program Services Volume II - Chapter 7

stream=. These calls will return a valid kobject on success or NULL on failure.

Channels
While multiple channels can be opened within a stream, data cannot be sent simultaneously down
multiple channels at the same time. Data down multiple channels is actually interleaved; each
subsequent kds_write_data call may be sent down a different channel on the same stream.

For example, in the illustration below, three channels named A, B, and C are opened in the output
stream. The output stream first does a kds_write_data call with a message down channel A.
The next send is down channel B, the next down channel C, and so forth. Notice that the sending
stream is driving what is being received. Since no data is buffered, the receiving stream must
receive the messages in the order in which they have been sent.

Sending
Stream

Receiving
Stream

A

B

C

A

B

C

A

Channels are opened only on sending streams. Once a channel is opened, attributes may be set on
the channel, and then the channel should be connected. Once the channel is connected, it will
automatically be opened and connected in the downstream input object. This will be discussed in
more detail later.

Attributes
In addition to data, a channel may also act as a conduit for attributes. An attribute is a named
piece of information with a specific value. An attribute value may be assigned with a call to
kds_set_attribute or its value retrieved with a call to kds_get_attribute . User-defined
attributes must be created explicitly on a channel with a call to kds_create_attribute before
it can be accessed.

Attributes for Streaming Data Services are used to define a process’s view of a channel rather than
being associated with the data itself; it is possible for every process to have a different view (set of
attributes) associated with a channel and its data stream. A process may assigned an attribute
through functions such as kds_set_attribute, but this attribute only exists locally. The functions
kds_connect_channel and kds_resend_attributes can be used to propagate local attributes to the
next downstream glyph which then become part of that glyph’s local attributes. Attributes cannot
be propagated upstream.

Attributes typically should be created and set on a channel after it is opened but before it is con-
nected. The call to connect a channel sends all the attributes of the channel downstream. If cre-
ated before the kds_connect_channel call (or resent with kds_resend_attributes) then
attributes need only be created on sending streams; the attributes will be created automatically on
the downstream receiving stream when they are received.

7-3



Streaming Data Services Program Services Volume II - Chapter 7

Each channel has one attribute which must be set. The attribute KDS_DATATYPE dictates the
datatype of the messages sent down the channel. Once set, this attribute applies for the life of the
channel; it cannot be changed, even if the attributes are resent. Any of the VisiQuest standard
dataytypes listed on the left may be used when setting this attribute. User-defined datatypes may
be used as well if streaming of arbitrary structures is required. Note that the KDS_DATATYPE
attribute exists inherently in each channel and does not need to be created.

KBIT
KBYTE
KUBYTE
KSHORT
KUSHORT
KINT
KUINT
KLONG
KULONG
KFLOAT
KDOUBLE
KCOMPLEX
KDCOMPLEX

Attributes generally have to be explicitly created on a sending channel before they can be set.
However, this can be avoided with attributes which are used frequently by defining them using the
kds_define_attribute call. A defined attribute will be automatically created on a call to
kds_set_attribute , thus saving the explicit call to create the attribute. It is recommended
that common attribute definitions be placed in a single library to be shared among the multiple
streaming routines who need them. Not only will this avoid the extra step of having to create the
attribute before setting it, but it also guarantees that the attribute will be created with the same
characteristics within each routine.

C. Stream Functions

Depending on whether or not you are working with just a sending stream, just a receiving stream, or both a
sending and receiving stream, the function calls which should be used and the general programming model
will vary. The general functions for sending and receiving streams are outlined below, with examples of how
each processing case should look provided at the end.

C.1. Sending Stream Functions

Data is communicated down a sending stream via channels. Channels are identified by a unique character
string. This string is provided when the channel is opened with a kds_open_channel call. At this time, the
KDS_DATATYPE attribute be set on the channel. This attribute will determine the datatype of the messages sent
with a kds_write_data call. All data sent over this channel must be of this datatype. This datatype will
hold for the life of the channel. If different datatypes are to be sent, then KBYTE can be used for the datatype,
but then the receiving channel must know how to interpret the data and there will not be automatic conversion
of datatypes between heterogeneous machines.

7-4



Streaming Data Services Program Services Volume II - Chapter 7

Other attributes may be created and set as needed after the channel has been opened. Once all attributes are set
on the channel, it should then be connected using the kds_connect_channel call. Once connected, the
datatype and all other channel attributes will be sent downstream.

Channels should only be opened and connected on sending streams. Once a channel has been connected, it
will be automatically opened and connected within the downstream receiver. A channel may be closed on an
sending stream at any time using the kds_close_channel call. This will automatically close the channel
downstream as well. All channels are closed automatically when a stream is closed with the kds_close call.
Channels on receiving streams should never be explicitly closed.

Note that the channel name will be internally bound to a unique byte identifier within a stream. This byte is
sent at the beginning of each message to identify to which channel the message belongs. While this minimizes
the overhead in sending each message, it does impose a practical limit of 255 channels in each data stream.

• kds_open_send() - open a sending stream
• kds_open_channel() - open a sending channel
• kds_connect_channel() - connect an sending channel
• kds_write_data() - write data down a sending channel
• kds_close_channel() - close a sending channel
• kds_close() - close a stream

C.1.1. kds_open_send() — open a sending stream

Synopsis
kobject
kds_open_send(kstring name)

Input Arguments
name

name of stream

Returns
kobject on success, NULL otherwise

Description
This function will open a stream for writing.

