
VisiQuest MANUALS

Programming Services Volume I

Foundation Services

AccuSoft Corp.
www.accusoft.com



Program Services Volume I

Chapter 0

Preface

Copyright (c) AccuSoft Corporation, 2004. All rights reserved.





Chapter 0 - Preface

A. About This Book

This volume is intended for the VisiQuest Toolbox programmer who wants to utilize the library routines avail-
able in VisiQuest Foundation Services to develop new programs. It is also intended for those who are using
VisiQuest as a software integration system, and wish to modify existing code such that it takes full advantage
of the capabilities provided by VisiQuest.

Foundation Services is the collective name for the six libraries available in the bootstrap toolbox. The applica-
tion program developed using Foundation Services will automatically capitalize on the portability derived from
the operation system abstraction provided by Foundation Services. Similarly, an application program using
Foundation Services will transparently obtain the capability to support the variety of data transport mecha-
nisms handled by Foundation Services. In addition, Foundation Services offers a variety of mathematical
functions, a symbolic expression parser, and a wide variety of commonly used functions and utilities.

Foundation Services is one of three major categories into which VisiQuest libraries are divided. Data Services
emcompasses the libraries in the dataser v toolbox; these libraries consist of routines for accessing and manip-
ulating data. GUI & Visualization Services, consisting of libraries in the design toolbox, provides routines for
visualizing data in the form of images and graphics. Together, Foundation Services, Data Services, and GUI &
Visualization Services contain all the libraries that are distributed with VisiQuest. Program Services refers to
all three services as a group. Each of three services in Program Services has its own volume in this set. Vol-
ume I, this book, deals exclusively with Foundation Services.

B. Assumptions

It is assumed that the reader is well-versed in the C programming language and is familiar with the UNIX
operating system. It is assumed that the reader has experience with system programming using the system
calls available in libc. Familiarity with routines available in libm is also helpful, but not necessary.

C. Organization

The first chapter gives an introduction to Foundation Services. This introduction includes an overview of Pro-
gram Services as a whole, in order to establish a context for discussing the different services that are available
as part of Foundation Services. Each of the following chapters is devoted to one of the services within Foun-
dation Services. The services included in Foundation Services are:

Basic Services

Math Services

Expression Services

Operating System Services

0-1



Preface Program Services Volume I - Chapter 0

D. Conventions

The following conventions are used in this manual.

1. Non-VisiQuest function names, library names, and program names appear in italics.

2. VisiQuest function names appear in courier.

3. VisiQuest library names appear in helvetica.

4. VisiQuest program names appear in helvetica.

5. VisiQuest toolbox names appear in helvetica.

6. Code and file excerpts appear in courier.

7. Specific filenames and directory paths appear in courier.

8. Command line examples and instructions appear in courier.

9. For emphasis, some words appear in italics.

E. Related Books

Related books on VisiQuest include:

VisiQuest Installation Guide

Introduction to VisiQuest

Application Toolboxes

Toolbox Programming

Visual Programming

Program Services Volume II, Data Services

Program Services Volume III, GUI & Visualization Services

0-2



Table of Contents

A. About This Book . . . . . . . . . . . . . . . . . . . . . . . . . .  0-1
B. Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0-1
C. Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0-1
D. Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0-2
E. Related Books . . . . . . . . . . . . . . . . . . . . . . . . . . .  0-2

- i -



Preface Program Services Volume I - Chapter 0

This page left intentionally blank

- ii -



Program Services Volume I

Chapter 1

Introduction

Copyright (c) AccuSoft Corporation, 2004. All rights reserved.





Chapter 1 - Introduction

A. About Foundation Services

Foundation Services is the collective name for the six libraries available in the bootstrap toolbox. The appli-
cation program developed using these function calls will automatically gain the portability provided by Foun-
dation Services. An application program using Foundation Services will transparently obtain the capability to
support a variety of data transport mechanisms, including files, mmap, and shared memory. In addition, Foun-
dation Services offers an assemblage of mathematical functions, a symbolic expression parser, and a wide vari-
ety of commonly-used functions and utilities.

VisiQuest libraries are divided into three major categories: Foundation Services, Data Services, and
GUI & Visualization Services. Program Services refers to all three categories as a group. Foundation Services
encompasses several distinct Program Services libraries. Data Services encompasses the libraries in the
dataser v toolbox. These libraries consist of routines for accessing and manipulating data. GUI & Visualiza-
tion Services encompasses the libraries in the design toolbox. These libraries consist of routines for visualiz-
ing data in the form of images and graphics. Together, Foundation Services, Data Services, and GUI & Visual-
ization Services contain all the libraries that are distributed within VisiQuest.

The following section provides an overview of Program Services.

B. Overview of Program Services

VisiQuest Program Services is a large group of libraries that are layered to provide the software developer with
a variety of programming interfaces that trade off reduced complexity against detailed control. Program Ser-
vices consists of three categories: Foundation Services, Data Services, and GUI Visualization Services. Each
Program Services category is comprised of one or more distinct libraries.

While this volume deals exclusively with Foundation Services, an overview of Program Services as a whole
follows in order to provide a context for understanding the role of Foundation Services.

1-1



Introduction Program Services Volume I - Chapter 1

Data Services GUI & Visualization Services

Foundation Services

general utilities

strings, arrays, lists

memory allocation

string-to-token

math utilities

complex &
double complex
arithmetic

matrix arithmetic

sequence 
generation

interpolation

symbolic

expression

parser

data transport

distributed computing

process execution

database access

UIS interpretation

User Interface
Services

Operating
System

Services
Expression

Services
Math

Services
Basic

Services

data models:
   polymorphic,
   color, geometry

data format conversion

data type conversion

large data sets

multidimensional data

Application
Data Services

GUI Objects

GUI creation/management

manager object / layout

event handlers, callbacks

action & input handlers

VisiQuest widget set
visual objects for:

   image / animation display
   2D / 3D plotting
   pseudocolor, thresholding
   circles, markers, lines,
   rectangles, polylines, etc.

GUI
Services

Visualization
Services

CLUI parsing

Figure 1: The VisiQuest software infrastructure is composed of three major Program Services cat-
egories: Data Services, GUI & Visualization Services and Foundation Services. Each Program Services
category is comprised of one or more distinct libraries.

B.1. Foundation Services

Foundation Services encompasses several distinct Program Services. Together, these services fulfill all the
requirements of the VisiQuest software infrastructure that do not deal with either data processing or data dis-
play. Foundation Services provides an extensive Application Programming Interface (API) which ensures
portability by introducing a POSIX-compliant layer of abstraction over the operating system. These services
also equip the software developer with an extensive range of functionality, ranging from math utilities to dis-
tributed computing. Furthermore, use of VisiQuest Foundation Services ensures application capability with the
VisiQuest visual programming environment, cantata.

1-2



Introduction Program Services Volume I - Chapter 1

Foundation Services is divided into a number of specific services: Basic Services, Mathematical Services,
Operating System Services, Expression Services, and User Interface Services.

Basic Services
Basic Services equips the software developer with a broad range of commonly-used functions and
utilities, including a large number of utility functions that are able to handle memory allocation,
string manipulation, string parsing, and message reporting.

Mathematical Services
Mathematical Services provides machine-independent implementations of common mathematical
operations when not natively available, and offers a variety of useful extensions to the standard
mathematical functions. Routines in Mathematical Services are designed to be highly portable
and efficient.

Operating System Services
Operating System Services ensures portability by isolating VisiQuest from the operating system.
It extends the capabilities of the operating system and allows seamless integration with cantata.
It hides the details of data transports such as files, sockets, shared memory, memory mapped,
stream, and pipes. It also transparently supports distributed computing. The API is modeled after
UNIX function calls and therefore existing applications can be quickly and easily converted to
Foundation Services.

Expression Services
Expression Services offers a symbolic expression parser that is used to evalute mathmatical equa-
tions and functions. It also supports the definition classes and methods.

User Interface Services
User Interface Services provides low-level support necessary to maintain the standardized Com-
mand Line User Interface (CLUI) of VisiQuest 2001 programs. User Interface Services also han-
dles the translation of User Interface Specification (UIS) files into the program CLUI’s, and
usable data structures to modify GUI and CLUI interfaces at run time.

B.2. Data Services

Data Services comprises a powerful system for accessing and manipulating data. The objective of Data Ser-
vices is to provide the application programmer with the ability to access and operate on data while remaining
independent of the data’s file format or its physical characteristics such as size or data type. Data Services is
designed to address the needs of a large number of application domains, from image and signal processing to
geometry visualization and numerical analysis.

B.3. GUI & Visualization Services

1-3



Introduction Program Services Volume I - Chapter 1

GUI & Visualization Services provides all capabilities related to graphical display using X Windows. It con-
tains all the functions needed to create, interactively change, and maintain a Graphical User Intererface (GUI).
GUI & Visualization Services also offers an extensive body of visualization capabilities, including image dis-
play and manipulation, colormap control, 2D plotting, 3D plotting, surface rendering, and annotations.

Data Services

kappserv (libkaps.so)

kdataman (libkdms.so)

kgeom (libkgeom.so)

kapputils (libkapu.so)

B
O
O
T
S
T
R
A
PBasic & Operating

System Services Math Services
User Interface

Services Expression Services

xvlang (libxvl.so)

 FOUNDATION SERVICES 

D
A
T
A
S
E
R
V

 DATA SERVICES 

xvforms (libxvf.so)

xvutils (libxvu.so)

xvobjects (libxvo.so)

kwidgets (libkwd.so)

xvwidgets (libxvw.so)

D
E
S
I
G
N

xvisual (libsvs.so)

xvimage (libxvi.so)

xvannotate (libxva.so)

xvplot (libxvp.so) E
N
V
I
S
I
O
N

I
M
A
G
I
N
E

 GUI SERVICES   VISUALIZATION SERVICES 

kutils (libku.so)
klibc (libkc.so)

kmath (libklm.so)
kforms (libkvf.so)
kclui (libkclui.so) kexpr (libkexpr.so)

Figure 2: Program Services is comprised of libraries from the various VisiQuest toolboxes, bootstrap,
devel, dataser v, design, imagine, and envision. Foundation Services is part of the bootstrap toolbox,
and includes the klibc, kutils, klibm, and kexpr libraries. Data Services is provided in the dataser v tool-
box, and is made up of the kappserv, kapputils, kdataccess, kdataman, kjpg, kdatafmt, and kgeom
libraries. GUI and Visualization Services is in the design, imagine, and envision toolboxes, and
includes the kwidgets, xvforms, xvutils, xvwidgets, xvobjects, xvannotate, xvgraphics, xvimage, xvplot, xvi-
sual, klang, and xvlang libraries.

C. Volume Overview

Program Services is comprised of libraries from the three required VisiQuest toolboxes: bootstrap,
design and dataser v. The bootstrap toolbox contains all of the libraries that make up Foundation Services.
The klibc and kutils library contains some routines that are part of Basic Services and others that are part of
Operating System Services. The klibm library contains all the routines included in Mathematical Services.
The kexpr library implements the symbolic expression parser and the associated utilities which form

1-4



Introduction Program Services Volume I - Chapter 1

Expression Services. In addition, the kforms and kclui libraries together comprise User Interface Services.
User Interface Services is not documented in this book. Unlike the other services of Foundation Services, User
Interface Services does not contain library routines that have a public Application Programming Interface
(API). User Interface Services library routines are subject to change without notice between release, and are
used by other routines to manipulate CLUI and GUI’s at runtime, and for code generation. They are reserved
for internal use by other VisiQuest libraries and are not documented in this or any other volume.

The data structures used by the Foundation Services routines are defined in the include directory of the boot-
strap toolbox. The function descriptions contained in this manual can be supplemented with UNIX man pages
or with a C Library Reference Manual for further understanding.

A system call is a call to a function which requires the operating system to perform a particular task for the
application, such as writing to a file (which requires the operating system to write a buffer to disk). Such func-
tions are typically included in libraries which are distributed with the operating system, such as libc. In order
to provide a layer of abstraction over the operating system and thus ensure portability across a wide variety of
computer architectures, Foundation Services provides system calls to replace most of the system calls that are
typically used in an application.

A library call is a call to a function provided in a library. It does not require the operating system to perform
the task, such as the add function (which sums two numbers without need for operating system intervention).
A number of such functions are provided by libraries which are distributed with the operating system along
with the system libraries. An example of such is the libm library which provides a number of mathematical
functions for use by the application. In order to provide better error checking in addition to portability (some
functions that are provided with some operating systems may not be provided with other operating systems),
Foundation Services offers library calls to replace a number of the library calls that are typically used in a pro-
gram.

VisiQuest replacements for both system calls and library calls always begin with a k followed by the
function name. Thus, the system call to the libc function read() would become a system call to the VisiQuest
 function kread() when programming with Foundation Services.

1-5



Introduction Program Services Volume I - Chapter 1

The remaining chapters of this volume have been organized to detail the services that comprise Foundation
Services.

Chapter 2, Basic Services
This chapter details a number of VisiQuest library calls that are meant to replace libc
library calls. The VisiQuest counterparts to the libc library calls in question have been
enhanced with better error checking, more robustness and, in some cases, more flexibility. As
well as providing substitutes for a number of the libc calls, Basic Services also provides a number
of utility functions that go beyond the capabilities of libc. Basic Services contains functions that
perform string processing and tokenization of strings, retrieve system information and handle
message reporting, string parsing, memory allocation, file and directory path manipulation, and
array and linked list creation and maintenance.

Basic Services also includes routines with which to use the VisiQuest Database Manage-
ment System. The VisiQuest database system is a simple key/value system similar in API
to the dbm API found on most UNIX systems. It should be noted that the kdbm calls, unlike the
UNIX dbm calls, are manipulated completely in memory and are only stored on disk when
kdbm_close is called on the open database pointer.

Chapter 3, Mathematical Services
This chapter covers the routines that control floating-point processing and compute common
mathematical functions. The contents of the math libraries that are distributed with various oper-
ating systems, such as libm, tend to vary with the architecture. Mathematical Services routines, in
contrast, have been designed to compensate for the fact that some math routines may be missing
or renamed on some architectures. Thus, use of the architecture-independent Mathematical Ser-
vices routines will ensure portability of an application. Note that in most cases, the k* math calls
are the same as the system math call. This is done so that user code does not lose any hardware
specific speedups gained by using the vendor math call. So, using the k* call, insures portability,
without loss of efficency.

In addition, useful extensions have been made to the standard body of math functions so that
Mathematical Services offers a greater range of mathematical utilities than are provided with stan-
dard math libraries such as libm. Mathematical Services provides single- and double-precision
complex arithmetic functions, as well as a set of matrix algebra routines. Data-type conversion,
and scaling and normalization are also furnished with Math Services. Functions to generate ran-
dom numbers and sequences are also provided.

Chapter 4, Expression Services
This chapter explains the use of the VisiQuest symbolic expression parser. This expres-
sion parser processes mathematical expressions and evaluates the results. The expression parser
is used in cantata for variable parameters and control operators. It is also used in xpr ism to sup-
port interactive evaluation and plotting of 2D and 3D functions.

The expression parser supports a large variety of data types: byte, int, unsigned int, long, unsigned
long, double, unsigned double, complex, double complex, and string. New types can also be con-
structed. Mathematical expressions that use functions supported by Mathematical Services can
also be evaluated.

1-6



Introduction Program Services Volume I - Chapter 1

Chapter 5, Operating System Services
This chapter details a number of VisiQuest system calls that are meant to replace libc sys-
tem calls. The VisiQuest counterparts to the libc system calls have been expanded to sup-
port a variety of data transport mechanisms, including files, sockets, and shared memory, thus
providing the transparent capability to support each of these methods of transporting data between
processes.

Each chapter begins with a table of contents. In each chapter, routine descriptions are divided into task group-
ings. For example, in Chapter 2, Basic Services there are sections on string processing, tokenized strings,
memory allocation, and so on. Each section begins with an introduction that explains concepts needed to
understand and use the functions. The introduction is followed by an alphabetical list of all the functions
detailed in the section. Then, each function is detailed with a reference entry that provides a structured guide
to the purpose, syntax, and usage of the function. The reference entries for the functions use a standardized
template that includes the function name, synopsis, input arguments, output arguments, return values, descrip-
tion, side effects, and restrictions. If an element of the reference entry does not apply, it is left out. For exam-
ple, if a function has no output arguments, the "Output Arguments" field of the reference entry is omitted. The
following template depicts the layout of reference entries for functions:

C.1. function_name() — short function description

Synopsis
return_data_type function_name(

data_type input_1,
data_type input_2,
data_type output_1,
data_type output_2)

Input Arguments
input_1

input argument 1 description
input_2

input argument 2 description

Output Arguments
output_1

output argument 1 description
output_2

output argument 2 description

Returns
what the function returns

1-7



Introduction Program Services Volume I - Chapter 1

Description
Detailed description of the function

Side Effects
side effects of the function (if any)

Restrictions
restrictions of the function (if any)

1-8



Table of Contents

A. About Foundation Services . . . . . . . . . . . . . . . . . . . . . . .  1-1
B. Overview of Program Services . . . . . . . . . . . . . . . . . . . . . .  1-1

B.1. Foundation Services . . . . . . . . . . . . . . . . . . . . . . . .  1-2
B.2. Data Services . . . . . . . . . . . . . . . . . . . . . . . . . .  1-3
B.3. GUI & Visualization Services . . . . . . . . . . . . . . . . . . . . .  1-3

C. Volume Overview . . . . . . . . . . . . . . . . . . . . . . . . . .  1-4
C.1. function_name() — short function description . . . . . . . . . . . . . . . .  1-7

- i -



Introduction Program Services Volume I - Chapter 1

This page left intentionally blank

- ii -



Program Services Volume I

Chapter 2

Basic Services

Copyright (c) AccuSoft Corporation, 2004. All rights reserved.





Chapter 2 - Basic Services

A. Introduction

Basic Services offers a broad range of commonly-used functions and utilities. All Basic Services routines are
located in the kutils (libku.a) and klibc (libku.a) libraries of the bootstrap toolbox.

The string utilities provided are more robust, flexible versions of those provided in libc. Increased error check-
ing allows the string utilities to handle NULL pointers appropriately rather than causing a core dump in the
calling program. There are a number of expanded convenience routines as well; these provide functionality
that goes beyond the offerings of libc, such as the concatenation of three strings, automatic replacement of sub-
strings within a string, deletion of leading and ending whitespace, and case-insensitive string comparisons.

The basic string utilities are augmented by tokenized string utilities; these allow you to greatly increase effi-
ciency of code that involves string manipulation by associating each unique string with a unique token. At any
time, a string may be translated into its corresponding token and vice versa. Thus, expensive searches involv-
ing string comparisons are easily changed to more efficient searches using integer comparisons. The result is a
significant increase in speed.

Basic Services also offers a standardized message reporting system. These utilities allow you to use prede-
fined, standard methods of reporting errors, warnings, and general information. Prompting for specific infor-
mation as well as the special case for prompting before a file over-write are also supported. These routines
work consistently with the context of the program from which they are called. If they are called from an
xvroutine (or from a kroutine accessed from the visual programming language cantata), they will be displayed
appropriately in a graphical pop-up window format. In contrast, if they are called by a kroutine run from the
command line, they will be displayed as text in the terminal.

A set of program information utilities is provided in Basic Services. These utilities allow you to obtain general
information about the program that is running, such as the number of command line arguments (argc), the
command line argument list (argv), the program name, the name of the toolbox in which the program exists,
the environment variable list, and so on. These utilities are most often used by libraries to obtain information
about the calling program rather than the programs themselves, which have most of this information readily
available in the usual form.

The string parser offered by Basic Services is an integral part of the VisiQuest software development
system. In addition to fulfilling general string parsing needs of various VisiQuest programs, the string
parser makes it possible for library routine source code headers to be translated into man pages and for the
code generators to modify files containing tags.

The memory allocation utilities standardize the result of zero byte allocation requests and will always return
NULL for such requests. Depending on operating system implementation, their libc counterparts will some-
times return NULL and other times allocate a single byte. Thus, in order to preserve portability, the memory
allocation utilities included in Basic Services should always be used in place of their libc counterparts.

2-1



Basic Services Program Services Volume I - Chapter 2

Another group of features offered by Basic Services involves file path and directory path manipulation. Rou-
tines to expand a path, expand a filename, strip a filename from a file path, strip the directory from a file path,
create a unique name for a file in TMPDIR, create a new directory, remove a directory, and so on are provided.
Environment variables may also be obtained, set, and removed.

The array creation and manipulation routines provided by Basic Services provide a comprehensive set of oper-
ations on arrays. These routines support all standard VisiQuest data types, such as KINT, KFLOAT ,
KDOUBLE, KSTRING, KSTRUCT, etc. A comprehensive set of linked list creation and manipulation rou-
tines are also offered by Basic Services.

Using the routines and features offered in Basic Services ensures that new programs will maintain consistency
with the entirety of VisiQuest.

Every section begins with a list of the utilities available, followed by an in-depth detailing of each utility.

ALL programs that utilize these routines MUST include the statement:

#include "bootstrap.h"

Note that this include file is usually automatically included by the public include file that is named after your
toolbox. So it is almost never necessary to directly add the above #include to your code.

B. String Utilities

The following section details the string utilities that are a part of the klibc library.

B.1. Introduction to String Utilities

There is a large collection of utilities for string creation, comparison, modification, and inquiry. The VisiQuest
 basic string utilities are more robust than those available in libc. These string utilities check for
NULL. Routines beginning with kstring_ allocate strings and store the results in a string that you provide.

• kstrcasecmp() - do a case insensitive string compare
• kstrcat() - concatenate two strings
• kstrchr() - find a character in a string
• kstrcmp() - compare two strings
• kstrcpy() - copy a string
• kstrcspn() - return the number of characters not matched
• kstrdup() - return a duplicate of the input string
• kstrlen() - return the length of a string
• kstrncasecmp() - do a case insensitive string compare on n characters
• kstrncat() - concatenate up to n characters on a string
• kstrncmp() - compare the first n characters of two strings
• kstrncpy() - copy the first n characters in a string
• kstrpbrk() - find the first occurrence of a character from a set of chararacters
• kstrrchr() - rev erse scan a string to find a character
• kstrspn() - return the number of matched characters

2-2



Basic Services Program Services Volume I - Chapter 2

• kstrstr() - find a substring within a string
• kstrtok() - find a token within a string
• kchar_replace() - replace a character with another through a string
• kstring_capitalize() - convert a string to its capitalized equivalent
• kstring_3cat() - concatenate three strings together
• kstring_cat() - concatenate two strings
• kstring_cleanup() - remove white space from the ends of a string
• kstring_copy() - copy a string
• kstring_detab() - remove tabs from a string
• kstring_lower() - convert a string to lower case.
• kstring_ncat() - concatenate two partial strings
• kstring_ncopy() - copy up to n characters of a string
• kstring_replace() - replace one substring with another
• kstring_subcmp() - compares two sub-strings
• kstring_upper() - convert a string to upper case.
• kstring_seddata() - perform text changes with one or more sets of substitution rules

B.2. Definitions of String Utilities

B.2.1. kstrcasecmp() — do a case insensitive string compare

Synopsis
int kstrcasecmp(

const char *istr1,
const char *istr2)

Input Arguments
istr1

The first input string to compare.
istr2

The second input string to compare.

Returns
If the two strings are identical, ignoring case differences, the value of 0 is returned. If the two strings
differ, the difference of ASCII values between the first character in each string that differs will be
returned. If the ASCII value of the differing character in ’istr1’ is greater than the one in ’istr2’, then
the return value is positive, and implies that ’istr1’ is greater than ’istr2’. If the difference between the
two ASCII values is negative, the return value implies that ’istr2’ is greater than ’istr1’.

Description
This function does a case insensitive comparison of two strings. It does a character by character com-
parison of both input strings, ignoring the case of alphabetic characters, until the current character for
one string is not equal the current character in the other string. This continues until the end of one or
both of the strings is reached. It protects against NULL on the input strings by replacing NULL

2-3



Basic Services Program Services Volume I - Chapter 2

pointers with a reference to an empty string.

Examples
The following example takes two strings that are equal if you ignore case, and passes them to string
compare.

char *s1 = "John Doe";
char *s2 = "john DOE";
int result;

result = kstrcasecmp(s1, s2);
kprintf("The result is ’%d’\n", result);

The output that will be printed is 0.

B.2.2. kstrcat() — concatenate two strings

Synopsis
char *kstrcat(

char *ostr,
const char *istr)

Input Arguments
ostr

The first string to concatenate.
istr

The second string to concatenate.

Output Arguments
ostr

The resulting combined output string.

Returns
A pointer to ’ostr’ after all the characters in ’istr’ are appended onto ’ostr’. It will return NULL if ’ostr’
is NULL. If ’istr’ is NULL, ’ostr’ is returned unchanged.

Description
This function concatenates one string to another. kstrcat appends all the characters from ’istr’ to the
end of ’ostr’, terminating the resulting string with a null character.

Note that the calling routine must make sure that ’ostr’ points to a memory buffer large enough to hold
the concatenated string and terminating null character. If the buffer is not large enough, memory will
be overwritten resulting in unpredicable program failure.

2-4



Basic Services Program Services Volume I - Chapter 2

Examples
The following example contenates two strings ’s1’ and ’s2’, and to generate a well known sentence.

char s1[KLENGTH] = { ’H’, ’e’, ’l’, ’l’, ’o’ };
char *s2 = " World.\n";
char *result;

result = kstrcat(s1, s2);
kprintf("%s", result);

The output is a single line saying ’Hello World’, and the pointer ’result’ is pointing to the ’s1’ array.

B.2.3. kstrchr() — find a character in a string

Synopsis
char * kstrchr(

const char *istr,
int character)

Input Arguments
istr

The string to scan.
character

The character to look for in ’istr’.

Returns
A pointer to the address in the input string where the ’character’ character is located. NULL is
returned if ’character’ is not in the input string, or if the input string is NULL.

Description
This function finds the first occurence of a specified character in a given string. This routine is similar
to the system strchr() call. kstrchr() searches the input string, ’istr’, for the first occurrence of a charac-
ter, the search, and can be the specified character to search for.

Examples
The following example takes a sentence, and uses kstrchr() to shorten it for use in a different sentence.

char *s1 = "Hello World.";
char *result;

result = kstrchr(s1, ’W’);
kprintf("Goodbye Cruel %s\n", result);

2-5



Basic Services Program Services Volume I - Chapter 2

The output string is ’Goodbye Cruel World.’

B.2.4. kstrcmp() — compare two strings

Synopsis
int kstrcmp(

const char *istr1,
const char *istr2)

Input Arguments
istr1

A character pointer to the first string.
istr2

A character pointer to the second string.

Returns
If the two strings are identical, the value of 0 is returned. If the two strings differ, the ASCII value dif-
ference of the first character that differs in the two strings will be returned. If the ASCII value of the
differing character in istr1 is greater than the one in istr2, then the return value is positive, and implies
that istr1 is greater than istr2. If the difference between the two ASCII values is negative, the return
value implies that istr2 is greater than istr1.

Description
This function does a comparison of two strings. It is a replacement for the system strcmp(). It does a
character by character case sensitive comparison of both input strings until the current character for
one string does not equal the current character of the other string, or until the end of the input strings
are reached. It protects against NULL on the input strings by replacing NULL pointers with a refer-
ence to an empty string.

Examples
The following example repeats the kstrcasecmp() example.

char *s1 = "John Doe";
char *s2 = "john DOE";
int result;

result = kstrcmp(s1, s2);
kprintf("The result is ’%d’\n", result);

The result of this compare is -32 instead of 0, since that is the result of the difference ’J’ - ’j’.

2-6



Basic Services Program Services Volume I - Chapter 2

B.2.5. kstrcpy() — copy a string

Synopsis
char *kstrcpy(

char *ostr,
const char *istr)

Input Arguments
istr

The string to copy from.

Output Arguments
ostr

The string to copy into.

Returns
A pointer to the copied string ’ostr’ after ’istr’ is copied to ’ostr’. If ’istr’ is NULL, ’ostr’ is returned
without modification. If ’ostr’ is NULL, then NULL is returned.

Description
This function copies one string to another. This function is similar to system call strcpy(). kstrcpy() is
used used to copy each character in the input string to the output string. The terminating null character
of the input string is copied so that the input and output strings are exact copies. Thus, ’ostr’ is over-
written.

Note that the calling routine must ensure that ’ostr’ points to a memory buffer large enough to hold the
copied string and terminating null character. If the buffer is not large enough, memory will be over-
written resulting in unpredicable program failure.

Examples
The following example copies strings ’s1’ to ’s2’.

char s2[KLENGTH];
char *s1 = "Hello World.\n";
char *result;

result = kstrcpy(s2, s1);
kprintf("%s", result);

The output is a single line saying ’Hello World’, and the pointer ’result’ is pointing to the ’s2’ array.

2-7



Basic Services Program Services Volume I - Chapter 2

B.2.6. kstrcspn() — return the number of characters not matched

Synopsis
size_t kstrcspn(

const char *istr,
const char *charset)

Input Arguments
charset

The set of characters to use for counting.

Returns
The number of characters not matched in the input string, from the ’charset’, or 0 if the input string or
character set string are NULL.

Description
This function returns the length of a portion of the input string not matching any of the characters in
specifiec set of characters. It is similiar to the system routine strcspn().

It counts the number of characters at the start of the input string that consist entirely of characters not
in list of characters specified by ’charset’. The count stops at the first character in ’string’ that is in
’charset’.

Examples
The following example uses kstrcspn() to determine the number of non-vowels that appear before the
first vowel.

char *str = " This is my input string";
int non_vowels = 0;

non_vowels = kstrcspn(str, "aeiou");
kprintf("The number of non_vowels = %d\n", non_vowels);

The result, stored in ’non_vowels’, will be 6.

2-8



Basic Services Program Services Volume I - Chapter 2

B.2.7. kstrdup() — return a duplicate of the input string

Synopsis
char *kstrdup(

const char *istr)

Input Arguments
istr

The string to be duplicated.

Returns
A pointer to the duplicated string. This routine will return NULL on a memory allocation error, or if
the input string is NULL.

Description
This function allocates memory and copies the input string into that space. This routine is similiar to
the system routine strdup. It uses kdupalloc() to create a memory buffer large enough to hold the
string passed into this routine and copyies the input string to the buffer. This buffer is then returned to
the user.

Examples
This example initialized the a pointer to be a memory buffer with a string in it. This buffer can then be
modified by the rest of the routine. Since memory is allocated, a call to kfree_and_NULL() will free
the buffer when the buffer is no longer needed.

char *str = kstrdup("this sentence needs a capital t at the "
"start.");

if (str == NULL)
{

kerror(NULL, NULL, "Cannot malloc space for the string");
return;

}
str[0] = ’T’;
kprintf("%s\n", str);

The resulting print will be ’This sentence needs a capital t at the start.’

B.2.8. kstrlen() — return the length of a string

2-9



Basic Services Program Services Volume I - Chapter 2

Synopsis
size_t kstrlen(

const char *istr)

Input Arguments
istr

The string to get the length of.

Returns
The number of characters in the string. On a NULL input string, a value of 0 is returned.

Description
This routine finds the length of a string. This routine is similiar to the system routine strlen(). It counts
the number of characters in a string until it reaches a null (’\0’) character. This routine is better than
many standard unix strlen() routines, because it treats a NULL pointer as an empty string, which
returns a length of zero.

Examples
This is a very simple example that prints the length of the input string.

char *str = "1234";
kprintf("The length is ’%d’\n", kstrlen(str));

The resulting length is 4, because the null terminating character is not counted.

B.2.9. kstrncasecmp() — do a case insensitive string compare on n characters

Synopsis
int kstrncasecmp(

const char *istr1,
const char *istr2,
size_t num)

Input Arguments
istr1

The first string to compare.
istr2

The second string to compare.
num

The number of bytes to compare.

Returns
If the two strings are identical up to the specified byte, or end of string the value of 0 is returned. If the

2-10



Basic Services Program Services Volume I - Chapter 2

two strings differ, the ASCII value difference of the first character that differs in the two strings will be
returned. If the ASCII value of the differing character in ’istr1’ is greater than the one in ’istr2’, then
the return value is positive, and implies that ’istr1’ is greater than ’istr2’. If the difference between the
two ASCII values is negative, the return value implies that ’istr2’ is greater than ’istr1’.

Description
This routine does a case insensitive comparison of two strings for a specified number of bytes. This
routine is a replacement for the system strncasecmp(). It does a character by character case insensitive
comparison of both input strings until the current character for one string does not equal the current
character of the other string, until the end of the input strings are reached, or until num characters have
been compared. It protects against NULL on the input strings by replacing NULL pointers with a ref-
erence to an empty string.

Examples
This example uses strcasecmp twice on the same strings and different ’num’ values.

char *s1 = "SAME-DIFFERENT";
char *s2 = "Same-Really Different";
int same, different;

same = kstrncasecmp(s1, s2, 5);
different = kstrncasecmp(s1, s2, 10);
printf("same is %d\ndifferent is %d\n", same, different);

the resulting output will be:

same is 0
different is -14

because up to the fifth character they are the same, and on the sixth character the returned result will be
’D’ - ’R’.

2-11



Basic Services Program Services Volume I - Chapter 2

B.2.10. kstrncat() — concatenate up to n characters on a string

Synopsis
char *kstrncat(

char *ostr,
const char *istr,
size_t num)

Input Arguments
ostr

The base string to concatenate.
istr

The string to concatenate to the base.
num

The number of characters in ’istr’ to concat onto ’ostr’. If the specified number is larger than the
length of istr, then this function stops at the null character. If ’num’ is less than or equal to zero, ’ostr’
is left unchanged.

Output Arguments
ostr

The resulting combined output string.

Returns
A pointer to the concatenated string ’ostr’ after ’num’ characters of ’istr’ are appended onto the end of
’ostr’. It will return NULL, if ’ostr’ is NULL. If ’istr’ is NULL or num is less than or equal to zero,
’ostr’ is returned unchanged.

Description
This function concatenates a specified number of characters one string to another. This function is
similar to system call strncat(). kstrncat() appends upto ’num’ characters from ’istr’ to the end of
’ostr’.

Note that the calling routine must make sure that ’ostr’ points to a memory buffer large enough to hold
the concatenated string and terminating null character. If the buffer is not large enough, memory will
be overwritten resulting in unpredicable program failure.

Examples
This example partially combines two strings into a familiar saying.

char *s1 = "I’m sorry Dave. ";
char *s2 = "I’m afraid I can’t do that. It is too "

"complicated.";
char result[KLENGTH];

kstrcpy(result, s1);

2-12



Basic Services Program Services Volume I - Chapter 2

s1 = kstrncat(result, s2, 27);
kprintf("%s\n", s1);

The output is ’I’m sorry Dave. I’m afraid I can’t do that.’

B.2.11. kstrncmp() — compare the first n characters of two strings

Synopsis
int kstrncmp(

const char *istr1,
const char *istr2,
size_t num)

Input Arguments
istr1

A character pointer to the first string.
istr2

A character pointer to the second string.
num

The number of characters to compare.

Returns
If the two strings are identical or ’num’ is less than or equal to zero, the value of 0 is returned. If the
two strings differ, the ASCII value difference of the first character that differs in the two strings will be
returned. If the ASCII value of the differing character in ’istr1’ is greater than the one in ’istr2’, then
the return value is positive, and implies that ’istr1’ is greater than ’istr2’. If the difference between the
two ASCII values is negative, the return value implies that ’istr2’ is greater than ’istr1’.

Description
This routine is a replacement for the system strcasecmp. It does a character by character case sensitive
comparison of both input strings until the current character for one string does not equal the current
character of the other string, until the end of the input strings are reached, or until num characters have
been compared. It protects against NULL on the input strings by replacing NULL pointers with a ref-
erence to an empty string.

Examples
This example is similar to the kstrncasecmp() example. It calls kstrncmp twice on the same two
strings with different values of ’num’.

char *s1 = "Same-DIFFERENT";
char *s2 = "Same-different";

kprintf("Same is %d\n", kstrncmp(s1, s2, 5));

2-13



Basic Services Program Services Volume I - Chapter 2

kprintf("Different is %d\n", kstrncmp(s1, s2, 10));

The output will be:

Same is 0
Different is -32

B.2.12. kstrncpy() — copy the first n characters in a string

Synopsis
char *kstrncpy(

char *ostr,
const char *istr,
size_t num)

Input Arguments
istr

The string to copy from.
num

The number of characters to copy.

Output Arguments
ostr

The string to copy into.

Returns
A pointer to ’ostr’ after up to num ’istr’ is copied to ’ostr’. If ’ostr’ is NULL, then NULL is returned.
If ’istr’ is NULL or num is less than or equal to zero, then ’ostr’ is returned unchanged.

Description
This function copies a specified number of characters from one string to another. This function is sim-
ilar to system call strncpy(). kstrncopy() copies up to num characters in the input string to the output
string.

Note that the calling routine must ensure that ’ostr’ points to a memory buffer large enough to hold the
copied string and terminating null character. If the buffer is not large enough, memory will be over-
written resulting in unpredicable program failure.

2-14



Basic Services Program Services Volume I - Chapter 2

B.2.13. kstrpbrk() — find the first occurrence of a character from a set of chararacters

Synopsis
char *kstrpbrk(

const char *istr,
const char *sub_str)

Input Arguments
istr

The string to search for a character.
sub_str

The string holding the set of characters to look for.

Returns
If one of the characters in ’sub_str’ is found in ’istr’, a pointer indicating the address of the character it
found in ’istr’ is returned. If no characters in the ’sub_str’ string appear in ’istr’, a NULL is returned.

This routine also protects against NULL on both the input and substring variables. If either is NULL,
the value of NULL is returned.

Description
This function locates the position of the first occurrence in the input string of any character from a
specified set of characters. This routine is a replacement for the system library routine strpbrk() with
some extra protection against NULL input strings. It searches the input string, ’istr’, for the first
occurrence of any character in a set of characters, specified by the ’sub_str’ string.

B.2.14. kstrrchr() — re verse scan a string to find a character

Synopsis
char *kstrrchr(

const char *istr,
int character)

Input Arguments
istr

The input string to scan.
character

The character to search for.

Returns
A pointer to the address in the input string, ’istr’, where the last occurrence of the ’character’ character

2-15



Basic Services Program Services Volume I - Chapter 2

is. NULL is returned if ’character’ is not in the input string, or if a NULL input string is provided.

Description
This function finds the last occurrence of a specified character in a string and it is similar to the system
call strrchr(). kstsrrchr() searches the input string from back to front for a character specified by ’char-
acter’ in the input string.

B.2.15. kstrspn() — return the number of matched characters

Synopsis
size_t kstrspn(

const char *istr,
const char *charset)

Input Arguments
istr

The string to be scanned.
charset

The string used to determin the character set to use.

Returns
The number of characters matched in the input string, from the ’charset’. If every character in the
input string is a member of set of characters defined by ’charset’, the length of ’istr’ is returned. If
either ’istr’ or ’charset’ are NULL, a value of 0 is returned.

Description
This function returns the length of the input string that consists completely of a specified list of charac-
ters. This routine is similiar to the system routine strspn(). It counts the number of characters at the
start of the input string that consist entirely of characters from the ’charset’ string. The count stops at
the first character in the input string that is not in the charset string.

2-16



Basic Services Program Services Volume I - Chapter 2

B.2.16. kstrstr() — find a substring within a string

Synopsis
char *kstrstr(

const char *istr,
const char *sub_str)

Input Arguments
istr

The string to search.
sub_str

The sub string to look for.

Returns
If the sub_str is found in istr, a pointer indicating the address of the first character of the substring
within the istr string is returned. If the substring is not a part of the input string, a NULL is returned.

This routine also protects against NULL on both the input and substring variables. If either is NULL,
the value of NULL is returned.

Description
This function locates the first occurrence of one string in another. It is a replacement for the system
library routine strstr(). This routine scans the input string, ’istr’, for the first occurrence of a substring
specified by ’sub_str’.

B.2.17. kstrtok() — find a token within a string

Synopsis
char *kstrtok(

char *istr,
const char *sub_str)

Input Arguments
istr

The string to search find tokens in.
sub_str

The string containing the set of character tokens.

Returns
A pointer to the first token in ’istr’. Otherwise, it returns NULL on error, or if the token string
’sub_str’ is NULL.

2-17



Basic Services Program Services Volume I - Chapter 2

Description
This function gets the next token, or substring, from the input string using a set of characters as delim-
iters. This routine is a replacement for the system library routine strtok(). kstrtok() searches the input
string, ’istr’, for a token separator, which is specified in the second string parameter, ’sub_str’. Then, it
returns a pointer to the remaining portion of the input string after inserting a ’\0’ at the token separator.
If it is called again with a NULL as the input string, the routine continues to parse the previous string
passed in.

Side Effects
This routine adds ’\0’s to the original string. It also has no way to check if the input string has been
freed via a kfree_and_NULL() call between subsequent calls to kstrtok().

B.2.18. kchar_replace() — replace a character with another through a string

Synopsis
char *kchar_replace(

const char *istr,
int scan_char,
int replace_char,
char *ostr)

Input Arguments
istr

The string to be changed.
scan_char

The scan character to be replaced.
replace_char

The character which replaces the scan character.

Output Arguments
ostr

The string that holds the converted string. If it’s NULL, the routine allocates the space necessary to
hold the result.

Returns
The converted string ’ostr’ if it is not NULL, or a pointer to the resulting allocated string if it is NULL.
NULL is returned on an error, or if ’istr’ is NULL.

Description
This function performs a global change of character on the input string. It returns a string where every
occurrence of the scan character is replaced with the replacement character. If ’ostr’ is sent in as
NULL, the result will be allocated with kmalloc() for you. If ’ostr’ is non-NULL, the result will be
stored in ’ostr’. Note that if ’ostr’ is non-NULL, it must point at a memory buffer with a sufficient

2-18



Basic Services Program Services Volume I - Chapter 2

amount of storage space before this routine is called.

Note that if ’ostr’ is non-NULL, the calling routine must ensure that ’ostr’ points to a memory buffer
large enough to hold the copied string and terminating null character. If the buffer is not large enough,
memory will be overwritten resulting in unpredicable program failure.

Examples
For example, if we call:

new_string = kchar_replace("Many fishes", ’f’, ’w’, NULL);

the result will be:

new_string = "Many wishes".

Side Effects
Allocates the space for the output string if ’ostr’ is NULL

B.2.19. kstring_capitalize() — convert a string to its capitalized equivalent

Synopsis
char *kstring_capitalize(

const char *istr,
char *ostr)

Input Arguments
istr

The string to convert to a capitalized version.

Output Arguments
ostr

The string that holds the converted string. If it’s NULL, it allocates the space necessary.

Returns
The converted output string, ’ostr’ if it is not NULL, or a pointer to the resulting allocated string if
’ostr’ is NULL. NULL is returned if ’istr’ is NULL, or an error occurs.

2-19



Basic Services Program Services Volume I - Chapter 2

Description
This routine checks to see that the first character of each word is capitalized. A word is defined to be
something separated by whitespace (i.e. separated by one or more tabs or spaces).

Note that if ’ostr’ is non-NULL, the calling routine must ensure that ’ostr’ points to a memory buffer
large enough to hold the capitalized string and terminating null character. If the buffer is not large
enough, memory will be overwritten resulting in unpredicable program failure.

Side Effects
Allocates the space necessary for the output if ’ostr’ is NULL.

B.2.20. kstring_3cat() — concatenate three strings together

Synopsis
char *kstring_3cat(

const char *istr1,
const char *istr2,
const char *istr3,
char *ostr)

Input Arguments
istr1

The first string to concatenate.
istr2

The second string to concatenate.
istr3

The third string to concatenate.

Output Arguments
ostr

The string that holds the concatenated string. If it’s NULL, it allocates the space necessary to hold the
result.

Returns
The concatenated string in ’ostr’ if it is non-NULL, or an allocated string if ’ostr’ is NULL. This rou-
tine returns NULL if ’istr1’, ’istr2’, and ’istr3’ are NULL, or an error occurs.

Description
This routine concatenates three strings together, into a new string. If the output parameter is not
NULL, the concatenated string is put into that string. Otherwise, the resulting string is allocated via
kmalloc(). In either case, the resulting NULL-terminated string is returned. The concatenation is as
follows; the second string is added to the end of the first, and the third string is added to the end of the
first two.

2-20



Basic Services Program Services Volume I - Chapter 2

Note that if ’ostr’ is non-NULL, the calling routine must ensure that ’ostr’ points to a memory buffer
large enough to hold the concatenated string and terminating null character. If the buffer is not large
enough, memory will be overwritten resulting in unpredicable program failure.

Side Effects
This routine uses kmalloc() to create a string that holds the result if ’ostr’ is NULL.

B.2.21. kstring_cat() — concatenate two strings

Synopsis
char *kstring_cat(

const char *istr1,
const char *istr2,
char *ostr)

Input Arguments
istr1

The first string to concatenate.
istr2

The second string to concatenate.

Output Arguments
ostr

The string that holds the concatenated string. If it’s NULL, the routine allocates the necessary space.

Returns
The concatenated string if ’ostr’ is non-NULL, or the allocated string if ’ostr’ is NULL. On NULL
input strings or an error, a NULL is returned.

Description
This routine concatenates two strings together, into a third. If the output parameter is not NULL, the
concatenated string is put into that string. Otherwise, the resulting string is allocated via a call to
kmalloc(). In either case, the resulting string is returned.

Note that if ’ostr’ is non-NULL, the calling routine must ensure that ’ostr’ points to a memory buffer
large enough to hold the concatenated string and terminating null character. If the buffer is not large
enough, memory will be overwritten resulting in unpredicable program failure.

Side Effects
This routine uses kmalloc() to create a string that holds the result, if ’ostr’ is non-NULL.

2-21



Basic Services Program Services Volume I - Chapter 2

B.2.22. kstring_cleanup() — remove white space from the ends of a string

Synopsis
char *kstring_cleanup(

const char *istr,
char *ostr)

Input Arguments
istr

The string to cleanup.

Output Arguments
ostr

The string that holds the converted string. If it’s NULL, it kmallocs the space necessary.

Returns
The cleaned string in ’ostr’ if it is not NULL, or a pointer to the resulting allocated string if ’ostr’ is
NULL. NULL is returned if istr is NULL, or an error occurs.

Description
This routine checks the beginning and end of the string for white space (using the function isspace())
and removes these characters. White space is defined to be a tab, space, carriage return, or line feed.

Note that if ’ostr’ is non-NULL, the calling routine must ensure that ’ostr’ points to a memory buffer
large enough to hold the cleaned string and terminating null character. If the buffer is not large
enough, memory will be overwritten resulting in unpredicable program failure.

Side Effects
Allocates the space for the output string if ’ostr’ is NULL

B.2.23. kstring_copy() — copy a string

Synopsis
char *kstring_copy(

const char *istr,
char *ostr)

Input Arguments
istr

The string to be copied.

2-22



Basic Services Program Services Volume I - Chapter 2

Output Arguments
ostr

The string that holds the copied string. If ’ostr’ is NULL, the routine allocates the space necessary for
the result.

Returns
If ’ostr’ is non-NULL, it is returned. Otherwise the allocated string is returned. If ’istr’ is NULL, or
an error occurs, NULL is returned.

Description
This routine copies a string into another string. If the output parameter is not NULL, the concatenated
string is put into that string. Otherwise, the resulting string is allocated via a call to kmalloc(). In
either case, the resulting string is returned.

Note that if ’ostr’ is non-NULL, the calling routine must ensure that ’ostr’ points to a memory buffer
large enough to hold the copied string and terminating null character. If the buffer is not large enough,
memory will be overwritten resulting in unpredicable program failure.

Side Effects
This routine uses kmalloc() to create a string that holds the result if ’ostr’ is NULL.

B.2.24. kstring_detab() — remove tabs from a string

Synopsis
char *kstring_detab(

const char *istr,
char *ostr)

Input Arguments
istr

The string to remove tabs from.

Output Arguments
ostr

The string that holds the converted input string. If ’ostr’ is NULL, it allocates the space necessary to
hold the result.

Returns
The variable ’ostr’ if it is non-NULL, or the allocated string if ’ostr’ is NULL. If ’istr’ is NULL or an
error occurs, NULL is returned.

2-23



Basic Services Program Services Volume I - Chapter 2

Description
This routine converts tab, ’’, characters into the appropriate number of spaces to make it fall onto mod-
ulo eight boundary.

Note that if ’ostr’ is non-NULL, the calling routine must ensure that ’ostr’ points to a memory buffer
large enough to hold the detab string and terminating null character. If the buffer is not large enough,
memory will be overwritten resulting in unpredicable program failure.

Side Effects
This routine uses kmalloc to create a string that holds the result, if ’ostr’ is NULL.

B.2.25. kstring_lower() — convert a string to lower case.

Synopsis
char *kstring_lower(

const char *istr,
char *ostr)

Input Arguments
istr

The string to convert to lowercase.

Output Arguments
ostr

The string that holds the converted string. If it’s NULL, it allocates the necessary memory with kmal-
loc().

Returns
The converted string, ’ostr’ if that variable is not NULL, or a pointer to the resulting allocated string.
NULL is returned on an allocation error or if ’istr’ is NULL.

Description
This routine performs a character by character scan for uppercase characters. When an uppercase
character is found, it calls the function tolower() to get the lowercase equivalent, and replaces it.

Note that if ’ostr’ is non-NULL, the calling routine must ensure that ’ostr’ points to a memory buffer
large enough to hold the converted string plus a null character. If the buffer is not large enough, mem-
ory will be overwritten resulting in unpredicable program failure.

Side Effects
Allocates the space for the output if ostr is NULL

2-24



Basic Services Program Services Volume I - Chapter 2

B.2.26. kstring_ncat() — concatenate two partial strings

Synopsis
char *kstring_ncat(

const char *istr1,
const char *istr2,
ssize_t num1,
ssize_t num2,
char *ostr)

Input Arguments
istr1

The first string to concatenate.
istr2

The second string to concatenate.
num1

The number of characters from ’istr1’ to put in the final string.
num2

The number of characters from ’istr2’ to put in the final string.

Output Arguments
ostr

The string that holds the concatenated string. If it’s NULL, it allocates the necessary memory.

Returns
The concatenated string ’ostr’ if the variable is non-NULL, or the allocated string if ’ostr’ is NULL. If
’istr1’ and ’istr2’ are NULL, or if ’num1’ and ’num2’ are both less then or equal to zero, or an error
occurs, then NULL is returned.

Description
This routine concatenates two partial strings together, into a third. If the output parameter, ’ostr’, is not
NULL, the concatenated string is put into that string. Otherwise, the resulting string is allocated In
either case, the resulting NULL-terminated string is returned. The second partial string is added to the
end of the partial string first. Also, this routine puts a ’\0’ on the resulting string.

Note that if ’ostr’ is non-NULL, the calling routine must ensure that ’ostr’ points to a memory buffer
large enough to hold the concatenated string and terminating null character. If the buffer is not large
enough, memory will be overwritten resulting in unpredicable program failure.

Side Effects
This routine uses kmalloc() to allocate a string that holds the result, if ’ostr’ is NULL.

2-25



Basic Services Program Services Volume I - Chapter 2

B.2.27. kstring_ncopy() — copy up to n characters of a string

Synopsis
char *kstring_ncopy(

const char *istr,
size_t num,
char *ostr)

Input Arguments
istr

The string to copy characters from.
num

The number of characters to copy.

Output Arguments
ostr

The string that holds the copied string. If it’s NULL, it allocates the space necessary.

Returns
The copied string ’ostr’, if it is non-NULL, or the allocated string if ’ostr’ is NULL. NULL is returned
if ’istr’ is NULL, or if an error occurs.

Description
This routine concatenates two strings together, into a third. If the output parameter is not NULL, the
concatenated string is put into that string. Otherwise, the resulting string is allocated by kmalloc(). In
either case, the resulting string is returned. Finally, this routine puts a terminating ’\0’ on the end of
the new string.

Note that if ’ostr’ is non-NULL, the calling routine must ensure that ’ostr’ points to a memory buffer
large enough to hold the copied string and terminating null character. If the buffer is not large enough,
memory will be overwritten resulting in unpredicable program failure.

Side Effects
This routine uses kmalloc() to create a string that holds the result, if ’ostr’ is NULL.

2-26



Basic Services Program Services Volume I - Chapter 2

B.2.28. kstring_replace() — replace one substring with another

Synopsis
char *kstring_replace(

const char *istr,
const char *scan_str,
const char *replace_str,
const int icase,
char *ostr)

Input Arguments
istr

The string to be changed.
scan_str

The search string to be replaced.
replace_str

The string that replaces the search string.
icase

TRUE if you want to ignore case while searching for the search string

Output Arguments
ostr

The string that holds the converted output string. If it is NULL, this routine will allocate the space
necessary.

Returns
The converted string, ’ostr’, if the variable is not NULL, or a pointer to the resulting allocated string.
NULL is returned if ’istr’ or ’scan_str’ are NULL, or if an error occurs.

Description
This function performs a global change of text on the input string. It returns a string where every
occurrence of the scan string is replaced with the replacement string. If ’ostr’ is sent in as NULL, the
result will be allocated for you. If ’ostr’ is provided as non-NULL, the result will be stored in it. Note
that if the latter use is chosen, ostr must be previously allocated with a sufficient amount of storage
space before this routine is called.

Note that if ’ostr’ is non-NULL, the calling routine must ensure that ’ostr’ points to a memory buffer
large enough to hold the copied string and terminating null character. If the buffer is not large enough,
memory will be overwritten resulting in unpredicable program failure.

Examples
For example, if we call:

new_string = kstring_replace("Welcome to VisiQuest", "VisiQuest",
"the Twilight Zone", FALSE, NULL);

2-27



Basic Services Program Services Volume I - Chapter 2

the result will be:

new_string = "Welcome to the Twilight Zone".

Side Effects
This routine allocates the space for the output if ’ostr’ is NULL.

B.2.29. kstring_subcmp() — compares two sub-strings

Synopsis
int kstring_subcmp(

const char *istr1,
const char *istr2)

Input Arguments
istr1

The base string to be compared.
istr2

The sub-string to be compared.

Returns
If the two strings up to the end of the second string are identical, the value of 0 is returned. If the two
strings differ, the ASCII value difference of the first character that differs in the two strings will be
returned. If the ASCII value of the differing character in ’istr1’ is greater than the one in ’istr2’, then
the return value is positive, and implies that ’istr1’ is greater than negative, the return value implies that
’istr2’ is greater than ’istr1’.

Description
This routine compares two input strings to determine if ’istr2’ is the same string as the beginning of
’istr1’. In kstring_subcmp() the number of characters compared is an implied value which is the
length of the second input string ’istr2’. The input strings are compared, character by character, until
either the end of one of the input strings is encountered or ’istr1’ and ’istr2’ no longer match.

2-28



Basic Services Program Services Volume I - Chapter 2

B.2.30. kstring_upper() — convert a string to upper case.

Synopsis
char * kstring_upper(

const char *istr,
char *ostr)

Input Arguments
istr

The string to convert to upper case.

Output Arguments
ostr

The string that holds the converted string. If variable is NULL, the routine allocates the necessary
space to hold the result.

Returns
The converted string, ’ostr’, if it is not NULL, or a pointer to the resulting allocated string if it is
NULL. NULL is returned if ’istr’ is NULL, or if an error occurs.

Description
This routine performs a character by character scan for lowercase characters. When an lowercase char-
acter is found, it calls the function, toupper(), to get the uppercase equivalent, and replaces the lower
case character.

Note that if ’ostr’ is non-NULL, the calling routine must ensure that ’ostr’ points to a memory buffer
large enough to hold the converted string plus a null character. If the buffer is not large enough, mem-
ory will be overwritten resulting in unpredicable program failure.

Side Effects
Allocates the space for the output if ’ostr’ is NULL

2-29



Basic Services Program Services Volume I - Chapter 2

B.2.31. kstring_seddata() — perform text changes with one or more sets of substitution rules

Synopsis
char *kstring_seddata(

kstring str,
kvalist)

Input Arguments
str

source kstring
kvalist

NULL terminated list of (search pattern, replacement pattern, flags) triples to be used to modify the
data as it is being copied.

Returns
pointer to resulting kstring

Description
This function performs a global change of text on a string based on substring or regular expression pat-
terns.

It uses kstring_replace or kstring_regex replace based on the 0 bit of the flags parameter for each
search/replace/flags triple specified on the variable argument list. Bit 1 is used to specify a case insen-
sitive match. The following table explains the possibilities:

flag | meaning
-------------------+-------------------------------
TRUE or KRE_ICOMP | case insensitive regex replace
FALSE or KRE_ICOMP | case insensitive string replace
TRUE | case sensitive regex replace
FALSE | case sensitive string replace

Examples
For example, if we call:

new_string = kstring_seddata("Welcome to VisiQuest",
"VisiQuest", "the Twilight Zone",
FALSE, NULL);

the result will be:

2-30



Basic Services Program Services Volume I - Chapter 2

new_string = "Welcome to the Twilight Zone".

C. Tokenized String Utilities

The following section details the tokenized string utilities that are a part of the kutils (libku.a) library.

C.1. Introduction to Tokenized String Utilities

It is common to use strings frequently in programming. However, the use of strings often implies both an
increase in memory use and a decrease in efficiency. For example, an algorithm may involve a string identifier.
If the string identifier must be used for searching purposes, the searching algorithm may become inefficient.
This situation calls for the use of tokenized strings. A token is a unique integer representation of a string. The
program switches between the string itself and its tokenized representation when appropriate. For example, a
program might read in a string, convert it to a token, store it internally as a token, and search on the token
when necessary, but it will then print it out as a string again. The tokenized string utilities are:

• kstring_to_token() - return the token that is associated with the specified string
• ktoken_to_string() - return the string associated with the specified token
• ktoken_delete() - delete the token’ized string from the list of tokens
• ktoken_check() - check to see if a string has been token’ized

C.2. Definitions of Tokenized String Utilities

C.2.1. kstring_to_token() — return the token that is associated with the specified string

Synopsis
ktoken
kstring_to_token(

const char *istr)

Input Arguments
istr

The string to compute the token for.

Returns
The token computed or KTOKEN_NONE if an error occurs.

2-31



Basic Services Program Services Volume I - Chapter 2

Description
This function returns the token that is associated with the supplied string. The idea is that a given
string is tagged with a unique token, so that an application which is being slowed down by numerous
string comparisons or searches through string attributes, can use the unique tokens for a value compari-
son instead using a traditional string compare call. Thus, greatly reducing the comparison time.

kstring_to_token() returns unique tokens for different strings, so that calling routines can perform
string comparisons using "token1 == token2" instead of the time intensive kstrcmp(str1, str2) function
call.

If the string is NULL or if the space to copy the string cannot be allocated, then KTOKEN_NONE is
returned.

Examples
For example to instatiate a string, using the function call kstring_to_token(), the programmer uses the
following call:

token1 = kstring_to_token("test string1");
token2 = kstring_to_token("test string2");

This should yield two totally distinct tokens, which when compared (token1 == token2) will result that
the two strings are not the same.

C.2.2. ktoken_to_string() — return the string associated with the specified token

Synopsis
char *
ktoken_to_string(

ktoken token)

Input Arguments
token

The token to return the corresponding string for.

Returns
The token’s corresponding string or NULL, if the token is not valid.

Description
This function returns the string that is associated with the supplied token. The idea is that a unique

2-32



Basic Services Program Services Volume I - Chapter 2

token is given for each string sent to the function kstring_to_token(). This routine is used to retrieve a
pointer to the token’s associated string.

C.2.3. ktoken_check() — check to see if a string has been token’ized

Synopsis
ktoken
ktoken_check(

const char *istr)

Input Arguments
istr

The string to check for a token.

Returns
If the string is NULL or if the string has not been token’ized, KTOKEN_NONE is returned. Other-
wise the token corresponding to the string is returned.

Description
This function checks to see if the input string has a token representation.

C.2.4. ktoken_delete() — delete the token’ized string from the list of tokens

Synopsis
int
ktoken_delete(

const char *string)

Input Arguments
string

The string to delete.

Returns
TRUE (1) on success, FALSE (0) otherwise.

Description
This function deletes the token’ized representation of a string from the token list. If the string has a
token representation then it is removed from the list.

2-33



Basic Services Program Services Volume I - Chapter 2

If the string is NULL, or the string or the token’ized string cannot be deleted, then FALSE is returned.

D. Time String Utilities

The following section details the time string utilities that are a part of the klibc library.

D.1. Introduction to the Time String Utilities

The time string utilities are:

• kstrftime() - generate formatted time information
• kget_date() - get the current time and date in a string

D.2. Definitions of Time String Utilities

D.2.1. kstrftime() — generate formatted time information

Synopsis
size_t kstrftime(

char *s,
size_t maxsize,
const char *format,
const struct tm * timeptr)

Input Arguments
maxsize

The size of the ’s’ output array.
format

The string that describes how the time structure should be formatted.
timeptr

A pointer to a time structure, which is set to the time you want to format.

Output Arguments
s

formatted output time string

Returns
If the total number of resulting characters including the terminating null character is not more than
maxsize, the kstrftime() function returns the number of characters placed into the array pointed to by s

2-34



Basic Services Program Services Volume I - Chapter 2

not including the terminating null character. Otherwise, zero is returned and the contents of the array
are indeterminate.

Description
The following description is transcribed verbatim from the December 7, 1988 draft standard for ANSI
C. This draft is essentially identical in technical content to the final version of the standard.

The kstrftime() function places characters into the array pointed to by ’s’ as controlled by the string
pointed to by ’format’. The format shall be a multibyte character sequence, beginning and ending in its
initial shift state. The format string consists of zero or more conversion specifiers and ordinary multi-
byte characters. A conversion specifier consists of a % character followed by a character that deter-
mines the behavior of the conversion specifier. All ordinary multibyte characters (including the termi-
nating null character) are copied unchanged into the array. If copying takes place between objects that
overlap the behavior is undefined. No more than ’maxsize’ characters are placed into the array. Each
conversion specifier is replaced by appropriate characters as described in the following list. The
appropriate characters are determined by the LC_TIME category of the current locale and by the val-
ues contained in the structure pointed to by ’timeptr’.

%a is replaced by the locale’s abbreviated weekday name.

%A is replaced by the locale’s full weekday name.

%b is replaced by the locale’s abbreviated month name.

%B is replaced by the locale’s full month name.

%c is replaced by the locale’s appropriate date and time representation.

%d is replaced by the day of the month as a decimal number (01-31).

%H is replaced by the hour (24-hour clock) as a decimal number (00-23).

%I is replaced by the hour (12-hour clock) as a decimal number (01-12).

%j is replaced by the day of the year as a decimal number (001-366).

%m is replaced by the month as a decimal number (01-12).

%M is replaced by the minute as a decimal number (00-59).

%p is replaced by the locale’s equivalent of the AM/PM designations associated with a 12-hour clock.

%S is replaced by the second as a decimal number (00-61).

%U is replaced by the week number of the year (the first Sunday as the first day of week 1) as a deci-
mal number (00-53).

%w is replaced by the weekday as a decimal number [0 (Sunday)-6].

2-35



Basic Services Program Services Volume I - Chapter 2

%W is replaced by the week number of the year (the first Monday as the first day of week 1) as a deci-
mal number (00-53).

%x is replaced by the locale’s appropriate date represen- tation.

%X is replaced by the locale’s appropriate time represen- tation.

%y is replaced by the year without century as a decimal number (00-99).

%Y is replaced by the year with century as a decimal number.

%Z is replaced by the time zone name or abbreviation, or by no characters if no time zone is deter-
minable.

%% is replaced by %.

If a conversion specifier is not one of the above, the behavior is undefined.

D.2.1.1. Extensions

The following sections describe conversion specifiers that are available as extensions to the standard
set.

D.2.1.1.1. Non-ANSI Extensions

If SYSV_EXT is defined when the routine is compiled, then the following additional conversions will
be available. These are borrowed from the System V cftime(3) and ascf- time(3) routines.

%D is equivalent to specifying %m/%d/%y.

%e is replaced by the day of the month, padded with a blank if it is only one digit.

%h is equivalent to %b, above.

%n is replaced with a newline character (ASCII LF).

%r is equivalent to specifying %I:%M:%S %p.

%R is equivalent to specifying %H:%M.

%T is equivalent to specifying %H:%M:%S.

%t is replaced with a TAB character.

If SUNOS_EXT is defined when the routine is compiled, then the following additional conversions
will be available. These are borrowed from the SunOS version of kstrftime.

2-36



Basic Services Program Services Volume I - Chapter 2

%k is replaced by the hour (24-hour clock) as a decimal number (0-23). Single digit numbers are
padded with a blank.

%l is replaced by the hour (12-hour clock) as a decimal number (1-12). Single digit numbers are
padded with a blank.

D.2.1.1.2. POSIX 1003.2 Extensions

If POSIX2_DATE is defined, then all of the conversions available with SYSV_EXT and SUNOS_EXT
are available, as well as the following additional conversions:

%C The century, as a number between 00 and 99.

%u is replaced by the weekday as a decimal number [1 (Monday)-7].

%V is replaced by the week number of the year (the first Monday as the first day of week 1) as a deci-
mal number (01-53). The method for determining the week number is as specified by ISO 8601 (to
wit: if the week contain- ing January 1 has four or more days in the new year, then it is week 1, other-
wise it is week 53 of the pre- vious year and the next week is week 1). The text of the POSIX standard
for the date utility describes %U and %W this way:

%U is replaced by the week number of the year (the first Sunday as the first day of week 1) as a deci-
mal number (00-53). All days in a new year preceding the first Sunday are considered to be in week 0.

%W is replaced by the week number of the year (the first Monday as the first day of week 1) as a deci-
mal number (00-53). All days in a new year preceding the first Monday are considered to be in week 0.

In addition, the alternate representations %Ec, %EC, %Ex, %Ey, %EY, %Od, %Oe, %OH, %OI,
%Om, %OM, %OS, %Ou, %OU, %OV, %Ow, %OW, and %Oy are recognized, but their normal repre-
sen- tations are used.

D.2.1.1.3. VMS Extensions

If VMS_EXT is defined, then the following additional conver- sion is available:

%v The date in VMS format (e.g. 20-JUN-1991).

D.2.2. kget_date() — get the current time and date in a string

Synopsis
kstring
kget_date(

2-37



Basic Services Program Services Volume I - Chapter 2

void)

Returns
A string containing the current time and date, in the format used by all the tools.

Description
This function determines the current time and date, and returns a fixed format string.

E. Standardized Error Messages & Prompting

The following sections detail the error message and prompting utilities that are a part of the klibc (libku.a)
library.

E.1. Introduction to Message/Prompting Utilities

There are a number of utilities available in VisiQuest to ensure consistent and standardized prompting.
By default, these routines will produce output which conforms to the context in which they occur. When data
processing routines (kroutines) are executed from the command line, these routines output to stderr or stdout.
The output is then converted and appears in a pop-up window when used by an X-based application (xvrou-
tine), or when a data processing routine is accessed via cantata. These routines are provided through Basic
Services so that a central facility may be employed. Since the routines are provided at the lowest level, Basic
Services, they can be used to control how, why, and when information is reported back to the user. This is crit-
ical to allow routines to be encapsulated within larger applications. The defines for these routines are found in
$BOOTSTRAP/include/klibc/knotify.h. The routines are:

• kannounce() - report or announce a message in a standardized format
• kchoose() - prompt the user to select from a list of items
• kerror() - print error messages in a standardized format
• kget_notify() - get the VisiQuest notify level
• kinfo() - print information messages in a standardized format
• koverwrite() - request an acknowledgement for overwriting files
• kprompt() - request an acknowledgement from the user
• ksave() - request an acknowledgement for quitting an application
• kquit() - request an acknowledgement for quitting an application
• kset_announcehandler() - set the announce handling routine used by kannounce()
• kset_choosehandler() - set the choose handling routine used by kchoose()
• kset_errorhandler() - set the error handling routine used by kerror()
• kset_infohandler() - set the information handling routine used by kinfo()
• kset_notify() - set the VisiQuest notify level
• kset_prompthandler() - set the prompt handling routine used by kprompt()
• kset_quithandler() - set the quit handling routine used by kquit()
• kset_savehandler() - set the save handling routine used by ksave()
• kset_warnhandler() - set the warning handler routine used by kwarn()
• kwarn() - print warning messages in a standardized format

2-38



Basic Services Program Services Volume I - Chapter 2

If you use the routines above and would like to force the output to be in a particular form, you may use the
kset_* routines to do so. These routines allow you to force output to the tty in standard VisiQuest
form. They also allow you to force output to a standard VisiQuest pop-up window or to force output to
be displayed in the manner which is defined by your own handler.

The utilities defined in this section are: Message/Prompting Utilities, Variable Argument Functions, Routines
To Set/Get Notify Level, and Routines to Set Handlers.

E.2. Definitions of Message/Prompting Utilities

E.2.1. kannounce() — report or announce a message in a standardized format

Synopsis
int kannounce(

char *library,
char *routine,
char *format,
kvalist)

Input Arguments
library

name of library
routine

name of routine
format

grammatically correct, clear explanation of what should be announced to the user

Returns
TRUE if the announcement was successfully delivered, otherwise FALSE is returned.

Description
kannounce produces standardized messages for VisiQuest library routines and applications. It should be
called when the programmer wants give generalized updates or reports to the user. This typically used
by the larger applications, such as VisiQuest, composer, craftsman, etc to give progress or status
reports to the user.

2-39



Basic Services Program Services Volume I - Chapter 2

E.2.2. kchoose() — prompt the user to select from a list of items

Synopsis
char *kchoose(

int notify_type,
char **list_of_options,
int num_options,
int default_index,
char *return_string,
int *return_index,
char *format,
kvalist)

Input Arguments
notify_type

the notify level specified by the programmer KFORCE, KSTANDARD, KVERBOSSE
list_of_options

an array of strings containing the items to select from.
num_options

The number of items in the list_of_options.
default_index

The index number to the default item, must start at 1.
format

grammatically correct, clear explanation of the error that occurred. This can be formatted like a (void)
printf statement.

Output Arguments
return_string

string that holds the selected item. If it’s NULL, it kmallocs the space necessary, and returns the
string.

return_index
This is the index of the item selected.

Returns
return_string if it is not NULL, or a pointer to the resulting kmalloc’ed string if it is NULL. NULL is
returned upon error.

Description
kchoose will call the specified choose handler to request the user to make a selection from a list of
items. This utility can operate in several different modes.

If the notify_type variable is set to KFORCE, then the prompt will always appear regardless of the set-
ting of the environment variable KHOROS_NOTIFY.

2-40



Basic Services Program Services Volume I - Chapter 2

If the notify_type variable is set to KSTANDARD and the user has the environment variable
KHOROS_NOTIFY set to either KSTANDARD or KVERBOSE the prompt will appear.

And finally, if the notify_type variable is set to KVERBOSE and the environment variable
KHOROS_NOTIFY set to KVERBOSE, the prompt will appear.

Here is a summary table:

notify_type = FORCE always prompt, ignore the setting of
the environment variable KHOROS_NOTIFY

notify_type = STANDARD only prompt when the environment
variable KHOROS_NOTIFY is set to
STANDARD or VERBOSE.

notify_type = VERBOSE only prompt when the environment
variable KHOROS_NOTIFY is set to

E.2.3. kerror() — print error messages in a standardized format

Synopsis
int kerror(

char *library,
char *routine,
char *format,
kvalist)

Input Arguments
library

name of library (NULL if not applicable)
routine

name of routine
format

grammatically correct, clear explanation of the error that occurred. This can be formatted like a printf
statement

Returns
TRUE if the error was successfully acknowledge, otherwise if the message was not acknowledged
FALSE is returned.

2-41



Basic Services Program Services Volume I - Chapter 2

Description
kerror produces standardized error messages for VisiQuest library routines and applications. It should be
called in EVERY instance of error messaging by EVERY VisiQuest function, subroutine, or main pro-
gram. If library is NULL then the program name will be used as the source of the error.

E.2.4. kinfo() — print information messages in a standardized format

Synopsis
int kinfo(

int notify_type,
char *format,
kvalist)

Input Arguments
notify_type

the notify level specified by the programmer KFORCE, KSTANDARD, KVERBOSE
format

grammatically correct, clear explanation of the information. Note the message can be formatted like a
printf statement.

Returns
TRUE if the message was successfully printed, otherwise FALSE is returned.

Description
kinfo produces standardized information messages for VisiQuest library routines and VisiQuest applica-
tions. It should be called in EVERY instance of information messaging by EVERY VisiQuest function,
subroutine, or main program.

If the notify_type variable is set to KFORCE, then the prompt will always appear regardless of the set-
ting of the environment variable KHOROS_NOTIFY.

If the notify_type variable is set to KSTANDARD and the user has the environment variable
KHOROS_NOTIFY set to either STANDARD or VERBOSE the prompt will appear.

And finally, if the notify_type variable is set to KVERBOSE and the environment variable
KHOROS_NOTIFY set to VERBOSE, the prompt will appear.

Here is a summary table:

notify_type = FORCE always prompt, ignore the setting of
the environment variable KHOROS_NOTIFY

2-42



Basic Services Program Services Volume I - Chapter 2

notify_type = STANDARD only prompt when the environment
variable KHOROS_NOTIFY is set to
STANDARD or VERBOSE.

notify_type = VERBOSE only prompt when the environment
variable KHOROS_NOTIFY is set to
VERBOSE

E.2.5. koverwrite() — request an acknowledgement for overwriting files

Synopsis
int koverwrite(

int notify_type,
char *filename)

Input Arguments
notify_type

the notify level specified by the programmer KFORCE, KSTANDARD, KVERBOSSE
filename

the filename in question to overwrite

Returns
TRUE if the prompt was successfully acknowledged, otherwise if the message was not acknowledged
FALSE is returned. In the event of an error TRUE is returned. If the file does not exist, TRUE is
returned.

Description
koverwrite will call the specified prompt handler to request or demand an acknowledgement from the
user. This utility will as the user if it is ok to overwrite the file in question, and can operate in several
different modes.

If the notify_type variable is set to KFORCE, then the prompt will always appear regardless of the set-
ting of the environment variable KHOROS_NOTIFY.

If the notify_type variable is set to KSTANDARD and the user has the environment variable
KHOROS_NOTIFY set to either STANDARD or VERBOSE the prompt will appear.

And finally, if the notify_type variable is set to KVERBOSE and the environment variable
KHOROS_NOTIFY set to VERBOSE, the prompt will appear.

Here is a summary table:

2-43



Basic Services Program Services Volume I - Chapter 2

notify_type = FORCE always prompt, ignore the setting of
the environment variable KHOROS_NOTIFY

notify_type = STANDARD only prompt when the environment
variable KHOROS_NOTIFY is set to
STANDARD or VERBOSE.

notify_type = VERBOSE only prompt when the environment
variable KHOROS_NOTIFY is set to
VERBOSE

E.2.6. kprompt() — request an acknowledgement from the user

Synopsis
int kprompt(

int notify_type,
char *yes_response,
char *no_response,
int default_val,
char *format,
kvalist)

Input Arguments
notify_type

the notify level specified by the programmer KFORCE, KSTANDARD, KVERBOSSE
yes_response

name of "yes" response string ("Yes" if NULL)
no_response

name of "no" response string ("No" if NULL)
default_val

the default value to list when prompting
format

grammatically correct, clear explanation of the error that occurred. This can be formatted like a printf
statement.

Returns
TRUE if the prompt was successfully acknowledged, otherwise if the message was not acknowledged
FALSE is returned. In the event and error occurs the default value is returned.

2-44



Basic Services Program Services Volume I - Chapter 2

Description
kprompt will call the specified prompt handler to request or demand an acknowledgement from the
user. This utility can operate in several different modes.

If the notify_type variable is set to KFORCE, then the prompt will always appear regardless of the set-
ting of the environment variable KHOROS_NOTIFY.

If the notify_type variable is set to KSTANDARD and the user has the environment variable
KHOROS_NOTIFY set to either STANDARD or VERBOSE the prompt will appear.

And finally, if the notify_type variable is set to KVERBOSE and the environment variable
KHOROS_NOTIFY set to VERBOSE, the prompt will appear.

Here is a summary table:

notify_type = FORCE always prompt, ignore the setting of
the environment variable KHOROS_NOTIFY

notify_type = STANDARD only prompt when the environment
variable KHOROS_NOTIFY is set to
STANDARD or VERBOSE.

notify_type = VERBOSE only prompt when the environment
variable KHOROS_NOTIFY is set to
VERBOSE

E.2.7. ksave() — request an acknowledgement for quitting an application

Synopsis
int ksave(

int notify_type,
char *format,
kvalist)

Input Arguments
notify_type

the notify level specified by the programmer KFORCE, KSTANDARD, KVERBOSE message - the
message prompting the user for exiting.

2-45



Basic Services Program Services Volume I - Chapter 2

Returns
TRUE if the user wants to quit the application, otherwise if the user doesn’t want to quit then FALSE
is returned. In the event of an error FALSE is returned.

Description
ksave will call the specified prompt handler to request or demand an acknowledgement from the user.
This utility will as the user if it is ok to overwrite the file in question, and can operate in several differ-
ent modes.

If the notify_type variable is set to KFORCE, then the prompt will always appear regardless of the set-
ting of the environment variable KHOROS_NOTIFY.

If the notify_type variable is set to KSTANDARD and the user has the environment variable
KHOROS_NOTIFY set to either STANDARD or VERBOSE the prompt will appear.

And finally, if the notify_type variable is set to KVERBOSE and the environment variable
KHOROS_NOTIFY set to VERBOSE, the prompt will appear.

Here is a summary table:

notify_type = FORCE never prompt when the environment
variable KHOROS_NOTIFY is set to
FORCE.

notify_type = STANDARD only prompt when the environment
variable KHOROS_NOTIFY is set to
STANDARD or VERBOSE.

notify_type = VERBOSE only prompt when the environment
variable KHOROS_NOTIFY is set to
VERBOSE

E.2.8. kquit() — request an acknowledgement for quitting an application

Synopsis
int kquit(

int notify_type,
char *format,
kvalist)

2-46



Basic Services Program Services Volume I - Chapter 2

Input Arguments
notify_type

the notify level specified by the programmer KFORCE, KSTANDARD, KVERBOSE message - the
message prompting the user for exiting.

Returns
TRUE if the user wants to quit the application, otherwise if the user doesn’t want to quit then FALSE
is returned. In the event of an error FALSE is returned.

Description
kquit will call the specified prompt handler to request or demand an acknowledgement from the user.
This utility will as the user if it is ok to overwrite the file in question, and can operate in several differ-
ent modes.

If the notify_type variable is set to KFORCE, then the prompt will always appear regardless of the set-
ting of the environment variable KHOROS_NOTIFY.

If the notify_type variable is set to KSTANDARD and the user has the environment variable
KHOROS_NOTIFY set to either STANDARD or VERBOSE the prompt will appear.

And finally, if the notify_type variable is set to KVERBOSE and the environment variable
KHOROS_NOTIFY set to VERBOSE, the prompt will appear.

Here is a summary table:

notify_type = FORCE never prompt when the environment
variable KHOROS_NOTIFY is set to
FORCE.

notify_type = STANDARD only prompt when the environment
variable KHOROS_NOTIFY is set to
STANDARD or VERBOSE.

notify_type = VERBOSE only prompt when the environment
variable KHOROS_NOTIFY is set to
VERBOSE

2-47



Basic Services Program Services Volume I - Chapter 2

E.2.9. kwarn() — print warning messages in a standardized format

Synopsis
int kwarn(

char *library,
char *routine,
char *format,
kvalist)

Input Arguments
library

name of library (NULL if not applicable)
routine

name of routine
format

grammatically correct, clear explanation of the warning that occurred. This can be formatted like a
printf statement

Returns
TRUE if the error was successfully acknowledge, otherwise if the message was not acknowledged
FALSE is returned.

Description
kwarn produces standardized warning messages for VisiQuest library routines and applications. It should
be called in EVERY instance of warning messaging by EVERY VisiQuest function, subroutine, or main
program. If library is NULL then the program name will be used as the source of the warning.

E.3. Definitions of Routines To Set/Get Notify Level

E.3.1. kget_notify() — get the VisiQuestnotify level

Synopsis
int kget_notify(void)

Returns
the current notify value

2-48



Basic Services Program Services Volume I - Chapter 2

Description
This routine gets the notify level. The possible values are KFORCE, KSTANDARD, KVERBOSE,
KXVLIB, KSYSLIB, KHOSTILE, and KDEBUG.

E.3.2. kset_notify() — set the VisiQuest notify level

Synopsis
int kset_notify(

int notify_type)

Input Arguments
notify_type

the notify level specified by the programmer KFORCE, KSTANDARD, KVERBOSE, KXVLIB,
KSYSLIB, KHOSTILE, KDEBUG

Returns
the current notify value before overriding it with the new value

Description
This routine sets the notify level. The possible values are KFORCE, KSTANDARD, KVERBOSE,
KXVLIB, KSYSLIB, KHOSTILE, and KDEBUG.

E.4. Definitions of Routines To Set Handlers

E.4.1. kset_announcehandler() — set the announce handling routine used by kannounce()

Synopsis
int (*kset_announcehandler(

int (*new_handler)(char *, char *, char *, char *, char *)))
(char *, char *, char *, char *, char *)

Input Arguments
new_handler

the announce handler to be called.

Returns
the previously installed announce handler, or NULL if the default announce handler was installed.

2-49



Basic Services Program Services Volume I - Chapter 2

Description
Sets the announce handler routine to be used by the kannounce() reporting facility. When set to NULL
(the default), the VisiQuest announce handler will be used, which simply prints the announcement to kst-
derr.

If a different announce handler is set, the announce handler must be declared as follows, and should
return TRUE.

int announce_handler(
char *toolbox,
char *program,
char *library,
char *routine,
char *message)

toolbox - name of toolbox
program - name of program
library - name of library
routine - name of routine
message - grammatically correct, clear announcement message

E.4.2. kset_choosehandler() — set the choose handling routine used by kchoose()

Synopsis
int (*kset_choosehandler(

int (*new_handler)(char **, int, int, int *, char **, char *)))
(char **, int, int, int *, char **, char *)

Input Arguments
new_handler

the choose handler to be called. Specify xvu_choose() for the VisiQuest pop-up choice dialog (xvrou-
tines & hybrid routines only), NULL for the VisiQuest default choice handler which prints to the tty, or
your own choice handler.

Returns
the previously installed choose handler, or NULL if the default choose handler was installed.

Description
Sets the choose handler routine to be used by the kchoose() facility. When set to NULL (the default)
the standard VisiQuest choose handler will obtain the user’s choice via interaction through kstderr and
kstdin.

2-50



Basic Services Program Services Volume I - Chapter 2

If a different choose handler is set, the choose handler must be declared as follows:

choose_handler(
char **list_of_options,
int num_options,
int default_index,
int *return_index,
char **return_string,
char *message)

list_of_options - an array of strings containing the items to
select from.

num_options - The number of items in the list_of_options
default_index - The index number to the default item.
return_index - This is the index of the item selected.
return_string - string that holds the selected item. If it is

NULL, it kmallocs the space necessary, and
returns the string.

message - grammatically correct, clear explanation of
the error that occurred. This can be formatted
like a (void) printf statement.

E.4.3. kset_errorhandler() — set the error handling routine used by kerror()

Synopsis
int (*kset_errorhandler(

int (*new_handler)(char *, char *, char *, char *, char *, char *)))
(char *, char *, char *, char *, char *, char *)

Input Arguments
new_handler

the error handler to be called. Specify xvu_error() for the VisiQuest pop-up error message (xvroutines &
hybrid routines only), NULL for the VisiQuest default error handler which prints to the tty, or your own
error handler.

Returns
the previously installed error handler, or NULL if the default error handler was installed.

Description
Sets the error handler routine to be used by the kerror() reporting facility. When set to NULL (the
default) the default VisiQuest error handler is used, which simply prints the error to kstderr.

If a different error handler is set, the error handler must be declared as follows, and should return

2-51



Basic Services Program Services Volume I - Chapter 2

TRUE.

int error_handler(
char *toolbox,
char *program,
char *library,
char *routine,
char *category,
char *message)

toolbox - name of toolbox in which error occured
program - name of program in which error occured
library - name of library in which error occured
routine - name of routine in which error occured
category - error message category

(see $BOOTSTRAP/include/klibc/knotify.h)
message - grammatically correct, clear error message

E.4.4. kset_infohandler() — set the information handling routine used by kinfo()

Synopsis
int (*kset_infohandler(

int (*new_handler)(char *)))(char *)

Input Arguments
new_handler

the info handler to be called. Specify xvu_info() for the VisiQuest pop-up info message (xvroutines &
hybrid routines only), NULL for the default info handler which prints to the tty, or your own info han-
dler.

Returns
the previously installed information handler, or NULL if the default information handler was installed.

Description
Sets the information handler routine to be used by the kinfo() reporting facility. When set to NULL
(the default) the standard VisiQuest information handler will be used, which reports to standard error.

If a different info handler is set, the info handler must be declared as follows, and should return TRUE.

info_handler(
char *message )

2-52



Basic Services Program Services Volume I - Chapter 2

message - message to give the user

E.4.5. kset_prompthandler() — set the prompt handling routine used by kprompt()

Synopsis
int (*kset_prompthandler(

int (*new_handler)(char *, char *, int, char *)))
(char *, char *, int, char *)

Input Arguments
new_handler

the prompt handler to be called. Specify xvu_prompt() for the VisiQuest pop-up prompt window (xvrou-
tines & hybrid routines only), NULL for the VisiQuest default prompt handler which prints to the tty, or
your own prompt handler.

Returns
the previously installed prompt handler, or NULL if the default prompt handler was installed.

Description
Sets the prompt handler routine to be used by the kprompt() reporting facility. When set to NULL (the
default) the default VisiQuest prompt handler prompt the user for a response using kstderr and kstdin.

If a different prompt handler is set, the prompt handler must be declared as follows:

prompt_handler(
char *yes_response,
char *no_response,
int default_val,
char *message)

yes_response - string to put in the affirmative field of a prompt
no_response - string to put in the negative field of a prompt
default - string to put in the default field of a prompt
message - grammatically correct, clear prompt

2-53



Basic Services Program Services Volume I - Chapter 2

E.4.6. kset_quithandler() — set the quit handling routine used by kquit()

Synopsis
int (*kset_quithandler(

int (*new_handler)(char *)))(char *)

Input Arguments
new_handler

the quit handler to be called. Specify xvu_quit() for the VisiQuest pop-up quit message (xvroutines &
hybrid routines only), NULL for the default quit handler which returns TRUE.

Returns
the previously installed quit handler, or NULL if the default information handler was installed.

Description
Sets the quit handler routine to be used by the kquit() reporting facility. When set to NULL (the
default) the default VisiQuest quit handler is used, which does not prompt the user but simply returns yes,
the user wants to quit.

If a different quit handler is set, the quit handler must be declared as follows. It should return TRUE if
the user indicates that they do want to quit the program, FALSE if the user indicates that they don’t
want to quit after all.

int quit_handler(
char *message)

char *message - message to ask the user if they are ready to quit

E.4.7. kset_savehandler() — set the save handling routine used by ksave()

Synopsis
int (*kset_savehandler(

int (*new_handler)(char *)))(char *)

Input Arguments
new_handler

the save handler to be called. Specify xvu_save_wait() for the VisiQuest pop-up quit message (xvroutines
& hybrid routines only), NULL for the default quit handler which returns TRUE that the user wants to
save changes.

2-54



Basic Services Program Services Volume I - Chapter 2

Returns
the previously installed save handler, or NULL if the default save handler was installed.

Description
Sets the save handler routine to be used by the ksave() reporting facility. When set to NULL (the
default) the default VisiQuest save handler is used, which does not prompt the user but simply returns
yes, the user wants to save changes made to the application.

If a different save handler is set, the save handler must be declared as follows. It should return 2 if the
user wants to save changes, 1 if the user wants to discard changes, 0 if the user wants to cancel the
operation.

int save_handler(
char *message)

char *message - message asking user if they want to save

changes to (some file) that were made during the run of the program.

E.4.8. kset_warnhandler() — set the warning handler routine used by kwarn()

Synopsis
int (*kset_warnhandler(

int (*new_handler)(char *, char *, char *, char *, char *)))
(char *, char *, char *, char *, char *)

Input Arguments
new_handler

the warning handler to be called. Specify xvu_warn() for the VisiQuest pop-up error message (xvrou-
tines & hybrid routines only), NULL for the VisiQuest default error handler which prints to the tty, or
your own error handler.