7-5



Streaming Data Services Program Services Volume II - Chapter 7

C.1.2. kds_open_channel() — open a sending channel

Synopsis
int
kds_open_channel(

kobject object,
kstring channel)

Input Arguments
object

stream object to contain channel
channel

name of new channel to open

Returns
TRUE on success, FALSE otherwise

Description
This function will open a channel within the given data stream. After the channel is opened, attributes
may be set using the kds_set_attribute function. When all attributes have been set, the channel may be
connected using the kds_connect_channel function.

Only channels on a sending stream should be opened. Receiving channels will be implicitly opened
within the select or the kds_read_data call.

C.1.3. kds_connect_channel() — connect an sending channel

Synopsis
int
kds_connect_channel(

kobject object,
kstring channel)

Input Arguments
object

stream object to contain channel
channel

name of new channel to connect

7-6



Streaming Data Services Program Services Volume II - Chapter 7

Returns
TRUE on success, FALSE otherwise

Description
This function will connect an open channel within the given data stream. After the channel is con-
nected, the datatype attribute may no longer be changed. The connect effectively transmits all
attributes which were set after the channel was opened. The KDS_DAT ATYPE attribute must have
been set before this call is made.

Only channels on sending streams should be opened. Receiving channels will be implicitly opened
within the select or the kds_read_data call.

C.1.4. kds_write_data() — write data down a sending channel

Synopsis
ssize_t
kds_write_data(

kobject object,
kstring channel,
kaddr data,
size_t number)

Input Arguments
object

sending stream object
channel

channel associated with data
data

write data buffer
number

number of items in data buffer

Returns
number of items successfully sent or -1 on error

Description
Writes data to a channel on a sending stream. The datatype of the data to be transmitted down this
channel must have been set prior to the channel being connected.

7-7



Streaming Data Services Program Services Volume II - Chapter 7

C.1.5. kds_close_channel() — close a sending channel

Synopsis
int
kds_close_channel(

kobject object,
kstring channel)

Input Arguments
object

stream object to contain channel
channel

channel being closed

Returns
TRUE on success, FALSE otherwise

Description
Close a sending channel, indicating that no further data will be written to it. This will signal to the
downstream process that this channel is being closed.

Only sending channels should be closed. Receiving channels will be implicitly closed within the select
or the kds_read_data call.

C.1.6. kds_close() — close a stream

Synopsis
int
kds_close(kobject object)

Input Arguments
object

stream object to close

Returns
TRUE on success, FALSE otherwise

7-8



Streaming Data Services Program Services Volume II - Chapter 7

Description
This function will close a stream.

C.2. Receiving Stream Functions

The order in which the messages arrive at the receiving stream is determined entirely by the order in which
they were sent from the upstream process. Since messages must be received in the order in which they were
sent, the reading process must receive each message as it arrives.

The kds_select_channel call should be used on an receiving stream to determine the channel on which the
next incoming message is arriving. The kds_select_channel call will intercept each new incoming mes-
sage as it arrives and then indicate to the calling program to which channel it belongs. The calling program
must receive the data from the selected channel before any subsequent messages can be received.

• kds_open_recv() - open an receiving stream
• kds_select_channel() - select next receiving channel with available data
• kds_read_data() - read data from a receiving channel

C.2.1. kds_open_recv() — open an receiving stream

Synopsis
kobject
kds_open_recv(kstring name)

Input Arguments
name

name of stream

Returns
kobject on success, NULL otherwise

Description
This function will open a stream for reading.

7-9



Streaming Data Services Program Services Volume II - Chapter 7

C.2.2. kds_select_channel() — select next receiving channel with available data

Synopsis
kstring
kds_select_channel(kobject object)

Input Arguments
object

receiving stream object

Returns
channel - name of next channel to read from

Description
This function will select the next incoming channel with data available. A channel which has just con-
nected or a channel which as resent attributes will also return from this function.

C.2.3. kds_read_data() — read data from a receiving channel

Synopsis
ssize_t
kds_read_data(

kobject object,
kstring channel,
kaddr data,
size_t number)

Input Arguments
object

receiving stream object
channel

channel associated with data
data

receive data buffer
number

the maximum number of elements of the channel datatype which can be read into the data buffer

Returns
number of items successfully received or -1 on error

7-10



Streaming Data Services Program Services Volume II - Chapter 7

Description
Reads data from a channel on a receiving stream.

C.3. Sending to Receiving Functions

These functions are used when relaying information from an incoming receiving stream to an outgoing sending
stream.

• kds_query_channel() - query a channel
• kds_relay_channel() - relay a channel to a sending stream
• kds_copy_channel() - copy a channel and associated data

C.3.1. kds_query_channel() — query a channel

Synopsis
int
kds_query_channel(

kobject object,
kstring channel)

Input Arguments
object

stream object to check
channel

channel to check for

Returns
TRUE if channel is present, FALSE otherwise

Description
Check to see if a channel exists within a given data stream.

7-11



Streaming Data Services Program Services Volume II - Chapter 7

C.3.2. kds_relay_channel() — relay a channel to a sending stream

Synopsis
int
kds_relay_channel(

kobject input,
kstring chan_in,
kobject output,
kstring chan_out)

Input Arguments
input

stream containing receiving channel
chan_in

receiving channel
output

stream containing sending channel
chan_out

sending channel

Returns
TRUE if sending channel is successfully relayed, FALSE otherwise

Description
Connect an sending channel of the same datatype as the named receiving channel. This will only copy
the datatype attribute from the receiving channel to the sending channel.

C.3.3. kds_copy_channel() — copy a channel and associated data

Synopsis
int
kds_copy_channel(

kobject input,
kstring chan_in,
kobject output,
kstring chan_out)

Input Arguments
input

stream containing receiving channel

7-12



Streaming Data Services Program Services Volume II - Chapter 7

chan_in
receiving channel

output
stream containing sending channel

chan_out
sending channel

Returns
TRUE if channel is present, FALSE otherwise

Description
Copy the data for a channel coming in from a receiving channel and writing out to an sending channel.
If the channel does not yet exist in the sending stream, it will be relayed from the receiving stream.