Returns
the previously installed warning handler, or NULL if the default warning handler was installed.

Description
Sets the warning handler routine to be used by the kwarn() reporting facility. When set to NULL (the
default) the default VisiQuest warn handler is used, which simply prints the warning to kstderr.

If a different warning handler is set, the warning handler must be declared as follows, and should
return TRUE.

2-55



Basic Services Program Services Volume I - Chapter 2

int warn_handler(
char *toolbox,
char *program,
char *library,
char *routine,
char *message)

toolbox - name of toolbox containing code issuing warning
program - name of program containing code issuing warning
library - name of library containing code issuing warning
routine - name of routine issuing warning
message - grammatically correct, clear warning

F. A Dyamic Errno System

F.1. Introduction to Generalized VisiQuest Errno Facility

There are a number of utilities under UNIX that use an error number or errno value to indicate the general cat-
egory of an error in a low-level library. This method of error reporting has allowed for consistent error report-
ing by low-level routines from a top-level library or program. The drawback to this method of error reporting
is that on most UNIX systems, this list of errno numbers and strings is statically-defined by the company that
wrote the operating system. In VisiQuest, an errno is reasonable for low-level libraries but it is not rea-
sonable to set a static list of numbers and strings. This section describes the functions necessary to dynami-
cally add new error numbers and strings to the VisiQuest errno system at run-time. This errno informa-
tion is used by the information and error-reporting utilities to print the category of the error or warning. The
routines are located in the klibc (libku.a) library and are as follows:

• kerrno_init_errors() - initialize errors to be used with khoros errno
• kerrno_check() - check to see if an errno is within a given error list.
• kerrno_lookup() - lookup the error message associated with a errno.
• kerrno_class() - return the class number for a given errno.
• kset_errno() - set an errno with a debug message

2-56



Basic Services Program Services Volume I - Chapter 2

F.2. Errno Initialization and lookup routines

F.2.1. kerrno_init_errors() — initialize errors to be used with khoros errno

Synopsis
int kerrno_init_errors(

kerrlist * errlist,
size_t num_errs)

Input Arguments
errlist

the array of errno-message string pairs to be added to the global errno list.
num_errs

number of errno’s in the errlist array

Returns
new error class identifier on success, or 0 on failure

Description
kerrno_init_errors initialize errors to be used with the khoros error reporting facility.

F.2.2. kerrno_check() — check to see if an errno is within a given error list.

Synopsis
int kerrno_check(

int errnum,
kerrlist * errlist,
size_t num_errs)

Input Arguments
errnum

the error number to be looked up
errlist

the error list to check against
num_errs

the number of errors

Returns
TRUE (1) if the errno is a member of the errlist passed in, FALSE (0) othersize.

2-57



Basic Services Program Services Volume I - Chapter 2

Description
This routine looks up a errno to see if it is within a supplied list of errors.

F.2.3. kerrno_lookup() — lookup the error message associated with a errno.

Synopsis
char *kerrno_lookup(

int errnum)

Input Arguments
errnum

the error number to be looked up

Returns
a pointer to the error message associated with the errnum or NULL if the error number does not exist.

Description
This routine finds the message string associated with an errno.

F.2.4. kerrno_class() — return the class number for a given errno.

Synopsis
int kerrno_class(int errnum)

Input Arguments
errnum

the error number to be looked up

Returns
error class if the error is defined

Description
This routine looks up a errno and returns the class of error it is associated with.

2-58



Basic Services Program Services Volume I - Chapter 2

F.2.5. kset_errno() — set an errno with a debug message

Synopsis
void kset_errno(int num)

Input Arguments
num

errno value to set

Description
This function is a helper function which can be used to set an errno value as well as printing a debug
message indicating the file and line number at which the warning was set. The message will only be
printed if KHOROS_NOTIFY is set to KDEBUG.

G. Program Attributes

G.1. Introduction to Program Statistic Utilities

The Program Statistic Utilities get and set attributes of the program itself, such as the command line argu-
ments, the program environment, the program object, and the toolbox in which the program is installed. These
routines include:

• kprog_get_argc() - get the number of arguments in the argv structure
• kprog_get_argv() - get the arguments in the argv structure
• kprog_get_command() - gets the command string in which this program was executed with.
• kprog_get_envp() - gets the environment variable parameter structure
• kprog_get_program() - gets the name of the program
• kprog_get_toolbox() - gets the toolbox in which this program belongs.
• kprog_set_argc() - set the number of commandline parameters
• kprog_set_argv() - set the command line argument array
• kprog_set_envp() - set the number of environment variable parameters
• kprog_set_program() - set the name of the program
• kprog_set_toolbox() - set the toolbox in which this software object belongs.
• khoros_initialize() - initialize khoros system (old version for VisiQuest 2.1p1)
• khoros_init() - initialize khoros system (new version for VisiQuest 2.1p2)
• khoros_imprint() - imprint the khoros toolbox

2-59



Basic Services Program Services Volume I - Chapter 2

G.2. Definitions of Utilities To Get Program Statistics

G.2.1. kprog_get_argc() — get the number of arguments in the argv structure

Synopsis
int kprog_get_argc(void)

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
Gets the number of arguments in the program argv structure.

G.2.2. kprog_get_argv() — get the arguments in the argv structure

Synopsis
char **kprog_get_argv(void)

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
returns the array of commandline arguments.

Restrictions
This routine returns a pointer to the internal argv array. Do not change or free any data in this array,
use for read only purposes only.

2-60



Basic Services Program Services Volume I - Chapter 2

G.2.3. kprog_get_command() — gets the command string in which this program was executed
with.

Synopsis
char *kprog_get_command(void)

Description
Gets the command used to originally excute the current program.

Restrictions
This routine returns a pointer to the private string used to store the toolbox variable. Use this as a read
only resource; do NOT change or free this pointer.

G.2.4. kprog_get_envp() — gets the environment variable parameter structure

Synopsis
char **kprog_get_envp(void)

Returns
returns the envp structure or NULL upon failure

Description
Gets the environment variable parameters structure, which is the envp.

Restrictions
This routine returns a pointer to the internal environment array pointer. Do not change or free any data
in this array, Use as a read only resource only.

2-61



Basic Services Program Services Volume I - Chapter 2

G.2.5. kprog_get_program() — gets the name of the program

Synopsis
char *kprog_get_program(void)

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
Gets the name of the program. This is usually the basename of the first argument in the argv structure.

Restrictions
This routine returns a pointer to the private string used to store the program variable. Use this as a read
only resource; do NOT change or free this pointer.

G.2.6. kprog_get_toolbox() — gets the toolbox in which this program belongs.

Synopsis
char *kprog_get_toolbox(void)

Returns
the current toolbox or NULL if not initialized

Description
Gets the name of the toolbox in which this program belongs.

Restrictions
This routine returns a pointer to the private string used to store the toolbox variable. Use this as a read
only resource; do NOT change or free this pointer.

2-62



Basic Services Program Services Volume I - Chapter 2

G.3. Definitions of Utilities To Set Program Statistics

G.3.1. kprog_set_argc() — set the number of commandline parameters

Synopsis
int kprog_set_argc(

int argc)

Input Arguments
argc

The current list in which we will be adding the

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
Sets the number of arguments in the program argv structure.

G.3.2. kprog_set_argv() — set the command line argument array

Synopsis
int kprog_set_argv(

char *argv[])

Input Arguments
argv

The array to set the program argv list to.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
Set the argv list that the program uses.

2-63



Basic Services Program Services Volume I - Chapter 2

G.3.3. kprog_set_envp() — set the number of environment variable parameters

Synopsis
int kprog_set_envp(

char *envp[])

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
Sets the number of environment variable parameters structure from the program envp structure.

G.3.4. kprog_set_program() — set the name of the program

Synopsis
int kprog_set_program(

const char *program)

Input Arguments
program

The current name of this program

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
Sets the name of the program. This is usually the basename of the first argument in the argv structure.

2-64



Basic Services Program Services Volume I - Chapter 2

G.3.5. kprog_set_toolbox() — set the toolbox in which this software object belongs.

Synopsis
int kprog_set_toolbox(

const char *toolbox)

Input Arguments
toolbox

toolbox name in which the program exists

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
Sets the name of the toolbox in where the software belongs.

Side Effects
the toolbox name is also placed into the environment variable list so that "$TOOLBOX" will be
defined.

G.4. Definitions of Utilities To Initialize VisiQuest 

G.4.1. khoros_initialize() — initialize khoros system (old version for Khoros 2.1p1)

Synopsis
void khoros_initialize(

int argc,
char **argv,
char *toolbox)

Input Arguments
argc

the number of arguments on the command line
argv

the list of command line arguments
toolbox

the name of the toolbox the program is associated with.

2-65



Basic Services Program Services Volume I - Chapter 2

Description
Initializes some khoros global variables used in the khoros system. Old version for Khoros 2.1p1 and
earlier, this routine will be obsolete in the next release; it is provided here for backwards compatibility
only. Initializes the following global variables:

G.4.2. khoros_init() — initialize khoros system (new version for Khoros 2.1p2)

Synopsis
void khoros_init(
#ifdef KOPSYS_WIN32

void (*pkexitfunc) PROTO((int)),
#endif

int argc,
char **argv,
char *toolbox,
char *date,
char *product,
char *version,
char *major,
char *minor,
char *path)

Input Arguments
argc

the number of arguments on the command line
argv

the list of command line arguments
toolbox

the name of the toolbox the program is associated with.
date

the product release date
product

the product release name
version

the product version number
major

the product major release number
minor

the product minor release number
path

the path to the application home directory

Description
Initializes some khoros global variables used in the khoros system. Initializes the following global

2-66



Basic Services Program Services Volume I - Chapter 2

variables:

G.4.3. khoros_imprint() — imprint the khoros toolbox

Synopsis
int khoros_imprint(void)

Description
Imprint license information into the khoros toolbox.

H. The String Parser

H.1. Introduction to String Parser

This section contains a set of general string and VisiQuest data transport utilities that do regular
expression string parsing. The regular expression syntax understood by these parsing routines is a subset of
the syntax used by the sed and awk parsers. These routines are wrappers around the VisiQuest Regular Expres-
sion parser detailed in the next section of this chapter. All keys used by these routines are expected to be keys
under stood by kre_comp and kre_icomp.

The routines included in these string utilities are:

• kparse_string_search_delimit() - break up a line data into an array of strings based on some set of delimiters
• kparse_string_delimit() - break a string into an array of strings based on some set of delimiters.
• kparse_string_search() - match a search key in a data string
• kparse_string_scan() - scan a data string for a specific section
• kparse_string_scan_delimit() - Break a string into an array of strings
• kparse_file_search() - search a file for a specific key
• kparse_file_search_delimit() - break up a line data into an array of strings based on some set of delimiters
• kparse_file_scan() - scan a VisiQuest Data Transport Stream for a specific section of data
• kparse_file_scan_delimit() - break a section of a VisiQuest Data Transport Stream into an array of strings

2-67



Basic Services Program Services Volume I - Chapter 2

H.2. Definitions of String Parsing Utilities

H.2.1. kparse_string_search_delimit() — break up a line data into an array of strings based on
some set of delimiters

Synopsis
char **kparse_string_search_delimit(

char *data,
char *key,
int mode,
char *delimiters,
char *cont,
char **key_format,
ssize_t *num,
int *status)

Input Arguments
data

input string to search and delimit.
key

regular expression key to search for.
mode

tells the parser which mode to work in:

KIGNORE_CASE Ignore case on a-z and A-Z
KLITERAL Use case on a-z and A-Z

delimiters
a string containing the delimiter characters.

cont
a string containing the continuation characters.

Output Arguments
key_format

the address of a pointer to hold the returned key that was matched. Sufficient space for the returned
string will be allocated if you pass in a valid pointer. Note that if this parameter is passed in as NULL,
this routine will ignore it, and the string that key matched will not be returned.

num
returns the number of items in the array, -1 on error

status
error status of the search. It can be one of the following:

KPARSE_OK (parse ok, return data valid)

2-68



Basic Services Program Services Volume I - Chapter 2

KPARSE_NOKEY (couldn’t find key)
KPARSE_PARTKEY (data ends on a partial match)
KPARSE_NULLKEY (key was NULL)
KPARSE_SYNTAXKEY (key had an illegal syntax)

Returns
This routine returns a pointer to an array of items we just broke apart from the input data string.
NULL is returned when the kparse_string_search() or kparse_string_delimit() fails.

Description
This routine looks for a user specified key with a call to kparse_string_search(); then, it parses the rest
of the line, up to a ’\0, according to the user’s list of delimiters by calling kparse_string_delimit(). The
user can specify a set of continuation characters. Continuation characters must appear as the last char-
acter of the line. Line continuation can be chained together at the end of each consecutive line you
want this routine to parse as a single line.

Side Effects
This routine mallocs data and sets the value of key_format parameter. Thus, the user should pass in an
address of an unused character pointer. The calling routine is responsible for freeing the space mal-
loc’ed for the key_format parameter.

This routine creates a new array of strings, and the calling routine is responsible for freeing the space
allocated while creating the array via a call to karray_free().

Restrictions
It does not support the following regular expression constructs: or’ing ’|’, grouping of regular expres-
sions ’()’, match one or more times ’+’, or match n to m times ’\{n,m\}’. Finally, the ’\0mber’ and
’\(\)’ constructs have no meaning for these routines, so they are not supported either.

Search keys and data strings should not contain the values ’\001’, ’\002’, ’\003’, or ’\004’, because
these values are used as special search parameters by the parser.

2-69



Basic Services Program Services Volume I - Chapter 2

H.2.2. kparse_string_delimit() — break a string into an array of strings based on some set of
delimiters.

Synopsis
char **kparse_string_delimit(

char *data,
char *delimiter,
int mode,
ssize_t *num)

Input Arguments
data

the data string to delimit
delimiter

the list of delimiters to use
mode

the delimit mode

KLITERAL - delimit on delimiters, leave
extra whitespace, and leave
NULL entries in the array
if two delimiters are next
to each other.

KDELIM_CLEAN - eliminate whitespace on
strings, and ignore two
delimiters next to each other

Output Arguments
num

the number of items in the list

Returns
This routine returns a pointer to an array of items we just broke apart from the input data string.

Description
This routine parses the input data string according to a set of single character delimiters. These delim-
iters can be escaped by a ’\’ inside of the data string if the delimiter must appear as an item; hence, you
cannot use a ’\’ as a delimiter. The new array is created via calls to the karray_add() library call, and a
pointer to the new array is returned back to the calling routine

2-70



Basic Services Program Services Volume I - Chapter 2

Side Effects
This routine creates a new array of strings, and the calling routine is responsible for freeing the space
allocated while creating the array via a call to karray_free().

H.2.3. kparse_string_search() — match a search key in a data string

Synopsis
char * kparse_string_search(

char *data,
char *key,
int mode,
char **key_format,
int *status)

Input Arguments
data

the data string to search through
key

the regular expression key to search for
mode

tells the parser which mode to work in:

KIGNORE_CASE Ignore case on a-z and A-Z
KLITERAL Use case information on a-z and A-Z

Output Arguments
key_format

the address of a pointer to hold the returned key that was matched. Sufficient space for the returned
string will be allocated if you pass in a valid pointer. Note that if this parameter is passed in as NULL,
this routine will ignore it, and the string that key matched will not be returned.

status
error status of the search. It can be one of the following:

KPARSE_OK (parse ok, return data valid)
KPARSE_NOKEY (couldn’t find key)
KPARSE_PARTKEY (data ends on a partial match)
KPARSE_NULLKEY (key was NULL)
KPARSE_SYNTAXKEY (key had an illegal syntax)

2-71



Basic Services Program Services Volume I - Chapter 2

Returns
This function returns a character pointer set to the address of the character following the matched
search key. If an error occured, NULL is returned and status is set to the appropriate error status.

Description
This routine performs a regular expression search of an input data string for the first occurance of a
specific search string. The search string is specified as a unix regular expression string (see syntax
listed below), and it returns a pointer to the portion of the string that follows the search string. It also
returns the exact format of the search string that the regular expression has matched. The formatted
return string is kmalloc’ed for you.

Side Effects
This routine mallocs data and sets the value of key_format parameter. Thus, the user should pass in an
address of an unused character pointer. The calling routine is responsible for freeing the space mal-
loc’ed for the key_format parameter.

Restrictions
It does not support the following regular expression constructs: or’ing ’|’, grouping of regular expres-
sions ’()’, match one or more times ’+’, or match n to m times ’\{n,m\}’. Finally, the ’\0mber’ and
’\(\)’ constructs have no meaning for these routines, so they are not supported either.

Search keys and data strings should not contain the values ’\001’, ’\002’, ’\003’, or ’\004’, because
these values are used as special search parameters by the parser.

H.2.4. kparse_string_scan() — scan a data string for a specific section

Synopsis
char *kparse_string_scan(

char *data,
char *key1,
char *key2,
int mode,
char **key1_format,
char **key2_format,
int *status)

Input Arguments
data

the data string to search through
key1

the regular expression begin key to search for
key2

2-72



Basic Services Program Services Volume I - Chapter 2

the regular expression end key to search for
mode

tells the parser which mode to work in:

KIGNORE_CASE Ignore case on a-z and A-Z
KLITERAL Use case information on a-z and A-Z

Output Arguments
key1_format

the address of a pointer to hold the returned begin key that was matched. Sufficient space for the
returned string will be allocated if you pass in a valid pointer. Note that if this parameter is passed in
as NULL, this routine will ignore it, and the string that key1 matched will not be returned.

key2_format
the address of a pointer to hold the returned end key that was matched. Sufficient space for the
returned string will be allocated if you pass in a valid pointer. Note that if this parameter is passed in
as NULL, this routine will ignore it, and the string that key2 matched will not be returned.

status
error status of the search. It can be one of the following:

KPARSE_OK (parse ok, return data valid)
KPARSE_NOKEY (couldn’t find begin key)
KPARSE_NOEND (couldn’t find end key)
KPARSE_DATAERR (data string was invalid)
KPARSE_PARTKEY (data ended with partial match)
KPARSE_PARTEND (data ended with partial match on end key)
KPARSE_NULLKEY (key was NULL)
KPARSE_NULLEND (end key was NULL)
KPARSE_SYNTAXKEY (key had an illegal syntax)
KPARSE_SYNTAXEND (end key had an illegal syntax)

Returns
This routine returns a pointer to a malloc’ed string containing the text between the two matched keys.
If an error occured during the search, it will return NULL, and the error status is set appropriately.

Description
This routine finds a section of data, marked by begin and end keys, out of a data string. When the begin
and end keys are matched, this routine allocates a string big enough to hold the data between the keys,
and then copies the data into that space. A pointer to this string is then returned by this routine. This
routine makes calls to kparse_string_search() which handles the regular expression searching for the
begin and end match keys.

Side Effects
This routine mallocs data and sets the value of the key1_format and key2_format parameters. Thus,

2-73



Basic Services Program Services Volume I - Chapter 2

the user should pass in addresses of an unused character pointers for them. The calling routine is
responsible for freeing the space malloc’ed for the key1_format and key2_format parameters.

This routine mallocs the space for the return string; and hence, is responsible for freeing the that space
via kfree_and_NULL() when they are done with it.

Restrictions
It does not support the following regular expression constructs: or’ing ’|’, grouping of regular expres-
sions ’()’, match one or more times ’+’, or match n to m times ’\{n,m\}’. Finally, the ’\0mber’ and
’\(\)’ constructs have no meaning for these routines, so they are not supported either.

H.2.5. kparse_string_scan_delimit() — Break a string into an array of strings

Synopsis
char **kparse_string_scan_delimit(

char *data,
char *key1,
char *key2,
int mode,
char *delimiters,
char **key1_format,
char **key2_format,
ssize_t *num,
int *status)

Input Arguments
data

the data string to search through
key1

the regular expression begin key to search for
key2

the regular expression end key to search for
mode

tells the parser which mode to work in:

KIGNORE_CASE (match reguardless of case)
KLITERAL (match with case)

delimiters
a string containing the delimiter characters.

2-74



Basic Services Program Services Volume I - Chapter 2

Output Arguments
key1_format

the address of a pointer to hold the returned begin key that was matched. If key1 was KPARSE_BOF,
this address will set to NULL. Sufficient space for the returned string will be allocated if you pass in a
valid pointer. Note that if this parameter is passed in as NULL, this routine will ignore it, and the
string that key1 matched will not be returned.

key2_format
the address of a pointer to hold the returned end key that was matched. If key2 was KPARSE_EOF,
this address will be set to NULL. Sufficient space for the returned string will be allocated if you pass
in a valid pointer. Note that if this parameter is passed in as NULL, this routine will ignore it, and the
string that key2 matched will not be returned.

num
returns the number of items in the array, -1 on error

status
error status of the search. It can be one of the following:

KPARSE_OK (parse ok, return data valid)
KPARSE_NOKEY (couldn’t find begin key)
KPARSE_NOEND (couldn’t find end key)
KPARSE_DATAERR (data string was invalid)
KPARSE_PARTKEY (data ended with partial match)
KPARSE_PARTEND (data ended with partial match on end key)
KPARSE_NULLKEY (key was NULL)
KPARSE_NULLEND (end key was NULL)
KPARSE_SYNTAXKEY (key had an illegal syntax)
KPARSE_SYNTAXEND (end key had an illegal syntax)

Returns
This routine returns a pointer to an array of items that were just broke apart from the input data string.
NULL is returned when the kparse_string_scan() or kparse_string_delimit() fails.

Description
This routine looks in a data string for an area of text between two user specified match keys, then it
delimits the section of text in to an array of smaller strings based on a set of character delimiters.
Delimiters can be escaped by a ’\’ if they need to appear in the text section. This routine is a combina-
tion of the calls kparse_string_scan() and kparse_string_delimit(). This routine cleans up the entries in
the array via a kstring_cleanup() call.

Side Effects
This routine mallocs data and sets the value of the key1_format and key2_format parameters. Thus,
the user should pass in addresses of an unused character pointers for them. The calling routine is
responsible for freeing the space malloc’ed for the key1_format and key2_format parameters.

This routine mallocs the space for the return string; and hence, is responsible for freeing the that space
via kfree_and_NULL() when they are done with it.

2-75



Basic Services Program Services Volume I - Chapter 2

This routine creates a new array of strings, and the calling routine is responsible for freeing the space
allocated while creating the array via a call to karray_free().

Restrictions
It does not support the following regular expression constructs: or’ing ’|’, grouping of regular expres-
sions ’()’, match one or more times ’+’, or match n to m times ’\{n,m\}’. Finally, the ’\0mber’ and
’\(\)’ constructs have no meaning for these routines, so they are not supported either.

Search keys and the data file should not contain the values ’\001’, ’\002’, ’\003’, or ’\004’, because
these values are used as special search parameters by the parser.

H.2.6. kparse_file_search() — search a file for a specific key

Synopsis
int kparse_file_search(

kfile *file,
char *key,
int mode,
char **key_format)

Input Arguments
file

a pointer to the transport file opened for reading
key

The regular expression key to search for.
mode

tells the parser which mode to work in:

KIGNORE_CASE Ignore case on a-z and A-Z
KLITERAL Use case information on a-z and A-Z

Output Arguments
key_format

the address of a pointer to hold the returned key that was matched. Sufficient space for the returned
string will be allocated if you pass in a valid pointer. Note that if this parameter is passed in as NULL,
this routine will ignore it, and the string that key matched will not be returned.

Returns
return status of the search. It can be one of the following:

KPARSE_OK (parse ok, return data valid),

2-76



Basic Services Program Services Volume I - Chapter 2

KPARSE_NOKEY (couldn’t find key)
KPARSE_DATAERR (something was wrong with the data)
KPARSE_PARTKEY (data ended with a partial match)
KPARSE_NULLKEY (key was NULL)
KPARSE_SYNTAXKEY (key had an illegal syntax)

Description
This routine is a VisiQuest Transport Interface to the string parser provided in the kparse_string_search
routine. It returns a malloc’ed copy of the key that was matched in the data file. It also sets the current
file position, with the transport call kfseek(), to the character following the matched key.

Side Effects
This routine mallocs data and sets the value of key_format parameter. Thus, the user should pass in an
address of an unused character pointer. The calling routine is responsible for freeing the space mal-
loc’ed for the key_format parameter.

Restrictions
It does not support the following regular expression constructs: or’ing ’|’, grouping of regular expres-
sions ’()’, match one or more times ’+’, or match n to m times ’\{n,m\}’. Finally, the ’\0mber’ and
’\(\)’ constructs have no meaning for these routines, so they are not supported either.

Search keys and the data file should not contain the values ’\001’, ’\002’, ’\003’, or ’\004’, because
these values are used as special search parameters by the parser.

H.2.7. kparse_file_search_delimit() — break up a line data into an array of strings based on
some set of delimiters

Synopsis
char **kparse_file_search_delimit(

kfile *file,
char *key,
int mode,
char *delimiters,
char *cont,
char **key_format,
ssize_t *num,
int *status)

Input Arguments
file

2-77



Basic Services Program Services Volume I - Chapter 2

a pointer to the transport file opened for reading
key

The regular expression key to search for
mode

tells the parser which mode to work in:

KIGNORE_CASE Ignore case on a-z and A-Z
KLITERAL Use case information on a-z and A-Z

delimiters
a string containing the delimiter characters

cont
a string containing the continuation characters

Output Arguments
key_format

the address of a pointer to hold the returned key that was matched. Sufficient space for the returned
string will be allocated if you pass in a valid pointer. Note that if this parameter is passed in as NULL,
this routine will ignore it, and the string that key matched will not be returned.

num
returns the number of items in the array, -1 on error

status
return status of the search. It can be one of the following:

KPARSE_OK (parse ok, return data valid),
KPARSE_NOKEY (couldn’t find key)
KPARSE_PARTKEY (data ended with a partial match)
KPARSE_NULLKEY (key was NULL)
KPARSE_SYNTAXKEY (key had an illegal syntax)
KPARSE_DATAERR (routine had a a data error)

Returns
This routine returns a pointer to an array of items we just broke apart from the input data string.
NULL is returned when the kparse_file_search() or kparse_string_delimit() fails.

Description
This routine looks for a user specified key with a call to kparse_file_search(); then, it reads in the rest
of the line into a string, up to a ’\0. Once the line is read in, it breaks up the line according to the
user’s list of delimiters by calling kparse_string_delimit(). The user can specify a set of continuation
characters. Continuation characters must appear as the last character of the line. Line continuation can
be chained together at the end of each consecutive line you want this routine to parse as a single line.

2-78



Basic Services Program Services Volume I - Chapter 2

Side Effects
This routine mallocs data and sets the value of key_format parameter. Thus, the user should pass in an
address of an unused character pointer. The calling routine is responsible for freeing the space mal-
loc’ed for the key_format parameter.

This routine creates a new array of strings, and the calling routine is responsible for freeing the space
allocated while creating the array via a call to karray_free().

Restrictions
It does not support the following regular expression constructs: or’ing ’|’, grouping of regular expres-
sions ’()’, match one or more times ’+’, or match n to m times ’\{n,m\}’. Finally, the ’\0mber’ and
’\(\)’ constructs have no meaning for these routines, so they are not supported either.

Search keys and the data file should not contain the values ’\001’, ’\002’, ’\003’, or ’\004’, because
these values are used as special search parameters by the parser.

H.2.8. kparse_file_scan() — scan a VisiQuest Data Transport Stream for a specific section of data

Synopsis
char *kparse_file_scan(

kfile *file,
char *key1,
char *key2,
int mode,
char **key1_format,
char **key2_format,
int *status)

Input Arguments
file

a pointer to an open file pointer
key1

the regular expression begin key to search for. If this key is the #define KPARSE_BOF, it will use a
file offset of 0 for the returned data’s starting point.

key2
the regular expression end key to search for. If this key is the #define KPARSE_EOF, it will set the
file offset to the end of the file for the returned data’s ending point.

mode
tells the parser which mode to work in:

KIGNORE_CASE Ignore case on a-z and A-Z
KLITERAL Use case information on a-z and A-Z

2-79



Basic Services Program Services Volume I - Chapter 2

Output Arguments
key1_format

the address of a pointer to hold the returned begin key that was matched. If key1 was KPARSE_BOF,
this address will set to NULL. Sufficient space for the returned string will be allocated if you pass in a
valid pointer. Note that if this parameter is passed in as NULL, this routine will ignore it, and the
string that key1 matched will not be returned.

key2_format
the address of a pointer to hold the returned end key that was matched. If key2 was KPARSE_EOF,
this address will be set to NULL. Sufficient space for the returned string will be allocated if you pass
in a valid pointer. Note that if this parameter is passed in as NULL, this routine will ignore it, and the
string that key2 matched will not be returned.

status
error status of the search. It can be one of the following:

KPARSE_OK (parse ok, return data valid),
KPARSE_NOKEY (couldn’t find begin key)
KPARSE_NOEND (couldn’t find end key)
KPARSE_DATAERR (data string was invalid)
KPARSE_PARTKEY (data ended with partial match)
KPARSE_PARTEND (data ended with partial match on end key)
KPARSE_NULLKEY (key was NULL)
KPARSE_NULLEND (end key was NULL)
KPARSE_SYNTAXKEY (key had an illegal syntax)
KPARSE_SYNTAXEND (end key had an illegal syntax)

Returns
This routine returns a pointer to a malloc’ed string containing the text between the two matched keys.
If an error occured during the search, it will return NULL, and the error status is set appropriately.
This current file position is set to the

Description
This routine finds a section of data, marked by begin and end keys, out of a VisiQuest Data Transport
Stream that was opened for input. When the begin and end keys are matched, this routine allocates a
string big enough to hold the data between the keys, and then copies the data into that space. A pointer
to this string is then returned. This routine makes calls to kparse_file_search() which handles the regu-
lar expression parsing for the begin and end match keys. On a successful search, the current position
in the VisiQuest Data Transport Stream will be set to the character directly following the last character
matched by the end key.

Side Effects
This routine mallocs data and sets the value of the key1_format and key2_format parameters. Thus,
the user should pass in addresses of an unused character pointers for them. The calling routine is
responsible for freeing the space malloc’ed for the key1_format and key2_format parameters.

This routine mallocs the space for the return string; and hence, is responsible for freeing the that space
via kfree_and_NULL() when they are done with it.

2-80



Basic Services Program Services Volume I - Chapter 2

Restrictions
It does not support the following regular expression constructs: or’ing ’|’, grouping of regular expres-
sions ’()’, match one or more times ’+’, or match n to m times ’\{n,m\}’. Finally, the ’\0mber’ and
’\(\)’ constructs have no meaning for these routines, so they are not supported either.

H.2.9. kparse_file_scan_delimit() — break a section of a VisiQuest Data Transport Stream into an
array of strings

Synopsis
char **kparse_file_scan_delimit(

kfile *file,
char *key1,
char *key2,
int mode,
char *delimiters,
char **key1_format,
char **key2_format,
ssize_t *num,
int *status)

Input Arguments
file

a pointer to an open file pointer
key1

the regular expression begin key to search for if this key is the #define KPARSE_BOF, it will make file
offset 0 the returned data starting point.

key2
the regular expression end key to search for if this key is the #define KPARSE_EOF, it will make file
offset at the end of the file the returned data ending point.

mode
tells the parser which mode to work in:

KIGNORE_CASE Ignore case on a-z and A-Z
KLITERAL Use case information on a-z and A-Z

delimiters
a string containing the delimiter characters.

Output Arguments
key1_format

the address of a pointer to hold the returned begin key that was matched. If key1 was KPARSE_BOF,
this address will set to NULL. Sufficient space for the returned string will be allocated if you pass in a
valid pointer. Note that if this parameter is passed in as NULL, this routine will ignore it, and the

2-81



Basic Services Program Services Volume I - Chapter 2

string that key1 matched will not be returned.
key2_format

the address of a pointer to hold the returned end key that was matched. If key2 was KPARSE_EOF,
this address will be set to NULL. Sufficient space for the returned string will be allocated if you pass
in a valid pointer. Note that if this parameter is passed in as NULL, this routine will ignore it, and the
string that key2 matched will not be returned.

num
returns the number of items in the array, -1 on error

status
error status of the search. It can be one of the following:

KPARSE_OK (parse ok, return data valid)
KPARSE_NOKEY (couldn’t find begin key)
KPARSE_NOEND (couldn’t find end key)
KPARSE_DATAERR (data string was invalid)
KPARSE_PARTKEY (data ended with partial match)
KPARSE_PARTEND (data ended with partial match on end key)
KPARSE_NULLKEY (key was NULL)
KPARSE_NULLEND (end key was NULL)
KPARSE_SYNTAXKEY (key had an illegal syntax)
KPARSE_SYNTAXEND (end key had an illegal syntax)

Returns
an array of of strings that were delimited.

Description
This routine looks for an area of text between two user specified keys in a VisiQuest Data Transport
Stream; then, copies the section into a string, and parses it according to the user’s set of delimiters.
Delimiters can be escaped by a ’\’ character if a delimiter must appear in the text. This routine is a
combination of the routines kparse_file_scan() and kparse_string_delimit(). This routine cleans up the
strings to be returned via the kstring_cleanup() routine.

Side Effects
This routine mallocs data and sets the value of the key1_format and key2_format parameters. Thus,
the user should pass in addresses of an unused character pointers for them. The calling routine is
responsible for freeing the space malloc’ed for the key1_format and key2_format parameters.

This routine mallocs the space for the return string; and hence, is responsible for freeing the that space
via kfree_and_NULL() when they are done with it.

This routine creates a new array of strings, and the calling routine is responsible for freeing the space
allocated while creating the array via a call to karray_free().

2-82



Basic Services Program Services Volume I - Chapter 2

I. Regular Expression Pattern Matching & Replacement

I.1. Introduction to Regular Expression Utilities

VisiQuest includes the regex package, a public domain set of routines for regular expression pattern
matching and replacement provided by Ozan S. Yigit (oz) of the Dept. of Computer Science at York Univer-
sity. The following excerpt is from the header of the regex.c file:

/*
* regex - Regular expression pattern matching
* and replacement
*
*
* By: Ozan S. Yigit (oz)
* Dept. of Computer Science
* York University
*
*
* These routines are the PUBLIC DOMAIN equivalents
* of regex routines as found in 4.nBSD UN*X, with minor
* extensions.
*
* These routines are derived from various implementations
* found in software tools books, and Conroy’s grep. They
* are NOT derived from licensed/restricted software.
* For more interesting/academic/complicated implementations,
* see Henry Spencer’s regexp routines, or GNU Emacs pattern
* matching module.
*
*
* Acknowledgments:
*
* HCR’s Hugh Redelmeier has been most helpful in various
* stages of development. He convinced me to include BOW
* and EOW constructs, originally invented by Rob Pike at
* the University of Toronto.
*
* References:
* Software tools Kernighan & Plauger
* Software tools in Pascal Kernighan & Plauger
* Grep [rsx-11 C dist] David Conroy
* ed - text editor Un*x Programmer’s Manual
* Advanced editing on Un*x B. W. Kernighan
* RegExp routines Henry Spencer
*
* Notes:
*
* This implementation uses a bit-set representation for character
* classes for speed and compactness. Each character is represented
* by one bit in a 128-bit block. Thus, CCL or NCL always takes a
* constant 16 bytes in the internal dfa, and re_exec does a single
* bit comparison to locate the character in the set.
*
* Examples:
*

2-83



Basic Services Program Services Volume I - Chapter 2

* pattern: foo*.*
* compile: CHR f CHR o CLO CHR o END CLO ANY END END
* matches: fo foo fooo foobar fobar foxx ...
*
* pattern: fo[ob]a[rz]
* compile: CHR f CHR o CCL 2 o b CHR a CCL bitset END
* matches: fobar fooar fobaz fooaz
*
* pattern: foo\+
* compile: CHR f CHR o CHR o CHR \ CLO CHR \ END END
* matches: foo\ foo\\ foo\\\ ...
*
* pattern: \(foo\)[1-3]\1 (same as foo[1-3]foo)
* compile: BOT 1 CHR f CHR o CHR o EOT 1 CCL bitset REF 1 END
* matches: foo1foo foo2foo foo3foo
*
* pattern: \(fo.*\)-\1
* compile: BOT 1 CHR f CHR o CLO ANY END EOT 1 CHR - REF 1 END
* matches: foo-foo fo-fo fob-fob foobar-foobar ...
*
*/

It should be noted that the original code has been heavily modified to include some new features. Please see
the table below for a complete list of the regular expressions understood by this regular expression parser.

Regular Expression Special Symbols

Symbol Description of Symbol
. Match any single character except newline
ˆ If this is the first character of the regular expression, it matches the beginning of

the line.
$ If this is the last character of the regular expression, it matches the end of the

line.
[...] or [ˆ..] Matches any one character contained within the brackets. If the first character

after the ’[’ is the ’]’, then it is included in the characters to match. If the first
character after the ’[’ is a ’ˆ’, then it will match all characters NOT included in
the []. The ’-’ will indicate a range of characters. For example, [a-z] specifies all
characters between and including the ASCII values ’a’ and ’z’. If the ´-’ follows
the ’[’ or is right before the ’]’ then it is interpreted literally. There are special
symbols that can be used as short hand: \w will expand to ’0-9a-z_A-Z’, \d
expands to ’0-9’, and \s expands to ’ \t\n\r\f’

* Match the preceding regular expression 0 or more times. The matching includes
items within a [...] or (...).

+ Match the preceding character or range of characters 1 or more times. The
matching includes items within a [...] or (...).

2-84



Basic Services Program Services Volume I - Chapter 2

Regular Expression Special Symbols

Symbol Description of Symbol
(..) Tagged boundary region. This pattern indicates the begin and end of a tagged

region in the regular expression. It can be used to match the exact same pattern
later in the regular expression via a reference \1 through \127. It can also be used
in kre_subs to substitute the substring that was matched by this part of the regular
expression. The final use of the (..) notation is for grouping of the or’ing func-
tion. This allows a pattern like (regexp1|regexp2|regexp3). As indicated by the
example, you can nest grouping if necessary. Only 127 of these tagged regions
are allowed in the regular expression.

\b Word boundary. This pattern will match the empty char before the start and after
the end of a word. By default, a word character contains 0-9a-z_A-Z. This can
be modified by the kre_modw routine.

\B Non-word boundary. This pattern will match the empty character between two
characters in a word.

\1-\127 These symbols are used to reference the 1st through 9th \(\) region.
\h Stored the ASCII character ’\b’ since \b is used to define word boundary (See

above).
\A If it is the first character of the regular expression, it matches the empty character

at the beginning of the string.
\Z If it is the last character of the regular expression, it matches the empty character

at the end of the string.
\c@-\cZ These symbols are translated into control-@ through control-Z. Any other val-

ues, and the \c part is ignored.
\d Same as [0-9].
\D Same as [ˆ0-9].
\s Same as [ \t\n\r\f].
\S Same as [ˆ \t\n\r\f].
\w Same as [a-zA-Z_0-9].
\W Same as [ˆa-zA-Z_0-9].
\Q..\E A section enclosed in these symbols it taken literally. Inside these sections, meta

characters and special symbols have no meaning. If a \E needs to appear in one
of these sections, the \ must be escaped with a \.

\ This escapes the meaning of a special character.

Table 1: This table describes all the special characters supported by the parser. All other characters are
matched directly.

The regex function that have been integrated into VisiQuest carry the k prefix in their names. They are
as follows:

• kre_comp() - compile a regular expression
• kre_debug() - prints a DFA for debug purposes

2-85



Basic Services Program Services Volume I - Chapter 2

• kre_exec() - execute dfa to find a match.
• kre_icomp() - compile a case insensitive regular expression
• kre_modw() - modify kre_exec’s work table
• kre_pos() - begin and end pointers of regular expression group
• kre_status() - return a parse status code
• kre_subs() - substitute the matched portions of the src in dst
• kreg ex_replace() - replace an input string given a regular expression input and output string

I.2. Definitions of Regular Expression Utilities

I.2.1. kre_comp() — compile a regular expression

Synopsis
char *kre_comp(

char *pat)

Input Arguments
pat

regular expression pattern to be compiled

Returns
NULL on success, a string indicating the error otherwise

Description
Compiles a regular expression.

. Match any single character except newline

ˆ If this is the first character of the
regular expression, it matches the beginning
of the line.

$ If this is the last character of the
regular expression, it matches the end of
the line.

[...] or [ˆ..] Matches any one character contained within
the brackets. If the first character after
the ’[’ is the ’]’, then it is included in
the characters to match. If the first
character after the ’[’ is a ’ˆ’, then it
will match all characters NOT included in

2-86



Basic Services Program Services Volume I - Chapter 2

the []. The ’-’ will indicate a range of
characters. For example, [a-z] specifies
all characters between and including the
ascii values ’a’ and ’z’. If the ’-’
follows the ’[’ or is right before the ’]’
then it is interpreted literally. There are
special symbols that can be used as short
hand: \w will expand to ’0-9a-z_A-Z’, \d
expands to ’0-9’, and \s expands to ’ \t\0r\f’

{n,m} Match between n and m times the DFA directly
{n,} before this range syntax. Thus, ’a{2,10}’
{n} will match a minimum of 2 a’s and a maximum

10. The {n,} syntax tells the parser to
match n or more times., and the {n} syntax
tells it to match exactly n times.

* Match the preceding character or range
of characters 0 or more times. This is
equivalent to the range syntax {0,}

+ Match the preceding character or range
of characters 1 or more times. This is
equivalent to the range syntax {1,}

? Match the preceding character or range
of characters 0 or 1 times. This is
equivalent to the range syntax {0,1}

| This symbol is used to indicate where to
separate two sub regular expressions for a
logical OR operation.

(..) Group boundaries. This pattern indicates an area
of a memory tagged region of the regular
expression that can be used to match the exact
same pattern later in the regular expression via
a reference, or used in kre_subs to bring in this
part of the matched string. It can also be used
to indicate areas where the or symbol ’|’ should
be applied. Note, only 127 groups are allowed.

\b Word boundary. This pattern will match the
empty char before the start and after the end
of a word. By default, a word character
contains 0-9a-z_A-Z. This can be modified by
the kre_modw routine.

\B Non-word boundary. This pattern will match
the empty character between two characters

2-87



Basic Services Program Services Volume I - Chapter 2

in a word.

\1-\127 These symbols are used to reference the 1st
through 127th () region.

\h Stored the ASCII character ’\b’

\A If it is the first character of the regular
expression, it matches the empty character
at the beginning of the string.

\Z If it is the last character of the regular
expression, it matches the empty character
at the end of the string.

\c@-\cZ These symbols are translated into control-@
through control-Z. Any other values, and the
\c part is ignored.

\d Same as [0-9].

\D Same as [ˆ0-9].

\s Same as [ \t\0r\f].

\S Same as [ˆ \t\0r\f].

\w Same as [a-zA-Z_0-9].

\W Same as [ˆa-zA-Z_0-9].

\Q..\E A section enclosed in these symbols it
taken literally. In side these sections, meta
characters and special symbols have no meaning.
If a \E needs to appear in one of these
sections, the \ must be escaped with \.

\ This escapes the meaning of a special
character.

I.2.2. kre_debug() — prints a DFA for debug purposes

Synopsis
void kre_debug(

2-88



Basic Services Program Services Volume I - Chapter 2

char *s,
kfile *out)

Input Arguments
s

the pattern to be debugged
out

output kfile pointer to write to. It defaults kstdout if out is NULL

Description
Prints a dfa to kstdout for debugging purposes.

I.2.3. kre_exec() — execute dfa to find a match.

Synopsis
int kre_exec(

char *lp)

Input Arguments
lp

string to exec the DFA on

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
Execute DFA to match a pattern.

special cases: (dfa[0])

BOS - Match only once, starting from the beginning of the string.
CHR - First locate the character without calling pmatch, and if

found, call pmatch for the remaining string.
END - re_comp failed, poor luser did not check for it. Fail fast.

If a match is found, bopat[0] and eopat[0] are set to the beginning and the end of the matched frag-
ment, respectively.

2-89



Basic Services Program Services Volume I - Chapter 2

Restrictions
kre_comp or kre_icomp must have been called previously to calling this routine.

I.2.4. kre_icomp() — compile a case insensitive regular expression

Synopsis
char *kre_icomp(

char *pat)

Input Arguments
pat

regular expression pattern to be compiled

Returns
NULL on success, a string indicating the compile error otherwise

Description
This routine is an extension to kre_comp, such that the characters a-z and A-z are treated as though
they were all of the same case.

I.2.5. kre_modw() — modify kre_exec’s work table

Synopsis
void kre_modw(

char *s)

Input Arguments
s

input string

Description
Adds new characters into the word table to change the re_exec’s understanding of what a word should
look like. Note that we only accept additions into the word definition.

If the string parameter is 0 or null string, the table is reset back to the default, which contains A-Z a-z

2-90



Basic Services Program Services Volume I - Chapter 2

0-9 _.

Restrictions
This routine only allows you to add characters to the table, or reset to the default table. It canot delete
characters from the table.

I.2.6. kre_pos() — begin and end pointers of regular expression group

Synopsis
int kre_pos(

int num,
kaddr *begin,
kaddr *end)

Input Arguments
num

the actual desired group number

Output Arguments
begin

if not NULL then returns the actual pointer to the beginning of the group
end

if not NULL then returns the actual pointer to the end of the group

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
Returns the start and end pointers to a regular expression group. This returns the beginning and end
pointers of the matched pattern. The num parameter indicates which tag field to return, 0 implies that
it should return pointers to the whole matched pattern

I.2.7. kre_status() — return a parse status code

Synopsis
int kre_status(void)

2-91



Basic Services Program Services Volume I - Chapter 2

Returns
error status of the search. It can be one of the following:

KPARSE_OK (parse ok, return data valid),
KPARSE_NOKEY (couldn’t find begin key)
KPARSE_NOEND (couldn’t find end key)
KPARSE_DATAERR (data string was invalid)
KPARSE_PARTKEY (data ended with partial match)
KPARSE_PARTEND (same as above, but on end key)
KPARSE_NULLKEY (key was NULL)
KPARSE_NULLEND (end key was NULL)
KPARSE_SYNTAXKEY (key had an illegal syntax)
KPARSE_SYNTAXEND (end key had an illegal syntax)

Description
Returns an integer status code that can be used by other library routines to determine the error that
occured during the parse.

I.2.8. kre_subs() — substitute the matched portions of the src in dst

Synopsis
int kre_subs(

char *src,
char *dst)

Input Arguments
src

source string

Output Arguments
dst

destination string

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
Substitutes the matched portions of the source string in the in destination string.

2-92



Basic Services Program Services Volume I - Chapter 2

’&’ - substitute the entire matched pattern.
’\digit’ - substitute a subpattern, with the given

tag number. Tags are numbered from 1 to
127. If the particular tagged subpattern
does not exist, null is substituted.

Other symbols can be used to modify the substitution patterns:

\Q..\E - Ignore all special characters between the
\Q and \E symbols

\l - Convert next character to lower case.
\L..\E - Convert all text between \L and \E to lower

case
\u - Convert next character to upper case.
\U..\E - Convert all text between \U and \E to upper

case

Restrictions
kre_exec must be called before this routine will do any substitutions.

I.2.9. kregex_replace() — replace an input string given a regular expression input and output
string

Synopsis
char * kregex_replace(

const char *istr,
const char *scan_pat,
const char *replace_pat,
const int icase,
char *ostr)

Input Arguments
istr

the input string
scan_pat

the source pattern to subsititute on
replace_pat

the destination pattern to subsititute for

2-93



Basic Services Program Services Volume I - Chapter 2

icase
TRUE if you want to ignore case while searching for the search pattern

Output Arguments
ostr

the output string

Returns
NULL on failure, the newly replaced string on success

Description
Replace an input string given a regular expression input and output string. This routine is used to do
regular expression substitution given the source and destination patterns as replacement. So for exam-
ple if the input string is:

Old Man in an Old Boat

and the source pattern is:

ˆOld

and the replace pattern is:

Young

then the output would be:

Young Man in an Old Boat

J. Memory Allocation Utilities

J.1. Introduction to Memory Utilities

The VisiQuest utilities kcalloc(), kmalloc(), krealloc(), and kfree() are more robust than their libc coun-
terparts. These utilities check for requests to allocate 0 bytes.

• kbcopy() - copies bytes from src to dest
• kbzero() - zeros out ’num’ bytes (BSD style)
• kbcmp() - compare bytes from src1 and src2 (BSD style)
• kcalloc() - allocate memory and initialize it
• kdupalloc() - duplicates a piece of memory
• kfree() - free allocated memory
• kfree_and_NULL() - free memory previously allocated
• kmalloc() - allocate a contiguous piece of memory

2-94



Basic Services Program Services Volume I - Chapter 2

• krealloc() - re-allocate a piece of memory to a new size
• kmemchr() - find the first occurence of ’c’ in an character array
• kmemcmp() - compare bytes from src1 and src2
• kmemcpy() - copies bytes from src to dest
• kmemccpy() - restricted copy of bytes from src to dest
• kmemmove() - copy a block of memory to another block
• kmemset() - initialize bytes in dest to the character value ’c’

J.2. Definitions of Memory Utilities

J.2.1. kbcopy() — copies bytes from src to dest

Synopsis
void kbcopy(

char *src,
char *dest,
int num)

Input Arguments
src

the source pointer to copy "num" bytes from
num

the number of bytes to be copied

Output Arguments
dest

the destination pointer to copy the bytes to

Description
This function is a replacement for the BSD system call bcopy(). The kbcopy() call copies "num" bytes
from src to dest using kmemcpy(), which makes sure that overlapping strings are handled correctly.

J.2.2. kbzero() — zeros out ’num’ bytes (BSD style)

Synopsis
void kbzero(

char *dest,

2-95



Basic Services Program Services Volume I - Chapter 2

int num)

Input Arguments
num

the number of bytes to be zero’ed

Output Arguments
dest

the destination pointer to be zero’ed

Description
This function is a replacement for the BSD system call bzero(). The kbzero() zeros out "num" bytes
from ptr. kbzero() will really use kmemset() with a c value of 0, so it will be checked to make sure that
the "dest" array is not NULL and "num" is greater than 0.

J.2.3. kbcmp() — compare bytes from src1 and src2 (BSD style)

Synopsis
void kbcmp(

char *src1,
char *src2,
int num)

Input Arguments
src1

the first source pointer to compare from
src2

the second source pointer to compare from
num

the number of bytes to be compared

Returns
0 if up to num characters in src1 equals the corresponding characters in src2. The positive difference
of the first character that differs between src1 and src2 if src1 is lexicographically greater than src2.
The negative difference of the first character that differs, if src2 is lexicographically greater than src1.

Description
This function is a replacement for the BSD system call bcmp() which does not exist on many systems.
The kbcmp() routine compares "src1" and "src2" for "num" bytes. kbcmp() really uses kmemcmp(), so
it will be checked to make sure that both source arrays are not NULL and "num" is greater than 0.

2-96



Basic Services Program Services Volume I - Chapter 2

kbcmp() compares its arguments, looking at the first num bytes, and returns an integer less than, equal
to, or greater than 0, according as src1 is lexicographically less than, equal to, or greater than src2.

J.2.4. kcalloc() — allocate memory and initialize it

Synopsis
kaddr kcalloc(

size_t nelem,
size_t elsize)

Input Arguments
nelem

number of elements to calloc
elsize

number of bytes in an element

Returns
The address of the allocated memory. NULL is returned if the allocation fails, or if either nelem or
elsize are 0

Description
This macro calls calloc() to allocate the requested data. However, it checks nelem and elsize to make
sure both are greater than 0. If either parameter is 0, then NULL is returned.

J.2.5. kdupalloc() — duplicates a piece of memory

Synopsis
kaddr kdupalloc(

const kaddr src,
size_t size)

Input Arguments
src

the source pointer to duplicate
size

the number of characters to duplicate from the source.

2-97



Basic Services Program Services Volume I - Chapter 2

Returns
The newly duplicated memory or NULL upon failure.

Description
The routine allocates new memory and then copies the contents from the ptr to the new memory. This
routine is really a convience routine that uses kmalloc() and kmemcpy() in which to make a duplicate.

J.2.6. kfree() — free allocated memory

Synopsis
void kfree(

kaddr ptr)

Input Arguments
ptr

A pointer to memory to be freed.

Description
This routine calls free() to free previously allocated data. However, it also checks to make sure the
pointer argument is not NULL.

J.2.7. kfree_and_NULL() — free memory previously allocated

Synopsis
(void) kfree(

kaddr ptr)

Description
This function is a replacement for the khoros kfree() routine. The only difference is that
kfree_and_NULL() is an inlined macro that will also NULL your memory pointer.

2-98



Basic Services Program Services Volume I - Chapter 2

J.2.8. kmalloc() — allocate a contiguous piece of memory

Synopsis
kaddr kmalloc(

size_t size)

Input Arguments
size

number of bytes to allocate

Returns
a pointer to malloc’ed data on success, or NULL on size 0 or malloc failure

Description
Calls malloc() to allocate the requested data. However, it checks to make sure the size parameter is
greater then zero. If the size paramter is 0, it returns NULL.

J.2.9. krealloc() — re-allocate a piece of memory to a new size

Synopsis
kaddr krealloc(

kaddr ptr,
size_t size)

Input Arguments
ptr

the pointer to reallocate
size

the number of characters to reallocate to.

Returns
The address of the allocated memory. NULL is returned if the allocation fails, or if size is 0. If ptr is
NULL, malloc will be called instead of realloc.

Description
The macro calls realloc() to re-allocate the block of memory with size bytes. The realloc will automat-
ically copy the data from the first memory block to the newly allocated one.

2-99



Basic Services Program Services Volume I - Chapter 2

J.2.10. kmemchr() — find the first occurence of ’c’ in an character array

Synopsis
kaddr kmemchr(

const kaddr src,
int c,
size_t num)

Input Arguments
src

the source pointer to be searched
c

the character value to be searched for within src
num

the number of bytes to be searched

Returns
pointer in which "c" occurs, NULL upon failure

Description
This function is the same as the system call memchr(). Except kmemchr() will make sure that the
source and the the number of bytes to be searched are greater than 0.

memchr() searches the bytes in the "src" character array for the character value "c". The number of
bytes to be searched is determined by the parameter "num". Upon loction of "c" in the source array,
the pointer pointing to "c" within the source array is returned. If "c" does not occur within the first
"num" bytes then NULL is returned.

J.2.11. kmemcmp() — compare bytes from src1 and src2

Synopsis
int kmemcmp(

const kaddr src1,
const kaddr src2,
size_t num)

Input Arguments
src1

the first source pointer to compare from
src2

the second source pointer to compare from

2-100



Basic Services Program Services Volume I - Chapter 2

num
the number of bytes to be compared

Returns
0 if up to num characters in src1 equals the corresponding characters in src2. The positive difference
of the first character that differs between src1 and src2 if src1 is lexicographically greater than src2.
The negative difference of the first character that differs, if src2 is lexicographically greater than src1.

Description
This function is the same as the system call memcmp(). Except kmemcmp() will make sure that the
src1 and src2 pointers are not NULL before calling memcmp().

memcmp() compares its arguments, looking at the first num bytes, and returns an integer less than,
equal to, or greater than 0, according as src1 is lexicographically less than, equal to, or greater than
src2.

J.2.12. kmemcpy() — copies bytes from src to dest

Synopsis
kaddr kmemcpy(

kaddr dest,
const kaddr src,
size_t num)

Input Arguments
src

the source pointer to copy "num" bytes from
num

the number of bytes to be copied

Output Arguments
dest

the destination pointer to copy the bytes to

Returns
dest on a successful memory copy. If dest or src are NULL, NULL is returned. If num is 0, NULL is
returned.

Description
This routine copies num bytes of memory from src to dest in a similar manner as memcpy. Howev er,
this routine checks that the src, dest, and num values are not NULL or 0.

2-101



Basic Services Program Services Volume I - Chapter 2

J.2.13. kmemccpy() — restricted copy of bytes from src to dest

Synopsis
kaddr kmemccpy(

kaddr dest,
const kaddr src,
int c,
size_t num)

Input Arguments
src

the source pointer to copy "num" bytes from
c

the character value to terminate copy
num

the number of bytes to be copied

Output Arguments
dest

the destination pointer to copy the bytes to

Returns
returns dest if "c" was encountered, NULL otherwise

Description
This function is the same as the system call memccpy(). Except kmemccpy() will make sure that the
src and dest pointers are not NULL before calling memccpy().

memccpy() copies the bytes in the "src" character array to the "dest" array. The number of bytes to be
copied is determined by the "c" character value and the parameter "num". Bytes will be copied from
"src" to "dest" until the "c" character value is encountered or num bytes have been copied. If "c" is
encountered and copied before "num" bytes then the "dest" array is returned. Otherwise if "num"
bytes are copied then NULL is returned to indicate the "c" was not encountered.

J.2.14. kmemmove() — copy a block of memory to another block

Synopsis
kaddr kmemmove(

kaddr dest,
const kaddr src,
size_t num)

2-102



Basic Services Program Services Volume I - Chapter 2

Input Arguments
src

the source pointer to move the data from
num

the number of bytes to be moved

Output Arguments
dest

the destination pointer to move the data to

Returns
returns the dest pointer on success, NULL otherwise

Description
This function is the same as the system call memmove(). Except kmemmove() will make sure that the
source and the destination are not NULL.

memmove() copies n bytes from memory areas src to dest. Copying between objects that overlap will
take place correctly. It returns dest.

J.2.15. kmemset() — initialize bytes in dest to the character value ’c’

Synopsis
kaddr kmemset(

kaddr dest,
int c,
size_t num)

Input Arguments
c

the character value to set in dest
num

the number of bytes to be initialized

Output Arguments
dest

the destination pointer to be initialized

Returns
returns dest on success, NULL upon failure

Description
This function is the same as the system call memset(). Except kmemset() will make sure that the dest

2-103



Basic Services Program Services Volume I - Chapter 2

and the the number of bytes to be initialized are greater than 0.

memset() initializes the bytes in the "dest" character array to the character value "c". The number of
bytes to be set is determined by the parameter "num".

2-104



Basic Services Program Services Volume I - Chapter 2

K. File Path Utilities

K.1. Introduction to Path Utilities

The utilities below expand a path, expand a filename, strip a filename from a file path, strip the directory from
a file path, get a name of a file in TMPDIR and so on. These utilities are used frequently throughout the
VisiQuest system and are found in the klibc (libku.a) library.

• kbasename() - return the filename component of a pathname
• kdirname() - find directory component of a given pathname
• kexpandpath() - Expand a path to it <I>true</I> path
• kfullpath() - Expand a environment variables in a path
• ktbpath() - Expand a environment variables local to a toolbox
• ktempnam() - create a name for a temporary khoros transport
• kfindpath() - find the path to an executable

K.2. Definitions of Path Utilities

K.2.1. kbasename() — return the filename component of a pathname

Synopsis
char *kbasename(

const char *pathname,
char *return_base)

Input Arguments
pathname

A valid pathname

Output Arguments
return_base

if return_base is not NULL, then this will be where the result is placed. Otherwise, it will malloc the
space required.

Returns
filename component of pathname, NULL on error

Description
This routine searches an input pathname for the final occurance of a ’/’, and returns the string existing
after it. If a ’/’ is not found, it looks for a ’˜’, as in ˜username. If neither a ’/’ or a ’˜’ is found and the
input string is not empty, then it will return the original string.

2-105



Basic Services Program Services Volume I - Chapter 2

Side Effects
This routine kmalloc’s the return string, and will remove whitespace (as defined by isspace() from the
end of the string)

K.2.2. kdirname() — find directory component of a given pathname

Synopsis
char *kdirname(

const char *pathname,
char *return_path)

Input Arguments
pathname

A valid pathname

Output Arguments
return_path

A string that will hold the resulting directory portion of the string. If this parameter is NULL, it will
automatically malloc space for the result.

Returns
directory component of pathname, NULL on error

Description
This routine searches an input pathname for the final occurance of a ’/’, and returns the string existing
before the ’/’. If a ’/’ is not found, it looks for a ’˜’, as in ˜username. If neither a ’/’ or a ’˜’ are found,
it will assume the pathname does not have a directory component, and returns the string ".".

Side Effects
This routine kmalloc’s the return string, and will remove whitespace (as defined by isspace()) from the
end of the input string

2-106



Basic Services Program Services Volume I - Chapter 2

K.2.3. kexpandpath() — Expand a path to it true path

Synopsis
char *kexpandpath(

const char *filename,
const char *directory,
char *expandpath)

Input Arguments
filename

the file to be expanded

Output Arguments
expandpath

a string to put the expanded path into. If it is NULL, the result will be kmalloc’ed

Returns
expandpath if it is not NULL, the kmalloc’ed output string if expandpath is NULL, or NULL on error

Description
This routine takes an input pathname, and expands environment variables, khoros variables, ˜’s , and
logical paths to return the true path from / to the filename specified in the input. It does this by calling
kfullpath to expand the first three expansions, and then changing the current working directory to the
one containing the specified file and calling getcwd.

Side Effects
if expandpath is NULL, the output string is kmalloc’ed

Restrictions
kexpandpath will fail if the directory specified does not already exist.

2-107



Basic Services Program Services Volume I - Chapter 2

K.2.4. kfullpath() — Expand a environment variables in a path

Synopsis
char *kfullpath(

const char *filename,
const char *directory,
char *fullpath)

Input Arguments
filename

the file to be expanded

Output Arguments
fullpath

if the return file is not NULL then this will be where it place the fullpath to the expanded file. Other-
wise, it will kmalloc the space required.

Returns
pointer to fullpath if it is not NULL, or a pointer to a kmalloc’ed string containing the result.

Description
This function returns the full path to the user supplied file. "kfullpath" expands all environment vari-
ables in a path, and returns a full path back the user. If the file specified with a ˜username, then the
path will be expanded.

Side Effects
if fullpath is NULL, it kmalloc’s the return string

K.2.5. ktbpath() — Expand a environment variables local to a toolbox

Synopsis
char *ktbpath(

const char *filename,
char *tbpath)

Input Arguments
filename

the file to be expanded

2-108



Basic Services Program Services Volume I - Chapter 2

Output Arguments
tbpath

if the return file is not NULL then this will be where it place the path to the expanded file. Otherwise,
it will kmalloc the space required.

Returns
pointer to tbpath if it is not NULL, or a pointer to a kmalloc’ed string containing the result.

Description
This function returns the full path to the user supplied file. "ktbpath", like "kfullpath", expands all
environment variables in a path, and returns a full path back the user. If the file specified with a ˜user-
name, then the path will be expanded. The difference between "ktbpath" and "kfullpath" is that "ktb-
path" tries to expand the relative to the list of toolboxes. So for example if the path handed in is:

/usr/data/test/tb/repos/Aliases

So if the path is inside the toolbox TBTEST which has the path "/usr/data/test/tb", then the resulting
path will be handed back as:

$TBPATH/repos/Aliases

Side Effects
if tbpath is NULL, it kmalloc’s the return string

K.2.6. ktempnam() — create a name for a temporary khoros transport

Synopsis
char * ktempnam(

const char *identifier,
const char *ktemplate)

Input Arguments
identifier

The transport identifier
ktemplate

template of the file to be created.

Returns
a unique temporary filename on success, NULL otherwise

2-109



Basic Services Program Services Volume I - Chapter 2

Description
This module is used to create temporary files. The application program calls "ktempnam" with a tem-
plate filename which is used to help identify the application routine. The type of temporary created
depends on the identifier. If a unique temporary shared memory key is desired then the template would
look like:

"shm=XXXX"

If a file was desired then either

"XXXXXXXXX"
"file=XXXX"

would work. The convention should be as follows, an identifier followed by an "=" equals indicator,
and finally followed by an optional template.

K.2.7. kfindpath() — find the path to an executable

Synopsis
char *kfindpath(

const char *program,
char *fullpath)

Input Arguments
program

program to find fullpath for

Output Arguments
fullpath

the fullpath to the program, if not NULL then this will be where it place the path. Otherwise, it will
kmalloc the space required.

Returns
pointer to fullpath if it is not NULL, or a pointer to a kmalloc’ed string containing the result.

Description
This function returns the full path to the user specified executable. The user’s PATH environemnt vari-
able is searched, and the first executable occurance of the program is returned. Paths in . are expanded
to be fullpaths.

2-110



Basic Services Program Services Volume I - Chapter 2

If the executable provided is already a path, then it is returned unchanged. An exception to this is if
the provided path is relative to . or .. then it is expanded.

Side Effects
if fullpath is NULL, it kmalloc’s the return string

L. Directory Utilities

L.1. Introduction to Directory Utilities

The following Basic Service routines are used to create and remove directories throughout VisiQuest.

• kmake_dir() - make a directory and all parent directories if necessary
• kremove_dir() - remove a directory and it’s contents
• kchdir() - library call to change the current working directory
• kgetcwd() - library call to get the current working directory
• kmkdir() - library call to create a directory
• krmdir() - remove a directory

L.2. Definitions of Directory Utilities

L.2.1. kmake_dir() — make a directory and all parent directories if necessary

Synopsis
int kmake_dir(

const char *path,
mode_t mode)

Input Arguments
path

directory to create
mode

octal permission mode of the new directory

Returns
TRUE (1) on success, FALSE (0) on failure

2-111



Basic Services Program Services Volume I - Chapter 2

Description
This routine calls kmkdir as many times as needed to build a new directory. This means that if making
a directory, and the parent directories do not exist, it will first make all the parent directories that are
needed, and then create the directory requested by the calling routine.

L.2.2. kremove_dir() — remove a directory and it’s contents

Synopsis
int kremove_dir(

const char *path)

Input Arguments
path

the pathname to remove

Returns
0 on success and -1 on failure

Description
This routine removes a specified path. If it is a directory, it recursively calls itself on all pathnames
under it.

Restrictions
Hard links to other directory trees are not recognized by this routine, so if a hard link exists to a direc-
tory, it will follow it as a normal directory.

L.2.3. kchdir() — library call to change the current working directory

Synopsis
int kchdir(

const char *path)

Input Arguments
path

pathname of new directory to create

Returns
(0) on success, (-1) otherwise

2-112



Basic Services Program Services Volume I - Chapter 2

Description
This routine acts the same as the system routine chdir(), with one minor change. It makes an internal
call to kfullpath to expand environment variables, toolbox variables, and ˜’s. NOTE: errno is set by the
internal call to chdir()

L.2.4. kgetcwd() — library call to get the current working directory

Synopsis
char *kgetcwd(

char *path,
size_t length)

Input Arguments
length

the length of the path string

Output Arguments
path

the buffer that holds the return string

Returns
path on success, NULL otherwise

Description
This routine acts the same as the system routine getcwd(), with one minor change. It actually returns
the KHOROS_PWD environment variable.

L.2.5. kmkdir() — library call to create a directory

Synopsis
int kmkdir(

const char *path,
mode_t mode)

Input Arguments
path

pathname of new directory to create
mode

octal permission mode of the new directory e.g.: 0777. The 0700 part defines owner’s permissions, the

2-113



Basic Services Program Services Volume I - Chapter 2

0070 part defines group’s permissions, and the 0007 part defines the permissions for everyone else.
Within each of those parts, the 04 bit is READ, 02 is WRITE and 01 is EXECUTE.

Returns
(0) on success, (-1) otherwise

Description
This routine acts the same as the system routine mkdir(), with one minor change. It makes an internal
call to kfullpath to expand environment variables, toolbox variables, and ˜’s. NOTE: errno is set by the
internal call to mkdir()

L.2.6. krmdir() — remove a directory

Synopsis
int krmdir(

const char *path)

Input Arguments
path

directory name to delete

Returns
0 on success, -1 otherwise

Description
This routine is a replacement for the system routine rmdir. It has the same actions, error status, and
return values of rmdir, but it will expand ˜’s, environment variables, and VisiQuest variables.

M. Environment Variable Utilities

M.1. Introduction to Environment Variable Utilities

The utilities below work with environment variables that are set by the user prior to execution of a program.

• kgetenv() - get an environment variable from the environ list.
• kputenv() - put an environment variable into the environ list.
• kremenv() - remove an environment variable from the environment

2-114



Basic Services Program Services Volume I - Chapter 2

M.2. Definitions of Environment Variable Utilities

M.2.1. kgetenv() — get an environment variable from the environ list.

Synopsis
char *kgetenv(

const char *name)

Input Arguments
name

the name of the environament variable to look for

Returns
the environment string upon success, NULL on failure

Description
This module is used to get an environment variable from the environ list. For example, if the user has
their TMPDIR environment variable set to /usr/var/tmp, and this routine is called with (name =
"TMPDIR"), then "/usr/var/tmp" will be returned.

Restrictions
The string returned is simply an address into the environ list, so it should NOT be freed, or changed in
any way by the calling routine.

M.2.2. kputenv() — put an environment variable into the environ list.

Synopsis
int kputenv(

const char *name)

Input Arguments
name

string to be added into putenv

Returns
(0) on success, (-1) otherwise

2-115



Basic Services Program Services Volume I - Chapter 2

Description
This module is used to put an environment variable in the environ list. If "PUTENV" is defined then
we call putenv() otherwise we do our own putenv. The only difference is that kputenv() will malloc
space for the incoming environment variable.

Side Effects
the input "name" is copied into the environment list

M.2.3. kremenv() — remove an environment variable from the environment

Synopsis
int kremenv(

const char *name)

Input Arguments
name

a string containing the environment variable to remove.

Returns
(0) on success, (-1) otherwise

Description
This module is used to remove an environment variable from the environ list. Since there does not
seem to be a standard routine for this on many machines, we wrote our own.

Side Effects
Does not kfree_and_NULL string associated with environment variable deleted, since we cannot know
how it was created.

Restrictions
This routine will not work if the environ list is not stored as an array of strings.

2-116



Basic Services Program Services Volume I - Chapter 2

N. Variable Argument Utilities

N.1. Introduction to Variable Argument Utilities

There are three functions available to help write functions or subroutines that take a variable number of argu-
ments.

• kva_arg() - gets an argument off the variable argument list
• kva_end() - sets the end of the variable argument list
• kva_start() - sets the start of the variable argument list

N.2. Definitions of Variable Argument Utilities

N.2.1. kva_start() — sets the start of the variable argument list

Synopsis
void kva_start(

kva_list vararg_list,
last_param)

Input Arguments
last_param

the last argument on the parameter list before variable arguments begin

Output Arguments
vararg_list

the variable argument pointer is set to the beginning of the variable argument list

Description
This routine sets the "vararg_list" pointer to the start of the variable argument list.

Example variable argument routine definition:

var_arg_routine(int p1, int p2, double pN, kva_alist)
{

short var; // the next parameter after pN
// is expected to be short

2-117



Basic Services Program Services Volume I - Chapter 2

kva_list *vararg_list; // the variable argument list

kva_start(vararg_list, pN); // pN is the last parameter
// before variable args begin

:
var = kva_arg(vararg_list, short);
:
kva_end(vararg_list);

}

The execution stack when procedure var_arg_routine is executed; when kva_start is called, the
"vararg_list" pointer is set to the address indicated below.

| byte0 int parameter p1
| :
| byte4 int parameter p2
| :
| byte8 double parameter pN
| :

args stack address ---->| byte16 short parameter A
"vararg_list" | byte17

| byte18 int parameter B
| byte19
| byte20
| byte21
| :

N.2.2. kva_arg() — gets an argument off the variable argument list

Synopsis
type kva_arg(

kva_list vararg_list,
type)

Input Arguments
vararg_list

the argument list
type

2-118



Basic Services Program Services Volume I - Chapter 2

The data type of the parameter. If the type specified is not the same as the actual type of the value on
the stack, the behavior is undefined.

In standard C, arguments that are char or short are converted to int and should be accessed as int.
Arguments that are unsigned char or unsigned short are converted to unsigned int and should be
accessed as unsigned int. Arguments that are float are converted to double and should be accessed as
double.

Returns
The next paramter on the variable argument list cast to the type specified by the type parameter

Description
This routine gets an argument off the variable argument list.

Example variable argument routine definition:

var_arg_routine(int p1, int p2, double pN, kva_alist)
{

short var; // the next parameter after pN
// is expected to be short

kva_list *vararg_list; // the variable argument list

kva_start(vararg_list, pN); // pN is the last parameter
// before variable args begin

:
var = kva_arg(vararg_list, short);
:
kva_end(vararg_list);

}

The execution stack when procedure var_arg_routine is executed; before kva_arg is called, the
"vararg_list" pointer is set to the address indicated below.

| byte0 int parameter p1
| :
| byte4 int parameter p2
| :
| byte8 double parameter pN
| :

args stack address ---->| byte16 short parameter A
"vararg_list" | byte17

| byte18 int parameter B
| byte19
| byte20
| byte21
| :

2-119



Basic Services Program Services Volume I - Chapter 2

Now, a call to kva_arg(vararg_list, short) moves the "vararg_list" pointer to byte18, and returns the
pointer to byte16 as a short, so that var_arg_routine() can obtain the value of short parameter A.

the resulting execution stack is now:

| byte0 int parameter p1
| :
| byte4 int parameter p2
| :
| byte8 double parameter pN
| :

args stack address -+ | byte16 short parameter A
"vararg_list" | | byte17 (assigned to "var")

+-->| byte18 int parameter B
| byte19
| byte20
| byte21
| :

N.2.3. kva_end() — sets the end of the variable argument list

Synopsis
void kva_end(

kva_list vararg_list)

Input Arguments
vararg_list

the variable argument list to be terminated

Output Arguments
vararg_list

the variable argument list pointer set to NULL

Description
This routine clears the "vararg_list" pointer and shuts down the variable argument access mechanism.

Example variable argument routine definition:

2-120



Basic Services Program Services Volume I - Chapter 2

var_arg_routine(int p1, int p2, double pN, kva_alist)
{

short var; // the next parameter after pN
// is expected to be short

kva_list *vararg_list; // the variable argument list

kva_start(vararg_list, pN); // pN is the last parameter
// before variable args begin

:
var = kva_arg(vararg_list, short);
:
kva_end(vararg_list);

}

The execution stack when procedure var_arg_routine is executed; when kva_end is called, the
"vararg_list" pointer is set to NULL

| byte0 int parameter p1
| :
| byte4 int parameter p2
| :
| byte8 double parameter pN
| :
| byte16 short parameter A
| byte17
| byte18 int parameter B
| byte19
| byte20
| byte21
| :
| :

args stack address ----> NULL
"vararg_list"

Restrictions
On some architectures, this routine is mapped to va_end(), which may or may not have any effect on
the vararg_list pointer.

2-121



Basic Services Program Services Volume I - Chapter 2

O. Array Creation & Manipulation

O.1. Introduction to Array Utilities

The karray utilities provide a collection of functions for array manipulation. These routines support all stan-
dard VisiQuest data types, such as KINT, KFLOAT , KDOUBLE, KSTRING, KSTRUCT, etc. The
copy, sort, merge, dirlist, and filelist utilities will work only on arrays of strings. The functions included within
in this category are:

• karray_add() - add an entry into the array list
• karray_copy() - copy an array of strings
• karray_delete() - delete an entry from an array
• karray_dirlist() - create an array of strings reflecting directory contents
• karray_filelist() - create an array of strings reflecting the contents of a file
• karray_free() - free memory used by an array
• karray_insert() - insert an entry into an array
• karray_locate() - locate an entry in an array
• karray_merge() - merge two arrays into one
• karray_sort() - sort an array
• karray_to_list() - convert an array into a linked list
• karray_to_string() - convert a string array into a single big string
• knumber() - the number of items in an array

O.2. Definitions of Array Utilities

O.2.1. karray_add() — add an entry into the array list

Synopsis
<type> *karray_add(

<type> *array,
int type,
<type> entry,
size_t num)

Input Arguments
array

The current array in which we will be adding the entry to (if NULL then return the newly malloc’ed
array list).

type

2-122



Basic Services Program Services Volume I - Chapter 2

The type of the array and the entry.
entry

The entry identifier to be added to the array list
num

The number of entries in the list; ignored if list is NULL

Returns
returns the modified array list.

Description
Adds an entry to the array list. This is done by adding the entry to the end of the array list (if the array
currently exists). If the array is currently NULL then the new item is returned as the first entry of the
array list. If the array list is not NULL then the entry is added to the end of the list and the original
array is passed back to the calling routine.

The routine first scans the array to make sure the entry is not already on the list, if so then we don’t
change original array.

The type field can be one of the following settings:

KBYTE - array of characters
KUBYTE - array of unsigned characters
KSHORT - array of short integers
KUSHORT - array of unsigned short integers
KINT - array of integers
KUINT - array of unsigned integers
KLONG - array of long integers
KULONG - array of unsigned long integers
KFLOAT - array of floating point numbers
KDOUBLE - array of double precision numbers
KSTRING - array of strings
KSTRUCT - array of pointers to structures
KLOGICAL - array of TRUE/FALSE values

O.2.2. karray_copy() — copy an array of strings

Synopsis
<type> *karray_copy(

<type> *array,
int type,

2-123



Basic Services Program Services Volume I - Chapter 2

size_t num,
int copy_entries)

Input Arguments
array

the array that is to be sorted
type

The type of the array.
num

the number of entries in the array
copy_entries

whether to kmalloc and copy each entry or not

Returns
a pointer to the new array, or NULL on error

Description
This module is used to copy the input array of strings into a new array. If the "copy_entries" parameter
is TRUE, then each entry will also be copied rather than just copying the pointers.

The type field can be one of the following settings:

KBYTE - array of characters
KUBYTE - array of unsigned characters
KSHORT - array of short integers
KUSHORT - array of unsigned short integers
KINT - array of integers
KUINT - array of unsigned integers
KLONG - array of long integers
KULONG - array of unsigned long integers
KFLOAT - array of floating point numbers
KDOUBLE - array of double precision numbers
KSTRING - array of strings
KSTRUCT - array of pointers to structures
KLOGICAL - array of TRUE/FALSE values

Side Effects
kmallocs the space for the new array

2-124



Basic Services Program Services Volume I - Chapter 2

O.2.3. karray_delete() — delete an entry from an array

Synopsis
<type> *karray_delete(

<type> *array,
int type,
<type> entry,
size_t num)

Input Arguments
array

The array from which to delete the entry
entry

The entry to be deleted from the array
num

The number of entries currently in the array (before the entry is deleted).

Returns
The modified array when there are still entries in the array, NULL when the array becomes empty.

Description
Deletes an entry from the array, and returns the modified array to the calling routine.

The array utilities, including karray_delete(), support arrays of a variety of data types. The data type
of the array being used is specified with the ’type’ parameter; supported data types include:

KBYTE - array of characters
KUBYTE - array of unsigned characters
KSHORT - array of short integers
KUSHORT - array of unsigned short integers
KINT - array of integers
KUINT - array of unsigned integers
KLONG - array of long integers
KULONG - array of unsigned long integers
KFLOAT - array of floating point numbers
KDOUBLE - array of double precision numbers
KSTRING - array of strings
KSTRUCT - array of pointers to structures
KLOGICAL - array of TRUE/FALSE values

2-125



Basic Services Program Services Volume I - Chapter 2

Note that the array and the entry passed in MUST both be of the type specified by the type parameter,
or the results of this routine are unpredictable.

O.2.4. karray_dirlist() — create an array of strings reflecting directory contents

Synopsis
char **karray_dirlist(

char *basename,
char *directory,
char *filter,
int list_mode,
int format,
size_t * num)

Input Arguments
basename

Basename of the entries in the directory to be included as strings in the array.
directory

The directory path to the basename
filter

Filter to be used in matching the directory entries. If filter is NULL then all entries are accepted
(unless otherwise indicated by basename).

list_mode
A flag indicating which directory entries are to be included (eg. files, directories, dot files, symbolic
links, etc.)

format
Whether the files should be postfixed with the symbol indicating the type of entry (eg. "@" for sym-
bolic links, "/" for subdirectories, etc)

Output Arguments
num

The number of entries in the resulting string array

Returns
The array of strings representing the directory contents on success, NULL on failure

Description
Translates the contents of a directory into an array of strings, where each string in the array is the name
of an entry in the specified directory.

The ’directory’ parameter specifies the directory path to use for creating of the string array. This direc-
tory path may include toolbox names (for example, $BOOTSTRAP) or tildas (for example, ˜fred).

2-126



Basic Services Program Services Volume I - Chapter 2

Passing NULL implies that the ’basename’ parameter will be used to specify the directory.

The ’basename’ parameter allows you to specify a set of letters which must be matched by the entries
in the directory before they are included in the resulting array. For example, providing "img" as the
basename will cause only those entries in the directory beginning with the letters "img" to be included
in the array. Passing NULL indicates that ALL entries in the directory specified by (unless otherwise
specified using the ’filter’ parameter).

For your convenience, the values of both the ’directory’ and the ’basename’ parameters may be com-
bined into the value of the ’basename’ parameter. For example, if you wanted to create the string array
from all entries in the ˜fred/data directory beginning with the letters "d3", then you could pass
"˜fred/data/d3" as the ’basename’ and NULL as the ’directory’.

More powerful and flexible than the ’basename’ parameter, as well as more difficult to use, the ’filter’
parameter allows you to specify a more complicated filter that entries in the directory must match
before they are included in the array. The regular expression syntax is used to specify the filter; see
kre_comp() for the syntax required to specify the desired pattern matching.

The ’list_mode’ parameter indicates which entries in the directory are to be included in the resulting
array of strings. The following list modes are supported:

KPATH - prepend the path to each file
KFILE - list plain text files
KDIR - list subdirectories
KDOT - list dot files (UNIX for "hidden files")
KLINK - list symbolic files
KSOCK - list socket files
KREAD - file is readable by caller
KWRITE - file is writable by caller
KEXEC - file is executable by caller
KRECURSE - recursively list all subdirectories

The list modes may be or’ed together in order to specify the entries in the directory that should be
included in the string array produced. For example, "KFILE | KDIR" will cause the resulting string
array to have entries for will list only files and directories.

O.2.5. karray_filelist() — create an array of strings reflecting the contents of a file

Synopsis
char **karray_filelist(

char *filename,
char *directory,

2-127



Basic Services Program Services Volume I - Chapter 2

int sort_flag,
size_t * num)

Input Arguments
filename

The name of the file to have its contents translated into a string array.
directory

The directory path to the filename
sort_flag

Pass TRUE if the resulting array is to be sorted alphabetically, FALSE otherwise

Output Arguments
num

The number of entries in the resulting string array

Returns
The array of strings representing the lines in the file on success, NULL on failure.

Description
Translates the contents of a file into an array of strings, where each string in the array is a line of the
specified file. If desired, the resulting string array may also be sorted in alphabetical order.

The ’directory’ parameter specifies the directory path to the file which will be used to create of the
string array. This directory path may include toolbox names (for example, $BOOTSTRAP) or tildas
(for example, ˜fred). Passing NULL implies that the ’filename’ parameter will be used to specify the
directory as well as the filename.

The ’filename’ parameter specifies the name of the file which is to have its contents translated into a
string array. If the ’directory’ parameter is used to specify the directory path, the ’filename’ parameter
should only contain the name of the file; if the ’directory’ parameter is passed as NULL, then the ’file-
name’ parameter must include the directory path to the file.

O.2.6. karray_free() — free memory used by an array

Synopsis
<type> *karray_free(

<type> *array,
int type,
size_t num,
void (*routine) (<type>))

2-128



Basic Services Program Services Volume I - Chapter 2

Input Arguments
array

The array to be freed
type

The data type of the array and the entry
num

The number of entries currently in the array
routine

The routine to destroy each element if a specialized free routine is desired; NULL implies that
kfree_and_NULL() should be used.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
Frees the memory associated with the use of an array.

The array utilities, including karray_free(), support arrays of a variety of data types. The data type of
the array being used is specified with the ’type’ parameter; supported data types include:

KBYTE - array of characters
KUBYTE - array of unsigned characters
KSHORT - array of short integers
KUSHORT - array of unsigned short integers
KINT - array of integers
KUINT - array of unsigned integers
KLONG - array of long integers
KULONG - array of unsigned long integers
KFLOAT - array of floating point numbers
KDOUBLE - array of double precision numbers
KSTRING - array of strings
KSTRUCT - array of pointers to structures
KLOGICAL - array of TRUE/FALSE values

If desired, you may provide a routine to destroy each element of the array. Generally, this feature is
used only for arrays of type KSTRUCT, where the structure in question contains pointers to strings or
other structures that must be freed individually. If used, the routine specified must be declared as fol-
lows:

int free_routine(void *)

It must return TRUE on success and FALSE on failure. It must take a single parameter with which to
pass the pointer to the element to free, cast as a (void *). If the routine parameter is NULL, then

2-129



Basic Services Program Services Volume I - Chapter 2

karray_free() simply uses kfree_and_NULL() to free the array.

O.2.7. karray_insert() — insert an entry into an array

Synopsis
<type> *karray_insert(

<type> *array,
int type,
<type> entry,
size_t num,
int position,
int duplicates)

Input Arguments
array

The array to which to add the entry
type

The data type of the array and the entry
entry

The entry to be added to the array
num

The number of entries currently in the array (before the new entry is inserted)
position

Where in the array to add the entry; provide one of KLIST_HEAD or KLIST_TAIL.
duplicates

TRUE if multiple occurances of an entry should be allowed in the array, FALSE if only one occurance
of each entry should be allowed. If this routine is called with ’duplicates’ set to FALSE and the entry
provided already appears as in the array, the array will remain unchanged.

Returns
The head of the modified array

Description
Inserts an entry into the array at the specified position, and returns the modified array to the calling
routine.

The array utilities, including karray_insert(), support arrays of a variety of data types. The data type of
the array being used is specified with the ’type’ parameter; supported data types include:

KBYTE - array of characters

2-130



Basic Services Program Services Volume I - Chapter 2

KUBYTE - array of unsigned characters
KSHORT - array of short integers
KUSHORT - array of unsigned short integers
KINT - array of integers
KUINT - array of unsigned integers
KLONG - array of long integers
KULONG - array of unsigned long integers
KFLOAT - array of floating point numbers
KDOUBLE - array of double precision numbers
KSTRING - array of strings
KSTRUCT - array of pointers to structures
KLOGICAL - array of TRUE/FALSE values

Note that the array and the entry passed in MUST both be of the type specified by the type parameter,
or the results of this routine are unpredictable.

The position parameter indicates where in the array an entry should be inserted. Supported positions
include:

KLIST_HEAD - insert entry at the head of the array
KLIST_TAIL - insert entry at the end of the array

O.2.8. karray_locate() — locate an entry in an array

Synopsis
ssize_t karray_locate(

<type> *array,
int type,
<type> entry,
size_t num)

Input Arguments
array

The array in which to search for the entry
type

The data type of the array
entry

The entry to be be located in the array

2-131



Basic Services Program Services Volume I - Chapter 2

num
The number of entries currently in the array

Returns
Returns the index of the entry if it is found, -1 otherwise

Description
Locate an entry in the array. If the entry exists in the array, then the index to that entry is returned. If
the entry doesn’t exist in the array, then -1 is returned.

The array utilities, including karray_locate(), support arrays of a variety of data types. The data type
of the array being used is specified with the ’type’ parameter; supported data types include:

KBYTE - array of characters
KUBYTE - array of unsigned characters
KSHORT - array of short integers
KUSHORT - array of unsigned short integers
KINT - array of integers
KUINT - array of unsigned integers
KLONG - array of long integers
KULONG - array of unsigned long integers
KFLOAT - array of floating point numbers
KDOUBLE - array of double precision numbers
KSTRING - array of strings
KSTRUCT - array of pointers to structures
KLOGICAL - array of TRUE/FALSE values

O.2.9. karray_merge() — merge two arrays into one

Synopsis
<type> *karray_merge(

<type> *array1,
<type> *array2,
int type,
size_t num1,
size_t num2,
int copy_entries)

2-132



Basic Services Program Services Volume I - Chapter 2

Input Arguments
array1

First array of strings
array2

Second array of strings
type

The data type of the array
num1

Number of entries in array1
num2

Number of entries in array2
copy_entries

For string arrays, specifies whether or not to copy the strings into the merged array, or simply to dupli-
cate the pointers; ignored for arrays of all other data types.

Returns
A pointer to the merged array on success, NULL on failure.

Description
Merges two arrays into a single array by concatenating the second array onto the first.

The array utilities, including karray_merge(), support arrays of a variety of data types. The data type
of the array being used is specified with the ’type’ parameter; supported data types include:

KBYTE - array of characters
KUBYTE - array of unsigned characters
KSHORT - array of short integers
KUSHORT - array of unsigned short integers
KINT - array of integers
KUINT - array of unsigned integers
KLONG - array of long integers
KULONG - array of unsigned long integers
KFLOAT - array of floating point numbers
KDOUBLE - array of double precision numbers
KSTRING - array of strings
KSTRUCT - array of pointers to structures
KLOGICAL - array of TRUE/FALSE values

For string arrays (’type’ == KSTRING), strings in the merged array are only copied if the
’copy_entries’ parameter is passed as TRUE. Otherwise, each entry in the merged array will simply
point to the old string.

Side Effects
Allocates memory for the merged array

2-133



Basic Services Program Services Volume I - Chapter 2

O.2.10. karray_sort() — sort an array

Synopsis
<type> *karray_sort(

<type> *array,
int type,
size_t num,
int duplicates)

Input Arguments
array

The array to sort
type

The data type of the array. Only KSTRING is supported on this routine.
num

The number of entries in the array
duplicates

TRUE if any duplicate entries should be left in the sorted array, FALSE to remove any duplicate
entries from the sorted array

Returns
The pointer to the header of the sorted array; NULL on failure

Description
Sorts a string array into ascending order.

Other array utilities support arrays of a variety of data types. The karray_sort() routine, however, can
only be used with string arrays.

Side Effects
The sorted array passed back is the same as the original array passed in. So original input array should
not be sorted.

2-134



Basic Services Program Services Volume I - Chapter 2

O.2.11. karray_to_list() — convert an array into a linked list

Synopsis
klist *karray_to_list(

<type> *array,
int type,
size_t num)

Input Arguments
array

The array from which the linked list will be created.
type

The data type of the array
num

The number of entries in the array.

Returns
The newly created linked list on success, NULL upon failure

Description
Creates a linked list from an array. The resulting list may be used with the VisiQuest linked list utilities,
such as klist_add(), klist_insert(), klist_delete(), klist_copy(), and so on.

The array utilities, including karray_to_list(), support arrays of a variety of data types. The data type
of the array being used is specified with the ’type’ parameter; supported data types include:

KBYTE - array of characters
KUBYTE - array of unsigned characters
KSHORT - array of short integers
KUSHORT - array of unsigned short integers
KINT - array of integers
KUINT - array of unsigned integers
KLONG - array of long integers
KULONG - array of unsigned long integers
KFLOAT - array of floating point numbers
KDOUBLE - array of double precision numbers
KSTRING - array of strings
KSTRUCT - array of pointers to structures
KLOGICAL - array of TRUE/FALSE values

2-135



Basic Services Program Services Volume I - Chapter 2

O.2.12. karray_to_string() — convert a string array into a single big string

Synopsis
char *karray_to_string(

char **array,
int type,
size_t num,
char *separator)

Input Arguments
array

The string array from which the return string will be created.
type

The data type of the array
num

The number of entries in the array.
separator

The separation string to be inserted between each pair of strings in the array.

Returns
The newly created string on success, NULL on failure

Description
Creates one big string from an array of strings.

While most of the array routines support a variety of data types, karray_to_string() requires a string
array. Arrays of other data types are not supported as of yet.

A specified separation string is inserted between each pair of strings in the array. For example, if the
input array had the contents:

array[0] = "ls"
array[1] = "-a"
array[2] = "/tmp"

and the ’separator’ parameter was specified as " ", then the string returned will be:

"ls -a /tmp"

If the ’separator’ parameter was passed in as NULL, then the resulting string would be:

"ls-a/tmp"

2-136



Basic Services Program Services Volume I - Chapter 2

O.2.13. knumber() — the number of items in an array

Synopsis
size_t knumber(char **array)

Input Arguments
array

the array of items

Returns
returns the number of items

Description
This function returns the number of items in an array

P. Linked List Creation & Manipulation

P.1. Introduction to Linked List Utilities

A set of functions for creating and maintaining linked lists are provided by the kutils (libku.a) library. These
utilities work with a klist structure, which is defined as follows:

typedef struct _klist
{

kaddr identifier;
kaddr client_data;
unsigned char head;

struct _klist *next, *prev;
} klist;

identifier
This may be any value which will uniquely identify an entry in the list.

2-137



Basic Services Program Services Volume I - Chapter 2

client_data
This is a pointer to a data structure which you define, in which the data node for the list is stored.
For example, if you need a list in which each entry contains a serial number, model number, size,
and name, you would define a data structure containing each of these fields:

typedef struct _my_listdata
{

int serial_num;
int model_num;
int size;
char *name;

} my_listdata;

You would allocate your structure, initialize the fields and then pass a pointer to it into the
klist_add as the client_data field. Later, the structure can be retrieved from the list entry using
klist_clientdata.

head
This is for internal use.

next, prev
These are pointers to the next entry in the linked list, and to the previous entry in the linked list.
You may use them directly or obtain them with the klist_next.

P.2. Definitions of Linked List Utilities

• klist_add() - add an entry into the linked list
• klist_checkentry() - check if the klist entry is currently on the link list
• klist_checkhead() - check if the current entry is the head of the list
• klist_checkident() - check if the identifier is currently on the link list
• klist_checktail() - check if the current entry is the tail of the list
• klist_clientdata() - return the client data associated with an entry on the list
• klist_copy() - copy a linked list into a new linked list
• klist_delete() - delete an entry from the linked list
• klist_dirlist() - create a linked list of file names
• klist_filelist() - create a linked list of strings from a file
• klist_free() - free the entire linked list
• klist_head() - locate the head of the linked list
• klist_identifier() - return the identifier associated with an entry on the list
• klist_insert() - insert an entry into the linked list
• klist_locate() - locate an entry in the linked list
• klist_locate_clientdata() - locate an entry in the linked list according to it’s client data
• klist_makecircular() - changes a consecutive or linear link list into a circular link list
• klist_makelinear() - changes a circular link list into a consecutive or linear link list
• klist_merge() - merge two linked list into a single linked list
• klist_next() - return the next entry on the list
• klist_prev() - return the previous entry on the list
• klist_size() - compute the size or number of entries in the list
• klist_sort() - sort the linked list
• klist_split() - split a single linked list into two linked lists

2-138



Basic Services Program Services Volume I - Chapter 2

• klist_tail() - locate the tail of the linked list
• klist_to_array() - convert the linked list into an array
• kalias_list() - returns a string array of aliases

P.2.1. klist_add() — add an entry into the linked list

Synopsis
klist *klist_add(

klist * list,
kaddr identifier,
kaddr client_data)

Input Arguments
list

The current list in which we will be adding the entry to (if NULL then return the newly malloc’ed
head).

identifier
The entry identifier to be added to the linked list

client_data
client data to be associated with the identifier

Returns
The modified linked list.

Description
Adds an entry to the linked list. This is done by adding the entry to the end of the linked list (if the list
currently exists). If the list is currently NULL then the new item is returned as the head of the list. If
the list is not NULL then the original list is passed back to the calling routine.

The routine first scans the list to make sure the identifier is not already on the list, if so then we don’t
change original list.

2-139



Basic Services Program Services Volume I - Chapter 2

P.2.2. klist_checkentry() — check if the klist entry is currently on the link list

Synopsis
int klist_checkentry(

klist *list)

Input Arguments
list

the link list in which we will be checking the klist entry against entry - the klist entry to check for on
the link list

Returns
return TRUE if the entry is the list, otherwise FALSE is returned

Description
This routine simply returns whether the klist entry currently exists on the link list. If the entry exists
then TRUE is returned otherwise FALSE is returned.

P.2.3. klist_checkhead() — check if the current entry is the head of the list

Synopsis
int klist_checkhead(

klist *list)

Input Arguments
list

the list in which we will be returning whether it is the head of the list or not

Returns
return TRUE if the entry is the head of the link list, otherwise FALSE is returned

Description
This routine simply returns whether the current entry is the head of the link list. If the entry is the head
then TRUE is returned otherwise FALSE is returned. This is helpful since if a link list is circular you

2-140



Basic Services Program Services Volume I - Chapter 2

cannot rely on the previous value being NULL.

P.2.4. klist_checkident() — check if the identifier is currently on the link list

Synopsis
int klist_checkident(

klist *list)

Input Arguments
list

the link list in which we will be checking the identifier against identifier - the identifier to check for on
the link list

Returns
return TRUE if the identifier is the list, otherwise FALSE is returned

Description
This routine simply returns whether the identifier currently exists on the link list. If the identifier exists
then TRUE is returned otherwise FALSE is returned.

P.2.5. klist_checktail() — check if the current entry is the tail of the list

Synopsis
int klist_checktail(

klist *list)

Input Arguments
list

the list in which we will be returning whether it is the tail of the list or not

Returns
return TRUE if the entry is the tail of the link list, otherwise FALSE is returned

2-141



Basic Services Program Services Volume I - Chapter 2

Description
This routine simply returns whether the current entry is the tail of the link list. If the entry is the tail
then TRUE is returned otherwise FALSE is returned. This is helpful since if a link list is circular you
cannot rely on the next value being NULL.

P.2.6. klist_clientdata() — return the client data associated with an entry on the list

Synopsis
kaddr klist_clientdata(

klist *list)

Input Arguments
list

the list in which we will be returning the client data

Returns
the client data associated with the klist entry on the list

Description
This routine simply returns the client data associated with the klist entry on the link list. If the current
entry is NULL then NULL is returned. Otherwise, whatever is stored in the klist entry is returned.

P.2.7. klist_copy() — copy a linked list into a new linked list

Synopsis
klist *klist_copy(

klist * list)

Input Arguments
list

The current linked list to be copied

Returns
The new linked list or NULL if we fail.

2-142



Basic Services Program Services Volume I - Chapter 2

Description
Copies a linked list. This is done by adding the items from one list to a new list.

P.2.8. klist_delete() — delete an entry from the linked list

Synopsis
klist *klist_delete(

klist * list,
kaddr identifier)

Input Arguments
list

The current linked list in which the entry will be deleted.
identifier

the identifier which identifies the entry to be deleted.

Returns
The modified linked list.

Description
Delete an entry from the linked list. This is done by deleting the entry from the linked list. The new
list is then passed back to the calling routine.

P.2.9. klist_dirlist() — create a linked list of file names

Synopsis
klist *klist_dirlist(

char *basename,
char *directory,
char *filter,
int list_mode,
int format)

Input Arguments
basename

base name of the files to be listed.
directory

the directory path is used as a prefix to basename
filter

2-143



Basic Services Program Services Volume I - Chapter 2

the filter is used in matching the directory entries. The syntax used is the same as the "kparse" utili-
ties. If filter is NULL then all entries are accepted.

list_mode
a flag indicating what we are to list (ie. files, directories, dot files, symbolic links, etc.)

format
whether the files should be prepended with type of file. (ie. "@" for sym links, "/" for directories)

Returns
A link list of strings to filenames that match the basename

Description
This module is used to create a linked list of file names according to a user supplied basename and an
initial global directory. The list mode is used to indicate what we are going to list in the directory. The
possible defines are listed in $KHOROS/include/khoros/kdefines.h. The following symbols are the
current list mode:

KPATH - prepend the path to each file
KFILE - list plain text files
KDIR - list directories
KDOT - list dot files
KLINK - list symbolic files
KSOCK - list socket files
KREAD - file is readable by caller
KWRITE - file is writable by caller
KEXEC - file is executable by caller

The selections are or’ed together in order to choose the set of attributes that are desired. (e.g KFILE |
KDIR) will list only files and directories that match the basename.

P.2.10. klist_filelist() — create a linked list of strings from a file

Synopsis
klist *klist_filelist(

char *filename,
char *directory,
int sort_flag)

Input Arguments
filename

base name of the files to be listed.

2-144



Basic Services Program Services Volume I - Chapter 2

directory
the directory path to be used as a prefix to the filename

sort_flag
a flag indicating whether we are to sort the link list before returning

Returns
The head of the linked list to the names in the file upon successfull completion of this routine, other-
wise NULL is returned.

Description
This module is used to create a linked list from the supplied file. It reads the lines out of the specified
file, and returns them in a linked list of strings. The programmer also has the option of specifying if
they want the resulting string sorted or not.

P.2.11. klist_free() — free the entire linked list

Synopsis
void klist_free(

klist * list,
void (*routine) PROTO((klist *)))

Input Arguments
list

the linked list to be destroyed
routine

the routine to destroy each entry

Description
Destroys the linked list by walking thru the list and freeing each entry. One of the parameters is an ele-
ment routine pointer that will allow the user to specify a routine to be used to destroy each element of
the array. This routine must have a return type of void. It must also take a single argument as a param-
eter; the pointer to the list element to reclaim, which is of the data type klist. If the routine parameter
is NULL, the routine uses kfree_and_NULL on the list structure only, the client_data and identifier are
not freed.

P.2.12. klist_head() — locate the head of the linked list

Synopsis
klist *klist_head(

2-145



Basic Services Program Services Volume I - Chapter 2

klist * list)

Input Arguments
list

The current linked list to find the head for.

Returns
The item’s head entry or NULL if the current list does not exist.

Description
Tries to locate the head of the linked list. This is done by taking to current position and racing up the
previous links until the head is found. The head klist structure is returned, NULL if the list is currently
empty.

P.2.13. klist_identifier() — return the identifier associated with an entry on the list

Synopsis
kaddr klist_identifier(

klist *list)

Input Arguments
list

the list in which we will be returning the identifier for

Returns
the client data associated with the klist entry on the list

Description
This routine simply returns the identifier associated with the klist entry on the link list. If the current
entry is NULL then NULL is returned. Otherwise, whatever is stored in the klist entry identifier is
returned.

2-146



Basic Services Program Services Volume I - Chapter 2

P.2.14. klist_insert() — insert an entry into the linked list

Synopsis
klist *klist_insert(

klist * list,
kaddr identifier,
kaddr client_data,
int position,
int duplicate_entries)

Input Arguments
list

The current list in which we will be adding the entry to
identifier

The entry identifier to be added to the linked list
client_data

client data to be associated with the identifier
position

where in the list to add the entry
duplicate_entries

whether to be allowed multiple occurences of an identifier on the linked list.

Returns
The head of the modified linked list.

Description
Inserts an entry into the linked list. This is done by adding the entry to the end of the linked list (if the
list currently exists). The new list is then passed back to the calling routine. The routine first scans the
list to make sure the identifier is not already on the list, if so then we don’t change original list.

The position field is used to indicate where in the list an entry should be inserted:

KLIST_HEAD - insert at the head of the list
KLIST_PREV - insert previous to the current position
KLIST_NEXT - insert next from th current position
KLIST_TAIL - insert at the tail of the list

2-147



Basic Services Program Services Volume I - Chapter 2

P.2.15. klist_locate() — locate an entry in the linked list

Synopsis
klist *klist_locate(

klist * list,
kaddr identifier)

Input Arguments
list

The current linked list in which the entry will be located.
identifier

the identifier which identifies the entry to be located.

Returns
The item’s klist entry or NULL if the identifier is not found.

Description
Tries to locate an entry on the linked list. This is done by racing thru the linked list until the desired
identifier is found or the end of the list is encountered. If the identifier exists then the klist structure is
returned. If the identifier doesn’t exist then NULL is returned.

P.2.16. klist_locate_clientdata() — locate an entry in the linked list according to it’s client data

Synopsis
klist *klist_locate_clientdata(

klist * list,
kaddr client_data)

Input Arguments
list

The current linked list in which the entry will be located.
client_data

the client_data which identifies the entry to be located.

Returns
The item’s klist entry or NULL if the identifier is not found.

Description
Tries to locate an entry on the linked list according to it’s client data, rather than it’s identifier. This is
done by racing thru the linked list until the desired identifier is found or the end of the list is

2-148



Basic Services Program Services Volume I - Chapter 2

encountered. If the identifier exists then the klist structure is returned. If the identifier doesn’t exist
then NULL is returned.

P.2.17. klist_makecircular() — changes a consecutive or linear link list into a circular link list

Synopsis
int klist_makecircular(

klist *list)

Input Arguments
list

the link list in which we will be making circular

Returns
return the head of the circular link list or NULL upon failure.

Description
This routine is used to make a consecutive or linear doubly linked list into a circular linked list.

P.2.18. klist_makelinear() — changes a circular link list into a consecutive or linear link list

Synopsis
int klist_makelinear(

klist *list)

Input Arguments
list

the link list in which we will be making linear link list.

Returns
return the head of the circular link list or NULL upon failure.

2-149



Basic Services Program Services Volume I - Chapter 2

Description
This routine is used to make a circular link list into a consecutive or linear linked list.

P.2.19. klist_merge() — merge two linked list into a single linked list

Synopsis
klist *klist_merge(

klist *list1,
klist *list2)

Input Arguments
list1

The first linked list
list2

The second linked list

Returns
The newly merge linked list, which is really the head of the first list, or NULL upon failure.

Description
Merge two linked list into a single linked by tacking the second list onto the end of the first.

P.2.20. klist_next() — return the next entry on the list

Synopsis
klist *klist_next(

klist *list)

Input Arguments
list

the list in which we will be returning the next entry from

Returns
the next entry on the list or NULL if at the end and the link list is not circular

2-150



Basic Services Program Services Volume I - Chapter 2

Description
This routine simply returns the next klist entry on the link list. If the current entry is last on the link
list and the list is not a circular link list then NULL is returned.

P.2.21. klist_prev() — return the previous entry on the list

Synopsis
klist *klist_prev(

klist *list)

Input Arguments
list

the list in which we will be returning the previous entry from

Returns
the previous entry on the list or NULL if at the beginning and the link list is not circular

Description
This routine simply returns the previous klist entry on the link list. If the current entry is first on the
link list and the list is not a circular link list then NULL is returned.

P.2.22. klist_size() — compute the size or number of entries in the list

Synopsis
size_t klist_size(

klist * list)

Input Arguments
list

The current linked list to count the number entries for.

Returns
The number of entries or zero if a NULL list is passed in.

2-151



Basic Services Program Services Volume I - Chapter 2

Description
Given a list will indicate how many entries are on the list. This is done by counting the number of
entries until the tail entry is reached.

P.2.23. klist_sort() — sort the linked list

Synopsis
klist *klist_sort(

klist *list,
kfunc_int compare,
int duplicate_entries)

Input Arguments
list

The current linked list to be sorted.
compare

An integer function which performs the comparision of whether the first identifier is less than (-1),
equal to (0), or greater than (1) the second identifier.

duplicate_entries
toggle where TRUE allows duplicate entries and FALSE removes duplicate entries.

Returns
The sorted linked list

Description
Sorts the linked list into ascending order. A merge sort algorithm is used. This algorithm takes the
input list and treats it as a collection of small sorted lists. It makes log N passes along the list, and in
each pass it combines each adjacent pair of small sorted lists into one larger sorted list. When a pass
only needs to do this once, the whole output list must be sorted.

The provided compare routine is used to compare the identifiers of two list elements. The routine is
expected to return whether the first identifier is less than, equal to, or greater than the second. This is
done by returning -1, 0, 1 respectively.

P.2.24. klist_split() — split a single linked list into two linked lists

Synopsis
int klist_split(

2-152



Basic Services Program Services Volume I - Chapter 2

klist *entry,
klist **list1,
klist **list2)

Input Arguments
entry

the linked list entry in which we will be performing the split

Output Arguments
list1

If not NULL, then the head of the first linked list is passed back.
list2

If not NULL, then the head of the second linked list is passed back.

Returns
TRUE if we were able to split the linked list or FALSE upon failure.

Description
Split a single linked list into two linked lists. Given the entry in which we will break into the head of
the new second list. Since this is the head of the second list and the head of the first list is really the
klist_head(entry), before the klist_split() routine is called, it is not necessary to pass back the heads of
the two lists. But to make life easier if list1 or list2 are not NULL the respective heads will be initial-
ized there.

P.2.25. klist_tail() — locate the tail of the linked list

Synopsis
klist *klist_tail(

klist * list)

Input Arguments
list

The current linked list to find the tail for.

Returns
The item’s tail entry or NULL if the current list does not exist.

Description
Tries to locate the tail of the linked list, or last entry in the linked list. This is done by taking to current
position and racing down the next links until the tail is found. The last klist structure is returned,
NULL if the list is currently empty.

2-153



Basic Services Program Services Volume I - Chapter 2

P.2.26. klist_to_array() — convert the linked list into an array

Synopsis
char **klist_to_array(

klist * list,
size_t * num)

Input Arguments
list

The current linked list in which the array of identifiers will be created.

Output Arguments
num

The number of entries in the array.

Returns
The newly malloc’ed array or NULL upon failure

Description
Creates an array from a linked list. This is done by malloc’ing an array of pointers and then loading
the assigning the identifiers into each array.

P.2.27. kalias_list() — returns a string array of aliases

Synopsis
char **kalias_list(

size_t * num_entries)

Output Arguments
num_entries

If this paramater is a valid address, it will hold the number of aliases in the array. If the parameter is
passed in as NULL, this routine will ignore it.

Returns
A malloc’ed string array of aliases upon success conversion of the alias list, otherwise NULL is
returned. Note you should use kfree_and_NULL to free the array, NOT the karray_free, since the
array contents are shared.

Description
This routine converts the global alias list for files specified by each toolbox’s $TOOLBOX/repos/Alias

2-154



Basic Services Program Services Volume I - Chapter 2

file, and converts the alias names to an array of alphabetically sorted strings. This can be used for
browsers to map aliases to real paths on disk.

Q. Simple Database Management

Q.1. Introduction to Database Management Routines

• kdbm_check() - check where file descripter is a valid kdbm file
• kdbm_checkkey() - check to see if a key exists in the database
• kdbm_close() - close a previously opened kdbm file
• kdbm_delete() - Remove the key and its associated data from the database.
• kdbm_fetch() - Find a key and return the associated data.
• kdbm_firstkey() - get the first key in the database
• kdbm_fdopen() - open the dbm file and initialize data structures for use
• kdbm_getmachtype() - gets the machine type for the database
• kdbm_lseek() - move read/write pointer of the key pointer
• kdbm_nextkey() - get the next key in the database
• kdbm_open() - open the dbm file and initialize data structures for use
• kdbm_read() - Find a key and reads the associated data.
• kdbm_store() - Add a new key/data pair to the database.
• kdbm_write() - Simple database write routine
• kdbm_tell() - indicate position of the key pointer
• khash_copy() - copy the hash table and all associated memory
• khash_create() - creates a hash table
• khash_currkey() - return current entry (key) within the hash
• khash_location() - finds location of entry within the hash table
• khash_reinit() - reinitializes the hash table to be empty
• khash_firstkey() - return the first entry (key) in the hash table
• khash_lastkey() - return the last entry (key) in the hash table
• khash_nextkey() - return the next entry (key) in the hash table
• khash_prevkey() - return previous entry (key) in the hash table
• khash_value() - polynomial conversion
• khash_init() - initialized the hash routines
• khash_free() - frees the hash table and all associated memory
• khash_delete() - delete an entry from the hash table
• khash_clientdata() - returns the clientdata of a hash entry
• khash_check() - check to see if a hash entry exists
• khash_add() - adds an entry to the hash table

2-155



Basic Services Program Services Volume I - Chapter 2

Q.2. Definitions of Database Management Routines

Q.2.1. kdbm_check() — check where file descripter is a valid kdbm file

Synopsis
int kdbm_check(

int fid)

Input Arguments
fid

file descriptor

Returns
TRUE if it is a kdbm file and FALSE if it is not.

Description
This function is used check if the file descriptor points to a valid kdbm file.

Q.2.2. kdbm_checkkey() — check to see if a key exists in the database

Synopsis
int kdbm_checkkey(

kdbm *dbm,
kdatum key)

Input Arguments
dbm

the database file
key

the key to check for

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
Check to see if a key exists. The key passed in is checked against the list of database keys.

2-156



Basic Services Program Services Volume I - Chapter 2

Q.2.3. kdbm_close() — close a previously opened kdbm file

Synopsis
void kdbm_close(

kdbm *dbm)

Input Arguments
dbm

open database pointer to be closed

Description
Close the dbm file and free all memory associated with the database file.

Q.2.4. kdbm_delete() — Remove the key and its associated data from the database.

Synopsis
int kdbm_delete(

kdbm *dbm,
kdatum key)

Input Arguments
dbm

open database pointer

Returns
0 on success, -1 otherwise

Description
Remove the keyed item and the key from the database dbm. The file on disk is updated to reflect the
structure of the new database before returning from this procedure.

2-157



Basic Services Program Services Volume I - Chapter 2

Q.2.5. kdbm_fetch() — Find a key and return the associated data.

Synopsis
kdatum kdbm_fetch(

kdbm *dbm,
kdatum key)

Input Arguments
dbm

open database pointer
key

database key to search for

Returns
The data associated with the specified key. If the key is not a part of the database, the returned
data.dsize and data.dptr will be 0 and NULL respectively

Description
Look up a given key and return the information associated with that key. The pointer in the structure
that is returned is a pointer to dynamically allocated memory block.

Q.2.6. kdbm_firstkey() — get the first key in the database

Synopsis
kdatum kdbm_firstkey(

kdbm *dbm)

Input Arguments
dbm

the database pointer

Returns
The first key of the database. If dbm is NULL, or there are no keys in the database, the returned
key.dsize and key.dptr will be 0 and NULL respectively.

Description
Find the first key in the database, and return it to the user.

2-158



Basic Services Program Services Volume I - Chapter 2

Q.2.7. kdbm_fdopen() — open the dbm file and initialize data structures for use

Synopsis
kdbm *kdbm_fdopen(

int fid,
int flags,
int mode)

Input Arguments
flags

open flags used during the kopen system call.
mode

access modes to be used when creating a new database

Returns
a pointer to a open database structure

Description
Initialize dbm system. fid is a file descriptor to an open file. If the file has a size of zero bytes, a file
initialization procedure is performed, setting up the initial structure in the file.

If flags is set to KOPEN_RDONLY the user wants to just read the database and any call to dbm_store
or dbm_delete will fail. Many readers can access the database at the same time. If flags is set to
KOPEN_WRONLY, the user wants both read and write access to the database and requires exclusive
access. If flags is KOPEN_WRONLY|KOPEN_CREAT, the user wants both read and write access
to the database and if the database does not exist, create a new one. If flags is
KOPEN_WRONLY|KOPEN_CREAT|KOPEN_TRUNC, the user want a new database created,
regardless of whether one existed, and wants read and write access to the new database. Any error
detected will cause a return value of null and an approprate value will be in errno. If no errors occur, a
pointer to the kdbm file descriptor will be returned.

Q.2.8. kdbm_getmachtype() — gets the machine type for the database

Synopsis
int kdbm_getmachtype(

kdbm *dbm)

Input Arguments
dbm

the database file

2-159



Basic Services Program Services Volume I - Chapter 2

Returns
returns the machine type or -1 on error

Description
This function is used to return the current machine type for the database.

Q.2.9. kdbm_lseek() — move read/write pointer of the key pointer

Synopsis
int kdbm_lseek(

kdbm *dbm,
kdatum key,
int offset,
int whence)

Input Arguments
dbm

the database file
key

the key in which to seek for
offset

the offset in which to seek
whence

the control of how the offset will be applied

Returns
returns -1 or the new seeked position

Description
This function is used to seek to the position of the database relative to the given key.

2-160



Basic Services Program Services Volume I - Chapter 2

Q.2.10. kdbm_nextkey() — get the next key in the database

Synopsis
kdatum kdbm_nextkey(

kdbm *dbm)

Input Arguments
dbm

the database pointer

Returns
The next key in the database. If dbm is NULL, or there are no more keys in the database, it will return
key.dsize and key.dptr as 0 and NULL respectively.

Description
After an initial call to kdbm_firstkey, this routine can be used to traverse the list of keys in a database.

Q.2.11. kdbm_open() — open the dbm file and initialize data structures for use

Synopsis
kdbm *kdbm_open(

char *filename,
int flags,
int mode)

Input Arguments
filename

file name of database to open
flags

open flags used during the kopen system call.
mode

access modes to be used when creating a new database

Returns
a pointer to a open database structure

Description
Initialize dbm system. Filename is a pointer to the file name to be opened as a database file. If the file
has a size of zero bytes, a file initialization procedure is performed, setting up the initial structure in the
file.

2-161



Basic Services Program Services Volume I - Chapter 2

If Iflags is set to KOPEN_RDONLY the user wants to just read the database and any call to
dbm_store or dbm_delete will fail. Many readers can access the database at the same time. If flags is
set to KOPEN_WRONLY, the user wants both read and write access to the database and requires
exclusive access. If flags is KOPEN_WRONLY|KOPEN_CREAT, the user wants both read and
write access to the database and if the database does not exist, create a new one. If flags is
KOPEN_WRONLY|KOPEN_CREAT|KOPEN_TRUNC, the user want a new database created,
regardless of whether one existed, and wants read and write access to the new database. Any error
detected will cause a return value of null and an approprate value will be in errno. If no errors occur, a
pointer to the kdbm file descriptor will be returned.

Q.2.12. kdbm_read() — Find a key and reads the associated data.

Synopsis
int kdbm_read(

kdbm *dbm,
kdatum key,
kaddr data,
int num,
int type)

Input Arguments
dbm

the database file
key

the key in which to read from
data

the data array to read into
num

number of data points to read
type

the type of data points to read from

Returns
the number of data points actually read, or -1 upon error

Description
Look up a given key and return the information associated with that key. The pointer in the structure
that is returned is a pointer to dynamically allocated memory block. This is similar to the kdbm_fetch
routine, except that kdbm_read supports incremental reads.

2-162



Basic Services Program Services Volume I - Chapter 2

Q.2.13. kdbm_store() — Add a new key/data pair to the database.

Synopsis
int kdbm_store(

kdbm *dbm,
kdatum key,
kdatum data,
int flags)

Input Arguments
dbm

open database pointer
key

key to store the information under
data

data to store in the database
flags

data overwrite options

Returns
0 on success, -1 otherwise

Description
Add a new element to the database. Data is keyed by key. The file on disk is updated to reflect the
structure of the new database before returning from this procedure. The flags define the action to take
when the key is already in the database. The value KDBM_REPLACE asks that the old data be
replaced by the new data. The value KDBM_INSERT asks that an error be returned and no action
taken. A return value of 0 means no errors. A return value of -1 means that the item was not stored in
the data base because the caller was not an official writer, or it means that the item was not stored
because the argument flags was KDBM_INSERT and the key was already in the database.

Q.2.14. kdbm_write() — Simple database write routine

Synopsis
int kdbm_write(

kdbm *dbm,
kdatum key,
kaddr data,
int num,
int type)

2-163



Basic Services Program Services Volume I - Chapter 2

Input Arguments
dbm

open database file pointer
key

data base key to write to
data

data to write to key
num

number of data items to write
type

type of data to write out

Returns
the number of data points actually written, or -1 upon error

Description
Add a new element to the database. Data is keyed by key. The file on disk is updated to reflect the
structure of the new database before returning from this procedure. This routine is similar to
kdbm_store except that it allows incremental writes to this key in the database.

Q.2.15. kdbm_tell() — indicate position of the key pointer

Synopsis
int kdbm_tell(

kdbm *dbm,
kdatum key)

Input Arguments
dbm

the database file
key

the key in which to seek for offset - the offset in which to seek whence - the control of how the offset
will be applied

Returns
returns -1 or the new seeked position

Description
This function is used to get the position of the database relative to the given key.

2-164



Basic Services Program Services Volume I - Chapter 2

Q.2.16. khash_copy() — copy the hash table and all associated memory

Synopsis
int khash_copy(

khash *hash,
kaddr (*routine)(kaddr) )

Input Arguments
hash

Pointer to the hash table to be copied
routine

A routine to copy the clientdata pointer for each hash array member. If routine is NULL, then it sim-
ply copies the address of the clientdata pointer.

Returns
TRUE (1) on success, FALSE (0) otherwise.

Description
This function copies the hash array and all associated memory.

Q.2.17. khash_create() — creates a hash table

Synopsis
khash *khash_create(

int id_type,
int clientdata_type,
size_t size)

Input Arguments
id_type

The data type for hash entry identifiers
clientdata_type

The data type for the hash entry’s clientdata
size

The initial hash size; we recommend a prime number estimate of the expected hash size

Returns
A pointer to the newly created hash table on success; NULL on failure

2-165



Basic Services Program Services Volume I - Chapter 2

Description
This routine creates a hash table. A hash table is an efficient alternative to an array, appropriate in situ-
ations where each piece of data to be stored can be assigned a unique identifier.

Hash entries consist of:

1) an identifier of the appropriate data type
2) an associated piece of data (clientdata).

After the hash table is created, entries may be added and deleted, the associated clientdata retrieved
and checked.

When creating the hash table, you must specify an initial size for the hash table. Note that this is a
"best guess" size; it will be automatically adjusted if it is not big enough to accomodate all the hash
entries that are subsequently added. A prime number is recommended for optimal performance.

You must also specify the data type of the identifier which will be used to locate entries, and the data
type of the clientdata. The data types specified for the identifier and the clientdata must be adhered to
with all subsequent khash_xxx() calls, or results are not predictable.

Supported data types for both the hash table entry identifiers and the hash entries include:

KBYTE - hash array of characters
KUBYTE - hash array of unsigned characters
KSHORT - hash array of short integers
KUSHORT - hash array of unsigned short integers
KINT - hash array of integers
KUINT - hash array of unsigned integers
KLONG - hash array of long integers
KULONG - hash array of unsigned long integers
KFLOAT - hash array of floating point numbers
KDOUBLE - hash array of double precision numbers
KSTRING - hash array of strings
KSTRUCT - hash array of pointers to structures
KLOGICAL - hash array of TRUE/FALSE values
KDATUM - hash array of pointers to kdatum structures

and any data type created via the kstruct_define call.

Note that khash_init() must be called once to initialize the hash routines before khash_create() is called
to create a hash table.

Examples
For example, the following code creates a hash table of an initial size of 11. Stored in it will be user-

2-166



Basic Services Program Services Volume I - Chapter 2

defined data structures that will be retrieved using a string identifier.

khash *hash_table;

khash_init();
hash_table = khash_create(KSTRING, KSTRUCT, 11);

Q.2.18. khash_currkey() — return current entry (key) within the hash

Synopsis
int khash_currkey(

khash *hash,
<id_type> *identifier,
<clientdata_type> *clientdata)

Input Arguments
hash

Pointer to the the hash table

Output Arguments
identifier

Returns the identifier of the entry at this location
clientdata

Returns the clientdata of the entry at this location

Returns
TRUE (1) on success, FALSE (0) if the hash table is empty

Description
This function returns the current entry in the hash table. The internal index is not changed. If the entry
at the current is not valid then FALSE is returned.

2-167



Basic Services Program Services Volume I - Chapter 2

Q.2.19. khash_location() — finds location of entry within the hash table

Synopsis
long khash_location(

khash *hash,
<id_type> identifier)

Input Arguments
hash

pointer to the hash table
identifier

The identifier of the desired hash entry, of data type consistent with what was specified for identifiers
during hash table creation

Returns
The index of the entry if the entry was found; -1 if an entry with that identifier cannot be found or if
the identifier specified is not valid.

Description
This function returns the location in the hash array of the entry with the specified identifier. This is
sometimes useful when the hash array index is needed for temporary amount of time. This routine
does *not* update internal key index used by the routines khash_nextkey(), khash_prevkey(),
khash_currkey().

Q.2.20. khash_reinit() — reinitializes the hash table to be empty

Synopsis
int khash_reinit(

khash *hash,
void (*routine)(kaddr) )

Input Arguments
hash

Pointer to the hash table to be reinitialized
routine

If desired, you pass in a routine to free the clientdata pointer for each hash table entry. Note that this is
recommended for hash tables using user-defined data structures as the clientdata, otherwise a memory

2-168



Basic Services Program Services Volume I - Chapter 2

leak will occur. If routine is passed in as NULL, then no action is performed.

Returns
TRUE (1) on success, FALSE (0) otherwise.

Description
This function reinitializes the hash table to be empty. This is useful if you wish to reuse a hash table.

Q.2.21. khash_firstkey() — return the first entry (key) in the hash table

Synopsis
int khash_firstkey(

khash *hash,
<id_type> *entry,
<clientdata_type> *clientdata)

Input Arguments
hash

Pointer to the hash table

Output Arguments
clientdata

returns the clientdata of the first hash entry

Returns
TRUE (1) on success, FALSE (0) if the hash table is empty

Description
This function returns the first entry (key) in the hash table.

It also sets the internal index to the first entry, so that it can be used in conjunction with khash_nex-
tkey(), and khash_currkey().

For example, the following code can be used to iterate forwards through every entry in the hash table:

if (!khash_firstkey(hash_table, &identifier, &clientdata))
return;

do {

2-169



Basic Services Program Services Volume I - Chapter 2

do something with identifier and/or clientdata
} while (khash_nextkey(hash_table, &identifier, &clientdata));

2-170



Basic Services Program Services Volume I - Chapter 2

Q.2.22. khash_lastkey() — return the last entry (key) in the hash table

Synopsis
int khash_lastkey(

khash *hash,
<id_type> *identifier,
<clientdata_type> *clientdata)

Input Arguments
hash

Pointer to the the hash table

Output Arguments
identifier

Returns the identifier of the last entry
clientdata

Returns the clientdata of the last entry

Returns
TRUE (1) on success, FALSE (0) if the hash is empty

Description
This function returns the last entry (key) in the hash table.

It also sets the internal index to the last entry, so that it can be used in conjunction with khash_pre-
vkey(), khash_currkey().

For example, the following code can be used to iterate backwards through every entry in the hash ta-
ble:

if (!khash_lastkey(hash_table, &identifier, &clientdata))
return;

do {
do something with identifier and/or clientdata

} while (khash_prevkey(hash_table, &identifier, &clientdata));

2-171



Basic Services Program Services Volume I - Chapter 2

Q.2.23. khash_nextkey() — return the next entry (key) in the hash table

Synopsis
int khash_nextkey(

khash *hash,
<id_type> *identifier,
<clientdata_type> *clientdata)

Input Arguments
hash

Pointer to the hash table

Output Arguments
identifier

Returns the identifier of the entry at this location
clientdata

Returns the clientdata of the entry at this location

Returns
TRUE (1) on success, FALSE (0) if the hash table is empty

Description
This function returns the next entry (key) in the hash table.

It also sets the internal key index to the next entry, so that it can be used in conjunction with
khash_nextkey(), khash_prevkey(), khash_currkey().

For example, the following code can be used to iterate forwards through every entry in the hash table:

if (!khash_firstkey(hash_table, &identifier, &clientdata))
return;

do {
do something with identifier and/or clientdata

} while (khash_nextkey(hash_table, &identifier, &clientdata));

2-172



Basic Services Program Services Volume I - Chapter 2

Q.2.24. khash_prevkey() — return previous entry (key) in the hash table

Synopsis
int khash_prevkey(

khash *hash,
<id_type> *identifier,
<clientdata_type> *clientdata)

Input Arguments
hash

Pointer to the hash table

Output Arguments
identifier

returns the identifier of the entry at this location
clientdata

returns the clientdata of the entry at this location

Returns
TRUE (1) on success, FALSE (0) if the hash table is empty

Description
This function returns the previous entry in the hash table.

It also sets the internal index to the previous entry, so that it can be used in conjunction with
khash_nextkey(), khash_prevkey(), khash_currkey().

For example, the following code can be used to iterate backwards through every entry in the hash ta-
ble:

if (!khash_lastkey(hash_table, &identifier, &clientdata))
return;

do {
do something with identifier and/or clientdata

} while (khash_prevkey(hash_table, &identifier, &clientdata));

2-173



Basic Services Program Services Volume I - Chapter 2

Q.2.25. khash_value() — polynomial conversion

Synopsis
unsigned long int khash_value(

char *data,
ssize_t length)

Input Arguments
data

the data in which to create the has for
length

the length of the hash to be used. If -1, then the length is computed using kstrlen().

Returns
returns the associated hash for the given data.

Description
polynomial conversion ignoring overflows [this seems to work remarkably well, in fact better then the
ndbm hash function. Replace at your own risk]

use: 65599 nice.
65587 even better.

Q.2.26. khash_init() — initialized the hash routines

Synopsis
void khash_init(void)

Description
This function initializes the hash routines, it must be called before any of the khash_xxx() routines can
be used.

2-174



Basic Services Program Services Volume I - Chapter 2

Q.2.27. khash_free() — frees the hash table and all associated memory

Synopsis
int khash_free(

khash *hash,
void (*routine)(kaddr) )

Input Arguments
hash

the hash table to be freed
routine

If desired, you pass in a routine to free the clientdata pointer for each hash table entry. Note that this is
recommended for hash tables using user-defined data structures as the clientdata. If routine is passed
as NULL, then kfree() will be called to free the clientdata.

Returns
TRUE (1) on success, FALSE (0) otherwise.

Description
This function frees the hash table and all associated memory.

Q.2.28. khash_delete() — delete an entry from the hash table

Synopsis
int khash_delete(

khash *hash,
<id_type> identifier)

Input Arguments
hash

pointer to the hash table
identifier

The identifier of the hash entry to be deleted, of data type consistent with what was specified for iden-
tifiers during hash table creation

Returns
TRUE (1) on success, FALSE (0) otherwise.

2-175



Basic Services Program Services Volume I - Chapter 2

Description
This function deletes the entry with the specified identifier from the hash table.

This routine does not update internal key index used by the routines khash_nextkey(), khash_pre-
vkey(), khash_currkey(). If the entry being deleted has the key index then index is left unmodified, but
khash_currkey() will return FALSE until the key index is updated to a valid index.

Q.2.29. khash_clientdata() — returns the clientdata of a hash entry

Synopsis
int khash_clientdata(

khash *hash,
<id_type> identifier,
<clientdata_type> *clientdata)

Input Arguments
hash

pointer to the hash table
identifier

The identifier of the desired hash entry, of data type consistent with what was specified for identifiers
during hash table creation

clientdata
pointer used to return the clientdata, of data type consistent with what was specified for clientdata dur-
ing hash table creation Note: to avoid compile warnings on some architectures, this parameter should
be cast to (kaddr).

Returns
TRUE (1) if a hash entry with the specified identifier was found, FALSE (0) otherwise.

Description
Given an identifier, this routine returns the clientdata stored for the specified hash entry.

Note that this routine does not update internal key index used by the routines khash_nextkey(),
khash_prevkey(), khash_currkey().

2-176



Basic Services Program Services Volume I - Chapter 2

Q.2.30. khash_check() — check to see if a hash entry exists

Synopsis
int khash_check(

khash *hash,
<type> entry)

Input Arguments
hash

pointer to the hash table identifier - The identifier of the desired hash entry, of data type consistent
with what was specified for identifiers during hash table creation

Returns
TRUE (1) if there is a hash table entry with that identifier, FALSE (0) if there was not.

Description
This function checks to see if a hash entry with a particular identifier currently exists in the hash table

This routine does *not* update internal key index used by the routines khash_nextkey(), khash_pre-
vkey(), khash_currkey().

Q.2.31. khash_add() — adds an entry to the hash table

Synopsis
int khash_add(

khash *hash,
<id_type> identifier,
<clientdata_type> clientdata)

Input Arguments
hash

Pointer to the hash table to which to add the new entry
identifier

The identifier of the desired hash entry, of data type consistent with what was specified for identifiers
during hash table creation

clientdata
Pointer used to return the clientdata, of data type consistent with what was specified for clientdata

2-177



Basic Services Program Services Volume I - Chapter 2

during hash table creation Note: to avoid compile warnings on some architectures, this parameter
should be cast to (kaddr).

Returns
TRUE (1) on success, FALSE (0) otherwise.

Description
Inserts an entry into the hash table. Entries consist of:

1) an identifier of the appropriate data type
2) an associated piece of data (clientdata).

Note that the data types for the identifier and the clientdata MUST be consistent with whatever was
specified for the hash table when it was created using khash_create().

R. Attribute Management

R.1. Introduction to Attribute Management Routines

• kattrs_init() - Initialize the kattrs data type.
• kattrs_create() - create a new attribute list
• kattrs_destroy() - destroy an attribute list
• kattrs_add() - add a new attribute to an attribute list
• kattrs_vadd() - add a new attribute to an attribute list
• kattrs_delete() - delete an attribute
• kattrs_check() - check to see if an attribute exists
• kattrs_query() - query information about an attribute
• kattrs_set() - set an attribute of an attribute list
• kattrs_vset() - set an attribute of an attribute list
• kattrs_get() - get an attribute from an attribute list.
• kattrs_vget() - get an attribute from an attribute list.
• kattrs_print() - print an attribute
• kattrs_search() - search for a list of attribute names matching some criteria
• kattrs_dup() - duplicate an attribute from one list to another
• kattrs_first() - return the first entry (atom) within the kattrs
• kattrs_last() - return the last entry (atom) within the kattrs
• kattrs_next() - return the next entry (atom) within the kattrs
• kattrs_prev() - return the previous entry (atom) within the kattrs
• kattrs_curr() - return the current entry (atom) within the kattrs
• katom_new() - Create a new attribute atom
• katom_vnew() - Create a new attribute atom
• katom_delete() - delete the attribute

2-178



Basic Services Program Services Volume I - Chapter 2

• katom_get() - Get the data associated with an atom
• katom_vget() - Get the data associated with an atom
• katom_set() - Set the data of an atom
• katom_vset() - Set the data of an atom
• katom_match() - match an atom.
• katom_dup() - clone an atom
• katom_copy() - Copy an atom.
• katom_query() - Query an atom for information
• katom_print() - print the value of an attribute
• katom_set_methods() - set method functions for an attribute

R.2. Definitions of Attribute Management Routines

R.2.1. kattrs_init() — Initialize the kattrs data type.

Synopsis
void kattrs_init(void)

Description
This routine must be called before any kattrs routines can be used.

R.2.2. kattrs_create() — create a new attribute list

Synopsis
kattrs* kattrs_create(

int dupstructs,
kaddr clientdata)

Input Arguments
dupstructs

Duplicate structures when setting attributes of with a type of structure.
clientdata

The clientdata associated with the list.

Returns
A kattrs pointer on success, NULL on error.

2-179



Basic Services Program Services Volume I - Chapter 2

Description
This function is used to create an attribute list.

R.2.3. kattrs_destroy() — destroy an attribute list

Synopsis
int
kattrs_destroy(kattrs *attrs)

Input Arguments
attrs

The attribute list to destroy.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This function is used to destroy an attribute list.

R.2.4. kattrs_add() — add a new attribute to an attribute list

Synopsis
int
kattrs_add(

kattrs *attrs,
const kstring attribute,
size_t argsize,
size_t numargs,
int datatype,
int permanent,
int (*get) (katom *, kaddr, kva_list *),
int (*set) (katom *, kaddr, kva_list *),
int (*match)(katom *, katom *, kaddr, kaddr),
int (*copy) (katom *, katom *, kaddr, kaddr),
int (*query)(katom *, kaddr, size_t *, size_t *, int *, int *),
int (*print)(katom *, kaddr, kfile *),
kaddr clientdata,
kaddr calldata,
kvalist)

2-180



Basic Services Program Services Volume I - Chapter 2

Input Arguments
attrs

The attribute list to create attributes in.
attribute

The attribute name to create.
argsize

The size of each argument.
numargs

The number of arguments.
permanent

A flag indicating whether or not the attribute is permanent or temporary. TRUE indicates permanent.
get

Routine to use on this attribute if kattrs_get is called on it.
set

Routine to use on this attribute if kattrs_set is called on it.
match

routine to use on this attribute if kattrs_match is called on it.
copy

routine to use when copying the attribute data.
query

routine to use on this attribute if kattrs_query is called on it.
print

routine to use on this attribute if kattrs_print is called on it.
clientdata

Client-specific data.
calldata

Client-specific call data.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This function is used to create an attribute that will be added to the specified attribute list.

2-181



Basic Services Program Services Volume I - Chapter 2

R.2.5. kattrs_vadd() — add a new attribute to an attribute list

Synopsis
int
kattrs_vadd(

kattrs *attrs,
const kstring attribute,
size_t argsize,
size_t numargs,
int datatype,
int permanent,
int (*get) (katom *, kaddr, kva_list *),
int (*set) (katom *, kaddr, kva_list *),
int (*match)(katom *, katom *, kaddr, kaddr),
int (*copy) (katom *, katom *, kaddr, kaddr),
int (*query)(katom *, kaddr, size_t *, size_t *, int *, int *),
int (*print)(katom *, kaddr, kfile *),
kaddr clientdata,
kaddr calldata,
kva_list *valist)

Input Arguments
attrs

The attribute list to create attributes in.
attribute

The attribute name to create.
argsize

The size of each argument.
numargs

The number of arguments.
permanent

A flag indicating whether or not the attribute is permanent or temporary. TRUE indicates permanent.
get

Routine to use on this attribute if kattrs_get is called on it.
set

Routine to use on this attribute if kattrs_set is called on it.
match

routine to use on this attribute if kattrs_match is called on it.
copy

routine to use when copying the attribute data.
query

routine to use on this attribute if kattrs_query is called on it.
print

routine to use on this attribute if kattrs_print is called on it.
clientdata

Client-specific data.
calldata

2-182



Basic Services Program Services Volume I - Chapter 2

Client-specific call data.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This function is used to create an attribute that will be added to the specified attribute list. This routine
is is the same as kattrs_add with one exception. It accepts an already opened kva_list instead of a vari-
able argument list.

R.2.6. kattrs_delete() — delete an attribute

Synopsis
int
kattrs_delete(

kattrs *attrs,
const kstring attribute)

Input Arguments
attrs

The attribute list to delete attributes in.
attribute

The name of the attribute to delete.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This function is used to delete an attribute from a given attribute list.

2-183



Basic Services Program Services Volume I - Chapter 2

R.2.7. kattrs_check() — check to see if an attribute exists

Synopsis
int
kattrs_check(

kattrs *attrs,
const kstring attribute)

Input Arguments
attrs

The attribute list to check an attribute in.
attribute

The name of the attribute to query.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This function is used check if an attribute exists within an attribute list.

R.2.8. kattrs_query() — query information about an attribute

Synopsis
int
kattrs_query(

kattrs *attrs,
const kstring attribute,
kaddr calldata,
size_t *numargs,
size_t *argsize,
int *datatype,
int *permanent)

Input Arguments
attrs

The attribute list to query an attribute in.
attribute

The name of the attribute to query.
calldata

Client-specific call data.

2-184



Basic Services Program Services Volume I - Chapter 2

Output Arguments
numargs

A pointer to a variable in which the number of arguments can be returned.
argsize

A pointer to a variable in which the size of an argument can be returned.
datatype

A pointer to a variable in which the datatype of the attribute can be returned.
permanent

A pointer to a variable in which the permanence flag of the attribute can be returned.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This function is used query if an attribute has been created.

R.2.9. kattrs_set() — set an attribute of an attribute list

Synopsis
int
kattrs_set(

kattrs *attrs,
const kstring attribute,
kaddr calldata,
kvalist)

Input Arguments
attrs

The attribute list to in which to set attributes.
calldata

Client-specific call data.
kvalist

A variable argument list, in the form:

ATTRIBUTE_NAME, &value,

The attribute list must be terminated with the symbol

NULL

to signify the end of the variable argument list.

2-185



Basic Services Program Services Volume I - Chapter 2

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This function is used to set one or more attributes of an attribute list.

R.2.10. kattrs_vset() — set an attribute of an attribute list

Synopsis
int
kattrs_vset(

kattrs *attrs,
const kstring attribute,
kaddr calldata,
kva_list *valist)

Input Arguments
attrs

The attribute list to in which to set attributes.
calldata

Client-specific call data.
valist

An opened variable argument list, in the form:

ATTRIBUTE_NAME, &value,

The attribute list must be terminated with the symbol

NULL

to signify the end of the variable argument list.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This function is used to set an attribute of an attribute list. This routine is is the same as kattrs_set with
one exception. It accepts an already opened kva_list instead of a variable argument list.

2-186



Basic Services Program Services Volume I - Chapter 2

R.2.11. kattrs_get() — get an attribute from an attribute list.

Synopsis
int
kattrs_get(

kattrs *attrs,
const kstring attribute,
kaddr calldata,
kvalist)

Input Arguments
calldata

Client-specific call data.
kvalist

A variable argument list, in the form:

ATTRIBUTE_NAME1, &value1,
ATTRIBUTE_NAME2, &value2,

The attribute list must be terminated with the symbol

NULL

to signify the end of the variable argument list.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This function is used to get one or more attributes from an attribute list.

Given any kattrs structure, the following code will determine the object’s type, name, and path: Note:
the argument list must be terminated with the symbol NULL.

2-187



Basic Services Program Services Volume I - Chapter 2

R.2.12. kattrs_vget() — get an attribute from an attribute list.

Synopsis
int
kattrs_vget(

kattrs *attrs,
const kstring attribute,
kaddr calldata,
kva_list *valist)

Input Arguments
calldata

Client-specific call data.
valist

A variable argument list, in the form:

ATTRIBUTE_NAME1, &value1,
ATTRIBUTE_NAME2, &value2,

The attribute list must be terminated with the symbol

NULL

to signify the end of the variable argument list.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This function is used to get one or more attributes from an attribute list. This routine is is the same as
kattrs_get with one exception. It accepts an already opened kva_list instead of a variable argument list.

2-188



Basic Services Program Services Volume I - Chapter 2

R.2.13. kattrs_print() — print an attribute

Synopsis
int
kattrs_print(

kattrs *attrs,
const kstring attribute,
kaddr calldata,
kfile *outfile)

Input Arguments
attribute

the attribute to be printed
calldata

client-specific call data.
outfile

the output file

Description
dump a single attribute

R.2.14. kattrs_search() — search for a list of attribute names matching some criteria

Synopsis
kstring *kattrs_search(

kattrs *attrs,
const kstring filter,
int type,
int perm_attr,
int temp_attr,
size_t *num)

Input Arguments
attrs

The attribute list ot search.
filter

The regular expression to use to as the search key for the attribute name. if it’s NULL, all names are
added

type
The type of data the attribute is storing. If it is specified as KUNDEFINED, all data types are selected.

perm_attr

2-189



Basic Services Program Services Volume I - Chapter 2

If TRUE, it will search the list for permanent attributes.
temp_attr

If TRUE, it will search the list for temporary attributes.

Returns
A klist of attributes where the identifier returned matches the search criteria.

Description
Search the attribute list for a list of attributes that match a specified criteria. Type, permanence, and
regular expression matching of the name is allowed.

R.2.15. kattrs_dup() — duplicate an attribute from one list to another

Synopsis
int
kattrs_dup(

kattrs *src,
const kstring attribute,
kattrs *dest)

Input Arguments
src

the src attribute list to be dup’ed from
attribute

the attribute to be dup’ed
dest

the destination attribute list to be dup’ed

Description
duplicates a single attribute from one list to another

2-190



Basic Services Program Services Volume I - Chapter 2

R.2.16. kattrs_first() — return the first entry (atom) within the kattrs

Synopsis
int kattrs_first(

kattrs *attrs,
kstring *attribute,
katom **atom)

Input Arguments
attrs

the kattrs to be searched

Output Arguments
attribute

returns the entry name at this location
atom

returns the atom at this location

Returns
TRUE (1) on success, FALSE (0) if the attrs is empty

Description
This function returns the first entry within the kattrs. It also sets the internal index to the first entry, so
that it can be used in conjunction with kattrs_next(), kattrs_prev(), kattrs_curr().

R.2.17. kattrs_last() — return the last entry (atom) within the kattrs

Synopsis
int kattrs_last(

kattrs *attrs,
kstring *attribute,
katom **atom)

Input Arguments
attrs

the kattrs to be searched

Output Arguments
attribute

returns the entry name at this location
atom

2-191



Basic Services Program Services Volume I - Chapter 2

returns the atom at this location

Returns
TRUE (1) on success, FALSE (0) if the attrs is empty

Description
This function returns the last entry within the kattrs. It also sets the internal index to the last entry, so
that it can be used in conjunction with kattrs_next(), kattrs_prev(), kattrs_curr().

R.2.18. kattrs_next() — return the next entry (atom) within the kattrs

Synopsis
int kattrs_next(

kattrs *attrs,
kstring *attribute,
katom **atom)

Input Arguments
attrs

the kattrs to be searched

Output Arguments
attribute

returns the entry name at this location
atom

returns the atom at this location

Returns
TRUE (1) on success, FALSE (0) if no entry

Description
This function returns the last entry within the kattrs. It also sets the internal index to the last entry, so
that it can be used in conjunction with kattrs_next(), kattrs_prev(), kattrs_curr().

2-192



Basic Services Program Services Volume I - Chapter 2

R.2.19. kattrs_prev() — return the previous entry (atom) within the kattrs

Synopsis
int kattrs_prev(

kattrs *attrs,
kstring *attribute,
katom **atom)

Input Arguments
attrs

the kattrs to be searched

Output Arguments
attribute

returns the entry name at this location
atom

returns the atom at this location

Returns
TRUE (1) on success, FALSE (0) if no entry

Description
This function returns the previous entry within the kattrs. It also sets the internal index to the last entry,
so that it can be used in conjunction with kattrs_next(), kattrs_prev(), kattrs_curr().

R.2.20. kattrs_curr() — return the current entry (atom) within the kattrs

Synopsis
int kattrs_curr(

kattrs *attrs,
kstring *attribute,
katom **atom)

Input Arguments
attrs

the kattrs to be searched

Output Arguments
attribute

returns the entry name at this location
atom

2-193



Basic Services Program Services Volume I - Chapter 2

returns the atom at this location

Returns
TRUE (1) on success, FALSE (0) if no entry

Description
This function returns the current entry within the kattrs. It also sets the internal index to the last entry,
so that it can be used in conjunction with kattrs_next(), kattrs_prev(), kattrs_curr().

R.2.21. katom_new() — Create a new attribute atom

Synopsis
katom *
katom_new(

char *attribute,
int datatype,
size_t argsize,
size_t numargs,
int permanent,
int (*get) (katom *, kaddr, kva_list *),
int (*set) (katom *, kaddr, kva_list *),
int (*match) (katom *, katom *, kaddr, kaddr),
int (*copy) (katom *, katom *, kaddr, kaddr),
int (*query) (katom *, kaddr, size_t *, size_t *, int *, int *),
int (*print) (katom *, kaddr, kfile *),
kaddr clientdata,
kaddr calldata,
kvalist)

Input Arguments
attribute

attribute name
datatype

data type of the attribute data
argsize

size of each argument
numargs

number of argument
permanent

TRUE if attribute should be stored
get

get routine to use instead of default, NULL to use the default.
set

set routine to use instead of default, NULL to use the default.

2-194



Basic Services Program Services Volume I - Chapter 2

match
match routine to use instead of default, NULL to use the default.

copy
copy routine to use instead of default, NULL to use the default.

query
query routine to use instead of default, NULL to use the default.

print
print routine to use instead of default, NULL to use the default.

clientdata
client data to pass in to the handler functions

calldata
call data associated with the atom

Returns
the new katom structure

Description
This routine creates a new attribute atom structure

R.2.22. katom_vnew() — Create a new attribute atom

Synopsis
katom *
katom_vnew(

char *attribute,
int datatype,
size_t argsize,
size_t numargs,
int permanent,
int (*get) (katom *, kaddr, kva_list *),
int (*set) (katom *, kaddr, kva_list *),
int (*match) (katom *, katom *, kaddr, kaddr),
int (*copy) (katom *, katom *, kaddr, kaddr),
int (*query) (katom *, kaddr, size_t *, size_t *, int *, int *),
int (*print) (katom *, kaddr, kfile *),
kaddr clientdata,
kaddr calldata,
kva_list *list)

Input Arguments
attribute

attribute name
datatype

2-195



Basic Services Program Services Volume I - Chapter 2

data type of the attribute data
argsize

size of each argument
numargs

number of argument
permanent

TRUE if attribute should be stored
get

get routine to use instead of default, NULL to use the default.
set

set routine to use instead of default, NULL to use the default.
match

match routine to use instead of default, NULL to use the default.
copy

copy routine to use instead of default, NULL to use the default.
query

query routine to use instead of default, NULL to use the default.
print

print routine to use instead of default, NULL to use the default.
clientdata

client data to pass in to the handler functions
calldata

call data associated with the atom
list

open variable argument list to default

Returns
the new katom structure

Description
This routine creates a new attribute atom structure

R.2.23. katom_delete() — delete the attribute

Synopsis
void
katom_delete(kaddr data)

Input Arguments
data

the atom to delete cast to a kaddr

2-196



Basic Services Program Services Volume I - Chapter 2

Description
This function deletes the atom, and frees all memory associated with the atom.

R.2.24. katom_get() — Get the data associated with an atom

Synopsis
int
katom_get(

katom *atom,
kaddr calldata,
kvalist)

Input Arguments
atom

the atom to get data out of
calldata

call data associated with the atom

Returns
TRUE on success, FALSE otherwise

Description
It takes a variable argument list as the source of variables to use in returning the atoms client data val-
ues.

R.2.25. katom_vget() — Get the data associated with an atom

Synopsis
int
katom_vget(

katom *atom,
kaddr calldata,
kva_list *list)

Input Arguments
atom

the atom to get data out of
calldata

call data associated with the atom

2-197



Basic Services Program Services Volume I - Chapter 2

Returns
TRUE on success, FALSE otherwise

Description
It takes an open variable argument list as the source of variables to use in returning the atoms client
data values.

R.2.26. katom_set() — Set the data of an atom

Synopsis
int
katom_set(

katom *atom,
kaddr calldata,
kvalist)

Input Arguments
atom

the atom to set data for
calldata

call data associated with the atom

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
It takes an open variable argument list as the source of data to use in setting the atom clientdata values.

R.2.27. katom_vset() — Set the data of an atom

Synopsis
int
katom_vset(

katom *atom,
kaddr calldata,
kva_list *list)

2-198



Basic Services Program Services Volume I - Chapter 2

Input Arguments
atom

the atom to set data for
calldata

call data associated with the atom

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
It takes an open variable argument list as the source of data to use in setting the atom clientdata values.

R.2.28. katom_match() — match an atom.

Synopsis
int
katom_match(

katom *atom1,
katom *atom2,
kaddr calldata1,
kaddr calldata2)

Input Arguments
atom1

the first attribute to compoare
atom2

the second attribute to compare
calldata1

the calldata associated with atom1
calldata2

the calldata associated with atom2

Returns
TRUE (1) if attributes match, FALSE (0) otherwise

Description
This function compares two katoms, to see if they match. Determining whether they match or not is
defined by the match function passed in to katom new. By default, it does compares the data values on
scaler type data, string compares on strings, and the structure compares on structures.

2-199



Basic Services Program Services Volume I - Chapter 2

R.2.29. katom_dup() — clone an atom

Synopsis
katom *
katom_dup(

katom *atom)

Input Arguments
atom

the atom structure to duplicate

Description
This function creates a new atom structure, and then copies all the atom data and setting to it.

R.2.30. katom_copy() — Copy an atom.

Synopsis
int
katom_copy(

katom *atom1,
katom *atom2,
kaddr calldata1,
kaddr calldata2)

Input Arguments
atom1

the atom from which to copy the first one
calldata1

the calldata associated with atom1

Output Arguments
atom2

the atom to copy into
calldata2

the calldata associated with atom2

Returns
TRUE on success, FALSE otherwise

2-200



Basic Services Program Services Volume I - Chapter 2

Description
Copy the data and settings from one atom to another

R.2.31. katom_query() — Query an atom for information

Synopsis
int
katom_query(

katom *atom,
kaddr calldata,
size_t *numargs,
size_t *argsize,
int *datatype,
int *permanent)

Input Arguments
atom

the atom to query
calldata

the calldata associated with the atom

Output Arguments
numargs

number of arguments
argsize

size of each argument
datatype

datatype of each argument
permanent

whether the attribute is permanent or not

Returns
TRUE if attribute exists, FALSE otherwise

Description
This routine takes and atom, and returns various information about the data stored in the atom. Note,
any of the output parameters are passed in as NULL, will be skipped.

2-201



Basic Services Program Services Volume I - Chapter 2

R.2.32. katom_print() — print the value of an attribute

Synopsis
int
katom_print(

katom *atom,
kaddr calldata,
kfile *outfile)

Input Arguments
atom

the attribute to print
calldata

the calldata associated with the atom
outfile

the file to print to

Returns
TRUE on success, FALSE otherwise

Description
Print the value of an attribute. This routine uses the print method of the specified attribute, to print the
data value of an attribute to the file specified by outfile. If the attribute does not have a print method
associated with it, it will use the default print method.

R.2.33. katom_set_methods() — set method functions for an attribute

Synopsis
void
katom_set_methods(

katom *atom,
int (*get) (katom *, kaddr, kva_list *),
int (*set) (katom *, kaddr, kva_list *),
int (*match) (katom *, katom *, kaddr, kaddr),
int (*copy) (katom *, katom *, kaddr, kaddr),
int (*query) (katom *, kaddr, size_t *, size_t *, int *, int *),
int (*print) (katom *, kaddr, kfile *),
kaddr clientdata)

2-202



Basic Services Program Services Volume I - Chapter 2

Input Arguments
atom

the atom to set methods on
get

a pointer to the get function
set

a pointer to the set function
match

a pointer to the match function
copy

a pointer to the copy function
query

a pointer to the query function
print

a pointer to the print function
clientdata

a new clientdata to associate with the atom

Description
This functions sets the method functions for an attribute, If any of the following are NULL, the default
method will be set.

S. Math Utilities

The following section details the only math utilities that are a part of the klibc library.

S.1. Introduction to the Math Utilities

The math utilities are:

• kmax() - return the greater of two values.
• kmin() - return the lessor of two values.
• krange() - return a ranged value

2-203



Basic Services Program Services Volume I - Chapter 2

S.2. Definitions of the Math Utilities

S.2.1. kmax() — return the greater of two values.

Synopsis
kmax(x, y)

Input Arguments
x

a variable of any base data type.
y

a variable of any base data type.

Returns
the larger value of the two input arguments.

Description
The kmax function obtains the larger of the two input arguments. This is a macro, so any data type is
supported.

S.2.2. kmin() — return the lessor of two values.

Synopsis
kmin(x, y)

Input Arguments
x

a variable of any base data type.
y

a variable of any base data type.

Returns
the smaller value of the two input arguments.

Description
The kmin function obtains the smaller of the two input arguments. This is a macro, so any data type is
supported.

2-204



Basic Services Program Services Volume I - Chapter 2

S.2.3. krange() — return a ranged value

Synopsis
krange(lower, value, upper)

Input Arguments
lower

a variable of any base data type.
value

a variable of any base data type.
upper

a variable of any base data type.

Returns
the range value of the three input arguments.

Description
The krange function obtains the range value, given a value, and a lower and upper bound. The value
returned will be lower >= value <= upper.

T. File Format Utilities

The following section details the file format utilities that are a part of the kutils (libku.a) library.

T.1. Introduction to the Ascii Format Utilities

The ASCII format utilities are:

• ascii_create() - creates a ascii structure and it’s associated data
• ascii_free() - frees a ascii structure and it’s associated data
• ascii_readheader() - reads a ascii header structure from the specified kfile id
• ascii_read() - read a ascii structure from the specified filename
• ascii_fdread() - read a ascii structure from the specified file descriptor
• ascii_writeheader() - writes a ascii header structure from the specified kfile id
• ascii_write() - write a ascii structure to the specified filename
• ascii_fdwrite() - write a ascii structure to the specified file descriptor

2-205



Basic Services Program Services Volume I - Chapter 2

T.1.1. Definitions of the Ascii Format Utilities

T.1.2. ascii_create() — creates a ascii structure and it’s associated data

Synopsis
ascii *ascii_create(void)

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This routine creates an khoros ascii structure and it’s associated data.

T.1.3. ascii_free() — frees a ascii structure and it’s associated data

Synopsis
int ascii_free(

ascii *image)

Input Arguments
image

a pointer to an khoros ascii structure that contains the image structure to be freed.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This routine frees an khoros ascii structure and it’s associated data.

Side Effects
Once this routine is called no further reference the image should be made.

2-206



Basic Services Program Services Volume I - Chapter 2

T.1.4. ascii_readheader() — reads a ascii header structure from the specified kfile id

Synopsis
ascii *ascii_readheader(

int fid)

Input Arguments
fid

the kfile id opened previously with kopen()

Returns
image - explanation

Description
This routines reads a ascii header structure and it’s data into the specified filename. The routine uses
the ktransport library which allows for remote reading of the ascii header.

T.1.5. ascii_read() — read a ascii structure from the specified filename

Synopsis
ascii *ascii_read(

char *filename)

Input Arguments
filename

filename in which we will be reading the ascii

Returns
returns the newly read ascii or NULL upon failure

Description
This routines reads a ascii structure and it’s data from the specified filename. The routine uses the
ktransport library which allows for remote reading of the data and it’s header.

2-207



Basic Services Program Services Volume I - Chapter 2

T.1.6. ascii_fdread() — read a ascii structure from the specified file descriptor

Synopsis
ascii *ascii_fdread(int fid)

Input Arguments
fid

file descriptor in which we will be reading the ascii

Returns
returns the newly read ascii or NULL upon failure

Description
This routines reads a ascii structure and it’s data from the specified file descriptor. The routine uses the
ktransport library which allows for remote reading of the data and it’s header.

T.1.7. ascii_writeheader() — writes a ascii header structure from the specified kfile id

Synopsis
int ascii_writeheader(

int fid,
ascii *image)

Input Arguments
fid

the kfile id opened previously with kopen()
image

the image header to be written

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This routines writes a ascii header structure and it’s data into the specified filename. The routine uses
the ktransport library which allows for remote writing of the ascii header.

2-208



Basic Services Program Services Volume I - Chapter 2

T.1.8. ascii_write() — write a ascii structure to the specified filename

Synopsis
int ascii_write(

char *filename,
ascii *image)

Input Arguments
filename

the filename in which we will be writing the ascii image and associated data
image

the ascii structure to be written

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This routines writes a ascii structure and it’s data into the specified filename. The routine uses the
ktransport library which allows for remote writing of the data.

T.1.9. ascii_fdwrite() — write a ascii structure to the specified file descriptor

Synopsis
int ascii_fdwrite(

int fid,
ascii *image)

Input Arguments
fid

the file descriptor in which we will be writing the ascii image and associated data
image

the ascii structure to be written

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This routines writes a ascii structure and it’s data into the specified file descriptor. The routine uses the
ktransport library which allows for remote writing of the data.

2-209



Basic Services Program Services Volume I - Chapter 2

T.2. Introduction to the Pixmap Format Utilities

The pixmap format utilities are:

• xpm_create() - creates a xpm structure and it’s associated data
• xpm_free() - frees a xpm structure and it’s associated data
• xpm_readheader() - reads a xpm header structure from the specified kfile id
• xpm_read() - read a xpm structure from the specified filename
• xpm_fdread() - read a xpm structure from the specified file descriptor
• xpm_parse() - parses a xpm string array and returns an xpm structure
• xpm_writeheader() - writes a xpm header structure from the specified kfile id
• xpm_write() - write a xpm structure to the specified filename
• xpm_fdwrite() - write a xpm structure to the specified file descriptor

T.2.1. Definitions of the Pixmap Format Utilities

T.2.2. xpm_create() — creates a xpm structure and it’s associated data

Synopsis
xpm *xpm_create(

void)

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This routine creates an khoros xpm structure and it’s associated data.

T.2.3. xpm_free() — frees a xpm structure and it’s associated data

Synopsis
int xpm_free(

xpm *image)

Input Arguments
image

a pointer to an khoros xpm structure that contains the image structure to be freed.

2-210



Basic Services Program Services Volume I - Chapter 2

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This routine frees an khoros xpm structure and it’s associated data.

Side Effects
Once this routine is called no further reference the image should be made.

T.2.4. xpm_readheader() — reads a xpm header structure from the specified kfile id

Synopsis
xpm *xpm_readheader(

int fid)

Input Arguments
fid

the kfile id opened previously with kopen()

Returns
image - explanation

Description
This routines reads a xpm header structure and it’s data into the specified filename. The routine uses
the ktransport library which allows for remote reading of the xpm header.

T.2.5. xpm_read() — read a xpm structure from the specified filename

Synopsis
xpm *xpm_read(

char *filename)

Input Arguments
filename

filename in which we will be reading the xpm

2-211



Basic Services Program Services Volume I - Chapter 2

Returns
returns the newly read xpm or NULL upon failure

Description
This routines reads a xpm structure and it’s data from the specified filename. The routine uses the
ktransport library which allows for remote reading of the data and it’s header.

T.2.6. xpm_fdread() — read a xpm structure from the specified file descriptor

Synopsis
xpm *xpm_fdread(int fid)

Input Arguments
fid

file descriptor in which we will be reading the xpm

Returns
returns the newly read xpm or NULL upon failure

Description
This routines reads a xpm structure and it’s data from the specified file descriptor. The routine uses the
ktransport library which allows for remote reading of the data and it’s header.

T.2.7. xpm_parse() — parses a xpm string array and returns an xpm structure

Synopsis
xpm *xpm_parse(

char **definition)

Input Arguments
definition

a pointer to an array of strings that defines a khoros xpm structure

Returns
returns the newly parsed xpm or NULL upon failure

2-212



Basic Services Program Services Volume I - Chapter 2

Description
This routine parses an xpm string array and returns an xpm structure.

T.2.8. xpm_writeheader() — writes a xpm header structure from the specified kfile id

Synopsis
int xpm_writeheader(

int fid,
xpm *image)

Input Arguments
fid

the kfile id opened previously with kopen()
image

the image header to be written

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This routines writes a xpm header structure and it’s data into the specified filename. The routine uses
the ktransport library which allows for remote writing of the xpm header.

T.2.9. xpm_write() — write a xpm structure to the specified filename

Synopsis
int xpm_write(

char *filename,
xpm *image)

Input Arguments
filename

the filename in which we will be writing the xpm image and associated data
image

the xpm structure to be written

Returns
TRUE (1) on success, FALSE (0) otherwise

2-213



Basic Services Program Services Volume I - Chapter 2

Description
This routines writes a xpm structure and it’s data into the specified filename. The routine uses the
ktransport library which allows for remote writing of the data.

T.2.10. xpm_fdwrite() — write a xpm structure to the specified file descriptor

Synopsis
int xpm_fdwrite(int fid, xpm *image)

Input Arguments
fid

the file descriptor in which we will be writing the xpm image and associated data
image

the xpm structure to be written

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This routines writes a xpm structure and it’s data into the specified file descriptor. The routine uses the
ktransport library which allows for remote writing of the data.

U. Ini Parsing Utilities

The following section details the ini parsing utilities that are a part of the kutils (libku.a) library. These utilities
allow dev elopers to read and edit windows style ini files.

U.1. Introduction to the Ini Parsing Utilities

The ini parsing utilities are:

• kini_parse() - parse dot ini configuration file
• kini_write() - write an ini configuration file
• kini_get_val() - get value for an IniConf parameter
• kini_set_val() - set value for an IniConf parameter
• kini_free() - free memory associated with an IniConf structure

2-214



Basic Services Program Services Volume I - Chapter 2

U.2. Definitions of the Ini Parsing Utilities

U.2.1. kini_parse() — parse dot ini configuration file

Synopsis
IniConf *
kini_parse(

kstring ini_file,
kstring default_section)

Input Arguments
ini_file

dot ini configuration file to parse
default_section

name of section to try if parameter is not found in named section (for get_value)

Returns
ptr to IniConf structure created on success, NULL on failure

Description
Parse the file specified by ini_file, and return a pointer to the information it contains.

U.2.2. kini_write() — write an ini configuration file

Synopsis
int
kini_write(

kstring ini_file,
IniConf *cfg)

Input Arguments
ini_file

dot ini configuration file to write
cfg

ptr to IniConf structure to use

2-215



Basic Services Program Services Volume I - Chapter 2

Returns
TRUE or FALSE

Description
Write the file specified by ini_file.

U.2.3. kini_get_val() — get value for an IniConf parameter

Synopsis
kstring
kini_get_val(

IniConf *cfg,
kstring section_name,
kstring parameter_name)

Input Arguments
cfg

IniConf configuration to use
section_name

section to find parameter
parameter_name

parameter to get value for

Returns
ptr to value string found on success, NULL on failure

Description
Get a value for an IniConf parameter. If the value is not found in the specified section, it searches the
default section.

2-216



Basic Services Program Services Volume I - Chapter 2

U.2.4. kini_set_val() — set value for an IniConf parameter

Synopsis
int
kini_set_val(

IniConf *cfg,
kstring section_name,
kstring parameter_name,
kstring value)

Input Arguments
cfg

IniConf configuration to use
section_name

section to find parameter
parameter_name

parameter to get value for
value

new value for parameter

Returns
TRUE or FALSE

Description
Set a value for an IniConf parameter.

U.2.5. kini_free() — free memory associated with an IniConf structure

Synopsis
void
kini_free(

IniConf *cfg)

Input Arguments
cfg

ptr to IniConf structure to free

Description
Free all memory associated with an IniConf structure.

2-217



Basic Services Program Services Volume I - Chapter 2

V. Structure Passing Utilities

The following section details the structure passing utilities that are a part of the kutils (libku.a) library. These
utilities allow dev elopers to read, write, flatten, and unflatten data structures, in a machine independent way.

V.1. Introduction to the Structure Passing Utilities

The ini parsing utilities are:

• kstruct_define() - define a structure entry
• kstruct_undefine() - undefine a structure entry
• kstruct_check() - check to see if a datatype is defined
• kstruct_free() - frees a structure and any associated memory
• kstruct_compare() - compares two structures
• kstruct_duplicate() - duplicates a structure
• kstruct_flatten() - flattens a structure
• kstruct_unflatten() - unflattens data into a structure
• kstruct_setinfo() - override the info in a structure entry
• kstruct_getinfo() - retrieve the info in a structure entry

V.2. Definitions of the Structure Passing Utilities

V.2.1. kstruct_define() — define a structure entry

Synopsis
int
kstruct_define(

const char *name,
size_t size,
int (*read_struct)(int, kaddr, int),
int (*write_struct)(int, kaddr, int),
int (*parse_struct)(int, kaddr, int),
int (*print_struct)(int, kaddr, int),
int (*compare_struct)(kaddr, kaddr, int),
void (*free_struct)(kaddr, int))

Input Arguments
name

the structure name
size

the size of the structure ’sizeof(struct)’
read_struct

2-218



Basic Services Program Services Volume I - Chapter 2

the read routine to call for reading
write_struct

the write routine to call for writing
parse_struct

the ascii write routine to call for parsing
print_struct

the ascii read routine to call for printing
compare_struct

the compare routine to call for comparing
free_struct

the free routine to call for freeing memory

Returns
returns the structure data type on success, KUNDEFINED otherwise

Description
This module is used to define a structure entry, which can then be used by the
kread_generic()/kwrite_generic() routines to read and write arbitary structures.

V.2.2. kstruct_undefine() — undefine a structure entry

Synopsis
int
kstruct_undefine(

int type)

Input Arguments
type

the structure type in which to undefine

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This module is used to undefine a structure entry, which is used by the
kread_generic()/kwrite_generic() routines to read and write arbitary structures.

2-219



Basic Services Program Services Volume I - Chapter 2

V.2.3. kstruct_check() — check to see if a datatype is defined

Synopsis
int
kstruct_check(

char *name)

Input Arguments
name

the structure name

Returns
returns the structure data type on success, KUNDEFINED otherwise

Description
This module is used to check to see if a datatype structure is defined. It takes the name of the structure
originally used to define the entry. If the structure exists kstruct_check() returns the structure data type
define, which can then be used by the kread_generic()/ kwrite_generic() routines to read and write
arbitary structures.

V.2.4. kstruct_free() — frees a structure and any associated memory

Synopsis
void kstruct_free(

kaddr data,
int type,
int freeself)

Input Arguments
data

the structure to be freed
type

the structure type in which to free free_self - a flag indicating whether or not to free itself. This
parameter is passed to the free routine associated with the type.

Description
This module is used to call the free handler associated with a structure data definition. The structure
free handler is called to free the assocaited data with the structure.

2-220



Basic Services Program Services Volume I - Chapter 2

V.2.5. kstruct_compare() — compares two structures

Synopsis
int
kstruct_compare(

kaddr data1,
kaddr data2,
int type)

Input Arguments
data1

the first structure to be compared
data2

the second structure to be compared
type

the structure type in which to be compared

Returns
returns TRUE on success, FALSE otherwise otherwise

Description
This module is used to compare two structures to see if they are the same. This is done by calling the
associated compare handler associated with a structure data definition. The structure compare handler
is called to compare the assocaited data with the two structures.

V.2.6. kstruct_duplicate() — duplicates a structure

Synopsis
kaddr
kstruct_duplicate(

kaddr data,
int type,
kaddr duplicate)

Input Arguments
data

the structure to be duplicated
type

the structure type in which to duplicate

2-221



Basic Services Program Services Volume I - Chapter 2

Returns
returns the duplicated structure on success, NULL otherwise otherwise

Description
This module is used to duplicate structure according to the supplied data type define.

V.2.7. kstruct_flatten() — flattens a structure

Synopsis
kaddr
kstruct_flatten(

kaddr data,
int type,
int ascii,
size_t * size)

Input Arguments
data

the structure to be flattened
type

the structure type in which to flatten
ascii

flatten the structure using the ascii methods

Output Arguments
size

if not NULL, then returns the size of the flattened array

Returns
returns the flattened structure on success, NULL otherwise otherwise

Description
This module is used to flatten a structure according to the supplied data type define.

2-222



Basic Services Program Services Volume I - Chapter 2

V.2.8. kstruct_unflatten() — unflattens data into a structure

Synopsis
kaddr
kstruct_unflatten(

kaddr data,
int type,
int ascii,
size_t size)

Input Arguments
data

the flattened data to be unflattened into a structure
type

the structure type in which to unflatten
ascii

flatten the structure using the ascii methods
size

the size of the flatten data

Returns
returns the unflattened structure on success, NULL otherwise otherwise

Description
This module is used to unflatten data into a structure according to the supplied data type define.

2-223



Basic Services Program Services Volume I - Chapter 2

V.2.9. kstruct_setinfo() — override the info in a structure entry

Synopsis
int
kstruct_setinfo(

int type,
const char *name,
ssize_t size,
int (*read_struct)(int, kaddr, int),
int (*write_struct)(int, kaddr, int),
int (*parse_struct)(int, kaddr, int),
int (*print_struct)(int, kaddr, int),
int (*compare_struct)(kaddr, kaddr, int),
void (*free_struct)(kaddr, int))

Input Arguments
type

the structure type in which to replace certain info
name

the structure name (if not NULL)
size

the size of the structure (if not -1)
read_struct

the read routine (if not NULL)
write_struct

the write routine (if not NULL)
parse_struct

the parse routine (if not NULL)
print_struct

the print routine (if not NULL)
compare_struct

the compare routine (if not NULL)
free_struct

the free routine (if not NULL)

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This module is used to override the information currently stored within a structure entry.

The name, size, read and write structure can be overridden. If a non-NULL name is passed in then the
current structure name is replaced. If the size is not -1 then the structure size is replaced. If the read or
write structure routines are not NULL then the respective routines are replaced.

2-224



Basic Services Program Services Volume I - Chapter 2

V.2.10. kstruct_getinfo() — retrieve the info in a structure entry

Synopsis
int
kstruct_getinfo(

int type,
char **name,
size_t *size,
int (**read_struct)(int, kaddr, int),
int (**write_struct)(int, kaddr, int),
int (**parse_struct)(int, kaddr, int),
int (**print_struct)(int, kaddr, int),
int (**compare_struct)(kaddr, kaddr, int),
void (**free_struct)(kaddr, int))

Input Arguments
type

the structure type in which to replace certain info

Output Arguments
name

the structure name (if not NULL)
size

the size of the structure (if not NULL)
read_struct

the read routine (if not NULL)
write_struct

the write routine (if not NULL)
parse_struct

the parse routine (if not NULL)
print_struct

the print routine (if not NULL)
compare_struct

the compare routine (if not NULL)
free_struct

the free routine (if not NULL)

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This module is used to retrieve the information currently stored within a structure entry.

The name, size, read and write structure can be retrieved. Only non-NULL entries will be returned.
So only pointers to the desired information need to be passed in.