C.4. Attribute Functions

The following functions allow attributes to be defined or created on output streams, and then assigned and
retrieved from a stream. Note that attributes should be created and assigned before a stream is connected. The
act of connecting a stream will send all attributes in a channel downstream.

• kds_set_attribute() - set an attribute
• kds_get_attribute() - get an attribute
• kds_create_attribute() - create an attribute
• kds_delete_attribute() - delete an attribute
• kds_delete_attributes() - delete all attributes
• kds_define_attribute() - define an attribute
• kds_resend_attributes() - resend all attributes
• kds_get_attribute_names() - get attribute names

C.4.1. kds_set_attribute() — set an attribute

Synopsis
int
kds_set_attribute(

kobject object,
kstring channel,
kstring attribute,
kvalist)

7-13



Streaming Data Services Program Services Volume II - Chapter 7

Input Arguments
object

stream object containing channel
channel

name of channel associated with attribute
attribute

name of attribute to set

Returns
TRUE on success, FALSE otherwise

Description
This function will set an attribute associated with a channel which can later written to a channel by
kds_connect_channel or kds_resend_attributes.

C.4.2. kds_get_attribute() — get an attribute

Synopsis
int
kds_get_attribute(

kobject object,
kstring channel,
kstring attribute,
kvalist)

Input Arguments
object

stream object containing channel
channel

name of channel associated with attribute

Output Arguments
attribute

name of attribute to get

Returns
TRUE on success, FALSE otherwise

Description
This function will get an attribute either previously set by the same process or written to a channel iby

7-14



Streaming Data Services Program Services Volume II - Chapter 7

an upstream process using kds_connect_channel or kds_resend_attributes.

C.4.3. kds_create_attribute() — create an attribute

Synopsis
int
kds_create_attribute(

kobject object,
kstring channel,
kstring attribute,
int datatype,
size_t argsize,
size_t numargs)

Input Arguments
object

stream object containing the channel
channel

name of channel associated with attribute
attribute

name of attribute to create
datatype

datatype of attribute
argsize

size of each attribute argument
numargs

number of attribute arguments

Returns
TRUE on success, FALSE otherwise

Description
This function will create an attribute associated with a channel in a specific stream object.

C.4.4. kds_delete_attribute() — delete an attribute

Synopsis
int
kds_delete_attribute(

7-15



Streaming Data Services Program Services Volume II - Chapter 7

kobject object,
kstring channel,
kstring attribute)

Input Arguments
object

stream object containing channel
channel

name of channel associated with attribute
attribute

name of attribute to create

Returns
TRUE on success, FALSE otherwise

Description
This function will delete an attribute associated with a channel in a specific stream object.

Restrictions
Only deletes local attributes; will not delete downstream attributes written previously with kds_con-
nect_channel or kds_resend_attributes.

C.4.5. kds_delete_attributes() — delete all attributes

Synopsis
int
kds_delete_attributes(

kobject object,
kstring channel)

Input Arguments
object

stream object containing channel
channel

name of channel

Returns
TRUE on success, FALSE otherwise

7-16



Streaming Data Services Program Services Volume II - Chapter 7

Description
This function will delete all attributes from a specified channel within a specific stream object.

Restrictions
Only deletes local attributes; will not delete downstream attributes written previously with kds_con-
nect_channel or kds_resend_attributes.

C.4.6. kds_define_attribute() — define an attribute

Synopsis
int
kds_define_attribute(

kstring channel,
kstring attribute,
int datatype,
size_t argsize,
size_t numargs,
int (*get) (kobject, kstring, kstring, kaddr, kva_list *),
int (*set) (kobject, kstring, kstring, kaddr, kva_list *),
int (*match) (kobject, kobject, kstring, kaddr, kaddr, kstring),
int (*copy) (kobject, kobject, kstring, kaddr, kaddr, kstring),
int (*query) (kobject, kstring, kstring, size_t *, size_t *, int *, int *),
int (*print) (kobject, kstring, kstring, kaddr, kfile *),
kaddr clientdata,
kvalist)

Input Arguments
channel

name of channel or NULL for object attribute
attribute

name of attribute to get
datatype

datatype of attribute
argsize

size of each attribute argument
numargs

number of attribute arguments
get

get routine to use instead of default, NULL to use the default.
set

set routine to use instead of default, NULL to use the default.
match

match routine to use instead of default, NULL to use the default.
copy

7-17



Streaming Data Services Program Services Volume II - Chapter 7

copy routine to use instead of default, NULL to use the default.
query

query routine to use instead of default, NULL to use the default.
print

print routine to use instead of default, NULL to use the default.
clientdata

client data to pass in to the handler functions
kvalist

open variable argument list to default

Returns
TRUE on success, FALSE otherwise

Description
This function will define an attribute associated with a channel over an entire session.

C.4.7. kds_resend_attributes() — resend all attributes

Synopsis
int
kds_resend_attributes(

kobject object,
kstring channel)

Input Arguments
object

stream object containing channel
channel

name of channel associated with attributes

Returns
TRUE on success, FALSE otherwise

Description
This function will resend all the attributes from a sending stream for a specified channel.

7-18



Streaming Data Services Program Services Volume II - Chapter 7

C.4.8. kds_get_attribute_names() — get attribute names

Synopsis
kstring *
kds_get_attribute_names(

kobject object,
kstring channel,
const kstring filter,
int *num)

Input Arguments
channel

name of channel to return attributes for
filter

a regular expression to use to as the search key for the attribute name. if it’s NULL, all names are
returned.