2-225



Basic Services Program Services Volume I - Chapter 2

2-226



Table of Contents

A. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-1
B. String Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-2

B.1. Introduction to String Utilities . . . . . . . . . . . . . . . . . . . . .  2-2
B.2. Definitions of String Utilities . . . . . . . . . . . . . . . . . . . . .  2-3

B.2.1. kstrcasecmp() — do a case insensitive string compare . . . . . . . . . . . . .  2-3
B.2.2. kstrcat() — concatenate two strings . . . . . . . . . . . . . . . . . .  2-4
B.2.3. kstrchr() — find a character in a string . . . . . . . . . . . . . . . . .  2-5
B.2.4. kstrcmp() — compare two strings . . . . . . . . . . . . . . . . . . .  2-6
B.2.5. kstrcpy() — copy a string . . . . . . . . . . . . . . . . . . . . .  2-7
B.2.6. kstrcspn() — return the number of characters not matched . . . . . . . . . . . .  2-8
B.2.7. kstrdup() — return a duplicate of the input string . . . . . . . . . . . . . .  2-9
B.2.8. kstrlen() — return the length of a string . . . . . . . . . . . . . . . . .  2-9
B.2.9. kstrncasecmp() — do a case insensitive string compare on n characters . . . . . . . . 2-10
B.2.10. kstrncat() — concatenate up to n characters on a string . . . . . . . . . . . . 2-12
B.2.11. kstrncmp() — compare the first n characters of two strings . . . . . . . . . . . 2-13
B.2.12. kstrncpy() — copy the first n characters in a string . . . . . . . . . . . . . . 2-14
B.2.13. kstrpbrk() — find the first occurrence of a character from a set of chararacters . . . . . 2-15
B.2.14. kstrrchr() — re verse scan a string to find a character . . . . . . . . . . . . . 2-15
B.2.15. kstrspn() — return the number of matched characters . . . . . . . . . . . . . 2-16
B.2.16. kstrstr() — find a substring within a string . . . . . . . . . . . . . . . . 2-17
B.2.17. kstrtok() — find a token within a string . . . . . . . . . . . . . . . . . 2-17
B.2.18. kchar_replace() — replace a character with another through a string . . . . . . . . 2-18
B.2.19. kstring_capitalize() — convert a string to its capitalized equivalent . . . . . . . . . 2-19
B.2.20. kstring_3cat() — concatenate three strings together . . . . . . . . . . . . . 2-20
B.2.21. kstring_cat() — concatenate two strings . . . . . . . . . . . . . . . . . 2-21
B.2.22. kstring_cleanup() — remove white space from the ends of a string . . . . . . . . . 2-22
B.2.23. kstring_copy() — copy a string . . . . . . . . . . . . . . . . . . . 2-22
B.2.24. kstring_detab() — remove tabs from a string . . . . . . . . . . . . . . . 2-23
B.2.25. kstring_lower() — convert a string to lower case. . . . . . . . . . . . . . . 2-24
B.2.26. kstring_ncat() — concatenate two partial strings . . . . . . . . . . . . . . 2-25
B.2.27. kstring_ncopy() — copy up to n characters of a string . . . . . . . . . . . . 2-26
B.2.28. kstring_replace() — replace one substring with another . . . . . . . . . . . . 2-27
B.2.29. kstring_subcmp() — compares two sub-strings . . . . . . . . . . . . . . 2-28
B.2.30. kstring_upper() — convert a string to upper case. . . . . . . . . . . . . . . 2-29
B.2.31. kstring_seddata() — perform text changes with one or more sets of substitution rules . . . . 2-30

C. Tokenized String Utilities . . . . . . . . . . . . . . . . . . . . . . . . 2-31
C.1. Introduction to Tokenized String Utilities . . . . . . . . . . . . . . . . . 2-31
C.2. Definitions of Tokenized String Utilities . . . . . . . . . . . . . . . . . . 2-31

C.2.1. kstring_to_token() — return the token that is associated with the specified string . . . . . 2-31
C.2.2. ktoken_to_string() — return the string associated with the specified token . . . . . . . 2-32
C.2.3. ktoken_check() — check to see if a string has been token’ized . . . . . . . . . . . 2-33
C.2.4. ktoken_delete() — delete the token’ized string from the list of tokens . . . . . . . . . 2-33

D. Time String Utilities . . . . . . . . . . . . . . . . . . . . . . . . . 2-34
D.1. Introduction to the Time String Utilities . . . . . . . . . . . . . . . . . . 2-34
D.2. Definitions of Time String Utilities . . . . . . . . . . . . . . . . . . . 2-34

D.2.1. kstrftime() — generate formatted time information . . . . . . . . . . . . . . 2-34
D.2.1.1. Extensions . . . . . . . . . . . . . . . . . . . . . . . . 2-36

- i -



Basic Services Program Services Volume I - Chapter 2

D.2.1.1.1. Non-ANSI Extensions . . . . . . . . . . . . . . . . . . . 2-36
D.2.1.1.2. POSIX 1003.2 Extensions . . . . . . . . . . . . . . . . . . 2-37
D.2.1.1.3. VMS Extensions . . . . . . . . . . . . . . . . . . . . . 2-37

D.2.2. kget_date() — get the current time and date in a string . . . . . . . . . . . . . 2-37
E. Standardized Error Messages & Prompting . . . . . . . . . . . . . . . . . . 2-38

E.1. Introduction to Message/Prompting Utilities . . . . . . . . . . . . . . . . 2-38
E.2. Definitions of Message/Prompting Utilities . . . . . . . . . . . . . . . . . 2-39

E.2.1. kannounce() — report or announce a message in a standardized format . . . . . . . . 2-39
E.2.2. kchoose() — prompt the user to select from a list of items . . . . . . . . . . . . 2-40
E.2.3. kerror() — print error messages in a standardized format . . . . . . . . . . . . 2-41
E.2.4. kinfo() — print information messages in a standardized format . . . . . . . . . . . 2-42
E.2.5. koverwrite() — request an acknowledgement for overwriting files . . . . . . . . . . 2-43
E.2.6. kprompt() — request an acknowledgement from the user . . . . . . . . . . . . 2-44
E.2.7. ksave() — request an acknowledgement for quitting an application . . . . . . . . . 2-45
E.2.8. kquit() — request an acknowledgement for quitting an application . . . . . . . . . . 2-46
E.2.9. kwarn() — print warning messages in a standardized format . . . . . . . . . . . 2-48

E.3. Definitions of Routines To Set/Get Notify Level . . . . . . . . . . . . . . . 2-48
E.3.1. kget_notify() — get the VisiQuest notify level . . . . . . . . . . . . . . . . 2-48
E.3.2. kset_notify() — set the VisiQuest notify level . . . . . . . . . . . . . . . . 2-49

E.4. Definitions of Routines To Set Handlers . . . . . . . . . . . . . . . . . . 2-49
E.4.1. kset_announcehandler() — set the announce handling routine used by kannounce() . . . . 2-49
E.4.2. kset_choosehandler() — set the choose handling routine used by kchoose() . . . . . . . 2-50
E.4.3. kset_errorhandler() — set the error handling routine used by kerror() . . . . . . . . 2-51
E.4.4. kset_infohandler() — set the information handling routine used by kinfo() . . . . . . . 2-52
E.4.5. kset_prompthandler() — set the prompt handling routine used by kprompt() . . . . . . 2-53
E.4.6. kset_quithandler() — set the quit handling routine used by kquit() . . . . . . . . . 2-54
E.4.7. kset_savehandler() — set the save handling routine used by ksave() . . . . . . . . . 2-54
E.4.8. kset_warnhandler() — set the warning handler routine used by kwarn() . . . . . . . . 2-55

F. A Dyamic Errno System . . . . . . . . . . . . . . . . . . . . . . . . 2-56
F.1. Introduction to Generalized VisiQuest Errno Facility . . . . . . . . . . . . 2-56
F.2. Errno Initialization and lookup routines . . . . . . . . . . . . . . . . . . 2-57

F.2.1. kerrno_init_errors() — initialize errors to be used with khoros errno . . . . . . . . . 2-57
F.2.2. kerrno_check() — check to see if an errno is within a given error list. . . . . . . . . 2-57
F.2.3. kerrno_lookup() — lookup the error message associated with a errno. . . . . . . . . 2-58
F.2.4. kerrno_class() — return the class number for a given errno. . . . . . . . . . . . 2-58
F.2.5. kset_errno() — set an errno with a debug message . . . . . . . . . . . . . . 2-59

G. Program Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . 2-59
G.1. Introduction to Program Statistic Utilities . . . . . . . . . . . . . . . . . 2-59
G.2. Definitions of Utilities To Get Program Statistics . . . . . . . . . . . . . . . 2-60

G.2.1. kprog_get_argc() — get the number of arguments in the argv structure . . . . . . . . 2-60
G.2.2. kprog_get_argv() — get the arguments in the argv structure . . . . . . . . . . . 2-60
G.2.3. kprog_get_command() — gets the command string in which this program was executed

with. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-61
G.2.4. kprog_get_envp() — gets the environment variable parameter structure . . . . . . . . 2-61
G.2.5. kprog_get_program() — gets the name of the program . . . . . . . . . . . . . 2-62
G.2.6. kprog_get_toolbox() — gets the toolbox in which this program belongs. . . . . . . . 2-62

G.3. Definitions of Utilities To Set Program Statistics . . . . . . . . . . . . . . . 2-63
G.3.1. kprog_set_argc() — set the number of commandline parameters . . . . . . . . . . 2-63
G.3.2. kprog_set_argv() — set the command line argument array . . . . . . . . . . . . 2-63
G.3.3. kprog_set_envp() — set the number of environment variable parameters . . . . . . . 2-64

- ii -



Basic Services Program Services Volume I - Chapter 2

G.3.4. kprog_set_program() — set the name of the program . . . . . . . . . . . . . 2-64
G.3.5. kprog_set_toolbox() — set the toolbox in which this software object belongs. . . . . . . 2-65

G.4. Definitions of Utilities To Initialize VisiQuest . . . . . . . . . . . . . . 2-65
G.4.1. khoros_initialize() — initialize khoros system (old version for Khoros 2.1p1) . . . . . . 2-65
G.4.2. khoros_init() — initialize khoros system (new version for Khoros 2.1p2) . . . . . . . . 2-66
G.4.3. khoros_imprint() — imprint the khoros toolbox . . . . . . . . . . . . . . . 2-67

H. The String Parser . . . . . . . . . . . . . . . . . . . . . . . . . . 2-67
H.1. Introduction to String Parser . . . . . . . . . . . . . . . . . . . . . 2-67
H.2. Definitions of String Parsing Utilities . . . . . . . . . . . . . . . . . . . 2-68

H.2.1. kparse_string_search_delimit() — break up a line data into an array of strings based on
some set of delimiters . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-68

H.2.2. kparse_string_delimit() — break a string into an array of strings based on some set of
delimiters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-70

H.2.3. kparse_string_search() — match a search key in a data string . . . . . . . . . . 2-71
H.2.4. kparse_string_scan() — scan a data string for a specific section . . . . . . . . . . 2-72
H.2.5. kparse_string_scan_delimit() — Break a string into an array of strings . . . . . . . . 2-74
H.2.6. kparse_file_search() — search a file for a specific key . . . . . . . . . . . . . 2-76
H.2.7. kparse_file_search_delimit() — break up a line data into an array of strings based on some

set of delimiters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-77
H.2.8. kparse_file_scan() — scan a VisiQuest Data Transport Stream for a specific section of data

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-79
H.2.9. kparse_file_scan_delimit() — break a section of a VisiQuest Data Transport Stream into an

array of strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-81
I. Regular Expression Pattern Matching & Replacement . . . . . . . . . . . . . . . 2-83

I.1. Introduction to Regular Expression Utilities . . . . . . . . . . . . . . . . . 2-83
I.2. Definitions of Regular Expression Utilities . . . . . . . . . . . . . . . . . 2-86

I.2.1. kre_comp() — compile a regular expression . . . . . . . . . . . . . . . . 2-86
I.2.2. kre_debug() — prints a DFA for debug purposes . . . . . . . . . . . . . . . 2-88
I.2.3. kre_exec() — execute dfa to find a match. . . . . . . . . . . . . . . . . . 2-89
I.2.4. kre_icomp() — compile a case insensitive regular expression . . . . . . . . . . . 2-90
I.2.5. kre_modw() — modify kre_exec’s work table . . . . . . . . . . . . . . . . 2-90
I.2.6. kre_pos() — begin and end pointers of regular expression group . . . . . . . . . . 2-91
I.2.7. kre_status() — return a parse status code . . . . . . . . . . . . . . . . . 2-91
I.2.8. kre_subs() — substitute the matched portions of the src in dst . . . . . . . . . . . 2-92
I.2.9. kregex_replace() — replace an input string given a regular expression input and output string

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-93
J. Memory Allocation Utilities . . . . . . . . . . . . . . . . . . . . . . . 2-94

J.1. Introduction to Memory Utilities . . . . . . . . . . . . . . . . . . . . 2-94
J.2. Definitions of Memory Utilities . . . . . . . . . . . . . . . . . . . . . 2-95

J.2.1. kbcopy() — copies bytes from src to dest . . . . . . . . . . . . . . . . . 2-95
J.2.2. kbzero() — zeros out ’num’ bytes (BSD style) . . . . . . . . . . . . . . . . 2-95
J.2.3. kbcmp() — compare bytes from src1 and src2 (BSD style) . . . . . . . . . . . . 2-96
J.2.4. kcalloc() — allocate memory and initialize it . . . . . . . . . . . . . . . . 2-97
J.2.5. kdupalloc() — duplicates a piece of memory . . . . . . . . . . . . . . . . 2-97
J.2.6. kfree() — free allocated memory . . . . . . . . . . . . . . . . . . . . 2-98
J.2.7. kfree_and_NULL() — free memory previously allocated . . . . . . . . . . . . 2-98
J.2.8. kmalloc() — allocate a contiguous piece of memory . . . . . . . . . . . . . . 2-99
J.2.9. krealloc() — re-allocate a piece of memory to a new size . . . . . . . . . . . . 2-99
J.2.10. kmemchr() — find the first occurence of ’c’ in an character array . . . . . . . . . 2-100
J.2.11. kmemcmp() — compare bytes from src1 and src2 . . . . . . . . . . . . . . 2-100

- iii -



Basic Services Program Services Volume I - Chapter 2

J.2.12. kmemcpy() — copies bytes from src to dest . . . . . . . . . . . . . . . . 2-101
J.2.13. kmemccpy() — restricted copy of bytes from src to dest . . . . . . . . . . . . 2-102
J.2.14. kmemmove() — copy a block of memory to another block . . . . . . . . . . . . 2-102
J.2.15. kmemset() — initialize bytes in dest to the character value ’c’ . . . . . . . . . . 2-103

K. File Path Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . 2-105
K.1. Introduction to Path Utilities . . . . . . . . . . . . . . . . . . . . . 2-105
K.2. Definitions of Path Utilities . . . . . . . . . . . . . . . . . . . . . . 2-105

K.2.1. kbasename() — return the filename component of a pathname . . . . . . . . . . . 2-105
K.2.2. kdirname() — find directory component of a given pathname . . . . . . . . . . . 2-106
K.2.3. kexpandpath() — Expand a path to it true path . . . . . . . . . . . . . . . 2-107
K.2.4. kfullpath() — Expand a environment variables in a path . . . . . . . . . . . . 2-108
K.2.5. ktbpath() — Expand a environment variables local to a toolbox . . . . . . . . . . 2-108
K.2.6. ktempnam() — create a name for a temporary khoros transport . . . . . . . . . . 2-109
K.2.7. kfindpath() — find the path to an executable . . . . . . . . . . . . . . . . 2-110

L. Directory Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . 2-111
L.1. Introduction to Directory Utilities . . . . . . . . . . . . . . . . . . . . 2-111
L.2. Definitions of Directory Utilities . . . . . . . . . . . . . . . . . . . . 2-111

L.2.1. kmake_dir() — make a directory and all parent directories if necessary . . . . . . . . 2-111
L.2.2. kremove_dir() — remove a directory and it’s contents . . . . . . . . . . . . . 2-112
L.2.3. kchdir() — library call to change the current working directory . . . . . . . . . . 2-112
L.2.4. kgetcwd() — library call to get the current working directory . . . . . . . . . . . 2-113
L.2.5. kmkdir() — library call to create a directory . . . . . . . . . . . . . . . . 2-113
L.2.6. krmdir() — remove a directory . . . . . . . . . . . . . . . . . . . . 2-114

M. Environment Variable Utilities . . . . . . . . . . . . . . . . . . . . . . 2-114
M.1. Introduction to Environment Variable Utilities . . . . . . . . . . . . . . . . 2-114
M.2. Definitions of Environment Variable Utilities . . . . . . . . . . . . . . . . 2-115

M.2.1. kgetenv() — get an environment variable from the environ list. . . . . . . . . . . 2-115
M.2.2. kputenv() — put an environment variable into the environ list. . . . . . . . . . . 2-115
M.2.3. kremenv() — remove an environment variable from the environment . . . . . . . . . 2-116

N. Variable Argument Utilities . . . . . . . . . . . . . . . . . . . . . . . 2-117
N.1. Introduction to Variable Argument Utilities . . . . . . . . . . . . . . . . . 2-117
N.2. Definitions of Variable Argument Utilities . . . . . . . . . . . . . . . . . 2-117

N.2.1. kva_start() — sets the start of the variable argument list . . . . . . . . . . . . 2-117
N.2.2. kva_arg() — gets an argument off the variable argument list . . . . . . . . . . . 2-118
N.2.3. kva_end() — sets the end of the variable argument list . . . . . . . . . . . . . 2-120

O. Array Creation & Manipulation . . . . . . . . . . . . . . . . . . . . . . 2-122
O.1. Introduction to Array Utilities . . . . . . . . . . . . . . . . . . . . . 2-122
O.2. Definitions of Array Utilities . . . . . . . . . . . . . . . . . . . . . 2-122

O.2.1. karray_add() — add an entry into the array list . . . . . . . . . . . . . . . 2-122
O.2.2. karray_copy() — copy an array of strings . . . . . . . . . . . . . . . . 2-123
O.2.3. karray_delete() — delete an entry from an array . . . . . . . . . . . . . . . 2-125
O.2.4. karray_dirlist() — create an array of strings reflecting directory contents . . . . . . . 2-126
O.2.5. karray_filelist() — create an array of strings reflecting the contents of a file . . . . . . . 2-127
O.2.6. karray_free() — free memory used by an array . . . . . . . . . . . . . . . 2-128
O.2.7. karray_insert() — insert an entry into an array . . . . . . . . . . . . . . . 2-130
O.2.8. karray_locate() — locate an entry in an array . . . . . . . . . . . . . . . 2-131
O.2.9. karray_merge() — merge two arrays into one . . . . . . . . . . . . . . . 2-132
O.2.10. karray_sort() — sort an array . . . . . . . . . . . . . . . . . . . . 2-134
O.2.11. karray_to_list() — convert an array into a linked list . . . . . . . . . . . . . 2-135
O.2.12. karray_to_string() — convert a string array into a single big string . . . . . . . . . 2-136

- iv -



Basic Services Program Services Volume I - Chapter 2

O.2.13. knumber() — the number of items in an array . . . . . . . . . . . . . . . 2-137
P. Linked List Creation & Manipulation . . . . . . . . . . . . . . . . . . . . 2-137

P.1. Introduction to Linked List Utilities . . . . . . . . . . . . . . . . . . . 2-137
P.2. Definitions of Linked List Utilities . . . . . . . . . . . . . . . . . . . . 2-138

P.2.1. klist_add() — add an entry into the linked list . . . . . . . . . . . . . . . . 2-139
P.2.2. klist_checkentry() — check if the klist entry is currently on the link list . . . . . . . . 2-140
P.2.3. klist_checkhead() — check if the current entry is the head of the list . . . . . . . . . 2-140
P.2.4. klist_checkident() — check if the identifier is currently on the link list . . . . . . . . 2-141
P.2.5. klist_checktail() — check if the current entry is the tail of the list . . . . . . . . . . 2-141
P.2.6. klist_clientdata() — return the client data associated with an entry on the list . . . . . . 2-142
P.2.7. klist_copy() — copy a linked list into a new linked list . . . . . . . . . . . . . 2-142
P.2.8. klist_delete() — delete an entry from the linked list . . . . . . . . . . . . . . 2-143
P.2.9. klist_dirlist() — create a linked list of file names . . . . . . . . . . . . . . . 2-143
P.2.10. klist_filelist() — create a linked list of strings from a file . . . . . . . . . . . . 2-144
P.2.11. klist_free() — free the entire linked list . . . . . . . . . . . . . . . . . 2-145
P.2.12. klist_head() — locate the head of the linked list . . . . . . . . . . . . . . . 2-145
P.2.13. klist_identifier() — return the identifier associated with an entry on the list . . . . . . . 2-146
P.2.14. klist_insert() — insert an entry into the linked list . . . . . . . . . . . . . . 2-147
P.2.15. klist_locate() — locate an entry in the linked list . . . . . . . . . . . . . . 2-148
P.2.16. klist_locate_clientdata() — locate an entry in the linked list according to it’s client data

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-148
P.2.17. klist_makecircular() — changes a consecutive or linear link list into a circular link list

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-149
P.2.18. klist_makelinear() — changes a circular link list into a consecutive or linear link list . . . . 2-149
P.2.19. klist_merge() — merge two linked list into a single linked list . . . . . . . . . . . 2-150
P.2.20. klist_next() — return the next entry on the list . . . . . . . . . . . . . . . 2-150
P.2.21. klist_prev() — return the previous entry on the list . . . . . . . . . . . . . . 2-151
P.2.22. klist_size() — compute the size or number of entries in the list . . . . . . . . . . 2-151
P.2.23. klist_sort() — sort the linked list . . . . . . . . . . . . . . . . . . . 2-152
P.2.24. klist_split() — split a single linked list into two linked lists . . . . . . . . . . . 2-152
P.2.25. klist_tail() — locate the tail of the linked list . . . . . . . . . . . . . . . . 2-153
P.2.26. klist_to_array() — convert the linked list into an array . . . . . . . . . . . . . 2-154
P.2.27. kalias_list() — returns a string array of aliases . . . . . . . . . . . . . . . 2-154

Q. Simple Database Management . . . . . . . . . . . . . . . . . . . . . . 2-155
Q.1. Introduction to Database Management Routines . . . . . . . . . . . . . . . 2-155
Q.2. Definitions of Database Management Routines . . . . . . . . . . . . . . . . 2-156

Q.2.1. kdbm_check() — check where file descripter is a valid kdbm file . . . . . . . . . . 2-156
Q.2.2. kdbm_checkkey() — check to see if a key exists in the database . . . . . . . . . . 2-156
Q.2.3. kdbm_close() — close a previously opened kdbm file . . . . . . . . . . . . . 2-157
Q.2.4. kdbm_delete() — Remove the key and its associated data from the database. . . . . . . 2-157
Q.2.5. kdbm_fetch() — Find a key and return the associated data. . . . . . . . . . . . 2-158
Q.2.6. kdbm_firstkey() — get the first key in the database . . . . . . . . . . . . . . 2-158
Q.2.7. kdbm_fdopen() — open the dbm file and initialize data structures for use . . . . . . . 2-159
Q.2.8. kdbm_getmachtype() — gets the machine type for the database . . . . . . . . . . 2-159
Q.2.9. kdbm_lseek() — move read/write pointer of the key pointer . . . . . . . . . . . 2-160
Q.2.10. kdbm_nextkey() — get the next key in the database . . . . . . . . . . . . . 2-161
Q.2.11. kdbm_open() — open the dbm file and initialize data structures for use . . . . . . . 2-161
Q.2.12. kdbm_read() — Find a key and reads the associated data. . . . . . . . . . . . 2-162
Q.2.13. kdbm_store() — Add a new key/data pair to the database. . . . . . . . . . . . 2-163
Q.2.14. kdbm_write() — Simple database write routine . . . . . . . . . . . . . . 2-163

- v -



Basic Services Program Services Volume I - Chapter 2

Q.2.15. kdbm_tell() — indicate position of the key pointer . . . . . . . . . . . . . . 2-164
Q.2.16. khash_copy() — copy the hash table and all associated memory . . . . . . . . . . 2-165
Q.2.17. khash_create() — creates a hash table . . . . . . . . . . . . . . . . . 2-165
Q.2.18. khash_currkey() — return current entry (key) within the hash . . . . . . . . . . 2-167
Q.2.19. khash_location() — finds location of entry within the hash table . . . . . . . . . . 2-168
Q.2.20. khash_reinit() — reinitializes the hash table to be empty . . . . . . . . . . . . 2-168
Q.2.21. khash_firstkey() — return the first entry (key) in the hash table . . . . . . . . . . 2-169
Q.2.22. khash_lastkey() — return the last entry (key) in the hash table . . . . . . . . . . 2-171
Q.2.23. khash_nextkey() — return the next entry (key) in the hash table . . . . . . . . . . 2-172
Q.2.24. khash_prevkey() — return previous entry (key) in the hash table . . . . . . . . . 2-173
Q.2.25. khash_value() — polynomial conversion . . . . . . . . . . . . . . . . 2-174
Q.2.26. khash_init() — initialized the hash routines . . . . . . . . . . . . . . . . 2-174
Q.2.27. khash_free() — frees the hash table and all associated memory . . . . . . . . . . 2-175
Q.2.28. khash_delete() — delete an entry from the hash table . . . . . . . . . . . . . 2-175
Q.2.29. khash_clientdata() — returns the clientdata of a hash entry . . . . . . . . . . . 2-176
Q.2.30. khash_check() — check to see if a hash entry exists . . . . . . . . . . . . . 2-177
Q.2.31. khash_add() — adds an entry to the hash table . . . . . . . . . . . . . . . 2-177

R. Attribute Management . . . . . . . . . . . . . . . . . . . . . . . . . 2-178
R.1. Introduction to Attribute Management Routines . . . . . . . . . . . . . . . 2-178
R.2. Definitions of Attribute Management Routines . . . . . . . . . . . . . . . . 2-179

R.2.1. kattrs_init() — Initialize the kattrs data type. . . . . . . . . . . . . . . . 2-179
R.2.2. kattrs_create() — create a new attribute list . . . . . . . . . . . . . . . . 2-179
R.2.3. kattrs_destroy() — destroy an attribute list . . . . . . . . . . . . . . . . 2-180
R.2.4. kattrs_add() — add a new attribute to an attribute list . . . . . . . . . . . . . 2-180
R.2.5. kattrs_vadd() — add a new attribute to an attribute list . . . . . . . . . . . . . 2-182
R.2.6. kattrs_delete() — delete an attribute . . . . . . . . . . . . . . . . . . 2-183
R.2.7. kattrs_check() — check to see if an attribute exists . . . . . . . . . . . . . . 2-184
R.2.8. kattrs_query() — query information about an attribute . . . . . . . . . . . . . 2-184
R.2.9. kattrs_set() — set an attribute of an attribute list . . . . . . . . . . . . . . . 2-185
R.2.10. kattrs_vset() — set an attribute of an attribute list . . . . . . . . . . . . . . 2-186
R.2.11. kattrs_get() — get an attribute from an attribute list. . . . . . . . . . . . . . 2-187
R.2.12. kattrs_vget() — get an attribute from an attribute list. . . . . . . . . . . . . 2-188
R.2.13. kattrs_print() — print an attribute . . . . . . . . . . . . . . . . . . 2-189
R.2.14. kattrs_search() — search for a list of attribute names matching some criteria . . . . . . 2-189
R.2.15. kattrs_dup() — duplicate an attribute from one list to another . . . . . . . . . . 2-190
R.2.16. kattrs_first() — return the first entry (atom) within the kattrs . . . . . . . . . . . 2-191
R.2.17. kattrs_last() — return the last entry (atom) within the kattrs . . . . . . . . . . . 2-191
R.2.18. kattrs_next() — return the next entry (atom) within the kattrs . . . . . . . . . . . 2-192
R.2.19. kattrs_prev() — return the previous entry (atom) within the kattrs . . . . . . . . . 2-193
R.2.20. kattrs_curr() — return the current entry (atom) within the kattrs . . . . . . . . . . 2-193
R.2.21. katom_new() — Create a new attribute atom . . . . . . . . . . . . . . . 2-194
R.2.22. katom_vnew() — Create a new attribute atom . . . . . . . . . . . . . . . 2-195
R.2.23. katom_delete() — delete the attribute . . . . . . . . . . . . . . . . . 2-196
R.2.24. katom_get() — Get the data associated with an atom . . . . . . . . . . . . . 2-197
R.2.25. katom_vget() — Get the data associated with an atom . . . . . . . . . . . . 2-197
R.2.26. katom_set() — Set the data of an atom . . . . . . . . . . . . . . . . . 2-198
R.2.27. katom_vset() — Set the data of an atom . . . . . . . . . . . . . . . . . 2-198
R.2.28. katom_match() — match an atom. . . . . . . . . . . . . . . . . . . 2-199
R.2.29. katom_dup() — clone an atom . . . . . . . . . . . . . . . . . . . 2-200
R.2.30. katom_copy() — Copy an atom. . . . . . . . . . . . . . . . . . . . 2-200

- vi -



Basic Services Program Services Volume I - Chapter 2

R.2.31. katom_query() — Query an atom for information . . . . . . . . . . . . . . 2-201
R.2.32. katom_print() — print the value of an attribute . . . . . . . . . . . . . . . 2-202
R.2.33. katom_set_methods() — set method functions for an attribute . . . . . . . . . . 2-202

S. Math Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-203
S.1. Introduction to the Math Utilities . . . . . . . . . . . . . . . . . . . . 2-203
S.2. Definitions of the Math Utilities . . . . . . . . . . . . . . . . . . . . 2-204

S.2.1. kmax() — return the greater of two values. . . . . . . . . . . . . . . . . 2-204
S.2.2. kmin() — return the lessor of two values. . . . . . . . . . . . . . . . . . 2-204
S.2.3. krange() — return a ranged value . . . . . . . . . . . . . . . . . . . 2-205

T. File Format Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . 2-205
T.1. Introduction to the Ascii Format Utilities . . . . . . . . . . . . . . . . . . 2-205

T.1.1. Definitions of the Ascii Format Utilities . . . . . . . . . . . . . . . . . 2-206
T.1.2. ascii_create() — creates a ascii structure and it’s associated data . . . . . . . . . . 2-206
T.1.3. ascii_free() — frees a ascii structure and it’s associated data . . . . . . . . . . . 2-206
T.1.4. ascii_readheader() — reads a ascii header structure from the specified kfile id . . . . . . 2-207
T.1.5. ascii_read() — read a ascii structure from the specified filename . . . . . . . . . . 2-207
T.1.6. ascii_fdread() — read a ascii structure from the specified file descriptor . . . . . . . . 2-208
T.1.7. ascii_writeheader() — writes a ascii header structure from the specified kfile id . . . . . . 2-208
T.1.8. ascii_write() — write a ascii structure to the specified filename . . . . . . . . . . 2-209
T.1.9. ascii_fdwrite() — write a ascii structure to the specified file descriptor . . . . . . . . 2-209

T.2. Introduction to the Pixmap Format Utilities . . . . . . . . . . . . . . . . . 2-210
T.2.1. Definitions of the Pixmap Format Utilities . . . . . . . . . . . . . . . . 2-210
T.2.2. xpm_create() — creates a xpm structure and it’s associated data . . . . . . . . . . 2-210
T.2.3. xpm_free() — frees a xpm structure and it’s associated data . . . . . . . . . . . 2-210
T.2.4. xpm_readheader() — reads a xpm header structure from the specified kfile id . . . . . . 2-211
T.2.5. xpm_read() — read a xpm structure from the specified filename . . . . . . . . . . 2-211
T.2.6. xpm_fdread() — read a xpm structure from the specified file descriptor . . . . . . . . 2-212
T.2.7. xpm_parse() — parses a xpm string array and returns an xpm structure . . . . . . . . 2-212
T.2.8. xpm_writeheader() — writes a xpm header structure from the specified kfile id . . . . . . 2-213
T.2.9. xpm_write() — write a xpm structure to the specified filename . . . . . . . . . . . 2-213
T.2.10. xpm_fdwrite() — write a xpm structure to the specified file descriptor . . . . . . . . 2-214

U. Ini Parsing Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . 2-214
U.1. Introduction to the Ini Parsing Utilities . . . . . . . . . . . . . . . . . . 2-214
U.2. Definitions of the Ini Parsing Utilities . . . . . . . . . . . . . . . . . . 2-215

U.2.1. kini_parse() — parse dot ini configuration file . . . . . . . . . . . . . . . 2-215
U.2.2. kini_write() — write an ini configuration file . . . . . . . . . . . . . . . . 2-215
U.2.3. kini_get_val() — get value for an IniConf parameter . . . . . . . . . . . . . 2-216
U.2.4. kini_set_val() — set value for an IniConf parameter . . . . . . . . . . . . . 2-217
U.2.5. kini_free() — free memory associated with an IniConf structure . . . . . . . . . . 2-217

V. Structure Passing Utilities . . . . . . . . . . . . . . . . . . . . . . . . 2-218
V.1. Introduction to the Structure Passing Utilities . . . . . . . . . . . . . . . . 2-218
V.2. Definitions of the Structure Passing Utilities . . . . . . . . . . . . . . . . 2-218

V.2.1. kstruct_define() — define a structure entry . . . . . . . . . . . . . . . . 2-218
V.2.2. kstruct_undefine() — undefine a structure entry . . . . . . . . . . . . . . . 2-219
V.2.3. kstruct_check() — check to see if a datatype is defined . . . . . . . . . . . . . 2-220
V.2.4. kstruct_free() — frees a structure and any associated memory . . . . . . . . . . . 2-220
V.2.5. kstruct_compare() — compares two structures . . . . . . . . . . . . . . . 2-221
V.2.6. kstruct_duplicate() — duplicates a structure . . . . . . . . . . . . . . . . 2-221
V.2.7. kstruct_flatten() — flattens a structure . . . . . . . . . . . . . . . . . 2-222
V.2.8. kstruct_unflatten() — unflattens data into a structure . . . . . . . . . . . . . 2-223

- vii -



Basic Services Program Services Volume I - Chapter 2

V.2.9. kstruct_setinfo() — override the info in a structure entry . . . . . . . . . . . . 2-224
V.2.10. kstruct_getinfo() — retrieve the info in a structure entry . . . . . . . . . . . . 2-225

- viii -



Program Services Volume I

Chapter 3

Mathematical Services

Copyright (c) AccuSoft Corporation, 2004. All rights reserved.





Chapter 3 - Mathematical Services

A. Introduction

Mathematical Services is a collection of mathematical functions and utilities. It provides a portability layer on
top of the standard C math library, libm.a, and a collection of routines that are not ordinarily part of the C math
library, but are commonly-used in scientific data processing.

Eventually, Mathematical Services will encompass all of the functionality of the standard math library. In
addition, it will contain many functions not provided by libm.

You are encouraged to make use of functions provided in Mathematical Services rather than using the standard
libm counterparts, as the Mathematical Services variations are designed to be highly portable and efficient.
Where possible, the VisiQuest versions of standard math functions actually use the libm versions for
efficiency. Howev er, when a math function is omitted from libm or when a math function is included in libm
(but defective), an equivelent version implemented in Mathematical Services is used instead.

Mathematical Services augments the standard math utilities by offering functions for manipulating single- and
double-precision complex data, generating random numbers and sequences with a variety of distributions,
doing operations on matrices, generating periodic sequences, performing interpolation, converting data types
and performing scaling and normalization. In addition, Mathematical Services provides C implementations of
some FORTRAN 77 math functions that are not typically included in libm.

All Mathematical Services routines are located in the klibm library of the bootstrap toolbox. The #include files
that are necessary to use this library are automatically included as part of bootstrap.h into every software
object.

B. Complex Arithmetic

The following section details the math routines for complex arithmetic that are provided by VisiQuest.
The complex data definitions (or typedefs), kcomplex and kdcomplex, are located in $BOOT-
STRAP/include/machine/cdefs.h. Their prototypes are shown below.

typedef struct {
float r,
float i;
} kcomplex;

typedef struct {
double r,
double i;
} kdcomplex;

3-1



Mathematical Services Program Services Volume I - Chapter 3

B.1. Introduction to Complex Arithmetic Utilities

The klibm library provides complex versions of the standard math library functions as well as basic complex
arithmetic operations. These functions are intended to be used exclusively when operating on complex data.

The following complex library functions are available:

• kcadd() - add two complex numbers.
• kcang() - compute the radian angle of a complex number.
• kccomp() - construct a complex number from two real numbers.
• kcconj() - compute the conjugate of a complex number.
• kcdiv() - divide one complex number by another.
• kcexp() - complex exponential function
• kcimag() - return the imaginary component of a complex number.
• kclog() - complex natural logarithm
• kclogmag() - compute the log magnitude of a complex number.
• kclogmagp1() - compute the log magnitude of a complex number plus one.
• kclogmagsq() - compute the log magnitude squared of a complex number.
• kclogmagsqp1() - compute the log magnitude squared of a complex number plus one.
• kcmag() - compute the magnitude of a complex number.
• kcmagsq() - calculate the squared magnitude of a kcomplex number.
• kcmult() - multiply two complex numbers.
• kcomp2dcomp() - convert a kcomplex number to a kdcomplex number.
• kcp2r() - convert complex from polar coordinates to rectangular coordinates
• kcpow() - compute the value of a complex number raised to a complex power
• kcr2p() - convert complex from rectangular coordinates to polar coordinates
• kcreal() - return the real component of a complex number.
• kcsqrt() - calculate the complex square root of a complex argument.
• kcsub() - subtract one kcomplex number from another.

B.2. Definitions of Complex Arithmetic Utilities

B.2.1. kcadd() — add two complex numbers.

Synopsis
kcomplex kcadd(

kcomplex a,
kcomplex b)

Input Arguments
a

first operand of the complex addition
b

second operand of the complex addition

3-2



Mathematical Services Program Services Volume I - Chapter 3

Returns
The result of the complex addition.

Description
kcadd() adds two complex numbers and returns the result. The two inputs are of type kcomplex. The
typedef for kcomplex can be found in $BOOTSTRAP/machine/cdefs.h.

Restrictions
This function returns a structure, not a pointer to a structure. This is allowed in ANSI C. However, if
you are using an older C compiler that is not fully ANSI compliant, you may have problems.

B.2.2. kcang() — compute the radian angle of a complex number.

Synopsis
float kcang(

kcomplex a)

Input Arguments
a

complex number

Returns
The angle in radians of the complex input argument.

Description
kcang() returns the radian angle of the input complex number.

B.2.3. kccomp() — construct a complex number from two real numbers.

Synopsis
kcomplex kccomp(

double a,
double b)

Input Arguments
a

3-3



Mathematical Services Program Services Volume I - Chapter 3

the real component of the complex number
b

the imaginary component of the complex number

Returns
A complex number composed of the two inputs where the first input is the real component and the sec-
ond input is the imaginary component.

Description
kccomp() constructs a complex number from two real numbers. The first argument becomes the real
component and the second argument becomes the imaginary component of the resulting complex num-
ber.

Restrictions
This function returns an aggregate. If your compiler cannot deal with this, you are in trouble.

B.2.4. kcconj() — compute the conjugate of a complex number.

Synopsis
kcomplex kcconj(

kcomplex a)

Input Arguments
a

complex number to be conjugated.

Returns
The complex conjugate of the input argument.

Description
kcconj() conjugates the complex input argument.

Restrictions
This function returns a structure, not a pointer to a structure. This is allowed in ANSI C. However, if
you are using an older C compiler that is not fully ANSI compliant, you may have problems.

3-4



Mathematical Services Program Services Volume I - Chapter 3

B.2.5. kcdiv() — divide one complex number by another.

Synopsis
kcomplex kcdiv(

kcomplex a,
kcomplex b)

Input Arguments
a

first operand of the complex division
b

second operand of the complex division

Returns
The result of the complex division.

Description
kcdiv() divides the second complex number into the first and returns the result. The two inputs are of
type kcomplex. The typedef for kcomplex can be found in $BOOTSTRAP/machine/cdefs.h.

Side Effects
This routine will issue warning messages via kinfo if b has a magnitude of 0. The result will not be
accurate.

Restrictions
This function returns a structure, not a pointer to a structure. This is allowed in ANSI C. However, if
you are using an older C compiler that is not fully ANSI compliant, you may have problems.

B.2.6. kcexp() — complex exponential function

Synopsis
kcomplex kcexp(

kcomplex x)

Input Arguments
x

complex argument

3-5



Mathematical Services Program Services Volume I - Chapter 3

Returns
a complex exponential of the input argument

Description
This function returns the complex exponential of the input argument.

B.2.7. kcimag() — return the imaginary component of a complex number.

Synopsis
float kcimag(

kcomplex a)

Input Arguments
a

complex number

Returns
The value of the imaginary component of the input argument.

Description
kcimag() returns the value of the imaginary component of the complex input argument.

B.2.8. kclog() — complex natural logarithm

Synopsis
kcomplex kclog(

kcomplex x)

Input Arguments
x

complex argument

Returns
a complex logarithm of the input argument.

3-6



Mathematical Services Program Services Volume I - Chapter 3

Description
This function returns the complex natural logarithm of the input argument.

B.2.9. kclogmag() — compute the log magnitude of a complex number.

Synopsis
float kclogmag(

kcomplex a)

Input Arguments
a

complex number

Returns
The magnitude of the complex input argument.

Description
kclogmag() returns the log magnitude of the input complex number.

B.2.10. kclogmagp1() — compute the log magnitude of a complex number plus one.

Synopsis
float kclogmagp1(

kcomplex a)

Input Arguments
a

complex number

Returns
The magnitude of the complex input argument.

Description
kclogmag() returns the log magnitude of the input complex number plus one.

3-7



Mathematical Services Program Services Volume I - Chapter 3

B.2.11. kclogmagsq() — compute the log magnitude squared of a complex number.

Synopsis
float kclogmagsq(

kcomplex a)

Input Arguments
a

complex number

Returns
The magnitude of the complex input argument.

Description
kclogmag() returns the log magnitude of the input complex number.

B.2.12. kclogmagsqp1() — compute the log magnitude squared of a complex number plus one.

Synopsis
float kclogmagsqp1(

kcomplex a)

Input Arguments
a

complex number

Returns
The magnitude of the complex input argument.

Description
kclogmag() returns the log magnitude of the input complex number plus one.

3-8



Mathematical Services Program Services Volume I - Chapter 3

B.2.13. kcmag() — compute the magnitude of a complex number.

Synopsis
float kcmag(

kcomplex a)

Input Arguments
a

complex number

Returns
The magnitude of the complex input argument.

Description
kcmag() returns the magnitude of the input complex number.

B.2.14. kcmagsq() — calculate the squared magnitude of a kcomplex number.

Synopsis
float kcmagsq(

kcomplex a)

Input Arguments
a

complex number

Returns
The magnitude squared of the input argument.

Description
kcmagsq() returns the squarred magnitude of the input argument.

3-9



Mathematical Services Program Services Volume I - Chapter 3

B.2.15. kcmult() — multiply two complex numbers.

Synopsis
kcomplex kcmult(

kcomplex a,
kcomplex b)

Input Arguments
a

first operand of the complex multiply
b

second operand of the complex multiply

Returns
The result of the complex multiplication.

Description
kcsub() multiplies two complex numbers and returns the result. The two inputs are of type kcomplex.
The typedef for kcomplex can be found in $BOOTSTRAP/machine/cdefs.h.

Restrictions
This function returns a structure, not a pointer to a structure. This is allowed in ANSI C. However, if
you are using an older C compiler that is not fully ANSI compliant, you may have problems.

B.2.16. kcomp2dcomp() — convert a kcomplex number to a kdcomplex number.

Synopsis
kdcomplex kcomp2dcomp(

kcomplex a)

Input Arguments
a

kcomplex number

Returns
the kdcomplex conversion of the input argument.

3-10



Mathematical Services Program Services Volume I - Chapter 3

Description
kcomp2dcomp converts a single precision complex number in a typedef’d "kcomplex" structure into a
double precision complex number in a typedef’d "kdcomplex" structure.

B.2.17. kcp2r() — convert complex from polar coordinates to rectangular coordinates

Synopsis
kcomplex kcp2r(

kcomplex p)

Input Arguments
p

polar coordinate (kcomplex)

Returns
The rectangular coordinate complex value

Description
kdcr2p() convert a complex from polar coordinates to rectangular coordinates. Stored as the
(real,imaginary) pair in a kcomplex data type. The polar coordinate input is also encoded in a kcom-
plex datatype, but the interpretation is a (radius,angle) pair.

B.2.18. kcpow() — compute the value of a complex number raised to a complex power

Synopsis
kcomplex kcpow(

kcomplex x,
kcomplex y)

Input Arguments
x

kcomplex number
y

kcomplex power

Returns
The kcomplex value of a complex number raised to a complex power.

3-11



Mathematical Services Program Services Volume I - Chapter 3

Description
kcpow() returns the value of a complex number raised to a complex power

Restrictions
This function returns a structure, not a pointer to a structure. This is allowed in ANSI C. However, if
you are using * an older C compiler that is not fully ANSI compliant, you may have * problems.

B.2.19. kcr2p() — convert complex from rectangular coordinates to polar coordinates

Synopsis
kcomplex kcr2p(

kcomplex r)

Input Arguments
r

rectangular coordinate (kcomplex)

Returns
The polar coordinate complex value

Description
kdcr2p() convert a complex from rectangular coordinates to polar coordinates. The radius is stored as
the real, and the angle as the imaginary.

B.2.20. kcreal() — return the real component of a complex number.

Synopsis
float kcreal(

kcomplex a)

Input Arguments
a

complex number

Returns
The real component of the complex input argument.

3-12



Mathematical Services Program Services Volume I - Chapter 3

Description
kcreal() returns the real component of the complex input argument.

B.2.21. kcsqrt() — calculate the complex square root of a complex argument.

Synopsis
kcomplex kcsqrt(

kcomplex a)

Input Arguments
a

complex aargument

Returns
The complex square root of the input argument.

Description
kcsqrt() returns the complex square root of the complex argument passed as input.

Restrictions
This function returns a structure, not a pointer to a structure. This is allowed in ANSI C. However, if
you are using an older C compiler that is not fully ANSI compliant, you may have problems.

B.2.22. kcsub() — subtract one kcomplex number from another.

Synopsis
kcomplex kcsub(

kcomplex a,
kcomplex b)

Input Arguments
a

first operand of the complex subtraction
b

second operand of the complex subtraction

3-13



Mathematical Services Program Services Volume I - Chapter 3

Returns
The result of the complex subtraction.

Description
kcsub() subtracts the second complex number from the first and returns the result. The two inputs are
of type kcomplex. The typedef for kcomplex can be found in $BOOTSTRAP/machine/cdefs.h.

Restrictions
This function returns a structure, not a pointer to a structure. This is allowed in ANSI C. However, if
you are using an older C compiler that is not fully ANSI compliant, you may have problems.

C. Double Complex Arithmetic

The following section details the math routines for double complex arithmetic. The double complex defini-
tion, kdcomplex can be found in $BOOTSTRAP/include/machine/cdefs.h.

C.1. Introduction to Double Complex Arithmetic Utilities

The klibm library provides double complex versions of the standard math library functions as well as basic
double complex arithmetic operations. These functions are to be used exclusively when operating on double
complex data. Typedef kdcomplex (double real, imaginary) is defined for double complex data.

The following routines are available:

• kdcadd() - add two double precision complex numbers.
• kdcang() - compute the radian angle of a double precision complex number.
• kdccomp() - construct a double precision complex number from two real numbers.
• kdcconj() - compute the conjugate of a double precision complex number.
• kdccos() - double complex cosine
• kdccosh() - double complex hyperbolic cosine
• kdcdiv() - divide one double precision complex number by another.
• kdcexp() - double complex exponential function
• kdcimag() - return the imaginary component of a double precision complex number.
• kdclog() - double complex natural logarithm
• kdclogmag() - compute the log magnitude of a double precision complex number.
• kdclogmagp1() - compute the log magnitude of a double precision complex number plus one.
• kdclogmagsq() - compute the log magnitude squared of a double precision complex number.
• kdclogmagsqp1() - compute the log magnitude squared of a double precision complex number plus one.
• kdcmag() - compute the magnitude of a double precision complex number.
• kdcmagsq() - calculate the squared magnitude of a double precision complex number.
• kdcmult() - multiply two double precision complex numbers.
• kdcomp2comp() - convert a kdcomplex number to a kcomplex number.
• kdcp2r() - convert double complex from polar coordinates to rectangular coordinates
• kdcpow() - compute the double complex value of a double complex number raised to a double complex
power.

3-14



Mathematical Services Program Services Volume I - Chapter 3

• kdcr2p() - convert double complex from rectangular coordinates to polar coordinates
• kdcreal() - return the real component of a double precision complex number.
• kdcsin() - double complex sine
• kdcsinh() - double complex hyperbolic sine
• kdcsqrt() - calculate the double precision complex square root of a double precision complex number.
• kdcsub() - subtract one double precision complex number from another.
• kdctan() - double complex tangent
• kdctanh() - double complex hyperbolic tangent
• kdcomplex_to_arrays() - separate array of double complex into real and imaginary arrays

C.2. Definitions of Double Complex Arithmetic Utilities

C.2.1. kdcadd() — add two double precision complex numbers.

Synopsis
kdcomplex kdcadd(

kdcomplex a,
kdcomplex b)

Input Arguments
a

first operand of the dcomplex addition
b

second operand of the dcomplex addition

Returns
The result of the kdcomplex addition.

Description
kdcadd() adds two double precision complex numbers and returns the result. The two inputs are of
type kdcomplex. The typedef for kdcomplex can be found in $BOOTSTRAP/machine/cdefs.h.

Restrictions
This function returns a structure, not a pointer to a structure. This is allowed in ANSI C. However, if
you are using an older C compiler that is not fully ANSI compliant, you may have problems.

3-15



Mathematical Services Program Services Volume I - Chapter 3

C.2.2. kdcang() — compute the radian angle of a double precision complex number.

Synopsis
double kdcang(

kdcomplex a)

Input Arguments
a

double precision complex number

Returns
The angle in radians of the complex input argument. The angle will lie in the range of -Pi to +Pi.

Description
kdcang() returns the radian angle of the input double precision complex number.

C.2.3. kdccomp() — construct a double precision complex number from two real numbers.

Synopsis
kdcomplex kdccomp(

double a,
double b)

Input Arguments
a

the real component of the kdcomplex number
b

the imaginary component of the kdcomplex number

Returns
A kdcomplex number composed of the two inputs where the first input is the real component and the
second input is the imaginary component.

Description
kdccomp() constructs a double precision complex number from two real numbers. The first argument
becomes the real component and the second argument becomes the imaginary component of the result-
ing double precision complex number.

3-16



Mathematical Services Program Services Volume I - Chapter 3

Restrictions
This function returns an aggregate. If your compiler cannot deal with this, you are in trouble.

C.2.4. kdcconj() — compute the conjugate of a double precision complex number.

Synopsis
kdcomplex kdcconj(

kdcomplex a)

Input Arguments
a

kdcomplex number to be conjugated.

Returns
The kdcomplex conjugate of the input argument.

Description
kdcconj() conjugates the double precision complex input argument.

Restrictions
This function returns a structure, not a pointer to a structure. This is allowed in ANSI C. However, if
you are using an older C compiler that is not fully ANSI compliant, you may have problems.

C.2.5. kdccos() — double complex cosine

Synopsis
kdcomplex kdccos(

kdcomplex a)

Input Arguments
a

double complex argument

Returns
the double precision complex cosine of the argument.

3-17



Mathematical Services Program Services Volume I - Chapter 3

Description
kdccos computes the double precision complex cosine of the input argument

C.2.6. kdccosh() — double complex hyperbolic cosine

Synopsis
kdcomplex kdccosh(

kdcomplex a)

Input Arguments
a

double complex argument

Returns
the double precision complex hyperbolic cosine of the argument.

Description
kdccosh computes the double precision complex hyperbolic cosine of the input argument

C.2.7. kdcdiv() — divide one double precision complex number by another.

Synopsis
kdcomplex kdcdiv(

kdcomplex a,
kdcomplex b)

Input Arguments
a

first operand of the kdcomplex division
b

second operand of the kdcomplex division

Returns
The result of the kdcomplex division.

3-18



Mathematical Services Program Services Volume I - Chapter 3

Description
kdcdiv() divides the second double precision complex number into the first and returns the result. The
two inputs are of type kdcomplex. The typedef for kdcomplex can be found in $BOOT-
STRAP/machine/cdefs.h.

Side Effects
This routine will issue warning messages via kinfo if b has a magnitude of 0. The result will not be
accurate.

Restrictions
This function returns a structure, not a pointer to a structure. This is allowed in ANSI C. However, if
you are using an older C compiler that is not fully ANSI compliant, you may have problems.

C.2.8. kdcexp() — double complex exponential function

Synopsis
kdcomplex kdcexp(

kdcomplex x)

Input Arguments
x

double complex argument

Returns
a double complex exponential of the input argument

Description
This function returns the double complex exponential of the input argument.

3-19



Mathematical Services Program Services Volume I - Chapter 3

C.2.9. kdcimag() — return the imaginary component of a double precision complex number.

Synopsis
double kdcimag(

kdcomplex a)

Input Arguments
a

kdcomplex number

Returns
The value of the imaginary component of the input argument.

Description
kdcimag() returns the value of the imaginary component of the double precision complex input argu-
ment.

C.2.10. kdclog() — double complex natural logarithm

Synopsis
kdcomplex kdclog(

kdcomplex x)

Input Arguments
x

double complex argument

Returns
a double complex natural logarithm of the input argument.

Description
This function returns the double complex natural logarithm of the input argument.

3-20



Mathematical Services Program Services Volume I - Chapter 3

C.2.11. kdclogmag() — compute the log magnitude of a double precision complex number.

Synopsis
double kdclogmag(

kdcomplex a)

Input Arguments
a

kdcomplex number

Returns
The magnitude of the kdcomplex input argument.

Description
kdclogmag() returns the log magnitude of the input double precision complex number.

C.2.12. kdclogmagp1() — compute the log magnitude of a double precision complex number
plus one.

Synopsis
double kdclogmagp1(

kdcomplex a)

Input Arguments
a

kdcomplex number

Returns
The magnitude of the kdcomplex input argument.

Description
kdclogmag() returns the log magnitude of the input double precision complex number.

3-21



Mathematical Services Program Services Volume I - Chapter 3

C.2.13. kdclogmagsq() — compute the log magnitude squared of a double precision complex
number.

Synopsis
double kdclogmagsq(

kdcomplex a)

Input Arguments
a

kdcomplex number

Returns
The magnitude of the kdcomplex input argument.

Description
kdclogmag() returns the log magnitude of the input double precision complex number.

C.2.14. kdclogmagsqp1() — compute the log magnitude squared of a double precision complex
number plus one.

Synopsis
double kdclogmagsqp1(

kdcomplex a)

Input Arguments
a

kdcomplex number

Returns
The magnitude of the kdcomplex input argument.

Description
kdclogmag() returns the log magnitude of the input double precision complex number.

3-22



Mathematical Services Program Services Volume I - Chapter 3

C.2.15. kdcmag() — compute the magnitude of a double precision complex number.

Synopsis
double kdcmag(

kdcomplex a)

Input Arguments
a

kdcomplex number

Returns
The magnitude of the kdcomplex input argument.

Description
kdcmag() returns the magnitude of the input double precision complex number.

C.2.16. kdcmagsq() — calculate the squared magnitude of a double precision complex number.

Synopsis
double kdcmagsq(

kdcomplex a)

Input Arguments
a

kdcomplex number

Returns
The magnitude squared of the input argument.

Description
kdcmagsq() returns the squarred magnitude of the input argument.

3-23



Mathematical Services Program Services Volume I - Chapter 3

C.2.17. kdcmult() — multiply two double precision complex numbers.

Synopsis
kdcomplex kdcmult(

kdcomplex a,
kdcomplex b)

Input Arguments
a

first operand of the kdcomplex multiply
b

second operand of the dcomplex multiply

Returns
The result of the kdcomplex multiplication.

Description
kdcsub() multiplies two double precision complex numbers and returns the result. The two inputs are
of type kdcomplex. The typedef for kdcomplex can be found in $BOOTSTRAP/machine/cdefs.h.

Restrictions
This function returns a structure, not a pointer to a structure. This is allowed in ANSI C. However, if
you are using an older C compiler that is not fully ANSI compliant, you may have problems.

C.2.18. kdcomp2comp() — convert a kdcomplex number to a kcomplex number.

Synopsis
kcomplex kdcomp2comp(

kdcomplex a)

Input Arguments
a

kdcomplex number

Returns
the complex conversion of the input argument.

3-24



Mathematical Services Program Services Volume I - Chapter 3

Description
kdcomp2comp converts a double precision complex number in a typedef’d "kdcomplex" structure into
a single precision complex number in a typedef’d "kcomplex" structure.

C.2.19. kdcp2r() — convert double complex from polar coordinates to rectangular coordinates

Synopsis
kdcomplex kdcp2r(

kdcomplex p)

Input Arguments
p

kdcomplex number

Returns
The rectangular coordinate double complex value

Description
kdcr2p() convert a double complex from polar coordinates to rectangular coordinates. Stored as the
(real,imaginary) pair. Where the polar coordinate input is the (radius,angle) pair. This pair is stored in
the same structure used for dcomplex data, except that what was formerly the real part is now the mag-
nitude, and what was the imaginary component will now be the phase in radians.

C.2.20. kdcpow() — compute the double complex value of a double complex number raised to a
double complex power.

Synopsis
kdcomplex kdcpow(

kdcomplex x,
kdcomplex y)

Input Arguments
x

kdcomplex number
y

kdcomplex power

3-25



Mathematical Services Program Services Volume I - Chapter 3

Returns
The kdcomplex value of a double complex number raised to a double complex power.

Description
kdcpow() returns the double complex value of a double complex number raised to a double complex
power.

Restrictions
This function returns a structure, not a pointer to a structure. This is allowed in ANSI C. However, if
you are using an older C compiler that is not fully ANSI compliant, you may have problems.

C.2.21. kdcr2p() — convert double complex from rectangular coordinates to polar coordinates

Synopsis
kdcomplex kdcr2p(

kdcomplex r)

Input Arguments
r

kdcomplex number

Returns
The polar coordinate double complex value

Description
kdcr2p() convert a double complex from rectangular coordinates to polar coordinates. The radius is
stored as the real, and the angle as the imaginary.

C.2.22. kdcreal() — return the real component of a double precision complex number.

Synopsis
double kdcreal(

kdcomplex a)

Input Arguments
a

3-26



Mathematical Services Program Services Volume I - Chapter 3

kdcomplex number

Returns
The real component of the kdcomplex input argument.

Description
kdcreal() returns the real component of the double precision complex input argument.

C.2.23. kdcsin() — double complex sine

Synopsis
kdcomplex kdcsin(

kdcomplex a)

Input Arguments
a

double complex argument

Returns
the double precision complex sine of the argument.

Description
kdcsin computes the double precision complex sine of the input argument

C.2.24. kdcsinh() — double complex hyperbolic sine

Synopsis
kdcomplex kdcsinh(

kdcomplex a)

Input Arguments
a

double complex argument

3-27



Mathematical Services Program Services Volume I - Chapter 3

Returns
the double precision complex hyperbolic sine of the argument.

Description
kdcsinh computes the double precision complex hyperbolic sine of the input argument

C.2.25. kdcsqrt() — calculate the double precision complex square root of a double precision
complex number.

Synopsis
kdcomplex kdcsqrt(

kdcomplex a)

Input Arguments
a

kdcomplex argument

Returns
The kdcomplex square root of the input argument.

Description
kdcsqrt() returns the double precision complex square root of the kdcomplex argument passed as input.

Restrictions
This function returns a structure, not a pointer to a structure. This is allowed in ANSI C. However, if
you are using an older C compiler that is not fully ANSI compliant, you may have problems.

C.2.26. kdcsub() — subtract one double precision complex number from another.

Synopsis
kdcomplex kdcsub(

kdcomplex a,
kdcomplex b)

Input Arguments
a

3-28



Mathematical Services Program Services Volume I - Chapter 3

first operand of the kdcomplex subtraction
b

second operand of the kdcomplex subtraction

Returns
The result of the kdcomplex subtraction.

Description
kdcsub() subtracts the second double precision complex number from the first and returns the result.
The two inputs are of type kdcomplex. The typedef for kdcomplex can be found in $BOOT-
STRAP/machine/cdefs.h.

Restrictions
This function returns a structure, not a pointer to a structure. This is allowed in ANSI C. However, if
you are using an older C compiler that is not fully ANSI compliant, you may have problems.

C.2.27. kdctan() — double complex tangent

Synopsis
kdcomplex kdctan(

kdcomplex a)

Input Arguments
a

double complex argument

Returns
the double precision complex tangent of the argument.

Description
kdctan computes the double precision complex tangent of the input argument

3-29



Mathematical Services Program Services Volume I - Chapter 3

C.2.28. kdctanh() — double complex hyperbolic tangent

Synopsis
kdcomplex kdctanh(

kdcomplex a)

Input Arguments
a

double complex argument

Returns
the double precision complex hyperbolic tangent of the argument.

Description
kdctanh computes the double precision complex hyperbolic tangent of the input argument

C.2.29. kdcomplex_to_arrays() — separate array of double complex into real and imaginary
arrays

Synopsis
int kdcomplex_to_arrays(

kdcomplex *c,
int num,
double **r,
double **i)

Input Arguments
c

a dcomplex array to be split into real & imag parts

Output Arguments
r

an array of real numbers (double *) derived from the real component of the input array of double com-
plex pairs

i
an array of real numbers (double *) derived from the imaginary component of the input array of dou-
ble complex pairs.

3-30



Mathematical Services Program Services Volume I - Chapter 3

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
kdcomplex_to_arrays returns the real and imaginary portion of a kdcomplex array in two double
arrays.

D. Matrix Arithmetic

The following section details the matrix routines for floating-point and double-precision arithmetic.

D.1. Introduction to Matrix Arithmetic Routines

A small collection of matrix operators has been implemented for the purpose of providing basic matrix com-
putation capabilities that are very efficient. A few simple matrix functions converted from the LINPACK (a
library of advanced linear algebra functions originally written in FORTRAN at Oak Ridge National Labs) and
BLAS (a library of basic linear algebra functions originally written in FORTRAN at Oak Ridge National Labs)
are also available.

The following floating-point matrix functions are available:

• kfmatrix_clear() - zeros a matrix
• kfmatrix_identity() - set matrix to identity
• kfmatrix_inner_prod() - compute the inner product of two vectors.
• kfmatrix_inverse() - inv erts a matrix.
• kfmatrix_multiply() - multiply two matrices
• kfmatrix_princ_axis() - obtain the principle axis of a covariance matrix.
• kfmatrix_vector_prod() - compute the matrix-vector product.

The following double-precision matrix functions are available:

• kdmatrix_clear() - zeros a matrix
• kdmatrix_identity() - set matrix to identity
• kdmatrix_inner_prod() - compute the inner product of two vectors.
• kdmatrix_inverse() - inv erts a matrix.
• kdmatrix_multiply() - multiply two matrices
• kdmatrix_princ_axis() - obtain the principle axis of a covariance matrix.
• kdmatrix_vector_prod() - compute the matrix-vector product.

The following routines are from LINPACK and BLAS. Floating-point functions are indicated by ‘s’ and dou-
ble precision functions are indicated by ‘d.’

• klin_sgefa() - factors a float matrix by gaussian elimination.
• klin_sgedi() - computes the determinate and inverse of a matrix
• kblas_sscal() - scale a float vector

3-31



Mathematical Services Program Services Volume I - Chapter 3

• kblas_saxpy() - add two float vectors while scaling one
• kblas_sswap() - swap two float vectors
• klin_dgefa() - factors a double matrix by gaussian elimination.
• klin_dgedi() - computes the determinate and inverse of a matrix
• kblas_dscal() - scale a double vector
• kblas_daxpy() - add two double vectors while scaling one
• kblas_dswap() - swap two double vectors

D.2. Definitions of Matrix Arithmetic Routines

D.2.1. kfmatrix_clear() — zeros a matrix

Synopsis
int kfmatrix_clear(

int rows,
int cols,
float *matrix)

Input Arguments
rows

number of rows in the matrix.
cols

number of columns in the matrix.

Output Arguments
matrix

the cleared matrix.

Returns
TRUE (1) on success, otherwise, it returns FALSE (0) and sets kerrno to KINVALID_PARAMETER if
the input matrix dimensions are not positive.

Description
kfmatrix_clear() clears a matrix by setting all of its values to 0.0.

3-32



Mathematical Services Program Services Volume I - Chapter 3

D.2.2. kfmatrix_identity() — set matrix to identity

Synopsis
int kfmatrix_identity(

int rows,
int cols,
float *matrix)

Input Arguments
rows

the number of rows in the matrix.
cols

the number of columns in the matrix.

Output Arguments
matrix

output matrix stored in 1D array of floats.

Returns
TRUE (1) on success, otherwise it returns FALSE (0) and sets kerrno to KINTERNAL if the internal
call to kfmatrix_clear fails.

Description
kfmatrix_identity() sets an input matrix to the identity matrix.

D.2.3. kfmatrix_inner_prod() — compute the inner product of two vectors.

Synopsis
float kfmatrix_inner_prod(

float *x,
float *y,
int n)

Input Arguments
x

first vector.
y

second vector.
n

3-33



Mathematical Services Program Services Volume I - Chapter 3

number of components in each vector.

Returns
The float precision inner product of the two vectors.

Description
kfmatrix_inner_prod() computes the inner product of two vectors.

D.2.4. kfmatrix_inverse() — inverts a matrix.

Synopsis
int kfmatrix_inverse(

float *matrix,
int order,
float *outmatrix)

Input Arguments
matrix

input matrix stored in 1D array of floats
order

order of the matrix.

Output Arguments
outmatrix

the inverted matrix stored in 1D array

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This function returns the inverse of the input matrix.

3-34



Mathematical Services Program Services Volume I - Chapter 3

D.2.5. kfmatrix_multiply() — multiply two matrices

Synopsis
int kfmatrix_multiply(

float *matrix1,
int rows1,
int cols1,
float *matrix2,
int rows2,
int cols2,
float *outmat)

Input Arguments
matrix1

input matrix stored in 1D array of floats

rows1
number of rows in the first matrix.

cols1
number of columns in the first matrix.

matrix2
input matrix stored in 1D array of floats

rows2
number of rows in the second matrix.

cols2
number of columns in the second matrix.

Output Arguments
outmat

the output matrix. Its dimension will be rows1 * cols2.

Returns
TRUE (1) on success, otherwise it will return FALSE (0) and kerrno will be set to KLIMITATION if
the input matrix dimensions are not 3x3 or 4x4.

Description
kfmatrix_multiply() multiplies two arbitrary matrices. The input matrices are expected to be organized
in a 1 dimensional array as consecutive rows. The result is stored in the same format and has the
dimensions rows1 * cols2. The result is returned in outmat.

Restrictions
This function really only works on when the two matrices are either 3x3 or 4x4.

3-35



Mathematical Services Program Services Volume I - Chapter 3

D.2.6. kfmatrix_princ_axis() — obtain the principle axis of a covariance matrix.

Synopsis
int kfmatrix_princ_axis(

float *a,
int n,
float *y)

Input Arguments
a

input matrix stored in 1D array of floats

n
size of matrix (assumed square, n x n).

Output Arguments
y

the output vector (axis)

Returns
TRUE (1) on success, otherwise it returns FALSE (0) and an error is output indicating insufficient
memory.

Description
kfmatrix_princ_axis() obtains the principal axis (the eigenvector associated with the largest eigenvalue)
for the covariance matrix "a" of size n by n. Put the principal eigenvector in the place pointed to by
"y".

The power iteration method to obtain the dominant eigenvalue and its associated eigenvector as
described in Gollub and VanLoan, MATRIX COMPUTATIONS, pp 209.

Restrictions
Since a is a covariance matrix it is symmetric, real, and very likely to be positive definate. It is positive
semidefinate for sure, and may also be diagonal dominant.

Other possible difficulties: The major hitch in this technique is that the convergence is proportional to
lambda(2)/lambda(1) where lambda(1) is the dominant eigenvector. If these eigenvalues are closely
spaced then we won’t get a decent eigenvector (it will have an incorrect direction).

Fortunately, when using the principal axis to split a cluster and there are two very strongly dominant
axes with the same ellipticity, then we can split on any combination of those axis and reduce the cluster
variances greatly.

3-36



Mathematical Services Program Services Volume I - Chapter 3

The 10 iterations used in the code have been found to be satisfactory for all of the data so far encoun-
tered unless it is an ugly special case.

D.2.7. kfmatrix_vector_prod() — compute the matrix-vector product.

Synopsis
int kfmatrix_vector_prod(

float *a,
float *x,
int rows,
int cols,
float *y)

Input Arguments
a

input matrix stored in 1D array of floats
x

input vector
rows

number of rows in matrix a as well as the number of elements in output vector y.
cols

number of columns in matrix a as well as the number of elements in input vector x.

Output Arguments
y

The output vector containing the matrix-vector product.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
kfmatrix_vector_prod() computes a matrix-vector product.

3-37



Mathematical Services Program Services Volume I - Chapter 3

D.2.8. kdmatrix_clear() — zeros a matrix

Synopsis
int kdmatrix_clear(

int rows,
int cols,
double *matrix)

Input Arguments
rows

number of rows in the matrix.
cols

number oc columns in the matrix.

Output Arguments
matrix

the cleared matrix.

Returns
TRUE (1) on success, otherwise it returns FALSE (0) and kerrno is set to KINVALID_PARAMETER
if the dimensions of the input matrix are not positive and non-zero.

Description
kdmatrix_clear() clears a matrix by setting all of its values to 0.0.

D.2.9. kdmatrix_identity() — set matrix to identity

Synopsis
int kdmatrix_identity(

int rows,
int cols,
double *matrix)

Input Arguments
rows

the number of rows in the matrix.
cols

the number of columns in the matrix.

3-38



Mathematical Services Program Services Volume I - Chapter 3

Output Arguments
matrix

output matrix stored in 1D array of doubles

Returns
TRUE (1) on success, otherwise this function returns FALSE (0) and kerrno is set to KINTERNAL if
the internal call to kdmatrix_clear failed.

Description
kdmatrix_identity() sets an input matrix to the identity matrix.

D.2.10. kdmatrix_inner_prod() — compute the inner product of two vectors.

Synopsis
double kdmatrix_inner_prod(

double *x,
double *y,
int n)

Input Arguments
x

first vector.
y

second vector.
n

number of components in each vector.

Returns
The double precision inner product of the two vectors.

Description
kdmatrix_inner_prod() computes the inner product of two vectors.

3-39



Mathematical Services Program Services Volume I - Chapter 3

D.2.11. kdmatrix_inverse() — inverts a matrix.

Synopsis
int kdmatrix_inverse(

double *matrix,
int order,
double *outmatrix)

Input Arguments
matrix

input matrix stored in 1D array of doubles
order

order of the matrix.

Output Arguments
outmatrix

the inverted matrix stored in 1D array of doubles.

Returns
TRUE (1) on success, otherwise it returns FALSE (0) and kerrno is set to KNUMERIC if the input
matrix is singular and cannot be inverted.

Description
kdmatrix_inverse() - returns the inverse of the input matrix.

D.2.12. kdmatrix_multiply() — multiply two matrices

Synopsis
int kdmatrix_multiply(

double *matrix1,
int rows1,
int cols1,
double *matrix2,
int rows2,
int cols2,
double *outmat)

Input Arguments
matrix1

3-40



Mathematical Services Program Services Volume I - Chapter 3

input matrix stored in 1D array of doubles
rows1

number of rows in the first matrix.
cols1

number of columns in the first matrix.
matrix2

input matrix stored in 1D array of doubles
rows2

number of rows in the second matrix.
cols2

number of columns in the second matrix.

Output Arguments
outmat

the output matrix. Its dimension will be rows1 * cols2.

Returns
TRUE (1) on success, otherwise it returns FALSE (0) and kerrno is set to KLIMITATION if the matri-
ces are not 3x3 or 4x4.

Description
kdmatrix_multiply() multiplies two arbitrary matrices. The input matrices are expected to be
organized in a 1 dimensional array as consecutive rows. The result is stored in the same format and
has the dimensions rows1 * cols2. The result is returned in outmat.

Restrictions
This function really only works on when the two matrices are either 3x3 or 4x4.

D.2.13. kdmatrix_princ_axis() — obtain the principle axis of a covariance matrix.

Synopsis
int kdmatrix_princ_axis(

double *a,
int n,
double *y)

Input Arguments
a

input matrix stored in 1D array of doubles
n

size of matrix (assumed square. n x n).

3-41



Mathematical Services Program Services Volume I - Chapter 3

Output Arguments
y

the output vector (axis)

Returns
TRUE (1) on success, otherwise it returns FALSE (0) if this function is unable to allocate sufficient
memory for the operation.

Description
kdmatrix_princ_axis() obtains the principal axis (the eigenvector associated with the largest eigen-
value) for the covariance matrix "a" of size n by n. Put the principal eigenvector in the place pointed to
by "y".

The power iteration method to obtain the dominant eigenvalue and its associated eigenvector as
described in Gollub and VanLoan, MATRIX COMPUTATIONS, pp 209.

Restrictions
Since a is a covariance matrix it is symmetric, real, and very likely to be positive definate. It is positive
semidefinate for sure, and may also be diagonal dominant.

Other possible difficulties: The major hitch in this technique is that the convergence is proportional to
lambda(2)/lambda(1) where lambda(1) is the dominant eigenvector. If these eigenvalues are closely
spaced then we won’t get a decent eigenvector (it will have an incorrect direction).

Fortunately, when using the principal axis to split a cluster and there are two very strongly dominant
axes with the same ellipticity, then we can split on any combination of those axis and reduce the cluster
variances greatly.

The 10 iterations used in the code have been found to be satisfactory for all of the data so far encoun-
tered unless it is an ugly special case.

3-42



Mathematical Services Program Services Volume I - Chapter 3

D.2.14. kdmatrix_vector_prod() — compute the matrix-vector product.

Synopsis
int kdmatrix_vector_prod(

double *a,
double *x,
int rows,
int cols,
double *y)

Input Arguments
a

an input matrix stored in 1D array of doubles
x

input vector of elements
rows

number of rows in matrix a as well as the number of elements in output vector y.
cols

number of columns in matrix a as well as the number of elements in input vector x.

Output Arguments
y

the output vector of containing the matrix-vector product

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
kdmatrix_vector_prod() computes a matrix-vector product.

3-43



Mathematical Services Program Services Volume I - Chapter 3

D.2.15. klin_sgefa() — factors a float matrix by gaussian elimination.

Synopsis
int klin_sgefa(

float *matrix,
int rows,
int cols,
int *pivot)

Input Arguments
matrix

input matrix stored in a 1D array floats in row-major order such that

m[i][j] = a[i * cols+j]

rows
the number of rows in matrix.

cols
the number of cols in matrix.

Output Arguments
pivot

the pivot vector

Returns
0 implies a normal value; a non-zero value of k means that U(k,k) == 0. This is not an error condition
for this routine, but it does indicate that klin_sgesl or klin_sgedi will divide by zero if called. Use the
argument rcond in klin_segco for a reliable indication of singularity.

Description
This routine is usually called by klin_sgeco, but it can be called directly with a saving in time if the
rcond is not needed.

3-44



Mathematical Services Program Services Volume I - Chapter 3

D.2.16. klin_sgedi() — computes the determinate and inverse of a matrix

Synopsis
int klin_sgedi(

float *matrix,
int rows,
int cols,
int *pivot,
int job,
float *work,
float *det)

Input Arguments
matrix

input matrix stored in a 1D array of doubles in row-major order such that

m[i][j] = a[i * cols+j]

rows
the number of rows in matrix.

cols
the number of columns in matrix.

pivot
the pivot vector from klin_sgefa

job
defines what to compute: the inverse, the determinate, or both of the matrix. KLIN_INVERSE to
compute inverse KLIN_DETERMINATE to compute determinate KLIN_INVERSE | KLIN_DETER-
MINATE to compute both

Output Arguments
matrix

inverse of the original matrix if requested, othewise unchanged.
det

determinant of original matrix if requested, otherwise not referenced. determinant =
det(1)*10.0**det(2) with 1.0 < kabs(det(1)) < 10.0 or det(1) == 0.0

Returns
TRUE (1) all the time

Description
This routine will compute the determinant and inverse of an NxN matrix using the factors computed by

3-45



Mathematical Services Program Services Volume I - Chapter 3

klin_sgeco or klin_sgefa.

The determinant functionality is not well tested.

Restrictions
A division by zero will occur if the input factor contains a zero on the diagonal and the inverse is
requested. It will not occur if the subroutines are called correctly and if klin_sgeco has set rcond > 0.0
or klin_sgefa has set info < 0.

D.2.17. kblas_sscal() — scale a float vector

Synopsis
void kblas_sscal(

float *sx,
float sa,
int n,
int incx)

Input Arguments
sx

linear array to scale
sa

scalar multiplier for sx array
n

number of bins in array to scale
incx

increment to use on sx array

Output Arguments
sx

computation is done in place

Description
This routine multiplies a vector by a constant. It uses unrolled loops to improve performance for incre-
ments == 1.

3-46



Mathematical Services Program Services Volume I - Chapter 3

D.2.18. kblas_saxpy() — add two float vectors while scaling one

Synopsis
void kblas_sscal(

float *sx,
float *sy,
float sa,
int n,
int incx,
int incy)

Description
This routine multiplies a vector by a constant and then adds it to another vector. The calculation will be
: SY = SY + sa*SX It uses unrolled loops to improve performance for increments == 1. The computa-
tion is done in place and returned in sy.

D.2.19. kblas_sswap() — swap two float vectors

Synopsis
void kblas_sswap(

float *sx,
float *sy,
int n,
int incx,
int incy)

Input Arguments
sx

linear array to swap
sy

linear array to swap
n

number of bins in array to swap
incx

increment to use on sx
incy

increment to use on sy

3-47



Mathematical Services Program Services Volume I - Chapter 3

Description
This routine interchanges two vectors. It uses unrolled loops for increments == 1.

D.2.20. klin_dgefa() — factors a double matrix by gaussian elimination.

Synopsis
int klin_dgefa(

double *matrix,
int rows,
int cols,
int *pivot)

Input Arguments
matrix

input matrix stored in a 1D array of doubles in row-major order such that

m[i][j] = a[i * cols+j]

rows
the number of rows in matrix.

cols
the number of cols in matrix.

Output Arguments
pivot

the pivot vector

Returns
0 implies a normal value; a non-zero value of k means that U(k,k) == 0 This is not an error condition
for this routine, but it does indicate that klin_sgesl or klin_dgedi will divide by zero if called. Use the
argument rcond in klin_segco for a reliable indication of singularity.

Description
This routine is usually called by klin_sgeco, but it can be called directly with a saving in time if the
rcond is not needed.

3-48



Mathematical Services Program Services Volume I - Chapter 3

D.2.21. klin_dgedi() — computes the determinate and inverse of a matrix

Synopsis
int klin_dgedi(

double *matrix,
int rows,
int cols,
int *pivot,
int job,
double *work,
double *det)

Input Arguments
matrix

input matrix stored in a 1D array of doubles in row-major order such that

m[i][j] = a[i * cols+j]

rows
the number of rows in matrix.

cols
the number of columns in matrix.

pivot
the pivot vector from klin_dgefa

job
defines what to compute: the inverse, the determinate, or both of the matrix. KLIN_INVERSE to
compute inverse KLIN_DETERMINATE to compute determinate KLIN_INVERSE | KLIN_DETER-
MINATE to compute both

Output Arguments
matrix

inverse of the original matrix if requested, othewise unchanged.
det

determinant of original matrix if requested, otherwise not referenced. determinat =
det(1)*10.0**det(2) with 1.0 < kabs(det(1)) < 10.0 or det(1) == 0.0

Returns
TRUE (1) all the time

Description
This routine will compute the determinant and inverse of an NxN matrix using the factors computed by

3-49



Mathematical Services Program Services Volume I - Chapter 3

klin_sgeco or klin_dgefa.

The determinant functionality is not well tested.

Restrictions
A division by zero will occur if the input factor contains a zero on the diagonal and the inverse is
requested. It will not occur if the subroutines are called correctly and if klin_sgeco has set rcond > 0.0
or dgefa has set info < 0.

D.2.22. kblas_dscal() — scale a double vector

Synopsis
void kblas_dscal(

double *sx,
double sa,
int n,
int incx)

Input Arguments
sx

linear array to scale
sa

scalar multiplier for sx array
n

number of bins in array to scale
incx

increment to use on sx array

Output Arguments
sx

computation is done in place

Description
This routine multiplies a vector by a constant. It uses unrolled loops for increments == 1.

3-50



Mathematical Services Program Services Volume I - Chapter 3

D.2.23. kblas_daxpy() — add two double vectors while scaling one

Synopsis
void kblas_dscal(

double *sx,
double *sy,
double sa,
int n,
int incx,
int incy)

Description
This routine multiplies a vector by a constant and then adds it to another vector. The calculation will be
: SY = SY + sa*SX It uses unrolled loops for increments == 1.

D.2.24. kblas_dswap() — swap two double vectors

Synopsis
void kblas_dswap(

double *sx,
double *sy,
int n,
int incx,
int incy)

Input Arguments
sx

linear array to swap :
sy

linear array to swap
n

number of bins in array to swap
incx

increment to use on sx incx - increment to use on sy

Description
This routine interchanges two vectors. It uses unrolled loops for increments == 1.

3-51



Mathematical Services Program Services Volume I - Chapter 3

E. Sequence Generation

The following section details the sequence generation functions.

E.1. Introduction to Sequence Generation Functions

The klibm library includes a series of functions that are employed to generate random sequences of data with
various distributions as well as certain periodic sequences. The currently supported random distributions
include uniform, exponential, Gaussian, Poisson, and Rayleigh. The periodic sequence generators are
employed to generate real and complex sinusoidal sequences and piece-wise linear sequences.

The following functions are available:

• kgen_expon() - generate a vector of exponential random numbers.
• kgen_gauss() - generate a vector of gaussian random numbers.
• kgen_poisson() - generate a vector of Poisson random numbers.
• kgen_rayleigh() - generate a vector of Rayleigh random numbers.
• kgen_unif() - generate a vector of uniform random numbers.
• kgen_linear() - generate a piecewise linear data set.
• kgen_sine() - generates a sinusoid data set
• kgen_sinec() - generate a sinc data set.

E.2. Definitions of Sequence Generation Functions

E.2.1. kgen_expon() — generate a vector of exponential random numbers.

Synopsis
int kgen_expon(

int num,
double variance,
double *vect)

Input Arguments
num

number of elements in data set.
variance

variance of the data set

Output Arguments
vect

a vector containing the generated set of exponential random numbers.

3-52



Mathematical Services Program Services Volume I - Chapter 3

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
kgen_expon() generates a 1d exponential random noise data set

E.2.2. kgen_gauss() — generate a vector of gaussian random numbers.

Synopsis
int kgen_gauss(

int num,
double mean,
double variance,
double *vect)

Input Arguments
num

number of elements in vector
mean

mean of the data set
variance

variance of the data set

Output Arguments
vect

a vector containing the generated set of gaussian random numbers.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
kgen_gauss() generates a one dimensional gaussian random noise data set.

The formula used to derive the gaussian random random numbers is the Box-Mueller method and was
taken from Numerical Recipes : The Art of Scientific Computing (Press, Flannery, Teukolsky, and Vet-
terling) 1986.

3-53



Mathematical Services Program Services Volume I - Chapter 3

E.2.3. kgen_poisson() — generate a vector of Poisson random numbers.

Synopsis
int kgen_poisson(

int num,
double variance,
double atime,
double *vect)

Input Arguments
num

number of elements in data set.
variance

variance of the data set
atime

amount of time

Output Arguments
vect

a vector containing the generated set of Poisson random numbers.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
kgen_poisson() generates a one dimensional Poisson random noise data set.

E.2.4. kgen_rayleigh() — generate a vector of Rayleigh random numbers.

Synopsis
int kgen_rayleigh(

int num,
double variance,
double *vect)

Input Arguments
num

number of elements in input vector
variance

variance of the data set

3-54



Mathematical Services Program Services Volume I - Chapter 3

Output Arguments
vect

a vector containing the generated set of Rayleigh random numbers.

Returns
TRUE (1) on success, otherwise it returns FALSE (0) if it is unable to allocate sufficient memory or
the internal call to kgen_gauss fails.

Description
kgen_rayleigh() generates a one dimensional Rayleigh random noise data set.

E.2.5. kgen_unif() — generate a vector of uniform random numbers.

Synopsis
int kgen_unif(

int num,
double minimum,
double maximum,
double *vect)

Input Arguments
num

number of points
minimum

minimum of the data set
maximum

maximum of the data set

Output Arguments
vect

a vector containing the generated set of uniform random numbers.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
kgen_unif() generates a one dimensional uniform random noise data set.

3-55



Mathematical Services Program Services Volume I - Chapter 3

E.2.6. kgen_linear() — generate a piecewise linear data set.

Synopsis
int kgen_linear(

int num,
double sample,
double minimum,
double maximum,
double period,
double rise,
double fall,
double width,
double *vect)

Input Arguments
num

number of elements in vector
sample

sampling frequency
minimum

minimum value of data set.
maximum

maximum value of the data set.
period

period of function
rise

rise time of function
fall

fall time of function
width

width (when high) of pulse

Output Arguments
vect

a vector containing the generated set of piecewise linear numbers.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
Generates a one dimensional "piecewise linear" data set. A piecewise linear data set is a data set com-
posed of connected end-to-end lines. By properly setting arguments to this routine, you can generate
impulse data (spikes), triangular wav es, sawtooth wav es, reverse sawtooth wav es, and square wav es.

3-56



Mathematical Services Program Services Volume I - Chapter 3

E.2.7. kgen_sine() — generates a sinusoid data set

Synopsis
int kgen_sine(

int num,
double sample,
double amp,
double freq,
double phase,
double *vect)

Input Arguments
num

number of elements in vector
sample

sampling frequency
amp

amplitude of data set
freq

frequency of data set
phase

phase of data set

Output Arguments
vect

a vector containing the generated sinusoidal data set.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
kgen_sine() generates a one dimensional sinusoidal data set.

3-57



Mathematical Services Program Services Volume I - Chapter 3

E.2.8. kgen_sinec() — generate a sinc data set.

Synopsis
int kgen_sinec(

int num,
double sample,
double amp,
double freq,
int center,
double *vect)

Input Arguments
num

number of elements in vector
sample

sampling frequency
amp

amplitude of signal
freq

frequency of signal
center

centering option: 0 - center the sync on the data set (i.e. the zero point of the data is at the midpoint of
vect) 1 - left justify the sync (the center of the data is at vect[0], and you only get the right hand side
of the sinc)

Output Arguments
vect

a vector containing the generated sinc data set.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
kgen_sinec() generates a one dimensional sinc data set. The sinc function is defined as sin(x)/x.

3-58



Mathematical Services Program Services Volume I - Chapter 3

F. General Math Utilities

The following sections detail the general math library functions.

F.1. Introduction to General Math Utilities

The foundation of the klibm library is the architecture and operating system independent-implementations of
the standard libm.a functions. The implementation of these functions employs the libm.a versions of the func-
tion when they are available. When these are not available, the versions are automatically replaced with local
versions that are designed as drop-in replacements.

The functions are:

• kabs() - return the absolute value of a single argument.
• kacos() - compute the arc cosine of the argument.
• kacosh() - compute the arc hyperbolic cosine of the argument.
• kasin() - compute the arc sine of the argument.
• kasinh() - compute the arc hyperbolic sine of the argument.
• katan() - compute the arc tangent of the argument.
• katan2() - compute the arc tangent of y/x.
• katanh() - compute the arc hyperbolic tangent of the argument.
• kcbrt() - compute the cube root of the argument.
• kceil() - compute the ceiling of the argument.
• kclear() - return an value with all bits clear
• kcos() - compute the double precision cosine of the argument.
• kcosh() - compute the hyperbolic cosine of the argument.
• kdata_minmax() - find the min/max values for a region of data
• kdegrees_radians() - return the radians given an input of degrees
• kerf() - compute the error function of the argument.
• kerfc() - compute the complement error function of the argument.
• kexp() - compute the exponential of the argument.
• kexp10() - compute the base 10 exponential function of the argument.
• kexp2() - compute the base 2 exponential function of the argument.
• kexpm1() - compute the exponential function minus 1 of the argument.
• kfabs() - compute the absolute value of the argument.
• kfloor() - compute the floor of the argument.
• kfmod() - compute the floating point modulo of the arguments.
• kfraction() - returns the fractional part of x
• kfrexp() - compute significand and exponent of argument
• kgamma() - compute the gamma function of the argument.
• khypot() - compute the euclidean distance from the origin of the arguments.
• kintercept() - interpolate the intercept
• kj0() - compute the Bessel function j0 of the argument.
• kj1() - compute the Bessel function j1 of the argument.
• kjn() - compute the general Bessel function jn of the argument.
• kldexp() - computes x * 2**n
• klog() - compute the natural logarithm of the argument.
• klog10() - compute the base 10 logarithm of the argument.
• klog1p() - compute the logarithm of x+1 of the argument.

3-59



Mathematical Services Program Services Volume I - Chapter 3

• klog2() - compute the base 2 logarithm of the argument.
• klogical_not() - logical not (invert) function
• klogn() - base log n of argument
• kmax3() - return the greater of three values.
• kmax4() - return the greater of four values.
• kmin3() - return the lessor of three values.
• kmin4() - return the lessor of four values.
• kmodf() - compute the fractional component of the argument.
• kneg() - neg ative function
• knot() - bitwise not (invert) function
• kpow() - compute x to the y power.
• kradians_degrees() - return the degrees given an input of radians
• krandom() - generate random number in range [0,2**31-1]
• krecip() - reciprocal function.
• kset() - return a value with all bit set
• kset_seed() - Set the seed to a randome number generator.
• ksin() - compute the double precision sine of the argument.
• ksinh() - compute the hyperbolic sine of the argument.
• ksqrt() - compute the square root of the argument.
• ksrandom() - seed the krandom random number generator.
• ktan() - compute the double precision tangent of the argument.
• ktanh() - compute the hyperbolic tangent of the argument.
• ktrunc() - truncate a number
• ky0() - compute the Bessel function y0 of the argument.
• ky1() - compute the Bessel function y1 of the argument.
• kyn() - compute the general Bessel function yn of the argument.
• kfact() - compute factorial of input.
• kimpulse() - evaluate impulse function.
• kpowtwo() - determine if number is an integer power of two.
• ksign() - evaluate sign function.
• ksinc() - sinc function which is "sin(x)/x"
• ksqr() - return the square of a single value.
• kstep() - evaluate step function.
• kurng() - generate a uniform random number in the range [0:1].

F.2. Definitions of General Math Utilities

F.2.1. kabs() — return the absolute value of a single argument.

Synopsis
kabs(x)

Input Arguments
x

a variable of any base data type.

3-60



Mathematical Services Program Services Volume I - Chapter 3

Returns
the absolute value of the input argument.

Description
The kabs function obtains the absolute value of the input argument. This is a macro, so any data type
is supported.

F.2.2. kacos() — compute the arc cosine of the argument.

Synopsis
double kacos(double x)

Input Arguments
x

input argument to take arc cosine of.

Returns
the double precision arc cosine of the double precision input argument.

Description
The kacos function computes the arc cosine of the double precision input argument.

This is provided in all POSIX and X/OPEN compliant C math libraries. Currently kacos is simply a
macro to acos because VisiQuest does not run on any machine whose math library does not include this
function. If VisiQuest is ported to a machine without this function then a replacement will be written.

F.2.3. kacosh() — compute the arc hyperbolic cosine of the argument.

Synopsis
double kacosh(double x)

Input Arguments
x

argument to kacosh

Returns
the double precision are hyperbolic cosine of the input argument or KMAXFLOAT if the input argu-
ment is less than one.

3-61



Mathematical Services Program Services Volume I - Chapter 3

Description
The kacosh function computes the arc hyperbolic cosine of the double precision argument.

kacosh is not a POSIX function, but is implemented in a few BSD math libraries. If it is implemented
for the current architecture in libm.a, then this is simply a macro to acosh, otherwise kasinh is a macro
to the VisiQuest portable version of acosh.

F.2.4. kasin() — compute the arc sine of the argument.

Synopsis
double kasin(double x)

Input Arguments
x

input argument to take arc sine of.

Returns
the double precision arc sine of the input argument.

Description
The kasin function computes arc sine of the double precision input argument, whose value lies
between -1 and 1.

This is provided in all POSIX and X/OPEN compliant C math libraries. Currently kasin is simply a
macro to asin because VisiQuest does not run on any machine whose math library does not include this
function. If VisiQuest is ported to a machine without this function then a replacement will be written.

F.2.5. kasinh() — compute the arc hyperbolic sine of the argument.