Output Arguments
num

number of attribute names

Returns
a string array of attribute names

Description
This function will return the names of all attributes in a specified channel. A filter may be provided to
contrain the search.

C.5. Data Casting

Data can be implicitly cast on reading and writing by using the presentation attribute KDS_PRESENTA-
TION_DATATYPE .

On a kds_read_data call, the data is cast to this datatype from the physical datatype before being returned.
On a kds_write_data call, the data is cast from this datatype to the actual physical datatype of the channel
before being written downstream. In either case, this datatype determines the type of data which should be
handled by the user. If not set or set to KNONE , no casting will occur.

This attribute only affects the channel in the local process. It is not propogated downstream. This attribute
will be copied from a recv stream to a send stream within a process by a kds_copy_channel or

7-19



Streaming Data Services Program Services Volume II - Chapter 7

kds_relay_channel call.

The attribute KDS_COMPLEX_CONVERT dicates how complex data is handled during casting. If it is converted
to a "lower" data type, this attribute specifies how to down-convert the data. For example if the data is actually
complex, but the presentation attribute is byte, the complex data would first be converted to the representation
defined by this attribute, and then converted to byte.

If the data is being converted from a "lower" data type to a complex data type, this attribute defines how the
data should be interpreted as the real or imaginary component of the complex pair. KPHASE and KMAGNITUDE
are invalid values for up converting to complex, and will result in an error.

Reading and writing cast data occur using an internal statically allocated buffer. A new buffer can be set using
kds_set_casting_buffer function.

C.5.1. kds_set_casting_buffer() — assign a buffer to use when casting

Synopsis
void
kds_set_casting_buffer(

kaddr buffer,
size_t buffer_size)

Input Arguments
buffer

buffer to use for casting
buffer_size

size of buffer to use for casting

Description
This function will assign a buffer to use for internally casting data on a kds_read_data or
kds_write_data call. Casting occurs during these calls if the actual datatype of channel differs from the
presentation datatype. This buffer will be used for all casting operations done after the buffer is
assigned.

If a buffer is not assigned, an statically allocated internal buffer of 1024 bytes will be used. Assign-
ment of a NULL buffer of size 0 will cause streaming data services to revert to using this internal
buffer for casting.

An assigned buffer will NOT be freed by streaming data services. The user is responsible for freeing it
at the end of the program.

7-20



Streaming Data Services Program Services Volume II - Chapter 7

D. Conversion routines

Tw o kroutines and associated library routines are provided for converting between Polymorphic Data Services
and Streaming Data Services. The kroutine ds2pds converts from Streaming Data Services to Polymorphic
Data Services. pds2ds converts from Polymorphic Data Services to Streaming Data Services. Note that
streams are supported as a polymorphic format; an incoming stream can be read by any polymoprhic data ser-
vices routine.

E. Sending Example

{
kobject o;

char *filename = "stream=/tmp/stream.ds"
int *ldata, *rdata;
int lnum, rnum;

/*-- open a new sending stream --*/
o = kds_open_send(filename);

/*-- open left channel, set the datatype of the channel, and connect --*/
kds_open_channel(o, LEFT);
kds_set_attribute(o, LEFT, KDS_DATATYPE, KINT);
kds_connect_channel(o, LEFT);

/*-- open right channel, set the datatype of the channel, and connect --*/
kds_open_channel(o, RIGHT);
kds_set_attribute(o, RIGHT, KDS_DATATYPE, KINT);
kds_connect_channel(o, RIGHT);

/*-- while we have new left data and right data, send it downstream --*/
while (ldata = generate_left_data(&amp;lnum) &&

rdata = generate_right_data(&amp;rnum))
{

kds_write_data(o, LEFT, ldata, lnum);
kds_write_data(o, RIGHT, rdata, rnum);

}

/*-- close will close channels for us --*/
kds_close(o);

}

F. Receiving Example

{
kobject i;

char *filename = "stream=/tmp/stream.ds"

7-21



Streaming Data Services Program Services Volume II - Chapter 7

int datatype;

int data&lsqb;1024&rsqb;;
int nread;

/*-- open a new receiving stream --*/
i = kds_open_recv(filename);

/*-- select the next available channel --*/
while (channel = kds_select_channel(i, &amp;num))
{

kds_get_attribute(i, channel, KDS_DATATYPE, &amp;datatype);

/*-- only process integer data from the left channel --*/
if ((datatype == KINT) &amp;&amp; (kstrcmp(channel, LEFT) == 0))
{

/*-- read no more than 1024 bytes --*/
nread = kds_read_data(i, channel, (kaddr) data, 1024);

for (i = 0; i < nread; i++)
kprintf("%d&bslash;", data&lsqb;i&rsqb;);

}

/*-- other data should just be discarded --*/
else

kds_copy_data(i, channel, NULL);
}

kds_close(i);
}

G. Sending and Receiving Example

{
int pending, datatype, nread;
kstring in_file = "stream=/temp/in.ds";
kstring out_file = stream=/temp/out.ds";
kstring ch_in, *ch_out = "out";
kobject src, dest;
kaddr *data;

/*-- open new sending and receiving streams --*/
src = kds_open_recv(in_file);
dest = kds_open_send(out_file);

/*-- select the next available channel --*/
while ((ch_in = kds_select_channel(src, &amp;pending)) != NULL)
{

if (pending == -1)
{

/*-- Copy the datatype and open and connect downstream channel --*/
kds_get_attribute(src, ch_in, KDS_DATATYPE, &amp;datatype);
kds_relay_channel(src, ch_in, dest);

}
else
{

7-22



Streaming Data Services Program Services Volume II - Chapter 7

data = kmalloc(pending * kdata_size(datatype);
nread = kds_read_data(src, ch_in, data, pending);

/*-- Processing data goes here --*/

kds_write_data(dest, ch_out, data, nread);
kfree(data);

}
}

kds_close(src);
kds_close(dest);

}

7-23



Streaming Data Services Program Services Volume II - Chapter 7

This page left intentionally blank

7-24



Table of Contents

A. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-1
B. Streaming Data Model . . . . . . . . . . . . . . . . . . . . . . . . .  7-2
C. Stream Functions . . . . . . . . . . . . . . . . . . . . . . . . . .  7-4

C.1. Sending Stream Functions . . . . . . . . . . . . . . . . . . . . . .  7-4
C.1.1. kds_open_send() — open a sending stream . . . . . . . . . . . . . . . .  7-5
C.1.2. kds_open_channel() — open a sending channel . . . . . . . . . . . . . . .  7-6
C.1.3. kds_connect_channel() — connect an sending channel . . . . . . . . . . . .  7-6
C.1.4. kds_write_data() — write data down a sending channel . . . . . . . . . . . .  7-7
C.1.5. kds_close_channel() — close a sending channel . . . . . . . . . . . . . .  7-8
C.1.6. kds_close() — close a stream . . . . . . . . . . . . . . . . . . . .  7-8

C.2. Receiving Stream Functions . . . . . . . . . . . . . . . . . . . . . .  7-9
C.2.1. kds_open_recv() — open an receiving stream . . . . . . . . . . . . . . .  7-9
C.2.2. kds_select_channel() — select next receiving channel with available data . . . . . . . 7-10
C.2.3. kds_read_data() — read data from a receiving channel . . . . . . . . . . . . . 7-10

C.3. Sending to Receiving Functions . . . . . . . . . . . . . . . . . . . . 7-11
C.3.1. kds_query_channel() — query a channel . . . . . . . . . . . . . . . . . 7-11
C.3.2. kds_relay_channel() — relay a channel to a sending stream . . . . . . . . . . . 7-12
C.3.3. kds_copy_channel() — copy a channel and associated data . . . . . . . . . . . 7-12

C.4. Attribute Functions . . . . . . . . . . . . . . . . . . . . . . . . 7-13
C.4.1. kds_set_attribute() — set an attribute . . . . . . . . . . . . . . . . . . 7-13
C.4.2. kds_get_attribute() — get an attribute . . . . . . . . . . . . . . . . . 7-14
C.4.3. kds_create_attribute() — create an attribute . . . . . . . . . . . . . . . . 7-15
C.4.4. kds_delete_attribute() — delete an attribute . . . . . . . . . . . . . . . . 7-15
C.4.5. kds_delete_attributes() — delete all attributes . . . . . . . . . . . . . . . 7-16
C.4.6. kds_define_attribute() — define an attribute . . . . . . . . . . . . . . . . 7-17
C.4.7. kds_resend_attributes() — resend all attributes . . . . . . . . . . . . . . . 7-18
C.4.8. kds_get_attribute_names() — get attribute names . . . . . . . . . . . . . . 7-19

C.5. Data Casting . . . . . . . . . . . . . . . . . . . . . . . . . . 7-19
C.5.1. kds_set_casting_buffer() — assign a buffer to use when casting . . . . . . . . . . 7-20

D. Conversion routines . . . . . . . . . . . . . . . . . . . . . . . . . . 7-21
E. Sending Example . . . . . . . . . . . . . . . . . . . . . . . . . . 7-21
F. Receiving Example . . . . . . . . . . . . . . . . . . . . . . . . . . 7-21
G. Sending and Receiving Example . . . . . . . . . . . . . . . . . . . . . 7-22

- i -



Streaming Data Services Program Services Volume II - Chapter 7

This page left intentionally blank

- ii -


	 1 - Introduction 
	 A - Overview of Program Services 
	 B - Introduction to Data Services 
	 C - Application Programming Interface (API) 
	 D - Overview of the Application Data Services 
	 D.1 - Polymorphic Data Services 
	 D.1.1 - Polymorphic Data Model 
	 D.1.2 - Value Data 
	 D.1.3 - Location Data 
	 D.1.4 - Time Data 
	 D.1.5 - Mask Data 
	 D.1.6 - Map Data 
	 D.1.7 - Polymorphic Example 1 : Storage of an RGB Image 
	 D.1.8 - Polymorphic Example 2 : Storage of a Signal 
	 D.1.9 - Polymorphic Example 3 : Storage of an Animation with RGB Colormap 

	 D.2 - Geometry Data Services 
	 D.2.1 - Geometry Data Model 
	 D.2.2 - Geometry Example: Storage of Geometry Primitives 

	 D.3 - Color Data Services 
	 D.3.1 - Color Data Model 


	 E - Data Access Presentation 
	 E.1 - Presentation and Physical Layers 
	 E.2 - Reference Objects 

	 F - File Format Support 
	 F.1 - Supported Formats 
	 F.2 - Format Storage Issues 

	 G - Large Data Sets 
	 H - Data Services Organization 

	 2 - Polymorphic Data Services 
	 A - Introduction 
	 B - The Polymorphic Data Model 
	 B.1 - Value Data 
	 B.2 - Mask 
	 B.3 - Map 
	 B.4 - Location 
	 B.5 - Time 