Synopsis
double kasinh(double x)

Input Arguments
x

argument to kasinh

Returns
the evaluation of asinh(x)

3-62



Mathematical Services Program Services Volume I - Chapter 3

Description
The kasinh function computes the arc hyperbolic sine function

kasinh is not a POSIX function, but is implemented in a few BSD math libraries. If it is implemented
for the current architecture in libm.a, then this is simply a macro to asinh, otherwise kasinh is a macro
to the VisiQuest portable version of asinh.

F.2.6. katan() — compute the arc tangent of the argument.

Synopsis
double katan(double x)

Input Arguments
x

input argument to take arc tangent of.

Returns
the double precision arc tangent of the input argument.

Description
The katan function computes arc tangent of the double precison input argument. The result is an angle
with the value between -pi/2 and pi/2 radians.

This is provided in all POSIX and X/OPEN compliant C math libraries. Currently katan is simply a
macro to atan because VisiQuest does not run on any machine whose math library does not include this
function. If VisiQuest is ported to a machine without this function then a replacement will be written.

F.2.7. katan2() — compute the arc tangent of y/x.

Synopsis
double katan2(
double y,
double x)

Input Arguments
y

numerator component of the tangent given y/x.
x

the non-zero denominator component of the tangent given by y/x.

3-63



Mathematical Services Program Services Volume I - Chapter 3

Returns
the double precision arc tangent of the input arguments.

Description
The katan2 function converts the rectangular coordinates (x,y) into polar coordinates and returns the
phase component in the range (-pi,pi)

This is provided in all POSIX and X/OPEN compliant C math libraries. Currently katan2 is simply a
macro to atan2 because VisiQuest does not run on any machine whose math library does not include this
function. If VisiQuest is ported to a machine without this function then a replacement will be written.

Restrictions
The second argument x must be non-zero.

F.2.8. katanh() — compute the arc hyperbolic tangent of the argument.

Synopsis
double katanh(double x)

Input Arguments
x

argument to katanh

Returns
the double precision arc hyperbolic tangent of the input argument or KMAXFLOAT if the input
parameter is less than -1 or greater than 1.

Description
The kasinh function computes the arc hyperbolic tangent of the double precision input argument whose
value lies between -1 and 1.

katanh is not a POSIX function, but is implemented in a few BSD math libraries. If it is implemented
for the current architecture in libm.a, then this is simply a macro to atanh, otherwise katanh is a macro
to the VisiQuest portable version of atanh.

3-64



Mathematical Services Program Services Volume I - Chapter 3

F.2.9. kcbrt() — compute the cube root of the argument.

Synopsis
double kcbrt(double x)

Input Arguments
x

value perform the cube root function on

Returns
the double precision cube root of the input argument.

Description
The kcbrt function computes the cube root of the double precision input argument.

F.2.10. kceil() — compute the ceiling of the argument.

Synopsis
double kceil(double x)

Input Arguments
x

number to calculate ceiling of.

Returns
the double precision ceiling of the input argument.

Description
The kceil function computes the least integral value (smallest integer value) greater than or equal to the
input argument and returns it as a double.

This is provided in all POSIX and X/OPEN compliant C math libraries. Currently kceil is simply a
macro to ceil because VisiQuest does not run on any machine whose math library does not include this
function. If VisiQuest is ported to a machine without this function then a replacement will be written.

3-65



Mathematical Services Program Services Volume I - Chapter 3

F.2.11. kclear() — return an value with all bits clear

Synopsis
unsigned long kclear(

unsigned long x)

Input Arguments
x

input argument, value doesn’t matter. Supplied only for consistency with the rest of the klibm routines.

Returns
An unsigned long with all bits clear.

Description
Return an unsiged value with all bits clear, independent of the word length. This function is supplied
only for symmetry with the kset() function.

F.2.12. kcos() — compute the double precision cosine of the argument.

Synopsis
double kcos(double x)

Input Arguments
x

radian input argument to compute the cosine on.

Returns
the double precision cosine of the input argument

Description
The kcos function computes the cosine of the double precision input argument.

This is provided in all POSIX and X/OPEN compliant C math libraries. Currently kcos is simply a
macro to cos because VisiQuest does not run on any machine whose math library does not include this
function. If VisiQuest is ported to a machine without this function then a replacement will be written.

3-66



Mathematical Services Program Services Volume I - Chapter 3

F.2.13. kcosh() — compute the hyperbolic cosine of the argument.

Synopsis
double kcosh(double x)

Input Arguments
x

input argument to compute the double precision hyperbolic cosine on.

Returns
the double precision hyperbolic cosine of the input argument or KMAXFLOAT if the input argument
is less than one.

Description
The kcosh function computes the hyperbolic cosine of the double precison input argument.

This is provided in all POSIX and X/OPEN compliant C math libraries. Currently kcosh is simply a
macro to cosh because VisiQuest does not run on any machine whose math library does not include this
function. If VisiQuest is ported to a machine without this function then a replacement will be written.

F.2.14. kdata_minmax() — find the min/max values for a region of data

Synopsis
int kdata_minmax(

kaddr data,
size_t num,
int datatype,
double *minval,
double *maxval)

Input Arguments
data

point to the data to find the min/max value
num

number of points to be searched
datatype

data type of the data

Output Arguments
minval

3-67



Mathematical Services Program Services Volume I - Chapter 3

returns the minimum value
maxval

returns the maximum value

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This function is used to find the min/max values associated with a region of memory. A datatype is
used to determine how to search the data set. The data types are byte, unsigned byte, short, unsigned
short, long, unsigned long, int, unsigned int, float, and double.

F.2.15. kdegrees_radians() — return the radians given an input of degrees

Synopsis
kdegrees_radians(degrees)

Input Arguments
degrees

a variable of any base data type.

Returns
the argument in terms of radians

Description
This function converts the input degrees and returns the argument in radians. This is a macro, so any
data type is supported.

F.2.16. kerf() — compute the error function of the argument.

Synopsis
double kerf(double x)

Input Arguments
x

argument to erf

3-68



Mathematical Services Program Services Volume I - Chapter 3

Returns
the error function of the input argument.

Description
The kerf function computes the error function, defined by:

kerf(x) = 2.0/sqrt(pi)*{integral from 0 to x of exp(-t*t) dt}

kerf is not a POSIX function, but is implemented in a few BSD math libraries. If it is implemented for
the current architecture in libm.a, then this is simply a macro to erf, otherwise kerf is a macro to the
VisiQuest portable version of erf.

F.2.17. kerfc() — compute the complement error function of the argument.

Synopsis
double kerfc(double x)

Input Arguments
x

argument to kerfc

Returns
One minus the error function of the input argument.

Description
The kerfc function computes the complement error function, defined by:

kerfc(x) = 1.0 - kerf(x)

kerfc is not a POSIX function, but is implemented in a few BSD math libraries. If it is implemented
for the current architecture in libm.a, then this is simply a macro to erfc, otherwise kerfc is a macro to
the VisiQuest portable version of erfc.

3-69



Mathematical Services Program Services Volume I - Chapter 3

F.2.18. kexp() — compute the exponential of the argument.

Synopsis
double kexp(double x)

Input Arguments
x

variable whose exponential is to be computed.

Returns
the double precision result of the exponential of the input argument.

Description
The kexp function computes the value of the exponential of the double precision input argument
(e**x).

This is provided in all POSIX and X/OPEN compliant C math libraries. Currently kexp is simply a
macro to exp because VisiQuest does not run on any machine whose math library does not include this
function. If VisiQuest is ported to a machine without this function then a replacement will be written.

F.2.19. kexp10() — compute the base 10 exponential function of the argument.

Synopsis
double kexp10(double x)

Input Arguments
x

variable whose base 10 exponential is to be computed.

Returns
the double precision base 10 exponential of the input argument.

Description
The kexp10 function computes the base 10 exponential function.

kexp10 is not a POSIX function, but is implemented in a few BSD math libraries. If it is implemented
for the current architecture in libm.a, then this is simply a macro to exp10, otherwise kexp10 is a
macro to the VisiQuest portable version of exp10.

3-70



Mathematical Services Program Services Volume I - Chapter 3

F.2.20. kexp2() — compute the base 2 exponential function of the argument.

Synopsis
double kexp2(double x)

Input Arguments
x

variable whose base 2 exponential is to be computed.

Returns
the double precision base 2 exponential of the input argument.

Description
The kexp2 function computes the base 2 exponential of the double precision input argument.

kexp2 is not a POSIX function, but is implemented in a few BSD math libraries. If it is implemented
for the current architecture in libm.a, then this is simply a macro to exp2, otherwise kexp2 is a macro
to the VisiQuest portable version of exp2.

F.2.21. kexpm1() — compute the exponential function minus 1 of the argument.

Synopsis
double kexpm1(double x)

Input Arguments
x

variable whose exponential minus 1 is to be computed.

Returns
the double precision exponential minus 1 of the input argument.

Description
The kexpm1 function computes the exponential function of the double precision input argument, then
subtracts 1.

kexpm1 is not a POSIX function, but is implemented in a few BSD math libraries. If it is implemented
for the current architecture in libm.a, then this is simply a macro to expm1, otherwise kexpm1 is a
macro to the VisiQuest portable version of expm1.

3-71



Mathematical Services Program Services Volume I - Chapter 3

F.2.22. kfabs() — compute the absolute value of the argument.

Synopsis
double kfabs(double x)

Input Arguments
x

number to take the absolute value of.

Returns
the double precision absolute value of the input argument.

Description
The kfabs function computes the absolute value of the double precision input argument.

This is provided in all POSIX and X/OPEN compliant C math libraries. Currently kfabs is simply a
macro to fabs because VisiQuest does not run on any machine whose math library does not include this
function. If VisiQuest is ported to a machine without this function then a replacement will be written.

F.2.23. kfloor() — compute the floor of the argument.

Synopsis
double kfloor(double x)

Input Arguments
x

number to calculate floor of.

Returns
the double precision floor of the input argument.

Description
The kfloor function computes the largest integral value (largest integer) less than or equal to the input
argument and returns it as a double.

This is provided in all POSIX and X/OPEN compliant C math libraries. Currently kfloor is simply a
macro to floor because VisiQuest does not run on any machine whose math library does not include this
function. If VisiQuest is ported to a machine without this function then a replacement will be written.

3-72



Mathematical Services Program Services Volume I - Chapter 3

F.2.24. kfmod() — compute the floating point modulo of the arguments.

Synopsis
double kfmod(
double x,
double y)

Input Arguments
x

numerator of division operation.
y

denominator of division operation.

Returns
the double precision modulo remainder of x/y.

Description
The kfmod function computes the floating point remainder of x/y.

This is provided in all POSIX and X/OPEN compliant C math libraries. On most machines, kfmod is a
macro to fmod. On certain machines that are not fully POSIX compliant, this is a macro to an internal
implementation of fmod.

F.2.25. kfraction() — returns the fractional part of x

Synopsis
double kfraction(

double x)

Input Arguments
x

argument to the kfraction function

Returns
The double precision fractional part of the input argument.

Description
The kfraction function evaluates the fractional value of the double precision input argument. The
result is kmodf(x, *iptr) for a given x.

3-73



Mathematical Services Program Services Volume I - Chapter 3

F.2.26. kfrexp() — compute significand and exponent of argument

Synopsis
double kfrexp(
double v,
int *e)

Input Arguments
v

value to compute on.

Output Arguments
e

exponent of the input argument.

Returns
the significand of the input argument, or zero if the input argument is zero.

Description
The kfrexp function computes the significand (or mantissa) of v as a double quantity between 0.5 and
1.0 and stores the exponent in the output argument e.

This is provided in all POSIX and X/OPEN compliant C math libraries. Currently kfrexp is simply a
macro to frexp because VisiQuest does not run on any machine whose math library does not include this
function. If VisiQuest is ported to a machine without this function then a replacement will be written.

F.2.27. kgamma() — compute the gamma function of the argument.

Synopsis
double kgamma(double x)

Input Arguments
x

value to compute the log gamma of.

Returns
the double precision log gamma of the input argument.

Description
The kgamma function computes the log gamma of the double precision input argument.

3-74



Mathematical Services Program Services Volume I - Chapter 3

Restrictions
If gamma does not exist on you system in libm, then a VisiQuest version of the program will be transpar-
ently installed in its place. This version of the function is not very good. The VisiQuest Group has plans
to improve this function soon after the main release of VisiQuest 2.0.

F.2.28. khypot() — compute the euclidean distance from the origin of the arguments.

Synopsis
double khypot(
double x,
double y)

Input Arguments
x

value on x axis of vector to determine length of.
y

value on y axis of vector to determine length of.

Returns
returns the double precision euclidean distance from (0,0) to (x,y).

Description
The khypot function computes the Euclidean distance from (0,0) to (x,y). This function computes the
square root of the sum of squares of the double precision input arguments x and y, giving the return
value ‘ sqrt(x*x + y*y)

khypot is not a POSIX function, but is implemented in BSD math libraries. khypot is simply a macro
to hypot because VisiQuest does not run on any machine whose math library does not include this func-
tion. If VisiQuest is ported to a machine without this function then a replacement will be written.

F.2.29. kintercept() — interpolate the intercept

Synopsis
kintercept(x0, x1, y0, y1, y2)

Input Arguments
x0

a variable of any base data type.
x1

3-75



Mathematical Services Program Services Volume I - Chapter 3

a variable of any base data type.
y0

a variable of any base data type.
y1

a variable of any base data type.
y2

a variable of any base data type.

Returns
the intercept point

Description
The following macro is used to interpolate the intercept from a vector described by the two points
(x0,y0) & (x1,y1) and a value along the vector, y2, the macro will return the corresponding x2 value.
This is a macro, so any data type is supported.

F.2.30. kj0() — compute the Bessel function j0 of the argument.

Synopsis
double kj0(double x)

Input Arguments
x

argument to j0

Returns
the double precision value of the j0 Bessel function at x.

Description
The kj0 function computes an approximation of the j0 Bessel function. This function evaluates the
Bessel function of the first kind of integer order at an input argument x.

kj0 is not a POSIX function, but is implemented in a few BSD math libraries. If it is implemented for
the current architecture in libm.a, then this is simply a macro to j0, otherwise kj0 is a macro to the
VisiQuest portable version of j0.

3-76



Mathematical Services Program Services Volume I - Chapter 3

F.2.31. kj1() — compute the Bessel function j1 of the argument.

Synopsis
double kj1(double x)

Input Arguments
x

argument to j1

Returns
the double precision value of the j1 Bessel function at x.

Description
The kj1 function computes an approximation of the j1 Bessel function. This function evaluates the
Bessel function of the first kind integer order of the input argument x.

kj1 is not a POSIX function, but is implemented in a few BSD math libraries. If it is implemented for
the current architecture in libm.a, then this is simply a macro to j1, otherwise kj1 is a macro to the
VisiQuest portable version of j1.

F.2.32. kjn() — compute the general Bessel function jn of the argument.

Synopsis
double kjn(int n, double x)

Input Arguments
n

integer order of the Bessel function.
x

argument to jn

Returns
the double precision value of the n-order Bessel function at x.

Description
The kjn function computes an approximation of the jn Bessel function. This function evaluates the
Bessel function of the first kind of integer n order of the input argument x.

kjn is not a POSIX function, but is implemented in a few BSD math libraries. If it is implemented for
the current architecture in libm.a, then this is simply a macro to jn, otherwise kjn is a macro to the

3-77



Mathematical Services Program Services Volume I - Chapter 3

VisiQuest portable version of jn.

F.2.33. kldexp() — computes x * 2**n

Synopsis
double kldexp(
double x,
int n)

Input Arguments
x

double argument to x * 2**n
n

integer argument to x * 2**n

Returns
the double precision value x * 2**n

Description
The kldexp function computes x * 2**n by performing exponent manipulation rather than multiplica-
tion.

This is provided in all POSIX and X/OPEN compliant C math libraries. Currently kldexp is simply a
macro to ldexp because VisiQuest does not run on any machine whose math library does not include this
function. If VisiQuest is ported to a machine without this function then a replacement will be written.

F.2.34. klog() — compute the natural logarithm of the argument.

Synopsis
double klog(double x)

Input Arguments
x

argument to the natural log function.

Returns
the double precision logarithm of the input argument

3-78



Mathematical Services Program Services Volume I - Chapter 3

Description
The klog function computes natural logarithm of the double precision input argument.

This is provided in all POSIX and X/OPEN compliant C math libraries. Currently klog is simply a
macro to log because VisiQuest does not run on any machine whose math library does not include this
function. If VisiQuest is ported to a machine without this function then a replacement will be written.

F.2.35. klog10() — compute the base 10 logarithm of the argument.

Synopsis
double klog10(double x)

Input Arguments
x

argument to the base 10 log function.

Returns
the double precision base 10 logarithm of the input argument.

Description
The klog10 function computes the base 10 logarithm of the double precision input argument.

This is provided in all POSIX and X/OPEN compliant C math libraries. Currently klog10 is simply a
macro to log10 because VisiQuest does not run on any machine whose math library does not include this
function. If VisiQuest is ported to a machine without this function then a replacement will be written.

F.2.36. klog1p() — compute the logarithm of x+1 of the argument.

Synopsis
double klog1p(double x)

Input Arguments
x

argument to klog1p

Returns
the double precision logarithm plus one of the input argument.

3-79



Mathematical Services Program Services Volume I - Chapter 3

Description
The klog1p function computes the natural logarithm of the double precision argument plus 1.

klog1p is not a POSIX function, but is implemented in a few BSD math libraries. If it is implemented
for the current architecture in libm.a, then this is simply a macro to log1p, otherwise klog1p is a macro
to the VisiQuest portable version of log1p.

F.2.37. klog2() — compute the base 2 logarithm of the argument.

Synopsis
double klog2(double x)

Input Arguments
x

argument to klog2

Returns
the double precision base 2 logarithm of the double precision input argument.

Description
The klog2 function computes the base 2 logarithm of the double precision input argument.

klog2 is not a POSIX function, but is implemented in a few BSD math libraries. If it is implemented
for the current architecture in libm.a, then this is simply a macro to log2, otherwise klog2 is a macro to
the VisiQuest portable version of log2.

F.2.38. klogical_not() — logical not (invert) function

Synopsis
long klogical_not(

long x)

Input Arguments
x

argument to the knot function

Returns
The result of the knot function

3-80



Mathematical Services Program Services Volume I - Chapter 3

Description
Changes the logic of the argument. TRUE becomes FALSE, FALSE becomes TRUE.

F.2.39. klogn() — base log n of argument

Synopsis
double klogn(

double x,
double n)

Input Arguments
x

value to take base-n log of.
n

base of logarithm.

Returns
the double precision base n logarithm of the double precision input argument x.

Description
The klogn function computes the base n log of the first double precision input argument, where n is the
second double precision input argument.

F.2.40. kmax3() — return the greater of three values.

Synopsis
kmax3(x0, x1, x2)

Input Arguments
x0

a variable of any base data type.
x1

a variable of any base data type.
x2

a variable of any base data type.

Returns
the smaller value of the two input arguments.

3-81



Mathematical Services Program Services Volume I - Chapter 3

Description
The kmax3 function obtains the greater of the three input arguments. This is a macro, so any data type
is supported.

F.2.41. kmax4() — return the greater of four values.

Synopsis
kmax4(x0, x1, x2, x3)

Returns
the smaller value of the two input arguments.

Description
The kmax4 function obtains the greater of the four input arguments. This is a macro, so any data type
is supported.

F.2.42. kmin3() — return the lessor of three values.

Synopsis
kmin3(x0, x1, x2)

Input Arguments
x0

a variable of any base data type.
x1

a variable of any base data type.
x2

a variable of any base data type.

Returns
the smaller value of the three input arguments.

Description
The kmin3 function obtains the smaller of three input arguments. This is a macro, so any data type is
supported.

3-82



Mathematical Services Program Services Volume I - Chapter 3

F.2.43. kmin4() — return the lessor of four values.

Synopsis
kmin4(x0, x1, x2, x3)

Input Arguments
x0

a variable of any base data type.
x1

a variable of any base data type.
x2

a variable of any base data type.
x3

a variable of any base data type.

Returns
the smaller value of the four input arguments.

Description
The kmin4 function obtains the smaller of the four input arguments. This is a macro, so any data type
is supported.

F.2.44. kmodf() — compute the fractional component of the argument.

Synopsis
double kmodf(
double x,
double *i)

Input Arguments
x

input argument to separate into integral and fractional components.

Output Arguments
i

the integral part of the input argument

Returns
the fractional component of the input argument.

3-83



Mathematical Services Program Services Volume I - Chapter 3

Description
The kmodf function computes the fractional and integral part of the double precision input argument x.
After decomposing the input argument it returns the fractional part and places the integral part in the
argument i.

This is provided in all POSIX and X/OPEN compliant C math libraries. Currently kmodf is simply a
macro to modf because VisiQuest does not run on any machine whose math library does not include this
function. If VisiQuest is ported to a machine without this function then a replacement will be written.

F.2.45. kneg() — negative function

Synopsis
double kneg(

double x)

Input Arguments
x

input argument to find the negative value of.

Returns
The double precision negative value of the input argument.

Description
The kneg function evaluates the negative value of the double precisoin input argument. The result is -x
for a given x.

F.2.46. knot() — bitwise not (invert) function

Synopsis
unsigned long knot(

unsigned long x)

Input Arguments
x

input argument.

Returns
The unsigned long inverted bit value of the input argument.

3-84



Mathematical Services Program Services Volume I - Chapter 3

Description
The knot function returns a value computed by inverting all bits in the input value.

F.2.47. kpow() — compute x to the y power.

Synopsis
double kpow(
double x,
double y)

Input Arguments
x

base of the exponentiation operation.
y

exponent to raise the base to.

Returns
the double precision result of the input argument x raised to the power of the input argument y.

Description
The kpow function computes x**y, which is the value of one double precision input argument x raised
to the power of another double precision input argument y.

This is provided in all POSIX and X/OPEN compliant C math libraries. Currently kpow is simply a
macro to pow because VisiQuest does not run on any machine whose math library does not include this
function. If VisiQuest is ported to a machine without this function then a replacement will be written.

Restrictions
Neither argument can be 0.

F.2.48. kradians_degrees() — return the degrees given an input of radians

Synopsis
kradians_degrees(radians)

Input Arguments
radians

a variable of any base data type.

3-85



Mathematical Services Program Services Volume I - Chapter 3

Returns
the argument in terms of degrees

Description
This function converts the input radians and returns the argument in degrees. This is a macro, so any
data type is supported.

F.2.49. krandom() — generate random number in range [0,2**31-1]

Synopsis
long krandom(void)

Returns
the pseudo random number generated.

Description
The krandom function generates a pseudo random number with a value in the range [0,2**31-1]. The
starting point of the pseudo random number sequence is set by calling ksrandom.

krandom is not a POSIX function, but is implemented in most BSD libraries. If it is implemented for
the current architecture in libc.a, then this is simply a macro to random, otherwise krandom is a macro
to the VisiQuest portable version of random.

F.2.50. krecip() — reciprocal function.

Synopsis
double krecip(

double x)

Input Arguments
x

argument to get the reciprocal of.

Returns
The result of the krecip function evaluated as 1/x.

3-86



Mathematical Services Program Services Volume I - Chapter 3

Description
The krecip function evaluates the reciprocal value of the double precision input argument. The result
is 1/x for a given x.

F.2.51. kset() — return a value with all bit set

Synopsis
unsigned long kset(

unsigned long x)

Input Arguments
x

input argument, value doesn’t matter. Supplied only for consistency with the rest of the klibm routines.

Returns
An unsigned long with all bits set.

Description
Return an unsigned value with all bits set to 1 independent of the word length

F.2.52. kset_seed() — Set the seed to a randome number generator.

Synopsis
void kset_seed(int seed)

Description
The function sets the seed rather than using the time as a seed. It allows for the generation of a random
pattern, while allowing duplication of the pattern.

This was due to a bug or request for the ability to add random gaussian noise to an image, but being
able to reproduce the pattern. This modifies the static variable iseed used by kurng().

3-87



Mathematical Services Program Services Volume I - Chapter 3

F.2.53. ksin() — compute the double precision sine of the argument.

Synopsis
double ksin(double x)

Input Arguments
x

radian input argument to compute the sine on.

Returns
the double precision sine of the input argument

Description
The ksin function computes the sine of the double precision input argument, which represents an angle
in radians.

This is provided in all POSIX and X/OPEN compliant C math libraries. Currently ksin is simply a
macro to sin because VisiQuest does not run on any machine whose math library does not include this
function. If VisiQuest is ported to a machine without this function then a replacement will be written.

F.2.54. ksinh() — compute the hyperbolic sine of the argument.

Synopsis
double ksinh(double x)

Input Arguments
x

input argument to compute the hyperbolic sine on.

Returns
the double precision hyperbolic sine of the input argument

Description
The ksinh function computes the hyperbolic sine of the input argument

This is provided in all POSIX and X/OPEN compliant C math libraries. Currently ksinh is simply a
macro to sinh because VisiQuest does not run on any machine whose math library does not include this
function. If VisiQuest is ported to a machine without this function then a replacement will be written.

3-88



Mathematical Services Program Services Volume I - Chapter 3

F.2.55. ksqrt() — compute the square root of the argument.

Synopsis
double ksqrt(double x)

Input Arguments
x

number to take square root of.

Returns
the double precision square root of the input argument.

Description
The ksqrt function computes the square root of the double precision input argument.

This is provided in all POSIX and X/OPEN compliant C math libraries. Currently ksqrt is simply a
macro to sqrt because VisiQuest does not run on any machine whose math library does not include this
function. If VisiQuest is ported to a machine without this function then a replacement will be written.

F.2.56. ksrandom() — seed the krandom random number generator.

Synopsis
void ksrandom(int seed)

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
The ksrandom function sets the seed (starting value) of the random number generation algorithm used
by krandom.

ksrandom is not a POSIX function, but is implemented in most BSD libraries. If it is implemented for
the current architecture in libc.a, then this is simply a macro to srandom, otherwise ksrandom is a
macro to the VisiQuest portable version of srandom.

3-89



Mathematical Services Program Services Volume I - Chapter 3

F.2.57. ktan() — compute the double precision tangent of the argument.

Synopsis
double ktan(double x)

Input Arguments
x

radian input argument to compute the tangent on.

Returns
the double precision tangent of the input argument

Description
The ktan function computes the tangent of the input argument.

This is provided in all POSIX and X/OPEN compliant C math libraries. Currently ktan is simply a
macro to tan because VisiQuest does not run on any machine whose math library does not include this
function. If VisiQuest is ported to a machine without this function then a replacement will be written.

F.2.58. ktanh() — compute the hyperbolic tangent of the argument.

Synopsis
double ktanh(double x)

Input Arguments
x

input argument to compute the hyperbolic tangent on.

Returns
the double precision hyperbolic tangent of the input argument

Description
The ktanh function computes the hyperbolic tangent of the double precision input argument

This is provided in all POSIX and X/OPEN compliant C math libraries. Currently ktanh is simply a
macro to tanh because VisiQuest does not run on any machine whose math library does not include this
function. If VisiQuest is ported to a machine without this function then a replacement will be written.

3-90



Mathematical Services Program Services Volume I - Chapter 3

F.2.59. ktrunc() — truncate a number

Synopsis
double ktrunc(double x)

Input Arguments
x

value to truncate

Returns
returns the integral component of the iput argument

Description
The ktrunc function truncates a double precision value by removing its fractional component.

ktrunc is not a POSIX function, but is implemented in a few BSD math libraries. If it is implemented
for the current architecture in libm.a, then this is simply a macro to trunc, otherwise ktrunc is a macro
to the VisiQuest portable version of trunc.

F.2.60. ky0() — compute the Bessel function y0 of the argument.

Synopsis
double ky0(double x)

Input Arguments
x

argument to y0

Returns
the double precision value of the y0 Bessel function at x.

Description
The ky0 function computes an approximation of the y0 Bessel function. This function evaluates the
Bessel function of the second kind of integer order at input argument x. The input argument x must be
positive.

ky0 is not a POSIX function, but is implemented in a few BSD math libraries. If it is implemented for
the current architecture in libm.a, then this is simply a macro to y0, otherwise ky0 is a macro to the
VisiQuest portable version of y0.

3-91



Mathematical Services Program Services Volume I - Chapter 3

F.2.61. ky1() — compute the Bessel function y1 of the argument.

Synopsis
double ky1(double x)

Input Arguments
x

argument to y1

Returns
the double precision value of the y1 Bessel function at x.

Description
The ky1 function computes an approximation of the y1 Bessel function. This function evaluates the
Bessel function of the second kind of integer order at input argument x. The input argument must be
positive.

ky1 is not a POSIX function, but is implemented in a few BSD math libraries. If it is implemented for
the current architecture in libm.a, then this is simply a macro to y1, otherwise ky1 is a macro to the
VisiQuest portable version of y1.

F.2.62. kyn() — compute the general Bessel function yn of the argument.

Synopsis
double kyn(int n, double x)

Input Arguments
n

integer order of the Bessel function
x

argument to yn

Returns
the double precision value of the n-order Bessel function at x.

Description
The kyn function computes an approximation of the yn Bessel function. This function evaluates the
Bessel function of the second kind of integer order n at the input argument x. The input argument x
must be positive.

3-92



Mathematical Services Program Services Volume I - Chapter 3

kyn is not a POSIX function, but is implemented in a few BSD math libraries. If it is implemented for
the current architecture in libm.a, then this is simply a macro to yn, otherwise kyn is a macro to the
VisiQuest portable version of yn.

F.2.63. kfact() — compute factorial of input.

Synopsis
double kfact(

double num)

Input Arguments
num

number to have factorial of computed.

Returns
The factorial of the input argument.

Description
kfact() computes the factorial of the double precision input argument.

F.2.64. kimpulse() — evaluate impulse function.

Synopsis
double kimpulse (

double x)

Input Arguments
x

value to evaluate the impulse function at.

Returns
1.0 if x==0 and 0.0 otherwise

Description
The kimpulse function evaluates the impulse function at the specified double precision argument x.

3-93



Mathematical Services Program Services Volume I - Chapter 3

Restrictions
If the value of x falls between -KEPSILON and +KEPSILON, then the value returned will be 1.0.

F.2.65. kpowtwo() — determine if number is an integer power of two.

Synopsis
int kpowtwo(

int length)

Input Arguments
length

length of sequence to be checked.

Returns
TRUE (1) if the argument is an integer power of two, FALSE (0) otherwise

Description
The function kpowtwo checks to see if the integer input argument (a sequence length) is an integer
power of 2.

F.2.66. ksign() — evaluate sign function.

Synopsis
double ksign (

double x)

Input Arguments
x

input argument to evaluate

Returns
-1 if the input argument is negative, 0 if the input argument is 0, and 1 if the input argument is positive

Description
The ksign function evaluates the sign function at the value of the double precision input argument.
The result is -1 if the argument is negative, 0 if the argument is 0, and 1 if the argument is positive.

3-94



Mathematical Services Program Services Volume I - Chapter 3

F.2.67. ksinc() — sinc function which is

Synopsis
double ksinc(

double x)

Input Arguments
x

input argument to the sinc function

Returns
The double precision result of the sinc function evaluated from sin(x)/x.

Description
The function ksinc evaluates the sinc function at the value of the input argument. The result is sin(x)/x
for a given x.

F.2.68. ksqr() — return the square of a single value.

Synopsis
ksqr(x)

Input Arguments
x

a variable of any base data type.

Returns
the squared value of the input argument.

Description
The ksqr function obtains the square of the a single input argument. This is a macro, so any data type
is supported.

3-95



Mathematical Services Program Services Volume I - Chapter 3

F.2.69. kstep() — evaluate step function.

Synopsis
double kstep (

double x)

Input Arguments
x

input argument to step

Returns
The double precision value of the step function at x.

Description
The function kstep evaluates the step function at the value of the specified double precision argument.

F.2.70. kurng() — generate a uniform random number in the range [0:1].

Synopsis
double kurng(void)

Returns
A double precision random number between 0 and 1.

Description
The function kurng() generates a double precision uniform random number between 0 and 1.

3-96



Mathematical Services Program Services Volume I - Chapter 3

G. General Data Processing Help Routines

The following section details the general data processing help routines.

G.1. Introduction to Help Routines

The help routines create data, modify data, and return data types for processing data.

• kdata_arith2_dcomplex() - perform 2-input double complex arithmetic
• kdata_arith2_double() - perform 2-input double precision arithmetic
• kdata_arith2_long() - perform 2-input long arithmetic
• kdata_arith2_ulong() - perform 2-input unsigned long arithmetic
• kdata_arith2_ubyte() - perform 2-input unsigned byte arithmetic
• kdata_fill() - fill memory with value by data type

G.2. Definitions of Help Routines

G.2.1. kdata_arith2_dcomplex() — perform 2-input double complex arithmetic

Synopsis
void kdata_arith2_dcomplex(

int mode,
size_t numpts,
kdcomplex *data1,
kdcomplex *data2,
kdcomplex complex,
unsigned char *mask1,
unsigned char *mask2 )

Input Arguments
mode

operation to be performed
numpts

number of points in data1, mask1, data2 and mask2
data1

first data array and first operand
data2

second data array and second operand
complex

second operand if data2 array is not valid
mask1

mask associated with first data array
mask2

mask associated with second data array

3-97



Mathematical Services Program Services Volume I - Chapter 3

Output Arguments
data1

data results are stored in data1
mask1

if a mask exists, results are stored in mask1

Description
This function performs the operation defined by "mode" using data in array "data1" as the first
operand, and data in array "data2", if it is valid, as the second operand. If "data2" is not valid, the
operation will be performed using the value "complex" as the second operand. Valid operations are
KADD, KSUB, KSUBFROM, KMULT, KDIV, KDIVINTO, and KPOW.

This function assumes that both input arrays, data1 and data2, are valid, and that if either mask1 or
mask2 is passed in, then both masks have been passed in. If just data1 is valid, only mask1 is
expected.

Potential division by zero is checked, and KMAXFLOAT is returned instead.

G.2.2. kdata_arith2_double() — perform 2-input double precision arithmetic

Synopsis
void kdata_arith2_double(

int mode,
size_t numpts,
double *data1,
double *data2,
double real,
unsigned char *mask1,
unsigned char *mask2 )

Input Arguments
mode

operation to be performed
numpts

number of points in data1, mask1, data2 and mask2
data1

first data array and first operand
data2

second data array and second operand
real

second operand if data2 array is not valid
mask1

mask associated with first data array
mask2

mask associated with second data array

3-98



Mathematical Services Program Services Volume I - Chapter 3

Output Arguments
data1

data results are stored in data1
mask1

if a mask exists, results are stored in mask1

Description
This function performs the operation defined by "mode" using data in array "data1" as the first
operand, and data in array "data2", if it is valid, as the second operand. If "data2" is not valid, the
operation will be performed using the value "real" as the second operand. Valid operations are KADD,
KSUB, KSUBFROM, KMULT, KDIV, KDIVINTO, KABSDIFF, KMODULO, KMINIMUM, and
KMAXIMUM.

This function assumes that both input arrays, data1 and data2, are valid, and that if either mask1 or
mask2 is passed in, then both masks have been passed in. If just data1 is valid, only mask1 is
expected.

Potential division by zero is checked, and KMAXFLOAT is returned instead.

G.2.3. kdata_arith2_long() — perform 2-input long arithmetic

Synopsis
void kdata_arith2_long(

int mode,
size_t numpts,
long *data1,
long *data2,
long real,
unsigned char *mask1,
unsigned char *mask2 )

Input Arguments
mode

operation to be performed
numpts

number of points in data1, mask1, data2 and mask2
data1

first data array and first operand
data2

second data array and second operand
real

second operand if data2 array is not valid
mask1

mask associated with first data array
mask2

3-99



Mathematical Services Program Services Volume I - Chapter 3

mask associated with second data array

Output Arguments
data1

data results are stored in data1
mask1

if a mask exists, results are stored in mask1

Description
This function performs the operation defined by "mode" using data in array "data1" as the first
operand, and data in array "data2", if it is valid, as the second operand. If "data2" is not valid, the
operation will be performed using the value "real" as the second operand. Valid operations are KADD,
KSUB, KSUBFROM, KMULT, KDIV, KDIVINTO, KABSDIFF, KMODULO, KMINIMUM, and
KMAXIMUM.

This function assumes that both input arrays, data1 and data2, are valid, and that if either mask1 or
mask2 is passed in, then both masks have been passed in. If just data1 is valid, only mask1 is
expected.

Potential division by zero is checked, and KMAXLINT is returned instead.

G.2.4. kdata_arith2_ulong() — perform 2-input unsigned long arithmetic

Synopsis
void kdata_arith2_ulong(

int mode,
size_t numpts,
unsigned long *data1,
unsigned long *data2,
unsigned char *mask1,
unsigned char *mask2 )

Input Arguments
mode

operation to be performed
numpts

number of points in data1, mask1, data2 and mask2
data1

first data array and first operand
data2

second data array and second operand
mask1

mask associated with first data array
mask2

3-100



Mathematical Services Program Services Volume I - Chapter 3

mask associated with second data array

Output Arguments
data1

data results are stored in data1
mask1

if a mask exists, results are stored in mask1

Description
This function performs the operation defined by "mode" using data in array "data1" as the first
operand, and data in array "data2" as the second operand. Valid operations are KADD, KSUB, KSUB-
FROM, KMULT, KDIV, KDIVINTO, KABSDIFF, KMODULO, KMINIMUM, and KMAXIMUM.

This function assumes that both input arrays, data1 and data2, are valid, and that if either mask1 or
mask2 is passed in, then both masks have been passed in.

Potential division by zero is checked, and the maximum unsigned long value [2**(sizeof(unsigned
long)) -1] is returned instead.

G.2.5. kdata_arith2_ubyte() — perform 2-input unsigned byte arithmetic

Synopsis
void kdata_arith2_ubyte(

int mode,
size_t numpts,
unsigned char *data1,
unsigned char *data2,
unsigned char *mask1,
unsigned char *mask2 )

Input Arguments
mode

operation to be performed
numpts

number of points in data1, mask1, data2 and mask2
data1

first data array and first operand
data2

second data array and second operand
mask1

mask associated with first data array
mask2

mask associated with second data array

3-101



Mathematical Services Program Services Volume I - Chapter 3

Output Arguments
data1

data results are stored in data1
mask1

if a mask exists, results are stored in mask1

Description
This function performs the operation defined by "mode" using data in array "data1" as the first
operand, and data in array "data2" as the second operand. Valid operations are KADD, KSUB, KSUB-
FROM, KMULT, KDIV, KDIVINTO, KABSDIFF, KMODULO, KMINIMUM, and KMAXIMUM.

This function assumes that both input arrays, data1 and data2, are valid, and that if either mask1 or
mask2 is passed in, then both masks have been passed in.

Potential division by zero is checked, and the maximum unsigned byte (255) returned instead.

G.2.6. kdata_fill() — fill memory with value by data type

Synopsis
int kdata_fill(

kaddr data,
size_t num,
int datatype,
double real,
double imaginary)

Input Arguments
data

point to the data to be filled
num

number of points to be filled
datatype

data type to fill with
real

real part of data to fill with
imaginary

imaginary part of data to fill with

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This function is used to fill a region of memory with a specified value. A datatype is used to determine

3-102



Mathematical Services Program Services Volume I - Chapter 3

how to use interpret the real and imaginary values specified. The data types are byte, unsigned byte,
short, unsigned short, long, unsigned long, int, unsigned int, float, double, complex, and double com-
plex.

3-103



Mathematical Services Program Services Volume I - Chapter 3

This page left intentionally blank

3-104



Table of Contents

A. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-1
B. Complex Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . .  3-1

B.1. Introduction to Complex Arithmetic Utilities . . . . . . . . . . . . . . . .  3-2
B.2. Definitions of Complex Arithmetic Utilities . . . . . . . . . . . . . . . . .  3-2

B.2.1. kcadd() — add two complex numbers. . . . . . . . . . . . . . . . . . .  3-2
B.2.2. kcang() — compute the radian angle of a complex number. . . . . . . . . . . .  3-3
B.2.3. kccomp() — construct a complex number from two real numbers. . . . . . . . . . .  3-3
B.2.4. kcconj() — compute the conjugate of a complex number. . . . . . . . . . . . .  3-4
B.2.5. kcdiv() — divide one complex number by another. . . . . . . . . . . . . . .  3-5
B.2.6. kcexp() — complex exponential function . . . . . . . . . . . . . . . . .  3-5
B.2.7. kcimag() — return the imaginary component of a complex number. . . . . . . . . .  3-6
B.2.8. kclog() — complex natural logarithm . . . . . . . . . . . . . . . . . .  3-6
B.2.9. kclogmag() — compute the log magnitude of a complex number. . . . . . . . . . .  3-7
B.2.10. kclogmagp1() — compute the log magnitude of a complex number plus one. . . . . . .  3-7
B.2.11. kclogmagsq() — compute the log magnitude squared of a complex number. . . . . . .  3-8
B.2.12. kclogmagsqp1() — compute the log magnitude squared of a complex number plus one. . . .  3-8
B.2.13. kcmag() — compute the magnitude of a complex number. . . . . . . . . . . . .  3-9
B.2.14. kcmagsq() — calculate the squared magnitude of a kcomplex number. . . . . . . . .  3-9
B.2.15. kcmult() — multiply two complex numbers. . . . . . . . . . . . . . . . . 3-10
B.2.16. kcomp2dcomp() — convert a kcomplex number to a kdcomplex number. . . . . . . . 3-10
B.2.17. kcp2r() — convert complex from polar coordinates to rectangular coordinates . . . . . . 3-11
B.2.18. kcpow() — compute the value of a complex number raised to a complex power . . . . . 3-11
B.2.19. kcr2p() — convert complex from rectangular coordinates to polar coordinates . . . . . . 3-12
B.2.20. kcreal() — return the real component of a complex number. . . . . . . . . . . . 3-12
B.2.21. kcsqrt() — calculate the complex square root of a complex argument. . . . . . . . . 3-13
B.2.22. kcsub() — subtract one kcomplex number from another. . . . . . . . . . . . . 3-13

C. Double Complex Arithmetic . . . . . . . . . . . . . . . . . . . . . . . 3-14
C.1. Introduction to Double Complex Arithmetic Utilities . . . . . . . . . . . . . . 3-14
C.2. Definitions of Double Complex Arithmetic Utilities . . . . . . . . . . . . . . 3-15

C.2.1. kdcadd() — add two double precision complex numbers. . . . . . . . . . . . . 3-15
C.2.2. kdcang() — compute the radian angle of a double precision complex number. . . . . . . 3-16
C.2.3. kdccomp() — construct a double precision complex number from two real numbers. . . . . 3-16
C.2.4. kdcconj() — compute the conjugate of a double precision complex number. . . . . . . . 3-17
C.2.5. kdccos() — double complex cosine . . . . . . . . . . . . . . . . . . . 3-17
C.2.6. kdccosh() — double complex hyperbolic cosine . . . . . . . . . . . . . . . 3-18
C.2.7. kdcdiv() — divide one double precision complex number by another. . . . . . . . . 3-18
C.2.8. kdcexp() — double complex exponential function . . . . . . . . . . . . . . 3-19
C.2.9. kdcimag() — return the imaginary component of a double precision complex number. . . . . 3-20
C.2.10. kdclog() — double complex natural logarithm . . . . . . . . . . . . . . . 3-20
C.2.11. kdclogmag() — compute the log magnitude of a double precision complex number. . . . . 3-21
C.2.12. kdclogmagp1() — compute the log magnitude of a double precision complex number plus

one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-21
C.2.13. kdclogmagsq() — compute the log magnitude squared of a double precision complex num-

ber. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-22
C.2.14. kdclogmagsqp1() — compute the log magnitude squared of a double precision complex

number plus one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-22
C.2.15. kdcmag() — compute the magnitude of a double precision complex number. . . . . . . 3-23

- i -



Mathematical Services Program Services Volume I - Chapter 3

C.2.16. kdcmagsq() — calculate the squared magnitude of a double precision complex number.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-23

C.2.17. kdcmult() — multiply two double precision complex numbers. . . . . . . . . . . 3-24
C.2.18. kdcomp2comp() — convert a kdcomplex number to a kcomplex number. . . . . . . . 3-24
C.2.19. kdcp2r() — convert double complex from polar coordinates to rectangular coordinates . . . 3-25
C.2.20. kdcpow() — compute the double complex value of a double complex number raised to a

double complex power. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-25
C.2.21. kdcr2p() — convert double complex from rectangular coordinates to polar coordinates . . . 3-26
C.2.22. kdcreal() — return the real component of a double precision complex number. . . . . . . 3-26
C.2.23. kdcsin() — double complex sine . . . . . . . . . . . . . . . . . . . 3-27
C.2.24. kdcsinh() — double complex hyperbolic sine . . . . . . . . . . . . . . . 3-27
C.2.25. kdcsqrt() — calculate the double precision complex square root of a double precision com-

plex number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-28
C.2.26. kdcsub() — subtract one double precision complex number from another. . . . . . . . 3-28
C.2.27. kdctan() — double complex tangent . . . . . . . . . . . . . . . . . . 3-29
C.2.28. kdctanh() — double complex hyperbolic tangent . . . . . . . . . . . . . . 3-30
C.2.29. kdcomplex_to_arrays() — separate array of double complex into real and imaginary

arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-30
D. Matrix Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . 3-31

D.1. Introduction to Matrix Arithmetic Routines . . . . . . . . . . . . . . . . . 3-31
D.2. Definitions of Matrix Arithmetic Routines . . . . . . . . . . . . . . . . . 3-32

D.2.1. kfmatrix_clear() — zeros a matrix . . . . . . . . . . . . . . . . . . . 3-32
D.2.2. kfmatrix_identity() — set matrix to identity . . . . . . . . . . . . . . . . 3-33
D.2.3. kfmatrix_inner_prod() — compute the inner product of two vectors. . . . . . . . . 3-33
D.2.4. kfmatrix_inverse() — inverts a matrix. . . . . . . . . . . . . . . . . . 3-34
D.2.5. kfmatrix_multiply() — multiply two matrices . . . . . . . . . . . . . . . 3-35
D.2.6. kfmatrix_princ_axis() — obtain the principle axis of a covariance matrix. . . . . . . . 3-36
D.2.7. kfmatrix_vector_prod() — compute the matrix-vector product. . . . . . . . . . . 3-37
D.2.8. kdmatrix_clear() — zeros a matrix . . . . . . . . . . . . . . . . . . 3-38
D.2.9. kdmatrix_identity() — set matrix to identity . . . . . . . . . . . . . . . . 3-38
D.2.10. kdmatrix_inner_prod() — compute the inner product of two vectors. . . . . . . . . 3-39
D.2.11. kdmatrix_inverse() — inverts a matrix. . . . . . . . . . . . . . . . . 3-40
D.2.12. kdmatrix_multiply() — multiply two matrices . . . . . . . . . . . . . . . 3-40
D.2.13. kdmatrix_princ_axis() — obtain the principle axis of a covariance matrix. . . . . . . 3-41
D.2.14. kdmatrix_vector_prod() — compute the matrix-vector product. . . . . . . . . . 3-43
D.2.15. klin_sgefa() — factors a float matrix by gaussian elimination. . . . . . . . . . . 3-44
D.2.16. klin_sgedi() — computes the determinate and inverse of a matrix . . . . . . . . . 3-45
D.2.17. kblas_sscal() — scale a float vector . . . . . . . . . . . . . . . . . . 3-46
D.2.18. kblas_saxpy() — add two float vectors while scaling one . . . . . . . . . . . . 3-47
D.2.19. kblas_sswap() — swap two float vectors . . . . . . . . . . . . . . . . 3-47
D.2.20. klin_dgefa() — factors a double matrix by gaussian elimination. . . . . . . . . . 3-48
D.2.21. klin_dgedi() — computes the determinate and inverse of a matrix . . . . . . . . . 3-49
D.2.22. kblas_dscal() — scale a double vector . . . . . . . . . . . . . . . . . 3-50
D.2.23. kblas_daxpy() — add two double vectors while scaling one . . . . . . . . . . . 3-51
D.2.24. kblas_dswap() — swap two double vectors . . . . . . . . . . . . . . . . 3-51

E. Sequence Generation . . . . . . . . . . . . . . . . . . . . . . . . . 3-52
E.1. Introduction to Sequence Generation Functions . . . . . . . . . . . . . . . 3-52
E.2. Definitions of Sequence Generation Functions . . . . . . . . . . . . . . . . 3-52

E.2.1. kgen_expon() — generate a vector of exponential random numbers. . . . . . . . . . 3-52
E.2.2. kgen_gauss() — generate a vector of gaussian random numbers. . . . . . . . . . . 3-53

- ii -



Mathematical Services Program Services Volume I - Chapter 3

E.2.3. kgen_poisson() — generate a vector of Poisson random numbers. . . . . . . . . . 3-54
E.2.4. kgen_rayleigh() — generate a vector of Rayleigh random numbers. . . . . . . . . . 3-54
E.2.5. kgen_unif() — generate a vector of uniform random numbers. . . . . . . . . . . 3-55
E.2.6. kgen_linear() — generate a piecewise linear data set. . . . . . . . . . . . . . 3-56
E.2.7. kgen_sine() — generates a sinusoid data set . . . . . . . . . . . . . . . . 3-57
E.2.8. kgen_sinec() — generate a sinc data set. . . . . . . . . . . . . . . . . . 3-58

F. General Math Utilities . . . . . . . . . . . . . . . . . . . . . . . . . 3-59
F.1. Introduction to General Math Utilities . . . . . . . . . . . . . . . . . . . 3-59
F.2. Definitions of General Math Utilities . . . . . . . . . . . . . . . . . . . 3-60

F.2.1. kabs() — return the absolute value of a single argument. . . . . . . . . . . . . 3-60
F.2.2. kacos() — compute the arc cosine of the argument. . . . . . . . . . . . . . . 3-61
F.2.3. kacosh() — compute the arc hyperbolic cosine of the argument. . . . . . . . . . . 3-61
F.2.4. kasin() — compute the arc sine of the argument. . . . . . . . . . . . . . . . 3-62
F.2.5. kasinh() — compute the arc hyperbolic sine of the argument. . . . . . . . . . . . 3-62
F.2.6. katan() — compute the arc tangent of the argument. . . . . . . . . . . . . . . 3-63
F.2.7. katan2() — compute the arc tangent of y/x. . . . . . . . . . . . . . . . . 3-63
F.2.8. katanh() — compute the arc hyperbolic tangent of the argument. . . . . . . . . . . 3-64
F.2.9. kcbrt() — compute the cube root of the argument. . . . . . . . . . . . . . . 3-65
F.2.10. kceil() — compute the ceiling of the argument. . . . . . . . . . . . . . . . 3-65
F.2.11. kclear() — return an value with all bits clear . . . . . . . . . . . . . . . 3-66
F.2.12. kcos() — compute the double precision cosine of the argument. . . . . . . . . . . 3-66
F.2.13. kcosh() — compute the hyperbolic cosine of the argument. . . . . . . . . . . . 3-67
F.2.14. kdata_minmax() — find the min/max values for a region of data . . . . . . . . . . 3-67
F.2.15. kdegrees_radians() — return the radians given an input of degrees . . . . . . . . . 3-68
F.2.16. kerf() — compute the error function of the argument. . . . . . . . . . . . . . 3-68
F.2.17. kerfc() — compute the complement error function of the argument. . . . . . . . . . 3-69
F.2.18. kexp() — compute the exponential of the argument. . . . . . . . . . . . . . 3-70
F.2.19. kexp10() — compute the base 10 exponential function of the argument. . . . . . . . . 3-70
F.2.20. kexp2() — compute the base 2 exponential function of the argument. . . . . . . . . 3-71
F.2.21. kexpm1() — compute the exponential function minus 1 of the argument. . . . . . . . 3-71
F.2.22. kfabs() — compute the absolute value of the argument. . . . . . . . . . . . . 3-72
F.2.23. kfloor() — compute the floor of the argument. . . . . . . . . . . . . . . . 3-72
F.2.24. kfmod() — compute the floating point modulo of the arguments. . . . . . . . . . . 3-73
F.2.25. kfraction() — returns the fractional part of x . . . . . . . . . . . . . . . 3-73
F.2.26. kfrexp() — compute significand and exponent of argument . . . . . . . . . . . . 3-74
F.2.27. kgamma() — compute the gamma function of the argument. . . . . . . . . . . . 3-74
F.2.28. khypot() — compute the euclidean distance from the origin of the arguments. . . . . . . 3-75
F.2.29. kintercept() — interpolate the intercept . . . . . . . . . . . . . . . . . 3-75
F.2.30. kj0() — compute the Bessel function j0 of the argument. . . . . . . . . . . . . 3-76
F.2.31. kj1() — compute the Bessel function j1 of the argument. . . . . . . . . . . . . 3-77
F.2.32. kjn() — compute the general Bessel function jn of the argument. . . . . . . . . . . 3-77
F.2.33. kldexp() — computes x * 2**n . . . . . . . . . . . . . . . . . . . . 3-78
F.2.34. klog() — compute the natural logarithm of the argument. . . . . . . . . . . . . 3-78
F.2.35. klog10() — compute the base 10 logarithm of the argument. . . . . . . . . . . . 3-79
F.2.36. klog1p() — compute the logarithm of x+1 of the argument. . . . . . . . . . . . 3-79
F.2.37. klog2() — compute the base 2 logarithm of the argument. . . . . . . . . . . . . 3-80
F.2.38. klogical_not() — logical not (invert) function . . . . . . . . . . . . . . . 3-80
F.2.39. klogn() — base log n of argument . . . . . . . . . . . . . . . . . . . 3-81
F.2.40. kmax3() — return the greater of three values. . . . . . . . . . . . . . . . 3-81
F.2.41. kmax4() — return the greater of four values. . . . . . . . . . . . . . . . 3-82

- iii -



Mathematical Services Program Services Volume I - Chapter 3

F.2.42. kmin3() — return the lessor of three values. . . . . . . . . . . . . . . . . 3-82
F.2.43. kmin4() — return the lessor of four values. . . . . . . . . . . . . . . . . 3-83
F.2.44. kmodf() — compute the fractional component of the argument. . . . . . . . . . . 3-83
F.2.45. kneg() — negative function . . . . . . . . . . . . . . . . . . . . . 3-84
F.2.46. knot() — bitwise not (invert) function . . . . . . . . . . . . . . . . . . 3-84
F.2.47. kpow() — compute x to the y power. . . . . . . . . . . . . . . . . . . 3-85
F.2.48. kradians_degrees() — return the degrees given an input of radians . . . . . . . . . 3-85
F.2.49. krandom() — generate random number in range [0,2**31-1] . . . . . . . . . . . 3-86
F.2.50. krecip() — reciprocal function. . . . . . . . . . . . . . . . . . . . 3-86
F.2.51. kset() — return a value with all bit set . . . . . . . . . . . . . . . . . 3-87
F.2.52. kset_seed() — Set the seed to a randome number generator. . . . . . . . . . . . 3-87
F.2.53. ksin() — compute the double precision sine of the argument. . . . . . . . . . . . 3-88
F.2.54. ksinh() — compute the hyperbolic sine of the argument. . . . . . . . . . . . . 3-88
F.2.55. ksqrt() — compute the square root of the argument. . . . . . . . . . . . . . 3-89
F.2.56. ksrandom() — seed the krandom random number generator. . . . . . . . . . . . 3-89
F.2.57. ktan() — compute the double precision tangent of the argument. . . . . . . . . . . 3-90
F.2.58. ktanh() — compute the hyperbolic tangent of the argument. . . . . . . . . . . . 3-90
F.2.59. ktrunc() — truncate a number . . . . . . . . . . . . . . . . . . . . 3-91
F.2.60. ky0() — compute the Bessel function y0 of the argument. . . . . . . . . . . . . 3-91
F.2.61. ky1() — compute the Bessel function y1 of the argument. . . . . . . . . . . . . 3-92
F.2.62. kyn() — compute the general Bessel function yn of the argument. . . . . . . . . . 3-92
F.2.63. kfact() — compute factorial of input. . . . . . . . . . . . . . . . . . . 3-93
F.2.64. kimpulse() — evaluate impulse function. . . . . . . . . . . . . . . . . 3-93
F.2.65. kpowtwo() — determine if number is an integer power of two. . . . . . . . . . . 3-94
F.2.66. ksign() — evaluate sign function. . . . . . . . . . . . . . . . . . . . 3-94
F.2.67. ksinc() — sinc function which is . . . . . . . . . . . . . . . . . . . 3-95
F.2.68. ksqr() — return the square of a single value. . . . . . . . . . . . . . . . 3-95
F.2.69. kstep() — evaluate step function. . . . . . . . . . . . . . . . . . . . 3-96
F.2.70. kurng() — generate a uniform random number in the range [0:1]. . . . . . . . . . 3-96

G. General Data Processing Help Routines . . . . . . . . . . . . . . . . . . . 3-97
G.1. Introduction to Help Routines . . . . . . . . . . . . . . . . . . . . . 3-97
G.2. Definitions of Help Routines . . . . . . . . . . . . . . . . . . . . . 3-97

G.2.1. kdata_arith2_dcomplex() — perform 2-input double complex arithmetic . . . . . . . 3-97
G.2.2. kdata_arith2_double() — perform 2-input double precision arithmetic . . . . . . . . 3-98
G.2.3. kdata_arith2_long() — perform 2-input long arithmetic . . . . . . . . . . . . 3-99
G.2.4. kdata_arith2_ulong() — perform 2-input unsigned long arithmetic . . . . . . . . . 3-100
G.2.5. kdata_arith2_ubyte() — perform 2-input unsigned byte arithmetic . . . . . . . . . 3-101
G.2.6. kdata_fill() — fill memory with value by data type . . . . . . . . . . . . . . 3-102

- iv -



Program Services Volume I

Chapter 4

Expression Services

Copyright (c) AccuSoft Corporation, 2004. All rights reserved.





Chapter 4 - Expression Services

A. Introduction

Expression Services provides a symbolic mathematical expression parser implemented using Lex and YACC.
The Expression Services library contains routines to set variables, to parse mathematical expressions utilizing
variables that have been previously set, and to evaluate these expressions. The expression parser supports a
full variety of data types, including byte, unsigned byte, short, unsigned short, integer, unsigned integer, long,
unsigned long, float, double, complex, double complex, and string.

The expression parser is used by cantata visual language to handle the functions used with control loops, and
by the xpr ism plotting package to evaluate user-defined functions. It is also used by the image object (Please
see Program Sevices, Volume III, GUI & Visualization Services) to allow the user to display functions of map
columns such as red, green, and blue.

Any application that implements an interactive mathematical computation would find the functions provided
by Math Services invaluable. In such an application, the user might want to define a variable "i" with some
integer value, a variable "j" with another integer value, and then ask for the value of i*2+j. Math Services is
designed specifically to solve equations like this. Variables may be defined, set, and reset. Expressions using
those variables may be evaluated and a list of the current variables and their values may be obtained.

The expression parser can evaluate a variety of the mathematical functions provided by Math Services. There-
fore, mathematical functions such as "cos,""sin," and "tan" can all be evaluated by the expression parser. Note
that the expression parser is only capable of supporting those functions available in Math Services that (1) take
double-precision arguments, and (2) return a double-precision result. A table of the math functions supported
by the expression parser is as follows:

Supported Functions

Expression Brief description Function Called
sin double precision sine ksin

cos double precision cosine kcos

tan double precision tangent ktan

sinh hyperbolic sine ksinh

cosh hyperbolic cosine kcosh

tanh hyperbolic tangent ktanh

asin arc sine kasin

acos arc cosine kacos

atan arc tangent katan

atan2 two argument arc tangent katan2

sinc sinc function sin(x)/x ksinc

4-1



Expression Services Program Services Volume I - Chapter 4

Supported Functions

Expression Brief description Function Called
asinh arc hyperbolic sine kasinh

acosh arc hyperbolic cosine kacosh

atanh arc hyperbolic tangent katanh

ln natural logarithm klog

log2 base 2 logarithm klog2

log10 base 10 logarithm klog10

log1p logarithm of x+1 klog1p

exp exponential function kexp

exp2 base 2 exponential kexp2

exp10 base 10 exponential kexp10

expm1 exponential - 1 kexpm1

pow power function kpow

sqrt square root ksqr t

cbrt cube root kcbr t

abs absolute value kfabs

trunc truncate a number ktr unc

fmod floating point modulo kfmod

ldexp computes x * 2**n kldexp

floor floor kfloor

ceil ceiling kceil

fact factorial kfact

impulse impulse function kimpulse

step step function kstep

sign sign function ksign

erf error function kerf

erfc complement error function kerfc

gamma gamma function kgamma

j0 Bessel function j0 kj0

j1 Bessel function j1 kj1

y0 Bessel function y0 ky0

y1 Bessel function y1 ky1

hypot euclidean distance khypot

frexp compute significand and exponent of argument kfreexp

urng uniform random number generator kur ng

make_upper Convert a string to upper case kstr ing_upper

make_lower Convert a string to lower case kstr ing_lower

dirname Get the directory portion of a path kdir name

basename Get the filename portion of a path kbasename

extension Get the file extension of a filename or path internal function

getenv Get the value of an environment variable kgetenv

4-2



Expression Services Program Services Volume I - Chapter 4

Supported Functions

Expression Brief description Function Called
putenv Set an environment variable kputenv

The expression parser defines the scope of variables with an identification number, or ID. This ID is the first
parameter to all Expression Services routines and must be declared as type long. It is defined by the calling
routine to be any number that is deemed suitable. The value of the ID itself is not important, it is that it be
used consistently.

The ID number, when used properly by the calling routine, defines the domain of variables set and employed.
For instance, if all variables set by the user are to be considered global, the application program would use the
same ID for all calls to Expression Services. However, if a set of variable definitions and expression evalua-
tions were to be local to a particular module, a different ID must be used for calls to the expression parser in
that module. For instance, the same variables with different values might be employed by the user in three
different areas of an application, provided that the application used a different ID in each of the three areas.

All Expression Services routines are located in the kexpr library (libkexpr.a) of the bootstrap toolbox.

ALL programs that utilize these routines MUST include the statement:

#include "bootstrap.h"

B. Evaluation Utilities

The following sections details the evaluation routines that are part of the Expression Services library, kexpr. A
list of the evaluation routines then a description of each routine follow.

B.1. Simplified interface routines

The VisiQuest kexpr library contains two new APIs that make interfacing with the expression parser
more convenient. They are:

KexprResult *kexpr_eval(long id,
char *expr,
KexprResult *result,
char *error);

void kexpr_delete_result(KexprResult *result);

These functions make use of a new data structure, KexprResult, that records the result of expression evalua-
tion.

The first function, kexpr_eval, parses an input string in the context of the expression ID that is passed in the
first parameter, evaluates the compiled expression, and returns the result in a KexprResult structure. The caller
can pass in a pointer to a KexprResult structure, or NULL, in which case a new KexprResult structure will be
allocated and returned. By checking the ’status’ and ’type’ data values in the returned structure, the caller can
determine if the operation succeeded (status == TRUE) or failed (status == FALSE), and what the data type of

4-3



Expression Services Program Services Volume I - Chapter 4

the returned value is (KDOUBLE or KSTRING).

When the return value is a string, kexpr_eval allocates the necessary space in the KexprResult structure to hold
it. For convenience, the kexpr_delete_result function is provided to delete the data structure and its string
buffer, if necessary.

The kexpr routines described in below, hav e been added for VisiQuest.

• kexpr_eval() - evaluate an expression
• kexpr_delete_result() - delete a KexprResult struct

B.2. Routine Descriptions

B.2.1. kexpr_eval() — evaluate an expression

Synopsis
KexprResult *kexpr_eval(

long id,
char *string,
KexprResult *result,
char *error)

Input Arguments
id

the variable identifier. This specifies the variable context to use. Use KEXPR_GLOBAL_ID to use
the global variable context.

string
the string to be evaluated.

Output Arguments
result

holds the result of the evaluation. If this argument is NULL, a new KexprResult structure will be allo-
cated. The result can be one of two types, KSTRING or KDOUBLE. The result type is stored in
result->type. The result value is stored in the string_value or double_value members of result. Use the
function kexpr_delete_result to free a KexprResult structure. If the result is a string, this function will
allocate or re-allocate space in the KexprResult structure to hold it, if necessary.

error
If an error occurs the error message is stored in the error string and FALSE is returned in result->sta-
tus. The error string must be an array of at least 1024 characters. It is allocated by the calling routine.
If the error string has not been allocated by the calling routine (error is passed in as NULL) then the
error message is output with the kerror facility.

4-4



Expression Services Program Services Volume I - Chapter 4

Returns
Pointer to a KexprResult structure. If the result argument was not NULL, ’result’ is returned. Other-
wise a pointer to a newly allocated KexprResult structure is returned.

Description
This routine evaluates an input expression and stores the resulting value in a KexprResult structure.
Currently, the result can be one of two types, KSTRING or KDOUBLE. The result type is stored in
result->type. The result value is stored in result->string_value or result->double_value.

Examples
res = kexpr_eval(KEXPR_GLOBAL_ID, "x = 25", NULL, NULL);

res = kexpr_eval(KEXPR_GLOBAL_ID, "ln(x)", res, myerror);

Side Effects
Variable values may be changed by assignment statements.

B.2.2. kexpr_delete_result() — delete a KexprResult struct

Synopsis
void kexpr_delete_result(KexprResult *result)

Input Arguments
result

pointer to the structure to free

Returns
none

Description
This routine frees a KexprResult structure allocated by the kexpr_eval() function.

4-5



Expression Services Program Services Volume I - Chapter 4

B.3. Introduction to Generic Evaluation Utilities

Below is a list of all the evaluation utilities:

• kexpr_evaluate_generic() - evaluate an expression and return result using the desired data type
• kexpr_evaluate_byte() - evaluate char/byte expression
• kexpr_evaluate_ubyte() - evaluate unsigned byte/char expression
• kexpr_evaluate_short() - evaluate short expression
• kexpr_evaluate_ushort() - evaluate unsigned short expression
• kexpr_evaluate_int() - evaluate integer expression
• kexpr_evaluate_uint() - evaluate unsigned integer expression
• kexpr_evaluate_long() - evaluate long expression
• kexpr_evaluate_ulong() - evaluate unsigned long expression
• kexpr_evaluate_float() - evaluate float expression
• kexpr_evaluate_double() - evaluate double expression
• kexpr_evaluate_complex() - evaluate complex expression
• kexpr_evaluate_dcomplex() - evaluate double complex expression
• kexpr_evaluate_string() - evaluate string expression
• kexpr_substitute_exprs() - substitute expressions within a string

B.4. Definition of Evaluation Utilities

B.4.1. kexpr_evaluate_generic() — evaluate an expression and return result using the desired
data type

Synopsis
int kexpr_evaluate_generic(

long id,
char *string,
int type,
kaddr value,
char *error)

Input Arguments
id

the variable identifier.
string

the string to be evaluated.
type

the data type for the value pointer. Valid data types are: KBYTE, KUBYTE, KSHORT, KUSHORT,
KINT, KUINT, KLONG, KULONG, KFLOAT , KDOUBLE, KCOMPLEX, KDCOMPLEX,
KSTRING.

4-6



Expression Services Program Services Volume I - Chapter 4

Output Arguments
value

if no error occurred then the value of the expression is stored and True returned.
error

if an error occurred the error message is stored in the error string array and False returned. The error
string array must be at least a 1024 string array that is allocated by the calling routine. If the error
string array has not been allocated by the calling routine (error is passed in as NULL) then the error
message is output with the kerror facility.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This routine evaluates the input string and returns a generic value of the expression according to the
desired data type. See the kexpr_evaluate_{data type} for specific information about evaluation of an
expression for the desired data type.

Side Effects
Variable values may be changed by assignment statements.

B.4.2. kexpr_evaluate_byte() — evaluate char/byte expression

Synopsis
int kexpr_evaluate_byte(

long id,
char *string,
char *value,
char *error)

Input Arguments
id

the variable identifier.
string

the string to be evaluated.

Output Arguments
value

if no error occurred then the byte value of the expression is stored and TRUE returned.
error

4-7



Expression Services Program Services Volume I - Chapter 4

if an error occurred the error message is stored in the error string array and False returned. The error
string array must be at least a 1024 string array that is allocated by the calling routine. If the error
string array has not been allocated by the calling routine (error is passed in as NULL) then the error
message is output with the kerror facility.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This routine performs two functions: it sets character or byte variables and evaluates character or byte
expressions. It will return TRUE (1) on success, FALSE (0) on failure. If the routine fails for some
reason, an error message will be passed back in the error string. If the error string is NULL then the
error is output using the kerror facility.

The string passed in will indicate which function (variable or expression) kexpr_evaluate_byte() is to
perform, and the byte value returned will reflect this. Let us illustrate with an example. Suppose a
string of "i = 10" is passed to kexpr_evaluate_byte(). This indicates that the variable i is to be defined
and assigned the value of 10; the value returned will be 10. Later, suppose kexpr_evaluate_byte() is
called again with the same id, with a string of "i*2+5". Now, kexpr_evaluate_byte() will evaluate the
expression, using the value of i defined by the previous call - [10*2+5]. The value returned in this case
would be 25.

B.4.3. kexpr_evaluate_ubyte() — evaluate unsigned byte/char expression

Synopsis
int kexpr_evaluate_ubyte(

long id,
char *string,
unsigned char *value,
char *error)

Input Arguments
id

the variable identifier.
string

the string to be evaluated.

Output Arguments
value

if no error occurred then the unsigned byte/char value of the expression is stored and TRUE returned.

4-8



Expression Services Program Services Volume I - Chapter 4

error
if an error occurred the error message is stored in the error string array and False returned. The error
string array must be at least a 1024 string array that is allocated by the calling routine. If the error
string array has not been allocated by the calling routine (error is passed in as NULL) then the error
message is output with the kerror facility.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This routine performs two functions: it sets unsigned byte variables and evaluates unsigned byte
expressions. It will return TRUE (1) on success, FALSE (0) on failure. If the routine fails for some
reason, an error message will be passed back in the error string. If the error string is NULL then the
error is output using the kerror facility.

The string passed in will indicate which function (variable or expression) kexpr_evaluate_ubyte() is to
perform, and the ubyte value returned will reflect this. Let us illustrate with an example. Suppose a
string of "i = 10" is passed to kexpr_evaluate_ubyte(). This indicates that the variable i is to be defined
and assigned the value of 10; the value returned will be 10. Later, suppose kexpr_evaluate_ubyte() is
called again with the same id, with a string of "i*2+5". Now, kexpr_evaluate_ubyte() will evaluate the
expression, using the value of i defined by the previous call - [10*2+5]. The value returned in this case
would be 25.

B.4.4. kexpr_evaluate_short() — evaluate short expression

Synopsis
int kexpr_evaluate_short(

long id,
char *string,
short *value,
char *error)

Input Arguments
id

the variable identifier.
string

the string to be evaluated.

Output Arguments
value

4-9



Expression Services Program Services Volume I - Chapter 4

if no error occurred then the short value of the expression is stored and TRUE returned.
error

if an error occurred the error message is stored in the error string array and False returned. The error
string array must be at least a 1024 string array that is allocated by the calling routine. If the error
string array has not been allocated by the calling routine (error is passed in as NULL) then the error
message is output with the kerror facility.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This routine performs two functions: it sets short variables and evaluates short expressions. It will
return TRUE (1) on success, FALSE (0) on failure. If the routine fails for some reason, an error mes-
sage will be passed back in the error string. If the error string is NULL then the error is output using
the kerror facility.

The string passed in will indicate which function (variable or expression) kexpr_evaluate_short() is to
perform, and the short value returned will reflect this. Let us illustrate with an example. Suppose a
string of "i = 10" is passed to kexpr_evaluate_short(). This indicates that the variable i is to be defined
and assigned the value of 10; the value returned will be 10. Later, suppose kexpr_evaluate_short() is
called again with the same id, with a string of "i*2+5". Now, kexpr_evaluate_short() will evaluate the
expression, using the value of i defined by the previous call - [10*2+5]. The value returned in this case
would be 25.

B.4.5. kexpr_evaluate_ushort() — evaluate unsigned short expression

Synopsis
int kexpr_evaluate_ushort(

long id,
char *string,
unsigned short *value,
char *error)

Input Arguments
id

the variable identifier.
string

the string to be evaluated.

4-10



Expression Services Program Services Volume I - Chapter 4

Output Arguments
value

if no error occurred then the unsigned short value of the expression is stored and TRUE returned.
error

if an error occurred the error message is stored in the error string array and False returned. The error
string array must be at least a 1024 string array that is allocated by the calling routine. If the error
string array has not been allocated by the calling routine (error is passed in as NULL) then the error
message is output with the kerror facility.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This routine performs two functions: it sets unsigned short variables and evaluates unsigned short
expressions. It will return TRUE (1) on success, FALSE (0) on failure. If the routine fails for some
reason, an error message will be passed back in the error string. If the error string is NULL then the
error is output using the kerror facility.

The string passed in will indicate which function (variable or expression) kexpr_evaluate_ushort() is to
perform, and the unsigned short value returned will reflect this. Let us illustrate with an example.
Suppose a string of "i = 10" is passed to kexpr_evaluate_ushort(). This indicates that the variable i is
to be defined and assigned the value of 10; the value returned will be 10. Later, suppose kexpr_evalu-
ate_ushort() is called again with the same id, with a string of "i*2+5". Now, kexpr_evaluate_ushort()
will evaluate the expression, using the value of i defined by the previous call - [10*2+5]. The value
returned in this case would be 25.

B.4.6. kexpr_evaluate_int() — evaluate integer expression

Synopsis
int kexpr_evaluate_int(

long id,
char *string,
int *value,
char *error)

Input Arguments
id

the variable identifier.
string

the string to be evaluated.

4-11



Expression Services Program Services Volume I - Chapter 4

Output Arguments
value

if no error occurred then the integer value of the expression is stored and TRUE returned.
error

if an error occurred the error message is stored in the error string array and False returned. The error
string array must be at least a 1024 string array that is allocated by the calling routine. If the error
string array has not been allocated by the calling routine (error is passed in as NULL) then the error
message is output with the kerror facility.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This routine performs two functions: it sets integer variables and evaluates integer expressions. It will
return TRUE (1) on success, FALSE (0) on failure. If the routine fails for some reason, an error mes-
sage will be passed back in the error string. If the error string is NULL then the error is output using
the kerror facility.

The string passed in will indicate which function (variable or expression) kexpr_evaluate_int() is to
perform, and the integer value returned will reflect this. Let us illustrate with an example. Suppose a
string of "i = 10" is passed to kexpr_evaluate_int(). This indicates that the variable i is to be defined
and assigned the value of 10; the value returned will be 10. Later, suppose kexpr_evaluate_int() is
called again with the same id, with a string of "i*2+5". Now, kexpr_evaluate_int() will evaluate the
expression, using the value of i defined by the previous call - [10*2+5]. The value returned in this case
would be 25.

B.4.7. kexpr_evaluate_uint() — evaluate unsigned integer expression

Synopsis
int kexpr_evaluate_uint(

long id,
char *string,
unsigned int *value,
char *error)

Input Arguments
id

the variable identifier.
string

the string to be evaluated.

4-12



Expression Services Program Services Volume I - Chapter 4

Output Arguments
value

if no error occurred then the unsigned integer value of the expression is stored and TRUE returned.
error

if an error occurred the error message is stored in the error string array and False returned. The error
string array must be at least a 1024 string array that is allocated by the calling routine. If the error
string array has not been allocated by the calling routine (error is passed in as NULL) then the error
message is output with the kerror facility.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This routine performs two functions: it sets unsigned integer variables and evaluates unsigned integer
expressions. It will return TRUE (1) on success, FALSE (0) on failure. If the routine fails for some
reason, an error message will be passed back in the error string. If the error string is NULL then the
error is output using the kerror facility.

The string passed in will indicate which function (variable or expression) kexpr_evaluate_uint() is to
perform, and the unsigned integer value returned will reflect this. Let us illustrate with an example.
Suppose a string of "i = 10" is passed to kexpr_evaluate_uint(). This indicates that the variable i is to
be defined and assigned the value of 10; the value returned will be 10. Later, suppose kexpr_evalu-
ate_uint() is called again with the same id, with a string of "i*2+5". Now, kexpr_evaluate_uint() will
evaluate the expression, using the value of i defined by the previous call - [10*2+5]. The value
returned in this case would be 25.

B.4.8. kexpr_evaluate_long() — evaluate long expression

Synopsis
int kexpr_evaluate_long(

long id,
char *string,
long *value,
char *error)

Input Arguments
id

the variable identifier.
string

the string to be evaluated.

4-13



Expression Services Program Services Volume I - Chapter 4

Output Arguments
value

if no error occurred then the long value of the expression is stored and TRUE returned.
error

if an error occurred the error message is stored in the error string array and False returned. The error
string array must be at least a 1024 string array that is allocated by the calling routine. If the error
string array has not been allocated by the calling routine (error is passed in as NULL) then the error
message is output with the kerror facility.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This routine performs two functions: it sets long integer variables and evaluates long integer expres-
sions. It will return TRUE (1) on success, FALSE (0) on failure. If the routine fails for some reason,
an error message will be passed back in the error string. If the error string is NULL then the error is
output using the kerror facility.

The string passed in will indicate which function (variable or expression) kexpr_evaluate_long() is to
perform, and the long integer value returned will reflect this. Let us illustrate with an example. Sup-
pose a string of "i = 10" is passed to kexpr_evaluate_long(). This indicates that the variable i is to be
defined and assigned the value of 10; the value returned will be 10. Later, suppose kexpr_evalu-
ate_long() is called again with the same id, with a string of "i*2+5". Now, kexpr_evaluate_long() will
evaluate the expression, using the value of i defined by the previous call - [10*2+5]. The value
returned in this case would be 25.

B.4.9. kexpr_evaluate_ulong() — evaluate unsigned long expression

Synopsis
int kexpr_evaluate_ulong(

long id,
char *string,
unsigned long *value,
char *error)

Input Arguments
id

the variable identifier.
string

the string to be evaluated.

4-14



Expression Services Program Services Volume I - Chapter 4

Output Arguments
value

if no error occurred then the unsigned long value of the expression is stored and TRUE returned.
error

if an error occurred the error message is stored in the error string array and False returned. The error
string array must be at least a 1024 string array that is allocated by the calling routine. If the error
string array has not been allocated by the calling routine (error is passed in as NULL) then the error
message is output with the kerror facility.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This routine performs two functions: it sets unsigned long variables and evaluates unsigned long
expressions. It will return TRUE (1) on success, FALSE (0) on failure. If the routine fails for some
reason, an error message will be passed back in the error string. If the error string is NULL then the
error is output using the kerror facility.

The string passed in will indicate which function (variable or expression) kexpr_evaluate_ulong() is to
perform, and the unsigned long value returned will reflect this. Let us illustrate with an example. Sup-
pose a string of "i = 10" is passed to kexpr_evaluate_ulong(). This indicates that the variable i is to be
defined and assigned the value of 10; the value returned will be 10. Later, suppose kexpr_evalu-
ate_ulong() is called again with the same id, with a string of "i*2+5". Now, kexpr_evaluate_ulong()
will evaluate the expression, using the value of i defined by the previous call - [10*2+5]. The value
returned in this case would be 25.

B.4.10. kexpr_evaluate_float() — evaluate float expression

Synopsis
int kexpr_evaluate_float(

long id,
char *string,
float *value,
char *error)

Input Arguments
id

the variable identifier.
string

the string to be evaluated.

4-15



Expression Services Program Services Volume I - Chapter 4

Output Arguments
value

if no error occurred then the float value of the expression is stored and TRUE returned.
error

if an error occurred the error message is stored in the error string array and False returned. The error
string array must be at least a 1024 string array that is allocated by the calling routine. If the error
string array has not been allocated by the calling routine (error is passed in as NULL) then the error
message is output with the kerror facility.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This routine performs two functions: it sets floating point variables and evaluates floating point expres-
sions. It will return TRUE (1) on success, FALSE (0) on failure. If the routine fails for some reason,
an error message will be passed back in the error string. If the error string is NULL then the error is
output using the kerror facility.

The string passed in will indicate which function (variable or expression) kexpr_evaluate_float() is to
perform, and the float value returned will reflect this. Let us illustrate with an example. Suppose a
string of "x = 0.1" is passed to kexpr_evaluate_float(). This indicates that the variable x is to be
defined and assigned the value of 0.1; the value returned will be 0.1. Then, kexpr_evaluate_float() is
called again with a string of "y = 0.9"; now the value returned is 0.9. Finally, suppose kexpr_evalu-
ate_float() is with the with a string of "(x+y)/2". Now, kexpr_evaluate_float() will evaluate the expres-
sion, using the values of x and y defined by the previous call: [(0.1 + 0.9) / 2]. The value returned in
this case would be 0.5.

B.4.11. kexpr_evaluate_double() — evaluate double expression

Synopsis
int kexpr_evaluate_double(

long id,
char *string,
double *value,
char *error)

Input Arguments
id

the variable identifier.
string

the string to be evaluated.

4-16



Expression Services Program Services Volume I - Chapter 4

Output Arguments
value

if no error occurred then the double value of the expression is stored and TRUE returned.
error

if an error occurred the error message is stored in the error string array and False returned. The error
string array must be at least a 1024 string array that is allocated by the calling routine. If the error
string array has not been allocated by the calling routine (error is passed in as NULL) then the error
message is output with the kerror facility.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This routine performs two functions: it sets double variables and evaluates double expressions. It will
return TRUE (1) on success, FALSE (0) on failure. If the routine fails for some reason, an error mes-
sage will be passed back in the error string. If the error string is NULL then the error is output using
the kerror facility.

The string passed in will indicate which function (variable or expression) kexpr_evaluate_double() is
to perform, and the double value returned will reflect this. Let us illustrate with an example. Suppose
a string of "x = 0.1" is passed to kexpr_evaluate_double(). This indicates that the variable x is to be
defined and assigned the value of 0.1; the value returned will be 0.1. Then, kexpr_evaluate_double() is
called again with a string of "y = 0.9"; now the value returned is 0.9. Finally, suppose kexpr_evalu-
ate_double() is with the with a string of "(x+y)/2". Now, kexpr_evaluate_double() will evaluate the
expression, using the values of x and y defined by the previous call: [(0.1 + 0.9) / 2]. The value
returned in this case would be 0.5.

B.4.12. kexpr_evaluate_complex() — evaluate complex expression

Synopsis
int kexpr_evaluate_complex(

long id,
char *string,
kcomplex *value,
char *error)

Input Arguments
id

the variable identifier.
string

the string to be evaluated.

4-17



Expression Services Program Services Volume I - Chapter 4

Output Arguments
value

if no error occurred then the complex value of the expression is stored and TRUE returned.
error

if an error occurred the error message is stored in the error string array and False returned. The error
string array must be at least a 1024 string array that is allocated by the calling routine. If the error
string array has not been allocated by the calling routine (error is passed in as NULL) then the error
message is output with the kerror facility.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This routine performs two functions: it sets complex variables and evaluates complex expressions. It
will return TRUE (1) on success, FALSE (0) on failure. If the routine fails for some reason, an error
message will be passed back in the error string. If the error string is NULL then the error is output
using the kerror facility.

The string passed in will indicate which function (variable or expression) kexpr_evaluate_complex() is
to perform, and the complex value returned will reflect this. Let us illustrate with an example. Sup-
pose a string of "x = (0,1)" is passed to kexpr_evaluate_complex(). This indicates that the variable x is
to be defined and assigned the complex value of (0i,1j) the value returned will be in kcomplex structure
as floating point pairs of real = 0.0, and imaginary = 1.0. Then, kexpr_evaluate_complex() is called
again with a string of "y = (0,9)"; now the value returned is (0i,9j). Finally, suppose kexpr_evalu-
ate_complex() is with the with a string of "(x+y)/2". Now, kexpr_evaluate_complex() will evaluate the
expression, using the values of x and y defined by the previous call: [(0.1 + 0.9) / 2]. The value
returned in this case would be (0.5i,0.0j).

B.4.13. kexpr_evaluate_dcomplex() — evaluate double complex expression

Synopsis
int kexpr_evaluate_dcomplex(

long id,
char *string,
kdcomplex *value,
char *error)

Input Arguments
id

the variable identifier.
string

4-18



Expression Services Program Services Volume I - Chapter 4

the string to be evaluated.

Output Arguments
value

if no error occurred then the double complex value of the expression is stored and TRUE returned.
error

if an error occurred the error message is stored in the error string array and False returned. The error
string array must be at least a 1024 string array that is allocated by the calling routine. If the error
string array has not been allocated by the calling routine (error is passed in as NULL) then the error
message is output with the kerror facility.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This routine performs two functions: it sets double complex variables and evaluates double complex
expressions. It will return TRUE (1) on success, FALSE (0) on failure. If the routine fails for some
reason, an error message will be passed back in the error string. If the error string is NULL then the
error is output using the kerror facility.

The string passed in will indicate which function (variable or expression) kexpr_evaluate_dcomplex()
is to perform, and the double complex value returned will reflect this. Let us illustrate with an exam-
ple. Suppose a string of "x = (0,1)" is passed to kexpr_evaluate_dcomplex(). This indicates that the
variable x is to be defined and assigned the double complex value of (0i,1j) the value returned will be
in kcomplex structure as double pair of real = 0.0, and imaginary = 1.0. Then, kexpr_evaluate_dcom-
plex() is called again with a string of "y = (0,9)"; now the value returned is (0i,9j). Finally, suppose
kexpr_evaluate_dcomplex() is with the with a string of "(x+y)/2". Now, kexpr_evaluate_complex()
will evaluate the expression, using the values of x and y defined by the previous call: [(0.1 + 0.9) / 2].
The value returned in this case would be (0.5i,0.0j).

B.4.14. kexpr_evaluate_string() — evaluate string expression

Synopsis
int kexpr_evaluate_string(

long id,
char *string,
char *value,
char *error)

4-19



Expression Services Program Services Volume I - Chapter 4

Input Arguments
id

the variable identifier.
string

the string to be evaluated.

Output Arguments
value

if no error occurred then the integer value of the expression is stored and TRUE returned.
error

if an error occurred the error message is stored in the error string array and False returned. The error
string array must be at least a 1024 string array that is allocated by the calling routine. If the error
string array has not been allocated by the calling routine (error is passed in as NULL) then the error
message is output with the kerror facility.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This routine evaluates the string and returns a string value of the expression. It will return TRUE (1)
on success, FALSE (0) on failure. If the routine fails for some reason, an error message will be passed
back in the error string. If the error string is NULL then the error is output using the kerror facility.

The string passed in will indicate which function (variable or expression) kexpr_evaluate_string() is to
perform, and the string value returned will reflect this. Let us illustrate with an example. Suppose a
string of "x = 0.1" is passed to kexpr_evaluate_string(). This indicates that the variable x is to be
defined and assigned the value of 0.1; the value returned will be "0.1". Then, kexpr_evaluate_string()
is called again with a string of "y = 0.9"; now the value returned is "0.9". Finally, suppose kexpr_eval-
uate_string() is with the with a string of "(x+y)/2". Now, kexpr_evaluate_string() will evaluate the
expression, using the values of x and y defined by the previous call: [(0.1 + 0.9) / 2]. The value
returned in this case would be "0.5".

B.4.15. kexpr_substitute_exprs() — substitute expressions within a string

Synopsis
char *kexpr_substitute_exprs(char *str, long id)

Input Arguments
str

string to process
id

variable id. Use KEXPR_GLOBAL_ID to use the global variable context.

4-20



Expression Services Program Services Volume I - Chapter 4

Returns
result of substituting. This string should be freed by the caller.

Description
kexpr_substitute_exprs evaluates all embedded expressions within a string. These are of the form,
$name, ${name}, or ${name:fmt}.

Examples
result = kexpr_substitute_exprs("file.${i:04d}", KEXPR_GLOBAL_ID)

C. Miscellaneous Expression Utilities

Expression Services library, kexpr. A list of the miscellaneous routines then descriptions of each routine fol-
low.

C.1. Introduction to Miscellaneous Expression Routines

Below is a list of the miscellaneous expression routines:

• kexpr_variables_copy() - copies variables from one id to another
• kexpr_variables_list() - list variables associated with an id
• kexpr_parent_set() - set the parent variable list associated with an id
• kexpr_parent_unset() - unset the parent variable list associated with an id

C.2. Definitions of Miscellaneous Expression Utilities

C.2.1. kexpr_variables_copy() — copies variables from one id to another

Synopsis
int kexpr_variables_copy(

long from,
long to)

Input Arguments
from

the id variable whose list of current viariables will be copied the id.
to

the id variable to recieve the copied list of variables.