	 C - Interaction with the Polymorphic Data Model 
	 C.1 - Presentation of the Data Object 
	 C.2 - Casting 
	 C.3 - Scaling and Normalization 
	 C.4 - Padding and Interpolation 
	 C.5 - Conversion of Complex Data 
	 C.6 - Map Evaluation 
	 C.7 - Mask Evaluation 
	 C.8 - Axis Assignment 
	 C.9 - Data Ranging 
	 C.10 - Reference Objects 
	 C.11 - Auto Incrementing 

	 D - The Application Programming Interface (API) 
	 E - Polymorphic Primitives 
	 E.1 - Value Primitives 
	 E.2 - Mask Primitives 
	 E.3 - Map Primitives 
	 E.4 - Location Primitives 
	 E.4.1 - Creating Location 
	 E.4.2 - Location Primitives 
	 E.4.3 - Presentation of Location Data 

	 E.5 - Time Primitives 

	 F - Attributes Defined by the Polymorphic Data Model 
	 F.1 - Global Attributes 
	 F.2 - Value Segment Attributes 
	 F.3 - Mask Segment Attributes 
	 F.4 - Map Segment Attributes 
	 F.5 - Location Segment Attributes 
	 F.6 - Time Segment Attributes 

	 G - Functions Provided by Polymorphic Data Services 
	 G.1 - Object Management 
	 G.1.1 - kpds_open_input_object()  open an input object for  reading 
	 G.1.2 - kpds_open_output_object()  open an output object for  writing 
	 G.1.3 - kpds_create_object()  create a temporary data object. 
	 G.1.4 - kpds_create_object_attr()  create an attribute associated the data object. 
	 G.1.5 - kpds_destroy_object_attr()  destroy an attribute associated with the data object. 
	 G.1.6 - kpds_open_object()  create an object associated with an input or output transport. 
	 G.1.7 - kpds_close_object()  close an open data object. 
	 G.1.8 - kpds_reference_object()  create a reference of a data object. 
	 G.1.9 - kpds_copy_object()  copy all data and attributes from one object to another. 
	 G.1.10 - kpds_copy_remaining_data()  copy remaining data from source to destination 
	 G.1.11 - kpds_copy_object_attr()  copy all presentation attributes from one data object to another. 
	 G.1.12 - kpds_copy_object_data()  copy all data from one object to another object. 
	 G.1.13 - kpds_sync_object()  synchronize physical and presentation layers of a data object. 

	 G.2 - Data Functions 
	 G.2.1 - kpds_get_data()  retrieve data from a data object. 
	 G.2.2 - kpds_put_data()  store data in a data object. 

	 G.3 - Attribute Functions 
	 G.3.1 - kpds_copy_attribute()  copy an attribute from one object to another 
	 G.3.2 - kpds_copy_attributes()  copy multiple attributes from one object to another. 
	 G.3.3 - kpds_get_attribute()  get the value of an attribute from a data object 
	 G.3.4 - kpds_get_attributes()  get the values of multiple  attributes from a data object 
	 G.3.5 - kpds_match_attribute()  returns TRUE if the same attribute in two objects match. 
	 G.3.6 - kpds_match_attributes()  returns true if the list of segment attributes in two objects match. 
	 G.3.7 - kpds_print_attribute()  print the value of an attribute from a data object. 
	 G.3.8 - kpds_query_attribute()  get information about an attribute 
	 G.3.9 - kpds_set_attribute()  set the values of an  attribute in a data object 
	 G.3.10 - kpds_set_attributes()  set the values of multiple attributes in a data object. 

	 G.4 - Location Functions 
	 G.4.1 - kpds_copy_location()  copy the location segment from one object to another. 
	 G.4.2 - kpds_copy_location_attr()  copy all location attributes from one object to another object. 
	 G.4.3 - kpds_copy_location_data()  copy all location data from one object to another object. 
	 G.4.4 - kpds_create_location()  create a location segment within a  data object. 
	 G.4.5 - kpds_destroy_location()  destroy the location segment in a data object. 
	 G.4.6 - kpds_query_location()  determine if the location segment exists in a data object. 

	 G.5 - Map Functions 
	 G.5.1 - kpds_copy_map()  copy the map segment from one object to another. 
	 G.5.2 - kpds_copy_map_attr()  copy all map attributes from one object to another object. 
	 G.5.3 - kpds_copy_map_data()  copy all map data from one object to another object. 
	 G.5.4 - kpds_create_map()  create a map segment within a  data object. 
	 G.5.5 - kpds_destroy_map()  destroy the map segment in a data object. 
	 G.5.6 - kpds_query_map()  determine if the map segment exists in a data object. 

	 G.6 - Mask Functions 
	 G.6.1 - kpds_copy_mask()  copy the mask segment from one object to another. 
	 G.6.2 - kpds_copy_mask_attr()  copy all mask attributes from one object to another object. 
	 G.6.3 - kpds_copy_mask_data()  copy all mask data from one object to another object. 
	 G.6.4 - kpds_create_mask()  create a mask segment within a  data object. 
	 G.6.5 - kpds_destroy_mask()  destroy the mask segment in a data object. 
	 G.6.6 - kpds_query_mask()  determine if the mask segment exists in a data object. 

	 G.7 - Time Functions 
	 G.7.1 - kpds_copy_time()  copy the time segment from one object to another. 
	 G.7.2 - kpds_copy_time_attr()  copy all time attributes from one object to another object. 
	 G.7.3 - kpds_copy_time_data()  copy all time data from one object to another object. 
	 G.7.4 - kpds_create_time()  create a time segment within a  data object. 
	 G.7.5 - kpds_destroy_time()  destroy the time segment in a data object. 
	 G.7.6 - kpds_query_time()  determine if the time segment exists in a data object. 

	 G.8 - Value Functions 
	 G.8.1 - kpds_copy_value()  copy the value segment from one object to another. 
	 G.8.2 - kpds_copy_value_attr()  copy all value attributes from one object to another object. 
	 G.8.3 - kpds_copy_value_data()  copy all value data from one object to another object. 
	 G.8.4 - kpds_create_value()  create a value segment within a  data object. 
	 G.8.5 - kpds_destroy_value()  destroy the value segment in a data object. 
	 G.8.6 - kpds_query_value()  determine if the value segment exists in a data object. 



	 3 - Geometry Data Services 
	 A - Geometry Data Services 
	 A.1 - Introduction 
	 A.1.1 - The Geometry Data Model 

	 A.2 - Overview of Geometry Service Primitives 
	 A.3 - The Application Programming Interface (API) 
	 A.3.1 - Geometry Object Functions 
	 A.3.2 - Geometry Primitive Functions 
	 A.3.3 - Primitive List Functions 
	 A.3.4 - Primitives and Data Vectors 
	 A.3.5 - Examples 

	 A.4 - Geometry Primitives and Associated Attributes 
	 A.5 - Geometry Service Functions 
	 A.5.1 - Object Functions 
	 A.5.2 - kgeom_new_object()  construct a new geometry object 
	 A.5.3 - kgeom_write_object()  write a geometry object 
	 A.5.4 - kgeom_read_object()  read a geometry object 
	 A.5.5 - kgeom_copy_object()  copy a geometry object 
	 A.5.6 - kgeom_blast_object()  free a geometry object 
	 A.5.7 - Primitive Functions 
	 A.5.8 - kgeom_new_primitive()  construct a new geometry primitive 
	 A.5.9 - kgeom_copy_primitive()  copy a geometry primitive 
	 A.5.10 - kgeom_blast_primitive()  destroy a geometry primitive 
	 A.5.11 - Primitive List Functions 
	 A.5.12 - kgeom_add_primitive()  add a primitive to a geometry object 
	 A.5.13 - kgeom_get_primitive()  get a primitive from a geometry object 
	 A.5.14 - kgeom_number_primitives()  count the number of primitives in the given object 
	 A.5.15 - Specialized Reading and Writing Functions 
	 A.5.16 - kgeom_start_writing_object()  write the first part of a geometry object 
	 A.5.17 - kgeom_write_primitive()  write a geometry primitive 
	 A.5.18 - kgeom_finish_writing_object()  write the last part of a geometry object 
	 A.5.19 - kgeom_done_writing()  close associated file after writing 
	 A.5.20 - kgeom_start_reading_object()  read the first part of a geometry object 
	 A.5.21 - kgeom_read_primitive()  read a geometry primitive 
	 A.5.22 - kgeom_finish_reading_object()  read the last part of a geometry object 
	 A.5.23 - kgeom_done_reading()  close associated file after reading 



	 4 - Color Data Services 
	 A - Color Data Services 
	 A.1 - Application Programming Interface (API) 

	 B - Color Attributes 
	 C - Color Interpretation 
	 D - Autocoloring Procedures and Colormap Operations 
	 D.1 - Types of Autocoloring Procedures 
	 D.2 - Available Autocoloring Procedures 
	 D.3 - Available Colormap Operations 

	 E - Color Data Services Functions 
	 E.1 - kcolor_set_attribute()  set the value of a color attribute in a data object. 
	 E.2 - kcolor_set_attributes()  set multiple color attributes in a data object. 
	 E.3 - kcolor_get_attribute()  get the values of a color attribute from a data object. 
	 E.4 - kcolor_get_attributes()  get multiple color attributes from a data object. 
	 E.5 - kcolor_match_attribute()  compare a color attribute  between two data objects. 
	 E.6 - kcolor_match_attributes()  compare multiple attributes between  two objects. 
	 E.7 - kcolor_copy_attribute()  copy a color attribute from  one data object to another. 
	 E.8 - kcolor_copy_attributes()  copy multiple attributes from one object to another. 
	 E.9 - kcolor_query_attribute()  query characteristics of a  color attribute. 
	 E.10 - kcolor_print_attribute()  print the value of a color attribute from a data object. 
	 E.11 - kcolor_gamut_object()  perform color quantization of 1..4 plane images 


	 5 - Data Management Services 
	 A - Introduction 
	 B - Presentation of Data  
	 B.1 - Casting 
	 B.2 - Scaling and Normalization 
	 B.3 - Padding and Interpolation 
	 B.4 - Conversion of Complex Data 
	 B.5 - Index Order Manipulation 

	 C - Attributes 
	 C.1 - Global Attributes 
	 C.2 - Segment Attributes 

	 D - Functions Provided By Data Management Services 
	 D.1 - Object Management 
	 D.1.1 - kdms_create()  create a temporary data object. 
	 D.1.2 - kdms_open()  create an object associated with an input or output transport. 
	 D.1.3 - kdms_close()  close an open data object. 
	 D.1.4 - kdms_reopen()  associate new data with an existing object 
	 D.1.5 - kdms_reference()  create a reference of a data object. 
	 D.1.6 - kdms_sync()  synchronize physical and presentation layers of a data object. 
	 D.1.7 - kdms_update_references()  update segment presentation of all reference objects. 
	 D.1.8 - kdms_close_hook()  insert a service to be called when an object is closed. 
	 D.1.9 - kdms_reference_list()  return a klist of references. 
	 D.1.10 - kdms_get_segment_names()  get an array of  segment names for the object specified. 

	 D.2 - Information 
	 D.2.1 - kdms_support()  obtain a list of file formats supported by data services. 