4-21



Expression Services Program Services Volume I - Chapter 4

Returns
returns TRUE (1) if the list of variables copied successfully, or FALSE (0) if the list of variables was
not copied.

Description
This routine copies the current list of variables from one particular id to another.

C.2.2. kexpr_variables_list() — list variables associated with an id

Synopsis
char **kexpr_variables_list(

long id,
int mode,
int *num)

Input Arguments
id

the id variable whose list of current variables will be extracted.
mode

list mode of what to be included in the list of variables. 1 means name and value, 0 means just value.

Output Arguments
num

number of variables in list or NULL if not needed

Returns
the list of variables or NULL upon failure

Description
This routines extracts the current list of variables for a particular id variable and returns a pointer to the
list of variables.

C.2.3. kexpr_parent_set() — set the parent variable list associated with an id

Synopsis
int kexpr_parent_set(

long id,
long parent)

4-22



Expression Services Program Services Volume I - Chapter 4

Input Arguments
id

the id variable (for the child) in which to set the parent variable list.
parent

the id variable for the parent.

Returns
TRUE (1) if the child’s parent variable list was set to that of the parent, FALSE (0) otherwise

Description
This routine sets the child alternate variable list specified by the parent id. This variable list will be
searched when a variable is not found in the current variable list. If the parent’s variable list "parent" is
set then the procedure is repeated until either the variable is found or no more variable lists are avail-
able to search. In short, this routine provides a method of expanding the scope of variables used.

C.2.4. kexpr_parent_unset() — unset the parent variable list associated with an id

Synopsis
int kexpr_parent_unset(

long id)

Input Arguments
id

the id variable (for the child) in which to unset the parent variable list.

Returns
TRUE (1) if the child’s parent list was successfully set to NULL, FALSE (0) otherwise.

Description
This routine unsets the parent variable list previously specified by kexpr_parent_set(). The result of a
call to this routine is that if a variable is not found in the variable list associated with the kexpr identi-
fier, then no other variable list will be checked. In short, this routine provides a method of forcing vari-
ables used to be "local".

4-23



Expression Services Program Services Volume I - Chapter 4

This page left intentionally blank

4-24



Table of Contents

A. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-1
B. Evaluation Utilities . . . . . . . . . . . . . . . . . . . . . . . . . .  4-3

B.1. Simplified interface routines . . . . . . . . . . . . . . . . . . . . .  4-3
B.2. Routine Descriptions . . . . . . . . . . . . . . . . . . . . . . . .  4-4

B.2.1. kexpr_eval() — evaluate an expression . . . . . . . . . . . . . . . . .  4-4
B.2.2. kexpr_delete_result() — delete a KexprResult struct . . . . . . . . . . . . .  4-5

B.3. Introduction to Generic Evaluation Utilities . . . . . . . . . . . . . . . . .  4-6
B.4. Definition of Evaluation Utilities . . . . . . . . . . . . . . . . . . . .  4-6

B.4.1. kexpr_evaluate_generic() — evaluate an expression and return result using the desired data
type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-6

B.4.2. kexpr_evaluate_byte() — evaluate char/byte expression . . . . . . . . . . . .  4-7
B.4.3. kexpr_evaluate_ubyte() — evaluate unsigned byte/char expression . . . . . . . . .  4-8
B.4.4. kexpr_evaluate_short() — evaluate short expression . . . . . . . . . . . . .  4-9
B.4.5. kexpr_evaluate_ushort() — evaluate unsigned short expression . . . . . . . . . . 4-10
B.4.6. kexpr_evaluate_int() — evaluate integer expression . . . . . . . . . . . . . 4-11
B.4.7. kexpr_evaluate_uint() — evaluate unsigned integer expression . . . . . . . . . . 4-12
B.4.8. kexpr_evaluate_long() — evaluate long expression . . . . . . . . . . . . . . 4-13
B.4.9. kexpr_evaluate_ulong() — evaluate unsigned long expression . . . . . . . . . . 4-14
B.4.10. kexpr_evaluate_float() — evaluate float expression . . . . . . . . . . . . . 4-15
B.4.11. kexpr_evaluate_double() — evaluate double expression . . . . . . . . . . . . 4-16
B.4.12. kexpr_evaluate_complex() — evaluate complex expression . . . . . . . . . . . 4-17
B.4.13. kexpr_evaluate_dcomplex() — evaluate double complex expression . . . . . . . . 4-18
B.4.14. kexpr_evaluate_string() — evaluate string expression . . . . . . . . . . . . 4-19
B.4.15. kexpr_substitute_exprs() — substitute expressions within a string . . . . . . . . . 4-20

C. Miscellaneous Expression Utilities . . . . . . . . . . . . . . . . . . . . . 4-21
C.1. Introduction to Miscellaneous Expression Routines . . . . . . . . . . . . . . 4-21
C.2. Definitions of Miscellaneous Expression Utilities . . . . . . . . . . . . . . . 4-21

C.2.1. kexpr_variables_copy() — copies variables from one id to another . . . . . . . . . 4-21
C.2.2. kexpr_variables_list() — list variables associated with an id . . . . . . . . . . . 4-22
C.2.3. kexpr_parent_set() — set the parent variable list associated with an id . . . . . . . . 4-22
C.2.4. kexpr_parent_unset() — unset the parent variable list associated with an id . . . . . . 4-23

- i -



Expression Services Program Services Volume I - Chapter 4

This page left intentionally blank

- ii -



Program Services Volume I

Chapter 5

Operating System Services

Copyright (c) AccuSoft Corporation, 2004. All rights reserved.





Chapter 5 - Operating System Services

A. Introduction

Operating System Services isolates VisiQuest from the operating system and extends the capabilities of
the operating system. All applications that use Operating System Services are able to transparently support
distributed computing. Operating System Services provides you with a powerful Application Programming
Interface (API) which hides the details of data transport, distributed computing, and process execution. The
API is modeled after UNIX function calls in order for existing applications to be quickly and easily converted
over for distribution.

The distributed computing mechanism implements both a process abstraction and a transport abstraction that
unite a network of machines in order to render transparent the location of data and compute resources to
VisiQuest applications. Operating System Services has the ability to treat the various data transports
(such as shared memory, sockets or files) as single transport objects. Thus, all software that uses Operating
System Services is isolated from specific, operating system-dependent transport mechanisms.

phantomd is the distributed computing daemon program utility. It is responsible for VisiQuest dis-
tributed interprocess communication and managing remote data transport.

Operators are executed locally or remotely to efficiently use a heterogeneous network of machines. cantata
utilizes the phantomd to negotiate the remote data transport and spawn processes on remote machines. The
visual programmer assigns operators to specific machines interactively to either optimize execution speed or
utilize specific hardware. The remote machines do not need full VisiQuest installations, just a running
phantomd.

The following sections provide information to customize your environment, and to use the VisiQuest
software more efficiently.

B. Data Transports

Data Transport refers to the method used to transfer data between processes. The objective of providing a
variety of data transports is to allow the user to use the most efficient method of transferring data from one pro-
cess to another without encumbering the programmer with the vagaries of the different interfaces to the differ-
ent data transport mechanisms.

Data Transports simplify the interface to the data transport method by making the interface the same as that
used with UNIX files. This approach also provides portability by allowing applications written under VisiQuest
 to transparently support data transport mechanisms that may not be available on all machines.

Data Transports can be local or remote. Local transport mechanisms include files, shared memory, memory
mapped files, pipes, streams, and UNIX domain sockets. The only remote transport mechanism supported by
VisiQuest is TCP/IP sockets. With the use of the TCP/IP socket remote data transport, the ability to get

5-1



Operating System Services Program Services Volume I - Chapter 5

input from and output to remote machines is implemented, and distributed processing is made possible.

Data Transports may be permanent or non-permanent (persistent or non-persistent). Permanent data transports
store data to disk, while non-permanent data transports keep the data in a transient state as it is moved from the
source to the destination.

Control over which data transports are used is offered within the cantata visual language. The data transport
used may also be controlled by individual command line executions of VisiQuest programs.

The transport mechanisms that are supported by VisiQuest are:

file:
Standard UNIX File (local transport / permanent storage)

shm:
Shared Memory (local transport / permanent storage)

mmap:
Memory Mapped Files (permanent storage)

pipe:
Standard Pipes (local transport / no permanent storage)

stream:
Standard Stream (FIFO) (local transport / no permanent storage)

socket:
UNIX domain socket transport (local transport / no permanent storage)

tcpip
TCP/IP socket transport (network transport / no permanent storage)

The default data transport type is "file." The default can be changed to another permanent storage type by set-
ting the environment variable KHOROS_TEMPFILE to "file" "shm", or "mmap". You cannot set the default
data transport type using KHOROS_TEMPFILE to pipe, stream, socket, or tcpip because these are non-perma-
nent data transports. Set the variable to "file" to return to the original default.

%setenv KHOROS_TEMPFILE file
%setenv KHOROS_TEMPFILE shm
%setenv KHOROS_TEMPFILE mmap

Your computer architecture will dictate which, if any, of these transport mechanisms are available for your use.
Note that some Data Transports may not be available on some computer architectures.

5-2



Operating System Services Program Services Volume I - Chapter 5

B.1. Transport Buffering

There are three types of transport buffering models in VisiQuest. The first is for file based transports,
the second is for stream based transports, and the third is for memory based transports.

B.1.1. File Buffering

File buffering is used by the file transport. With the file transport, the data is persistent. The file data transport
reads data from the file into the transport buffer. When writing, when the transport buffer gets full the buffer is
written back to the file. This is fairly straightforward and is well modeled in UNIX via the FILE utilities pro-
vided by libc (ie. fopen()). However, in UNIX you cannot implicitly buffer data when reading and writing to a
file. The appliction must explicitly flush the data when switching between read/write operations.

In VisiQuest the file buffering has been extended to deal with this intricacy. So the application is free to
call read/write operations in any order. This is implemented within the transport buffer by having a validity
region which indicates the validity of the data residing in the transport buffer. This enhancement allows us to to
get better buffering speeds than available with Sun’s FILE buffering (measured using quantify).

B.1.2. Stream Buffering

Stream buffering is used by the stream, tcpip, socket and pipe transports. It was developed specifically to
address compilications involved with attempting to map stream based transports into file based transports. The
first complication is due to the fact that stream based transports are not persistent; therefore, after data is read
or written it is lost. The second complication is that streams will block when reading or writing too much data.
This complicates transports buffering code attempting to generically interface to a transport. The notion of
stream buffering was developed to formalize the interfacing to streams and to address these problems.

With stream buffering, as data is read or written the transport buffer will accomodate this by dynamically grow
to fit all data read or written to date. Seeking on a stream is accomplished by reading or writing to the desired
position. One limitation is that the transport buffer is not paged. For example, when streaming a 100 MB file
the buffer will grow to 100 MB and then write the data on close.

To override this behavior, applications must open the transport using KOPEN_STREAM, which indicates that
persistent is not desired. This causes stream based transports to write the buffer when filled and discard the
buffer on read. However, if an application isn’t re-reading the data, re-writing the data, or seeking to a previ-
ously position this is much more efficient. Both Polymorphic Data Services and Streaming Data Services set
KOPEN_STREAM for writing. Streaming data services additionally sets KOPEN_STREAM for reading. For
Polymorphic Data Services, reading will be stream buffered when using kpds_open_input_object() on a stream
based transport.

5-3



Operating System Services Program Services Volume I - Chapter 5

B.1.3. Memory Buffering

Memory buffering is used for memory based transports including Shared Memory (shm) and Memory
Mapped Files (mmap). For these transports, the file buffering mechanism also works. However, file buffering
is not geared to taking full advantage of the fact that the entire content of the transport is already available in
memory. Therefore, to take full advantage of memory based transports, the buffering model makes the trans-
port buffer and the transport’s memory one and the same. In this manner, memory buffering the allows the
memory based transport to read and write directly into memory.

The memory based transports’ read and write methods will only be called when trying to read past the end of
the available memory. It is then up to the memory based transport to either indicate EOF has been reached or
resize the memory segment making more memory to buffer data to. Since the operation of resizing the mem-
ory segment is very expensive, both shm and mmap resize the memory segment by multiplying the requested
size by 25% and rounding up to the nearest page size. Stream buffering also resizes the transport buffer round-
ing up to the nearest page size.

To accomodate the ability to have transport buffers be bigger than the data actually buffered, the transport
validity has been split into the actual buffer size vs. validity region within the buffer.

B.2. Data Transport Identifier Syntax

If no data transport mechanism is explicitly specified, the VisiQuest data transport routines will use
default data transport (normally this is the file data transport, but it can be set with the KHOROS_TEMPFILE
environment variable, see above). If you would like to dictate the data transport mechanism of a particular
process individually, then you must follow the transport specification syntax. The following syntax used to
specify a data transport mechanism:

identifier=token

The identifier is one of the data transport mechanisms listed earlier, such as "shm," "file," or "socket."

The token is an identifier for that transport. For a file, it is simply the filename. For shared memory, it is the
shared memory key. For a pipe, it is the input & output file descriptors, as in "pipe=[3,4]." For a socket, it is
the number of the socket, as in "socket=5430."

C. Distributed Processing

Distributed Processing means the ability to specify remote machines on which to execute individual VisiQuest
 programs. The capability to do distributed processing is implemented via employment of the remote
data transport mechanisms. With distributed processing, one needs a method to execute jobs remotely, as well
as a mechanism to transport data back and forth from the remote machine. A remote daemon, phantomd, is
started on the remote machine, takes requests to execute a job, and transports data involved with that job using
the remote data transport mechanisms.

The Distributed Processing capability is utilized either either from the cantata visual language, or from indi-
vidual command line executions of VisiQuest programs.

5-4



Operating System Services Program Services Volume I - Chapter 5

C.1. Data Transport Identifier Syntax for Distributed Processing

There are two conventions which dictate what type of data transport mechanism is to be used. If no data
transport mechanism is explicitly specified, the VisiQuest transport and distribution routines will nego-
tiate the transport mechanism automatically. Howev er, if you would like to dictate the data transport mecha-
nism yourself, then you must follow the transport specification syntax. The following syntax used to specify a
data transport mechanism:

identifier=token

The identifier is one of the data transport mechanisms listed earlier, such as "shm," "file," or "socket."

The token is an identifier for that transport. For a file, it is simply the filename. For shared memory, it is the
shared memory key. For a pipe, it is the input & output file descriptors, as in "pipe=[3,4]." For a socket, it is
the number of the socket, as in "socket=5430."

The second convention is used to specify a remote machine for distributed processing; it specifies where a
token is located. For instance, if you want to retrieve a regular file from a remote machine, then the syntax is:

file=filename@machine

or

filename@machine

This causes the VisiQuest I/O routines to look thru the internal list of data transport mechanisms and select the
first available remote transport mechanism. In the currently available list, this will be "socket". If a specific
remote transport mechanism is desired, then the following should be used:

filename@socket=machine

Multiple machine routing is also allowed. This means that if you cannot directly access a file from your local
machine, but you can access the file via the machine "gateway", then you may use the following syntax to
retrieve the file:

filename@machine@gateway

Almost all combinations are allowed, but it is important to remember that local transport mechanisms CAN-
NOT be used with distributed processing. For instance, the following specification will result in an error:

filename@stream=machine

5-5



Operating System Services Program Services Volume I - Chapter 5

D. Data Types and Casting

D.1. Introduction to Data Type and Casting Utilities

These general utilities are for determining data size and casting between datatypes. They are used the the
transports to correctly generate and read files generated on a number of different machines. The functions here
include:

• kdata_size() - return the size of a khoros data type
• kdatatype_cast_process() - cast type for processing
• kdatatype_to_define() - takes the string version of the data type and returns the #define value.
• kdefine_to_datatype() - takes the #define data type value and returns the string value
• kdatatype_cast_output() - recommend an appropriate common data type for processing

D.2. Definitions of Data Transport IPC Utilities

D.2.1. kdata_size() — return the size of a khoros data type

Synopsis
size_t
kdata_size(int datatype)

Input Arguments
datatype

the data type for which the

size is being requested.

Returns
The size of the data type specified by the datatype input argument. If the datatype is not known, this
function returns 0.

Description
This function returns the size of an element of data of a certain data type on the current machine. For
example, this routine will return sizeof(float) if kdata_size(KFLOAT) is called.

Invoking this call:

kmach_sizeof(kmach_type(NULL),datatype)

will result in exactly the same information.

5-6



Operating System Services Program Services Volume I - Chapter 5

Restrictions
For the bit case, which really should return 1/8, this function returns 1.

D.2.2. kdatatype_cast_process() — cast type for processing

Synopsis
int kdatatype_cast_process(

int type1,
int type2,
int return_values)

Input Arguments
type1

first data type to be used in the determination.
type2

second data type to be used in the determination.
return_values

the OR’ed return values that are acceptable

Returns
The recommended data type.

Description
The routine is used to recommend an appropriate common data type to be used as when processing
data. What this routine does is examine the input data types for precision, sign, range, etc. and recom-
mends one of four data types that can be used with minimal risk of destroying data integrity if the vari-
able return_values is KANYTYPE. The values are KLONG, KULONG, KDOUBLE, or KDCOM-
PLEX. If the variable return_values is not KANYTYPE this routine will return only one of the data
types specified. To specify more than one posible return value you must OR the data types together:

proc_type = kdatatype_cast_process(type1, type2,
KUBYTE | KDOUBLE);

Any number of data types can be specified. This routine will always try to return the data type that
will not destroy data integrity. Howev er, it will never return a data type not specified in return_values.
It is up to the programmer to ensure that the data type specified by the return value either preserves the
data integrity or handles the loss in data integrity properly.

For example, you would lose data integrity if you called this routine in the following manner :

5-7



Operating System Services Program Services Volume I - Chapter 5

proc_type = kdatatype_cast_process(KUBYTE, KSHORT,
KUBYTE | KUSHORT);

Return_values = KUBYTE | KUSHORT, the returned value will be KUSHORT, but since KSHORT
means that negative numbers are posible the data processing the data as KUSHORT will not not reflect
this properly. The call should OR KINT or KLONG data type so that negative numbers are processed
as negative numbers. However, as stated above it is up to the programmer to specify the return_values
so that data integrity is preserved or handles this lose in there processing routine correctly.

If either of the types is KSTRING or KSTRUCT than KNONE is returned.

D.2.3. kdatatype_to_define() — takes the string version of the data type and returns the #define
value.

Synopsis
int kdatatype_to_define(

char *datatype)

Input Arguments
datatype

string giving name of data type

Returns
The integer value of the data type or KUNDEFINED if not a datatype

Description
This routine returns the integer value of the string data type passed in. Here is a table of string data
types and abbreviations of string data types that can be used and the return values.

Data Type Return Value
---------------------------------------------------

bit KBIT
byte KBYTE
unsigned byte KUBYTE
ubyte KUBYTE
short KSHORT
unsigned short KUSHORT
ushort KUSHORT
int KINT
integer KINT
unsigned int KUINT

5-8



Operating System Services Program Services Volume I - Chapter 5

unsigned integer KUINT
uint KUINT
long KLONG
unsigned long KULONG
ulong KULONG
float KFLOAT
double KDOUBLE
complex KCOMPLEX
double complex KDCOMPLEX
dcomplex KDCOMPLEX
string KSTRING
struct KSTRUCT
logical KLOGICAL
datum KDATUM

D.2.4. kdefine_to_datatype() — takes the #define data type value and returns the string value

Synopsis
char *kdefine_to_datatype(

int type)

Input Arguments
type

#define of data type

Returns
string that represents data type

Description
This routine returns a string value corresponding to the #define data type passed in. Here is a table of
types that can be used and the return values.

Data Type Return Value
---------------------------------------------------

KBIT bit
KBYTE byte
KUBYTE unsigned byte
KSHORT short
KUSHORT unsigned short
KINT integer

5-9



Operating System Services Program Services Volume I - Chapter 5

KUINT unsigned integer
KLONG long
KULONG unsigned long
KFLOAT float
KDOUBLE double
KCOMPLEX complex
KDCOMPLEX double complex
KSTRING string
KSTRUCT struct
KLOGICAL logical
KDATUM datum

D.2.5. kdatatype_cast_output() — recommend an appropriate common data type for processing

Synopsis
int kdatatype_cast_output(

int type1,
int type2)

Input Arguments
type1

first data type to be used in the determination.
type2

second data type to be used in the determination.

Returns
The recommended data type.

Description
The routine is used to recommend an appropriate common data type to be used as when outputing data
that is the result of calculations involving data of the types indicated in the input arguments. What this
routine does is examine the input data types for precision, sign, range, etc. and recommends one of the
legal data types that can be used with minimal risk of destroying data integrity.

5-10



Operating System Services Program Services Volume I - Chapter 5

E. Reading to and Writing from a Data Transport

E.1. Introduction to Data Transport I/O Utilities

These general utilities are for reading and writing from a stream. Data types that are supported include byte,
short, int, long, float, double, complex, complex double, unsigned byte, unsigned short, unsigned int, and
unsigned long. These routines automatically convert from one machine dependency to another. The functions
here include:

• kread() - read input from a transport descriptor
• kread_bit() - read an array of bits
• kread_byte() - read an array of signed bytes
• kread_complex() - read an array of complex
• kread_dcomplex() - read an array of double complex
• kread_double() - read an array of doubles
• kread_float() - read an array of floats
• kread_generic() - read in any data type.
• kread_int() - read an array of signed ints
• kread_long() - read an array of signed longs
• kread_short() - read an array of signed shorts
• kread_string() - read an array of strings
• kread_ubyte() - read an array of unsigned bytes
• kread_uint() - read an array of unsigned ints
• kread_ulong() - read an array of unsigned longs
• kread_ushort() - read an array of unsigned shorts
• kread_array() - read in a variable array
• kread_pointer() - read in a variable array
• kread_struct() - read in a single structure
• kparse_bit() - read an array of bits
• kparse_byte() - read an array of signed bytes
• kparse_complex() - read an array of complex
• kparse_dcomplex() - read an array of double complex
• kparse_double() - read an array of doubles
• kparse_float() - read an array of floats
• kparse_generic() - read in any data type.
• kparse_int() - read an array of signed ints
• kparse_long() - read an array of signed longs
• kparse_short() - read an array of signed shorts
• kparse_string() - read an array of strings
• kparse_ubyte() - read an array of unsigned bytes
• kparse_uint() - read an array of unsigned ints
• kparse_ulong() - read an array of unsigned longs
• kparse_ushort() - read an array of unsigned shorts
• kparse_array() - read in a variable array
• kparse_pointer() - read in a variable array
• kparse_struct() - read in a single structure
• kwrite() - write output to a transport descriptor
• kwrite_bit() - write an array of bits

5-11



Operating System Services Program Services Volume I - Chapter 5

• kwrite_byte() - write an array of signed bytes
• kwrite_complex() - write an array of complex
• kwrite_dcomplex() - write an array of double complex
• kwrite_double() - write an array of doubles
• kwrite_float() - write an array of floats
• kwrite_generic() - write an array in any data type.
• kwrite_int() - write an array of signed ints
• kwrite_long() - write an array of signed longs
• kwrite_short() - write an array of signed shorts
• kwrite_string() - write an array of strings
• kwrite_ubyte() - write an array of unsigned bytes
• kwrite_uint() - write an array of unsigned ints
• kwrite_ulong() - write an array of unsigned longs
• kwrite_ushort() - write an array of unsigned shorts
• kwrite_array() - write a variable array
• kwrite_pointer() - write a variable array
• kwrite_struct() - write a single structure
• kprint_bit() - write an array of bits
• kprint_byte() - write an array of signed bytes
• kprint_complex() - write an array of complex
• kprint_dcomplex() - write an array of double complex
• kprint_double() - write an array of doubles
• kprint_float() - write an array of floats
• kprint_generic() - write an array in any data type.
• kprint_int() - write an array of signed ints
• kprint_long() - write an array of signed longs
• kprint_short() - write an array of signed shorts
• kprint_string() - write an array of strings
• kprint_ubyte() - write an array of unsigned bytes
• kprint_uint() - write an array of unsigned ints
• kprint_ulong() - write an array of unsigned longs
• kprint_ushort() - write an array of unsigned shorts
• kprint_array() - write a variable array
• kprint_pointer() - write a variable array
• kprint_struct() - write a single structure

E.2. Definitions of Data Transport Read Utilities

E.2.1. kread() — read input from a transport descriptor

Synopsis
ssize_t kread(

int id,
kaddr buf,
size_t nbytes)

5-12



Operating System Services Program Services Volume I - Chapter 5

Input Arguments
id

the file id to be read which was opened earlier with kopen().

buf
the buffer to read the data into

nbytes
the number of bytes to be read

Returns
the number of bytes read, 0 when end of file is encountered, or -1 when an error is encountered.

Description
This function is a replacement for the system "read" call. The only difference is that kread() supports
more than just files, it supports other data transports as well, such as shared memory, pipes, files, etc.

The routine will read nbytes into the character array "buf". If not all nbytes can be read then the
kread() routine returns the number of bytes actually read.

E.2.2. kread_bit() — read an array of bits

Synopsis
ssize_t kread_bit(

int id,
unsigned char *data,
size_t num)

Input Arguments
id

the file id to be read which was opened earlier with kopen().
num

the number of bits to be read into the data array.

Output Arguments
data

the char array in which the data will be stored.

Returns
the number of bits read

5-13



Operating System Services Program Services Volume I - Chapter 5

Description
This module is used to read an array of bits. The data will need to contain enough memory to store
"num" bits.

(note: bits are machine independent and therefore require no conversion. This routine is included to
complete the set of read utilities)

E.2.3. kread_byte() — read an array of signed bytes

Synopsis
ssize_t kread_byte(

int id,
char *data,
size_t num)

Input Arguments
id

the file id to be read which was opened earlier with kopen().
num

the number of signed bytes to be read into the data array.

Output Arguments
data

the char array in which the data will be stored.

Returns
the number of signed bytes read

Description
This module is used to read an array of signed bytes. The data will need to contain enough memory to
store "num" signed bytes.

(note: bytes are machine independent and therefore require no conversion. This routine is included to
complete the set of read utilities)

5-14



Operating System Services Program Services Volume I - Chapter 5

E.2.4. kread_complex() — read an array of complex

Synopsis
ssize_t kread_complex(

int id,
kcomplex *data,
size_t num)

Input Arguments
id

the file id to be read which was opened earlier with kopen().
num

the number of complex to be read into the data array.

Output Arguments
data

the kcomplex array in which the data will be stored.

Returns
the number of complex read

Description
This module is used to read an array of complex numbers. The data will need to contain enough mem-
ory to store "num" complex structures.

E.2.5. kread_dcomplex() — read an array of double complex

Synopsis
ssize_t kread_dcomplex(

int id,
kdcomplex *data,
size_t num)

Input Arguments
id

the file id to be read which was opened earlier with kopen().
num

5-15



Operating System Services Program Services Volume I - Chapter 5

the number of double complex to be read into the data array.

Output Arguments
data

the kdcomplex array in which the data will be stored.

Returns
the number of double complex read

Description
This module is used to read an array of double complex numbers. The data will need to contain
enough memory to store "num" double complex structures.

E.2.6. kread_double() — read an array of doubles

Synopsis
ssize_t kread_double(

int id,
double *data,
size_t num)

Input Arguments
id

the file id to be read which was opened earlier with kopen().
num

the number of doubles to be read into the data array.

Output Arguments
data

the double array in which the data will be stored.

Returns
the number of doubles read

Description
This module is used to read an array of doubles. The data will need to contain enough memory to
store "num" doubles.

5-16



Operating System Services Program Services Volume I - Chapter 5

E.2.7. kread_float() — read an array of floats

Synopsis
ssize_t kread_float(

int id,
float *data,
size_t num)

Input Arguments
id

the file id to be read which was opened earlier with kopen().
num

the number of floats to be read into the data array.

Output Arguments
data

the float array in which the data will be stored.

Returns
the number of floats read

Description
This module is used to read an array of floats. The data will need to contain enough memory to store
"num" floats.

E.2.8. kread_generic() — read in any data type.

Synopsis
ssize_t
kread_generic(

int id,
kaddr data,
size_t num,
int type)

Input Arguments
id

the file id to be read which was opened earlier with kopen().
num

5-17



Operating System Services Program Services Volume I - Chapter 5

the number of data points to be read into the data array.
type

data type.

Output Arguments
data

the kaddr array in which the data will be stored.

Returns
the number of data points read on success. -1 otherwise.

Description
This module is used to read an array of data from a transport. The data will need to contain enough
memory to store "num" data points of the specified type.

E.2.9. kread_int() — read an array of signed ints

Synopsis
ssize_t kread_int(

int id,
int *data,
size_t num)

Input Arguments
id

the file id to be read which was opened earlier with kopen().
num

the number of signed integers to be read into the data array.

Output Arguments
data

the integer array in which the data will be stored.

Returns
the number of integers read

Description
This module is used to read an array of signed ints. The data will need to contain enough memory to
store "num" signed ints.

5-18



Operating System Services Program Services Volume I - Chapter 5

E.2.10. kread_long() — read an array of signed longs

Synopsis
ssize_t kread_long(

int id,
long *data,
size_t num)

Input Arguments
id

the file id to be read which was opened earlier with kopen().
num

the number of signed longs to be read into the data array.

Output Arguments
data

the long array in which the data will be stored.

Returns
the number of longs read

Description
This module is used to read an array of signed longs. The data will need to contain enough memory to
store "num" signed longs.

E.2.11. kread_short() — read an array of signed shorts

Synopsis
ssize_t kread_short(

int id,
short *data,
size_t num)

Input Arguments
id

the file id to be read which was opened earlier with kopen().
num

5-19



Operating System Services Program Services Volume I - Chapter 5

the number of signed shorts to be read into the data array.

Output Arguments
data

the short array in which the data will be stored.

Returns
the number of short integers read

Description
This module is used to read an array of signed shorts. The data will need to contain enough memory to
store "num" signed shorts.

E.2.12. kread_string() — read an array of strings

Synopsis
ssize_t kread_string(

int id,
kstring *data,
size_t num)

Input Arguments
id

the file id to be read which was opened earlier with kopen().
num

the number of string to be read into the data array.

Output Arguments
data

the kstring array in which the data will be stored.

Returns
the number of strings read

Description
This module is used to read an array of strings. The data will need to contain enough memory to store
"num" string pointers. The memory that the strings are stored in will be allocated by kread_string.

Where "kstring" is really a typedef for a character pointer "char *". So an array of kstring is really an
array of character pointers.

5-20



Operating System Services Program Services Volume I - Chapter 5

Side Effects
the strings that are returned should be freed by the programmer

E.2.13. kread_ubyte() — read an array of unsigned bytes

Synopsis
ssize_t kread_ubyte(

int id,
unsigned char *data,
size_t num)

Input Arguments
id

the file id to be read which was opened earlier with kopen().
num

the number of unsigned bytes to be read into the data array.

Output Arguments
data

the unsigned char array in which the data will be stored.

Returns
the number of bytes read

Description
This module is used to read an array of unsigned bytes. The data will need to contain enough memory
to store "num" unsigned bytes.

(note: bytes are machine independent and therefore require no conversion. This routine is included to
complete the set of read utilities)

5-21



Operating System Services Program Services Volume I - Chapter 5

E.2.14. kread_uint() — read an array of unsigned ints

Synopsis
ssize_t kread_uint(

int id,
unsigned int *data,
size_t num)

Input Arguments
id

the file id to be read which was opened earlier with kopen().
num

the number of unsigned ints to be read into the data array.

Output Arguments
data

the unsigned integer array in which the data will be stored.

Returns
the number of integers read

Description
This module is used to read an array of unsigned ints. The data will need to contain enough memory
to store "num" unsigned ints.

E.2.15. kread_ulong() — read an array of unsigned longs

Synopsis
ssize_t kread_ulong(

int id,
unsigned long *data,
size_t num)

Input Arguments
id

the file id to be read which was opened earlier with kopen().
num

5-22



Operating System Services Program Services Volume I - Chapter 5

the number of unsigned longs to be read into the data array.

Output Arguments
data

the unsigned long array in which the data will be stored.

Returns
the number of longs read

Description
This module is used to read an array of unsigned longs. The data will need to contain enough memory
to store "num" unsigned longs.

E.2.16. kread_ushort() — read an array of unsigned shorts

Synopsis
ssize_t kread_ushort(

int id,
unsigned short *data,
size_t num)

Input Arguments
id

the file id to be read which was opened earlier with kopen().
num

the number of unsigned shorts to be read into the data array.

Output Arguments
data

the unsigned short array in which the data will be stored.

Returns
the number of shorts read

Description
This module is used to read an array of unsigned shorts. The data will need to contain enough memory
to store "num" unsigned shorts.

5-23



Operating System Services Program Services Volume I - Chapter 5

E.2.17. kread_array() — read in a variable array

Synopsis
ssize_t
kread_array(

int id,
kaddr *data,
size_t num,
int type)

Input Arguments
id

the file id to be read which was opened earlier with kopen().
num

the maximum number of data points to be read into the data array.
type

data / structure type.

Output Arguments
data

the kaddr array in which the data will be stored.

Returns
the number of points read or -1 on error

Description
This module is used to read in a pointer to an variable sized array. The size of the array and the data is
stored in the transport. The reader first reads the number of points, allocates enough space for the
return data, and then calls kread_generic() to do the actual reading of the data. If NULL is stored then
kread_array() will set the data pointer to NULL and return that 0 data points were read.

The "num" argument should be used to represent a maximum number of data points to be read. In the
case that num is less than the number of data points stored, then kread_array() will advance to the end
of the stored data. This allows for partial reads of the stored data.

5-24



Operating System Services Program Services Volume I - Chapter 5

E.2.18. kread_pointer() — read in a variable array

Synopsis
int
kread_pointer(

int id,
kaddr *data,
int type)

Input Arguments
id

the file id to be read which was opened earlier with kopen().
type

data / structure type.

Output Arguments
data

the kaddr array in which the data will be stored.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This module is used to read in a pointer to an variable sized array. The size of the array and the data is
stored in the transport. The reader first reads the number of points, allocates enough space for the
return data, and then calls kread_generic() to do the actual reading of the data. If NULL is stored then
kread_pointer() will set the data pointer to NULL and return that 0 data points were read.

E.2.19. kread_struct() — read in a single structure

Synopsis
ssize_t
kread_struct(

int id,
kaddr *data,
int type)

Input Arguments
id

the file id to be read which was opened earlier with kopen().
type

5-25



Operating System Services Program Services Volume I - Chapter 5

structure type.

Output Arguments
data

a pointer in which the structures will be stored.

Returns
the number of structs read

Description
This module is used to read in a single structure from a transport. Unlike kread_generic() this routine
will malloc the returned memory for a single structure.

E.2.20. kparse_bit() — read an array of bits

Synopsis
ssize_t kparse_bit(

int id,
unsigned char *data,
size_t num)

Input Arguments
id

the file id to be read which was opened earlier with kopen().
num

the number of bits to be read into the data array.

Output Arguments
data

the char array in which the data will be stored.

Returns
the number of bits read

Description
This module is used to read an array of bits. The data will need to contain enough memory to store
"num" bits.

(note: bits are machine independent and therefore require no conversion. This routine is included to
complete the set of read utilities)

5-26



Operating System Services Program Services Volume I - Chapter 5

E.2.21. kparse_byte() — read an array of signed bytes

Synopsis
ssize_t kparse_byte(

int id,
char *data,
size_t num)

Input Arguments
id

the file id to be read which was opened earlier with kopen().
num

the number of signed bytes to be read into the data array.

Output Arguments
data

the char array in which the data will be stored.

Returns
the number of signed bytes read

Description
This module is used to read an array of signed bytes. The data will need to contain enough memory to
store "num" signed bytes.

(note: bytes are machine independent and therefore require no conversion. This routine is included to
complete the set of read utilities)

5-27



Operating System Services Program Services Volume I - Chapter 5

E.2.22. kparse_complex() — read an array of complex

Synopsis
ssize_t kparse_complex(

int id,
kcomplex *data,
size_t num)

Input Arguments
id

the file id to be read which was opened earlier with kopen().
num

the number of complex to be read into the data array.

Output Arguments
data

the kcomplex array in which the data will be stored.

Returns
the number of complex read

Description
This module is used to read an array of complex numbers. The data will need to contain enough mem-
ory to store "num" complex structures.

E.2.23. kparse_dcomplex() — read an array of double complex

Synopsis
ssize_t kparse_dcomplex(

int id,
kdcomplex *data,
size_t num)

Input Arguments
id

the file id to be read which was opened earlier with kopen().
num

5-28



Operating System Services Program Services Volume I - Chapter 5

the number of double complex to be read into the data array.

Output Arguments
data

the kdcomplex array in which the data will be stored.

Returns
the number of double complex read

Description
This module is used to read an array of double complex numbers. The data will need to contain
enough memory to store "num" double complex structures.

E.2.24. kparse_double() — read an array of doubles

Synopsis
ssize_t kparse_double(

int id,
double *data,
size_t num)

Input Arguments
id

the file id to be read which was opened earlier with kopen().
num

the number of doubles to be read into the data array.

Output Arguments
data

the double array in which the data will be stored.

Returns
the number of doubles read

Description
This module is used to read an array of doubles. The data will need to contain enough memory to
store "num" doubles.

5-29



Operating System Services Program Services Volume I - Chapter 5

E.2.25. kparse_float() — read an array of floats

Synopsis
ssize_t kparse_float(

int id,
float *data,
size_t num)

Input Arguments
id

the file id to be read which was opened earlier with kopen().
num

the number of floats to be read into the data array.

Output Arguments
data

the float array in which the data will be stored.

Returns
the number of floats read

Description
This module is used to read an array of floats. The data will need to contain enough memory to store
"num" floats.

E.2.26. kparse_generic() — read in any data type.

Synopsis
ssize_t
kparse_generic(

int id,
kaddr data,
size_t num,
int type)

Input Arguments
id

the file id to be read which was opened earlier with kopen().
num

5-30



Operating System Services Program Services Volume I - Chapter 5

the number of data points to be read into the data array.
type

data type.

Output Arguments
data

the kaddr array in which the data will be stored.

Returns
the number of data points read

Description
This module is used to read an array of data from a transport. The data will need to contain enough
memory to store "num" data points of the specified type.

E.2.27. kparse_int() — read an array of signed ints

Synopsis
ssize_t kparse_int(

int id,
int *data,
size_t num)

Input Arguments
id

the file id to be read which was opened earlier with kopen().
num

the number of signed integers to be read into the data array.

Output Arguments
data

the integer array in which the data will be stored.

Returns
the number of integers read

Description
This module is used to read an array of signed ints. The data will need to contain enough memory to
store "num" signed ints.

5-31



Operating System Services Program Services Volume I - Chapter 5

E.2.28. kparse_long() — read an array of signed longs

Synopsis
ssize_t kparse_long(

int id,
long *data,
size_t num)

Input Arguments
id

the file id to be read which was opened earlier with kopen().
num

the number of signed longs to be read into the data array.

Output Arguments
data

the long array in which the data will be stored.

Returns
the number of longs read

Description
This module is used to read an array of signed longs. The data will need to contain enough memory to
store "num" signed longs.

E.2.29. kparse_short() — read an array of signed shorts

Synopsis
ssize_t kparse_short(

int id,
short *data,
size_t num)

Input Arguments
id

the file id to be read which was opened earlier with kopen().
num

5-32



Operating System Services Program Services Volume I - Chapter 5

the number of signed shorts to be read into the data array.

Output Arguments
data

the short array in which the data will be stored.

Returns
the number of short integers read

Description
This module is used to read an array of signed shorts. The data will need to contain enough memory to
store "num" signed shorts.

E.2.30. kparse_string() — read an array of strings

Synopsis
ssize_t kparse_string(

int id,
kstring *data,
size_t num)

Input Arguments
id

the file id to be read which was opened earlier with kopen().
num

the number of string to be read into the data array.

Output Arguments
data

the kstring array in which the data will be stored.

Returns
the number of strings read

Description
This module is used to read an array of strings. The data will need to contain enough memory to store
"num" string pointers. The memory that the strings are stored in will be allocated by kparse_string.

Where "kstring" is really a typedef for a character pointer "char *". So an array of kstring is really an
array of character pointers.

5-33



Operating System Services Program Services Volume I - Chapter 5

Side Effects
the strings that are returned should be freed by the programmer

E.2.31. kparse_ubyte() — read an array of unsigned bytes

Synopsis
ssize_t kparse_ubyte(

int id,
unsigned char *data,
size_t num)

Input Arguments
id

the file id to be read which was opened earlier with kopen().
num

the number of unsigned bytes to be read into the data array.

Output Arguments
data

the unsigned char array in which the data will be stored.

Returns
the number of bytes read

Description
This module is used to read an array of unsigned bytes. The data will need to contain enough memory
to store "num" unsigned bytes.

(note: bytes are machine independent and therefore require no conversion. This routine is included to
complete the set of read utilities)

5-34



Operating System Services Program Services Volume I - Chapter 5

E.2.32. kparse_uint() — read an array of unsigned ints

Synopsis
ssize_t kparse_uint(

int id,
unsigned int *data,
size_t num)

Input Arguments
id

the file id to be read which was opened earlier with kopen().
num

the number of unsigned ints to be read into the data array.

Output Arguments
data

the unsigned integer array in which the data will be stored.

Returns
the number of integers read

Description
This module is used to read an array of unsigned ints. The data will need to contain enough memory
to store "num" unsigned ints.

E.2.33. kparse_ulong() — read an array of unsigned longs

Synopsis
ssize_t kparse_ulong(

int id,
unsigned long *data,
size_t num)

Input Arguments
id

the file id to be read which was opened earlier with kopen().
num

5-35



Operating System Services Program Services Volume I - Chapter 5

the number of unsigned longs to be read into the data array.

Output Arguments
data

the unsigned long array in which the data will be stored.

Returns
the number of longs read

Description
This module is used to read an array of unsigned longs. The data will need to contain enough memory
to store "num" unsigned longs.

E.2.34. kparse_ushort() — read an array of unsigned shorts

Synopsis
ssize_t kparse_ushort(

int id,
unsigned short *data,
size_t num)

Input Arguments
id

the file id to be read which was opened earlier with kopen().
num

the number of unsigned shorts to be read into the data array.

Output Arguments
data

the unsigned short array in which the data will be stored.

Returns
the number of shorts read

Description
This module is used to read an array of unsigned shorts. The data will need to contain enough memory
to store "num" unsigned shorts.

5-36



Operating System Services Program Services Volume I - Chapter 5

E.2.35. kparse_array() — read in a variable array

Synopsis
ssize_t
kparse_array(

int id,
kaddr *data,
size_t num,
int type)

Input Arguments
id

the file id to be read which was opened earlier with kopen().
num

the maximum number of data points to be read into the data array.
type

data / structure type.

Output Arguments
data

the kaddr array in which the data will be stored.

Returns
the number of points read or -1 on error

Description
This module is used to read in a pointer to an variable sized array. The size of the array and the data is
stored in the transport. The reader first reads the number of points, allocates enough space for the
return data, and then calls kparse_generic() to do the actual reading of the data. If NULL is stored then
kparse_array() will set the data pointer to NULL and return that 0 data points were read.

The "num" argument should be used to represent a maximum number of data points to be read. In the
case that num is less than the number of data points stored, then kparse_array() will advance to the end
of the stored data. This allows for partial reads of the stored data.

5-37



Operating System Services Program Services Volume I - Chapter 5

E.2.36. kparse_pointer() — read in a variable array

Synopsis
int
kparse_pointer(

int id,
kaddr *data,
int type)

Input Arguments
id

the file id to be read which was opened earlier with kopen().
type

data / structure type.

Output Arguments
data

the kaddr array in which the data will be stored.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This module is used to read in a pointer to an variable sized array. The size of the array and the data is
stored in the transport. The reader first reads the number of points, allocates enough space for the
return data, and then calls kparse_generic() to do the actual reading of the data. If NULL is stored then
kparse_pointer() will set the data pointer to NULL and return that 0 data points were read.

E.2.37. kparse_struct() — read in a single structure

Synopsis
ssize_t
kparse_struct(

int id,
kaddr *data,
int type)

Input Arguments
id

the file id to be read which was opened earlier with kopen().
type

5-38



Operating System Services Program Services Volume I - Chapter 5

structure type.

Output Arguments
data

a pointer in which the structures will be stored.

Returns
the number of structs read

Description
This module is used to read in a single structure from a transport. Unlike kparse_generic() this routine
will malloc the returned memory for a single structure.

E.3. Definitions of Data Transport Write Utilities

E.3.1. kwrite() — write output to a transport descriptor

Synopsis
ssize_t kwrite(

int id,
kaddr buf,
size_t nbytes)

Input Arguments
id

the file id to be read which was opened earlier with kopen().

buf
the buffer to write the data from

nbytes
the number of bytes to be written

Returns
The number of bytes written, or -1 when an error is encountered.

Description
This function is a replacement for the system "write" call. The only difference is that kwrite() supports
more than just files, it supports other data transports as well, such as shared memory, pipes, files, etc.

5-39



Operating System Services Program Services Volume I - Chapter 5

The routine will write nbytes from the character array "buf" to the appropriate transport mechanism
specified by id. If not all nbytes can be read then the kread() routine returns the number of bytes actu-
ally read.

E.3.2. kwrite_bit() — write an array of bits

Synopsis
ssize_t kwrite_bit(

int id,
unsigned char *data,
size_t num)

Input Arguments
id

the file id to be written which was opened earlier with kopen().
data

the unsigned char array which holds the data.
num

the number of bits to be written.

Returns
the number of bits written

Description
This module is used to write an array of bits.

(note: bits are machine independent and therefore require no conversion. This routine is included to
complete the set of write utilities)

5-40



Operating System Services Program Services Volume I - Chapter 5

E.3.3. kwrite_byte() — write an array of signed bytes

Synopsis
ssize_t kwrite_byte(

int id,
char *data,
size_t num)

Input Arguments
id

the file id to be written to which was opened earlier with kopen().
data

the char array which holds the data.
num

the number of signed bytes to be written.

Returns
the number of bytes written

Description
This module is used to write an array of signed bytes.

(note: bytes are machine independent and therefore require no conversion. This routine is included to
complete the set of write utilities)

E.3.4. kwrite_complex() — write an array of complex

Synopsis
ssize_t kwrite_complex(

int id,
kcomplex *data,
size_t num)

Input Arguments
id

the file id to be written to which was opened earlier with kopen().
data

5-41



Operating System Services Program Services Volume I - Chapter 5

the kcomplex array which holds the data.
num

the number of complex pairs to be written.

Returns
the number of complexs written

Description
This module is used to write an array of complex numbers.

E.3.5. kwrite_dcomplex() — write an array of double complex

Synopsis
ssize_t kwrite_dcomplex(

int id,
kdcomplex *data,
size_t num)

Input Arguments
id

the file id to be written to which was opened earlier with kopen().
data

the kdcomplex array which holds the data.
num

the number of double complex pairs to be written.

Returns
the number of double complexs written

Description
This module is used to write an array of double complex numbers.

5-42



Operating System Services Program Services Volume I - Chapter 5

E.3.6. kwrite_double() — write an array of doubles

Synopsis
ssize_t kwrite_double(

int id,
double *data,
size_t num)

Input Arguments
id

the file id to be written to which was opened earlier with kopen().
data

the double array which holds the data.
num

the number of doubles to be written.

Returns
the number of doubles written

Description
This module is used to write an array of doubles.

E.3.7. kwrite_float() — write an array of floats

Synopsis
ssize_t kwrite_float(

int id,
float *data,
size_t num)

Input Arguments
id

the file id to be written to which was opened earlier with kopen().
data

the float array which holds the data.
num

the number of floats to be written.

5-43



Operating System Services Program Services Volume I - Chapter 5

Returns
the number of floats written

Description
This module is used to write an array of floats.

E.3.8. kwrite_generic() — write an array in any data type.

Synopsis
ssize_t
kwrite_generic(

int id,
kaddr data,
size_t num,
int type)

Input Arguments
id

the file id to be written to which was opened earlier with kopen().
data

the kaddr array which holds the data.
num

the number of data points to be written.
type

data type.

Returns
the number of points written or -1 on error

Description
This module is used to write an array of data to a transport.

5-44



Operating System Services Program Services Volume I - Chapter 5

E.3.9. kwrite_int() — write an array of signed ints

Synopsis
ssize_t kwrite_int(

int id,
int *data,
size_t num)

Input Arguments
id

the file id to be written to which was opened earlier with kopen().
data

the integer array which holds the data.
num

the number of integers to be written.

Returns
the number of ints written

Description
This module is used to write an array of signed ints.

E.3.10. kwrite_long() — write an array of signed longs

Synopsis
ssize_t kwrite_long(

int id,
long *data,
size_t num)

Input Arguments
id

the file id to be written to which was opened earlier with kopen().
data

the long array in which holds the data.
num

the number of longs to be written.

5-45



Operating System Services Program Services Volume I - Chapter 5

Returns
the number of longs written

Description
This module is used to write an array of signed longs. The data will need to contain enough memory
to store "num" signed longs.

E.3.11. kwrite_short() — write an array of signed shorts

Synopsis
ssize_t kwrite_short(

int id,
short *data,
size_t num)

Input Arguments
id

the file id to be written to which was opened earlier with kopen().
data

the short array which holds the data.
num

the number of shorts to be written.

Returns
the number of shorts written

Description
This module is used to write an array of signed shorts.

5-46



Operating System Services Program Services Volume I - Chapter 5

E.3.12. kwrite_string() — write an array of strings

Synopsis
ssize_t kwrite_string(

int id,
kstring *data,
size_t num)

Input Arguments
id

the file id to be written to which was opened earlier with kopen().
data

the string array in which the data will be stored.
num

the number of strings to be written.

Returns
the number of strings written

Description
This module is used to write an array of strings.

E.3.13. kwrite_ubyte() — write an array of unsigned bytes

Synopsis
ssize_t kwrite_ubyte(

int id,
unsigned char *data,
size_t num)

Input Arguments
id

the file id to be written to which was opened earlier with kopen().
data

the unsigned char array which holds the data.
num

the number of unsigned bytes to be written.

5-47



Operating System Services Program Services Volume I - Chapter 5

Returns
the number of bytes written

Description
This module is used to write an array of unsigned bytes.

(note: bytes are machine independent and therefore require no conversion. This routine is included to
complete the set of write utilities)

E.3.14. kwrite_uint() — write an array of unsigned ints

Synopsis
ssize_t kwrite_uint(

int id,
unsigned int *data,
size_t num)

Input Arguments
id

the file id to be written to which was opened earlier with kopen().
data

the unsigned integer array which holds the data.
num

the number of unsigned integers to be written.

Returns
the number of ints written

Description
This module is used to write an array of unsigned ints.

5-48



Operating System Services Program Services Volume I - Chapter 5

E.3.15. kwrite_ulong() — write an array of unsigned longs

Synopsis
ssize_t kwrite_ulong(

int id,
unsigned long *data,
size_t num)

Input Arguments
id

the file id to be written to which was opened earlier with kopen().
data

the unsigned long array which holds the data.
num

the number of unsigned longs to be written.

Returns
the number of longs written

Description
This module is used to write an array of unsigned longs.

E.3.16. kwrite_ushort() — write an array of unsigned shorts

Synopsis
ssize_t kwrite_ushort(

int id,
unsigned short *data,
size_t num)

Input Arguments
id

the file id to be written to which was opened earlier with kopen().
data

the unsigned short array which holds the data.
num

the number of unsigned shorts to be written.

5-49



Operating System Services Program Services Volume I - Chapter 5

Returns
the number of shorts written

Description
This module is used to write an array of unsigned shorts.

E.3.17. kwrite_array() — write a variable array

Synopsis
ssize_t
kwrite_array(

int id,
kaddr data,
size_t num,
int type)

Input Arguments
id

the file id to be written to which was opened earlier with kopen().
data

the array in which the data will be written from.
num

the number of data points to be written to the transport.
type

data / structure type.

Returns
the number of points written or -1 on error

Description
This module is used to write a pointer to an variable sized array. The size of the array and the data is
stored in the transport. The writer first writes the number of points, and then calls kwrite_generic() to
do the actual writing of the data. If NULL is passed in then kwrite_array() will write out 0 for the
number of points, which will then be used by kwrite_array() to return NULL.

5-50



Operating System Services Program Services Volume I - Chapter 5

E.3.18. kwrite_pointer() — write a variable array

Synopsis
int
kwrite_pointer(

int id,
kaddr *data,
int type)

Input Arguments
id

the file id to be written to which was opened earlier with kopen().
data

the array in which the data will be written from. num - the number of data points to be written to the
transport.

type
data / structure type.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This module is used to write a pointer to an variable sized array. The size of the array and the data is
stored in the transport. The writer first writes the number of points, and then calls kwrite_generic() to
do the actual writing of the data. If NULL is passed in then kwrite_pointer() will write out 0 for the
number of points, which will then be used by kread_pointer() to return NULL.

E.3.19. kwrite_struct() — write a single structure

Synopsis
ssize_t
kwrite_struct(

int id,
kaddr data,
int type)

Input Arguments
id

the file id to write to which was opened earlier with kopen().
type

structure type.

5-51



Operating System Services Program Services Volume I - Chapter 5

Output Arguments
data

a pointer to a single structure to be written.

Returns
the number of structs written

Description
This module is used to write a single structure to a transport.

E.3.20. kprint_bit() — write an array of bits

Synopsis
ssize_t kprint_bit(

int id,
unsigned char *data,
size_t num)

Input Arguments
id

the file id to be written which was opened earlier with kopen().
data

the unsigned char array which holds the data.
num

the number of bits to be written.

Returns
the number of bits written

Description
This module is used to write an array of bits.

(note: bits are machine independent and therefore require no conversion. This routine is included to
complete the set of write utilities)

5-52



Operating System Services Program Services Volume I - Chapter 5

E.3.21. kprint_byte() — write an array of signed bytes

Synopsis
ssize_t kprint_byte(

int id,
char *data,
size_t num)

Input Arguments
id

the file id to be written to which was opened earlier with kopen().
data

the char array which holds the data.
num

the number of signed bytes to be written.

Returns
the number of bytes written

Description
This module is used to write an array of signed bytes.

(note: bytes are machine independent and therefore require no conversion. This routine is included to
complete the set of write utilities)

E.3.22. kprint_complex() — write an array of complex

Synopsis
ssize_t kprint_complex(

int id,
kcomplex *data,
size_t num)

Input Arguments
id

the file id to be written to which was opened earlier with kopen().
data

5-53



Operating System Services Program Services Volume I - Chapter 5

the kcomplex array which holds the data.
num

the number of complex pairs to be written.

Returns
the number of complexs written

Description
This module is used to write an array of complex numbers.

E.3.23. kprint_dcomplex() — write an array of double complex

Synopsis
ssize_t kprint_dcomplex(

int id,
kdcomplex *data,
size_t num)

Input Arguments
id

the file id to be written to which was opened earlier with kopen().
data

the kdcomplex array which holds the data.
num

the number of double complex pairs to be written.

Returns
the number of double complexs written

Description
This module is used to write an array of double complex numbers.

5-54



Operating System Services Program Services Volume I - Chapter 5

E.3.24. kprint_double() — write an array of doubles

Synopsis
ssize_t kprint_double(

int id,
double *data,
size_t num)

Input Arguments
id

the file id to be written to which was opened earlier with kopen().
data

the double array which holds the data.
num

the number of doubles to be written.

Returns
the number of doubles written

Description
This module is used to write an array of doubles.

E.3.25. kprint_float() — write an array of floats

Synopsis
ssize_t kprint_float(

int id,
float *data,
size_t num)

Input Arguments
id

the file id to be written to which was opened earlier with kopen().
data

the float array which holds the data.
num

the number of floats to be written.

5-55



Operating System Services Program Services Volume I - Chapter 5

Returns
the number of floats written

Description
This module is used to write an array of floats.

E.3.26. kprint_generic() — write an array in any data type.

Synopsis
ssize_t
kprint_generic(

int id,
kaddr data,
size_t num,
int type)

Input Arguments
id

the file id to be written to which was opened earlier with kopen().
data

the kaddr array which holds the data.
num

the number of data points to be written.
type

data type.

Returns
the number of points written or -1 on error

Description
This module is used to write an array of data to a transport.

5-56



Operating System Services Program Services Volume I - Chapter 5

E.3.27. kprint_int() — write an array of signed ints

Synopsis
ssize_t kprint_int(

int id,
int *data,
size_t num)

Input Arguments
id

the file id to be written to which was opened earlier with kopen().
data

the integer array which holds the data.
num

the number of integers to be written.

Returns
the number of ints written

Description
This module is used to write an array of signed ints.

E.3.28. kprint_long() — write an array of signed longs

Synopsis
ssize_t kprint_long(

int id,
long *data,
size_t num)

Input Arguments
id

the file id to be written to which was opened earlier with kopen().
data

the long array in which holds the data.
num

the number of longs to be written.

5-57



Operating System Services Program Services Volume I - Chapter 5

Returns
the number of longs written

Description
This module is used to write an array of signed longs. The data will need to contain enough memory
to store "num" signed longs.

E.3.29. kprint_short() — write an array of signed shorts

Synopsis
ssize_t kprint_short(

int id,
short *data,
size_t num)

Input Arguments
id

the file id to be written to which was opened earlier with kopen().
data

the short array which holds the data.
num

the number of shorts to be written.

Returns
the number of shorts written

Description
This module is used to write an array of signed shorts.

5-58



Operating System Services Program Services Volume I - Chapter 5

E.3.30. kprint_string() — write an array of strings

Synopsis
ssize_t kprint_string(

int id,
kstring *data,
size_t num)

Input Arguments
id

the file id to be written to which was opened earlier with kopen().
data

the string array in which the data will be stored.
num

the number of strings to be written.

Returns
the number of strings written

Description
This module is used to write an array of strings.

E.3.31. kprint_ubyte() — write an array of unsigned bytes

Synopsis
ssize_t kprint_ubyte(

int id,
unsigned char *data,
size_t num)

Input Arguments
id

the file id to be written to which was opened earlier with kopen().
data

the unsigned char array which holds the data.
num

the number of unsigned bytes to be written.

5-59



Operating System Services Program Services Volume I - Chapter 5

Returns
the number of bytes written

Description
This module is used to write an array of unsigned bytes.

(note: bytes are machine independent and therefore require no conversion. This routine is included to
complete the set of write utilities)

E.3.32. kprint_uint() — write an array of unsigned ints

Synopsis
ssize_t kprint_uint(

int id,
unsigned int *data,
size_t num)

Input Arguments
id

the file id to be written to which was opened earlier with kopen().
data

the unsigned integer array which holds the data.
num

the number of unsigned integers to be written.

Returns
the number of ints written

Description
This module is used to write an array of unsigned ints.

5-60



Operating System Services Program Services Volume I - Chapter 5

E.3.33. kprint_ulong() — write an array of unsigned longs

Synopsis
ssize_t kprint_ulong(

int id,
unsigned long *data,
size_t num)

Input Arguments
id

the file id to be written to which was opened earlier with kopen().
data

the unsigned long array which holds the data.
num

the number of unsigned longs to be written.

Returns
the number of longs written

Description
This module is used to write an array of unsigned longs.

E.3.34. kprint_ushort() — write an array of unsigned shorts

Synopsis
ssize_t kprint_ushort(

int id,
unsigned short *data,
size_t num)

Input Arguments
id

the file id to be written to which was opened earlier with kopen().
data

the unsigned short array which holds the data.
num

the number of unsigned shorts to be written.

5-61



Operating System Services Program Services Volume I - Chapter 5

Returns
the number of shorts written

Description
This module is used to write an array of unsigned shorts.

E.3.35. kprint_array() — write a variable array

Synopsis
ssize_t
kprint_array(

int id,
kaddr data,
size_t num,
int type)

Input Arguments
id

the file id to be written to which was opened earlier with kopen().
data

the array in which the data will be written from.
num

the number of data points to be written to the transport.
type

data / structure type.

Returns
the number of points written or -1 on error

Description
This module is used to write a pointer to an variable sized array. The size of the array and the data is
stored in the transport. The writer first writes the number of points, and then calls kprint_generic() to
do the actual writing of the data. If NULL is passed in then kprint_array() will write out 0 for the
number of points, which will then be used by kprint_array() to return NULL.

5-62



Operating System Services Program Services Volume I - Chapter 5

E.3.36. kprint_pointer() — write a variable array

Synopsis
int
kprint_pointer(

int id,
kaddr *data,
int type)

Input Arguments
id

the file id to be written to which was opened earlier with kopen().
data

the array in which the data will be written from. num - the number of data points to be written to the
transport.

type
data / structure type.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This module is used to write a pointer to an variable sized array. The size of the array and the data is
stored in the transport. The writer first writes the number of points, and then calls kprint_generic() to
do the actual writing of the data. If NULL is passed in then kprint_pointer() will write out 0 for the
number of points, which will then be used by kread_pointer() to return NULL.

E.3.37. kprint_struct() — write a single structure

Synopsis
ssize_t
kprint_struct(

int id,
kaddr data,
int type)

Input Arguments
id

the file id to write to which was opened earlier with kopen().
type

structure type.

5-63



Operating System Services Program Services Volume I - Chapter 5

Output Arguments
data

a pointer to a single structure to be written.

Returns
the number of structs written

Description
This module is used to write a single structure to a transport.

F. I/O Utilities

These utilities deal with I/O, and are modeled after the file I/O utilities provided by libc. The difference is that
the VisiQuest utilities support the VisiQuest Data Transport capabilities, and must be used by
any program that is to take advantage of Data Transport mechanisms, including distributed computing. Some
utilities here are also geared directly for dealing with Data Transport mechanisms.

Data Transport refers to the method used to transfer data between processes. Data Transport mechanisms can
be local or remote. Local transport mechanisms include shared memory, files, pipes and streams; remote trans-
port mechanisms include sockets, tli and rpc. With the use of remote data transport, the ability to get input
from and output to remote machines is implemented, and distributed processing is made possible.

Distributed Processing means the ability to specify remote machines on which to execute individual VisiQuest
 programs. The capability to do distributed processing is implemented via employment of the remote
data transport mechanisms. With Distributed Processing, one needs a method to execute jobs remotely, as
well as a mechanism to transport data back & forth from the remote machine. A remote daemon, phantomd,
is started on the remote machine, takes requests to execute a job and transports data involved with that job
using the remote Data Transport mechanisms.

When writing VisiQuest routines that are to support the VisiQuest Data Transports and Dis-
tributed Processing, it is crucial that they use the functions described in this section. Standard VisiQuest
 file I/O functions use the kfile pointer (as opposed to a FILE pointer). The kfile pointer is treated simi-
larly to the libc FILE pointer. Howev er, the kfile pointer may not, in fact, be a stream to a file. It may be any
of the VisiQuest Data Transports, such as shared memory, pipes or streams. The low-level VisiQuest
 I/O functions use a data transport ID (descriptor) or kfile ID (descriptor). The kfile ID is treated simi-
larly to the libc file identifier, except that it may also refer to any of the supported VisiQuest Data
Transports.

5-64



Operating System Services Program Services Volume I - Chapter 5

F.1. Introduction to Low-level I/O Functions

These functions cover the closing and locking of a file. Also included are functions to obtain various statistics
of the file. These routines include:

• kaccess() - determine accessibility of file
• kclearerr() - clear the EOF/error flags of a data transport stream
• kclose() - close and delete a transport descriptor
• kcreat() - routine for creating a khoros transport
• kdup() - duplicate an existing khoros transport descriptor
• kdup2() - specifically duplicate an existing khoros transport descriptor
• kexit() - terminate a process
• kfileno() - return the transport descriptor
• kgetbuffer() - get the current data transport stream’s input/output buffer and it’s size
• kgetc() - get character from khoros transport
• kgetdescriptors() - get true UNIX file descriptors
• kgethostname() - get the current hostname
• kgets() - reads from kstdin until a newline or EOF
• kinput() - opens a file for reading using kopen()
• klseek() - move read/write pointer of a transport descriptor
• kopen() - open or create a file for reading and/or writing
• koutput() - opens/creates a file for writing using kopen()
• kpclose() - close a pipe (for I/O) from or to a process
• kpopen() - open a pipe (for I/O) from or to a process
• kpinfo() - gets the associated process id
• kprintf() - print formatted output to kstdout
• kputc() - put a character onto the khoros transport
• krename() - rename a khoros transport from path1 to path2
• krewind() - rewind a data transport stream to the beginning
• kscanf() - scan kstdin and format the input into one or more arguments of the type specified
• ksetvbuf() - set the I/O buffer of a data transport stream
• ksprintf() - print one or more arguments in the format specified to an output string.
• kmsprintf() - print one or more arguments in the format specified and return an allocated output string.
• ksscanf() - scan input string and format it into one or more arguments of the type specified.
• ktell() - report the position of the read/write pointer
• ktouch() - routine for touching a temporary transport
• ktmpfile() - create a temporary data transport stream
• kungetc() - push a character back onto the data transport stream
• kunlink() - remove a filename from a directory entry

5-65



Operating System Services Program Services Volume I - Chapter 5

F.2. Definitions of Low-level I/O Functions

F.2.1. kaccess() — determine accessibility of file

Synopsis
int kaccess(

const char *path,
int mode)

Input Arguments
path

is the string containing the path name to the desired file to be accessed. The path name ident- ifies the
file/token to be tested, just like the regular UNIX access() command.

mode
the mode in which kaccess() should test for the file. The mode is comprised of an or’ing of the follow-
ing flags:

R_OK - the file readable
W_OK - the file writeable
X_OK - the file executable
F_OK - the file and directory leading to the

file accessible.

Returns
return -1 for failure otherwise 0 for success

Description
This function is a replacement for the system "access" call. The only difference is that kaccess()
checks more than just files, it will also check other data transports as well, such as shared memory,
pipes, files, etc.

The routine will check to see if the token specified by the transport is either readable (R_OK), write-
able (W_OK), or executable (X_OK), or accessible (F_OK) any possible combination by or’ing the
flags together.

5-66



Operating System Services Program Services Volume I - Chapter 5

F.2.2. kclearerr() — clear the EOF/error flags of a data transport stream

Synopsis
void kclearerr(

kfile *file)

Input Arguments
file

the kfile pointer associated with the open stream to the data transport, opened earlier with kfopen()

Description
This function is a replacement for the system "clearerr" call; kclearerr() supports all khoros data trans-
port mechanisms, not just Unix files.

The function resets the EOF and error flags for the data transport stream specified. Note that these flags
are cleared originally when the data transport is opened, or when the data transport stream is re-wound
using krewind(). The EOF flag is also cleared by calls to kfseek().

F.2.3. kclose() — close and delete a transport descriptor

Synopsis
int kclose(

int id)

Input Arguments
id

the file to be close which was opened earlier with kopen().

Returns
-1 or 0 depending on whether the operation failed or succeeded.

Description
This function is a replacement for the system "close" call. The only difference is that kclose() supports
more than just files, it supports other data transports as well, such as shared memory, pipes, files, etc.

5-67



Operating System Services Program Services Volume I - Chapter 5

F.2.4. kcreat() — routine for creating a khoros transport

Synopsis
int kcreat(

const char *path,
mode_t mode)

Input Arguments
path

path to file to be created
mode

the permissions or mode in which to create the file

Returns
open fid on success, -1 otherwise

Description
This function is used to create a khoros transport file. Depending on the different transport being used
the behavior will be different. For a file the kcreat call simply create the file with the mode,

F.2.5. kdup() — duplicate an existing khoros transport descriptor

Synopsis
int kdup(

int id)

Input Arguments
id

the existing khoros transport descriptor to be dup’ed

Returns
the newly dup’ed descriptor on success, or -1 upon failure

Description
kdup() is used to duplicate an existing khoros transport descriptor. The "id" is integer index in the pro-
cess’s transport descriptor table. The new descriptor returned kdup() will be the lowest table entry id.

Side Effects
If too many descriptors are active then errno will be set to EMFILE and -1 will be returned. If id is not

5-68



Operating System Services Program Services Volume I - Chapter 5

a valid or active descriptor then errno will be set to EBADF and -1 will be returned.

F.2.6. kdup2() — specifically duplicate an existing khoros transport descriptor

Synopsis
int kdup2(

int id1,
int id2)

Input Arguments
id1

the existing khoros transport descriptor to be dup’ed
id2

the descriptor to be used for the newly dup’ed descriptor

Returns
the newly dup’ed descriptor on success, or -1 upon failure

Description
kdup2() is used to duplicate an existing khoros transport descriptor. The "id1" is integer index in the
process’s transport descriptor table. The new descriptor returned will the specific one specified by
"id2". If id2 is active then it will be closed (kclose) before being dup’ed.

Side Effects
If too many descriptors are active then errno will be set to EMFILE and -1 will be returned. If id is not
a valid or active descriptor then errno will be set to EBADF and -1 will be returned.

F.2.7. kexit() — terminate a process

Synopsis
void kexit(

int status)

Oh what a trail of tears! It turns out that Windows and UNIX handle exit-han-
dlers differently. On UNIX, you get one set of handlers for a process. I can
call atexit() from anywhere, and the handler is added to the single list.

5-69



Operating System Services Program Services Volume I - Chapter 5

They’re all called when the process terminates. On Windows, EVERY .EXE and
EVERY .DLL GETS ITS OWN SET OF EXIT HANDLERS! Thus, calling atexit() here
puts a handler on the kutils.dll list. This would work okay, except for 2
things:

1) The exit handlers for each DLL are called as that DLL is unloaded from the
process. The DLLs are unloaded in LIFO order. The unload order is WinSock2,
then ktutils, then klibc. Since the exit handler has to clean up IPC and
TCP/IP, it needs to be invoked BEFORE the WinSock2 DLL is unloaded. 2) The
most bizarre thing is that the exit handler for the .EXE is only called when
the main() routine exits, or if the exit() routine is called from somewhere
inside the .EXE. If it’s called from within a DLL (as happens when the CLUI
processing objects to the command line), then the .EXE exit handler is NEVER
CALLED AT ALL!

So... dear reader, here’s what we’ve done.

1) The call to atexit() now takes place in the main() routine of each kroutine
and codegen - it doesn’t happen in exit.c. It still sets up the exit_han-
dler() function (also in exit.c) as the actual exit handler, but it puts it on
the .EXE’s handler list. 2) The "kexit" function (which is #defined as
"exit()" on UNIX), is defined as a call through a global function-pointer
named pkexit that’s defined in kprocess.c. That function-pointer is set in
khoros_init().

Input Arguments
status

exit status of either KEXIT_SUCCESS or KEXIT_FAILURE

Description
closes any VisiQuest transports left open and exits the system with the status passed in.

F.2.8. kfileno() — return the transport descriptor

Synopsis
int kfileno(

kfile *file)

Input Arguments
file

the kfile structure to be referenced.

Returns
The entry descriptor (or -1 if it doesn’t exist)

5-70



Operating System Services Program Services Volume I - Chapter 5

Description
This function is used to retrieve the corresponding kfile entry descriptor, which can be used with the
(int fid) routines like: kread(), kwrite().

F.2.9. kgetbuffer() — get the current data transport stream’s input/output buffer and it’s size

Synopsis
char *kgetbuffer(

kfile *file,
size_t * bufsiz)

Input Arguments
file

the kfile transport to be written which was opened earlier with kfopen().

Output Arguments
bufsiz

return the size of the new buffer if not NULL

Returns
The externally inialized buf or NULL if the the transport is non-buffered or if the buffer is the internal
buffer.

Description
kgetbuffer(), the opposite from ksetvbuf(), can be used after a stream buffer has been initialized. It
returns the initialized stream buffer. The character array buf whose size is returned as the bufsiz argu-
ment, unless NULL.

F.2.10. kgetc() — get character from khoros transport

Synopsis
int kgetc(

kfile *file)

Input Arguments
file

the kfile transport to be read which was opened earlier with kfopen().

5-71



Operating System Services Program Services Volume I - Chapter 5

Returns
returns the character read or EOF upon error.

Description
This function is a replacement for the system getc() routine. The only difference is that kgetc() sup-
ports all available transport mechanisms. The routine will get a single character from the specified
transport. If the character could not be read, EOF is returned; otherwise, the character that is read is
returned.

F.2.11. kgetdescriptors() — get true UNIX file descriptors

Synopsis
int kgetdescriptors(

kfile *file,
int *inum,
int *onum)

Input Arguments
file

the kfile structure to be referenced.

Output Arguments
inum

the input descriptor if exists (or if non exists minus 1)
onum

the output descriptor if exists (or if non exists minus 1)

Returns
TRUE on success, FALSE on failure

Description
This function is used to retrieve the input and output file descriptor associated with a transport. Note:
this routine should not be used without extreme caution, since certain transports don’t hav e file
descriptors (such as shared memory).

F.2.12. kgethostname() — get the current hostname

5-72



Operating System Services Program Services Volume I - Chapter 5

Synopsis
#ifdef KOPSYS_WIN32
int kgethostname(

char *hostname,
int namelen)

Input Arguments
namelen

the size of the "hostname" buffer

Output Arguments
hostname

the current hostname string

Returns
0 on success, and -1 on failure

Description
This routine is the same as the system gethostname() call except that it will get the hostname depend-
ing on the machine name is specified.

F.2.13. kgets() — reads from kstdin until a newline or EOF

Synopsis
char *kgets(

char *buffer)

Input Arguments
buffer

the buffer to read the data into.

Returns
returns the string read from kstdin or NULL upon error.

Description
This function is a replacement for the system gets() routine. The only difference is that kgets() uses
the khoros transport mechanisms. The routine will get a single line from kstdin. It reads until a new-
line or end of file is encountered.

5-73



Operating System Services Program Services Volume I - Chapter 5

F.2.14. kinput() — opens a file for reading using kopen()

Synopsis
int kinput(

char *filename)

Input Arguments
filename

the filename to be opened for reading using the kopen().

Returns
returns the kfile id on success, -1 otherwise

Description
This function is just a simplified interface to kopen() that opens a file for reading. The macros calls
kopen using the following syntax:

kopen(filename, KOPEN_RDONLY, 0666)

F.2.15. klseek() — move read/write pointer of a transport descriptor

Synopsis
off_t klseek(

int id,
off_t offset,
int whence)

Input Arguments
id

the id of the object to be seeked.
offset

the offset in which to seek
whence

the control of how the offset will be applied

Returns
-1 or the new seeked position within the transport

5-74



Operating System Services Program Services Volume I - Chapter 5

Description
This function is used to seek the transport. Depending on the different transport being used the behav-
ior will be different. For a file it calls lseek() to lock the file, but for a shared memory segment it it
simply resets the internal offset pointer.

F.2.16. kopen() — open or create a file for reading and/or writing

Synopsis
int kopen(

const char *path,
int flags,
mode_t mode)

Input Arguments
path

is the string containing the path name to the desired file to be open. The path name identifies the file to
be opened, just like the regular UNIX open() command.

flags
how the file is to be opened.

KOPEN_RDONLY - Open file for only reading NOTE!! this is 0x0000, not a 
KOPEN_WRONLY - Open file for only writing
KOPEN_RDWR - Open file for both reading & writing

KOPEN_NONBLOCK - Whether to block when reading and
writing to the file.

KOPEN_APPEND - Append to the file (writing).
KOPEN_TRUNC - Truncate the file for writing.
KOPEN_EXCL - Error if file exists
KOPEN_CREAT - the file exists, this flag has no

effect.
Otherwise, the file is created, and the
owner ID of the file is set to the effective
user ID of the process.

mode
the permissions to be used when creating a new file. Note that this parameter is only needed when
KOPEN_CREAT is specified in the flags.

5-75



Operating System Services Program Services Volume I - Chapter 5

Returns
the kfile id on success, -1 otherwise

Description
This function is a replacement for the system "open" call. The only difference is that kopen() supports
more than just files, it supports other data transports as well. The path should be in the form of an
identifier, followed by an "=" equal indicator, and then the transport token. ie) a Shared memory path
would look like:

"shm=1032"

If a file was desired then either

"/usr/tmp/vadd1235"
"file=/usr/tmp/vadd1235"

will work.

F.2.17. koutput() — opens/creates a file for writing using kopen()

Synopsis
int koutput(

char *filename)

Input Arguments
filename

the filename to be opened for writing using the kopen().

Returns
returns the kfile id on success, -1 otherwise

Description
This function is just a simplified interface to kopen() that creates and opens a file for writing. The file
is truncated upon a successful kopen call. The macros calls kopen using the following syntax:

kopen(filename, KOPEN_WRONLY|KOPEN_CREAT|KOPEN_TRUNC, 0666)

5-76



Operating System Services Program Services Volume I - Chapter 5

F.2.18. kpclose() — close a pipe (for I/O) from or to a process

Synopsis
int kpclose(

kfile *file)

Input Arguments
file

tranport pointer to close

Returns
0 on success, -1 on failure

Description
Close a pipe (for I/O) from or to a process

F.2.19. kpopen() — open a pipe (for I/O) from or to a process

Synopsis
kfile *kpopen(

const char *command,
const char *type)

Input Arguments
command

command to send pipe output to or from
type

open status either ’r’ or ’w’

Returns
The open file transport pointer

Description
open a pipe (for I/O) from or to a process

5-77



Operating System Services Program Services Volume I - Chapter 5

F.2.20. kpinfo() — gets the associated process id

Synopsis
pid_t kpinfo(

kfile *file)

Input Arguments
file

tranport pointer to close

Returns
process id on success, -1 on failure

Description
Gets the pipe process id

KOPSYS_WIN32 Note: the "pid" returned by this function is actually a Windows Process HANDLE.
You can use it to call _cwait.

F.2.21. kprintf() — print formatted output to kstdout

Synopsis
int kprintf(

const char *format,
kvalist)

Input Arguments
format

the format in which to print the values
kvalist

variable number of values to format and write to kstdout. The format string determines the data type
of the value(s) to be provided.

Returns
The number of characters written to stdout

Description
This function is a replacement for the system "printf" call; however, kprintf() uses data transport mech-
anisms to print the text, in order to support distributed computing.

5-78



Operating System Services Program Services Volume I - Chapter 5

The kprintf() function converts, formats, and writes its value parameters as specified by the format
parameter to kstdout. If there are insufficient values for the format, the behavior is undefined; if the
format is exhausted while values remain, the excess values are ignored.

F.2.22. kputc() — put a character onto the khoros transport

Synopsis
int kputc(

int character,
kfile *file)

Input Arguments
character

the character to be written
file

the kfile transport to be read which was opened earlier with kfopen().

Returns
returns the character written or EOF upon error.

Description
This function is a replacement for the system "fputc()" routine. The only difference is that kfputc()
supports more than just files, it supports other data transports such as shared memory, pipes, files, etc.

The routine will put a single character onto the specified transport. If the character could not be writ-
ten, EOF is returned; otherwise, the character that is written is returned.

F.2.23. krename() — rename a khoros transport from path1 to path2

Synopsis
int krename(

const char *oldname,
const char *newname)

Input Arguments
oldname

the old khoros transport name

5-79



Operating System Services Program Services Volume I - Chapter 5

newname
the new khoros transport name

Returns
0 on success, -1 on failure and sets errno to indicate the error

Description
krename() is used to move the contents from one file to another. If the two files are standard UNIX
files then krename() simply use the system rename(), but if this fails then the khoros transport mecha-
nisms are used to copy the data from the first file to the second, and then the first is unlinked using
kunlink().

F.2.24. krewind() — re wind a data transport stream to the beginning

Synopsis
void krewind(

kfile *file)

Input Arguments
file

the kfile pointer associated with the open stream to the data transport, opened earlier with kfopen()

Description
This function is a replacement for the system "rewind" call; krewind() supports all khoros data trans-
port mechanisms, not just Unix files.

This function is used to re-position the data transport pointer to the beginning of the stream. It is equiv-
alent to:

(void) kfseek(file, 0L, 0);

The behavior of the function will differ depending on the data transport being used. For a file, it calls
fseek() to reposition the file pointer; for shared memory segments, it simply resets the internal offset
pointer.

F.2.25. kscanf() — scan kstdin and format the input into one or more arguments of the type speci-
fied

5-80



Operating System Services Program Services Volume I - Chapter 5

Synopsis
int kscanf(

const char *format,
kvalist)

Input Arguments
format

the format in which to interpret the input

Output Arguments
kvalist

variable number of arguments into which to format the input coming from kstdin. The format string
determines the type of pointer(s) to be provided as the argument(s). Note that each argument must be
a pointer, and that sufficient space to accomodate the output must be provided for strings.

Returns
The number of arguments successfully scanned into the input argument(s).

Description
This function is a replacement for the system "scanf" call; however, kscanf() uses data transport mech-
anisms to scan the input, in order to support distributed computing.

The kscanf() function reads characters from kstdin, interprets them according to the format specified,
and stores the result(s) in the input argument(s) specified by a variable argument list. In addition, the
kscanf() routine guarantees that the integer returned will be the number of arguments correctly
scanned, and that scanning will never continue past the first error. If there are insufficient arguments
for the format, the behavior is undefined; if the format is exhausted while arguments remain, the
excess arguments are ignored.

F.2.26. ksetvbuf() — set the I/O buffer of a data transport stream

Synopsis
void ksetvbuf(

kfile *file,
char *buf,
int mode,
size_t bufsiz)

Input Arguments
file

the kfile pointer associated with the open stream to the data transport, opened earlier with kfopen()
buf

the new I/O buffer or NULL if no buffer is desired
mode

5-81



Operating System Services Program Services Volume I - Chapter 5

mode that the buffer runs in
bufsiz

the size of the new buffer

Description
ksetvbuf(), an alternate form of setvbuf(), can be used after a stream has been opened but before it is
read or written. It uses the character array buf whose size is specified by the bufsiz argument instead
of an automatically fixed size of BUFSIZ. If buf is NULL, then no buffer is is used.

F.2.27. ksprintf() — print one or more arguments in the format specified to an output string.

Synopsis
int ksprintf(

char *string,
const char *format,
kvalist)

Input Arguments
string

the output string in which to format the values
format

the format in which to print the values
kvalist

variable number of values to format and write to the output file string. The format string determines
the data type of the value(s) to be provided.

Returns
The number characters written to the output string.

Description
This function is a replacement for the system "sprintf" call; however, ksprint() uses data transport
mechanisms to print the output string, in order to support distributed computing.

The ksprintf() function converts, formats, and writes its value parameters as specified by the format
parameter to the output string given. If there are insufficient values for the format, the behavior is
undefined; if the format is exhausted while values remain, the excess values are ignored.

5-82



Operating System Services Program Services Volume I - Chapter 5

F.2.28. kmsprintf() — print one or more arguments in the format specified and return an allo-
cated output string.

Synopsis
char *kmsprintf(

const char *format,
kvalist)

Input Arguments
format

the format in which to print the values
kvalist

variable number of values to format and write to the output file string. The format string determines
the data type of the value(s) to be provided.

Returns
The string on success, NULL on failure

Description
This function is similar to "ksprintf" call; however, kmsprint() returns an allocated string instead of
expecting pre-allocated string.

The kmsprintf() function converts, formats, and writes its value parameters as specified by the format
parameter to a dynamically allocated string. There is no internal limits to the size of string other than
the amount of system memory allowed via malloc(). If there are insufficient values for the format, the
behavior is undefined; if the format is exhausted while values remain, the excess values are ignored.

F.2.29. ksscanf() — scan input string and format it into one or more arguments of the type speci-
fied.

Synopsis
int ksscanf(

const char *string,
const char *format,
kvalist)

Input Arguments
string

the input string to format
format

the format in which to interpret the input

5-83



Operating System Services Program Services Volume I - Chapter 5

Output Arguments
kvalist

variable number of arguments into which to format the input string. The format string determines the
type of pointer(s) to be provided as the argument(s). Note that each argument must be a pointer, and
that sufficient space to accomodate the output must be provided for strings.

Returns
The number of fields successfully parsed from the input argument(s).

Description
This function is a replacement for the system "sscanf" call; however, ksscanf() uses data transport
mechanisms to scan the input, in order to support distributed computing.

The ksscanf() function reads character data input, interprets them according to the format specified,
and stores the result in the input arguments(s) specified by the variable argument list. In addition, the
ksscanf() routine guarantees that the integer returned will be the number of fields correctly scanned,
and that scanning will never continue past the first error. If there are insufficient arguments for the for-
mat, the behavior is undefined; if the format is exhausted while arguments remain, the excess argu-
ments are ignored.

F.2.30. ktell() — report the position of the read/write pointer

Synopsis
long int ktell(

int id)

Input Arguments
id

the id of the object to be told.

Returns
-1 or the current offset depending on whether the operation failed or succeeded.

Description
This function is used to tell the current position within the transport. Depending on the different trans-
port being used the behavior will be different. For a file it calls tell() to locate the offset within the file,
but for a shared memory segment it it simply indicates the internal offset.

5-84



Operating System Services Program Services Volume I - Chapter 5

F.2.31. ktouch() — routine for touching a temporary transport

Synopsis
int ktouch(

const char *path,
mode_t mode)

Input Arguments
path

path to file to be created
mode

the permissions or mode in which to touch the file

Returns
0 on success, -1 otherwise

Description
This function is used to create a khoros transport file. Depending on the different transport being used
the behavior will be different. For a file the ktouch call simply open the file and then close it. This is
analgous to the "touch" system call.

F.2.32. ktmpfile() — create a temporary data transport stream

Synopsis
kfile *ktmpfile(void)

Returns
The kfile pointer representing the open stream to the temporary transport on success, NULL on failure

Description
This function is a replacement for the UNIX system call "ktmpfile"; ktmpfile() supports all khoros
data transports, not just unix files. The data transport will automatically be deleted when closed.

5-85



Operating System Services Program Services Volume I - Chapter 5

F.2.33. kungetc() — push a character back onto the data transport stream

Synopsis
int kungetc(

int character,
kfile *file)

Input Arguments
character

the character to be put back onto the stream
file

the kfile pointer associated with the open stream to the data transport, opened earlier with kfopen().

Returns
The character that was put back on success, EOF if an error is encountered.

Description
This function is a replacement for the system ungetc() routine; kungetc() supports all khoros data
transport mechanisms, not just Unix files.

The routine will put a single character back onto the specified data transport stream, and moves the
data transport pointer back one character. If the character could not be put back, EOF is returned; oth-
erwise, the character that is put back is returned.

5-86



Operating System Services Program Services Volume I - Chapter 5

F.2.34. kunlink() — remove a filename from a directory entry

Synopsis
int kunlink(

const char *path)

Input Arguments
path

the path to the object ot be unlinked.

Returns
-1 or 0 depending on whether the operation failed or succeeded.

Description
This function is used to unlink the kfile. Depending on the different transport being used the behavior
will be different. For a file it unlinks the file, but for a shared memory segment it initializes it before
using the shmctl() to destroy it.

F.3. Introduction to Variable Argument I/O Functions

These routines print and scan variable argument lists.

• kvfprintf() - print formatted kfile output of variable arguments
• kvfscanf() - scan formatted kfile input of variable arguments
• kvprintf() - print formatted kstdout output of variable arguments
• kvscanf() - scan formatted kstdin input of variable arguments
• kvsprintf() - print formatted string output of variable arguments list
• kvsscanf() - scan formatted string of a variable argument list

5-87



Operating System Services Program Services Volume I - Chapter 5

F.4. Definitions of Variable Argument I/O Functions

F.4.1. kvfprintf() — print formatted kfile output of variable arguments

Synopsis
int kvfprintf(

kfile *file,
const char *format,
kva_list args)

Input Arguments
file

kfile structure
format

the format in which to the arguments will be
args

an argument list which are used as the the inputs to the format command.

Returns
The number of characters written to kfile transport.

Description
This function is a replacement for the system "vfprintf" call. The only difference is that kvfprintf()
uses the transport routines to print the text. The text will be printed to the kfile transport.

F.4.2. kvfscanf() — scan formatted kfile input of variable arguments

Synopsis
int kvfscanf(

kfile *file,
const char *format,
kva_list args)

Input Arguments
file

kfile structure
format

the format in which to the arguments will be

5-88



Operating System Services Program Services Volume I - Chapter 5

Output Arguments
args

an argument list which are used as the the inputs to the format command.

Returns
number of matched arguments found in the kfile transport

Description
This function is a replacement for the system "vfscanf" call. The only difference is that kvfscanf()
uses the transport routines to scan the text. The text will be scanned from the kfile transport.

F.4.3. kvprintf() — print formatted kstdout output of variable arguments

Synopsis
int kvprintf(

const char *format,
kva_list args)

Input Arguments
format

the format in which to the arguments will be
args

an argument list which are used as the the inputs to the format command.

Returns
The number of characters written to kstdout.

Description
This function is a replacement for the system "vprintf" call. The only difference is that kvprintf() uses
the transport routines to print the string. The text will be printed to kstdout.

5-89



Operating System Services Program Services Volume I - Chapter 5

F.4.4. kvscanf() — scan formatted kstdin input of variable arguments

Synopsis
int kvscanf(

const char *format,
kva_list args)

Input Arguments
format

the format in which to the arguments will be

Output Arguments
args

an argument list which are used as the the inputs to the format command.

Returns
number of match arguments found from kstdin

Description
This function is a replacement for the system "vscanf" call. The only difference is that kvscanf() uses
the transport routines to scan the string. The text will be scanned in from kstdin.

F.4.5. kvsprintf() — print formatted string output of variable arguments list

Synopsis
int kvsprintf(

char *string,
const char *format,
kva_list args)

Input Arguments
string

the output string to format the arguments into
format

the format in which to the arguments will be
args

variable argument list which are used as the the inputs to the format command.

Returns
The number of characters written to the string

5-90



Operating System Services Program Services Volume I - Chapter 5

Description
This function is a replacement for the system "vsprintf" call. The only difference is that kvsprintf()
uses the transport routines printing routines. The text will be printed to the supplied string.

F.4.6. kvsscanf() — scan formatted string of a variable argument list

Synopsis
int kvsscanf(

const char *string,
const char *format,
kva_list args)

Input Arguments
string

the output string to format the arguments into
format

the format in which to the arguments will be

Output Arguments
args

variable argument list which are used as the the inputs to the format command.

Returns
number of match arguments found in the supplied string

Description
This function is a replacement for the system "vsscanf" call. The only difference is that kvsscanf()
uses the transport routines scanning routines. The text will be scanned to the supplied string.

F.5. Introduction to Standard File I/O Functions

These functions cover the buffered opening, closing, and locking of a file. Also included are functions to
obtain various statistics of the file. These routines include:

• kfopen() - open a data transport stream
• kfclose() - close a data transport stream
• kfdopen() - open an existing transport descriptor as a data transport stream
• kfeof() - check if a data transport stream is at EOF
• kfflush() - flush buffered output of a data transport stream
• kflock() - apply or remove an advisory lock on an open transport descriptor
• kfreopen() - re-open a data transport stream

5-91



Operating System Services Program Services Volume I - Chapter 5

• kfseek() - set position in a data transport stream
• kftell() - report current position in the data transport stream

F.6. Definitions of Standard File I/O Functions

F.6.1. kfopen() — open a data transport stream

Synopsis
kfile *kfopen(

const char *path,
const char *type)

Input Arguments
path

the path specifying the data transport to be opened; see above.
type

how the data transport is to be opened.

"r" - Open file for only reading
"w" - Open file for only writing
"a" - Append file for only writing
"A" - Append file for writing; non over-write
"r+" - Open file for both reading & writing
"w+" - Open file for both reading & writing
"a+" - Append file for only writing
"A+" - Append file for writing; non over-write

Returns
The kfile pointer representing the open stream to the data transport on success, NULL on failure

Description
This function is a replacement for the system "fopen" call; kfopen() supports the opening of any
khoros data transport mechanism.

Identifiers for VisiQuest data transport mechanisms include the following:

’file’ (standard Unix file; local transport / permanent storage)
’pipe’ (standard pipes; local transport / no permanent storage)
’mmap’ (virtual memory; local transport / permanent storage)
’shm’ (shared memory; local transport / permanent storage)
’socket’ (sockets; local or remote transport / no permanent storage)
’stream’ (named streams/pipes; local transport / no permanent storage)

5-92



Operating System Services Program Services Volume I - Chapter 5

The token is the type of identifier for that transport. For a file, it is simply the filename. For shared
memory, it is the shared memory key. For a pipe, it is the input & output file descriptors, as in
"pipe=[3,4]". For a socket, it is the number of the socket, as in "socket=5430".

Together, the identifier and the token identify the path to the data transport to be opened. The path
must be in the form of an identifier and a token, separated by an "=" equal indicator, as in:

"{identifier}={transport token}"

For example, the path parameter for opening shared memory might be:

"shm=1032"

The path parameter for opening a file might be:

"file=/usr/tmp/vadd1235"

When opening a file as the data transport mechanism, the identifier and the "=" sign may be omitted, as
in:

"./foobar"

F.6.2. kfclose() — close a data transport stream

Synopsis
int kfclose(

kfile *file)

Input Arguments
file

the kfile pointer representing the open stream to a khoros data transport mechanism that was opened
earlier using kfopen().

Returns
0 on success, -1 on failure.

Description
This function is a replacement for the system "fclose" call; kfclose() supports all khoros data transport
mechanisms, not just Unix files.

5-93



Operating System Services Program Services Volume I - Chapter 5

F.6.3. kfdopen() — open an existing transport descriptor as a data transport stream

Synopsis
kfile *kfdopen(

int id,
const char *type)

Input Arguments
id

the transport identifier opened earlier
type

how the data transport is to be opened.

"r" - Open file for only reading
"w" - Open file for only writing
"a" - Append file for only writing
"A" - Append file for writing; non over-write
"r+" - Open file for both reading & writing
"w+" - Open file for both reading & writing
"a+" - Append file for only writing
"A+" - Append file for writing; non over-write

Returns
The kfile pointer representing the open stream to the data transport on success, NULL on failure

Description
This function is a replacement for the system "fdopen" call; kfdopen() supports all data transport
mechanisms, not just unix files.

The kfdopen() function associates a data transport stream with an existing transport descriptor previ-
ously obtained from a call to kopen(), kdup(), kdup2(), or kpipe(). These functions open data trans-
ports, but do not return pointers to kfile structures; many of the khoros I/O functions require pointers to
the kfile structure. Note that the type of khoros data transport must agree with the mode of the open
data transport.

5-94



Operating System Services Program Services Volume I - Chapter 5

F.6.4. kfeof() — check if a data transport stream is at EOF

Synopsis
int kfeof(

kfile *file)

Input Arguments
file

the kfile pointer associated with the open stream to the data transport, opened earlier with kfopen()

Returns
A non-zero value if EOF has been reached on the specified data transport stream; otherwise, zero is
returned.

Description
This function is a replacement for the system "feof" call; kfeof() supports all khoros data transport
mechanisms, not just Unix files.

This routines test to see if the data transport pointer of a stream open for reading has reached the end of
file.

F.6.5. kfflush() — flush buffered output of a data transport stream

Synopsis
int kfflush(

kfile *file)

Input Arguments
file

the kfile pointer associated with the open stream to the data transport, opened earlier with kfopen()

Returns
0 on success, EOF if the file was not open for writing, or if a write error occurred.

Description
This function is a replacement for the system "fflush" call; kfflush() supports all khoros data transport
mechanisms, not just Unix files.

This routine is used to flush any buffered output; any data in the buffer of the output stream is written
to the data transport stream specified.

5-95



Operating System Services Program Services Volume I - Chapter 5

F.6.6. kflock() — apply or remove an advisory lock on an open transport descriptor

Synopsis
int kflock(

int id,
int operation)

Input Arguments
id

the id of the object to be flock.

operation
the mode in which kflock() should lock the file. The operation is comprised of an or’ing of the follow-
ing flags:

KLOCK_SH - lock file shareable (when reading)
KLOCK_EX - lock file execlusive (when writing)
KLOCK_NB - lock file for no block (don’t block)
KLOCK_UN - unlock the file (free previous lock)

Returns
0 on success, -1 on failure

Description
This function is used to lock the transport. Depending on the different transport being used the behav-
ior will be different. For a file it calls flock() to lock the file, but for a shared memory segment it it
calls shmctl() to lock & unlock the shared memory segment.

F.6.7. kfreopen() — re-open a data transport stream

Synopsis
kfile *kfreopen(

const char *path,
const char *type,
kfile *file)

Input Arguments
path

the path specifying the data transport to be re-opened; see above.

5-96



Operating System Services Program Services Volume I - Chapter 5

type
how the data transport is to be re-opened.

"r" - Open file for only reading
"w" - Open file for only writing
"a" - Append file for only writing
"A" - Append file for writing; non over-write
"r+" - Open file for both reading & writing
"w+" - Open file for both reading & writing
"a+" - Append file for only writing
"A+" - Append file for writing; non over-write

file
the existing data transport stream to be reopened for the specified path.

Returns
The kfile pointer representing the open stream to the re-opened data transport on success, NULL on
failure

Description
This function is a replacement for the UNIX system call "freopen"; kfreopen() supports all khoros
data transport mechanisms, not just unix files.

kfreopen() will open a specified file on for an existing stream. The existings stream is closed before
the new filename is opened. This function is typically used to open a specified file as one of the prede-
fined streams; such as standard input, standard output, or standard error.

The kfreopen() function substitutes the specified data transport in place of the open data transport
stream. The original stream is closed regardless of whether the kfreopen() function succeeds with the
new data transport. The kfreopen() function is typically used to attach the preopened data transport
streams associated with kstdin, kstdout, and kstderr to other data transport mechanisms.

Identifiers for VisiQuest data transport mechanisms include the following:

’file’ (standard Unix file; local transport / permanent storage)
’pipe’ (standard pipes; local transport / no permanent storage)
’mmap’ (virtual memory; local transport / permanent storage)
’shm’ (shared memory; local transport / permanent storage)
’socket’ (sockets; local or remote transport / no permanent storage)
’stream’ (named streams/pipes; local transport / no permanent storage)

The token is the type of identifier for that transport. For a file, it is simply the filename. For shared
memory, it is the shared memory key. For a pipe, it is the input & output file descriptors, as in
"pipe=[3,4]". For a socket, it is the number of the socket, as in "socket=5430".

Together, the identifier and the token identify the path to the data transport to be opened. The path
must be in the form of an identifier and a token, separated by an "=" equal indicator, as in:

5-97



Operating System Services Program Services Volume I - Chapter 5

"{identifier}={transport token}"

For example, the path parameter for opening shared memory might be:

"shm=1032"

The path parameter for opening a file might be:

"file=/usr/tmp/vadd1235"

When opening a file as the data transport mechanism, the identifier and the "=" sign may be omitted, as
in:

"./foobar"

F.6.8. kfseek() — set position in a data transport stream

Synopsis
int kfseek(

kfile *file,
long int offset,
int whence)

Input Arguments
file

the kfile pointer associated with the open stream to the data transport, opened earlier with kfopen()
offset

offset specifying new position of file pointer
whence

controls how the offset will be applied:

0 - sets the pointer to the absolute
value of the offset parameter

1 - sets the pointer to its current location plus
the value of the offset parameter

2 - sets the pointer to the size of the file plus
the value of the offset parameter

Returns
File position on success, -1 on failure

5-98



Operating System Services Program Services Volume I - Chapter 5

Description
This function is a replacement for the system "fseek" call; kfseek() supports all khoros data transport
mechanisms, not just Unix files.

This function sets the position of the next input or output operation on the data transport stream by
changing the location of the data transport pointer.

F.6.9. kftell() — report current position in the data transport stream

Synopsis
long int kftell(

kfile *file)

Input Arguments
file

the kfile pointer associated with the open stream to the data transport, opened earlier with kfopen()

Returns
0 on success, -1 on failure

Description
This function is a replacement for the system "ftell" call; kftell() supports all khoros data transport
mechanisms, not just Unix files.

This function is used to check the current position of the data transport pointer within the data trans-
port stream.

F.7. Introduction to File Read/Write Utilities

These functions allow various methods of reading from and writing to a VisiQuest Data Transport
stream.

• kfdup() - duplicate an existing data transport stream
• kfdup2() - duplicate an existing data transport into a specific stream
• kfgetc() - get a character from the data transport stream
• kfgets() - get a string from a data transport stream
• kfinput() - opens a file for reading using kfopen()
• kfoutput() - opens/creates a file for writing using kfopen()
• kfprintf() - print one or more arguments in the format specified to an output file stream
• kfputc() - put a character onto the data transport stream
• kfputs() - put a string onto the data transport stream

5-99



Operating System Services Program Services Volume I - Chapter 5

• kfread() - read from a data transport stream
• kfscanf() - scan file input and format it into one or more arguments of the type specified
• kfwrite() - write to a data transport stream
• kputs() - writes a string to kstdout

F.8. Definitions of File Read/Write Utilities

F.8.1. kfdup() — duplicate an existing data transport stream

Synopsis
kfile *kfdup(

kfile *file)

Input Arguments
file

the kfile pointer associated with the open stream to the data transport to be duplicated, opened earlier
with kfopen()

Returns
The newly duplicated stream on success, NULL upon failure

Description
Duplicates an existing data transport stream. The "file" is entry in the process’s transport descriptor ta-
ble. The new entry returned kfdup() will be the lowest table entry.

F.8.2. kfdup2() — duplicate an existing data transport into a specific stream

Synopsis
kfile *kfdup2(

kfile *file1,
kfile *file2)

Input Arguments
file1

the existing khoros transport stream to be dup’ed
file2

the stream to be used for the newly dup’ed stream

5-100



Operating System Services Program Services Volume I - Chapter 5

Returns
the newly dup’ed stream on success, or NULL upon failure

Description
kfdup2() is used to duplicate an existing khoros transport stream. The "file1" is an entry in the pro-
cess’s transport descriptor table. The newly dupedd entry will be stored in the transport table entry
specified by "file2". If file2 is open then it will be closed (kfclose) before the dup of file1 is put into
file2.

F.8.3. kfgetc() — get a character from the data transport stream

Synopsis
int kfgetc(

kfile *file)

Input Arguments
file

the kfile pointer associated with the open stream to the data transport, opened earlier with kfopen().

Returns
The character read on success, EOF if an error is encountered.

Description
This function is a replacement for the system "fgetc()" routine; kfgetc() supports all khoros data trans-
port mechanisms, not just Unix files.

The routine gets a single character from the data transport stream, and moves the data transport pointer
ahead by one character. If the character could not be read, EOF is returned; otherwise, the character
that is read is returned.

F.8.4. kfgets() — get a string from a data transport stream

Synopsis
char *kfgets(

char *buffer,
int num,
kfile *file)

5-101



Operating System Services Program Services Volume I - Chapter 5

Input Arguments
num

maximum number of characters to read (the size of the character array).
file

the kfile pointer associated with the open stream to the data transport, opened earlier with kfopen()

Output Arguments
buffer

pointer to allocated character array into which to read the string.

Returns
Returns the string read on success, NULL if EOF is encountered before any characters have been read,
or if an error occurs.

Description
This function is a replacement for the system "fgets" call; kfgets() supports all khoros data transport
mechanisms, not just Unix files.

The routine reads a string of characters from the specified data transport stream, and moves the data
transport pointer ahead by that number of characters. kfgets() reads characters from the stream into the
array pointed to by ’buffer’ until ’num’-1 characters are read, or until a ’\n’ (newline character) is read
(and added to the string), or until EOF is encountered. The string is terminated with a NULL character.
If the string could not be read, NULL is returned; otherwise, the string is returned.

F.8.5. kfinput() — opens a file for reading using kfopen()

Synopsis
kfile *kfinput(

char *filename)

Input Arguments
filename

the filename to be opened for reading using the kfopen().

Returns
returns the kfile structure on success, NULL upon failure

Description
This function is just a simplified interface to kfopen() that opens a file for reading. The macros calls
kfopen using the following syntax:

5-102



Operating System Services Program Services Volume I - Chapter 5

kfopen(filename, "r")

F.8.6. kfoutput() — opens/creates a file for writing using kfopen()

Synopsis
Declaration: kfile *kfoutput(

char *filename)

Input Arguments
filename

the filename to be opened for writing using the kfopen().

Returns
returns the kfile structure on success, NULL upon failure

Description
This function is just a simplified interface to kfopen() that creates and opens a file for writing. The file
is truncated upon a successful kfopen call. The macros calls kfopen using the following syntax:

kfopen(filename, "w")

F.8.7. kfprintf() — print one or more arguments in the format specified to an output file stream

Synopsis
int kfprintf(

kfile *file,
const char *format,
kvalist)

Input Arguments
file

stream to open output file
format

the format in which to print the values
kvalist

variable number of values to format and write to the output file stream. The format string determines

5-103



Operating System Services Program Services Volume I - Chapter 5

the data type of the value(s) to be provided.

Returns
The number of characters written to the output file.

Description
This function is a replacement for the system "fprintf" call; however, kfprint() uses data transport
mechanisms to print the output, in order to support distributed computing.

The kfprintf() function converts, formats, and writes its value parameters as specified by the format
parameter to the output stream given. If there are insufficient values for the format, the behavior is
undefined; if the format is exhausted while values remain, the excess values are ignored.

F.8.8. kfputc() — put a character onto the data transport stream

Synopsis
int kfputc(

int character,
kfile *file)

Input Arguments
character

the character to be written
file

the kfile pointer associated with the open stream to the data transport

Returns
The character written on success; EOF on failure

Description
This function is a replacement for the system "fputc" call; kfputc() supports all khoros data transport
mechanisms, not just Unix files.

The routine will write a single character to the data transport stream. If the character could not be writ-
ten, EOF is returned; otherwise, the character that is written is returned.

5-104



Operating System Services Program Services Volume I - Chapter 5

F.8.9. kfputs() — put a string onto the data transport stream

Synopsis
int kfputs(

const char *buffer,
kfile *file)

Input Arguments
buffer

the string to be written
file

the kfile pointer associated with the open stream to the data transport, opened earlier with kfopen().

Returns
The number of characters written on success, EOF if an error is encountered.

Description
This function is a replacement for the system "fputs" call; kfputs() supports all khoros data transport
mechanisms, not just Unix files.

The routine will write a NULL-terminated string to the data transport output stream. If the string
could not be written, EOF is returned; otherwise, the number of characters that were written are
returned.

F.8.10. kfread() — read from a data transport stream

Synopsis
size_t kfread(

kaddr ptr,
size_t size,
size_t nitems,
kfile *file)

Input Arguments
ptr

a pointer to allocated space into which to read the data
size

the size, in bytes, of each item
nitems

the number of items to be read
file

5-105



Operating System Services Program Services Volume I - Chapter 5

the data transport transport to be read from; must have been opened earlier using kfopen().

Returns
The number of items read on success; 0 when end-of-file is encountered or an error occurs.

Description
This function is a replacement for the system "fread" call; kfread() supports all khoros data transport
mechanisms, not just Unix files.

The routine will read ’nitem’ items, each of ’size’ bytes from the data transport stream associated with
’file’ into the memory location accessed by ’ptr’.

F.8.11. kfscanf() — scan file input and format it into one or more arguments of the type specified

Synopsis
int kfscanf(

kfile *file,
const char *format,
kvalist)

Input Arguments
file

stream to open input file
format

the format in which to interpret the input

Output Arguments
kvalist

variable number of arguments into which to format the input from the file stream. The format string
determines the type of pointer(s) to be provided as the argument(s). Note that each argument must be
a pointer, and that sufficient space to accomodate the output must be provided for strings.

Returns
The number of arguments successfully scanned into the input argument(s).

Description
This function is a replacement for the system "fscanf" call; however, kfscanf() uses data transport
mechanisms to scan the input, in order to support distributed computing.

The kfscanf() function reads characters from an input transport, interprets them according to the format
specified, and stores the result in the input argument(s) specified by the variable argument list. In addi-
tion, the kfscanf() routine guarantees that the integer returned will be the number of fields correctly
scanned, and that scanning will never continue past the first error. If there are insufficient arguments

5-106



Operating System Services Program Services Volume I - Chapter 5

for the format, the behavior is undefined; if the format is exhausted while arguments remain, the
excess arguments are ignored.

F.8.12. kfwrite() — write to a data transport stream

Synopsis
size_t kfwrite(

kaddr ptr,
size_t size,
size_t nitems,
kfile *file)

Input Arguments
ptr

a pointer to allocated space from which to write the data
size

the size, in bytes, of each item
nitems

the number of items to be written
file

the data transport transport to be written to; must have been opened earlier using kfopen().

Returns
The number of items written on success, 0 if an error is encountered.

Description
This function is a replacement for the system "fwrite" call; kwrite() supports all khoros data transport
mechanisms, not just Unix files.

The routine will write ’nitem’ items, each of ’size’ bytes to the data transport stream associated with
’file’ from the memory location accessed by ’ptr’.

5-107



Operating System Services Program Services Volume I - Chapter 5

F.8.13. kputs() — writes a string to kstdout

Synopsis
int kputs(

const char *buffer)

Input Arguments
buffer

the buffer to write to kstdout.

Returns
returns the characters written; otherwise EOF is returned.

Description
This function is a replacement for the system puts() routine. The only difference is that kputs() uses
the khoros transport mechanisms. The routine will print a single line to kstdout. It uses the kstrlen() to
determine the number of characters to print.

F.9. Introduction to Data Transport Utilities

The previous utilities were generalized front ends that opened, closed, read from and wrote to the VisiQuest
 data transport currently being used. These utilities perform various functions with respect to the current
VisiQuest Data Transport itself.

• kfile_clrstate() - remove a flag from an open transport id state
• kfile_comparedata() - compare the contents of a transport id to another transport id
• kfile_copydata() - copy the contents of a transport id to another transport id
• kfile_filename() - return the filename associated with khoros transport id
• kfile_flags() - return the flags associated with transport id
• kfile_getmachtype() - gets the machine architecture type for a file transport id
• kfile_getpermanence() - returns whether a file has data permanence or not
• kfile_isdup() - khoros transport has been has been/is a dupped transport
• kfile_iseof() - khoros transport is at end of file (eof)
• kfile_ismybuf() - khoros transport buffer was set by the application
• kfile_isopen() - khoros transport has been properly opened
• kfile_islock() - khoros transport has been/is a locked transport
• kfile_isreacquire() - khoros transport will be reacquired
• kfile_ispermanent() - khoros transport has permanence
• kfile_isbufferd() - khoros transport is buffered or not
• kfile_isstreambuf() - khoros transport is stream buffered
• kfile_islinebuf() - khoros transport is line buffered
• kfile_isfullbuf() - khoros transport is full buffered
• kfile_ismembuf() - khoros transport is memory buffered

5-108



Operating System Services Program Services Volume I - Chapter 5

• kfile_isread() - khoros transport is readable
• kfile_isrdwr() - khoros transport is both readable and writeable
• kfile_istemp() - khoros transport is temporary
• kfile_iswrite() - khoros transport is writeable
• kfile_mode() - return the mode associated with transport id
• kfile_readdata() - read the contents of a khoros transport into a data array
• kfile_remotehost() - returns whether a host is remote
• kfile_reopen() - re-open a stream khoros transport
• kfile_seddata() - string edit from one transport to another
• kfile_setmachtype() - sets the machine architecture type for a file transport id
• kfile_setstate() - adds a flag to the open transport id state
• kfile_getstate() - return the current internal stream transport state
• kfile_type() - return the type flag field used when opening the transport with kfopen()
• kfile_writedata() - write the contents of the data to a khoros transport
• kfidfile() - return the kfile structure associated with a fid
• ktmpfid() - create a temporary transport descriptor
• ktransport_add() - add a new transport to the list of transports
• ktransport_delete() - delete a transport from the list of all transports
• ktransport_list() - get the list of supported transports

F.10. Definitions of Data Transport Utilities

F.10.1. kfile_clrstate() — remove a flag from an open transport id state

Synopsis
unsigned long kfile_clrstate(

kfile *file,
unsigned long flag)

Input Arguments
file

the transport id from which to clear the flag for
flag

the flag to be clear (such as KFILE_TEMP)

Returns
The updated flags associated with the id or -1 upon failure

Description
This routine is used to clear a flag within the transport id state field.

5-109



Operating System Services Program Services Volume I - Chapter 5

F.10.2. kfile_comparedata() — compare the contents of a transport id to another transport id

Synopsis
int kfile_comparedata(

int id1,
int id2,
size_t num,
size_t * num_compared)

Input Arguments
id1

the first khoros transport descriptor
id2

the second khoros transport descriptor
num

if not 0 the number of bytes to be compared.

Output Arguments
num_compared

the number of bytes actually compared.

Returns
returns an integer less than, equal to, or greater than 0, according as id1 is lexicographically less than,
equal to, or greater than id2.

Description
This routine compare the contents of a input transport descriptor to an output transport descriptor.
These descriptors are specified by the VisiQuest transport mechanism. An optional "num_compare" can
be used to specify the actual number of bytes to be compared. If "num_compare" is 0 then all the data
from the two transports are compared.

Side Effects
data is read from id1 and id2, which means if the transports do not support data permanence seeking
maynot work.

5-110



Operating System Services Program Services Volume I - Chapter 5

F.10.3. kfile_copydata() — copy the contents of a transport id to another transport id

Synopsis
ssize_t kfile_copydata(

int id1,
int id2,
size_t num)

Input Arguments
id1

the input khoros transport descriptor
id2

the output khoros transport descriptor
num

if not 0 the number of bytes to be copied.

Returns
the number of bytes copied or -1 upon failure

Description
This routine copies the contents of a input transport descriptor to an output transport descriptor. These
descriptors are specified by the VisiQuest transport mechanism. An optional "num_copy" can be used to
specify the actual number of bytes to be copied. If "num_copy" is 0 then all the data from input is
written to the output.

Side Effects
the data written to the output descriptor will not be flushed until a kfflush() or kclose() is performed.

F.10.4. kfile_filename() — return the filename associated with khoros transport id

Synopsis
char * kfile_filename(

int id)

Input Arguments
id

the transport id from which the filename is returned

Returns
The filename associated with the id or NULL upon failure

5-111



Operating System Services Program Services Volume I - Chapter 5

Description
This routine returns the filename associated with a khoros transport descriptor id. This is the filename
used in originally creating the transport.

Side Effects
the filename returned is the internal copy of the kfile transport. This means that you should not modify
or free the string.

F.10.5. kfile_flags() — return the flags associated with transport id

Synopsis
unsigned long kfile_flags(

int id)

Input Arguments
id

the transport id from which the flags is returned

Returns
The flags associated with the id or -1 upon failure

Description
This routine returns the open flags associated with a khoros transport descriptor id. This is the flags
used in originally creating/opening of the transport.

F.10.6. kfile_getmachtype() — gets the machine architecture type for a file transport id

Synopsis
int kfile_getmachtype(

int id)

Input Arguments
id

the file id to be retrieve the machtype, which was opened earlier with kopen().

Returns
the machine type on success, -1 otherwise

5-112



Operating System Services Program Services Volume I - Chapter 5

Description
This function returns the machine architecture type for a particular file id. The machine type is used in
conjunction with the kread_XXXX & kwrite_XXXX routines which provide data conversion for data
independence.

F.10.7. kfile_getpermanence() — returns whether a file has data permanence or not

Synopsis
int kfile_getpermanence(

char *path)

Input Arguments
path

path of identifier to inquire about

Returns
returns TRUE or FALSE depending whether the transport is known to support data permanence or -1
upon error

Description
This function is used to return whether a particular file or transport identifier is a permanent data trans-
port (like shared memory) or a connection oriented protocol like (stream or sockets).

F.10.8. kfile_isdup() — khoros transport has been has been/is a dupped transport

Synopsis
int kfile_isdup(

kfile *file)

Input Arguments
file

the khoros transport to test whether the transport has been dupped.

Returns
TRUE (1) on success, FALSE (0) otherwise

5-113



Operating System Services Program Services Volume I - Chapter 5

Description
Whether a khoros transport has been or is a dupped transport. A transport can be dupped by the rou-
tines kdup(), kdup2(), kfdup(), kfdup2().

F.10.9. kfile_iseof() — khoros transport is at end of file (eof)

Synopsis
int kfile_iseof(

kfile *file)

Input Arguments
file

the khoros transport to test whether the transport is at end of file (eof).

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
Whether a khoros transport is currently at end of file. A transport end of file flag can be cleared using
the kclearerr() routine.

F.10.10. kfile_ismybuf() — khoros transport buffer was set by the application

Synopsis
int kfile_ismybuf(

kfile *file)

Input Arguments
file

the khoros transport to test whether the buffer was set by the programmer.

Returns
TRUE (1) on success, FALSE (0) otherwise

5-114



Operating System Services Program Services Volume I - Chapter 5

Description
Whether a khoros transport’s read/write buffer was set by the programmer or was internally allocated
by the open transport process.

F.10.11. kfile_isopen() — khoros transport has been properly opened

Synopsis
int kfile_isopen(

kfile *file)

Input Arguments
file

the khoros transport to test whether the transport has been opened.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
Whether a khoros transport has been opened.

F.10.12. kfile_islock() — khoros transport has been/is a locked transport

Synopsis
int kfile_islock(

kfile *file)

Input Arguments
file

the khoros transport to test whether the transport has been opened lock.

Returns
TRUE (1) on success, FALSE (0) otherwise

5-115



Operating System Services Program Services Volume I - Chapter 5

Description
Whether a khoros transport has been or is a locked transport. A transport can be locked using the
KFILE_LOCK flag on open.

F.10.13. kfile_isreacquire() — khoros transport will be reacquired

Synopsis
int kfile_isreacquire(

kfile *file)

Input Arguments
file

the khoros transport to test whether the transport is allowed to be reacquired

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
Whether a khoros transport will be reacquired. This is how applications like VisiQuest can get fast
IPC between processes.

F.10.14. kfile_ispermanent() — khoros transport has permanence

Synopsis
int kfile_ispermanent(

kfile *file)

Input Arguments
file

the khoros transport to test whether the transport has data permanence.

Returns
TRUE (1) on success, FALSE (0) otherwise

5-116



Operating System Services Program Services Volume I - Chapter 5

Description
Whether a khoros transport has data permanence. If a transport has permanence then the data can be
accessed multiple times. In the case of files, shared memory, memory mapped files, these transports
have permanence. Where as for pipes and sockets the data can only be accessed (read or written) to
once.

F.10.15. kfile_isbufferd() — khoros transport is buffered or not

Synopsis
int kfile_isbuffered(

kfile *file)

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
Whether a khoros transport is buffered or not

F.10.16. kfile_isstreambuf() — khoros transport is stream buffered

Synopsis
int kfile_isstreambuf(

kfile *file)

Input Arguments
file

the khoros transport to test whether the transport is stream buffered

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
Whether a khoros transport is stream buffered

5-117



Operating System Services Program Services Volume I - Chapter 5

F.10.17. kfile_islinebuf() — khoros transport is line buffered

Synopsis
int kfile_islinebuf(

kfile *file)

Input Arguments
file

the khoros transport to test whether the transport is line buffered

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
Whether a khoros transport is line buffered

F.10.18. kfile_isfullbuf() — khoros transport is full buffered

Synopsis
int kfile_isfullbuf(

kfile *file)

Input Arguments
file

the khoros transport to test whether the transport is full buffered

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
Whether a khoros transport is full buffered

5-118



Operating System Services Program Services Volume I - Chapter 5

F.10.19. kfile_ismembuf() — khoros transport is memory buffered

Synopsis
int kfile_ismembuf(

kfile *file)

Input Arguments
file

the khoros transport to test whether the transport is memory buffered

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
Whether a khoros transport is memory buffered

F.10.20. kfile_isread() — khoros transport is readable

Synopsis
int kfile_isread(

kfile *file)

Input Arguments
file

the khoros transport to test whether readable

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
Whether a khoros transport is readable.

5-119



Operating System Services Program Services Volume I - Chapter 5

F.10.21. kfile_isrdwr() — khoros transport is both readable and writeable

Synopsis
int kfile_isrdwr(

kfile *file)

Input Arguments
file

the khoros transport to test whether it’s readable and writeable

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
Whether a khoros transport is readable and writeable.

F.10.22. kfile_istemp() — khoros transport is temporary

Synopsis
int kfile_istemp(

kfile *file)

Input Arguments
file

the khoros transport to test whether the transport is a temporary

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
Whether a khoros transport has been created as a temporary. A transport created via ktempnam() or
kfile_tempnam() is flagged as a temporary transport.

5-120



Operating System Services Program Services Volume I - Chapter 5

F.10.23. kfile_iswrite() — khoros transport is writeable

Synopsis
int kfile_iswrite(

kfile *file)

Input Arguments
file

the khoros transport to test whether writeable

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
Whether a khoros transport is writeable.

F.10.24. kfile_mode() — return the mode associated with transport id

Synopsis
mode_t kfile_mode(

int id)

Input Arguments
id

the transport id from which the flags is returned

Returns
The mode associated with the id or KMODE_INVALID upon failure

Description
This routine returns the mode associated with a khoros transport descriptor id. This is the mode used
in originally creating/opening of the transport.

5-121



Operating System Services Program Services Volume I - Chapter 5

F.10.25. kfile_readdata() — read the contents of a khoros transport into a data array

Synopsis
kaddr kfile_readdata(

int id,
kaddr ptr,
size_t * num)

Input Arguments
id

the khoros transport descriptor
ptr

data to be used if not NULL

Output Arguments
num

if not NULL the number of bytes read is returned

Returns
a pointer to the contents of the file or NULL upon failure

Description
This routine reads the contents of a file, using the khoros transport mechanisms, into an array. If the
data array is NULL then a data array of suitable size is allocated and passed back. An optional
"num_read" can be used to find out the actual number of bytes read. If "num_read" is NULL then the
parameter is ignored.

Side Effects
the data returned is allocated and needs to freed using kfree_and_NULL().

F.10.26. kfile_remotehost() — returns whether a host is remote

Synopsis
int kfile_remotehost(

char *machine)

Input Arguments
machine

the machine name we wish to find out about

5-122



Operating System Services Program Services Volume I - Chapter 5

Returns
TRUE (1) if the machine name is a remote name, FALSE (0) otherwise

Description
This function determines whether or not the machine name passed in is the hostname or an alias of the
current machine, or if it is the name of another machine on the network.

F.10.27. kfile_reopen() — re-open a stream khoros transport

Synopsis
kfile *kfile_reopen(

char *path,
char *type,
kfile *file)

Input Arguments
path

is the string containing the path name to the desired file to be open. The path name identifies the file to
be opened, just like the regular UNIX freopen() command.

type
how the file is to be re-opened.

"r" - Open file for only reading
"w" - Open file for only writing
"a" - append file for only writing
"A" - append file for writing; non overwrite
"r+" - Open file for both reading & writing
"w+" - Open file for both reading & writing
"a+" - append file for only writing
"A+" - append file for writing; non overwrite

file
the existing khoros stream transport to be reopened for the specified filename.

Returns
returns the kfile structure or NULL upon failure

Description
This function is similar to the khoros kfreopen() call. The only difference is that kfile_reopen() re-
open the a khoros stream transport as well close and re-open all of transports that have been kdup’ed
from the existing transport.

5-123



Operating System Services Program Services Volume I - Chapter 5

kfile_reopen() will open a specified file on for an existing stream. The existings stream is closed
before the new filename is opened. This function is typically used to open a specified file as one of the
predefined streams; such as standard input, standard output, or standard error.

F.10.28. kfile_seddata() — string edit from one transport to another

Synopsis
int kfile_seddata(

int id1,
int id2,
kvalist)

Input Arguments
id1

source transport id to copy data from
id2

destination transport id to copy data to
kvalist

list of search patterns and replacement patterns to be used to modify the data as it is being copied.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This routine takes two transport id’s, and copies the data from the source file to the destination file. It
also uses a variable argument list of strings pairs, where each pair indication a search pattern and a
replacement pattern. This list will be used to replace strings in pattern strings in the input transport
with the corresponding replacement pattern. Note, the variable argument list MUST be terminated
with a NULL in one of the search pattern slots

For example, the following is a correct termination:

kfile_seddata(id1, id2, "t1", "t2", FALSE, NULL);

And this is an incorrect termination:

kfile_seddata(id1, id2, "t1", NULL);

5-124



Operating System Services Program Services Volume I - Chapter 5

And this is an incorrect termination:

kfile_seddata(id1, id2, "t1", NULL, FALSE);

The reason the NULL must be on the search pattern, is so that NULL can be sent in as the replacement
string. The replacement mechanism is kstring_replace, and its documentation explains restrictions on
search strings and replace strings.

The regex parameter is used to indicate whether the search and replacement parameters are specified in
regular expression form, or are just simply string replacement patterns. For more information about
regular expressions please see the khoros string parsing section of the VisiQuest Programmers Manual.

kfile_seddata does not support the "mode" operation as used by ksedfile(). The mode operation is used
to how the data should be updated, but it relies on the ability to read as well as write to the destination
id (id2).

F.10.29. kfile_setmachtype() — sets the machine architecture type for a file transport id

Synopsis
int kfile_setmachtype(

int id,
int machtype)

Input Arguments
id

the file id on which to set the machtype, which was opened earlier with kopen().
machtype

the machine architecture type to set the file id to.

Returns
0 on success, -1 otherwise

Description
This function sets the machine architecture type for a particular file id. The machine type is used in
conjunction with the kread_XXXX & kwrite_XXXX routines which provide data conversion for data
independence.

5-125



Operating System Services Program Services Volume I - Chapter 5

F.10.30. kfile_setstate() — adds a flag to the open transport id state

Synopsis
unsigned long kfile_setstate(

kfile *file,
unsigned long flag)

Input Arguments
file

the transport id from which to set the flag for
flag

the flag to be set (such as KFILE_TEMP)

Returns
returns the updated flags associated with the id or -1 upon failure

Description
This routine is used to set a flag within the transport id state field.

F.10.31. kfile_getstate() — return the current internal stream transport state

Synopsis
unsigned long int kfile_getstate(

kfile *file)

Input Arguments
file

the kfile transport to be returned

Returns
The type associated with the kfile transport on success, or NULL upon failure

Description
This routine returns the internal state of a khoros stream transport. The state is mask of the following
defines:

KFILE_READ - whether transport is readable
KFILE_WRITE - whether transport is writeable
KFILE_RDWR - whether transport is readable &

5-126



Operating System Services Program Services Volume I - Chapter 5

writeable

KFILE_MYBUF - whether transport uses user defined

stream buffer

KFILE_EOF - whether transport is at end of file
KFILE_ERR - whether transport is in an error
KFILE_PERM - whether transport has data permanence
KFILE_OPEN - whether transport is currently opened
KFILE_DUP - whether transport is currently dupped
KFILE_TEMP - whether transport is a temporary
KFILE_LOCK - whether transport enforces locking

Side Effects
the type field returned is the internal copy of the kfile transport. This means that you should not mod-
ify or free the string.

F.10.32. kfile_type() — return the type flag field used when opening the transport with kfopen()

Synopsis
char *kfile_type(

kfile *file)

Input Arguments
file

the kfile transport returned earlier by kfopen()

Returns
The type associated with the kfile transport on success, or NULL upon failure

Description
This routine returns the type field associated with a khoros transport. This is the type fields used origi-
nally when opening the transport with kfopen().

Side Effects
the type field returned is the internal copy of the kfile transport. This means that you should not mod-
ify or free the string.

5-127



Operating System Services Program Services Volume I - Chapter 5

F.10.33. kfile_writedata() — write the contents of the data to a khoros transport

Synopsis
ssize_t kfile_writedata(

int id,
kaddr data,
size_t num)

Input Arguments
id

the khoros transport descriptor
data

the data array (or string) to be written
num

if not 0 the number of bytes to be written.

Returns
The number of bytes written or -1 upon failure

Description
This routine writes the contents of a data array to the specified khoros transport mechanism. An
optional "num_write" can be used to specify the actual number of bytes to be written. If "num_write"
is 0 then the number of bytes to be written is computed from the data by using kstrlen().

F.10.34. kfidfile() — return the kfile structure associated with a fid

Synopsis
kfile *kfidfile(

int id)

Input Arguments
id

the transport identifier opened earlier

Returns
The kfile pointer representing the open stream to the data transport on success, NULL on failure

Description
This function is used to retrieve the corresponding kfile structure given a khoros transport descriptor
(fid).

5-128



Operating System Services Program Services Volume I - Chapter 5

F.10.35. ktmpfid() — create a temporary transport descriptor

Synopsis
int ktmpfid(void)

Returns
The fid descriptor representing the temporary transport on success, -1 on failure

Description
This function is similar to ktmpfile(), except that it returns a transport descriptor instead of a transport
structure. The data transport will automatically be deleted when closed.

F.10.36. ktransport_add() — add a new transport to the list of transports

Synopsis
int ktransport_add(

TransportInformation * transport)

Input Arguments
transport

the transport to be added

Returns
TRUE if the transport was successfully added, FALSE otherwise

Description
This function is used to add a new transport to the compiled list of transports. The transport is dynami-
cally added to during runtime, rather than during compile time.

5-129



Operating System Services Program Services Volume I - Chapter 5

F.10.37. ktransport_delete() — delete a transport from the list of all transports

Synopsis
int ktransport_delete(

TransportInformation * transport)

Input Arguments
transport

the transport to be deleted

Returns
TRUE if the transport was successfully deleted, FALSE otherwise

Description
This function is used to delete a new transport from the compiled list of transports. The transport is
dynamically deleted from the list, rather than during compile time.

F.10.38. ktransport_list() — get the list of supported transports

Synopsis
char **ktransport_list(

int local,
int permanence,
int stream,
size_t * num)

Input Arguments
local

a boolean indicating that local transports should be listed
permanence

a boolean indicating that data permanent transports should be included in the list
stream

a boolean indicating that stream transports should be included in the list

Output Arguments
num

the number of entries returned

Returns
A pointer to an array of the available transports, or NULL on error.

5-130



Operating System Services Program Services Volume I - Chapter 5

Description
This function creates an array of available transports. Boolean inputs allow the calling routine to
selectively mask in or out local, stream, and permanent transports.

F.11. Introduction to General File Utilities

The functions cover general file utilities to compare the contents of two files and to copy the contents from
one file to another. Also included are functions to read, write, and string-edit (sed) a file.

• kcomparefile() - compare the contents of one filename to another
• kcopyfile() - copy the contents of one filename to another
• keditfile() - start up an edit program to edit an input file
• kprintfile() - print a file to a printer
• kreadfile() - read the contents of a file into a data array
• ksedfile() - khoros string edit a file
• kwritefile() - write the contents of the data to a file

F.12. Definitions of General File Utilities

F.12.1. kcomparefile() — compare the contents of one filename to another

Synopsis
int kcomparefile(

const char *filename1,
const char *filename2,
size_t num,
size_t * num_compared)

Input Arguments
filename1

the first file to be copied
filename2

the output file to be copied
num

the number of bytes to be compared, if 0 then all are compared

Output Arguments
num_compared

if not NULL then returns the number of bytes actually compared.

Returns
An integer less than, equal to, or greater than 0, according as is lexicographically less than, equal to,

5-131



Operating System Services Program Services Volume I - Chapter 5

or greater than id2.

Description
This routine compares the contents of the first filename to that of second filename. The contents of the
files are compared using memcmp().

F.12.2. kcopyfile() — copy the contents of one filename to another

Synopsis
ssize_t kcopyfile(

const char *ifilename,
const char *ofilename)

Input Arguments
ifilename

the input file to be copied
ofilename

the output file to be copied

Returns
the number of actual bytes written or -1 upon failure.

Description
This routine copies the contents of a input filename to an output filename. The contents of the files are
copied using the VisiQuest transport mechanism.

F.12.3. keditfile() — start up an edit program to edit an input file

Synopsis
int keditfile(

char *filename,
int spawn,
kvalist)

Input Arguments
filename

5-132



Operating System Services Program Services Volume I - Chapter 5

the filename to be edited
spawn

to spawn the process into background or not
kvalist

the NULL terminated list of editfile options

Description
This routine executes a system call to the system editor. It uses the environment variable
KHOROS_EDITOR to determine which system editor to use. If KEDITOR is not set then EDITOR
will be checked. If neither of these environment variables are set then the routine will use ’vi’ as the
default.

Also if the DISPLAY environment variable is set then the editor will be executed within an xterm. The
xterm and editor will be started in background and keditfile will return immediately. If not then the
editor will be executed locally and will not return until the process finishes executing.

Also, options can be specified to keditfile. The following are a list of options:

KEDITOR_GEOMETRY - the geometry of the editor
KEDITOR_TITLE - the editor title
KEDITOR_FOREGROUND - the editor foreground color
KEDITOR_BACKGROUND - the editor background color
KEDITOR_ICON - the editor icon file
KEDITOR_PID - the pid of the editor
KEDITOR_CHDIR - change to file’s directory

F.12.4. kprintfile() — print a file to a printer

Synopsis
int kprintfile(

char *filename,
kvalist)

Input Arguments
filename

the filename to be printed

Returns
TRUE (1) on success, FALSE (0) otherwise

5-133



Operating System Services Program Services Volume I - Chapter 5

Description
This routine executes a system call to the system printer. It uses the environment variable PRINTER to
determine which printer to use. This can be overriden using the KPRINTER_NAME option below. If
neither of these are specified then the routine will use ’default’ printer by calling print command with
no print option.

Also, options can be specified to kprintfile. The following are a list of options:

KPRINTER_NAME - the printer name to print the file to

F.12.5. kreadfile() — read the contents of a file into a data array

Synopsis
kaddr kreadfile(

const char *filename,
size_t * num_read)

Input Arguments
filename

the filename which contains the data to be read

Output Arguments
num_read

if not NULL the number of bytes read is returned

Returns
returns a pointer to the contents of the file or NULL upon failure

Description
This routine opens the specified and using the khoros transport mechanisms reads the contents of the
file into an array. An optional "num_read" can be used to find out the actual number of bytes read. If
"num_read" is NULL then the parameter is ignored.

Side Effects
the data returned is allocated and needs to freed using kfree_and_NULL().

5-134



Operating System Services Program Services Volume I - Chapter 5

F.12.6. ksedfile() — khoros string edit a file

Synopsis
int ksedfile(

const char *ifilename,
const char *ofilename,
int mode,
int *status,
kvalist)

Input Arguments
ifilename

source filename to copy data from
ofilename

destination filename to copy data to
mode

the mode in which to update the destination file
kvalist

list of search patterns and replacement patterns to be used to modify the data as it is being copied.

Output Arguments
status

the status of whether the destination file was or could be changed, set according to the specified mode.

Returns
TRUE (1) on success, FALSE (0) otherwise

Description
This routine takes two filenames, and copies the data from the source file to the destination file. It also
uses a variable argument list consisting of pairs of strings and a logical value. The strings are used as a
search pattern and a replacement pattern, respectively. The logical value is used to tell ksedfile
whether or not to use kstring_replace or kregex_replace. A value of TRUE tells it to use
kregex_replace, FALSE tells it to use kstring_replace. kregex_replace allows sed like substitutions,
but is much slower than a straight string replace. This offers the user speed when patterns are simple,
and versatility when necessary. Note, the variable argument list MUST be terminated with a NULL in
one of the search pattern slots

For example, the following is a correct termination:

ksedfile(ifilename, ofilename, KFILE_UPDATE, NULL, "t1", "t2", FALSE, NULL);

And this is an incorrect termination:

5-135



Operating System Services Program Services Volume I - Chapter 5

ksedfile(ifilename, ofilename, KFILE_UPDATE, NULL, "t1", NULL);

The reason the NULL must be on the search pattern, is so that NULL can be sent in as the replacement
string.

The mode parameter dictates how ksedfile should perform the string editing. The first mode is to
query what would happen if string edition would take place. Whether any difference exists in which to
update the destination. The second is to update the destination, only if a difference exists. The final
mode is to overwrite the destination irregardless if a difference exists or not. The mode parameter can
be one of:

KFILE_QUERY - returns whether an update would take place
KFILE_UPDATE - updates the destination only if different
KFILE_OVERWRITE - updates the destination regardless

if KFILE_QUERY is specified then the "status" parameter will retain whether or not the output file
would be updated. If KFILE_UPDATE is used then the "status" parameter is will retain whether to
output file was actually changed or not. If KFILE_OVERWRITE is specified then the "status" parame-
ter will always be TRUE, unless an error is encountered and ksedfile() returns FALSE.

F.12.7. kwritefile() — write the contents of the data to a file

Synopsis
ssize_t kwritefile(

const char *filename,
kaddr data,
size_t num_write)

Input Arguments
filename

the filename which the data will be written to
data

the data array (or string) to be written
num_write

if not 0 the number of bytes to be written.

Returns
returns the number of actual bytes written or -1 upon failure.

Description
This routine opens the specified and using the khoros transport mechanisms writes the contents of the

5-136



Operating System Services Program Services Volume I - Chapter 5

data array to the specified file. An optional "num_write" can be used to specify the actual number of
bytes to be written. If "num_write" is 0 then the number of bytes to be written is computed from the
data by using kstrlen().

F.13. Miscellaneous Utilities

• kflags_to_type() - convert kopen() flags to kfopen() type parameter
• ktype_to_flags() - convert kfopen() type to kopen() flags

F.13.1. kflags_to_type() — convert kopen() flags to kfopen() type parameter

Synopsis
char *kflags_to_type(

int flags,
char *type)

Input Arguments
flags

kopen flags

Output Arguments
type

a string to old the kfopen type field. If NULL then space is malloc’ed

Returns
type is returned if it is not NULL. Otherwise the malloc’ed string is returned. NULL is returned on an
error.

Description
The kflags_to_type() routine is used to convert the flags used in the kopen() call into their correspond-
ing equivalent in the type field of the kfopen() call. The "flags" parameter is converted and stored into
the "type" parameter. If the "type" parameter is NULL then space is malloc’ed and returned. The fol-
lowing is an example of how to use kflags_to_type():

type = kflags_to_type(KOPEN_WRONLY | KOPEN_CREAT | KOPEN_TRUNC, NULL);

the input flags are converted and result returned to type will be "w".

Here is the table as it translates:

a+ = KOPEN_RDWR | KOPEN_APPEND | KOPEN_CREAT

5-137



Operating System Services Program Services Volume I - Chapter 5

w+ = KOPEN_RDWR | KOPEN_CREAT | KOPEN_TRUNC
r+ = KOPEN_RDWR
a = KOPEN_WRONLY | KOPEN_APPEND | KOPEN_CREAT
w = KOPEN_WRONLY | KOPEN_CREAT | KOPEN_TRUNC
r = KOPEN_RDONLY

F.13.2. ktype_to_flags() — convert kfopen() type to kopen() flags

Synopsis
int ktype_to_flags(

const char *type)

Input Arguments
type

the kfopen string field.

Returns
the kopen flags on success. If type is NULL or an invalid type, a -1 will be returned.

Description
The ktype_to_flags() routine is used to convert the type field used in the kfopen() call into their corre-
sponding equivalent in the flags field of the kopen() call. The "type" parameter is converted and
returned in kopen flag form. The following is an example of how to use ktype_to_flags():

flags = ktype_to_flags("w");

the input flags are converted and result returned to type will be
KOPEN_WRONLY|KOPEN_CREAT|KOPEN_TRUNC.

Here is the table as it translates:

a+ = KOPEN_RDWR | KOPEN_APPEND | KOPEN_CREAT
w+ = KOPEN_RDWR | KOPEN_CREAT | KOPEN_TRUNC
r+ = KOPEN_RDWR
a = KOPEN_WRONLY | KOPEN_APPEND | KOPEN_CREAT
w = KOPEN_WRONLY | KOPEN_CREAT | KOPEN_TRUNC
r = KOPEN_RDONLY

5-138



Operating System Services Program Services Volume I - Chapter 5

G. Process Execution

G.1. Introduction to Process Execution Utilities

These routines allow the execution of processes.

• kexecvp() - execute a command
• kexit_handler() - adds an kexit handler
• ksignal() - khoros signal handler
• ksignal_format() - format the actual signal error
• kspawn() - spawn a command
• ksystem() - issue a shell command

G.2. Definitions of Process Execution Utilities

G.2.1. kexecvp() — execute a command

Synopsis
int kexecvp(

const char *arg0,
char *const args[])

Input Arguments
arg0

the routine to be executed
args

the arguments, include arg0, in which execute the command

Returns
Note: this call overlays the calling process with the named file, then transfers control to the new core
image. If the command is successfully executed then there will be no return from the new process. If
the core cannot be loaded or found then we return with an error of -1.

Description
This function is a replacement for the system "execvp" call. The only difference is that kexecvp() sup-
ports executing processes on remote machines.

The routine will execute another process (specified by arg0) and replace the current core image with
the specified core. For example, the command:

5-139



Operating System Services Program Services Volume I - Chapter 5

"vfileinfo -i1 file"

would be specified as:

arg0 = "vfileinfo"

args[0] = "vfileinfo"
args[1] = "-i1"
args[2] = "file"
args[3] = NULL

If the command is to be executed on a different machine such as "borris" then the same command
would look like:

"vfileinfo@borris -i1 file"

would be specified as:

arg0 = "vfileinfo@borris"

args[0] = "vfileinfo@borris"
args[1] = "-i1"
args[2] = "file"
args[3] = NULL

If the command is to be executed on a different machine such as "borris", and the file to be read is on
"natasha" then the command would look like this:

"vfileinfo@borris -i1 file@natasha"

would be specified as:

arg0 = "vfileinfo@borris"

args[0] = "vfileinfo@borris"
args[1] = "-i1"
args[2] = "file@natasha"
args[3] = NULL

5-140



Operating System Services Program Services Volume I - Chapter 5

G.2.2. kexit_handler() — adds an kexit handler

Synopsis
int kexit_handler(

void (*handler) (int, kaddr),
kaddr client_data)

Input Arguments
handler

the handler to be called
client_data

the data to passed when calling the routine

Returns
TRUE on success, FALSE on failure

Description
kexit_handler adds an handler so that upon call of kexit(), the handler is called. kexit_handler() can be
called several times, in which case the termination handlers will be called in reverse order of their
instantiation. The handlers should be declared as follows:

void handler(
int status,
kaddr client_data)

G.2.3. ksignal() — khoros signal handler

Synopsis
void (*ksignal(

int signo,
void (*sigfunc)(int)))(int)

Input Arguments
signo

the signal number that you wish to install the handler for.
sigfunc

the signal function to be called when the signal is encountered.

5-141



Operating System Services Program Services Volume I - Chapter 5

Returns
the previously installed signal handler on success, SIG_ERR on failure

Description
This routine is a replacement for the UNIX signal() handler. The problem with UNIX signal() is that
under SVR4 signal() provedes the older, unreliable signal semantics.

The signal handling function takes a single integer which indicates the single to handle.

G.2.4. ksignal_format() — format the actual signal error

Synopsis
char *ksignal_format(

int signo,
char *string)

Input Arguments
signo

the signal to print.

Output Arguments
string

the string

Description
This routine actually prints to a string the signal that occured.

G.2.5. kspawn() — spawn a command

Synopsis
#ifndef KOPSYS_WIN32
pid_t kspawn(

const char *command)
#else
pid_t kspawn(

const char *command,
HANDLE *phProcess)

#endif

5-142



Operating System Services Program Services Volume I - Chapter 5

Input Arguments
command

the command to be spawn phProcess (KOPSYS_WIN32 only) - pointer to HANDLE for created pro-
cess

Returns
the sub-process id on success, -1 on failure

Description
This function is used to spawn a command. Similar to "ksystem" call, the kspawn() supports more
than just files, it supports other data transports in order to allow remote execution of a job.

G.2.6. ksystem() — issue a shell command

Synopsis
int ksystem(

const char *command)

Input Arguments
command

the command to be systemed

Returns
The job status

Description
This function is a replacement for the "system" library call. The only difference is that ksystem() sup-
ports more than just files, it supports other data transports in order to allow remote execution of a job.

H. InterProcess Communication

H.1. Introduction to Data Transport IPC Utilities

These general utilities are for passing file descriptors between processes in client/server programs. The func-
tions here include:

• kipc_install_handler() - install IPC handler
• kipc_check_handler() - check to see if an IPC handler is installed

5-143



Operating System Services Program Services Volume I - Chapter 5

• kipc_remove_handler() - remove IPC handler
• kipc_stop() - stop or discontinue an IPC.
• kipc_enable() - enable IPC before exec’ing a new process
• kipc_process() - get and dispatch a message
• kipc_dispatch() - dispatch a message
• kipc_get_data() - get raw data from a process
• kipc_send_data() - send raw data to a process
• kipc_get_message() - get a message
• kipc_send_message() - send a message
• kipc_response_message() - send a response message
• kipc_pending() - waits for a message
• kipc_check() - check that the IPC is enabled
• kipc_verify() - verify an IPC handler is installed
• kipc_debug() - Turn on debugging messages
• kipc_debug_file() - specify a file to send debug data

H.2. Definitions of Data Transport IPC Utilities

H.2.1. kipc_install_handler() — install IPC handler

Synopsis
int kipc_install_handler(

const char *type,
void (*handler) PROTO((KipcMsg *)))

Input Arguments
type

the type of IPC to check for
handler

the IPC callback handler

Returns
TRUE on success, and FALSE on failure

Description
This routine installs a handler for the given IPC type.

5-144



Operating System Services Program Services Volume I - Chapter 5

H.2.2. kipc_check_handler() — check to see if an IPC handler is installed

Synopsis
int kipc_check_handler(

const char *type)

Input Arguments
type

the type of IPC to check for

Returns
TRUE on success, and FALSE on failure

Description
This routine checks to see if a handler is installed for the given IPC type.

H.2.3. kipc_remove_handler() — remove IPC handler

Synopsis
int kipc_remove_handler(

const char *type,
void (*handler) PROTO((KipcMsg *)))

Input Arguments
type

the type of IPC to check for
handler

the IPC callback handler

Returns
TRUE on success, and FALSE on failure

Description
This routine removes a handler for the given IPC type.

5-145



Operating System Services Program Services Volume I - Chapter 5

H.2.4. kipc_stop() — stop or discontinue an IPC.

Synopsis
int kipc_stop(void)

Returns
TRUE on success, FALSE upon failure

Description
This routine is used to stop or discontinue an IPC so that processes will no longer communicate with
each other. This is done by actually closing the IPC transports and removing it from the user’s envi-
ronment variables.

H.2.5. kipc_enable() — enable IPC before exec’ing a new process

Synopsis
void kipc_enable(

int enable)

Description
This routine is used to enable or disable the client IPC so that processes exec’ed will communicate
with the server. This is done by actually adding or removing the KIPC_IDENTIFIER from the envi-
ronment.

H.2.6. kipc_process() — get and dispatch a message

Synopsis
int kipc_process(

pid_t pid,
const char *type)

Input Arguments
pid

the process to send the message to
type

the type of IPC message to processed, or NULL for any

5-146



Operating System Services Program Services Volume I - Chapter 5

Returns
TRUE on success, and FALSE on failure

Description
This routine gets the next IPC message and dispatches it. The routine blocks until a message arrives.
The type of message to processed is specified by the "type" parameter, or NULL be passed in order to
process any IPC message type.

5-147



Operating System Services Program Services Volume I - Chapter 5

H.2.7. kipc_dispatch() — dispatch a message

Synopsis
int kipc_dispatch(

KipcMsg * msg)

Returns
TRUE on success, and FALSE on failure

Description
This routine dispatches a message retrieved by kipc_get_message().

H.2.8. kipc_get_data() — get raw data from a process

Synopsis
int kipc_get_data(

pid_t pid,
const char *type,
int timeout,
KipcMsg *msg)

Input Arguments
pid

the process to send the message to
type

the type of IPC message to processed, or NULL for any
timeout

the amount of time (in msec) to wait

Returns
TRUE on success, and FALSE on failure

Description
This routine gets raw data to an IPC receiver. The data is stored in the message field of the KipcMsg
structure and the size updated to represent the amount of data received.

5-148



Operating System Services Program Services Volume I - Chapter 5

H.2.9. kipc_send_data() — send raw data to a process

Synopsis
int kipc_send_data(

pid_t pid,
const char *type,
const char *data,
size_t size,
KipcMsg *response)

Input Arguments
pid

the process to send the message to
type

the type of IPC message to processed, or NULL for any
data

the data to be sent
size

the size of the data to be sent

Returns
TRUE on success, and FALSE on failure

Description
This routine sends raw data to an IPC receiver. The data is stored in the message

H.2.10. kipc_get_message() — get a message

Synopsis
int kipc_get_message(

pid_t pid,
const char *type,
int timeout,
KipcMsg *msg)

Input Arguments
pid

the process to send the message to
type

the type of IPC message to processed, or NULL for any
timeout

5-149



Operating System Services Program Services Volume I - Chapter 5

the amount of time (in msec) to wait

Returns
TRUE on success, and FALSE on failure

Description
This routine gets a message

H.2.11. kipc_send_message() — send a message

Synopsis
int kipc_send_message(

pid_t pid,
const char *type,
const char *message,
char *response)

Input Arguments
pid

the process to send the message to
type

the type of IPC message to processed, or NULL for any
message

the message to be sent

Output Arguments
response

the response to the message

Returns
TRUE on success, and FALSE on failure

Description
This routine sends a message

5-150



Operating System Services Program Services Volume I - Chapter 5

H.2.12. kipc_response_message() — send a response message

Synopsis
int kipc_response_message(

pid_t pid,
int msgid,
const char *format,
kvalist)

Input Arguments
format

the format in which to the arguments will be
kvalist

variable number of values to format and write to the output file stream. The format string determines
the data type of the value(s) to be provided.

Returns
TRUE on success, and FALSE on failure

Description
This routine sends a response message

H.2.13. kipc_pending() — waits for a message

Synopsis
pid_t kipc_pending(

int timeout)

Input Arguments
timeout

the amount of time (in msec) to block

Returns
returns the process id on success or -1 on failure

Description
This routine listens to the active clients for an incoming message.

5-151



Operating System Services Program Services Volume I - Chapter 5

H.2.14. kipc_check() — check that the IPC is enabled

Synopsis
int kipc_check(void)

Description
This routine verifies that the IPC is enabled

H.2.15. kipc_verify() — verify an IPC handler is installed

Synopsis
int kipc_verify(

pid_t pid,
const char *type)

Description
This routine verifies that a handler is installed for the specified IPC process.

H.2.16. kipc_debug() — Turn on debugging messages

Synopsis
void kipc_debug(

int debug)

Description
This routine is used to enable or disable the client/server ipc debugging messages.

5-152



Operating System Services Program Services Volume I - Chapter 5

H.2.17. kipc_debug_file() — specify a file to send debug data

Synopsis
void kipc_debug_file(const char *filename)

Input Arguments
filename

file name

Description
Specify the file to write debugging stmts to

I. Distributed Computing

The following section details the distributed computing utilities that is a part of the klibc library. This routines
help developers use the built in distributed computing transport available in the VisiQuest system.

I.1. Introduction to the Distributed Computing Utilities

The distributed computing utilities are:

• kremote_exec() - creates a khoros command string which can exec’ed on a remote host
• kremote_file() - creates a khoros file string which can be accessed on a remote machine
• kremote_location() - return the remote location
• kremote_check() - check to see if we can access host
• kremote_start() - starts daemon on specified host
• kremote_stop() - stops daemon on the specified host
• kremote_running() - Check to see if host is currently running daemon
• kremote_list() - List the remote hosts with daemons started

5-153



Operating System Services Program Services Volume I - Chapter 5

I.2. Definitions of the Distributed Computing Utilities

I.2.1. kremote_exec() — creates a khoros command string which can exec’ed on a remote host

Synopsis
char *
kremote_exec(

const char *machine,
const char *command,
char *remotexec)

Input Arguments
command

the command to be executed

Output Arguments
remotexec

if NULL malloc the return string

Description
This function make a proper command that the transport mechanisms will interpet as rsh://host/com-
mand. If a command of "ls -al" is given and they wish to execute that command on the host "borris".
Then a new string will that looks like "rsh://borris/ls -al" will be returned.

I.2.2. kremote_file() — creates a khoros file string which can be accessed on a remote machine

Synopsis
char *
kremote_file(

const char *machine,
const char *filename,
char *remotefile)

Input Arguments
filename

the file to be accessed

Output Arguments
remotefile

if NULL malloc the return string

5-154



Operating System Services Program Services Volume I - Chapter 5

Description
This function make a proper file that the transport mechanisms will interpet as rsh://host/file. If the file
".login" is given and they wish to access that file on the host "borris". Then a new string will that looks
like "rsh://borris/.login" will be returned.

I.2.3. kremote_location() — return the remote location

Synopsis
char *
kremote_location(

const char *name,
char *location)

Input Arguments
name

the file or command to be parsed

Output Arguments
location

if NULL malloc the return string

Description
This function is used to find the location or machine in which the user wants to re-direct to via some
transport. The location returned is the form of "machine" or "machine:username" or NULL if the loca-
tion is local.

I.2.4. kremote_check() — check to see if we can access host

Synopsis
int
kremote_check(

const char *host)

Input Arguments
host

the host to be checked

Returns
return TRUE (1) on success, FALSE (0) otherwise

5-155



Operating System Services Program Services Volume I - Chapter 5

Description
This function is used to see if we can successfully access the host in which to distributed processes.
Hostname must be specified in the form "machine:user:cmd", for example, cibola:sandy:rsh

I.2.5. kremote_start() — starts daemon on specified host

Synopsis
int
kremote_start(

const char *host)

Input Arguments
host

the host to be started

Returns
return TRUE (1) on success, FALSE (0) otherwise

Description
This function is used to start the khoros process daemon on the specified host. Hostname must be
specified in the form "machine:user:cmd", for example, sandia:george:rsh

I.2.6. kremote_stop() — stops daemon on the specified host

Synopsis
int
kremote_stop(

const char *host)

Input Arguments
host

the host to be stopped

Returns
return TRUE (1) on success, FALSE (0) otherwise

Description
Stops the khoros process daemon on the specified host. Hostname must be specified in the form

5-156



Operating System Services Program Services Volume I - Chapter 5

"machine:user:cmd", for example, acoma:debbie:rsh

I.2.7. kremote_running() — Check to see if host is currently running daemon

Synopsis
int
kremote_running(

const char *host)

Input Arguments
host

the host to check

Returns
return TRUE (1) if the host is running, FALSE (0) otherwise

Description
Returns TRUE if the host is currently running a khoros process daemon, FALSE otherwise. Hostname
must be specified in the form "machine:user:cmd", for example, nambe:arthur:rsh

I.2.8. kremote_list() — List the remote hosts with daemons started

Synopsis
char **
kremote_list(

size_t * num)

Returns
An array of strings containing the remote hosts with active daemons on success, NULL on failure

Description
This function returns an allocated list of the remote hosts that have khoros process daemons started.
Hostnames will be specified in the form "machine:user:cmd", for example, fantase:blair:rsh

5-157



Operating System Services Program Services Volume I - Chapter 5

I.3. Introduction to the Host Utilities

• khost_list() - get the list of machines that processes can be distributed to
• khost_add() - add a host to the list of machines that processes can be distributed to
• khost_delete() - delete a host from the list of machines that processes can be distributed to
• khost_save() - sav es the current list of machines back into the khoros host file
• khost_location() - get the location part of the host spec
• khost_username() - get the username part of the host spec
• khost_remotecmd() - get the username part of the host spec
• khost_entry() - get the entry the best matches the partial host

I.4. Definitions of the Host Utilities

I.4.1. khost_list() — get the list of machines that processes can be distributed to

Synopsis
char **khost_list(

size_t * num)

Output Arguments
num

the number of entries returned

Returns
a pointer to an array of strings with the list of machine names. It will return NULL on error.

Description
This function is used to return the list of initial machines to try using. They are gotten via the user
specified file and also by broadcasting to see if any khoros daemons are available (Not Available as of
yet).

I.4.2. khost_add() — add a host to the list of machines that processes can be distributed to

Synopsis
int khost_add(

const char *host)

5-158



Operating System Services Program Services Volume I - Chapter 5

Input Arguments
host

the host to be added

Returns
return TRUE (1) on success, FALSE (0) otherwise

Description
This function is used to add a host to the list of initial machines to try using.

I.4.3. khost_delete() — delete a host from the list of machines that processes can be distributed to

Synopsis
int khost_delete(

const char *host)

Input Arguments
host

the host to be added

Returns
return TRUE (1) on success, FALSE (0) otherwise

Description
This function is used to delete a host to the list of initial machines to try using.

I.4.4. khost_save() — saves the current list of machines back into the khoros host file

Synopsis
int khost_save(

const char *hostfile)

Input Arguments
hostfile

the filename to save the hosts to, if NULL then save it to the default khoros file.

Returns
return TRUE (1) on success, FALSE (0) otherwise

5-159



Operating System Services Program Services Volume I - Chapter 5

Description
This function is used to save the current list of machines back into the khoros host file. If the hosts are
to be saved into the default khoros file then NULL should be passed for the filename. Otherwise the
hosts will be saved into the specified filename.

I.4.5. khost_location() — get the location part of the host spec

Synopsis
char *khost_location(

const char *host,
char *location)

Input Arguments
host

the host to get the location for

Returns
return TRUE (1) on success, FALSE (0) otherwise

Description
This function is used to get the location part of the host spec.

I.4.6. khost_username() — get the username part of the host spec

Synopsis
char *khost_username(

const char *host,
char *username)

Input Arguments
host

the host to get the username for

Returns
return TRUE (1) on success, FALSE (0) otherwise

Description
This function is used to get the username part of the host spec.

5-160



Operating System Services Program Services Volume I - Chapter 5

I.4.7. khost_remotecmd() — get the username part of the host spec

Synopsis
char *khost_remotecmd(

const char *host,
char *remotecmd)

Input Arguments
host

the host to get the username for

Returns
return TRUE (1) on success, FALSE (0) otherwise

Description
This function is used to get the username part of the host spec.

I.4.8. khost_entry() — get the entry the best matches the partial host

Synopsis
char *khost_entry(

const char *host,
char *entry)

Input Arguments
host

the host to get the username for

Returns
return TRUE (1) on success, FALSE (0) otherwise

Description
This function is used to get the best entry that matches a host. It looks thru the list and fully qualifies
the machine:user:method. This is typically used by the transports in order to build remote commands
and files.

5-161



Operating System Services Program Services Volume I - Chapter 5

This page left intentionally blank

5-162



Table of Contents

A. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-1
B. Data Transports . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-1

B.1. Transport Buffering . . . . . . . . . . . . . . . . . . . . . . . .  5-3
B.1.1. File Buffering . . . . . . . . . . . . . . . . . . . . . . . . .  5-3
B.1.2. Stream Buffering . . . . . . . . . . . . . . . . . . . . . . . .  5-3
B.1.3. Memory Buffering . . . . . . . . . . . . . . . . . . . . . . .  5-4

B.2. Data Transport Identifier Syntax . . . . . . . . . . . . . . . . . . . .  5-4
C. Distributed Processing . . . . . . . . . . . . . . . . . . . . . . . . .  5-4

C.1. Data Transport Identifier Syntax for Distributed Processing . . . . . . . . . . . .  5-5
D. Data Types and Casting . . . . . . . . . . . . . . . . . . . . . . . .  5-6

D.1. Introduction to Data Type and Casting Utilities . . . . . . . . . . . . . . .  5-6
D.2. Definitions of Data Transport IPC Utilities . . . . . . . . . . . . . . . . .  5-6

D.2.1. kdata_size() — return the size of a khoros data type . . . . . . . . . . . . . .  5-6
D.2.2. kdatatype_cast_process() — cast type for processing . . . . . . . . . . . . .  5-7
D.2.3. kdatatype_to_define() — takes the string version of the data type and returns the #define

value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-8
D.2.4. kdefine_to_datatype() — takes the #define data type value and returns the string value . . .  5-9
D.2.5. kdatatype_cast_output() — recommend an appropriate common data type for processing

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10
E. Reading to and Writing from a Data Transport . . . . . . . . . . . . . . . . . 5-11

E.1. Introduction to Data Transport I/O Utilities . . . . . . . . . . . . . . . . . 5-11
E.2. Definitions of Data Transport Read Utilities . . . . . . . . . . . . . . . . . 5-12

E.2.1. kread() — read input from a transport descriptor . . . . . . . . . . . . . . . 5-12
E.2.2. kread_bit() — read an array of bits . . . . . . . . . . . . . . . . . . 5-13
E.2.3. kread_byte() — read an array of signed bytes . . . . . . . . . . . . . . . 5-14
E.2.4. kread_complex() — read an array of complex . . . . . . . . . . . . . . . 5-15
E.2.5. kread_dcomplex() — read an array of double complex . . . . . . . . . . . . . 5-15
E.2.6. kread_double() — read an array of doubles . . . . . . . . . . . . . . . . 5-16
E.2.7. kread_float() — read an array of floats . . . . . . . . . . . . . . . . . 5-17
E.2.8. kread_generic() — read in any data type. . . . . . . . . . . . . . . . . 5-17
E.2.9. kread_int() — read an array of signed ints . . . . . . . . . . . . . . . . 5-18
E.2.10. kread_long() — read an array of signed longs . . . . . . . . . . . . . . . 5-19
E.2.11. kread_short() — read an array of signed shorts . . . . . . . . . . . . . . . 5-19
E.2.12. kread_string() — read an array of strings . . . . . . . . . . . . . . . . 5-20
E.2.13. kread_ubyte() — read an array of unsigned bytes . . . . . . . . . . . . . . 5-21
E.2.14. kread_uint() — read an array of unsigned ints . . . . . . . . . . . . . . . 5-22
E.2.15. kread_ulong() — read an array of unsigned longs . . . . . . . . . . . . . . 5-22
E.2.16. kread_ushort() — read an array of unsigned shorts . . . . . . . . . . . . . 5-23
E.2.17. kread_array() — read in a variable array . . . . . . . . . . . . . . . . 5-24
E.2.18. kread_pointer() — read in a variable array . . . . . . . . . . . . . . . . 5-25
E.2.19. kread_struct() — read in a single structure . . . . . . . . . . . . . . . . 5-25
E.2.20. kparse_bit() — read an array of bits . . . . . . . . . . . . . . . . . . 5-26
E.2.21. kparse_byte() — read an array of signed bytes . . . . . . . . . . . . . . . 5-27
E.2.22. kparse_complex() — read an array of complex . . . . . . . . . . . . . . . 5-28
E.2.23. kparse_dcomplex() — read an array of double complex . . . . . . . . . . . . 5-28
E.2.24. kparse_double() — read an array of doubles . . . . . . . . . . . . . . . 5-29
E.2.25. kparse_float() — read an array of floats . . . . . . . . . . . . . . . . . 5-30

- i -



Operating System Services Program Services Volume I - Chapter 5

E.2.26. kparse_generic() — read in any data type. . . . . . . . . . . . . . . . . 5-30
E.2.27. kparse_int() — read an array of signed ints . . . . . . . . . . . . . . . . 5-31
E.2.28. kparse_long() — read an array of signed longs . . . . . . . . . . . . . . . 5-32
E.2.29. kparse_short() — read an array of signed shorts . . . . . . . . . . . . . . 5-32
E.2.30. kparse_string() — read an array of strings . . . . . . . . . . . . . . . . 5-33
E.2.31. kparse_ubyte() — read an array of unsigned bytes . . . . . . . . . . . . . . 5-34
E.2.32. kparse_uint() — read an array of unsigned ints . . . . . . . . . . . . . . . 5-35
E.2.33. kparse_ulong() — read an array of unsigned longs . . . . . . . . . . . . . 5-35
E.2.34. kparse_ushort() — read an array of unsigned shorts . . . . . . . . . . . . . 5-36
E.2.35. kparse_array() — read in a variable array . . . . . . . . . . . . . . . . 5-37
E.2.36. kparse_pointer() — read in a variable array . . . . . . . . . . . . . . . 5-38
E.2.37. kparse_struct() — read in a single structure . . . . . . . . . . . . . . . . 5-38

E.3. Definitions of Data Transport Write Utilities . . . . . . . . . . . . . . . . 5-39
E.3.1. kwrite() — write output to a transport descriptor . . . . . . . . . . . . . . . 5-39
E.3.2. kwrite_bit() — write an array of bits . . . . . . . . . . . . . . . . . . 5-40
E.3.3. kwrite_byte() — write an array of signed bytes . . . . . . . . . . . . . . . 5-41
E.3.4. kwrite_complex() — write an array of complex . . . . . . . . . . . . . . . 5-41
E.3.5. kwrite_dcomplex() — write an array of double complex . . . . . . . . . . . . 5-42
E.3.6. kwrite_double() — write an array of doubles . . . . . . . . . . . . . . . 5-43
E.3.7. kwrite_float() — write an array of floats . . . . . . . . . . . . . . . . . 5-43
E.3.8. kwrite_generic() — write an array in any data type. . . . . . . . . . . . . . 5-44
E.3.9. kwrite_int() — write an array of signed ints . . . . . . . . . . . . . . . . 5-45
E.3.10. kwrite_long() — write an array of signed longs . . . . . . . . . . . . . . 5-45
E.3.11. kwrite_short() — write an array of signed shorts . . . . . . . . . . . . . . 5-46
E.3.12. kwrite_string() — write an array of strings . . . . . . . . . . . . . . . . 5-47
E.3.13. kwrite_ubyte() — write an array of unsigned bytes . . . . . . . . . . . . . 5-47
E.3.14. kwrite_uint() — write an array of unsigned ints . . . . . . . . . . . . . . 5-48
E.3.15. kwrite_ulong() — write an array of unsigned longs . . . . . . . . . . . . . 5-49
E.3.16. kwrite_ushort() — write an array of unsigned shorts . . . . . . . . . . . . . 5-49
E.3.17. kwrite_array() — write a variable array . . . . . . . . . . . . . . . . . 5-50
E.3.18. kwrite_pointer() — write a variable array . . . . . . . . . . . . . . . . 5-51
E.3.19. kwrite_struct() — write a single structure . . . . . . . . . . . . . . . . 5-51
E.3.20. kprint_bit() — write an array of bits . . . . . . . . . . . . . . . . . . 5-52
E.3.21. kprint_byte() — write an array of signed bytes . . . . . . . . . . . . . . . 5-53
E.3.22. kprint_complex() — write an array of complex . . . . . . . . . . . . . . . 5-53
E.3.23. kprint_dcomplex() — write an array of double complex . . . . . . . . . . . . 5-54
E.3.24. kprint_double() — write an array of doubles . . . . . . . . . . . . . . . 5-55
E.3.25. kprint_float() — write an array of floats . . . . . . . . . . . . . . . . . 5-55
E.3.26. kprint_generic() — write an array in any data type. . . . . . . . . . . . . . 5-56
E.3.27. kprint_int() — write an array of signed ints . . . . . . . . . . . . . . . . 5-57
E.3.28. kprint_long() — write an array of signed longs . . . . . . . . . . . . . . . 5-57
E.3.29. kprint_short() — write an array of signed shorts . . . . . . . . . . . . . . 5-58
E.3.30. kprint_string() — write an array of strings . . . . . . . . . . . . . . . . 5-59
E.3.31. kprint_ubyte() — write an array of unsigned bytes . . . . . . . . . . . . . . 5-59
E.3.32. kprint_uint() — write an array of unsigned ints . . . . . . . . . . . . . . . 5-60
E.3.33. kprint_ulong() — write an array of unsigned longs . . . . . . . . . . . . . 5-61
E.3.34. kprint_ushort() — write an array of unsigned shorts . . . . . . . . . . . . . 5-61
E.3.35. kprint_array() — write a variable array . . . . . . . . . . . . . . . . . 5-62
E.3.36. kprint_pointer() — write a variable array . . . . . . . . . . . . . . . . 5-63
E.3.37. kprint_struct() — write a single structure . . . . . . . . . . . . . . . . 5-63

- ii -



Operating System Services Program Services Volume I - Chapter 5

F. I/O Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-64
F.1. Introduction to Low-level I/O Functions . . . . . . . . . . . . . . . . . . 5-65
F.2. Definitions of Low-level I/O Functions . . . . . . . . . . . . . . . . . . 5-66

F.2.1. kaccess() — determine accessibility of file . . . . . . . . . . . . . . . . . 5-66
F.2.2. kclearerr() — clear the EOF/error flags of a data transport stream . . . . . . . . . . 5-67
F.2.3. kclose() — close and delete a transport descriptor . . . . . . . . . . . . . . 5-67
F.2.4. kcreat() — routine for creating a khoros transport . . . . . . . . . . . . . . 5-68
F.2.5. kdup() — duplicate an existing khoros transport descriptor . . . . . . . . . . . . 5-68
F.2.6. kdup2() — specifically duplicate an existing khoros transport descriptor . . . . . . . . 5-69
F.2.7. kexit() — terminate a process . . . . . . . . . . . . . . . . . . . . 5-69
F.2.8. kfileno() — return the transport descriptor . . . . . . . . . . . . . . . . 5-70
F.2.9. kgetbuffer() — get the current data transport stream’s input/output buffer and it’s size . . . . 5-71
F.2.10. kgetc() — get character from khoros transport . . . . . . . . . . . . . . . 5-71
F.2.11. kgetdescriptors() — get true UNIX file descriptors . . . . . . . . . . . . . . 5-72
F.2.12. kgethostname() — get the current hostname . . . . . . . . . . . . . . . . 5-72
F.2.13. kgets() — reads from kstdin until a newline or EOF . . . . . . . . . . . . . . 5-73
F.2.14. kinput() — opens a file for reading using kopen() . . . . . . . . . . . . . . 5-74
F.2.15. klseek() — move read/write pointer of a transport descriptor . . . . . . . . . . . 5-74
F.2.16. kopen() — open or create a file for reading and/or writing . . . . . . . . . . . . 5-75
F.2.17. koutput() — opens/creates a file for writing using kopen() . . . . . . . . . . . . 5-76
F.2.18. kpclose() — close a pipe (for I/O) from or to a process . . . . . . . . . . . . . 5-77
F.2.19. kpopen() — open a pipe (for I/O) from or to a process . . . . . . . . . . . . . 5-77
F.2.20. kpinfo() — gets the associated process id . . . . . . . . . . . . . . . . 5-78
F.2.21. kprintf() — print formatted output to kstdout . . . . . . . . . . . . . . . . 5-78
F.2.22. kputc() — put a character onto the khoros transport . . . . . . . . . . . . . 5-79
F.2.23. krename() — rename a khoros transport from path1 to path2 . . . . . . . . . . . 5-79
F.2.24. krewind() — re wind a data transport stream to the beginning . . . . . . . . . . . 5-80
F.2.25. kscanf() — scan kstdin and format the input into one or more arguments of the type specified

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-80
F.2.26. ksetvbuf() — set the I/O buffer of a data transport stream . . . . . . . . . . . . 5-81
F.2.27. ksprintf() — print one or more arguments in the format specified to an output string. . . . . 5-82
F.2.28. kmsprintf() — print one or more arguments in the format specified and return an allocated

output string. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-83
F.2.29. ksscanf() — scan input string and format it into one or more arguments of the type specified.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-83
F.2.30. ktell() — report the position of the read/write pointer . . . . . . . . . . . . . 5-84
F.2.31. ktouch() — routine for touching a temporary transport . . . . . . . . . . . . . 5-85
F.2.32. ktmpfile() — create a temporary data transport stream . . . . . . . . . . . . . 5-85
F.2.33. kungetc() — push a character back onto the data transport stream . . . . . . . . . 5-86
F.2.34. kunlink() — remove a filename from a directory entry . . . . . . . . . . . . . 5-87

F.3. Introduction to Variable Argument I/O Functions . . . . . . . . . . . . . . . 5-87
F.4. Definitions of Variable Argument I/O Functions . . . . . . . . . . . . . . . 5-88

F.4.1. kvfprintf() — print formatted kfile output of variable arguments . . . . . . . . . . 5-88
F.4.2. kvfscanf() — scan formatted kfile input of variable arguments . . . . . . . . . . . 5-88
F.4.3. kvprintf() — print formatted kstdout output of variable arguments . . . . . . . . . . 5-89
F.4.4. kvscanf() — scan formatted kstdin input of variable arguments . . . . . . . . . . . 5-90
F.4.5. kvsprintf() — print formatted string output of variable arguments list . . . . . . . . . 5-90
F.4.6. kvsscanf() — scan formatted string of a variable argument list . . . . . . . . . . . 5-91

F.5. Introduction to Standard File I/O Functions . . . . . . . . . . . . . . . . . 5-91
F.6. Definitions of Standard File I/O Functions . . . . . . . . . . . . . . . . . 5-92

- iii -



Operating System Services Program Services Volume I - Chapter 5

F.6.1. kfopen() — open a data transport stream . . . . . . . . . . . . . . . . . 5-92
F.6.2. kfclose() — close a data transport stream . . . . . . . . . . . . . . . . . 5-93
F.6.3. kfdopen() — open an existing transport descriptor as a data transport stream . . . . . . 5-94
F.6.4. kfeof() — check if a data transport stream is at EOF . . . . . . . . . . . . . . 5-95
F.6.5. kfflush() — flush buffered output of a data transport stream . . . . . . . . . . . . 5-95
F.6.6. kflock() — apply or remove an advisory lock on an open transport descriptor . . . . . . 5-96
F.6.7. kfreopen() — re-open a data transport stream . . . . . . . . . . . . . . . 5-96
F.6.8. kfseek() — set position in a data transport stream . . . . . . . . . . . . . . 5-98
F.6.9. kftell() — report current position in the data transport stream . . . . . . . . . . . 5-99

F.7. Introduction to File Read/Write Utilities . . . . . . . . . . . . . . . . . . 5-99
F.8. Definitions of File Read/Write Utilities . . . . . . . . . . . . . . . . . . 5-100

F.8.1. kfdup() — duplicate an existing data transport stream . . . . . . . . . . . . . 5-100
F.8.2. kfdup2() — duplicate an existing data transport into a specific stream . . . . . . . . . 5-100
F.8.3. kfgetc() — get a character from the data transport stream . . . . . . . . . . . . 5-101
F.8.4. kfgets() — get a string from a data transport stream . . . . . . . . . . . . . . 5-101
F.8.5. kfinput() — opens a file for reading using kfopen() . . . . . . . . . . . . . . 5-102
F.8.6. kfoutput() — opens/creates a file for writing using kfopen() . . . . . . . . . . . . 5-103
F.8.7. kfprintf() — print one or more arguments in the format specified to an output file stream

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-103
F.8.8. kfputc() — put a character onto the data transport stream . . . . . . . . . . . . 5-104
F.8.9. kfputs() — put a string onto the data transport stream . . . . . . . . . . . . . 5-105
F.8.10. kfread() — read from a data transport stream . . . . . . . . . . . . . . . 5-105
F.8.11. kfscanf() — scan file input and format it into one or more arguments of the type specified

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-106
F.8.12. kfwrite() — write to a data transport stream . . . . . . . . . . . . . . . . 5-107
F.8.13. kputs() — writes a string to kstdout . . . . . . . . . . . . . . . . . . 5-108

F.9. Introduction to Data Transport Utilities . . . . . . . . . . . . . . . . . . 5-108
F.10. Definitions of Data Transport Utilities . . . . . . . . . . . . . . . . . . 5-109

F.10.1. kfile_clrstate() — remove a flag from an open transport id state . . . . . . . . . . 5-109
F.10.2. kfile_comparedata() — compare the contents of a transport id to another transport id

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-110
F.10.3. kfile_copydata() — copy the contents of a transport id to another transport id . . . . . . 5-111
F.10.4. kfile_filename() — return the filename associated with khoros transport id . . . . . . . 5-111
F.10.5. kfile_flags() — return the flags associated with transport id . . . . . . . . . . . 5-112
F.10.6. kfile_getmachtype() — gets the machine architecture type for a file transport id . . . . . 5-112
F.10.7. kfile_getpermanence() — returns whether a file has data permanence or not . . . . . . 5-113
F.10.8. kfile_isdup() — khoros transport has been has been/is a dupped transport . . . . . . . 5-113
F.10.9. kfile_iseof() — khoros transport is at end of file (eof) . . . . . . . . . . . . . 5-114
F.10.10. kfile_ismybuf() — khoros transport buffer was set by the application . . . . . . . . 5-114
F.10.11. kfile_isopen() — khoros transport has been properly opened . . . . . . . . . . 5-115
F.10.12. kfile_islock() — khoros transport has been/is a locked transport . . . . . . . . . 5-115
F.10.13. kfile_isreacquire() — khoros transport will be reacquired . . . . . . . . . . . 5-116
F.10.14. kfile_ispermanent() — khoros transport has permanence . . . . . . . . . . . 5-116
F.10.15. kfile_isbufferd() — khoros transport is buffered or not . . . . . . . . . . . . 5-117
F.10.16. kfile_isstreambuf() — khoros transport is stream buffered . . . . . . . . . . . 5-117
F.10.17. kfile_islinebuf() — khoros transport is line buffered . . . . . . . . . . . . . 5-118
F.10.18. kfile_isfullbuf() — khoros transport is full buffered . . . . . . . . . . . . . 5-118
F.10.19. kfile_ismembuf() — khoros transport is memory buffered . . . . . . . . . . . 5-119
F.10.20. kfile_isread() — khoros transport is readable . . . . . . . . . . . . . . . 5-119
F.10.21. kfile_isrdwr() — khoros transport is both readable and writeable . . . . . . . . . 5-120

- iv -



Operating System Services Program Services Volume I - Chapter 5

F.10.22. kfile_istemp() — khoros transport is temporary . . . . . . . . . . . . . . 5-120
F.10.23. kfile_iswrite() — khoros transport is writeable . . . . . . . . . . . . . . 5-121
F.10.24. kfile_mode() — return the mode associated with transport id . . . . . . . . . . 5-121
F.10.25. kfile_readdata() — read the contents of a khoros transport into a data array . . . . . . 5-122
F.10.26. kfile_remotehost() — returns whether a host is remote . . . . . . . . . . . . 5-122
F.10.27. kfile_reopen() — re-open a stream khoros transport . . . . . . . . . . . . . 5-123
F.10.28. kfile_seddata() — string edit from one transport to another . . . . . . . . . . . 5-124
F.10.29. kfile_setmachtype() — sets the machine architecture type for a file transport id . . . . . 5-125
F.10.30. kfile_setstate() — adds a flag to the open transport id state . . . . . . . . . . . 5-126
F.10.31. kfile_getstate() — return the current internal stream transport state . . . . . . . . 5-126
F.10.32. kfile_type() — return the type flag field used when opening the transport with kfopen()

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-127
F.10.33. kfile_writedata() — write the contents of the data to a khoros transport . . . . . . . 5-128
F.10.34. kfidfile() — return the kfile structure associated with a fid . . . . . . . . . . . 5-128
F.10.35. ktmpfid() — create a temporary transport descriptor . . . . . . . . . . . . . 5-129
F.10.36. ktransport_add() — add a new transport to the list of transports . . . . . . . . . 5-129
F.10.37. ktransport_delete() — delete a transport from the list of all transports . . . . . . . . 5-130
F.10.38. ktransport_list() — get the list of supported transports . . . . . . . . . . . . 5-130

F.11. Introduction to General File Utilities . . . . . . . . . . . . . . . . . . . 5-131
F.12. Definitions of General File Utilities . . . . . . . . . . . . . . . . . . . 5-131

F.12.1. kcomparefile() — compare the contents of one filename to another . . . . . . . . . 5-131
F.12.2. kcopyfile() — copy the contents of one filename to another . . . . . . . . . . . 5-132
F.12.3. keditfile() — start up an edit program to edit an input file . . . . . . . . . . . . 5-132
F.12.4. kprintfile() — print a file to a printer . . . . . . . . . . . . . . . . . . 5-133
F.12.5. kreadfile() — read the contents of a file into a data array . . . . . . . . . . . . 5-134
F.12.6. ksedfile() — khoros string edit a file . . . . . . . . . . . . . . . . . . 5-135
F.12.7. kwritefile() — write the contents of the data to a file . . . . . . . . . . . . . 5-136

F.13. Miscellaneous Utilities . . . . . . . . . . . . . . . . . . . . . . . 5-137
F.13.1. kflags_to_type() — convert kopen() flags to kfopen() type parameter . . . . . . . . 5-137
F.13.2. ktype_to_flags() — convert kfopen() type to kopen() flags . . . . . . . . . . . . 5-138

G. Process Execution . . . . . . . . . . . . . . . . . . . . . . . . . . 5-139
G.1. Introduction to Process Execution Utilities . . . . . . . . . . . . . . . . . 5-139
G.2. Definitions of Process Execution Utilities . . . . . . . . . . . . . . . . . 5-139

G.2.1. kexecvp() — execute a command . . . . . . . . . . . . . . . . . . . 5-139
G.2.2. kexit_handler() — adds an kexit handler . . . . . . . . . . . . . . . . . 5-141
G.2.3. ksignal() — khoros signal handler . . . . . . . . . . . . . . . . . . . 5-141
G.2.4. ksignal_format() — format the actual signal error . . . . . . . . . . . . . . 5-142
G.2.5. kspawn() — spawn a command . . . . . . . . . . . . . . . . . . . . 5-142
G.2.6. ksystem() — issue a shell command . . . . . . . . . . . . . . . . . . 5-143

H. InterProcess Communication . . . . . . . . . . . . . . . . . . . . . . . 5-143
H.1. Introduction to Data Transport IPC Utilities . . . . . . . . . . . . . . . . . 5-143
H.2. Definitions of Data Transport IPC Utilities . . . . . . . . . . . . . . . . . 5-144

H.2.1. kipc_install_handler() — install IPC handler . . . . . . . . . . . . . . . 5-144
H.2.2. kipc_check_handler() — check to see if an IPC handler is installed . . . . . . . . . 5-145
H.2.3. kipc_remove_handler() — remove IPC handler . . . . . . . . . . . . . . . 5-145
H.2.4. kipc_stop() — stop or discontinue an IPC. . . . . . . . . . . . . . . . . 5-146
H.2.5. kipc_enable() — enable IPC before exec’ing a new process . . . . . . . . . . . 5-146
H.2.6. kipc_process() — get and dispatch a message . . . . . . . . . . . . . . . 5-146
H.2.7. kipc_dispatch() — dispatch a message . . . . . . . . . . . . . . . . . 5-148
H.2.8. kipc_get_data() — get raw data from a process . . . . . . . . . . . . . . . 5-148

- v -



Operating System Services Program Services Volume I - Chapter 5

H.2.9. kipc_send_data() — send raw data to a process . . . . . . . . . . . . . . . 5-149
H.2.10. kipc_get_message() — get a message . . . . . . . . . . . . . . . . . 5-149
H.2.11. kipc_send_message() — send a message . . . . . . . . . . . . . . . . 5-150
H.2.12. kipc_response_message() — send a response message . . . . . . . . . . . . 5-151
H.2.13. kipc_pending() — waits for a message . . . . . . . . . . . . . . . . . 5-151
H.2.14. kipc_check() — check that the IPC is enabled . . . . . . . . . . . . . . . 5-152
H.2.15. kipc_verify() — verify an IPC handler is installed . . . . . . . . . . . . . . 5-152
H.2.16. kipc_debug() — Turn on debugging messages . . . . . . . . . . . . . . . 5-152
H.2.17. kipc_debug_file() — specify a file to send debug data . . . . . . . . . . . . . 5-153

I. Distributed Computing . . . . . . . . . . . . . . . . . . . . . . . . . 5-153
I.1. Introduction to the Distributed Computing Utilities . . . . . . . . . . . . . . . 5-153
I.2. Definitions of the Distributed Computing Utilities . . . . . . . . . . . . . . . 5-154

I.2.1. kremote_exec() — creates a khoros command string which can exec’ed on a remote host
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-154

I.2.2. kremote_file() — creates a khoros file string which can be accessed on a remote machine
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-154

I.2.3. kremote_location() — return the remote location . . . . . . . . . . . . . . . 5-155
I.2.4. kremote_check() — check to see if we can access host . . . . . . . . . . . . . 5-155
I.2.5. kremote_start() — starts daemon on specified host . . . . . . . . . . . . . . 5-156
I.2.6. kremote_stop() — stops daemon on the specified host . . . . . . . . . . . . . 5-156
I.2.7. kremote_running() — Check to see if host is currently running daemon . . . . . . . . 5-157
I.2.8. kremote_list() — List the remote hosts with daemons started . . . . . . . . . . . 5-157

I.3. Introduction to the Host Utilities . . . . . . . . . . . . . . . . . . . . 5-158
I.4. Definitions of the Host Utilities . . . . . . . . . . . . . . . . . . . . . 5-158

I.4.1. khost_list() — get the list of machines that processes can be distributed to . . . . . . . 5-158
I.4.2. khost_add() — add a host to the list of machines that processes can be distributed to . . . . 5-158
I.4.3. khost_delete() — delete a host from the list of machines that processes can be distributed to

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-159
I.4.4. khost_save() — saves the current list of machines back into the khoros host file . . . . . . 5-159
I.4.5. khost_location() — get the location part of the host spec . . . . . . . . . . . . 5-160
I.4.6. khost_username() — get the username part of the host spec . . . . . . . . . . . 5-160
I.4.7. khost_remotecmd() — get the username part of the host spec . . . . . . . . . . . 5-161
I.4.8. khost_entry() — get the entry the best matches the partial host . . . . . . . . . . . 5-161

- vi -



Programming Services Volume I

Chapter 6

Exception Handling

Copyright (c) AccuSoft Corporation, 2004. All rights reserved.