	 D.3 - Segment Management 
	 D.3.1 - kdms_query_segment()  determine if a data segment is available. 
	 D.3.2 - kdms_create_segment()  create a segment on a data object. 
	 D.3.3 - kdms_destroy_segment()  destroy a segment from a data object. 
	 D.3.4 - kdms_rename_segment()  rename a segment 

	 D.4 - Attribute Management 
	 D.4.1 - kdms_define_quasi_attribute()  define a quasi attribute 
	 D.4.2 - kdms_define_attribute()  define an attribute for for a session 
	 D.4.3 - kdms_undefine_attribute()  undefine a defined attribute 
	 D.4.4 - kdms_query_attribute_definition()  determines if an attribute is defined. 
	 D.4.5 - kdms_create_attribute()  instantiate an attribute 
	 D.4.6 - kdms_destroy_attribute()  destroy an attribute 
	 D.4.7 - kdms_vset_attribute()  open varargs set attribute 
	 D.4.8 - kdms_vset_attributes()  set attributes on a kvalist 
	 D.4.9 - kdms_set_attribute()  set the value of an attribute 
	 D.4.10 - kdms_set_attributes()  sets the values of multiple attributes 
	 D.4.11 - kdms_vget_attribute()  get a single attribute on a kvalist 
	 D.4.12 - kdms_vget_attributes()  get attributes on a kvalist 
	 D.4.13 - kdms_get_attribute()  get the value of an attribute within a segment of an abstract object. 
	 D.4.14 - kdms_get_attributes()  gets the values of a variable number of attributes within a single segment of an object. 
	 D.4.15 - kdms_match_attribute()  returns TRUE if the same segment attribute in two abstract data objects match. 
	 D.4.16 - kdms_vmatch_attributes()  returns true if the vararg list of segment attributes in two abstract data objects match. 
	 D.4.17 - kdms_match_attributes()  returns true if the list of segment attributes in two abstract data objects match. 
	 D.4.18 - kdms_copy_attribute()  copy an attribute from a  source object to a destination object. 
	 D.4.19 - kdms_vcopy_attributes()  copy attributes given in a kvalist 
	 D.4.20 - kdms_copy_attributes()  copy attributes from a  source object to a destination object. 
	 D.4.21 - kdms_query_attribute()  get information about an attribute 
	 D.4.22 - kdms_print_attribute()  print the value of an attribute 
	 D.4.23 - kdms_get_attribute_names()  get a list of attributes  from an object. 

	 D.5 - Interactivity Management 
	 D.5.1 - kdms_add_callback()  add a callback associated with an object's data or attribute. 
	 D.5.2 - kdms_remove_callback()  remove a callback associated with an object's data or attribute. 

	 D.6 - Data Manipulation 
	 D.6.1 - kdms_get_data()  get data from data object 
	 D.6.2 - kdms_put_data()  put data into object 
	 D.6.3 - kdms_copy_remaining_data()  copy remaining data 



	 6 - Structure Support 
	 A - Overview 
	 B - Passing Structures Between Programs 
	 C - Structure Specification File 
	 C.1 - Creating a Structure Specification File 
	 C.2 - Kgenstruct 
	 C.3 - What is Generated? 
	 C.4 - Software Object Types 
	 C.5 - Specification Language 
	 C.5.1 - Definitions 
	 C.5.2 - Declarations 
	 C.5.3 - Structure Versioning 
	 C.5.4 - C Preprocessing 
	 C.5.5 - Additional Notes 
	 C.5.6 - Example Specification File 


	 D - Data Services 
	 D.1 - Attributes Characteristics 
	 D.2 - Attributes Management 
	 D.3 - Handling Undefined or Mismatched Versioned Structures 
	 D.4 - Nuances of Attribute Assignment 
	 D.5 - Structure Storage within a Data Object 

	 E - Tutorial : Creating a Structure Support Library 

	 7 - Streaming Data Services 
	 A - Introduction 
	 B - Streaming Data Model 
	 C - Stream Functions 
	 C.1 - Sending Stream Functions 
	 C.1.1 - kds_open_send()  open a sending stream 
	 C.1.2 - kds_open_channel()  open a sending channel 
	 C.1.3 - kds_connect_channel()  connect an sending channel 
	 C.1.4 - kds_write_data()  write data down a sending channel 
	 C.1.5 - kds_close_channel()  close a sending channel 
	 C.1.6 - kds_close()  close a stream 

	 C.2 - Receiving Stream Functions 
	 C.2.1 - kds_open_recv()  open an receiving stream 
	 C.2.2 - kds_select_channel()  select next receiving channel with available data 
	 C.2.3 - kds_read_data()  read data from a receiving channel 

	 C.3 - Sending to Receiving Functions 
	 C.3.1 - kds_query_channel()  query a channel 
	 C.3.2 - kds_relay_channel()  relay a channel to a sending stream 
	 C.3.3 - kds_copy_channel()  copy a channel and associated data 

	 C.4 - Attribute Functions 
	 C.4.1 - kds_set_attribute()  set an attribute 
	 C.4.2 - kds_get_attribute()  get an attribute 
	 C.4.3 - kds_create_attribute()  create an attribute 
	 C.4.4 - kds_delete_attribute()  delete an attribute 
	 C.4.5 - kds_delete_attributes()  delete all attributes 
	 C.4.6 - kds_define_attribute()  define an attribute 
	 C.4.7 - kds_resend_attributes()  resend all attributes 
	 C.4.8 - kds_get_attribute_names()  get attribute names 

	 C.5 - Data Casting 
	 C.5.1 - kds_set_casting_buffer()  assign a buffer to use when casting 


	 D - Conversion routines 
	 E - Sending Example 
	 F - Receiving Example 
	 G - Sending and Receiving Example 