Chapter 6 - Exception Handling

A. Exception Handling In VisiQuest

A.1. Background

Previous versions of VisiQuest have used a cascading failure mechanism in dealing with errors. Each routine
checks the return status on every function call it makes, and, in the event of a failure of any function, the rou-
tine itself fails. This mechanism was augmented with the use of the system errno.

The use of system errno allows VisiQuest to provide some info at the source of the error without having to
print an error message. An integer assignment of the errno with an error value would let you know what trig-
gered the error. For example, a data services call might fail because of a memory allocation failure.

VisiQuest extended the system errno by allowing libraries to add their own error numbers. To avoid collisions
in error numbers, the VisiQuest errno’s are actually externed integers which are dynamically assigned at run-
time. The errno also has a string associated with it which is used in the kerror() function to indicate the cate-
gory of the error. An entire set of errnos can be initialized at once using the function kerr no_init_errors().
There is generally one initialization done per library.

The VisiQuest unspoken convention on when to actually print an error message has been to "print the error
when you have the information." Ideally, nothing actually prints an error message unless it is a top-level appli-
cation function. However errors within libraries whose sole purpose is to provide application-level functional-
ity (such as the datamanip or kcms libraries) often print errors. General purpose libraries such as data services
never print an error unless it is fatal or very serious.

Checking the return status of every function call is good for robustness, but bad for code readability. The
KCALL macro was developed to standardize the practice of checking the return statuses, printing an error mes-
sage, and returning FALSE within the datamanip routines.

The unpopularity of the KCALL macro, coupled with the lack of a definitive standard for dealing with error
conditions prompted a redesign of our error handling system. The new system needed to address the following
goals for error handling:

find alternative to unpopular KCALL

model after C++ exceptions if possible

provide more information about errors

lightweight approach : minimize resource spending if no error has occurred

6-1



Exception Handling Programming Services Volume I - Chapter 6

A.2. What is an exception?

An error condition occurs when something is amiss deep inside a function. Maybe a parameter is off or
maybe a a resource can’t be accessed. All the function knows is that something is happening which "may be
bad." But it generally isn’t bad enough to warrant killing the program. The solution is to let the calling func-
tion or functions know that something has happened so they can deal with it.

The previous solution for this had been to set an errno, and then exit with some type of failing return status.

An exception allows us to retain this functionality, but also allows the calling routine to optionally intercept the
error condition as it is occurring. In this way, it is up to the calling function to determine the severity of the
error.

A.3. How to raise an exception?

The function kthrow should be used to throw an exception. The exception thrown is indicated by the errno.
The same old errnos used in the old cascading error system can be thrown.

Since valuable information about the cause of the error is generally available when the errno is set, the errno is
augmented with an optional error message. A printf style syntax allows a detailed error message to be speci-
fied. The line number and file name are also associated with the error using the __LINE__ and __FILE__
compiler directives.

An example error condition set with a kthrow is illustrated below.

int function1(void)
{

kaddr data;
int nbytes = 1000000000;

if ( (data = kmalloc((size_t) nbytes)) == NULL)
{

kthrow(KMEMORY_ALLOCATION, "Unable to allocate %d bytes", nbytes);
return FALSE;

}
else

return TRUE;
}

In reality, this error is thrown within the kmalloc call.

Note that the routine still returns FALSE to indicate failure. There is never a guarantee that a calling function
is going to intercept any errors, so code should still depend on the old cascading error return way of handling
failure conditions.

A.4. What about the caller?

The function kcatch should be used to intercept exceptions.

6-2



Exception Handling Programming Services Volume I - Chapter 6

The functions ktr y_begin and ktr y_end should be used to define a scope in which errors can be intercepted.

These functions have behavior that is analogous to the C++ tr y and catch function, although the syntax and
ordering are different.

The basic use of the ktry and kcatch calls is as follows :

lkarith2()
{

ktry_begin("kdatamanip", "lkarith2");
/*-- catch the following errors --*/
if (kcatch(KANY_ERROR, khandle_warn,

KMEMORY_ALLOCATION, khandle_error,
KCMS_ERRORS, khandle_error,
NULL))

{
/*-- if we caught an error, we will end up here --*/
kprintf("routine exiting unsuccessfully.\n");
return FALSE;

}
/*-- call any functions we want, we don’t have to check return status --*/
function1();
function2();
function3();
function4();
function5();
ktry_end();
kprintf("routine exiting successfully!\n");
return TRUE;

}

If an error is caught and the catch handler for that error indicates that it is a fatal error, the program will return
back to the block below the kcatch call. At this point the routine must exit, but it may choose to do a return
FALSE, exit(1), or whatever is appropriate for that function to indicate a failed return status.

Since you have no guarantee that your caller is catching any errors, unless you are catching exceptions yourself
within your function, you should program as you usually do and check the return status of each function call
you make.

A.5. Important Nuances

The ktr y scopes can be nested. A thrown error will propagate up until an appropriate error handler has been
found. If no error handler is found, program flow continues after the kthrow call. If a handler is found and it
dictates that the error is fatal, the program flow will continue after the kcatch call in which that handler was
installed.

One nuance of this functionality is that a ktry block must be opened and closed within the same bracketed C
scope. It is not be possible to put the ktr y_begin within a different call from the ktr y_end. For example, we
could not put a ktr y_begin and kcatch call in khoros_initialize and install a ktr y_end in the exit handler.
The ktr y_begin, kcatch, and ktr y_end must occur in the same corresponding bracketed C scope. (This at
least is no worse than C++ exception handling, in which the try and catch functions must occur in the same
scope).

6-3



Exception Handling Programming Services Volume I - Chapter 6

Note also that while the ktr y_begin and kcatch calls are minimally expensive, they are not free. Since the
cost of these calls is incurred even if there are no errors, they should NOT be used within every function of
ev ery library.

A.6. Handling Exceptions

An error handler is used to interpret the exception. On an exception, this handler is called with the error that
had been thrown along with the library and routine for the try block in which the error handler was installed.

The return value of the handler indicates if the program should continue past the kthrow or return back to the
kcatch call. A handler could also rethrow the error (or throw a new error) simply by calling kthrow itself.

TRUE - return back to the kthrow of this error

FALSE - return back to the kcatch of this catcher

Three standard handlers are already available : khandle_warn, khandle_error, and khandle_fatal.

You can, of course, write your own handlers. A simple handler for printing warnings would be as follows :

int khandle_warn(
int error,
char *message,
char *library,
char *routine,)

{
kwarn(library, routine, "things are *not* looking good");
return TRUE;

}

A.7. Error Classes

Since it would be tedious to list every possible errno you might want to catch in the kcatch function, a basic
extension to the kerrno_init_errors function was made to also define a class (or category) identifier for the
errors defined. The class errno can then be used within the kcatch function to catch any exceptions of a partic-
ular class.

How to use this new functionality? The return value of kerrno_init_errors should be assigned to an externed
integer representing the error class.

Currently, the only classes available are KSYSTEM_ERRORS for all the UNIX system errors,
KUIS_ERRORS for user interface errors, KENV_ERRORS for environment variable processing errors,
KMATH_ERRORS to catch mathematical processing errors, KPARSE_ERRORS for errors returned by the
parsing routines, KDBM_ERRORS for database errors, and KANY_ERROR for any error. Other libraries

6-4



Exception Handling Programming Services Volume I - Chapter 6

use this functionality to define other groups of errors.

A.8. Error Traceback

As errors are thrown, they are maintained in a list. With this functionality, we can print a traceback of the
error.

This functionality is not yet being used by any handler functions, although you can generate a traceback your-
self for debugging purposes using the call in your error handler:

kprintf("%s\n", ktraceback_report());

A.9. Introduction for Exceptions Handling routines

• ktry_begin() - open a try block for exception handling
• ktry_end() - close a try block for exception handling
• kcatch() - catch errors
• kthrow() - raise an error exception
• krethrow() - propagate an error exception
• khandle_warn() - handler exception as an warning
• khandle_ignore() - handler exception as an ignore
• khandle_error() - handler exception as an error
• khandle_fatal() - handler exception as a fatal error

A.10. Definitions of Exception Handling routines

A.10.1. ktry_begin() — open a try block for exception handling

Synopsis
void ktry_begin(

char *library,
char *routine)

Input Arguments
library

library name for this try block
routine

routine name for this try block

Description
This function opens a try block for exception handling. Any errors thrown by functions called within
the try block can be intercepted with a kcatch call. The try block is closed with a call to the function

6-5



Exception Handling Programming Services Volume I - Chapter 6

ktry_end.

The use of these exception handling functions allows a programmer to elegantly intercept error condi-
tions without requiring the program to check the return status of every single function call.

The kcatch function should be used within this try block to indicate which specific errors or error
classes should be caught. A handler is provided for each error or error class.

The kcatch call should be the first call after the ktry_begin. There should only be a single call to
kcatch for every call to ktry_begin.

The kcatch call must occur within an if statement. If a fatal error is caught, the program will jump
back to the conditional block after the if statement. All try blocks up to and including the current try
block will be closed automatically. The routine must exit at this point.

The kcatch call should appear approximately as follows:

// catch the following errors
if (kcatch(KANY_ERROR, khandle_warn,

KMEMORY_ALLOCATION, khandle_error,
KCMS_ERRORS, khandle_error,
NULL))

{
// if we caught an error, we will end up here
kprintf("routine exiting unsuccessfully.");
return FALSE;

}

Try blocks can be nested. Each function call may contain a try block and with its own kcatch call.
Each subsequent ktry_begin opens up a new lev el.

A thrown error will propagate up each try block until an appropriate error handler has been found. An
error handler is a simple function which interprets the error condition. It may print a warning, or set
some internal status variables. The exit status of the handler indicates the severity of the error.

For convenience, three standard error handlers are provided.

khandle_warn - print a warning and continue past kthrow
khandle_error - print an error and fail
khandle_fatal - print an error and abort the program

You can, of course, write your own handlers and install them as well. An exit handler which prints a

6-6



Exception Handling Programming Services Volume I - Chapter 6

simple warning message is illustrated below.

int khandle_warn(
int error,
char *message,
char *library,
char *routine)

{
kwarn(library, routine, "things are not looking so good");
return TRUE;

}

The error handler may choose to interpret the error as a warning and return TRUE, indicating that the
program flow should continue back after the kthrow call in which the error was thrown.

If the handler chooses to interpret the error as a fatal error, it may return FALSE. This will divert the
program flow to continue after the kcatch call in which that handler was installed. This will allow you
to do any necessary cleanup and exit the routine.

If no error handler is found, program flow continues after the kthrow call. In this event, the kthrow call
serves only to set the system errno. Note that if no try blocks are ever opened, the only function of the
kthrow will be to set the system errno.

Examples
A simple example of the use of a try block and a kcatch function is provided below.

lkarith2()
{

// open a try block
ktry_begin("kdatamanip", "lkarith2");

// catch the following errors
if (kcatch(KANY_ERROR, khandle_warn,

KMEMORY_ALLOCATION, khandle_error,
KCMS_ERRORS, khandle_error,
NULL))

{
// if we caught an error, we will end up here
kprintf("routine exiting unsuccessfully.");
return FALSE;

}

6-7



Exception Handling Programming Services Volume I - Chapter 6

function1();
function2();
function3();
function4();
function5();

// close the try block
ktry_end();

kprintf("routine exiting successfully!");

return TRUE;
}

Note that it was not necessary to check the exit status of each function call made within the try block.
Any errors that occur within the functions will be intercepted with a warning. Memory allocation
errors and cms errors will be intercepted with an error message and will cause the routine to exit.

Restrictions
If the kcatch call is not placed within an if statement (or if the routine fails to return after the if state-
ment), it will just re-execute the same sequence of functions which produced the fatal error in the first
place. This probably will result in an infinite loop as the same fatal error is thrown over and over
again.

A try block must be opened and closed in the same bracketed C scope. Both the ktry_begin and
ktry_end must be in the same function. Failure to close the try block within the same C scope will
result in undefined behavior when catching errors.

Only a relatively small, finite number of try blocks can be opened when nesting, so avoid opening a try
block in a deeply recursive function.

A.10.2. ktry_end() — close a try block for exception handling

Synopsis
void ktry_end(void)

Description
This function closes a try block for exception handling. Any errors thrown by functions called within
the try block can be intercepted with a kcatch call. The try block should have been opened with a call
to ktry_begin. See ktry_begin for details.

6-8



Exception Handling Programming Services Volume I - Chapter 6

Restrictions
A try block must be opened and closed in the same bracketed C scope. Both the ktry_begin and
ktry_end must be in the same function.

A.10.3. kcatch() — catch errors

Synopsis
int kcatch(int error,

int (*handler)(int error, char *, char *, char *),
kvalist)

Input Arguments
error

error number to catch
handler

handler function to use when error is thrown. This function should be of the form :

int handler_error(int error,
char *message,
char *library,
char *routine)

kvalist
variable argument list of error numbers and associated handlers. This list should be NULL terminated.

Returns
FALSE when kcatch is called to install the errors, and TRUE on a return from an error condition. This
function should be placed with an if statement to redirect program flow when it returns TRUE.

You must exit the routine in the event of a fatal error. When an error does occur, the current try block
will have been closed for you.

Description
This function is used within a try block for intercepting thrown exceptions.

The use of these exception handling functions allows a programmer to elegantly intercept error condi-
tions without requiring the program to check the return status of every single function call.

The kcatch function should be used within an if statement. If a fatal error is thrown, program flow will

6-9



Exception Handling Programming Services Volume I - Chapter 6

divert back to this function at which point it will return TRUE. This will direct control into the condi-
tional block following the if statement.

The kcatch function should be used within a try block to indicate which specific errors or error classes
should be caught. A handler should be provided for each error or error class which you wish to inter-
cept.

A try block is opened with a call to ktry_begin and closed with a call to ktry_end. Try blocks can be
nested. Each function call may contain a try block and with its own kcatch call. Each subsequent
ktry_begin opens up a new lev el.

A thrown error will propagate up each try block until an appropriate error handler has been found. An
error handler is a simple function which interprets the error condition. It may print a warning, or set
some internal status variable. The exit status of the handler indicates the severity of the error.

For convenience, three standard error handlers are provided.

khandle_warn - print a warning and continue past kthrow
khandle_error - print an error and fail
khandle_fatal - print an error and abort the program

You can, of course, write your own handlers and install them as well. An exit handler which prints a
simple warning message is illustrated below.

int khandle_warn(
int error,
char *message,
char *library,
char *routine)

{
kwarn(library, routine, "things are not looking so good");
return TRUE;

}

The error handler may choose to interpret the error as a warning and return TRUE, indicating that the
program flow should continue back after the kthrow call in which the error was thrown.

If the handler chooses to interpret the error as a fatal error, it may return FALSE. This will divert the
program flow to continue after the kcatch call in which that handler was installed. This will allow you
to do any necessary cleanup and exit the routine.

If no error handler is found, program flow continues after the kthrow call. In this event, the kthrow call

6-10



Exception Handling Programming Services Volume I - Chapter 6

serves only to set the system errno. Note that if no try blocks are ever opened, the only function of the
kthrow will be to set the system errno.

Examples
A simple example of the use of a try block and a kcatch function is provided below.

lkarith2()
{

// open a try block
ktry_begin("kdatamanip", "lkarith2");

// catch the following errors
if (kcatch(KANY_ERROR, khandle_warn,

KMEMORY_ALLOCATION, khandle_error,
KCMS_ERRORS, khandle_error,
NULL))

{
// if we caught an error, we will end up here
kprintf("routine exiting unsuccessfully.");
return FALSE;

}

function1();
function2();
function3();
function4();
function5();

// close the try block
ktry_end();

kprintf("routine exiting successfully!");

return TRUE;
}

Note that it was not necessary to check the exit status of each function call made within the try block.
Any errors that occur within the functions will be intercepted with a warning. Memory allocation
errors and cms errors will be intercepted with an error message and will cause the routine to exit.

Side Effects
On return from an error condition, the try blocks up to and including the current try block will be
closed. It is very important to exit the function in the event of an error condition.

6-11



Exception Handling Programming Services Volume I - Chapter 6

Restrictions
If the kcatch call is not placed within an if statement (or if the routine fails to return after the if state-
ment), it will just re-execute the same sequence of functions which produced the fatal error in the first
place. This probably will result in an infinite loop as the same fatal error is thrown over and over
again.

A.10.4. kthrow() — raise an error exception

Synopsis
kthrow(int error,

char *format,
kvalist)

Input Arguments
error

errno being thrown
format

a formatted error message
kvalist

optional variables which should be printed within the formatted message

Description
This function is used to raise an error exception. An exception will consist an error number and a an
optional error message which describes the error condition. A printf style syntax is used for specifying
the error message in order to allow variable values to be included as part of the message.

It may be used as an alternative to setting the system errno. The thrown error will be assigned to the
system errno as well as being placed into an error stack. This function will also look for an installed
error handler to deal with the error.

An error handler should be installed within a higher level function inside of a try block using the
kcatch function. A try block is opened and closed using the ktry_begin and ktry_end functions.

A thrown error will propagate up until an appropriate error handler has been found. An error handler
is a simple function which interprets the error condition and is installed in one or more higher level
calling functions. If the error handler indicates that the error is not serious, program flow will return to
after the kthrow. If the error handler indicates that the error is serious, program flow will be diverted
from the kthrow to the kcatch call in which the error handler was installed. If no error handler has
been found, the program will continue past the kthrow.

The use of these exception handling functions allows a programmer to elegantly intercept error condi-
tions without requiring the program to check the return status of every single function call.

6-12



Exception Handling Programming Services Volume I - Chapter 6

Examples
A simple example of the use of the kthrow function to throw an error and associated message is
included below.

kthrow(KMEMORY_ALLOCATION, "Unable to alloc %d bytes.", number);

A.10.5. krethrow() — propagate an error exception

Synopsis
void krethrow(void)

Description
This function is used to propagate an error exception. The original errno, message and associated
information are preserved. This function will look for the next error handler to deal with the message.

The place to use this function is in the kcatch block after appropriate actions are taken in that subrou-
tine and the error is to be propagated further up the call stack. This allows a subroutine to terminate,
free resources in the kcatch block and then rethrow the error. Note that if a rethrown error is caught by
a handler that tries to continue execution, the execution will continue at the point the error is rethrown.

A.10.6. khandle_warn() — handler exception as an warning

Synopsis
int khandle_warn(

int error_number,
char *message,
char *library,
char *routine)

Input Arguments
message

message associated with the exception being thrown

library
library name for the try block in which the error has been intercepted

6-13



Exception Handling Programming Services Volume I - Chapter 6

routine
routine name for the try block in which the error has been intercepted

Returns
TRUE indicating that control should return to the kthrow call which generating the exception

Description
This function is a handler which may be used with the kcatch function for intercepting exceptions.

This handler considers exceptions to be non-fatal and will simply print a warning using the kwarn
function. On return, it will return back to the kthrow call which generated the exception.

A.10.7. khandle_ignore() — handler exception as an ignore

Synopsis
int khandle_ignore(

int error_number,
char *message,
char *library,
char *routine)

Input Arguments
message

message associated with the exception being thrown. This is not used by the ignore handler.

library
library name for the try block in which the error has been intercepted

routine
routine name for the try block in which the error has been intercepted

Returns
TRUE indicating that control should return to the kthrow call which generating the exception

Description
This function is a handler which may be used with the kcatch function for intercepting exceptions.

This handler considers exceptions to be non-fatal and will simply ignore them. On return, it will return
back to the kthrow call which generated the exception.

6-14



Exception Handling Programming Services Volume I - Chapter 6

A.10.8. khandle_error() — handler exception as an error

Synopsis
int khandle_error(

int error_number,
char *message,
char *library,
char *routine)

Input Arguments
message

message associated with the exception being thrown

library
library name for the try block in which the error has been intercepted

routine
routine name for the try block in which the error has been intercepted

Returns
FALSE indicating that control should return to the kcatch call in which this handler was installed

Description
This function is a handler which may be used with the kcatch function for intercepting exceptions.

This handler considers exceptions to be errors and will print an error message using the kerror func-
tion. This function will return back to the kcatch call in which the handler was installed.

A.10.9. khandle_fatal() — handler exception as a fatal error

Synopsis
int khandle_fatal(

int error_number,
char *message,
char *library,
char *routine)

Input Arguments
message

message associated with the exception being thrown

library

6-15



Exception Handling Programming Services Volume I - Chapter 6

library name for the try block in which the error has been intercepted
routine

routine name for the try block in which the error has been intercepted

Returns
FALSE

Description
This function is a handler which may be used with the kcatch function for intercepting exceptions.

This handler consideres exceptions to be fatal and will abort the program after printing an error mes-
sage.

6-16



Table of Contents

A. Exception Handling In VisiQuest . . . . . . . . . . . . . . . . . . . . .  6-1
A.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-1
A.2. What is an exception? . . . . . . . . . . . . . . . . . . . . . . .  6-2
A.3. How to raise an exception? . . . . . . . . . . . . . . . . . . . . . .  6-2
A.4. What about the caller? . . . . . . . . . . . . . . . . . . . . . . .  6-2
A.5. Important Nuances . . . . . . . . . . . . . . . . . . . . . . . .  6-3
A.6. Handling Exceptions . . . . . . . . . . . . . . . . . . . . . . . .  6-4
A.7. Error Classes . . . . . . . . . . . . . . . . . . . . . . . . . .  6-4
A.8. Error Traceback . . . . . . . . . . . . . . . . . . . . . . . . .  6-5
A.9. Introduction for Exceptions Handling routines . . . . . . . . . . . . . . . .  6-5
A.10. Definitions of Exception Handling routines . . . . . . . . . . . . . . . .  6-5

A.10.1. ktry_begin() — open a try block for exception handling . . . . . . . . . . . .  6-5
A.10.2. ktry_end() — close a try block for exception handling . . . . . . . . . . . . .  6-8
A.10.3. kcatch() — catch errors . . . . . . . . . . . . . . . . . . . . .  6-9
A.10.4. kthrow() — raise an error exception . . . . . . . . . . . . . . . . . . 6-12
A.10.5. krethrow() — propagate an error exception . . . . . . . . . . . . . . . . 6-13
A.10.6. khandle_warn() — handler exception as an warning . . . . . . . . . . . . . 6-13
A.10.7. khandle_ignore() — handler exception as an ignore . . . . . . . . . . . . . 6-14
A.10.8. khandle_error() — handler exception as an error . . . . . . . . . . . . . . 6-15
A.10.9. khandle_fatal() — handler exception as a fatal error . . . . . . . . . . . . . 6-15

- i -



Exception Handling Programming Services Volume I - Chapter 6

This page left intentionally blank

- ii -


	 0 - Preface 
	 A - About This Book 
	 B - Assumptions 
	 C - Organization 
	 D - Conventions 
	 E - Related Books 

	 1 - Introduction 
	 A - About Foundation Services 
	 B - Overview of Program Services 
	 B.1 - Foundation Services 
	 B.2 - Data Services 
	 B.3 - GUI & Visualization Services 

	 C - Volume Overview 
	 C.1 - function_name()  short function description 


	 2 - Basic Services 
	 A - Introduction 
	 B - String Utilities 
	 B.1 - Introduction to String Utilities 
	 B.2 - Definitions of String Utilities 
	 B.2.1 - kstrcasecmp()  do a case insensitive string compare 
	 B.2.2 - kstrcat()  concatenate two strings 
	 B.2.3 - kstrchr()  find a character in a string 
	 B.2.4 - kstrcmp()  compare two strings 
	 B.2.5 - kstrcpy()  copy a string 
	 B.2.6 - kstrcspn()  return the number of characters not matched 
	 B.2.7 - kstrdup()  return a duplicate of the input string 
	 B.2.8 - kstrlen()  return the length of a string 
	 B.2.9 - kstrncasecmp()  do a case insensitive string compare on n characters 
	 B.2.10 - kstrncat()  concatenate up to n characters on a string 
	 B.2.11 - kstrncmp()  compare the first n characters of two strings 
	 B.2.12 - kstrncpy()  copy the first n characters in a string 
	 B.2.13 - kstrpbrk()  find the first occurrence of a character from a set of chararacters 
	 B.2.14 - kstrrchr()  reverse scan a string to find a character 
	 B.2.15 - kstrspn()  return the number of matched characters 
	 B.2.16 - kstrstr()  find a substring within a string 
	 B.2.17 - kstrtok()  find a token within a string 
	 B.2.18 - kchar_replace()  replace a character with another through a string 
	 B.2.19 - kstring_capitalize()  convert a string to its capitalized equivalent 
	 B.2.20 - kstring_3cat()  concatenate three strings together 
	 B.2.21 - kstring_cat()  concatenate two strings 
	 B.2.22 - kstring_cleanup()  remove white space from the ends of a string 
	 B.2.23 - kstring_copy()  copy a string 
	 B.2.24 - kstring_detab()  remove tabs from a string 
	 B.2.25 - kstring_lower()  convert a string to lower case. 
	 B.2.26 - kstring_ncat()  concatenate two partial strings 
	 B.2.27 - kstring_ncopy()  copy up to n characters of a string 
	 B.2.28 - kstring_replace()  replace one substring with another 
	 B.2.29 - kstring_subcmp()  compares two sub-strings 
	 B.2.30 - kstring_upper()  convert a string to upper case. 
	 B.2.31 - kstring_seddata()  perform text changes with one or more sets of substitution rules 


	 C - Tokenized String Utilities 
	 C.1 - Introduction to Tokenized String Utilities 
	 C.2 - Definitions of Tokenized String Utilities 
	 C.2.1 - kstring_to_token()  return the token that is associated with the specified string 
	 C.2.2 - ktoken_to_string()  return the string associated with the specified token 
	 C.2.3 - ktoken_check()  check to see if a string has been token'ized 
	 C.2.4 - ktoken_delete()  delete the token'ized string from the list of tokens 


	 D - Time String Utilities 
	 D.1 - Introduction to the Time String Utilities 
	 D.2 - Definitions of Time String Utilities 
	 D.2.1 - kstrftime()  generate formatted time information 
	 D.2.2 - kget_date()  get the current time and date in a string 


	 E - Standardized Error Messages & Prompting 
	 E.1 - Introduction to Message/Prompting Utilities 
	 E.2 - Definitions of Message/Prompting Utilities 
	 E.2.1 - kannounce()  report or announce a message in a standardized format 
	 E.2.2 - kchoose()  prompt the user to select from a list of items 
	 E.2.3 - kerror()  print error messages in a standardized format 
	 E.2.4 - kinfo()  print information messages in a standardized format 
	 E.2.5 - koverwrite()  request an acknowledgement for overwriting files 
	 E.2.6 - kprompt()  request an acknowledgement from the user 
	 E.2.7 - ksave()  request an acknowledgement for quitting an application 
	 E.2.8 - kquit()  request an acknowledgement for quitting an application 
	 E.2.9 - kwarn()  print warning messages in a standardized format 

	 E.3 - Definitions of Routines To Set/Get Notify Level 
	 E.3.1 - kget_notify()  get the VisiQuest notify level 
	 E.3.2 - kset_notify()  set the VisiQuest notify level 

	 E.4 - Definitions of Routines To Set Handlers 
	 E.4.1 - kset_announcehandler()  set the announce handling routine used by kannounce() 
	 E.4.2 - kset_choosehandler()  set the choose handling routine used by kchoose() 
	 E.4.3 - kset_errorhandler()  set the error handling routine used by kerror() 
	 E.4.4 - kset_infohandler()  set the information handling routine used by kinfo() 
	 E.4.5 - kset_prompthandler()  set the prompt handling routine used by kprompt() 
	 E.4.6 - kset_quithandler()  set the quit handling routine used by kquit() 
	 E.4.7 - kset_savehandler()  set the save handling routine used by ksave() 
	 E.4.8 - kset_warnhandler()  set the warning handler routine used by kwarn() 


	 F - A Dyamic Errno System 
	 F.1 - Introduction to Generalized VisiQuest Errno Facility 
	 F.2 - Errno Initialization and lookup routines 
	 F.2.1 - kerrno_init_errors()  initialize errors to be used with khoros errno 
	 F.2.2 - kerrno_check()  check to see if an errno is within a given error list. 
	 F.2.3 - kerrno_lookup()  lookup the error message associated with a errno. 
	 F.2.4 - kerrno_class()  return the class number for a given errno. 
	 F.2.5 - kset_errno()  set an errno with a debug message 


	 G - Program Attributes 
	 G.1 - Introduction to Program Statistic Utilities 
	 G.2 - Definitions of Utilities To Get Program Statistics 
	 G.2.1 - kprog_get_argc()  get the number of arguments in the argv structure 
	 G.2.2 - kprog_get_argv()  get the arguments in the argv structure 
	 G.2.3 - kprog_get_command()  gets the command string in which this program was executed with. 
	 G.2.4 - kprog_get_envp()  gets the environment variable parameter structure 
	 G.2.5 - kprog_get_program()  gets the name of the program 
	 G.2.6 - kprog_get_toolbox()  gets the toolbox in which this program belongs. 

	 G.3 - Definitions of Utilities To Set Program Statistics 
	 G.3.1 - kprog_set_argc()  set the number of commandline parameters 
	 G.3.2 - kprog_set_argv()  set the command line argument array 
	 G.3.3 - kprog_set_envp()  set the number of environment variable parameters 
	 G.3.4 - kprog_set_program()  set the name of the program 
	 G.3.5 - kprog_set_toolbox()  set the toolbox in which this software object belongs. 

	 G.4 - Definitions of Utilities To Initialize VisiQuest 
	 G.4.1 - khoros_initialize()  initialize khoros system (old version for Khoros 2.1p1) 
	 G.4.2 - khoros_init()  initialize khoros system (new version for Khoros 2.1p2) 
	 G.4.3 - khoros_imprint()  imprint the khoros toolbox 


	 H - The String Parser 
	 H.1 - Introduction to String Parser 
	 H.2 - Definitions of String Parsing Utilities 
	 H.2.1 - kparse_string_search_delimit()  break up a line data into an array of strings based on some set of delimiters 
	 H.2.2 - kparse_string_delimit()  break a string into an array of strings based on some set of delimiters. 
	 H.2.3 - kparse_string_search()  match a search key in a data string 
	 H.2.4 - kparse_string_scan()  scan a data string for a specific section 
	 H.2.5 - kparse_string_scan_delimit()  Break a string into an array of strings 
	 H.2.6 - kparse_file_search()  search a file for a specific key 
	 H.2.7 - kparse_file_search_delimit()  break up a line data into an array of strings based on some set of delimiters 
	 H.2.8 - kparse_file_scan()  scan a VisiQuest Data Transport Stream for a specific section of data 
	 H.2.9 - kparse_file_scan_delimit()  break a section of a VisiQuest Data Transport Stream into an array of strings 


	 I - Regular Expression Pattern Matching & Replacement 
	 I.1 - Introduction to Regular Expression Utilities 
	 I.2 - Definitions of Regular Expression Utilities 
	 I.2.1 - kre_comp()  compile a regular expression 
	 I.2.2 - kre_debug()  prints a DFA for debug purposes 
	 I.2.3 - kre_exec()  execute dfa to find a match. 
	 I.2.4 - kre_icomp()  compile a case insensitive regular expression 
	 I.2.5 - kre_modw()  modify kre_exec's work table 
	 I.2.6 - kre_pos()  begin and end pointers of regular expression group 
	 I.2.7 - kre_status()  return a parse status code 
	 I.2.8 - kre_subs()  substitute the matched portions of the src in dst 
	 I.2.9 - kregex_replace()  replace an input string given a regular expression input and output string 


	 J - Memory Allocation Utilities 
	 J.1 - Introduction to Memory Utilities 
	 J.2 - Definitions of Memory Utilities 
	 J.2.1 - kbcopy()  copies bytes from src to dest 
	 J.2.2 - kbzero()  zeros out 'num' bytes (BSD style) 
	 J.2.3 - kbcmp()  compare bytes from src1 and src2 (BSD style) 
	 J.2.4 - kcalloc()  allocate memory and initialize it 
	 J.2.5 - kdupalloc()  duplicates a piece of memory 
	 J.2.6 - kfree()  free allocated memory 
	 J.2.7 - kfree_and_NULL()  free memory previously allocated 
	 J.2.8 - kmalloc()  allocate a contiguous piece of memory 
	 J.2.9 - krealloc()  re-allocate a piece of memory to a new size 
	 J.2.10 - kmemchr()  find the first occurence of 'c' in an character array 
	 J.2.11 - kmemcmp()  compare bytes from src1 and src2 
	 J.2.12 - kmemcpy()  copies bytes from src to dest 
	 J.2.13 - kmemccpy()  restricted copy of  bytes from src to dest 
	 J.2.14 - kmemmove()  copy a block of memory to another block 
	 J.2.15 - kmemset()  initialize bytes in dest to the character value 'c' 


	 K - File Path Utilities 
	 K.1 - Introduction to Path Utilities 
	 K.2 - Definitions of Path Utilities 
	 K.2.1 - kbasename()  return the filename component of a pathname 
	 K.2.2 - kdirname()  find directory component of a given pathname 
	 K.2.3 - kexpandpath()  Expand a path to it true path 
	 K.2.4 - kfullpath()  Expand a environment variables in a path 
	 K.2.5 - ktbpath()  Expand a environment variables local to a toolbox 
	 K.2.6 - ktempnam()  create a name for a temporary khoros transport 
	 K.2.7 - kfindpath()  find the path to an executable 


	 L - Directory Utilities 
	 L.1 - Introduction to Directory Utilities 
	 L.2 - Definitions of Directory Utilities 
	 L.2.1 - kmake_dir()  make a directory and all parent directories if necessary 
	 L.2.2 - kremove_dir()  remove a directory and it's contents 
	 L.2.3 - kchdir()  library call to change the current working directory 
	 L.2.4 - kgetcwd()  library call to get the current working directory 
	 L.2.5 - kmkdir()  library call to create a directory 
	 L.2.6 - krmdir()  remove a directory 


	 M - Environment Variable Utilities 
	 M.1 - Introduction to Environment Variable Utilities 
	 M.2 - Definitions of Environment Variable Utilities 
	 M.2.1 - kgetenv()  get an environment variable from the environ list. 
	 M.2.2 - kputenv()  put an environment variable into the environ list. 
	 M.2.3 - kremenv()  remove an environment variable from the environment 


	 N - Variable Argument Utilities 
	 N.1 - Introduction to Variable Argument Utilities 
	 N.2 - Definitions of Variable Argument Utilities 
	 N.2.1 - kva_start()  sets the start of the variable argument list 
	 N.2.2 - kva_arg()  gets an argument off the variable argument list 
	 N.2.3 - kva_end()  sets the end of the variable argument list 


	 O - Array Creation & Manipulation 
	 O.1 - Introduction to Array Utilities 
	 O.2 - Definitions of Array Utilities 
	 O.2.1 - karray_add()  add an entry into the array list 
	 O.2.2 - karray_copy()  copy an array of strings 
	 O.2.3 - karray_delete()  delete an entry from an array 
	 O.2.4 - karray_dirlist()  create an array of strings reflecting directory contents 
	 O.2.5 - karray_filelist()  create an array of strings reflecting the contents of a file 
	 O.2.6 - karray_free()  free memory used by an array 
	 O.2.7 - karray_insert()  insert an entry into an array 
	 O.2.8 - karray_locate()  locate an entry in an array 
	 O.2.9 - karray_merge()  merge two arrays into one 
	 O.2.10 - karray_sort()  sort an array 
	 O.2.11 - karray_to_list()  convert an array into a linked list 
	 O.2.12 - karray_to_string()  convert a string array into a single big string 
	 O.2.13 - knumber()  the number of items in an array 


	 P - Linked List Creation & Manipulation 
	 P.1 - Introduction to Linked List Utilities 
	 P.2 - Definitions of Linked List Utilities 
	 P.2.1 - klist_add()  add an entry into the linked list 
	 P.2.2 - klist_checkentry()  check if the klist entry is currently on the link list 
	 P.2.3 - klist_checkhead()  check if the current entry is the head of the list 
	 P.2.4 - klist_checkident()  check if the identifier is currently on the link list 
	 P.2.5 - klist_checktail()  check if the current entry is the tail of the list 
	 P.2.6 - klist_clientdata()  return the client data associated with an entry on the list 
	 P.2.7 - klist_copy()  copy a linked list into a new linked list 
	 P.2.8 - klist_delete()  delete an entry from the linked list 
	 P.2.9 - klist_dirlist()  create a linked list of file names 
	 P.2.10 - klist_filelist()  create a linked list of strings from a file 
	 P.2.11 - klist_free()  free the entire linked list 
	 P.2.12 - klist_head()  locate the head of the linked list 
	 P.2.13 - klist_identifier()  return the identifier associated with an entry on the list 
	 P.2.14 - klist_insert()  insert an entry into the linked list 
	 P.2.15 - klist_locate()  locate an entry in the linked list 
	 P.2.16 - klist_locate_clientdata()  locate an entry in the linked list according to it's client data 
	 P.2.17 - klist_makecircular()  changes a consecutive or linear link list into a circular link list 
	 P.2.18 - klist_makelinear()  changes a circular link list into a consecutive or linear link list 
	 P.2.19 - klist_merge()  merge two linked list into a single linked list 
	 P.2.20 - klist_next()  return the next entry on the list 
	 P.2.21 - klist_prev()  return the previous entry on the list 
	 P.2.22 - klist_size()  compute the size or number of entries in the list 
	 P.2.23 - klist_sort()  sort the linked list 
	 P.2.24 - klist_split()  split a single linked list into two linked lists 
	 P.2.25 - klist_tail()  locate the tail of the linked list 
	 P.2.26 - klist_to_array()  convert the linked list into an array 
	 P.2.27 - kalias_list()  returns a string array of aliases 


	 Q - Simple Database Management 
	 Q.1 - Introduction to Database Management Routines 
	 Q.2 - Definitions of Database Management Routines 
	 Q.2.1 - kdbm_check()  check where file descripter is a valid kdbm file 
	 Q.2.2 - kdbm_checkkey()  check to see if a key exists in the database 
	 Q.2.3 - kdbm_close()  close a previously opened kdbm file 
	 Q.2.4 - kdbm_delete()  Remove the key and its associated data from the database. 
	 Q.2.5 - kdbm_fetch()  Find a key and return the associated data. 
	 Q.2.6 - kdbm_firstkey()  get the first key in the database 
	 Q.2.7 - kdbm_fdopen()  open the dbm file and initialize data  structures for use 
	 Q.2.8 - kdbm_getmachtype()  gets the machine type for the database 
	 Q.2.9 - kdbm_lseek()  move read/write pointer of the key pointer 
	 Q.2.10 - kdbm_nextkey()  get the next key in the database 
	 Q.2.11 - kdbm_open()  open the dbm file and initialize data  structures for use 
	 Q.2.12 - kdbm_read()  Find a key and reads the associated data. 
	 Q.2.13 - kdbm_store()  Add a new key/data pair to the database. 
	 Q.2.14 - kdbm_write()  Simple database write routine 
	 Q.2.15 - kdbm_tell()  indicate position of the key pointer 
	 Q.2.16 - khash_copy()  copy the hash table and all associated memory 
	 Q.2.17 - khash_create()  creates a hash table 
	 Q.2.18 - khash_currkey()  return current entry (key) within the hash 
	 Q.2.19 - khash_location()  finds location of entry within the hash table 
	 Q.2.20 - khash_reinit()  reinitializes the hash table to be empty 
	 Q.2.21 - khash_firstkey()  return the first entry (key) in the hash table 
	 Q.2.22 - khash_lastkey()  return the last entry (key) in the hash table 
	 Q.2.23 - khash_nextkey()  return the next entry (key) in the hash table 
	 Q.2.24 - khash_prevkey()  return previous entry (key) in the hash table 
	 Q.2.25 - khash_value()  polynomial conversion 
	 Q.2.26 - khash_init()  initialized the hash routines 
	 Q.2.27 - khash_free()  frees the hash table and all associated memory 
	 Q.2.28 - khash_delete()  delete an entry from the hash table 
	 Q.2.29 - khash_clientdata()  returns the clientdata of a hash entry 
	 Q.2.30 - khash_check()  check to see if a hash entry exists 
	 Q.2.31 - khash_add()  adds an entry to the hash table 


	 R - Attribute Management 
	 R.1 - Introduction to Attribute Management Routines 
	 R.2 - Definitions of Attribute Management Routines 
	 R.2.1 - kattrs_init()  Initialize the kattrs data type. 
	 R.2.2 - kattrs_create()  create a new attribute list 
	 R.2.3 - kattrs_destroy()  destroy an attribute list 
	 R.2.4 - kattrs_add()  add a new attribute to an attribute list 
	 R.2.5 - kattrs_vadd()  add a new attribute to an attribute list 
	 R.2.6 - kattrs_delete()  delete an attribute 
	 R.2.7 - kattrs_check()  check to see if an attribute exists 
	 R.2.8 - kattrs_query()  query information about an attribute 
	 R.2.9 - kattrs_set()  set an attribute of an attribute list 
	 R.2.10 - kattrs_vset()  set an attribute of an attribute list 
	 R.2.11 - kattrs_get()  get an attribute from an attribute list. 
	 R.2.12 - kattrs_vget()  get an attribute from an attribute list. 
	 R.2.13 - kattrs_print()  print an attribute 
	 R.2.14 - kattrs_search()  search for a list of attribute names matching some criteria 
	 R.2.15 - kattrs_dup()  duplicate an attribute from one list to another 
	 R.2.16 - kattrs_first()  return the first entry (atom) within the kattrs 
	 R.2.17 - kattrs_last()  return the last entry (atom) within the kattrs 
	 R.2.18 - kattrs_next()  return the next entry (atom) within the kattrs 
	 R.2.19 - kattrs_prev()  return the previous entry (atom) within the kattrs 
	 R.2.20 - kattrs_curr()  return the current entry (atom) within the kattrs 
	 R.2.21 - katom_new()  Create a new attribute atom 
	 R.2.22 - katom_vnew()  Create a new attribute atom 
	 R.2.23 - katom_delete()  delete the attribute 
	 R.2.24 - katom_get()  Get the data associated with an atom 
	 R.2.25 - katom_vget()  Get the data associated with an atom 
	 R.2.26 - katom_set()  Set the data of an atom 
	 R.2.27 - katom_vset()  Set the data of an atom 
	 R.2.28 - katom_match()  match an atom. 
	 R.2.29 - katom_dup()  clone an atom 
	 R.2.30 - katom_copy()  Copy an atom. 
	 R.2.31 - katom_query()  Query an atom for information 
	 R.2.32 - katom_print()  print the value of an attribute 
	 R.2.33 - katom_set_methods()  set method functions for an attribute 


	 S - Math Utilities 
	 S.1 - Introduction to the Math Utilities 
	 S.2 - Definitions of the Math Utilities 
	 S.2.1 - kmax()  return the greater of two values. 
	 S.2.2 - kmin()  return the lessor of two values. 
	 S.2.3 - krange()  return a ranged value 


	 T - File Format Utilities 
	 T.1 - Introduction to the Ascii Format Utilities 
	 T.1.1 - Definitions of the Ascii Format Utilities 
	 T.1.2 - ascii_create()  creates a ascii structure and it's associated data 
	 T.1.3 - ascii_free()  frees a ascii structure and it's associated data 
	 T.1.4 - ascii_readheader()  reads a ascii header structure from the specified kfile id 
	 T.1.5 - ascii_read()  read a ascii structure from the specified filename 
	 T.1.6 - ascii_fdread()  read a ascii structure from the specified file descriptor 
	 T.1.7 - ascii_writeheader()  writes a ascii header structure from the specified kfile id 
	 T.1.8 - ascii_write()  write a ascii structure to the specified filename 
	 T.1.9 - ascii_fdwrite()  write a ascii structure to the specified file descriptor 

	 T.2 - Introduction to the Pixmap Format Utilities 
	 T.2.1 - Definitions of the Pixmap Format Utilities 
	 T.2.2 - xpm_create()  creates a xpm structure and it's associated data 
	 T.2.3 - xpm_free()  frees a xpm structure and it's associated data 
	 T.2.4 - xpm_readheader()  reads a xpm header structure from the specified kfile id 
	 T.2.5 - xpm_read()  read a xpm structure from the specified filename 
	 T.2.6 - xpm_fdread()  read a xpm structure from the specified file descriptor 
	 T.2.7 - xpm_parse()  parses a xpm string array and returns an xpm structure 
	 T.2.8 - xpm_writeheader()  writes a xpm header structure from the specified kfile id 
	 T.2.9 - xpm_write()  write a xpm structure to the specified filename 
	 T.2.10 - xpm_fdwrite()  write a xpm structure to the specified file descriptor 


	 U - Ini Parsing Utilities 
	 U.1 - Introduction to the Ini Parsing Utilities 
	 U.2 - Definitions of the Ini Parsing Utilities 
	 U.2.1 - kini_parse()  parse dot ini configuration file 
	 U.2.2 - kini_write()  write an ini configuration file 
	 U.2.3 - kini_get_val()  get value for an IniConf parameter 
	 U.2.4 - kini_set_val()  set value for an IniConf parameter 
	 U.2.5 - kini_free()  free memory associated with an IniConf structure 


	 V - Structure Passing Utilities 
	 V.1 - Introduction to the Structure Passing Utilities 
	 V.2 - Definitions of the Structure Passing Utilities 
	 V.2.1 - kstruct_define()  define a structure entry 
	 V.2.2 - kstruct_undefine()  undefine a structure entry 
	 V.2.3 - kstruct_check()  check to see if a datatype is defined 
	 V.2.4 - kstruct_free()  frees a structure and any associated memory 
	 V.2.5 - kstruct_compare()  compares two structures 
	 V.2.6 - kstruct_duplicate()  duplicates a structure 
	 V.2.7 - kstruct_flatten()  flattens a structure 
	 V.2.8 - kstruct_unflatten()  unflattens data into a structure 
	 V.2.9 - kstruct_setinfo()  override the info in a structure entry 
	 V.2.10 - kstruct_getinfo()  retrieve the info in a structure entry 



	 3 - Mathematical Services 
	 A - Introduction 
	 B - Complex Arithmetic 
	 B.1 - Introduction to Complex Arithmetic Utilities 
	 B.2 - Definitions of Complex Arithmetic Utilities 
	 B.2.1 - kcadd()  add two complex numbers. 
	 B.2.2 - kcang()  compute the radian angle of a complex number. 
	 B.2.3 - kccomp()  construct a complex number from two real numbers. 
	 B.2.4 - kcconj()  compute the conjugate of a complex number. 
	 B.2.5 - kcdiv()  divide one complex number by another. 
	 B.2.6 - kcexp()  complex exponential function 
	 B.2.7 - kcimag()  return the imaginary component of a complex number. 
	 B.2.8 - kclog()  complex natural logarithm 
	 B.2.9 - kclogmag()  compute the log magnitude of a complex number. 
	 B.2.10 - kclogmagp1()  compute the log magnitude of a complex number plus one. 
	 B.2.11 - kclogmagsq()  compute the log magnitude squared of a complex number. 
	 B.2.12 - kclogmagsqp1()  compute the log magnitude squared of a complex number plus one. 
	 B.2.13 - kcmag()  compute the magnitude of a complex number. 
	 B.2.14 - kcmagsq()  calculate the squared magnitude of a kcomplex number. 
	 B.2.15 - kcmult()  multiply two complex numbers. 
	 B.2.16 - kcomp2dcomp()  convert a kcomplex number to a kdcomplex number. 
	 B.2.17 - kcp2r()  convert complex from polar coordinates to rectangular coordinates 
	 B.2.18 - kcpow()  compute the value of a complex number raised to a complex power 
	 B.2.19 - kcr2p()  convert complex from rectangular coordinates to polar coordinates 
	 B.2.20 - kcreal()  return the real component of a complex number. 
	 B.2.21 - kcsqrt()  calculate the complex square root of a complex argument. 
	 B.2.22 - kcsub()  subtract one kcomplex number from another. 


	 C - Double Complex Arithmetic 
	 C.1 - Introduction to Double Complex Arithmetic Utilities 
	 C.2 - Definitions of Double Complex Arithmetic Utilities 
	 C.2.1 - kdcadd()  add two double precision complex  numbers. 
	 C.2.2 - kdcang()  compute the radian angle of a  double precision complex number. 
	 C.2.3 - kdccomp()  construct a double precision  complex number from two real numbers. 
	 C.2.4 - kdcconj()  compute the conjugate of a double  precision complex number. 
	 C.2.5 - kdccos()  double complex cosine 
	 C.2.6 - kdccosh()  double complex hyperbolic cosine 
	 C.2.7 - kdcdiv()  divide one double precision complex  number by another. 
	 C.2.8 - kdcexp()  double complex exponential function 
	 C.2.9 - kdcimag()  return the imaginary component of a double precision complex number. 
	 C.2.10 - kdclog()  double complex natural logarithm 
	 C.2.11 - kdclogmag()  compute the log magnitude of a double  precision complex number. 
	 C.2.12 - kdclogmagp1()  compute the log magnitude of a double  precision complex number plus one. 
	 C.2.13 - kdclogmagsq()  compute the log magnitude squared of a double  precision complex number. 
	 C.2.14 - kdclogmagsqp1()  compute the log magnitude squared of a double  precision complex number plus one. 
	 C.2.15 - kdcmag()  compute the magnitude of a double  precision complex number. 
	 C.2.16 - kdcmagsq()  calculate the squared magnitude of a double precision complex number. 
	 C.2.17 - kdcmult()  multiply two double precision  complex numbers. 
	 C.2.18 - kdcomp2comp()  convert a kdcomplex number to a kcomplex number. 
	 C.2.19 - kdcp2r()  convert double complex from polar coordinates to rectangular coordinates 
	 C.2.20 - kdcpow()  compute the double complex value of a double complex number raised to a double complex power. 
	 C.2.21 - kdcr2p()  convert double complex from rectangular coordinates to polar coordinates 
	 C.2.22 - kdcreal()  return the real component of a double precision complex number. 
	 C.2.23 - kdcsin()  double complex sine 
	 C.2.24 - kdcsinh()  double complex hyperbolic sine 
	 C.2.25 - kdcsqrt()  calculate the double precision  complex square root of a double precision  complex number. 
	 C.2.26 - kdcsub()  subtract one double precision  complex number from another. 
	 C.2.27 - kdctan()  double complex tangent 
	 C.2.28 - kdctanh()  double complex hyperbolic tangent 
	 C.2.29 - kdcomplex_to_arrays()  separate array of double complex into real and imaginary arrays 


	 D - Matrix Arithmetic 
	 D.1 - Introduction to Matrix Arithmetic Routines 
	 D.2 - Definitions of Matrix Arithmetic Routines 
	 D.2.1 - kfmatrix_clear()  zeros a matrix 
	 D.2.2 - kfmatrix_identity()  set matrix to identity 
	 D.2.3 - kfmatrix_inner_prod()  compute the inner product of two vectors. 
	 D.2.4 - kfmatrix_inverse()  inverts a matrix. 
	 D.2.5 - kfmatrix_multiply()  multiply two matrices 
	 D.2.6 - kfmatrix_princ_axis()  obtain the principle axis of a covariance matrix. 
	 D.2.7 - kfmatrix_vector_prod()  compute the matrix-vector product. 
	 D.2.8 - kdmatrix_clear()  zeros a matrix 
	 D.2.9 - kdmatrix_identity()  set matrix to identity 
	 D.2.10 - kdmatrix_inner_prod()  compute the inner product of two vectors. 
	 D.2.11 - kdmatrix_inverse()  inverts a matrix. 
	 D.2.12 - kdmatrix_multiply()  multiply two matrices 
	 D.2.13 - kdmatrix_princ_axis()  obtain the principle axis of a covariance matrix. 
	 D.2.14 - kdmatrix_vector_prod()  compute the matrix-vector product. 
	 D.2.15 - klin_sgefa()  factors a float matrix by gaussian elimination. 
	 D.2.16 - klin_sgedi()  computes the determinate and  inverse of a matrix 
	 D.2.17 - kblas_sscal()  scale a float vector 
	 D.2.18 - kblas_saxpy()  add two float vectors while scaling one 
	 D.2.19 - kblas_sswap()  swap two float vectors 
	 D.2.20 - klin_dgefa()  factors a double matrix by gaussian elimination. 
	 D.2.21 - klin_dgedi()  computes the determinate and  inverse of a matrix 
	 D.2.22 - kblas_dscal()  scale a double vector 
	 D.2.23 - kblas_daxpy()  add two double vectors while scaling one 
	 D.2.24 - kblas_dswap()  swap two double vectors 


	 E - Sequence Generation 
	 E.1 - Introduction to Sequence Generation Functions 
	 E.2 - Definitions of Sequence Generation Functions 
	 E.2.1 - kgen_expon()  generate a vector of exponential random numbers. 
	 E.2.2 - kgen_gauss()  generate a vector of gaussian random numbers. 
	 E.2.3 - kgen_poisson()  generate a vector of Poisson random numbers. 
	 E.2.4 - kgen_rayleigh()  generate a vector of Rayleigh random numbers. 
	 E.2.5 - kgen_unif()  generate a vector of uniform random  numbers. 
	 E.2.6 - kgen_linear()  generate a piecewise linear data set. 
	 E.2.7 - kgen_sine()  generates a sinusoid data set 
	 E.2.8 - kgen_sinec()  generate a sinc data set. 


	 F - General Math Utilities 
	 F.1 - Introduction to General Math Utilities 
	 F.2 - Definitions of General Math Utilities 
	 F.2.1 - kabs()  return the absolute value of a single argument. 
	 F.2.2 - kacos()  compute the arc cosine of the argument. 
	 F.2.3 - kacosh()  compute the arc hyperbolic cosine of the argument. 
	 F.2.4 - kasin()  compute the arc sine of the  argument. 
	 F.2.5 - kasinh()  compute the arc hyperbolic sine of the argument. 
	 F.2.6 - katan()  compute the arc tangent of the argument. 
	 F.2.7 - katan2()  compute the arc tangent of y/x. 
	 F.2.8 - katanh()  compute the arc hyperbolic tangent of the argument. 
	 F.2.9 - kcbrt()  compute the cube root of the argument. 
	 F.2.10 - kceil()  compute the ceiling of the argument. 
	 F.2.11 - kclear()  return an value with all bits clear 
	 F.2.12 - kcos()  compute the double precision cosine of the argument. 
	 F.2.13 - kcosh()  compute the hyperbolic cosine of the argument. 
	 F.2.14 - kdata_minmax()  find the min/max values for a region of data 
	 F.2.15 - kdegrees_radians()  return the radians given an input of degrees 
	 F.2.16 - kerf()  compute the error function of the argument. 
	 F.2.17 - kerfc()  compute the complement error function of the argument. 
	 F.2.18 - kexp()  compute the exponential of the argument. 
	 F.2.19 - kexp10()  compute the base 10 exponential function of the argument. 
	 F.2.20 - kexp2()  compute the base 2 exponential function of the argument. 
	 F.2.21 - kexpm1()  compute the exponential function minus 1  of the argument. 
	 F.2.22 - kfabs()  compute the absolute value of the argument. 
	 F.2.23 - kfloor()  compute the floor of the argument. 
	 F.2.24 - kfmod()  compute the floating point modulo of the arguments. 
	 F.2.25 - kfraction()  returns the fractional part of x 
	 F.2.26 - kfrexp()  compute significand and exponent of argument 
	 F.2.27 - kgamma()  compute the gamma function of the argument. 
	 F.2.28 - khypot()  compute the euclidean distance from the origin of the arguments. 
	 F.2.29 - kintercept()  interpolate the intercept 
	 F.2.30 - kj0()  compute the Bessel function j0 of the argument. 
	 F.2.31 - kj1()  compute the Bessel function j1 of the argument. 
	 F.2.32 - kjn()  compute the general Bessel function jn of the argument. 
	 F.2.33 - kldexp()  computes x * 2**n 
	 F.2.34 - klog()  compute the natural logarithm of the argument. 
	 F.2.35 - klog10()  compute the base 10 logarithm of the argument. 
	 F.2.36 - klog1p()  compute the logarithm of x+1 of the argument. 
	 F.2.37 - klog2()  compute the base 2 logarithm of the argument. 
	 F.2.38 - klogical_not()  logical not (invert) function 
	 F.2.39 - klogn()  base log n of argument 
	 F.2.40 - kmax3()  return the greater of three values. 
	 F.2.41 - kmax4()  return the greater of four values. 
	 F.2.42 - kmin3()  return the lessor of three values. 
	 F.2.43 - kmin4()  return the lessor of four values. 
	 F.2.44 - kmodf()  compute the fractional component of the argument. 
	 F.2.45 - kneg()  negative function 
	 F.2.46 - knot()  bitwise not (invert) function 
	 F.2.47 - kpow()  compute x to the y power. 
	 F.2.48 - kradians_degrees()  return the degrees given an input of radians 
	 F.2.49 - krandom()  generate random number in range [0,2**31-1] 
	 F.2.50 - krecip()  reciprocal function. 
	 F.2.51 - kset()  return a value with all bit set 
	 F.2.52 - kset_seed()  Set the seed to a randome number generator. 
	 F.2.53 - ksin()  compute the double precision sine of the argument. 
	 F.2.54 - ksinh()  compute the hyperbolic sine of the argument. 
	 F.2.55 - ksqrt()  compute the square root of the argument. 
	 F.2.56 - ksrandom()  seed the krandom random number generator. 
	 F.2.57 - ktan()  compute the double precision tangent of the argument. 
	 F.2.58 - ktanh()  compute the hyperbolic tangent of the argument. 
	 F.2.59 - ktrunc()  truncate a number 
	 F.2.60 - ky0()  compute the Bessel function y0 of the argument. 
	 F.2.61 - ky1()  compute the Bessel function y1 of the argument. 
	 F.2.62 - kyn()  compute the general Bessel function yn of the argument. 
	 F.2.63 - kfact()  compute factorial of input. 
	 F.2.64 - kimpulse()  evaluate impulse function. 
	 F.2.65 - kpowtwo()  determine if number is an  integer power of two. 
	 F.2.66 - ksign()  evaluate sign function. 
	 F.2.67 - ksinc()  sinc function which is  
	 F.2.68 - ksqr()  return the square of a single value. 
	 F.2.69 - kstep()  evaluate step function. 
	 F.2.70 - kurng()  generate a uniform random number in the range [0:1]. 


	 G - General Data Processing Help Routines 
	 G.1 - Introduction to Help Routines 
	 G.2 - Definitions of Help Routines 
	 G.2.1 - kdata_arith2_dcomplex()  perform 2-input double complex arithmetic 
	 G.2.2 - kdata_arith2_double()  perform 2-input double precision arithmetic 
	 G.2.3 - kdata_arith2_long()  perform 2-input long arithmetic 
	 G.2.4 - kdata_arith2_ulong()  perform 2-input unsigned long arithmetic 
	 G.2.5 - kdata_arith2_ubyte()  perform 2-input unsigned byte arithmetic 
	 G.2.6 - kdata_fill()  fill memory with value by data type 



	 4 - Expression Services 
	 A - Introduction 
	 B - Evaluation Utilities 
	 B.1 - Simplified interface routines 
	 B.2 - Routine Descriptions 
	 B.2.1 - kexpr_eval()  evaluate an expression 
	 B.2.2 - kexpr_delete_result()  delete a KexprResult struct 

	 B.3 - Introduction to Generic Evaluation Utilities 
	 B.4 - Definition of Evaluation Utilities 
	 B.4.1 - kexpr_evaluate_generic()  evaluate an expression and return result using the desired data type 
	 B.4.2 - kexpr_evaluate_byte()  evaluate char/byte expression 
	 B.4.3 - kexpr_evaluate_ubyte()  evaluate unsigned byte/char expression 
	 B.4.4 - kexpr_evaluate_short()  evaluate short expression 
	 B.4.5 - kexpr_evaluate_ushort()  evaluate unsigned short expression 
	 B.4.6 - kexpr_evaluate_int()  evaluate integer expression 
	 B.4.7 - kexpr_evaluate_uint()  evaluate unsigned integer expression 
	 B.4.8 - kexpr_evaluate_long()  evaluate long expression 
	 B.4.9 - kexpr_evaluate_ulong()  evaluate unsigned long expression 
	 B.4.10 - kexpr_evaluate_float()  evaluate float expression 
	 B.4.11 - kexpr_evaluate_double()  evaluate double expression 
	 B.4.12 - kexpr_evaluate_complex()  evaluate complex expression 
	 B.4.13 - kexpr_evaluate_dcomplex()  evaluate double complex expression 
	 B.4.14 - kexpr_evaluate_string()  evaluate string expression 
	 B.4.15 - kexpr_substitute_exprs()  substitute expressions within a string 


	 C - Miscellaneous Expression Utilities 
	 C.1 - Introduction to Miscellaneous Expression Routines 
	 C.2 - Definitions of Miscellaneous Expression Utilities 
	 C.2.1 - kexpr_variables_copy()  copies variables from one id to another 
	 C.2.2 - kexpr_variables_list()  list variables associated with an id 
	 C.2.3 - kexpr_parent_set()  set the parent variable list associated with an id 
	 C.2.4 - kexpr_parent_unset()  unset the parent variable list associated with an id 



	 5 - Operating System Services 
	 A - Introduction 
	 B - Data Transports 
	 B.1 - Transport Buffering 
	 B.1.1 - File Buffering 
	 B.1.2 - Stream Buffering 
	 B.1.3 - Memory Buffering 

	 B.2 - Data Transport Identifier Syntax 

	 C - Distributed Processing 
	 C.1 - Data Transport Identifier Syntax for Distributed Processing 

	 D - Data Types and Casting 
	 D.1 - Introduction to Data Type and Casting Utilities 
	 D.2 - Definitions of Data Transport IPC Utilities 
	 D.2.1 - kdata_size()  return the size of a khoros data type 
	 D.2.2 - kdatatype_cast_process()  cast type for processing 
	 D.2.3 - kdatatype_to_define()  takes the string version of the data type and returns the #define value. 
	 D.2.4 - kdefine_to_datatype()  takes the #define data type value and returns the string value 
	 D.2.5 - kdatatype_cast_output()  recommend an appropriate common data type for processing 


	 E - Reading to and Writing from a Data Transport 
	 E.1 - Introduction to Data Transport I/O Utilities 
	 E.2 - Definitions of Data Transport Read Utilities 
	 E.2.1 - kread()  read input from a transport descriptor 
	 E.2.2 - kread_bit()  read an array of bits 
	 E.2.3 - kread_byte()  read an array of signed bytes 
	 E.2.4 - kread_complex()  read an array of complex 
	 E.2.5 - kread_dcomplex()  read an array of double complex 
	 E.2.6 - kread_double()  read an array of doubles 
	 E.2.7 - kread_float()  read an array of floats 
	 E.2.8 - kread_generic()  read in any data type. 
	 E.2.9 - kread_int()  read an array of signed ints 
	 E.2.10 - kread_long()  read an array of signed longs 
	 E.2.11 - kread_short()  read an array of signed shorts 
	 E.2.12 - kread_string()  read an array of strings 
	 E.2.13 - kread_ubyte()  read an array of unsigned bytes 
	 E.2.14 - kread_uint()  read an array of unsigned ints 
	 E.2.15 - kread_ulong()  read an array of unsigned longs 
	 E.2.16 - kread_ushort()  read an array of unsigned shorts 
	 E.2.17 - kread_array()  read in a variable array 
	 E.2.18 - kread_pointer()  read in a variable array 
	 E.2.19 - kread_struct()  read in a single structure 
	 E.2.20 - kparse_bit()  read an array of bits 
	 E.2.21 - kparse_byte()  read an array of signed bytes 
	 E.2.22 - kparse_complex()  read an array of complex 
	 E.2.23 - kparse_dcomplex()  read an array of double complex 
	 E.2.24 - kparse_double()  read an array of doubles 
	 E.2.25 - kparse_float()  read an array of floats 
	 E.2.26 - kparse_generic()  read in any data type. 
	 E.2.27 - kparse_int()  read an array of signed ints 
	 E.2.28 - kparse_long()  read an array of signed longs 
	 E.2.29 - kparse_short()  read an array of signed shorts 
	 E.2.30 - kparse_string()  read an array of strings 
	 E.2.31 - kparse_ubyte()  read an array of unsigned bytes 
	 E.2.32 - kparse_uint()  read an array of unsigned ints 
	 E.2.33 - kparse_ulong()  read an array of unsigned longs 
	 E.2.34 - kparse_ushort()  read an array of unsigned shorts 
	 E.2.35 - kparse_array()  read in a variable array 
	 E.2.36 - kparse_pointer()  read in a variable array 
	 E.2.37 - kparse_struct()  read in a single structure 

	 E.3 - Definitions of Data Transport Write Utilities 
	 E.3.1 - kwrite()  write output to a transport descriptor 
	 E.3.2 - kwrite_bit()  write an array of bits 
	 E.3.3 - kwrite_byte()  write an array of signed bytes 
	 E.3.4 - kwrite_complex()  write an array of complex 
	 E.3.5 - kwrite_dcomplex()  write an array of double complex 
	 E.3.6 - kwrite_double()  write an array of doubles 
	 E.3.7 - kwrite_float()  write an array of floats 
	 E.3.8 - kwrite_generic()  write an array in any data type. 
	 E.3.9 - kwrite_int()  write an array of signed ints 
	 E.3.10 - kwrite_long()  write an array of signed longs 
	 E.3.11 - kwrite_short()  write an array of signed shorts 
	 E.3.12 - kwrite_string()  write an array of strings 
	 E.3.13 - kwrite_ubyte()  write an array of unsigned bytes 
	 E.3.14 - kwrite_uint()  write an array of unsigned ints 
	 E.3.15 - kwrite_ulong()  write an array of unsigned longs 
	 E.3.16 - kwrite_ushort()  write an array of unsigned shorts 
	 E.3.17 - kwrite_array()  write a variable array 
	 E.3.18 - kwrite_pointer()  write a variable array 
	 E.3.19 - kwrite_struct()  write a single structure 
	 E.3.20 - kprint_bit()  write an array of bits 
	 E.3.21 - kprint_byte()  write an array of signed bytes 
	 E.3.22 - kprint_complex()  write an array of complex 
	 E.3.23 - kprint_dcomplex()  write an array of double complex 
	 E.3.24 - kprint_double()  write an array of doubles 
	 E.3.25 - kprint_float()  write an array of floats 
	 E.3.26 - kprint_generic()  write an array in any data type. 
	 E.3.27 - kprint_int()  write an array of signed ints 
	 E.3.28 - kprint_long()  write an array of signed longs 
	 E.3.29 - kprint_short()  write an array of signed shorts 
	 E.3.30 - kprint_string()  write an array of strings 
	 E.3.31 - kprint_ubyte()  write an array of unsigned bytes 
	 E.3.32 - kprint_uint()  write an array of unsigned ints 
	 E.3.33 - kprint_ulong()  write an array of unsigned longs 
	 E.3.34 - kprint_ushort()  write an array of unsigned shorts 
	 E.3.35 - kprint_array()  write a variable array 
	 E.3.36 - kprint_pointer()  write a variable array 
	 E.3.37 - kprint_struct()  write a single structure 


	 F - I/O Utilities 
	 F.1 - Introduction to Low-level I/O Functions 
	 F.2 - Definitions of Low-level I/O Functions 
	 F.2.1 - kaccess()  determine accessibility of file 
	 F.2.2 - kclearerr()  clear the EOF/error flags of a data transport stream 
	 F.2.3 - kclose()  close and delete a transport descriptor 
	 F.2.4 - kcreat()  routine for creating a khoros transport 
	 F.2.5 - kdup()  duplicate an existing khoros transport descriptor 
	 F.2.6 - kdup2()  specifically duplicate an existing khoros transport descriptor 
	 F.2.7 - kexit()  terminate a process 
	 F.2.8 - kfileno()  return the transport descriptor 
	 F.2.9 - kgetbuffer()  get the current data transport stream's input/output buffer and it's size 
	 F.2.10 - kgetc()  get character from khoros transport 
	 F.2.11 - kgetdescriptors()  get true UNIX file descriptors 
	 F.2.12 - kgethostname()  get the current hostname 
	 F.2.13 - kgets()  reads from kstdin until a newline or EOF 
	 F.2.14 - kinput()  opens a file for reading using kopen() 
	 F.2.15 - klseek()  move read/write pointer of a transport descriptor 
	 F.2.16 - kopen()  open or create a file for reading and/or writing 
	 F.2.17 - koutput()  opens/creates a file for writing using kopen() 
	 F.2.18 - kpclose()  close a pipe (for I/O) from or to a process 
	 F.2.19 - kpopen()  open a pipe (for I/O) from or to a process 
	 F.2.20 - kpinfo()  gets the associated process id 
	 F.2.21 - kprintf()  print formatted output to kstdout 
	 F.2.22 - kputc()  put a character onto the khoros transport 
	 F.2.23 - krename()  rename a khoros transport from path1 to path2 
	 F.2.24 - krewind()  rewind a data transport stream to the beginning 
	 F.2.25 - kscanf()  scan kstdin and format the input into one or more arguments of the type specified 
	 F.2.26 - ksetvbuf()  set the I/O buffer of a data transport stream 
	 F.2.27 - ksprintf()  print one or more arguments in the format specified to an output string. 
	 F.2.28 - kmsprintf()  print one or more arguments in the format specified and return an allocated output string. 
	 F.2.29 - ksscanf()  scan input string and format it into one or more arguments of the type specified. 
	 F.2.30 - ktell()  report the position of the read/write pointer 
	 F.2.31 - ktouch()  routine for touching a temporary transport 
	 F.2.32 - ktmpfile()  create a temporary data transport stream 
	 F.2.33 - kungetc()  push a character back onto the data transport stream 
	 F.2.34 - kunlink()  remove a filename from a directory entry 

	 F.3 - Introduction to Variable Argument I/O Functions 
	 F.4 - Definitions of Variable Argument I/O Functions 
	 F.4.1 - kvfprintf()  print formatted kfile output of variable arguments 
	 F.4.2 - kvfscanf()  scan formatted kfile input of variable arguments 
	 F.4.3 - kvprintf()  print formatted kstdout output of variable arguments 
	 F.4.4 - kvscanf()  scan formatted kstdin input of variable arguments 
	 F.4.5 - kvsprintf()  print formatted string output of variable arguments list 
	 F.4.6 - kvsscanf()  scan formatted string of a variable argument list 

	 F.5 - Introduction to Standard File I/O Functions 
	 F.6 - Definitions of Standard File I/O Functions 
	 F.6.1 - kfopen()  open a data transport stream 
	 F.6.2 - kfclose()  close a data transport stream 
	 F.6.3 - kfdopen()  open an existing transport descriptor as a data transport stream 
	 F.6.4 - kfeof()  check if a data transport stream is at EOF 
	 F.6.5 - kfflush()  flush buffered output of a data transport stream 
	 F.6.6 - kflock()  apply or remove an advisory lock on an open transport descriptor 
	 F.6.7 - kfreopen()  re-open a data transport stream 
	 F.6.8 - kfseek()  set position in a data transport stream 
	 F.6.9 - kftell()  report current position in the data transport stream 

	 F.7 - Introduction to File Read/Write Utilities 
	 F.8 - Definitions of File Read/Write Utilities 
	 F.8.1 - kfdup()  duplicate an existing data transport stream 
	 F.8.2 - kfdup2()  duplicate an existing data transport into a specific stream 
	 F.8.3 - kfgetc()  get a character from the data transport stream 
	 F.8.4 - kfgets()  get a string from a data transport stream 
	 F.8.5 - kfinput()  opens a file for reading using kfopen() 
	 F.8.6 - kfoutput()  opens/creates a file for writing using kfopen() 
	 F.8.7 - kfprintf()  print one or more arguments in the format specified to an output file stream 
	 F.8.8 - kfputc()  put a character onto the data transport stream 
	 F.8.9 - kfputs()  put a string onto the data transport stream 
	 F.8.10 - kfread()  read from a data transport stream 
	 F.8.11 - kfscanf()  scan file input and format it into one or more arguments of the type specified 
	 F.8.12 - kfwrite()  write to a data transport stream 
	 F.8.13 - kputs()  writes a string to kstdout 

	 F.9 - Introduction to Data Transport Utilities 
	 F.10 - Definitions of Data Transport Utilities 
	 F.10.1 - kfile_clrstate()  remove a flag from an open transport id state 
	 F.10.2 - kfile_comparedata()  compare the contents of a transport id to another transport id 
	 F.10.3 - kfile_copydata()  copy the contents of a transport id to another transport id 
	 F.10.4 - kfile_filename()  return the filename associated with khoros transport id 
	 F.10.5 - kfile_flags()  return the flags associated with transport id 
	 F.10.6 - kfile_getmachtype()  gets the machine architecture type for a file transport id 
	 F.10.7 - kfile_getpermanence()  returns whether a file has data permanence or not 
	 F.10.8 - kfile_isdup()  khoros transport has been  has been/is a dupped transport 
	 F.10.9 - kfile_iseof()  khoros transport is at end of file (eof) 
	 F.10.10 - kfile_ismybuf()  khoros transport buffer was set by the application 
	 F.10.11 - kfile_isopen()  khoros transport has been  properly opened 
	 F.10.12 - kfile_islock()  khoros transport has been/is a locked transport 
	 F.10.13 - kfile_isreacquire()  khoros transport will be reacquired 
	 F.10.14 - kfile_ispermanent()  khoros transport has permanence 
	 F.10.15 - kfile_isbufferd()  khoros transport is buffered or not 
	 F.10.16 - kfile_isstreambuf()  khoros transport is stream buffered 
	 F.10.17 - kfile_islinebuf()  khoros transport is line buffered 
	 F.10.18 - kfile_isfullbuf()  khoros transport is full buffered 
	 F.10.19 - kfile_ismembuf()  khoros transport is memory buffered 
	 F.10.20 - kfile_isread()  khoros transport is readable 
	 F.10.21 - kfile_isrdwr()  khoros transport is both readable and writeable 
	 F.10.22 - kfile_istemp()  khoros transport is temporary 
	 F.10.23 - kfile_iswrite()  khoros transport is writeable 
	 F.10.24 - kfile_mode()  return the mode associated with transport id 
	 F.10.25 - kfile_readdata()  read the contents of a khoros transport into a data array 
	 F.10.26 - kfile_remotehost()  returns whether a host is remote 
	 F.10.27 - kfile_reopen()  re-open a stream khoros transport 
	 F.10.28 - kfile_seddata()  string edit from one transport to another 
	 F.10.29 - kfile_setmachtype()  sets the machine architecture type for a file transport id 
	 F.10.30 - kfile_setstate()  adds a flag to the open transport id state 
	 F.10.31 - kfile_getstate()  return the current internal stream transport state 
	 F.10.32 - kfile_type()  return the type flag field used when opening the transport with kfopen() 
	 F.10.33 - kfile_writedata()  write the contents of the data to a khoros transport 
	 F.10.34 - kfidfile()  return the kfile structure associated with a fid 
	 F.10.35 - ktmpfid()  create a temporary transport descriptor 
	 F.10.36 - ktransport_add()  add a new transport to the list of transports 
	 F.10.37 - ktransport_delete()  delete a transport from the list of all transports 
	 F.10.38 - ktransport_list()  get the list of supported transports 

	 F.11 - Introduction to General File Utilities 
	 F.12 - Definitions of General File Utilities 
	 F.12.1 - kcomparefile()  compare the contents of one filename to another 
	 F.12.2 - kcopyfile()  copy the contents of one filename to another 
	 F.12.3 - keditfile()  start up an edit program to edit an input file 
	 F.12.4 - kprintfile()  print a file to a printer 
	 F.12.5 - kreadfile()  read the contents of a file into a data array 
	 F.12.6 - ksedfile()  khoros string edit a file 
	 F.12.7 - kwritefile()  write the contents of the data to a file 

	 F.13 - Miscellaneous Utilities 
	 F.13.1 - kflags_to_type()  convert kopen() flags to kfopen() type parameter 
	 F.13.2 - ktype_to_flags()  convert kfopen() type to kopen() flags 


	 G - Process Execution 
	 G.1 - Introduction to Process Execution Utilities 
	 G.2 - Definitions of Process Execution Utilities 
	 G.2.1 - kexecvp()  execute a command 
	 G.2.2 - kexit_handler()  adds an kexit handler 
	 G.2.3 - ksignal()  khoros signal handler 
	 G.2.4 - ksignal_format()  format the actual signal error 
	 G.2.5 - kspawn()  spawn a command 
	 G.2.6 - ksystem()  issue a shell command 


	 H - InterProcess Communication 
	 H.1 - Introduction to Data Transport IPC Utilities 
	 H.2 - Definitions of Data Transport IPC Utilities 
	 H.2.1 - kipc_install_handler()  install IPC handler 
	 H.2.2 - kipc_check_handler()  check to see if an IPC handler is installed 
	 H.2.3 - kipc_remove_handler()  remove IPC handler 
	 H.2.4 - kipc_stop()  stop or discontinue an IPC. 
	 H.2.5 - kipc_enable()  enable IPC before exec'ing a new process 
	 H.2.6 - kipc_process()  get and dispatch a message 
	 H.2.7 - kipc_dispatch()  dispatch a message 
	 H.2.8 - kipc_get_data()  get raw data from a process 
	 H.2.9 - kipc_send_data()  send raw data to a process 
	 H.2.10 - kipc_get_message()  get a message 
	 H.2.11 - kipc_send_message()  send a message 
	 H.2.12 - kipc_response_message()  send a response message 
	 H.2.13 - kipc_pending()  waits for a message 
	 H.2.14 - kipc_check()  check that the IPC is enabled 
	 H.2.15 - kipc_verify()  verify an IPC handler is installed 
	 H.2.16 - kipc_debug()  Turn on debugging messages 
	 H.2.17 - kipc_debug_file()  specify a file to send debug data 


	 I - Distributed Computing 
	 I.1 - Introduction to the Distributed Computing Utilities 
	 I.2 - Definitions of the Distributed Computing Utilities 
	 I.2.1 - kremote_exec()  creates a khoros command string which can exec'ed on a remote host 
	 I.2.2 - kremote_file()  creates a khoros file string which can be accessed on a remote machine 
	 I.2.3 - kremote_location()  return the remote location 
	 I.2.4 - kremote_check()  check to see if we can access host 
	 I.2.5 - kremote_start()  starts daemon on specified host 
	 I.2.6 - kremote_stop()  stops daemon on the specified host 
	 I.2.7 - kremote_running()  Check to see if host is currently running daemon 
	 I.2.8 - kremote_list()  List the remote hosts with daemons started 

	 I.3 - Introduction to the Host Utilities 
	 I.4 - Definitions of the Host Utilities 
	 I.4.1 - khost_list()  get the list of machines that processes can be distributed to 
	 I.4.2 - khost_add()  add a host to the list of machines that processes can be distributed to 
	 I.4.3 - khost_delete()  delete a host from the list of machines that processes can be distributed to 
	 I.4.4 - khost_save()  saves the current list of machines back into the khoros host file 
	 I.4.5 - khost_location()  get the location part of the host spec 
	 I.4.6 - khost_username()  get the username part of the host spec 
	 I.4.7 - khost_remotecmd()  get the username part of the host spec 
	 I.4.8 - khost_entry()  get the entry the best matches the partial host 



	 6 - Exception Handling 
	 A - Exception Handling In VisiQuest 
	 A.1 - Background 
	 A.2 - What is an exception? 
	 A.3 - How to raise an exception? 
	 A.4 - What about the caller? 
	 A.5 - Important Nuances 
	 A.6 - Handling Exceptions 
	 A.7 - Error Classes 
	 A.8 - Error Traceback 
	 A.9 - Introduction for Exceptions Handling routines 
	 A.10 - Definitions of Exception Handling routines 
	 A.10.1 - ktry_begin()  open a try block for exception handling 
	 A.10.2 - ktry_end()  close a try block for exception handling 
	 A.10.3 - kcatch()  catch errors 
	 A.10.4 - kthrow()  raise an error exception 
	 A.10.5 - krethrow()  propagate an error exception 
	 A.10.6 - khandle_warn()  handler exception as an warning 
	 A.10.7 - khandle_ignore()  handler exception as an ignore 
	 A.10.8 - khandle_error()  handler exception as an error 
	 A.10.9 - khandle_fatal()  handler exception as a fatal error 




